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Abstract

In this paper we analyze the behavior of the Oja’s algorithm for online/streaming principal com-
ponent subspace estimation. It is proved that with high probability it performs an efficient, gap-free,
global convergence rate to approximate an principal component subspace for any sub-Gaussian distri-
bution. Moreover, it is the first time to show that the convergence rate, namely the upper bound of the
approximation, exactly matches the lower bound of an approximation obtained by the offline/classical
PCA up to a constant factor.
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1 Introduction

Principal component analysis (PCA) introduced by Pearson [25] and Hotelling [14] is one of the most well-
known and popular methods for dimensional reduction in statistics, machine learning, and data science.
The goal of PCA is to find out a low-dimensional linear subspace that is closest to a centered random
vector in a high-dimensional subspace in the mean squared sense through finite independent and identically
distributed (i.i.d.) samples of the random vector. Theoretically, given a random vector X ∈ Rd satisfying

E{X} = 0,E
{
XXT

}
= Σ, PCA looks for a subspace U∗ with dimU∗ = p < d, such that

U∗ = arg min
dimU=p

E
{
∥(Id −ΠU )X∥22

}
, (1.1)

where Id is the identical mapping, or equivalently the d × d identity matrix, and ΠU is the orthogonal
projector onto U . Let Σ = UΛUT be the spectral decomposition of Σ, where

Σ = UΛUT with U = [u1, u2, . . . , ud], Λ = diag(λ1, . . . , λd), (1.2)

If λp > λp+1, then the unique solution to the optimization problem (1.1), namely the p-dimensional
principal subspace of Σ, is U∗ = span(u1, . . . , up), the subspace spanned by u1, . . . , up.

In practice, the covariance matrix Σ is difficult, if not impossible, to obtain, and people have to use
samples to approximate U∗. The classical/offline PCA use the spectral decomposition of the empirical

covariance matrix Σ̂ = 1
n

∑n
i=1X

(i)(X(i))T. There Û∗ = span(û1, . . . , ûp) is used to approximate U∗,
where ûi are corresponding eigenvectors of Σ̂. Vu and Lei [32, Theorem 3.1] proved that

inf
dim Ũ∗=p

sup
X∈P0(σ2

∗,d)

E
{
∥sinΘ(Ũ∗,U∗)∥2F

}
≥ cp(d− p)σ

2
∗
n
≥ c λ1λp+1

(λp − λp+1)2
p(d− p)

n
, (1.3)

where c > 0 is an absolute constant, and P0(σ
2
∗, d) is the set of all d-dimensional sub-Gaussian distributions

for which the eigenvalues of the covariance matrix satisfy
λ1λp+1

(λp−λp+1)2
≤ σ2

∗. Note that
λ1λp+1

(λp−λp+1)2
is the

effective noise variance.
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Due to the practical requirement that only limited memory and a single pass over the data can be
implemented, people have paid amount of attention to a class of methods under these condition, called
streaming/online PCA. The most natural and simple method was designed by Oja and his coauthor [23, 24]:
first choose an initial guess U (0) ∈ Rd×p with (U (0))TU (0) = I, and then iteratively update

U (n) = Π
(
[Id + ηnX

(n)(X(n))T]U (n−1)
)
= [Id + ηnX

(n)(X(n))T]U (n−1)S(n),

where Π(A) is an orthonormal projector such that Π(A)TΠ(A) = Ip and span(A) = span(Π(A)), and
S(n) is used to denote the normalization matrix. There are three classes of hyperparameters:

1. the initial guess U (0): usually first generate Ũ (0) of which each entry follows the standard Gaussian
distribution N(0, 1), and then obtain U (0) by QR decomposition. Note that in this setup, U (0)

is uniformly sampled from all the p-dimensional subspaces under the Haar invariant probability
measure (see eg. [22]).

2. the learning rates ηn: there are different strategies to choose them. Two common setups are the
constant learning rates ηn = ηo, and harmonic learning rates ηn ∝ 1

n .

3. the normalization matrices S(n): Two common ways to obtain the orthonormal basis are QR decom-
position, and polar decomposition [1, 19].

Although the Oja’s algorithm was developed nearly 40 years ago and it works well in practice, its
convergence behavior is limited until recently. Most theoretical results come out since 2014. As was
argued by Allen-Zhu and Li [2], the convergence rate of the Oja’s method has several features:

1. efficient: the rate only depends on the dimension d logarithmically. In fact, the dependence on d can
be removed.

2. gap-free: the rate is independent of the eigenvalue gap

γ = λp − λp+1.

In details, the feature tells that ∥sinΘ(span(U (n)), span(u1, . . . , uq))∥ is bounded by a factor γ̃−2

rather than γ−2, where γ̃ is an arbitrary chosen threshold, and λp − λq < γ̃ ≤ λp − λq+1.

3. global: the algorithm is allowed to start from a random initial guess.

Some recent works [26] studied the convergence of the online PCA for the most significant principal
component, i.e., u1, from different points of view and obtained some results for the case where the samples
are almost surely uniformly bounded. De Sa et al. [8] studied a different but closely related problem, in
which the angular part is equivalent to the online PCA, and obtained some convergence results. Li et
al. [18] analyzed for the distributions with sub-Gaussian tails, and for this case the samples of this kind
of distributions may be unbounded. For more details of comparison, the reader is referred to [18].

For the subspace online PCA, some recent works studied the convergence for the case where the samples
are almost surely uniformly bounded. In a series of papers [4, 5, 20, 21], Arora et al. studied (1.1) and its
variations via direct optimization approaches, namely using convex relaxation and adding regularizations.
The Oja’s algorithm falls into one variant of their methods. Hardt and Price [10] and Balcan et al. [6]
treated the method as a noisy power method and analyzed its convergence. Shamir [27] first proved the
convergence is efficient with a good initial guess. Garber et al. [9] used the shift-and-invert technique to
speed up the convergence but their analysis was only done for the top eigenvector. Allen-Zhu and Li [2]
analyzed the method and proposed a faster variant of subspace online PCA iteration, and firstly showed
the gap-free feature of the convergence and also gave a lower bound for the gap-free feature. Very recently
Huang et al. [15] analyzed the problem using the new matrix concentration inequalities and proved stronger
upper bounds. Liang et al. [19] went further along the way of [18] and gave an convergence analysis for
sub-Gaussian distributions.

The convergence rates obtained in some previous works and this paper are presented in Table 1.1. The
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Paper Global convergence Local convergence Unbounded Block Gap-free

De Sa et al. [8]
λ21∼dd

γ2n
ln
d

δ

λ21∼dd

γ2n
ln
d

δ
No No No

Hardt and Price [10]
λ21∼dλpd

γ3n
ln
nd

δ

λ21∼dλpd

γ3n
ln
nd

δ
No Yes No

Shamir [26]
λ21∼dd

γ2n

(lnn)2

(1− δ)2
λ21∼d
γ2n

(lnn)2

(1− δ)2
No No No

Shamir [27] —
λ21∼d
γ2n

ln
n

δ
No Yes No

Balcan et al. [6]
λ21∼pλpd

γ3n
ln
nd

δ

λ21∼pλpd

γ3n
ln
nd

δ
No Yes No

Jain et al. [16]
M4

γ2n
ln
d

δ

M4

γ2n
ln
d

δ
No No No

Li et al. [18]
λ1∼pλp+1∼d

γ2n

lnn

1− δ
λ1∼pλp+1∼d

γ2n

lnn

1− δ
Yes No No

Allen-Zhu and Li [2]
λ1∼pλ1∼d
γ2(n− no)

ln
d

γδ

λ1∼pλ1∼d
γ2n

ln
d

γδ
No Yes Yes

Liang et al. [19]
λ1∼pλp+1∼d

γ2n

lnn

1− δp2
λ1∼pλp+1∼d

γ2n

lnn

1− δp2
Yes Yes No

Huang et al. [15]
M4

γ2(n− no)
ln

p

γδ

M4

γ2n
ln

p

γδ
No Yes No

This paper
λ1∼pλp+1∼d(n− no)

γ2n2(1− δ)
λ1∼pλp+1∼d

γ2n(1− δ)
Yes Yes Yes

Table 1.1: Comparison of some results

• The term M4 represents any quantity related to E
{∥∥∥XXT −Σ

∥∥∥}, or the fourth central moment

(not necessarily the same in different results).

• In some results the term no appears in the global convergence, and it represents the number of
samples needed in the so-called “Phase I” or “Cold Start” process.

• Note that there are two types of the dependency on δ in Table 1.1: one is ln 1
δ , which goes to infinity

as δ → 0; the other is 1
(1−δ∗)∗ , which goes to 0 as δ → 0. Clearly the latter term can be replaced

by an absolute constant, or equivalently, the rate does not explicitly rely on δ (but implicitly, for
n ≥ O

(
(ln δ)−4

)
as is shown in Lemma 3.4 and Theorem 3.1).

• In some results, such as Jain et al. [16, Theorem 1.3], there is no ln d or ln 1
δ factor, which seems to

contradict with what we list in Table 1.1 (based on their Theorem 1.2 or 4.1 actually). However, the
assumption there is much stronger: first their success probability is 3/4, rather than 1 − δ, which
removes the dependency on δ; then they need n ≥ O(d1/10) which is much larger than O

(
(ln d)4

)
here.
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sum of some consecutive eigenvalues is written as

λi1∼i2 := λi1 + · · ·+ λi2 , 1 ≤ i1 ≤ i2 ≤ d.

The listed convergence rates are read as: with probability 1− δ, using n samples, or equivalently after n
iterations, the Oja’s algorithm produces an approximation span(U (n)) of the principal subspace satisfying
∥sinΘ(span(U (n)),U∗)∥ ≤ (the rate). The global convergence rate is given for the case that the initial
guess is random generated, while the local convergence rate is given for the case that the initial guess
satisfies ∥tanΘ(span(U (0)),U∗)∥ is bounded by an absolute constant like 1.

The convergence rates listed in Table 1.1, except ours, include a poly-logarithmic factor, which leads
people to say the Oja’s method is nearly optimal. However, in this paper we will show the poly-logarithmic
factor can be removed. In other words, the convergence rate, namely the upper bound of the approximation,
exactly matches the lower bound (1.3) of an approximation obtained by the offline/classical PCA up to
a constant factor. Hence in some sense, we may say the Oja’s method is optimal. To the best of our
knowledge, it is the first time to point out this feature of the online method.

Other results we will show in this paper include:

• the strategy of choosing the normalization matrices does not matter much on the convergence rate.
Hence we may choose a strategy that has advantages on computation or practical consideration.

• the iteration process is somehow decoupled, and thus the gap-dependent and gap-free considerations
can be treated in the same framework. This would shed light on the convergence analysis of other
online algorithms.

• a lower bound for sub-Gaussian distributions on the gap-free feature is given, which ensures that the
Oja’s method is optimal.

The rest of this paper is organized as follows. In Section 2 we make preparations for discussing the
convergence analysis of the Oja’s method. The main results, namely the convergence analysis, are stated
in Section 3, while their proofs are provided in Section 4 due to the complexities of the contained heavy
calculations. Section 5 gives some concluding remarks.

1.1 Notation

In (or simply I if its dimension is clear from the context) is the n × n identity matrix and ej is its jth
column (usually with dimension determined by the context). For a matrix X, σ(X), ∥X∥2 and ∥X∥F are
the multiset of the singular values, the spectral norm, and the Frobenius norm of X, respectively. For two
matrices or vectors X,Y , X ◦ Y is the Hadamard/entrywise product of X and Y of the same size.

For any matrix X, X(i,j) is the (i, j)th entry of X, and X(i:j,:) is the submatrix of X consisting of its
row i to row j. For any vector or matrix X,Y , X ≤ Y means X(i,j) ≤ Y(i,j) for any i, j. X“≥, >,<”Y
can be similarly understood.

For a subset or an event A, Ac is the complement set of A. By σ{A1, . . . ,Ap} we denote the σ-
algebra generated by the events A1, . . . ,Ap. E{X; A} := E{X1A} denotes the expectation of a ran-
dom variable X over event A. Note that E{X; A} = E{X | A}P{A}. For a random vector or matrix
X, E{X} :=

[
E
{
X(i,j)

}]
. Note that ∥E{X}∥ui ≤ E{∥X∥ui} for ui = 2, F. Write cov◦(X,Y ) :=

E{[X − E{X}] ◦ [Y − E{Y }]} and var◦(X) := cov◦(X,X).
For any scalar x, y, x ∨ y = max{x, y}, x ∧ y = min{x, y}.

2 Preliminaries

2.1 Canonical Angles between Two Subspaces

We are interested in the distance of two linear subspaces. So we introduce the canonical angles between
them in order to give quantities to represent their distance.
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Definition 2.1 ([7]). Given two subspaces X , Y ⊆ Rd with dimX = p ≤ dimY = q. The princi-
pal/canonical angles θj ∈ [0, π/2] between X and Y are recursively defined for j = 1, . . . , p by

cos θj = σj = max
u∈X ,v∈Y

uTv = uTj vj subject to ∥u∥2 = ∥v∥2 = 1,

uTi u = 0, vTi v = 0, i = 1, . . . , j − 1.

It can be verified that σ1 ≥ · · · ≥ σp are the singular values of XTY , where X,Y are orthonormal basis
matrices of X ,Y respectively. The angles are in non-decreasing order: θ1 ≤ · · · ≤ θp. Moreover, it can be
seen that σj or θj are independent of the basis matrices, which are not unique.

Write
Θ(X ,Y) = diag(θ1, . . . , θp).

Here we add “(X ,Y)” to emphasize the quantity is defined for two subspaces X ,Y. In particular, if p = q,
∥sinΘ(X ,Y)∥ui for ui = 2, F are metrics on the set consisting for all p-dimensional subspaces of Rd [28,
Section II.4].

For matrices X,Y , Θ(X,Y ) := Θ(span(X), span(Y )).
In what follows, we give a quantity easy to compute to estimate the distance between one subspace

and a particular subspace.
Given p ≤ q, for any matrix X ∈ Rd×p with nonsingular X(1:p,:), write

Tp,q(X) := X(p+1:q,:)X
−1
(1:p,:), Tq(X) := X(q+1:d,:)X

−1
(1:p,:),

which are submatrices of T (X) := Tp(X).

Lemma 2.1. We have for ui = 2, F∥∥∥∥tanΘ(X,

[
Iq
0

]
)

∥∥∥∥
ui

≤ ∥Tq(X)∥ui. (2.1)

In particular, if p = q, then the inequality “≤” can be replaced by “=”.

Proof. For the readability, we use Tp,q,Tp,Tq only and drop “(X)”. Then cos θj for j = 1, . . . , p are the
singular values of

[
Ip + T T

p Tp

]−1/2

 Ip
Tp,q

Tq

T [
Iq
0

]
=
[
Ip + T T

p Tp

]−1/2 [
Ip Tp,q

]
.

Thus, tan2 θj = sec2 θj − 1 for j = 1, . . . , p are the eigenvalues of([
Ip + T T

p Tp

]−1/2 [
Ip Tp,q

] [
Ip Tp,q

]T [
Ip + T T

p Tp

]−1/2
)−1

− I

=
[
Ip + T T

p Tp

]1/2 [
Ip + T T

p,qTp,q

]−1 [
Ip + T T

p Tp

]1/2 − I
=
[
Ip + T T

p Tp

]1/2 ([
Ip + T T

p,qTp,q

]−1 [
Ip + T T

p Tp

]
− I
) [
Ip + T T

p Tp

]−1/2

=
[
Ip + T T

p Tp

]1/2 [
Ip + T T

p,qTp,q

]−1
T T
q Tq

[
Ip + T T

p Tp

]−1/2
,

and also the eigenvalues of [
Ip + T T

p,qTp,q

]−1/2
T T
q Tq

[
Ip + T T

p,qTp,q

]−1/2
.

Let τ1 ≥ · · · ≥ τp be the eigenvalues of T T
q Tq. By the Ostrowski theorem [12, Theorem 4.5.9],

tan2 θj ≤ τj ,

which implies (2.1).

Note that [19, Lemma 2.1] is a special case of Lemma 2.1.
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2.2 Orlicz Norms

We are concerned with random variables/vectors that have a sub-Gaussian distribution. To that end, we
first introduce the Orlicz ψα-norm of a random variable/vector. More details can be found in [30].

Definition 2.2. The Orlicz ψα-norm of a random variable X ∈ R is defined as

∥X∥ψα := inf

{
ξ > 0 : E

{
exp

(∣∣∣∣Xξ
∣∣∣∣α)} ≤ 2

}
,

and the Orlicz ψα-norm of a random vector X ∈ Rd is defined as

∥X∥ψα := sup
∥v∥2=1

∥vTX∥ψα .

We say that random variable/vector X follows a sub-Gaussian distribution if ∥X∥ψ2
<∞.

By the definition, we conclude that any bounded random variable/vector follows a sub-Gaussian dis-
tribution.

The basic properties of sub-Gaussian distributions are listed in Lemma 2.2.

Lemma 2.2 ([31, (5.10)–(5.12)]). Every sub-Gaussian random variable X ∈ R with ∥X∥ψ2
= ψ satisfies:

1. P{|X| > t} ≤ exp(1− cψ−2t2) for t ≥ 0;

2. E{|X|p} ≤ ψppp/2 for p ≥ 1;

3. if E{X} = 0, then E{exp(tX)} ≤ exp(Cψ2t2) for t ∈ R,

where C > 0, c > 0 are absolute constants.

Moreover, if ∥X∥ψ1
< ∞, then X follows a sub-exponential distribution. Our analysis below can be

easily generalized to sub-exponential random vectors, and will not be discussed.

2.3 Detailed Algorithm and Assumptions

Here we write down the detailed algorithm in Algorithm 2.1.

Algorithm 2.1 Oja’s Algorithm for Online PCA

1: Choose U (0) ∈ Rd×p with (U (0))TU (0) = I, and use a regime to choose the learning rate ηn = ρnη > 0.

2: for n = 1, 2, . . . until convergence do
3: Take an X’s sample X(n);
4: Z(n) = (U (n−1))TX(n);

5: Ũ (n) = U (n−1) + ηnX
(n)(Z(n))T;

6: Find an orthonormal basis of the subspace spanned by Ũ (n), namely compute a column orthonormal
matrix U (n) = Ũ (n)S(n).

7: end for

The learning rate of the n-th iteration is ηn = ρnηo. Without loss of generality, we may assume
0 < ρn < 1.

The decomposition can be chosen as QR decomposition [24] or polar decomposition [1], or any other

decomposition easy to compute. However, S(n) is always nonsingular. In fact, noticing that Ũ (n) =
[I + ηnX

(n)(X(n))T]U (n−1), since I + ηn+1X
(n)(X(n))T is positive definite and thus nonsingular, and U (n)

is column orthonormal, we know Ũ (n) has full column rank, which implies the fact.
Any statement we will make holds almost surely.
To prepare our convergence analysis, we make a few assumptions.
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Assumption 2.1. X = [X1,X2, . . . ,Xd]
T ∈ Rd is a random vector.

(A-1) E{X} = 0, and Σ := E
{
XXT

}
has the spectral decomposition (1.2) satisfying λp > λp+1;

(A-2) ψ := ∥Σ−1/2X∥ψ2
<∞.

The principal subspace U∗ is uniquely determined under Item A-1 of Assumption 2.1. On the other
hand, Item A-2 of Assumption 2.1 ensures that all 1-dimensional marginals of X have sub-Gaussian tails,
or equivalently, X follows a sub-Gaussian distribution.

Using the substitutions

X ← λ
−1/2
1∼d X, X(n) ← λ

−1/2
1∼d X

(n), Z(n) ← λ
−1/2
1∼d Z

(n), ηn ← λ1∼dηn,

the iterations produced by Algorithm 2.1 and the rest terms Ũ (n), U (n) keep the same. Hence any conver-
gence result has to keep this homogeneous property.

Next we make a simplification on the problem.
Recall the spectral decomposition Σ = UΛUT. Instead of the random vector X, we equivalently

consider
Y ≡ [Y 1,Y 2, . . . ,Y n]

T := UTX.

Accordingly, perform the same orthogonal transformation on all involved quantities:

Y (n) = UTX(n), V (n) = UTU (n), V∗ = UTU∗ =

[
Ip
0

]
.

Firstly, because
(V (n−1))TY (n) = (U (n−1))TX(n), (Y (n))TY (n) = (X(n))TX(n),

the equivalent version of Algorithm 2.1 is obtained by symbolically replacing all letters X, U by Y, V
while keeping their respective superscripts. If the algorithm converges, it is expected that span(V (n)) →
span(V∗). Secondly, noting

∥Σ−1/2X∥ψ2
= ∥UΛ−1/2UTX∥ψ2

= ∥Λ−1/2Y ∥ψ2
,

we can restate Assumption 2.1 equivalently as

(A-1′) E{Y } = 0,E
{
Y Y T

}
= Λ = diag(λ1, . . . , λd) with λ1 ≥ · · · ≥ λp > λp+1 ≥ · · · ≥ λd;

(A-2′) ψ := ∥Λ−1/2Y ∥ψ2
<∞.

Thirdly, all canonical angles between two subspaces are invariant under the orthogonal transformation.
Therefore the results given below holds for not only Y but also X.

If the algorithm converges, it is expected that

U (n) → U∗ := U

[
Ip
0

]
= [u1, u2, . . . , up] ⇔ V (n) → V∗ =

[
Ip
0

]
in the sense that

∥sinΘ(U (n), U∗)∥ui → 0 ⇔ ∥sinΘ(V (n), V∗)∥ui → 0

as n→∞.
By Lemma 2.1, it is sufficient enough to prove ∥T (V (n))∥ui → 0. Our results are based on this point.
To simplify the notations in our proofs, we introduce new notations for two particular submatrices of

any vector Y ∈ Rd, tall matrix V ∈ Rd×p and diagonal matrix Λ ∈ Rd×d:

Y =

1[ ]
,

Ȳ p

¯
Y d−p

V =

p[ ]
,

V̄ p

¯
V d−p

Λ =

p d−p[ ]
.

Λ̄ p

¯
Λ d−p

or equivalently
Ȳ = Y(1:p,:), ¯

Y = Y(p+1:d,:), V̄ = V(1:p,:), ¯
V = V(p+1:d,:),

and
Λ̄ = diag(λ1, . . . , λp),

¯
Λ = diag(λp+1, . . . , λd).
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3 Main Results

In what follows, we will state our main results and leave their proofs to another section because of their
high complexity. The main technique to prove the results is the same as Li et al. [18] and Liang et al. [19].
The differences between the results are referred to:

• the estimations are much sharper here;

• the learning rates are changing here, rather than a fixed learning rate in [18, 19].

First we introduce some quantities.
For κ ≥ 0, define S(κ) := {V ∈ Rd×p : σ(V̄ ) ⊂ [ 1√

1+κ2
, 1]}. It can be verified that

V ∈ S(κ)⇔ ∥T (V )∥2 ≤ κ. (3.1)

For the sequence V (n), define

Nout{κ} := min{n : V (n) /∈ S(κ)}, Nin{κ} := min{n : V (n) ∈ S(κ)}.

Nout{κ} is the first step of the iterative process at which V (n) jumps from S(κ) to outside, and Nin{κ} is
the first step of the iterative process at which V (n) jumps from outside to S(κ). For µ ≥ 1, define

Nqb{µ} := max
{
n ≥ 1 : ∥Z(n)∥2 ≤ λ1/21∼pµ

1/2, |Y (n)
i | ≤ λ1/2i µ1/2, i = 1, . . . , d

}
+ 1.

Nqb{µ} is the first step of the iterative process at which either |Y (n)
i | > λ

1/2
i µ1/2 for some i or the norm

of Z(n) exceeds λ
1/2
1∼pµ

1/2. For n < Nqb{µ}, we have ∥Y (n)∥2 ≤ λ1/21∼dµ
1/2 .

For convenience, we will set T (n) = T (V (n)), and let Fn = σ{Y (1), . . . , Y (n)} be the σ-algebra filtration,
i.e., the information known by step n.

3.1 Increments of One Iteration

In each iteration,

V̄ (n+1) = (V̄ (n) + ηn+1Ȳ
(n+1)(Z(n+1))T)S(n),

¯
V (n+1) = (

¯
V (n) + ηn+1

¯
Y (n+1)(Z(n+1))T)S(n),

where S(n) is nonsingular as is stated above. According to the Sherman-Morrison formula, we get V̄ (n) +
ηn+1Ȳ

(n+1)(Z(n+1))T or V̄ (n+1) is nonsingular, if and only if 1 + ηn+1ξn+1Ȳ
(n+1) ̸= 0 where ξn+1 :=

(Z(n+1))T(V̄ (n))−1Ȳ (n+1), and

(V̄ (n+1))−1 = (S(n))−1

(
I − ηn+1

1 + ηn+1ξn+1
V̄ −1Ȳ (n+1)(Z(n+1))T

)
V̄ −1.

Hence

T (n+1) =
¯
V (n+1)(V̄ (n+1))−1

= (
¯
V (n) + ηn+1

¯
Y (n+1)(Z(n+1))T)S(n)(S(n))−1

(
I − ηn+1

1 + ηn+1ξn+1
V̄ −1Ȳ (n+1)(Z(n+1))T

)
V̄ −1

= (
¯
V (n) + ηn+1

¯
Y (n+1)(Z(n+1))T)

(
I − ηn+1

1 + ηn+1ξn+1
V̄ −1Ȳ (n+1)(Z(n+1))T

)
V̄ −1.

Clearly the choice of S(n) does not matter on the convergence of T (n). In other words, the strategy of
choosing the normalization matrices does not matter much on the convergence rate.

In the following, we need to estimate T (n+1) − T (n), and the results are listed in Lemma 3.1.

Lemma 3.1. Suppose

2λ1∼p
√
κ2 + 1µηn+1 ≤ 1. (3.2)

Let τ = ∥T (n)∥2. If n < Nqb{µ} ∧Nout{κ}, then the following statements hold.
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1. T (n) and T (n+1) are well-defined.

2. ∥T (n+1) − T (n)∥2 ≤ 2µηn+1[ν
1/2λ1∼p(1 + τ2) + ν1λ1∼pτ ], where ν1 = 1 ∨ ν, ν =

λp+1∼d
λ1∼p

.

3. Define R
(n)
E by E

{
T (n+1) − T (n)

∣∣ Fn} = ηn+1(
¯
ΛT (n) − T (n)Λ̄) +R

(n)
E . Then

∥R(n)
E ∥2 ≤ 2λ1λ1∼pµη

2
n+1τ(1 + τ2)1/2.

4. Let H◦ = var◦

(
¯
Y (n+1)(Ȳ (n+1))T

)
and define R

(n)
◦ by var◦

(
T (n+1) − T (n) | Fn

)
= η2n+1H◦ + R

(n)
◦ .

Then

(a) H◦ ≤ 16ψ4H, where H = [ηij ](d−p)×p with ηij = λp+iλj for i = 1, . . . , d− p, j = 1, . . . , p;

(b) ∥R(n)
◦ ∥2 ≤ 2ν1ν

1/2λ21∼pµ
2η2n+1τ

(
1 +

[
1 + ν1ν

−1/2
]
τ + τ2 +

1

2
τ3
)

+8νλ31∼pµ
3η3n+1(1 + τ2)1/2

[
1 + τ2 + ν1ν

−1/2τ
]2
.

3.2 Whole Iteration Process with a Good Initial Guess

Define D(n+1) = T (n+1) − E
{
T (n+1)

∣∣ Fn}. It can be seen that

T (n) − E
{
T (n)

∣∣∣ Fn} = 0, E
{
D(n+1)

∣∣∣ Fn} = 0,

E
{
D(n+1) ◦D(n+1)

∣∣∣ Fn} = var◦

(
T (n+1) − T (n) | Fn

)
.

By Item 3 of Lemma 3.1, we have

T (n+1) = D(n+1) + T (n) + E
{
T (n+1) − T (n)

∣∣∣ Fn}
= D(n+1) + T (n) + ηn(

¯
ΛT (n) − T (n)Λ̄) +R

(n)
E

= Ln+1T
(n) +D(n+1) +R

(n)
E ,

where Ln+1 : T 7→ T + ηn+1
¯
ΛT − ηn+1TΛ̄ is a bounded linear operator. It can be verified that Ln+1T =

Ln+1◦T , the Hadamard product of Ln and T , where Ln+1 = [λ
(n+1)
ij ](d−p)×p with λ

(n+1)
ij = 1+ηn+1(λp+i−

λj). Clearly Ln1
Ln2

= Ln2
Ln1

for any n1, n2. Moreover, it can be shown that1 ∥Ln+1∥ui = ρ(Ln+1) =
1−ηn+1γ, where ∥Ln+1∥ui = sup∥T∥ui=1∥Ln+1T∥ui is an operator norm induced by the matrix norm ∥·∥ui.
Recursively,

T (n) = Ln · · · L1T
(0) +D(n) +

n−1∑
s=1

Ln · · · Ls+1D
(s) +R

(n−1)
E +

n−1∑
s=1

Ln · · · Ls1R
(s−1)
E .

Let us introduce some notation here. Define

b∏
p=a

(·) = 1 or I, the identical mapping, if a > b. Write

F
(n′,n)
∗ :=

n∏
r=n′

∥Lr∥ui =
n∏

r=n′

(1− ηrγ), F
(n′,n)
D,i,j :=

n∑
s=n′

ηis

n∏
r=s+1

∥Lr∥jui =
n∑

s=n′

ηis

n∏
r=s+1

(1− ηrγ)j .

Suppose F
(1,n)
D,i,j ≤ CD,i,jγ

−1ηi−1
n for any n, where CD,i,j is an absolute constant, which can be easily

examined in any specific strategy to choose ηn.

1Here we drop the superscript “·(n+1)” on λij and the subscript “·n+1” on η,L. Since λ(L) = {λij : i = 1, . . . , d− p, j =
1, . . . , p}, the spectral radius ρ(L) = 1− ηn+1(λp − λp+1). Thus for any T ,

∥LT∥ui = ∥T (I − ηΛ̄) + η
¯
ΛT∥ui ≤ ∥I − ηΛ̄∥2∥T∥ui + ∥η

¯
Λ∥2∥T∥ui = (1− ηλp + ηλp+1)∥T∥ui = ρ(L)∥T∥ui,

which means ∥L∥ui ≤ ρ(L). This ensures ∥L∥ui = ρ(L).
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For s > 0 and η∗γ < 1, define

N (n′)
s := min

{
n ∈ N : F

(n′,n)
∗ ≤ (η∗γ)

s
}
,

which implies F
(n′,N(n′)

s )
∗ ≤ (η∗γ)

s < F
(n′,N(n′)

s −1)
∗ . Define

T (n) = Ln · · · L1T
(0) +D(n) +

n−1∑
s=1

Ln · · · Ls+1D
(s) +R

(n−1)
E +

n−1∑
s=1

Ln · · · Ls1R
(s−1)
E

=

(
n∏
r=1

Lr

)
T (0) +

n∑
s=1

(
n∏

r=s+1

Lr

)
D(s) +

n∑
s=1

(
n∏

r=s+1

Lr

)
R

(s−1)
E

=: T
(n)
∗ + T

(n)
D + T

(n)
R .

Define events

Mn(κ, µ) =

{
∥T (n) − T (n)

∗ ∥2 ≤
1

2
υ(1 + κ2)µ3/2η1/2n γ1/2

}
,

Tn(κ) =
{
∥T (n)∥2 ≤ κ

}
, Qn(µ) = {n < Nqb{µ}},

where υ = 8CD,2,1λ1λ1∼pγ
−2.

It can be shown that under some conditions, if the initial V (0) is not too bad, then with high probability
∥T (n)∥2 will never become too large and eventually become as small as expected. The formal statement
is given in Lemma 3.2.

Lemma 3.2. Let N1 := N
(1)
(ln ε−lnκ)/ ln(η∗γ)

. Suppose that (3.2), and the following hold,

υ(1 + κ2)µ3/2η1/2o γ1/2 ≤ κ, (3.3a)

κρ1/2n ≤ ε for n ≥ N1. (3.3b)

If V (0) ∈ S(κ/2), then for any n ≥ N1,

P{(Hn ∩Ho)c} ≤ 2nd exp(−CMλ21ν−1γ−2µ) + n(ed+ p+ 1) exp
(
−Cψψ−1(1 ∧ ψ−1)µ

)
,

where Hn :=
⋂
r≤n

Tr(κ),Ho := {Nin{ε} ≤ N1}.

3.3 Estimation with a Random Initial Guess

In order to compare our result with the previous results, we will estimate ∥tanΘ(span(U (n)),U∗)∥ = ∥T (n)∥.
First we give the estimation with a good initial guess in Lemma 3.3.

Lemma 3.3. Suppose that (3.2) and (3.3) hold, and let N1 = Nln ε/ ln(η∗γ). If V (0) ∈ S(1), then there
exists a high-probability event H with P{H} ≥ 1− δ1, such that for any n ≥ N1,

E
{
T (n) ◦ T (n); H

}
≤

n∏
r=1

L2
rT

(0) ◦ T (0) + 2

n∑
s=1

η2s

n∏
r=s+1

L2
rH◦ +R, (3.4)

where ∥R∥2 = CR
ε2

ln nd
δ1

with CR an absolute constant, and H◦ ≤ 16ψ4H is as in Item 4(a) of Lemma 3.1.

Note that in (3.4) the inequality holds for each entry in the matrices. In other words, the inequality in
(3.4) represents (d− p)× p scalar inequalities. Hence, in this sense, we can say that the iteration process
is decoupled. This observation is very useful for the gap-free consideration.

To deal with a random initial guess, a theorem by Huang et al. [15] is adopted.
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Lemma 3.4 ([15, Theorem 2.4]). If supPTP=Ik
∥PT(XXT−Λ)∥F ≤ B, and Ṽ0 has i.i.d. standard Gaussian

entries, writing

No = Co
pB2

δ2γ2
(ln

dB

δγ
)4, ηn = ηo = C ′

o

ln(d/δ)

γNo
,

then with probability at least 1− δ, ∥T (No)∥2 ≤ 1.

The whole iteration process can be split into two parts: first the iteration goes from the initial guess
into S(1), whose probability is estimated by Lemma 3.4; then the iteration goes from an approximation in
S(1) to any precision we would like, whose probability is estimated by Lemma 3.3. Note that Lemma 3.4
is only valid for a bounded distribution. Thus we have to use it on the event Qn(µ) whose probability is
bounded in Lemma 4.1.

Theorem 3.1. If U (0) ∈ Rd×p has i.i.d standard Gaussian entries, and ηn =


C ′
o

ln(d/δ)

γNo
, n ≤ No

Cη
1

γn
, n > No

for

some Cη ≥ 1, then there exists a high-probability event H∗ with P{H∗} ≥ 1− δ, such that for any n ≥ No,

E
{
∥tanΘ(U (n), U∗)∥2F

∣∣∣H∗

}
≤ 64Cηψ

4φ(Λ)

1− δ
n−No
n2

+ C
pN2

o

(1− δ)n2

≈ 64Cηψ
4φ(Λ)

(1− δ)n
, as n→∞,

where C is an absolute constant, and ψ is X’s Orlicz ψ2 norm. Here

φ(Λ) =
1

γ

d−p∑
i=1

p∑
j=1

λp+iλj
λp+i − λj

≤ p(d− p)λpλp+1

(λp − λp+1)2
. (3.5)

Proof. The probability of the whole process is guaranteed by Lemmas 3.3, 3.4 and 4.1. In the following,
we will show the upper bound.

Introduce sum(A) for the sum of all the entries of A. In particular, sum(A ◦ A) = ∥A∥2F. Write

F
(n′,n)
D,2,2 (γ) =

∑n
s=n′ η2s

∏n
r=s+1(1− ηrγ)2. By Lemma 3.3 with ε = No

n , ηn =
Cη
γn , with high probability we

have

E
{
∥T (n)∥2F; H∗

}
≤ (F

(No+1,n)
∗ )2∥T (No)∥2F + 2 sum(G ◦H◦) + sum(R).

where G = [γij ](d−p)×p with γij = F
(No+1,n)
D,2,2 (λj − λp+i). Then,

F
(No+1,n)
∗ ≤

(
1− Cη

1
No

+ · · ·+ 1
n

n−No

)n−No
≤
(
1− Cη

lnn− lnNo
n−No

)n−No
≤ e−Cη(lnn−lnNo) = (

No
n

)Cη ,

and

F
(No+1,n)
D,2,2 (λj − λp+i) =

C2
η

γ2

n−No∑
s=1

(n− νij)2 · · · (n− s+ 2− νij)2(n− s)2 · · ·N2
o

n2(n− 1)2 · · ·N2
o

where νij = Cη(λj − λp+i)/γ

≤
C2
η

γ2

n−No∑
s=1

(n− ⌊νij⌋)2 · · · (n− s+ 2− ⌊νij⌋)2(n− s)2 · · ·N2
o

n2(n− 1)2 · · ·N2
o

=
C2
η

γ2n2

n−No∑
s=1

(
(n− ⌊νij⌋)!(n− s)!

(n− 1)!(n− s+ 1− ⌊νij⌋)!

)2
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≤
C2
η

γ2n2

n−No∑
s=1

(
n− s+ 1

n

)2(⌊νij⌋−1)

=
C2
η

γ2n2⌊νij⌋

(
n2⌊νij⌋−1 −N2⌊νij⌋−1

o

2⌊νij⌋ − 1
+
n2⌊νij⌋−2 −N2⌊νij⌋−2

o

2
+ O(n2⌊νij⌋−3)

)

≤
C2
η(n−No)

γ2n2(2⌊νij⌋ − 1)

(
1 + C ′No

n

)
here C ′ is an absolute constant

≤
2C2

η(n−No)
γ2n2νij

(
1 + C ′No

n

)
by 2⌊νij⌋ − 1 ≥ νij

2

=
2Cη(n−No)
γn2(λj − λp+i)

(
1 + C ′No

n

)
.

Thus,

E
{
∥T (n)∥2F; H∗

}
≤ pN2

o

n2
+

64Cηψ
4

γ

d−p∑
i=1

p∑
j=1

λp+iλj
λp+i − λj

n−No
n2

(
1 + C ′No

n

)
+ CR

pN2
o

n2 ln(nd/δ)

= 64Cηψ
4φ(Λ)

n−No
n2

+
pN2

o

n2

(
2 +

CR
ln(nd/δ)

)
.

3.4 Lower Bound and Gap-free Feature

Vu and Lei [32] gives a minimax lower bound for the classical PCA, namely (1.3). First we point out the

factor
λ1λp+1

(λp−λp+1)2
in the lower bound can be replaced by

λpλp+1

(λp−λp+1)2
. The key to the point is a lemma there,

which is presented in Lemma 3.5.

Lemma 3.5 ([32, Lemma A.2]). Let X1, X2 ∈ Rd×p are column orthonormal matrices, β ≥ 0, and

Σi = Ip + βXiX
T
i for i = 1, 2.

If Pi are the n-fold product of the N(0, Σi) probability measure, then the Kullback-Leibler (KL) divergence
is

D(P1,P2) =
nβ2

1 + β
∥sinΘ(X1, X2)∥2F.

Then they use a substitution
λ1λp+1

(λp−λp+1)2
= 1+β

β2 to obtain the lower bound. However, as a matter of

fact, in their construction on the covariance matrix Σi, it holds that λ1 = · · · = λp, so when they proved
the former bound, actually they were proving the latter bound.

Then we show the construction is also valid for the gap-free consideration.

Lemma 3.6. Let X1, X2 ∈ Rd×p, X3 ∈ Rd×(q−p) are column orthonormal matrices satisfying XT
1 X3 =

XT
2 X3 = 0, q ≥ p, β ≥ 0, β̃ ≥ 0, and

Σ1 = Ip + βX1X
T
1 + β̃X3X

T
3 , Σ2 = Ip + βX2X

T
2 + βX3X

T
3 .

If Pi are the n-fold product of the N(0, Σi) probability measure, then the Kullback-Leibler (KL) divergence
is

D(P1,P2) =
nβ2

1 + β
∥sinΘ(X1,

[
X2 X3

]
)∥2F.

Proof. The proof is similar as that of [32, Lemma A.2]. The key is to ensure

trace
(
Σ−1

2 (Σ1 −Σ2)
)
=

β2

1 + β
∥sinΘ(X1,

[
X2 X3

]
)∥2F.
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In fact,

trace
(
Σ−1

2 (Σ1 −Σ2)
)

= trace
(
[Ip + βX2X

T
2 + βX3X

T
3 ]

−1β(X1X
T
1 −X2X

T
2 )
)

= β trace

([
1

1 + β
(X2X

T
2 +X3X

T
3 ) + Ip −X2X

T
2 −X3X

T
3

]
(X1X

T
1 −X2X

T
2 )

)
=

β

1 + β
trace

([
(1 + β)Ip − β(X2X

T
2 +X3X

T
3 )
]
(X1X

T
1 −X2X

T
2 )
)

=
β2

1 + β
trace

([
Ip −X2X

T
2 −X3X

T
3

]
(X1X

T
1 −X2X

T
2 )
)
+

β

1 + β
trace(X1X

T
1 −X2X

T
2 )

=
β2

1 + β
trace

([
Ip −X2X

T
2 −X3X

T
3

]
X1X

T
1

)
+ 0

=
β2

1 + β
∥sinΘ(X1,

[
X2 X3

]
)∥2F.

Following Lemma 3.6, we can use a substitution
λpλp+q

(λp−λp+q)2 = 1+β
β2 to obtain the lower bound under

the gap-free consideration, namely Theorem 3.2.

Theorem 3.2 (Gap-free version of [32, Theorem 3.1]). Let P0(σ
2
∗, d) be the set of all d-dimensional sub-

Gaussian distributions for which the eigenvalues of the covariance matrix satisfy
λpλq+1

(λp−λq+1)2
≤ σ2

∗. Then

for 1 ≤ p ≤ q ≤ n,

inf
dim Ũ∗=q

sup
X∈P0(σ2

∗,d)

E
{
∥sinΘ(Ũ∗,U∗)∥2F

}
≥ cp(d− q)σ

2
∗
n
≥ c λpλq+1

(λp − λq+1)2
p(d− q)

n
, (3.6)

where c > 0 is an absolute constant.

On the other hand, the Oja’s method can be easily proved to be gap-free, as is shown in Theorem 3.3,
which exactly matches the lower bound in Theorem 3.2.

Theorem 3.3. If U (0) ∈ Rd×q has i.i.d standard Gaussian entries, and ηn are chosen as in Theorem 3.1
with γ replaced by γ̃, then Theorem 3.1 still holds, except that φ(Λ) in (3.5) can be replaced by

φ̃(Λ) =
1

γ̃

d−q∑
i=1

p∑
j=1

λq+iλj
λq+i − λj

≤ p(d− q)λp(λp − γ̃)
γ̃2

.

Proof. The proof is nearly the same as that of Theorem 3.1 except the bound.
Note that the iteration process produced by the Oja’s method is decoupled, as is argued after Lemma 3.3.

Now what we need to estimate is

E
{
∥Tq(U

(n))∥2F; H∗

}
≤ (F

(No+1,n)
∗ )2∥Tq(U

(No))∥2F + 32ψ4 sum(Gq ◦Hq) + sum(R)

where Gq = [γij ](d−q)×p, Hq = [ηij ](d−q)×p, Rq ∈ R(d−q)×p

≤ pN2
o

n2
+

64Cηψ
4

γ̃

d−q∑
i=1

p∑
j=1

λp+iλj
λp+i − λj

n−No
n2

(
1 + C ′No

n

)
+ CR

pN2
o

n2 ln(nd/δ)
.

4 Proofs

4.1 Proof of Lemma 3.1

For readability, we will drop the superscript “·(n)”, and use the superscript “·+” to replace “·(n+1)” for
V, T,RE , drop the superscript “·(n+1)” on Y, Z and the subscript “·n+1” on η, and drop the conditional
sign “ |Fn” in the computation of E{·}, var(·), cov(·) with the understanding that they are conditional with
respect to Fn. Finally, for any expression or variable ∗, we define ∆∗ := ∗+ − ∗.
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Consider Item 1. Since n < Nout{κ}, we have V ∈ S(κ) and τ = ∥T∥2 ≤ κ. Thus, ∥V̄ −1∥2 ≤
√
κ2 + 1

and T =
¯
V V̄ −1 is well-defined. We have V̄ + = (V̄ + ηȲ ZT)S, where S is nonsingular as is stated above.

According to the Sherman-Morrison formula, we get V̄ + ηȲ ZT or V̄ + is nonsingular, if and only if
1 + ηξȲ ̸= 0 where ξ := ZTV̄ −1Ȳ , and

(V̄ +)−1 = S−1

(
I − η

1 + ηξ
V̄ −1Ȳ ZT

)
V̄ −1.

Since n < Nqb{µ}, we have ∥Z∥2 ≤ λ1/21∼pµ
1/2, ∥Ȳ ∥2 ≤ λ1/21∼pµ

1/2. By (3.2), we find

|ZTV̄ −1Ȳ | ≤ ∥Z∥2∥V̄ −1∥2∥Ȳ ∥2 ≤ λ1∼pµ
√
κ2 + 1 ≤ 1

2η
.

Hence T+ =
¯
V +(V̄ +)−1 is well-defined. This proves Item 1.

For Item 2, using the Sherman-Morrison-Woodbury formula, we get

∆T =
¯
V +(V̄ +)−1 −

¯
V V̄ −1

= (
¯
V + η

¯
Y ZT)

(
I − η

1 + ηξ
V̄ −1Ȳ ZT

)
V̄ −1 −

¯
V V̄ −1

=

(
η
¯
Y ZT − η

1 + ηξ ¯
V V̄ −1Ȳ ZT − η2

1 + ηξ ¯
Y ZTV̄ −1Ȳ ZT

)
V̄ −1

= η

(
¯
Y − 1

1 + ηξ
T Ȳ − ηξ

1 + ηξ ¯
Y

)
ZTV̄ −1

=
η

1 + ηξ

(
¯
Y − T Ȳ

)
Y TV V̄ −1

=
η

1 + ηξ
TlY Y

TTr,

where Tl =
[
−T I

]
and Tr =

[
I
T

]
. Note that

TlY Y
TTr =

¯
Y Ȳ T − T Ȳ

¯
Y TT − T Ȳ Ȳ T +

¯
Y
¯
Y TT. (4.1)

For any positive semi-definite matrices A1, A2 and a matrix X, by [17]

∥A1X −XA2∥2 ≤ max{∥A1∥2, ∥A2∥2}∥X∥2.

Thus,

∥TlY Y TTr∥2 ≤ λ1/2p+1∼dλ
1/2
1∼pµ(1 + τ2) + (λ1∼p ∨ λp+1∼d)µτ

= µ[ν1/2λ1∼p(1 + τ2) + ν1λ1∼pτ ],

and then

∥∆T∥2 ≤ 2µη[ν1/2λ1∼p(1 + τ2) + ν1λ1∼pτ ].

Consider Item 3. Clearly TlV = 0 and V = TrV̄ , V̄
−1 = V TTr, V V

TTr = Tr. Write

∆T = Tl(ηY Y
T +RT )Tr,

where

RT = −η ηξ

1 + ηξ
Y Y T = −η ηZTV̄ −1Ȳ

1 + ηZTV̄ −1Ȳ
Y Y T,

and
∥TlRTTr∥2 ≤ 2λ1∼pµ

2η2(1 + τ2)1/2[ν1/2λ1∼p(1 + τ2) + ν1λ1∼pτ ]. (4.2)
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In (4.1),

E
{
¯
Y Ȳ T

}
= 0, E

{
T Ȳ Ȳ T

}
= T E

{
Ȳ Ȳ T

}
= TΛ̄,

E
{
T Ȳ

¯
Y TT

}
= T E

{
Ȳ
¯
Y T
}
T = 0, E

{
¯
Y
¯
Y TT

}
= E

{
¯
Y
¯
Y T
}
T =

¯
ΛT.

Thus, E{∆T} = η(
¯
ΛT − TΛ̄) +RE , where RE = E{TlRTTr}. Therefore,

∥RE∥2 =

∥∥∥∥E{Tl [−η ηZTV̄ −1Ȳ

1 + ηZTV̄ −1Ȳ
Y Y T

]
Tr

}∥∥∥∥
2

≤ max
Y

∣∣∣∣−η ηZTV̄ −1Ȳ

1 + ηZTV̄ −1Ȳ

∣∣∣∣∥∥E{TlY Y TTr
}∥∥

2

≤ 2η2λ
1/2
1∼pµ

1/2(1 + τ2)1/2λ
1/2
1∼pµ

1/2λ1τ

= 2λ1λ1∼pµη
2τ(1 + τ2)1/2.

Now we turn to Item 4. We have

var◦(∆T ) = var◦
(
Tl(ηY Y

T +RT )Tr
)
= η2 var◦

(
TlY Y

TTr
)
+ 2ηR◦,1 +R◦,2, (4.4)

where R◦,1 = cov◦
(
TlY Y

TTr, TlRTTr
)
, and R◦,2 = var◦(TlRTTr). By (4.1),

var◦
(
TlY Y

TTr
)
= var◦

(
¯
Y Ȳ T

)
+R◦,0, (4.5)

where

R◦,0 = var◦
(
T Ȳ

¯
Y TT

)
− 2 cov◦

(
¯
Y Ȳ T, T Ȳ

¯
Y TT

)
+ var◦

(
T Ȳ Ȳ T −

¯
Y
¯
Y TT

)
− 2 cov◦

(
¯
Y Ȳ T, T Ȳ Ȳ T −

¯
Y
¯
Y TT

)
+ 2 cov◦

(
T Ȳ

¯
Y TT, T Ȳ Ȳ T −

¯
Y
¯
Y TT

)
.

Examine (4.4) and (4.5) together to get H◦ = var◦
(
¯
Y Ȳ T

)
and R

(n)
◦ = η2R◦,0 + 2ηR◦,1 +R◦,2. We note

Yj = eTj Y = eTj Λ
1/2Λ−1/2Y = λ

1/2
j eTj Λ

−1/2Y,

eTi var◦
(
¯
Y Ȳ T

)
ej = var(eTi ¯

Y Ȳ Tej) = var(Yp+iYj) = E
{
Y 2
p+iY

2
j

}
.

By Item 2 of Lemma 2.2,

E
{
Y 4
j

}
= λ2j E

{
(eTj Λ

−1/2Y )4
}
≤ 16λ2j∥eTj Λ−1/2Y ∥4ψ2

≤ 16λ2j∥Λ−1/2Y ∥4ψ2
= 16λ2jψ

4.

Therefore
eTi var◦

(
¯
Y Ȳ T

)
ej ≤ [E

{
Y 4
p+i

}
E
{
Y 4
j

}
]1/2 ≤ 16λp+iλjψ

4,

i.e., H◦ = var◦
(
¯
Y Ȳ T

)
≤ 16ψ4H. This proves Item 4(a). To show Item 4(b), first we bound the entrywise

variance and covariance. For any matrices A1, A2, by Schur’s inequality (which was generalized to all
unitarily invariant norm in [13, Theorem 3.1]),

∥A1 ◦A2∥2 ≤ ∥A1∥2∥A2∥2, (4.6)

we have

∥cov◦(A1, A2)∥2 = ∥E{A1 ◦A2} − E{A1} ◦ E{A2}∥2
≤ E{∥A1 ◦A2∥2}+ ∥E{A1} ◦ E{A2}∥2
≤ E{∥A1∥2∥A2∥2}+ ∥E{A1}∥2∥E{A2}∥2,

∥var◦(A1)∥2 ≤ E
{
∥A1∥22

}
+ ∥E{A1}∥22.

Apply (4.7) to R◦,1 and R◦,2 with (4.2) to get

∥R◦,1∥2 ≤ ∥TlY Y TTr∥2∥TlRTTr∥2 + ∥TlΛTr∥2∥RE∥2
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≤ 2λ1∼pµ
3η2(1 + τ2)1/2[ν1/2λ1∼p(1 + τ2) + ν1λ1∼pτ ]

2 + 2λ21λ1∼pµη
2τ2(1 + τ2)1/2

≤ 4νλ31∼pµ
3η2(1 + τ2)1/2

[
1 + τ2 + ν1ν

−1/2τ
]2
,

∥R◦,2∥2 ≤ 2(∥TlRTTr∥2)2

≤ 8λ21∼pµ
4η4(1 + τ2)[ν1/2λ1∼p(1 + τ2) + ν1λ1∼pτ ]

2

≤ 8νλ41∼pµ
4η4(1 + τ2)

[
1 + τ2 + ν1ν

−1/2τ
]2
.

For R◦,0, by (4.3), we have

∥var◦
(
T Ȳ

¯
Y TT

)
∥2 ≤ E

{
∥
¯
Y Ȳ T∥22

}
∥T∥42,

∥cov◦
(
¯
Y Ȳ T, T Ȳ

¯
Y TT

)
∥2 ≤ E

{
∥
¯
Y Ȳ T∥22

}
∥T∥22,

∥cov◦
(
¯
Y Ȳ T, T Ȳ Ȳ T −

¯
Y
¯
Y TT

)
∥2 ≤ E

{
∥
¯
Y Ȳ T∥2∥T Ȳ Ȳ T −

¯
Y
¯
Y TT∥2

}
,

∥cov◦
(
T Ȳ

¯
Y TT, T Ȳ Ȳ T −

¯
Y
¯
Y TT

)
∥2 ≤ E

{
∥
¯
Y Ȳ T∥2∥T Ȳ Ȳ T −

¯
Y
¯
Y TT∥2

}
∥T∥22,

∥var◦
(
T Ȳ Ȳ T −

¯
Y
¯
Y TT

)
∥2 ≤ E

{
∥T Ȳ Ȳ T −

¯
Y
¯
Y TT∥22

}
+ ∥TΛ̄−

¯
ΛT∥22.

Since

∥
¯
Y Ȳ T∥2 = (Ȳ TȲ )1/2(

¯
Y T

¯
Y )1/2 ≤ ν1/2λ1∼pµ,

we have

∥R◦,0∥2 ≤ νλ21∼pµ2τ4 + 2νλ21∼pµ
2τ2 + ν21λ

2
1∼pµ

2τ2 + λ21τ
2

+ 2ν1/2λ1∼pν1λ1∼pµ
2τ + 2ν1/2λ1∼pν1λ1∼pµ

2τ3

≤ 2ν1ν
1/2λ21∼pµ

2τ
(
1 +

[
1 + ν1ν

−1/2
]
τ + τ2 +

1

2
τ3
)
. (4.9)

Finally collecting (4.8) and (4.9) yields the desired bound on R
(n)
◦ = η2R◦,0 + 2ηR◦,1 +R◦,2.

4.2 Two probability estimations

Lemma 4.1. For any n ≥ 1,

P{Nqb{µ} > n} ≥ 1− n(ed+ p+ 1) exp
(
−Cψψ−1(1 ∧ ψ−1)µ

)
,

where Cψ is an absolute constant.

Proof. Since

{Nqb{µ} ≤ n} ⊂
⋃
n≤n

{∥Z(n)∥2 ≥ λ1/21∼pµ
1/2
}
∪
⋃

1≤i≤d

{
|eTi Y (n)| ≥ λ1/2i µ1/2

} ,

we know

P{Nqb{µ} ≤ n} ≤
∑
n≤n

P
{
∥Z(n)∥2 ≥ λ1/21∼pµ

1/2
}
+
∑

1≤i≤d

P
{
|eTi Y (n)| ≥ λ1/2i µ1/2

} . (4.10)

First,

P
{
|eTi Y (n)| ≥ λ1/2i µ1/2

}
= P

{∣∣∣∣ (Λ1/2ei)
T

∥Λ1/2ei∥2
Λ−1/2Y (n)

∣∣∣∣ ≥ λ
1/2
i µ1/2

∥Λ1/2ei∥2

}
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≤ exp

1−
Cψ,i

λiµ
eTi Λei

∥ (Λ
1/2ei)T

∥Λ1/2ei∥2
Λ−1/2Y (n)∥ψ2

 by Item 1 of Lemma 2.2

≤ exp

(
1− Cψ,iλiµ

∥Λ−1/2Y (n)∥ψ2
λi

)
= exp

(
1− Cψ,iψ−1µ

)
,

where Cψ,i, i = 1, . . . , d are absolute constants. Next, we claim

P
{
∥Z(n)∥2 ≥ λ1/21∼pµ

1/2
}
≤ (p+ 1) exp

(
−Cψ,d+1ψ

−2µ
)
. (4.11)

Together, (4.10) – (4.11) yield

P{Nqb{µ} ≤ n} =
∑
n≤n

∑
1≤i≤d

exp
(
1− Cψ,iψ−1µ

)
+
∑
n≤n

(p+ 1) exp
(
−Cψ,d+1ψ

−2µ
)

≤ n(ed+ p+ 1) exp
(
−Cψψ−1(1 ∧ ψ−1)µ

)
,

where Cψ = min1≤i≤d+1 Cψ,i. Finally, use P{Nqb{µ} > n} = 1− P{Nqb{µ} ≤ n} to complete the proof.
It remains to prove the claim (4.11). To avoid the cluttered superscripts, we drop the superscript

“·(n−1)” on V , and drop the superscript “·(n)” on Y, Z. Consider

W :=

[
0 Z
ZT 0

]
=

[
V TY

Y TV

]
=

d∑
k=1

Yk


vk1
...
vkp

vk1 · · · vkp 0

 =:

d∑
k=1

YkWk,

where vij is the (i, j)-entry of V . By the matrix version of master tail bound [29, Theorem 3.6], for any
ξ > 0,

P{∥Z∥2 ≥ ξ} = P{λmax(W ) ≥ ξ} ≤ inf
θ>0

e−θξ trace exp

(
d∑
k=1

ln E{exp(θYkWk)}

)
.

Y is sub-Gaussian and E{Y } = 0, and so is Yk. Moreover,

∥Yk∥ψ2
= ∥eTkΛ1/2∥2

∥∥∥∥ eTkΛ
1/2

∥eTkΛ1/2∥2
Λ−1/2Y

∥∥∥∥
ψ2

≤ λ1/2k ∥Λ
−1/2Y ∥ψ2

= λ
1/2
k ψ.

Also, by Item 3 of Lemma 2.2,

E{exp(θWkYk)} ≤ exp(Cψ,d+kθ
2Wk ◦Wk∥Yk∥2ψ2

) ≤ exp(cψ,kθ
2λkψ

2Wk ◦Wk),

where cψ,k, k = 1, . . . , d are absolute constants. Therefore, writing [4Cψ,d+1]
−1 = max1≤k≤d cψ,k and

Wψ :=
∑d
k=1 λkWk ◦Wk with the spectral decomposition Wψ = VψΛψV

T
ψ , we have

trace exp

(
d∑
k=1

ln E{exp(θYkWk)}

)
≤ trace exp

(
d∑
k=1

cψ,kθ
2λkψ

2Wk ◦Wk

)
≤ trace exp([4Cψ,d+1]

−1θ2ψ2Wψ)

= trace exp([4Cψ,d+1]
−1θ2ψ2VψΛψV

T
ψ )

= trace
(
Vψ exp([4Cψ,d+1]

−1θ2ψ2Λψ)V
T
ψ

)
= trace exp([4Cψ,d+1]

−1θ2ψ2Λψ)

≤ (p+ 1) exp([4Cψ,d+1]
−1θ2ψ2λmax(Λψ))

= (p+ 1) exp([4Cψ,d+1]
−1θ2ψ2λmax(Wψ)).
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Note that

Wψ =



0 · · · 0

d∑
k=1

λkv
2
k1

...
...

...

0 · · · 0

d∑
k=1

λkv
2
kp

d∑
k=1

λkv
2
k1 · · ·

d∑
k=1

λkv
2
kp 0


=


0 · · · 0 eT1 V

TΛV e1
...

...
...

0 · · · 0 eTp V
TΛV ep

eT1 V
TΛV e1 · · · eTp V

TΛV ep 0

 ,

and thus

λmax(Wψ) =

∥∥∥∥∥∥∥
e

T
1 V

TΛV e1
...

eTp V
TΛV ep


∥∥∥∥∥∥∥
2

≤
p∑
k=1

eTk V
TΛV ek = trace(V TΛV )

≤ max
V TV=Ip

trace(V TΛV ) =

p∑
k=1

λk = λ1∼p.

In summary, we have

P{∥Z∥2 ≥ ξ} ≤ (p+ 1) inf
θ>0

exp([4Cψ,d+1]
−1θ2ψ2λ1∼p − θξ)

= (p+ 1) exp

(
−Cψ,d+1ξ

2

ψ2λ1∼p

)
.

Substituting ξ = λ
1/2
1∼pµ

1/2, we have the claim (4.11).

Lemma 4.2. Suppose that (3.2) holds. If n− 1 < Nqb{µ} ∧Nout{κ} and T (0) is well-defined, then

P{Mn(κ, µ)} ≥ 1− 2d exp(−CMλ21ν−1γ−2µ),

where CM =
C2
D,2,1

8CD,2,2
.

Proof. For any n− 1 < Nqb{µ} ∧Nout{κ}, V (n−1) ∈ S(κ) and thus ∥T (n−1)∥2 ≤ κ by (3.1). Therefore, by
Item 2 of Lemma 3.1, we have

∥D(n)∥2 =
∥∥∥T (n) − T (n−1) − E

{
T (n) − T (n−1)

∣∣∣ Fn}∥∥∥
2

≤ ∥T (n) − T (n−1)∥2 + E
{
∥T (n) − T (n−1)∥2

∣∣∣ Fn}
≤ 4µηn[ν

1/2λ1∼p(1 + τ2) + ν1λ1∼pτ ].

For any n− 1 < Nqb{µ} ∧Nout{κ},

∥T (n)
R ∥2 ≤

n∑
s=1

(
n∏

r=s+1

∥Lr∥2

)
∥R(s−1)

E ∥2

≤
n∑
s=1

2λ1λ1∼pκ(1 + κ2)1/2µη2s−1

n∏
r=s+1

∥Lr∥2

≤ 2λ1λ1∼pκ(1 + κ2)1/2F
(1,n)
D,2,1

≤ 2CD,2,1λ1λ1∼pκ(1 + κ2)1/2µηnγ
−1

≤ 2CD,2,1λ1λ1∼p(1 + κ2)µ3/2η1/2n γ−3/2 by ηnγ ≤ 1.
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Similarly,

∥T (n)
D ∥2 ≤

n∑
s=1

(
n∏

r=s+1

∥Lr∥2

)
∥D(s)∥2

≤
n∑
s=1

4[ν1/2λ1∼p(1 + κ2) + ν1λ1∼pκ]µηs

n∏
r=s+1

∥Lr∥2

≤ 4[ν1/2λ1∼p(1 + κ2) + ν1λ1∼pκ]µF
(1,n)
D,1,1

≤ 4CD,1,1[ν
1/2λ1∼p(1 + κ2) + ν1λ1∼pκ]µγ

−1.

Also, ∥T (n)
∗ ∥2 ≤ F (1,n)

∗ ∥T (0)∥2 ≤ ∥T (0)∥2. For fixed n > 0 and ηn > 0,M (n)
0 :=

n∏
r=1

LrT (0),M
(n)
t :=

n∏
r=1

LrT (0) +

t∧(Nout{κ}−1)∑
s=1

n∏
r=s+1

LrD(s) : t = 1, . . . , n


forms a martingale with respect to Ft, because

E
{
∥M (n)

t ∥2
}
≤ ∥T (n)

∗ ∥2 + ∥T (n)
D ∥2 < +∞,

and

E
{
M

(n)
t+1 −M

(n)
t

∣∣∣ Ft} = E

{
n∏

r=t+2

LrD(t+1)

∣∣∣∣∣ Ft
}

=

n∏
r=t+2

Lr E
{
D(t+1)

∣∣∣ Ft} = 0.

Use the matrix version of Azuma’s inequality [29, Section 7.2] to get, for any α > 0,

P
{
∥M (n)

n −M (n)
0 ∥2 ≥ α

}
≤ 2d exp(− α2

2σ2
),

where

σ2 =

n∧(Nout{κ}−1)∑
s=1

∥∥∥∥∥
(

n∏
r=s+1

Lr

)
D(s)

∥∥∥∥∥
2

2

≤
n∧(Nout{κ}−1)∑

s=1

[
4[ν1/2λ1∼p(1 + κ2) + ν1λ1∼pκ]µηs

]2 n∏
r=s+1

∥Lr∥22

≤ 32
[
νλ21∼p(1 + κ2)2 + ν21λ

2
1∼pκ

2
]
µ2F

(1,n)
D,2,2

≤ 32CD,2,2
[
νλ21∼p(1 + κ2)2 + ν21λ

2
1∼pκ

2
]
µ2ηnγ

−1.

Thus, noticing T
(n)
D =M

(n)
n −M (n)

0 for n ≤ Nout{κ} − 1, we have

P
{
∥T (n)

D ∥2 ≥ α
}
≤ 2d exp

(
− α2

32CD,2,2
[
νλ21∼p(1 + κ2)2 + ν21λ

2
1∼pκ

2
]
µ2ηnγ−1

)
.

Choosing α = 2CD,2,1λ1λ1∼p(1+ κ2)µ3/2η
1/2
n γ−3/2 and noticing T (n)− T (n)

∗ = T
(n)
D + T

(n)
R and ∥T (n)

R ∥2 ≤
2CD,2,1λ1λ1∼p(1 + κ2)µ3/2η

1/2
n γ−3/2 , we have

P{Mn(χ)
c} = P

{
∥T (n) − T (n)

∗ ∥2 ≥ 4CD,2,1λ1λ1∼p(1 + κ2)µ3/2η1/2n γ−3/2
}

≤ P
{
∥T (n)

D ∥2 ≥ 2CD,2,1λ1λ1∼p(1 + κ2)µ3/2η1/2n γ−3/2
}

≤ 2d exp

(
− [2CD,2,1λ1λ1∼p(1 + κ2)µ3/2η

1/2
n γ−3/2]2

32CD,2,2
[
νλ21∼p(1 + κ2)2 + ν21λ

2
1∼pκ

2
]
µ2ηnγ−1

)
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≤ 2d exp

(
−
C2
D,2,1λ

2
1µγ

−2

8CD,2,2ν

)
= 2d exp(−CMλ21ν−1γ−2µ),

where CM =
C2
D,2,1

8CD,2,2
.

4.3 Proof of Lemma 3.2

First consider the case that (3.3) holds. We know Tr(κ) =
{
∥T (r)∥2 ≤ κ

}
. If n ≥ Nout{κ}, then there

exists some r ≤ n, such that V (r) /∈ S(κ), i.e., ∥T (r)∥2 > κ by (3.1). Thus,

{n ≥ Nout{κ}} ⊂
⋃
r≤n

{
∥T (r)∥2 > κ

}
⊂
⋃
r≤n

Tr(κ)c.

On the other hand, for V (0) ∈ S(κ/2), Mr(κ, µ) ⊂ Tr(κ) because

∥T (r)∥2 ≤ ∥T (r) − T (r)
∗ ∥2 + F

(1,r)
∗ ∥T (0)∥2

≤ 1

2
υ(1 + κ2)µ3/2η1/2r γ1/2 + 1 · κ/2 ≤ κ.

Therefore, ⋂
r≤n

Mr(κ, µ) ⊂
⋂
r≤n

Tr(κ) ⊂ {n ≤ Nout{κ} − 1},

and so ⋂
r≤n∧(Nout{κ}−1)

Mr(κ) =
⋂
r≤n

Mr(κ) ⊂
⋂
r≤n

Tr(κ) =: Hn. (4.12)

For r ≥ N1 := N
(1)
(ln ε−lnκ)/ ln(η∗γ)

and V (0) ∈ S(κ/2), Mr(κ, µ) ⊂ Tr(ε) because

∥T (r)∥2 ≤ ∥T (r) − T (r)
∗ ∥2 + F

(1,r)
∗ ∥T (0)∥2

≤ 1

2
υ(1 + κ2)µ3/2η1/2r γ1/2 + (η∗γ)

(ln ε−lnκ)/ ln(η∗γ)κ/2

≤ 1

2
κρ1/2r + ε/2 by υ(1 + κ2)µ3/2η1/2o γ1/2 ≤ κ

≤ ε, by κρ1/2r ≤ ε.

Therefore, ⋂
r≤n

Mr(κ) ⊂MN1(κ) ⊂ {Nin{ε} ≤ N1} =: Ho.

Since ⋂
r≤n∧(Nin{ε}−1)

Mr(κ) ∩Hc
o ⊂

⋂
r≤n

Mr(κ) ⊂ Ho,

we have ⋂
r≤n∧(Nin{ε}−1)

Mr(κ) ⊂ Ho.

Together with (4.12), ⋂
r≤n∧(Nin{ε}−1)∧(Nout{κ}−1)

Mr(κ) ⊂ Ho ∩Hn.

By Lemma 4.2, we get

P

 ⋃
r≤n∧(Nin{ε}−1)∧(Nout{κ}−1)

Mr(1)
c ∩Qn(µ)
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≤ (n ∧ (Nin{ε} − 1) ∧ (Nout{κ} − 1)) 2d exp(−CMγ−2λ21∼pµ
2)

= 2nd exp(−CMγ−2λ21∼pµ
2).

Thus,

P{(Hn ∩Ho)c} ≤ P{(Hn ∩Ho ∩Qn(µ))c}
= P{(Hn ∩Ho)c ∪Qn(µ)c}
= P{(Hn ∩Ho)c ∩Qn(µ)}+ P{Qn(µ)c}

≤ P

 ⋃
r≤n∧(Nin{ε}−1)∧(Nout{κ}−1)

Mr(κ)
c ∩Qn(µ)

+ P{Qn(µ)c}

≤ 2nd exp(−CMλ21ν−1γ−2µ) + n(ed+ p+ 1) exp
(
−Cψψ−1(1 ∧ ψ−1)µ

)
,

where P{Qn(µ)c} is given by Lemma 4.1.

4.4 Proof of Lemma 3.3

Choose
H = H̃n ∩Qn =

⋂
r∈[1,N1−1]

Tr(2) ∩
⋂

r∈[N1,n]

Tr(2ε) ∩Qn(µ).

By Lemma 3.2 with κ = 2, µ =
(
ψ∨ψ2

Cψ
∨ ν2

1γ
2

CMλ2
1

)
ln (e+3)nd

δ1
,

P{Hc} ≤ 2nd exp(−CMλ21ν−1γ−2µ) + n(ed+ p+ 1) exp
(
−Cψψ−1(1 ∧ ψ−1)µ

)
≤ δ1.

In the following, we will work on the expectation.
Note that

H̃n =
⋂

r∈[1,N1−1]

Tr(2) ∩
⋂

r∈[N1,n]

Tr(2ε) ⊂
⋂

r∈[1,n]

{
1Tr−1(2)D

(r) = D(r)
}
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In the following, we estimate each summand above for n ∈ [N2,K].
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On the event Ts−1(2), by λ1∼pµηo(1 + ηo) < 1, we have
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Collecting all estimates together, we obtain
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in which C ′ and CR are absolute constants.

5 Conclusion

We have presented a convergence analysis of the Oja’s method for online/streaming PCA iteration with
sub-Gaussian samples, by combining the idea in Li et al. [18] and Liang et al. [19] and the convergence
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result from a random guess to a good guess by Huang et al. [15]. Our results show for the first time that
the Oja’ method for online PCA is optimal in the sense that with high probability the convergence rate
exactly matches the minimax information lower bound for offline PCA.

Recently [3, 11] developed a method to decide the learning rate adaptively. Though our framework
works for different strategies on choosing the learning rates, it remains an open but very worthwhile
problem to consider how fast the adaptive learning rates would accelerate the convergence, because with
a small probability to cover bad events, it is quite possible to attain a convergence rate even below the
lower bound.
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