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Abstract
In this paper we analyze the behavior of the Oja’s algorithm for online/streaming principal com-
ponent subspace estimation. It is proved that with high probability it performs an efficient, gap-free,
global convergence rate to approximate an principal component subspace for any sub-Gaussian distri-
bution. Moreover, it is the first time to show that the convergence rate, namely the upper bound of the
approximation, exactly matches the lower bound of an approximation obtained by the offline/classical
PCA up to a constant factor.
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1 Introduction

Principal component analysis (PCA) introduced by Pearson [25] and Hotelling [14] is one of the most well-
known and popular methods for dimensional reduction in statistics, machine learning, and data science.
The goal of PCA is to find out a low-dimensional linear subspace that is closest to a centered random
vector in a high-dimensional subspace in the mean squared sense through finite independent and identically
distributed (i.i.d.) samples of the random vector. Theoretically, given a random vector X € R? satisfying

E{X} =0, E{XXT} = Y, PCA looks for a subspace U, with dimU, = p < d, such that
U, =arg min E{||(Is — L)X |3}, (1.1)
dimU=p
where I; is the identical mapping, or equivalently the d x d identity matrix, and IT;; is the orthogonal
projector onto U. Let X = UAUT be the spectral decomposition of X, where
Y =UAUT with U = [u1,us,...,ug, A=diag(A,...,\a), (1.2)

If A\, > Apt1, then the unique solution to the optimization problem (1.1), namely the p-dimensional
principal subspace of X, is U, = span(us,...,up), the subspace spanned by w1, ..., up.

In practice, the covariance matrix X' is difficult, if not impossible, to obtain, and people have to use
samples to approximate U,. The classical/offline PCA use the spectral decomposition of the empirical

covariance matrix & = %Z?:l XO(XE)T " There U, = span (1, ..., Up) is used to approximate U,
where u; are corresponding eigenvectors of 5. Vu and Lei [32, Theorem 3.1] proved that
~ o? AMApt1 pld—p)
inf sup E{||sin9(u*,u*)H2} >ep(d—p)—= >c¢ P ) (1.3)
dim U, =p X €Po(02,d) ¥ n Ap— A1) n

where ¢ > 0 is an absolute constant, and Py (02, d) is the set of all d-dimensional sub-Gaussian distributions

for which the eigenvalues of the covariance matrix satisfy (/\:3\7’;:1)2 < ¢%. Note that (A:‘f\ﬁ is the

effective noise variance.
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Due to the practical requirement that only limited memory and a single pass over the data can be
implemented, people have paid amount of attention to a class of methods under these condition, called
streaming/online PCA. The most natural and simple method was designed by Oja and his coauthor [23, 24]:
first choose an initial guess U®) € R¥P with (U(O))TU(O) = I, and then iteratively update

U™ — g1 ([Id 4, X ™ (X(m)T]U(n—l)) = [y + 7, X ™ (X )Ty (=D g(w)

where IT(A) is an orthonormal projector such that IT(A)TIT(A) = I, and span(A) = span(II(A)), and
S is used to denote the normalization matrix. There are three classes of hyperparameters:

1. the initial guess U©): usually first generate U of which each entry follows the standard Gaussian
distribution N(0,1), and then obtain U by QR decomposition. Note that in this setup, U
is uniformly sampled from all the p-dimensional subspaces under the Haar invariant probability
measure (see eg. [22]).

2. the learning rates 7,: there are different strategies to choose them. Two common setups are the
constant learning rates 7, = 1,, and harmonic learning rates 7, « %

3. the normalization matrices S(™: Two common ways to obtain the orthonormal basis are QR decom-
position, and polar decomposition [1, 19].

Although the Oja’s algorithm was developed nearly 40 years ago and it works well in practice, its
convergence behavior is limited until recently. Most theoretical results come out since 2014. As was
argued by Allen-Zhu and Li [2], the convergence rate of the Oja’s method has several features:

1. efficient: the rate only depends on the dimension d logarithmically. In fact, the dependence on d can
be removed.

2. gap-free: the rate is independent of the eigenvalue gap

’)/ = )\p - )\p+1'
In details, the feature tells that ||sin ©(span(U™), span(uy,...,u,))| is bounded by a factor 32

rather than y~2, where 7 is an arbitrary chosen threshold, and A\, — Ay <7 < Ay, — Agi1.
3. global: the algorithm is allowed to start from a random initial guess.

Some recent works [26] studied the convergence of the online PCA for the most significant principal
component, i.e., uy, from different points of view and obtained some results for the case where the samples
are almost surely uniformly bounded. De Sa et al. [8] studied a different but closely related problem, in
which the angular part is equivalent to the online PCA, and obtained some convergence results. Li et
al. [18] analyzed for the distributions with sub-Gaussian tails, and for this case the samples of this kind
of distributions may be unbounded. For more details of comparison, the reader is referred to [18].

For the subspace online PCA, some recent works studied the convergence for the case where the samples
are almost surely uniformly bounded. In a series of papers [41, 5, 20, 21], Arora et al. studied (1.1) and its
variations via direct optimization approaches, namely using convex relaxation and adding regularizations.
The Oja’s algorithm falls into one variant of their methods. Hardt and Price [10] and Balcan et al. [0]
treated the method as a noisy power method and analyzed its convergence. Shamir [27] first proved the
convergence is efficient with a good initial guess. Garber et al. [9] used the shift-and-invert technique to
speed up the convergence but their analysis was only done for the top eigenvector. Allen-Zhu and Li [2]
analyzed the method and proposed a faster variant of subspace online PCA iteration, and firstly showed
the gap-free feature of the convergence and also gave a lower bound for the gap-free feature. Very recently
Huang et al. [15] analyzed the problem using the new matrix concentration inequalities and proved stronger
upper bounds. Liang et al. [19] went further along the way of [18] and gave an convergence analysis for
sub-Gaussian distributions.

The convergence rates obtained in some previous works and this paper are presented in Table 1.1. The



Paper Global convergence Local convergence  Unbounded Block Gap-free

A _gd. d N _4d. d
De Sa et al. [8] 1;‘1 In — 1;‘1 n-— No No No
n 0 v2n 1)
A Apd d AN Apd d
Hardt and Price [10] Aratp® ), 110 Ardp® ) 14 No Yes No
P AP
1 1
Shamir [20] # (Inn) 5 Alrg (Inn) No No No
v’n (1-9) ’Y}\TQL (1-24)
Shamir [27] — Led 1, % No Yes No
72n
A \pd d N A\ d d
Balcan et al. [6] Aop?pTy, 14 L In 2% No Yes No
’Y]\? d ’ V]\? d ’
Jain et al. [10] 22 In 51 2:; In gl No No No
Li et al. [15] Aplptivg 107 AtpAprina 107 Yes No No
o L AR
Allen-Zhu and Li [2] P22~y — Sopivd )y — No Yes Yes
N S W Wt
Liang et al. [19] Ioplptind T 5 lopAptind T 5 Yes Yes No
’yQMn 1-—6r WQMn 1—46r
Huang et al. [15] 274 In 2 ?4 n 2 No Yes No
Av (;L—no)( 79 : )\7 n)\ oy
Thi 1~pAp+1~d(Tt — N I~pAp+1~d Y. Y Y.
is paper V21— 5) (i —0) es es es

Table 1.1: Comparison of some results

e The term M, represents any quantity related to E{HX xT - EH}, or the fourth central moment

(not necessarily the same in different results).

e In some results the term n, appears in the global convergence, and it represents the number of
samples needed in the so-called “Phase I” or “Cold Start” process.

e Note that there are two types of the dependency on ¢ in Table 1.1: one is In %, which goes to infinity
as § — 0; the other is W7 which goes to 0 as § — 0. Clearly the latter term can be replaced

by an absolute constant, or equivalently, the rate does not explicitly rely on § (but implicitly, for
n > O ((Ind)~*) as is shown in Lemma 3.4 and Theorem 3.1).

e In some results, such as Jain et al. [16, Theorem 1.3], there is no Ind or ln% factor, which seems to
contradict with what we list in Table 1.1 (based on their Theorem 1.2 or 4.1 actually). However, the
assumption there is much stronger: first their success probability is 3/4, rather than 1 — §, which
removes the dependency on §; then they need n > O(d'/'%) which is much larger than O ((ln d)4)
here.



sum of some consecutive eigenvalues is written as
)\i1~i2 ::)\i1+"'+>\i27 1§21§7’2§d

The listed convergence rates are read as: with probability 1 — d, using n samples, or equivalently after n
iterations, the Oja’s algorithm produces an approximation span(U (”)) of the principal subspace satisfying
|sin O (span(U™),U,)|| < (the rate). The global convergence rate is given for the case that the initial
guess is random generated, while the local convergence rate is given for the case that the initial guess
satisfies |[tan ©(span(U®), U, )| is bounded by an absolute constant like 1.

The convergence rates listed in Table 1.1, except ours, include a poly-logarithmic factor, which leads
people to say the Oja’s method is nearly optimal. However, in this paper we will show the poly-logarithmic
factor can be removed. In other words, the convergence rate, namely the upper bound of the approximation,
exactly matches the lower bound (1.3) of an approximation obtained by the offline/classical PCA up to
a constant factor. Hence in some sense, we may say the Oja’s method is optimal. To the best of our
knowledge, it is the first time to point out this feature of the online method.

Other results we will show in this paper include:

e the strategy of choosing the normalization matrices does not matter much on the convergence rate.
Hence we may choose a strategy that has advantages on computation or practical consideration.

e the iteration process is somehow decoupled, and thus the gap-dependent and gap-free considerations
can be treated in the same framework. This would shed light on the convergence analysis of other
online algorithms.

e a lower bound for sub-Gaussian distributions on the gap-free feature is given, which ensures that the
Oja’s method is optimal.

The rest of this paper is organized as follows. In Section 2 we make preparations for discussing the
convergence analysis of the Oja’s method. The main results, namely the convergence analysis, are stated
in Section 3, while their proofs are provided in Section 4 due to the complexities of the contained heavy
calculations. Section 5 gives some concluding remarks.

1.1 Notation

I, (or simply I if its dimension is clear from the context) is the n x n identity matrix and e; is its jth
column (usually with dimension determined by the context). For a matrix X, o(X), || X||2 and || X||r are
the multiset of the singular values, the spectral norm, and the Frobenius norm of X, respectively. For two
matrices or vectors X,Y, X oY is the Hadamard /entrywise product of X and Y of the same size.

For any matrix X, X(; ;) is the (i, j)th entry of X, and X(;.;.) is the submatrix of X consisting of its
row i to row j. For any vector or matrix X,Y, X <Y means X(; ;) < Y; ;) for any i,j. X“>,> <Y
can be similarly understood.

For a subset or an event A, A° is the complement set of A. By o{Ai,...,A,} we denote the o-
algebra generated by the events Ai,...,A,. E{X; A} := E{X14} denotes the expectation of a ran-
dom variable X over event A. Note that E{X; A} = E{X | A} P{A}. For a random vector or matrix
X, E{X} := [E{X(;;}]. Note that |[E{X}|s < E{||X|lw} for ui = 2,r. Write covo(X,Y) :=
E{[X —E{X}]o[Y — E{Y }]} and var,(X) := covo (X, X).

For any scalar x,y, ¢ Vy = max{z,y}, ¢ Ay = min{z, y}.

2 Preliminaries

2.1 Canonical Angles between Two Subspaces

We are interested in the distance of two linear subspaces. So we introduce the canonical angles between
them in order to give quantities to represent their distance.



Definition 2.1 ([7]). Given two subspaces X, Y C R¢ with dimX = p < dimY = ¢q. The princi-
pal/canonical angles 0; € [0,7/2] between X and ) are recursively defined for j =1,...,p by

cosl; =0, = uen)gaé)xey uTy = u;rvj subject to ||ull2 = [Jv]2 = 1,

u?uzO,v?sz,i:l,...,j—l.

It can be verified that o1 > - -+ > 0, are the singular values of X TY, where X,Y are orthonormal basis
matrices of X', respectively. The angles are in non-decreasing order: ¢; < --- < 6,. Moreover, it can be
seen that o; or §; are independent of the basis matrices, which are not unique.

Write

O(X,Y) = diag(b1, ..., 0p).
Here we add “(X,Y)” to emphasize the quantity is defined for two subspaces X', ). In particular, if p = ¢,
|sin ©(X, V)||wi for ui = 2,F are metrics on the set consisting for all p-dimensional subspaces of R? [25,
Section I1.4].

For matrices X,Y, O(X,Y) := O(span(X), span(Y)).

In what follows, we give a quantity easy to compute to estimate the distance between one subspace
and a particular subspace.

Given p < ¢, for any matrix X € R**P with nonsingular X(1:p,:), Write

— -1 . -1
%’Q(X) T X(pJFl:q’:)X(l:p,:)’ %(X) T X(‘I+1:ds:)X(1:p,:)7

which are submatrices of .7 (X) := J,(X).

Lemma 2.1. We have for ui = 2,F

tan (X, m )

< N7 (X) - (2.1)

ui
In particular, if p = q, then the inequality “<” can be replaced by “=

Proof. For the readability, we use .7, ¢, 7, 74 only and drop “(X)”. Then cosf; for j =1,...,p are the
singular values of

T
I
—1/2 p 1 —-1/2
[, + 7,' 7] Ipa {Oq} =L+ 7,7, (I Tpd] -
&z
Thus, tan? §; = sec?0; — 1 for j = 1,...,p are the eigenvalues of

_ _ -1
([1p+9Tﬁ] Pl 2 T L+ 5T 7)) -
=L+ 77" L+ 77, r[ +9T9]“2 1
=L+ 7 7)) ([ + 75T [+ 77 7] = 1) [+ 7,77,
[

=L+ 7 7)) L+ 7% 7. 7E 7,1, + 757, 7,

Pq pq
and also the eigenvalues of
LR AT I AT At i
Let 71 > --- > 7, be the eigenvalues of Z]Tﬂq. By the Ostrowski theorem [12, Theorem 4.5.9],
tan? 0; <1y,
which implies (2.1). O

Note that [19, Lemma 2.1] is a special case of Lemma 2.1.



2.2 Orlicz Norms

We are concerned with random variables/vectors that have a sub-Gaussian distribution. To that end, we
first introduce the Orlicz 9),-norm of a random variable/vector. More details can be found in [30].

Definition 2.2. The Orlicz ¢ ,-norm of a random variable X € R is defined as

e

and the Orlicz 1 -norm of a random vector X € R? is defined as

‘ X
¢

1 X | = inf{{ >0: E{exp (

1X [l o= sup [[v" Xy,

lv]l2=1
We say that random variable/vector X follows a sub-Gaussian distribution if || X||y, < co.

By the definition, we conclude that any bounded random variable/vector follows a sub-Gaussian dis-
tribution.
The basic properties of sub-Gaussian distributions are listed in Lemma 2.2.

Lemma 2.2 ([31, (5.10)—(5.12)]). Every sub-Gaussian random variable X € R with | X||y, = ¢ satisfies:
1. P{|X]| >t} <exp(l — ep=2t2) fort > 0;
2. B{|X P} < ¢PpP/2 forp > 1;
3. if E{X} =0, then E{exp(tX)} < exp(C*t?) fort € R,
where C > 0,c¢ > 0 are absolute constants.
Moreover, if || X ||y, < oo, then X follows a sub-ezponential distribution. Our analysis below can be

easily generalized to sub-exponential random vectors, and will not be discussed.

2.3 Detailed Algorithm and Assumptions

Here we write down the detailed algorithm in Algorithm 2.1.

Algorithm 2.1 Oja’s Algorithm for Online PCA
1: Choose U®) € R¥? with (U(®)TU©) = I, and use a regime to choose the learning rate n,, = p,n > 0.

2: for n =1,2,... until convergence do

3. Take an X’s sample X (");

4. zm) — (U(nfl))Tx(n);

5 U = k-1 L N X (M (Z()T,

6 Find an orthonormal basis of the subspace spanned by U () namely compute a column orthonormal
matrix U = g g,

7: end for

The learning rate of the n-th iteration is 7, = pp1n,. Without loss of generality, we may assume
0<p, <Ll

The decomposition can be chosen as QR decomposition [241] or polar decomposition [1], or any other
decomposition easy to compute. However, S is always nonsingular. In fact, noticing that Uvm =
[T 47, XX ENTT =1 "since T+ 1,41 X ™ (X™)T is positive definite and thus nonsingular, and U
is column orthonormal, we know U™ has full column rank, which implies the fact.

Any statement we will make holds almost surely.

To prepare our convergence analysis, we make a few assumptions.



Assumption 2.1. X = [X, X5,...,X 4T € R? is a random vector.
(A-1) E{X} =0, and X := E{XXT} has the spectral decomposition (1.2) satisfying A, > A\pt1;

(A-2) ¥ =272 X ]|y, < oo.

The principal subspace U, is uniquely determined under Item A-1 of Assumption 2.1. On the other
hand, Item A-2 of Assumption 2.1 ensures that all 1-dimensional marginals of X have sub-Gaussian tails,
or equivalently, X follows a sub-Gaussian distribution.

Using the substitutions

X APX XM e ATEX0 700 ATV2Z00 e N,

the iterations produced by Algorithm 2.1 and the rest terms U (") U™ keep the same. Hence any conver-
gence result has to keep this homogeneous property.
Next we make a simplification on the problem.

Recall the spectral decomposition X = UAUT. Instead of the random vector X, we equivalently
consider

Y=[Y.,Y,... VT =U0"X.

Accordingly, perform the same orthogonal transformation on all involved quantities:

ym =gtxm vy gty v, =uTu, = [gp] :
Firstly, because

(V(n—1)>Ty(n) — (U(n—l))TX(n)’ (y(n))Ty(") _ (X(n))Tx(n),
the equivalent version of Algorithm 2.1 is obtained by symbolically replacing all letters X, U by Y, V
while keeping their respective superscripts. If the algorithm converges, it is expected that span(V (™) —
span(V,). Secondly, noting
”E_l/QX”?/)z = ||UA_1/2UTX||¢2 = HA_1/2Y||1/)27

we can restate Assumption 2.1 equivalently as

(A-1) E{Y} = o,E{YYT} = A =diag(Ar,..., Ag) with Ay > - > Ay > A1 > - > Mgy

(A-2) Y = | A72Y |y, < o0
Thirdly, all canonical angles between two subspaces are invariant under the orthogonal transformation.

Therefore the results given below holds for not only Y but also X.
If the algorithm converges, it is expected that

v - U, :ZU[%] = [ur, ug, ..., up) & v Ly, = ﬁﬂ

in the sense that
[sin@U™ Ul —0 < |sin @(V ™ V) |[ui — 0
as m — 00.
By Lemma 2.1, it is sufficient enough to prove |7 (V(™)|,; — 0. Our results are based on this point.
To simplify the notations in our proofs, we introduce new notations for two particular submatrices of
any vector Y € R?, tall matrix V' € R?*P and diagonal matrix A € R4*4:

1 P P
y=1|Y| » v=|Y| » A= |4 p
Y| dp V| d-p A | d-p

Y = Y(l:p,:)a Y = Y(erl:d,:)v V= ‘/(1:p7:)7 Y = ‘/(p+1:d7:)7

or equivalently

and -
A=diag(A,...,N\p), 4 =diag(Apt1,...,Aaq).



3 Main Results

In what follows, we will state our main results and leave their proofs to another section because of their
high complexity. The main technique to prove the results is the same as Li et al. [18] and Liang et al. [19].
The differences between the results are referred to:

e the estimations are much sharper here;

e the learning rates are changing here, rather than a fixed learning rate in [18, 19].
First we introduce some quantities.

For x > 0, define S(k) := {V € R¥*P . (V) C [ﬁ, 1]}. It can be verified that

Ves(k) & [|7(V)]z < k. (3.1)
For the sequence V(™) define
Nowt{r} :=min{n : VW ¢ S(k)}, Nin{s} :=min{n: V" e S(x)}.
Nowt{k} is the first step of the iterative process at which V(™ jumps from S(k) to outside, and Ni,{s} is
the first step of the iterative process at which V(™ jumps from outside to S(x). For > 1, define
Nep{} := max{n > 10|20y < A2 2 [y <AV = ,d} Y

Ngo{p} is the first step of the iterative process at which either |Y;™| > A!/241/2 for some i or the norm
of Z(") exceeds )\i/fpul/? For n < Ny {p}, we have ||[Y (|| < Aifdulm :

For convenience, we will set T(") = 7(V()) and let F,, = o{Y M) ... Y™} be the g-algebra filtration,
i.e., the information known by step n.

3.1 Increments of One Iteration

In each iteration,
yntl) — (f/(n) + nn+1}7(”+1)(Z(”+1))T)S("), Y(7L+1) — (Y(") + nnHY(”H)(Z("+1))T)S(”),

where S (") is nonsingular as is stated above. According to the Sherman-Morrison formula, we get v 4
nn+1Y("+1)(Z("+1))T or V(1) g nonsingular, if and only if 1 + nnﬂgnﬂY("H) # 0 where &,11 :=
(Z+ TV ) =1y (D) and

yty=1 _ (g(n))-1 (I _ Tt iy g (nt) T) vl
( ) ( ) 1+ mng1ns1 ( )
Hence
T(n+1) _ Y(n+1)(‘7(n+1))71
— (V) 4y YD (2D T g (g(m)y =1 (I _ ’M“V—ly(nﬂ)(z(nﬂ))T) -1
1+ 77n+1§n+1

= (V0 Y OO (1 By gy g
L+ Nns1€nt1

Clearly the choice of S does not matter on the convergence of T . In other words, the strategy of
choosing the normalization matrices does not matter much on the convergence rate.
In the following, we need to estimate T("+1) — 7™ and the results are listed in Lemma 3.1.

Lemma 3.1. Suppose
2XmpVEZ + 1 < 1. (3.2)
Let 7= |T™|la. If n < Ngp{u} A Nout{r}, then the following statements hold.



1. T and T are well-defined.
2. | T+ — Ty < 2umpy 1 [V 2 M1 mp (14 T2) + 1 A1pT], where vy = 1V v,v = ’\"%i:d
3. Define Ry by E{T"+) — T |} = 51 (AT™ — T A) + RS, Then

IR 12 < 20 Mgy (1 +72)12.

4. Let H, = var, (Y(”“)(Y(”H))T) and define RE,”) by var, (T(”“) — 7™ |IFn) = 77n+1H + R(n)
Then

(a) Ho < 169*H, where H = Mis)(a—p)yxp With Nij = ApyiXj fori=1,....d—p, j=1,...,p;
n _ 1
(b) ||R( )||2 < 2V1V1/2/\1~pﬂ nn_HT(l + {1 4+ v 1/2} T4+712 4 57'3)
2
+8UAT iy (1 + T2)1/2 [1 + 7%+ 1/11/_1/27'}

3.2 Whole Iteration Process with a Good Initial Guess
Define D +1) = pln+1) _ E{T(”“) | F,}. It can be seen that

T _ E{T(”) Fn} —0, E{D<”+1> ‘ Fn} —0,

E{D(”+1) o D) ’ F"} = var, (T("+1) — 7™ | ]Fn) .

By Item 3 of Lemma 3.1, we have

T+ — pntd) 4 pn) E{T("“) _ )

DY 4 T g (AT — T ) 4 R
= Lo T + DOFY 4 Rg),

where L, 41: T — T + 1,1 AT — 0,41 T A is a bounded linear operator. It can be verified that £, 1T =
L,,+10T, the Hadamard product of L,, and T', where L, 11 = [)\E;H)](d p)xp With )\(nﬂ) = 14141 (Apti—
A;). Clearly L, Ly, = Lyn,L,, for any ny,ny. Moreover, it can be shown that' ||£n+1||ui = p(Lny1) =
1—nny17y, where || Lop1|lui = sup”T”uileEnHTHui is an operator norm induced by the matrix norm ||-||y;.
Recursively,

T =, . £, 7O 4+ D) 4 Zﬁ Lo D@ + R(n Dy Zﬁ L. RS_1)~

s=1 s=1

b
Let us introduce some notation here. Define H() =1 or Z, the identical mapping, if a > b. Write
pP=a

F = an: la = H<1—m>, Fiw = Zns H el =" ni T (= ne).
r=n’ s=n' r=s+1 s=n' r=s+1

Suppose F,(D{fj) < Cp. vy it for any n, where Cp ; is an absolute constant, which can be easily
examined in any specific strategy to choose 7,

1Here we drop the superscript “("+1)” on Aij and the subscript “p11” on n, L. Since AM(L) ={X\;j:i=1,...,d—p, j =
1,...,p}, the spectral radius p(L) = 1 — n4+1(Ap — Ap41). Thus for any T,
I£TNwi = 1T(I = nA) + 04T |lwi < I = nAll2l|T|lui + [In4All2]Tllwi = (1 = 122p + 2Ap+ D) Tlwi = p(OIT |luis

which means ||£||wi < p(£). This ensures ||£|lw = p(£).



For s > 0 and 7,y < 1, define
NS("/) = min{n eN:FMM < (n*w)s},

(n' NC)

n N _
which implies F < (mey)® < F*( N Y Define

T =L, £,T® + D™ + Z Ly Lo D® + RUTY 4 Z Ly Lo RSV

s=1 s=1
= <ﬁ &) T +§n:< ﬁ £T> D) +zn:< ﬁ £T> RG
r=1 = r=s+1 = r=s+1

=T 41 1.
Define events

. 1
M, (K, p) = {IIT(”) — Tl < Fu+n )u3/2n1/271/2}

Ta(k) = {IT" 2 < £}, Qul) = {n < Nop{iu}},

where v = SCD,2,1>\1)\1~p'772

It can be shown that under some conditions, if the initial V() is not too bad, then with high probability
|7 |5 will never become too large and eventually become as small as expected. The formal statement
is given in Lemma 3.2.

Lemma 3.2. Let Ny := N(1

(in e—1n x)/ In(n.7) Suppose that (3.2), and the following hold,

v(1+ &) PPy < (3.3a)
I{pi/Z <e forn> Nj. (3.3b)

If VO € S(k/2), then for any n > Ny,
P{(H, NH,)} < 2ndexp(—CyAiv 'y 2pn) + nled + p+ 1) exp (—Cypp™ " (L A~ ),

where H,, := ﬂ T, (k),H, := {Nin{e} < N1}

r<n

3.3 Estimation with a Random Initial Guess

In order to compare our result with the previous results, we will estimate ||tan O (span(U™),U,)|| = | ™.
First we give the estimation with a good initial guess in Lemma 3.3.

Lemma 3.3. Suppose that (3.2) and (3.3) hold, and let Ny = Ninc/imm.v)- If V(© ¢ S(1), then there
exists a high-probability event H with P{H} > 1 — 6y, such that for any n > Nl,

E{TWOT(") H}<H£2T(O)OT(O)+QZn H L2H, + R, (3.4)

s=1 r=s+1

2

— with Cr an absolute constant, and Ho < 169*H is as in Item 4(a) of Lemma 3.1.

where ||R|2 = Cr——
hl T
Note that in (3.4) the inequality holds for each entry in the matrices. In other words, the inequality in
(3.4) represents (d — p) X p scalar inequalities. Hence, in this sense, we can say that the iteration process
is decoupled. This observation is very useful for the gap-free consideration.
To deal with a random initial guess, a theorem by Huang et al. [15] is adopted.

10



Lemma 3.4 ([15, Theorem 2.4]). Ifsupprp_;, [|[PT(XXT=A)||r < B, and Vo has i.i.d. standard Gaussian
entries, writing

pB%? dB., In(d/§

22( ) 7771:770:053 (/)7
762y oy YN,

then with probability at least 1 — &, | TWN)||y < 1.

N, =C,

The whole iteration process can be split into two parts: first the iteration goes from the initial guess
into S(1), whose probability is estimated by Lemma 3.4; then the iteration goes from an approximation in
S(1) to any precision we would like, whose probability is estimated by Lemma 3.3. Note that Lemma 3.4
is only valid for a bounded distribution. Thus we have to use it on the event Q,, () whose probability is
bounded in Lemma 4.1.

C(,)ln(d/é)7 n<N,
Theorem 3.1. If U € R*P has i.i.d standard Gaussian entries, and 1, = 17N0 for
C,—, n > N,
n

some Cy > 1, then there exists a high-probability event H.. with P{H.} > 11—, such that for any n > N,,

64C,1h*¢(A) n — N, pN2
E (n) ; 2 ’H* < n o o
{ltno@), U} | B} < 2220 A
64C, (A
z7n¢ i ), asn — 0o,
(1-0)n
where C' is an absolute constant, and v is X ’s Orlicz ¥y norm. Here
14
z:p zp: )\Z7+’L>\ (d — p))‘p)\p+1 ) (35)
/\:v-i-z - )‘ (/\p - >‘p+1)2

7,131

Proof. The probability of the whole process is guaranteed by Lemmas 3.3, 3.4 and 4.1. In the following,
we will show the upper bound.
Introduce sum(A) for the sum of all the entries of A. In particular, sum(A o A) = ||A||Z. Write

ngég) (M) =30 n?Il— 1 (1 = n)% By Lemma 3.3 with ¢ = &=, = Sn’ with high probability we
have

B{ITO R B < (PN T2 4 25um(G o Ho) + sum(R).

. No+1,nm
where G = [’Yij](d—p)Xp with Yij = Féﬂ;_l g ()\J - Ap+i)~ Then,

Lo\ n=N,
F}EN"_‘_l’n) S (1 . Cn N, + + 7l> S <1 _ Cn lnn — ln No> < e—C,,](lnn—lnNo) — (%)0717
n

— N, n— N, n
and
n—N,
2 (n—vi)? - (n—s+2-v;)(n—s)* - NJ
F(No—i-l,n)()\ Y ): ~n s=1
D,2,2 J pti v n?(n—1)%..- N2
where Vij = Cﬁ()‘j — /\p_H‘)/’)/
n—N,
2 (n—[vi])? - (n—s+2—v;])*(n—s)* N
< n _s=1
T n*(n—1)%--- N3
I R e ) ) LIRS
v*n? (=Dl n—s+1— |v;])!
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CQ n—N, n—s+1 2(lvij]—1)
vnz 2 ( )

s=1
_ C% n2lviil =1 _ Nglwﬂ—l n2lviil=2 _ NfL””J_Q O(n2lvisl—3
e oa] =1 + 5 +O(n )
2
C’n(n - No)

N, .
< W (1 + C’n) here C’ is an absolute constant

2C2(n — N, .
< 20y (n — No) (1+C’N"> by 2[v;] 1> 2

’anzVij

- (1rel).

Thus,

N2 4 4d=p D N\ — N N, N2
E{||T(”)||%; H*}Sp o 6 Oﬁ) ZZ)\APHAJ n o (1+Clno> C p

+ Op—ir e
n? = i Aj n? n2In(nd/d)
n— N, pN? Cr
= 64C, ) p(A > (2 . O
W e(A) n? + n? ( + In(nd/d)

3.4 Lower Bound and Gap-free Feature
Vu and Lei [32] gives a minimax lower bound for the classical PCA, namely (1.3). First we point out the
factor (/\Al)‘p“ 7z in the lower bound can be replaced by oL pAp“ . The key to the point is a lemma there,

which is presented in Lemma 3.5

Lemma 3.5 ([32, Lemma A.2]). Let X, Xo € R™? are column orthonormal matrices, 3 > 0, and
Y =1I,+B8X; X} fori=1,2.

If P; are the n-fold product of the N (0, X;) probability measure, then the Kullback-Leibler (KL) divergence
18

2
n
D(Py,Py) = —— ||sin O(X1, Xo)| 3
(P, Ps) 1+5” (X1, Xo) [k
Then they use a substitution (/\:3\7’;:1)2 = lg—f to obtain the lower bound. However, as a matter of
fact, in their construction on the covariance matrix Y, it holds that Ay = --- = X,, so when they proved

the former bound, actually they were proving the latter bound.
Then we show the construction is also valid for the gap-free consideration.

Lemma 3.6. Let X, X, € R¥*P X3 € R~ gre column orthonormal matrices satisfying X]’_TX3 =
X3 X3=0,9>p,8>0,8>0, and

I =L+ BX XT 4+ BXa X, Xy =1, + BXo X + X3 Xy

If P; are the n-fold product of the N (0, X;) probability measure, then the Kullback-Leibler (KL) divergence
18

2
n .
D(Pq,Py) = . +ﬁ||s1n9(X1, [Xg X3])H%
Proof. The proof is similar as that of [32, Lemma A.2]. The key is to ensure

2

1+ 5

trace (251(21 - 22)) = |lsin ©(X7, [Xg Xg})”%

12



In fact,

trace (25 (X — X))
= trace ([, + BX2X3 + BX3X5 ] 'B(X1X] — X2X7))

1
= Btrace ({W(XQXQT + X3 X5 )+ I, — Xo Xy — X3X5 | (X0 XT — Xo X3 ))

- lf—ﬁ trace ([(1 4 B)I, — B(X2 Xy + X3X3)] (X1 XT — X2X7))

= 15—25 trace ([I, — XoXT — X3X3T} (X1 XT — Xo X)) +

2 e ([~ XX~ X, XF| XiXE) 0

= P sme(x., X X))l -
1+

trace(X; XT — Xo X T
1175 (X1X, 2X5)

Following Lemma 3.6, we can use a substitution ()\)‘z’}\% = 1;'—25 to obtain the lower bound under
P pPTq

the gap-free consideration, namely Theorem 3.2.

Theorem 3.2 (Gap-free version of [32, Theorem 3.1]). Let Po(02,d) be the set of all d-dimensional sub-

Gaussian distributions for which the eigenvalues of the covariance matriz satisfy ()\’\ﬁ)‘)\% < o2. Then
P q

forl<p<gq<n,

ApAg+1 p(d —q)

>c ,
T (A = Ag1)? n

o2
inf sup {||sm@(l/{*,u NI } > ep(d —q)—
dim U, =q X€Py(02,d) n

(3.6)

where ¢ > 0 is an absolute constant.

On the other hand, the Oja’s method can be easily proved to be gap-free, as is shown in Theorem 3.3,
which exactly matches the lower bound in Theorem 3.2.

Theorem 3.3. If U(Y) € R¥¥Y has i.i.d standard Gaussian entries, and 0, are chosen as in Theorem 3.1
with v replaced by 7, then Theorem 3.1 still holds, except that p(A) in (3.5) can be replaced by

d q p ~
ZZ Ag+idj < p(d — Q)ip()‘p - 7).
lel)\q+i—Aj 72
Proof. The proof is nearly the same as that of Theorem 3.1 except the bound.
Note that the iteration process produced by the Oja’s method is decoupled, as is argued after Lemma 3.3.
Now what we need to estimate is

B{IZ,(U™)3; B} < (P2, D)2 4 320 sum(Gy o Hy) + sum(R)
where Gy = [Yijl(a—q)xps Hg = [0ij](a—q)xp: Rq € R{@-0xP
2

d—q p
pN2 640 w4 )‘p+i)\j n—No ,NO N,
<= 1+C'— Cr——>—.
~ n? ;jzl Apti —Aj  n? + n + B2 In(nd/9)

4 Proofs

4.1 Proof of Lemma 3.1

For readability, we will drop the superscript “("” and use the superscript “*” to replace “("t1)” for
V,T, Rg, drop the superscript “("t1)” on ¥, Z and the subscript “n+1” on n, and drop the conditional
sign “|F,,” in the computation of E{-}, var(-), cov(-) with the understanding that they are conditional with
respect to IF,,. Finally, for any expression or variable *, we define A% := ** — x,

13



Consider Ttem 1. Since n < Now{k}, we have V € S(x) and 7 = ||T||z < k. Thus, |V " |2 < VK2 +1
and T = VV ! is well-defined. We have V™ = (V + nY ZT)S, where S is nonsingular as is stated above.
According to the Sherman-Morrison formula, we get V + nYZT or V7' is nonsingular, if and only if
14+ n€Y # 0 where € := ZTV ™Y, and

vyl g-1(7__ " _y-iyzT\y-L
V) S < 1_“751/ >V

Since n < Ngp{p}, we have || Z|2 < A}fpul/?’ 1Y |l2 < )\}/szul/z. By (3.2), we find

. - 1
27V < N2V alF e < Mg/ 1< 5

Hence T = V+ (V)= is well-defined. This proves Item 1.
For Item 2, using the Sherman-Morrison-Woodbury formula, we get

AT =y HVHt—yv!

=(V+n9yZ") (I — 1ﬁngv—lsz) vioyvt

2
_ T N 7—1v--,T 1 Tyr—15- T \ 17—1
—(nYZ 1+775YV YZ 1+7IfYZ V=YZ )V
_ v n§ Ty7—1

77<Y T 1+77§Y)ZV

n o\ vTi77—1
= Y-TY)Y'VV

1+77£(" )

n
14+n¢

LYY'T,,

where T} = [—T I] and T, = [ZI’

] . Note that

YYD =YY —1vY™r —1vyYT +YYTT. (4.1)
For any positive semi-definite matrices A, As and a matrix X, by [17]

[A1 X — X As|l2 < max{[|As]2, [| Az[|2}| X2

Thus,
ITY YT, |l < A3 g M n(1 4 72) + (M V Apina)i
= ul P (14+7°) + vidinyT),
and then

AT |2 < 2M77[V1/2)\1~p(1 +7%) + V1A 1~pT)-
Consider Item 3. Clearly T}V =0 and V =T, V, V™! = VIT, VVTT, = T,.. Write

AT =Ti(nYY™ + Rp)T,,

where oo
né T nZ vy T
Ry =— yyT=—p—"2 __— _yyT,
T= T N nzvy
and
| TR T ll2 < 22 1mpit®n? (1 4+ 7H)Y2 [ 2N (1 4+ 72) + 11 A7) (4.2)

14



In (4.1),
E{yY"} =0, E{TYY"} =TE{YY"}=T4,
E{TYY'T} =TE{YY"}T =0, E{YY'T}=E{YY"}T = AT.

Thus, E{AT} = n(AT — TA) + Rg, where Rg = E{T;R7T,}. Therefore,

2Ty
IRz = HE{Tz [ ”YYT] TT}

N +nZTV Y 0
2TV 1Y
< max —”W’|’E{EYYTTT}\|2

< 2772)\&2,,/11/2(1 + T2)1/2)\1{V2pu1/2)\17
= 22 AT (1 + )1/2,
Now we turn to Item 4. We have
var, (AT) = varo (T;(nYY™ + Rp)T,) = n? varo (Y'Y ' T,) + 2nRo 1 + Ro 2, (4.4)
where R, 1 = cov, (TIYYTT,,,TZRTTT), and R 2 = varo(T;RrT;). By (4.1),
var, (TZYYTTT) = var, (YYT) + Ro0, (4.5)
where
Rop =vare (TYYTT) — 2cove (YY T, TYYTT) + var, (TYY" —YY'T)
—2covo (YY', TYY" —YY™T) + 2covo (TYY T, TYY" —YY'T).
Examine (4.4) and (4.5) together to get H, = var, (YYT) and RS,") =n?Ro0 + 2nRos1 + Ro 2. We note
Yj =elY = efAV2A7 2y = NPT A1 %y,
el var, (YYT) ej = var(el YY T e;) = var(V,,Y;) = E{YPZHYJ-Z}.
By Item 2 of Lemma 2.2,
E{Y}} =\ E{(e;fA_l/zY)4} < 16X2[|eT A2V, < 16A2) A2V ||, = 16A20%,

Therefore
el varo (YY) e; < [E{V,} .} E{Y }]Y/2 < 16X, 000",

ie., H, = var, (YYT) < 16¢*H. This proves Item 4(a). To show Item 4(b), first we bound the entrywise
variance and covariance. For any matrices Ay, As, by Schur’s inequality (which was generalized to all
unitarily invariant norm in [13, Theorem 3.1]),

[A1 0 Azl < [|A1]l2]|Az]l2, (4.6)
we have

[cove(Ar, A)|[2 = [[E{A1 0 A2} — E{A1} 0 E{A2}|2
< E{[[A1 0 Azl2} + [[E{A1} o E{A2}]2
< E{[[A1ll2(lAzll2} + [[E{A1}2[[E{A2} 2,
[vars (A1)l < E{[|A1[3} + [IB{A}]]3-

Apply (4.7) to Ro1 and R, 2 with (4.2) to get

1Roll2 < N TYY T TiRE T |12 + | THAT 2] R 12
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<220t (1 4+ ) Y2 W20 (14 72) 4 i A7) + 202N 72 (1 + 72)1/2
2
< 41//\1Np,u n*(1+ 7'2)1/2 [1 +72 4+ 1/11/*1/27'} ,
[Ro2ll2 < 2(| T R T ||2)?
< 8)\1Npu 7 (1 + 72)[V1/2/\1Np(1 + 72) + Vl/\leT]2

2
< 81/)\1~p,u (1 +7%) [1 + 72+ 1/11/_1/27]
For R, g, by (4.3), we have

lvaro (TYY'T) |2 < E{IYY T3 }IT]l2,
leove (YYT, TYYTT)|l2 < E{|IYY V(3 }1T13,
leove (YY T, TYYT —YYTT) |2 <E{IYY"|2||TYY" =YY T2},
cove (TYYTT, TYY" —YYTT)||s <E{||YY " |||TYY " —YYTT|}||T)3,
lvare (TYYT = YYTT)|ls <E{|TYYT = YYTT|3} + |TA - AT|3.
Since
[YY |l = (YTY) 2 TY)Y2 <o Ph o,
we have
| Ro0ll2 < vA Np,u27'4 + 2V)\1~pM 24 ylzx\?Np,uQTz +A\272
+ 2V1/ )\1~pl/1>\1~pﬂ T+ 21/1/2)\1Np1/1>\1~p[1,27'3

1
< 21/11/1/2/\2Np,u27'(1 + [1 + 1/11/71/2} T4+ 57'3) (4.9)
Finally collecting (4.8) and (4.9) yields the desired bound on RW = 1*Ro o+ 2nRo 1 + Ro .

4.2 Two probability estimations

Lemma 4.1. For anyn > 1,
P{Ngp{p} >n} > 1 —mn(ed+p+1)exp (—Cyto™ (LAY~ )n) ,
where Cy s an absolute constant.

Proof. Since

(Nl <nd < U ({1270 = X502 o U {lefy@r=a2e2)

n<n 1<i<d
we know
P{Ng{u} <n} < 3 [ PLIZO e 2 A p 2+ 30 PLlefy @ = A2 2) ) (a10)
n<n 1<i<d
First,

A2e)T
Ty (n) >)\1/2 1/2 P ( U412y ()] >
Pty } =P,

)\1/2 1/2
T 1A 2] 2
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vai Aipt

T
e; Ae;

<exp|1l- | l(‘//llll//z;)‘i Ay, by Item 1 of Lemma 2.2
< exp <1 - A_ngfiéfmwi) =exp (1 - Cyt™"p),
where Cy ;,7 =1,...,d are absolute constants. Next, we claim
PUIZON 2 N2} < 0+ D) exp (~Coarnv2n). (4.11)

Together, (4.10) — (4.11) yield

P{Ngp{u} <n} = Y exp(l—Cyip ')+ > (p+1)exp (~Cypas1tp >p)

n<n 1<i<d n<n

<nfed+p+1)exp (—Cyp (LAY ),

where Cy = minj<;<qy1 Cy ;. Finally, use P{Ny{p} > n} =1 - P{Ng{u} < n} to complete the proof.
It remains to prove the claim (4.11). To avoid the cluttered superscripts, we drop the superscript

«.(n=1)7» on V. and drop the superscript “("” on Y, Z. Consider
Vk1
d d
0 z vty :
k=1 Ukp k=1

Vg1 Vkp 0
where v;; is the (7, j)-entry of V. By the matrix version of master tail bound [29, Theorem 3.6], for any
£>0,

d
P{IZl2 2 €} = P{Amax(W) 2 €} < jnf " trace exp (Z lnE{exprkwk)}) .

Y is sub-Gaussian and E{Y'} = 0, and so is Yj. Moreover,

e;cr/ll/2

—_— < AVHA-12y — A2y,
”eEAUQHZ = N\ ” ”wz k 77[}

2

¥illos = llex A2

Al/QY‘

Also, by Item 3 of Lemma 2.2,
E{exp(&WkYk)} < exp(C¢7d+k92Wk o WkHYkHZ&) < eXp(CwkaQAdeWk o Wk),

where ¢y, k = 1,...,d are absolute constants. Therefore, writing [4Cy a41]7" = maxi<p<gcypr and
Wy = 22:1 AWy, o Wy, with the spectral decomposition Wy, = Vw/L/,VwT , we have

d d
trace exp <Z In E{eXp(QYka)}> < trace exp (Z Cw’k,QQ)\k’(/PWk ) Wk>

k=1 k=1
< trace exp([4Cy 411] " 10%* W)
= trace exp([4Cy, q41] " 0*°Vy Ay Vy))
= trace (Vw eXp([4C¢7d+1]71921,/}2Aw)V$)
= traceexp([4Cy ay1] 10%9%Ay)
<({+1) exp([4C¢’d+1]7192¢2>\max(/1¢))
=(p+1) eXp([4Cw,d+1]_192¢2AmaX(W¢))-
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Note that

- d -
0 0 > vk
= 0 e 0 eTVTAV ey
W ’ _ : s
v 0 = 0 > vk, 0 e 0 eTVTAVe,
k=1 eiVIAVe, - e VTAVe, 0
d d
STMvE YAk, 0
k=1 k=1 _
and thus
et VT AV e, »
Amax(Wy) = : < erVTAVe, = trace(VTAV)
egVTAVep )
p
T _
< max . trace(V - AV) = ,CZ Alep-

In summary, we have

P{IZll2 2 €} < (p+1) juf exp(UCya11] 0% N1y — 06)

Cy d+1§2>
=(p+1)e —_ ],
(p+1) Xp< P,

Substituting & = /\}/Ni)u we have the claim (4.11). O
Lemma 4.2. Suppose that (3.2) holds. If n — 1 < Nyp{p} A Nowt{r} and T is well-defined, then
P{M,,(r, )} > 1 = 2dexp(—=CaAiv ™'y p),

012:),2,1
8Cp,2,2"

where Cpp =

Proof. For any n—1 < Ngp{u} A Now{x}, V(»=Y € S(x) and thus |7~y < & by (3.1). Therefore, by
Item 2 of Lemma 3.1, we have

1D, = HT(n) _ pn=1) _ E{T(") _ p(n-1) ‘ ]F"}H
2
<7 = 70D+ B{ITC) ~ T |, }
< 4M77n[V1/2)\1~p(1 +7%) + V1A1~pT].

For any n — 1 < Ngp{u} A Nowr{x},

TS 2 <Z< 11 ||cr2> 1RSIz

r=s+1

Z A Mnphi(1 + 632 un? H L0 |2

r=s+1

< 20 Aiepi(1 + K2 V2FH Y

< 2Cp i MAiph(l+ K )1/21“7 7!
< 20p 21 M Amp(L + 62) /Pl 2y~ by n,y < 1.

18



Similarly,

TSVl < Z( IT 1z ||2> 1D,

s=1 \r=s+1

< Z 1/2)\1,\47 2) + Vl)\lwp"{]/’cns H H‘CTH?

r=s+1
< AP 2A (14 K2) + vid okl )
<A4CD 1[N (14 K2) + v ]y~

Also, [T ||, < FE™TO)|y < | TO)]|,. For fixed n > 0 and 5, > 0,

tA(Nout{k}—1) n

My = ﬁ £, 7O MM = ﬁ LT+ N Il 0@ t=1,....n

r=1 r=1 s=1 r=s+1

forms a martingale with respect to [F;, because

B{IM} < IT s + 17572 < +oo,

and B .
efarph -0 |2 =f TT 200 |}~ 1T 2n{ot[e) -0
r=t+2 r=t+2
Use the matrix version of Azuma’s inequality [29, Section 7.2] to get, for any a > 0,
P{HM(") ~ M|y > a} < 2dex (——2)
n o llz2<Z > Plm5 30
where

nA(Nout{r}—1) 2

EES

s=1

r=s+1
nA(Nout{r}—1)

< Z |:4[ 1/2)\1~p(1 + K )+ Vl)\1~p/€ /“75:| H ||‘C ||2

s=1 r=s+1
<32 [u)\pr(l + ,%2)2 + v )\pr ] QFSQn%
<32Cpaa [VAT (14 &%) + vPAT k%] WPy~

2

1
Thus, noticing Tgl) — M - Mén) for n < Nowt{r} — 1, we have

P{||T1(D”)\|2 > a} < 2dexp (- a

2
32Cp22 [ )\1~p(1 + k%)% + 2/\%~p ] H277n71> .

Choosing o = 2Cp 2.1 M Ap (1 + £2) 3/ 25/ 2y=3/2 and noticing T — T = T8 4 TG and | TSV, <
2Cp 2,1 M1 Aimp (1 + K2) /2 /2 y=3/2 e have

P, ()} = PIT®™ = T2 2 40D 2 ddap (L4 w2 /2742 |
< P{||T1(3n)\|2 > 2Cp 2 Midiep(l + K%)p /2771/27_3/2}

[2CD 2,1 M A g (1 + £2) /20 2 ~3/2]2 )

<2dexp | —
( 320D,2,2 [I/)\%Np(l + 1'62) QA%NPHQ] ,uan’y—l
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02 /\2 -2
< 2dexp <_M

8CD7272V
=2d eXp(—CMA%V71’772/L),

2
C’D,2,1 D

where C'yy = SC .

4.3 Proof of Lemma 3.2

First consider the case that (3. ) holds. We know T, (k) = {|T |2 < &}. If n > Nou{r}, then there
exists some 7 < n, such that V") ¢ S(k), i.e., | T ||2 > K by (3.1). Thus,

2 Nowlsh) € J{ITOl > w} < J T(s)

r<n r<n
On the other hand, for V() € S(x/2), M,,.(k, ) C T,(k) because
1702 < |70 = 70|y + FEV YT

1
< 5@(1 + RO P22 11 k)2 < k.

Therefore,
() My (1) © () To) € {m < Nowe e} = 1,
r<n r<n
and so
N M, (k) = [ My(5) C () Tr(k) =: Hy. (4.12)
r<nA(Nout{k}—1) r<n r<n

For r > Ny := N

((lln)a—ln K)/ In(n.y) and V(O) € S(K/Q)? MT(H,M) C Tr(€) because

Tz < |70 = Tl + FE Ty

1 ne—nkKk n(?
< 51}(1 k232l 12 o (g y)(ne—lnm)/ () g
1
< 2,@7{/2 te/2 by v(1 + k2)3/2n}/241/2 <
<é by kpr/? <e.
Therefore,
MT(H) C MNl (H) - {Nin{g} < Nl} = H
r<n
Since
ﬂ M (r) N H C ﬂ M, (k) C H,,
r<nA(Nin{e}-1) r<n
we have

N M, (k) C H,.
r<nA(Nin{e}—1)

Together with (4.12),
N M, (k) C H, N H,.
r<nA(Nin{e}—D)A(Nout{r}—1)

By Lemma 4.2, we get

P U M., (1)° N Qn ()

r<nA(Nin{e}—DA(Nout{r}—1)
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< (A (Nin{e} — 1) A (Nout{x} — 1)) Qdexp(—CM'y_2/\%Npu2)
= 2ndexp(—CM7_2)\%~pu2).

Thus,

<P U M, (£)° N Qn(p) ¢+ P{Qu(p)}

r<nA(Nin{e}=1)A(Nous{x}—1)
< 2ndexp(—CyA\jv 'y 2p) +nled+ p+ 1) exp (—Cyty " (1 AP Hp),

where P{Q,,(u)°} is given by Lemma 4.1.

4.4 Proof of Lemma 3.3

Choose _
H=H,NQu= (] T2 () Te(26)NQu(n).

T‘E[l lel] T‘E[Nl,’rl]

By Lemma 3.2 with k =2, u = (wgf \Y Vﬂ ) In (e+531)nd,

P{H} < 2ndexp(—CpyAiv 'y 2p) + nled + p+ 1) exp (—Cypp " (I A~ ) < 61

In the following, we will work on the expectation.
Note that

Ho= () T@n (] Te)c () {ir_ D" =D}

rel[l,N;—1] r€[Ni,n] re(l,n]
we have for n > Ny,

TG . = (H ﬁr) T, + Z ( II ¢ ) D®1y, (9)ng, + Z ( 11 RS_1)> 1g,
r=1

r=s+l s=1 \r=s+1
=T 4 T 4 T,
Then,
E{T(n) oT™: H, N Qn}
= E{ (n) o T(n) ]-Han" }
=B{T" o TV} +2B{TI" o TV} +2B{T" o T} + B{T{" 0 T }
+ E{T(") o T(”)} + QE{T( n) T(n)}
< E{ﬁn) o i(n)} n 2E{i§n) . T[()n)} i E{ﬂn) . f}(%n)} n 2E{f](%n) . T}(%n)} N 2E{f§”) . T,g”)}.

In the following, we estimate each summand above for n € [Nz, K].

L B{T o T} = (Hﬁ)
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E{ﬁgn) ofgl)} = (ﬁ £T> i ( ﬁ £T> TO o E{D(S)lTkl@)lQ"} = 0, because T;_1(2) C

r=1 s=1
Fs_1 and so

Ts—1(2)

)
571} ‘ Ts—l@)} =0.

E{D(S)lﬂrs_l@)l@n} = P{Ts-1(2)} E{D(s)l@n

= P{T,_1(2)} E{E{D(S)lQn

s=1 r=s+1

. E{if”) oiﬁg”)} - (ﬁ £r> f:( ﬁ £T> 7O 6 E{ng*ﬁ@n}. Recall (4.6). By Item 3 of
r=1

Lemma 3.1, we have

{0 0 T Vo < PO 20 M pun(1 + 52)1/2

< eCpaamny "MArph(1+ K520 by n > Ny
1

= gun(l+ K22 i ye by v = 8Cp a1 M Aipy >
1 _1/2

< §n2(1+n2) I/QM 1/2 on 771/271/2 by v(1 + K )M3/2771/2,yl/2

< 2, pl/2,1/2, by K = 2.
N L Y

s=1

n n
. E{T(" T(”)} ( I1 Li) E{RS”HQH ORS*%@H}. Also, by (4.6),
r=s+1
IB{ T o T4 o < FS 3220 Mmppin(1 + £2)1/2)2
S CD,4,2777L7714>\%A%~]7/U’2K’2(1 + ’%2)
Cpa2 o o 2y 2 3
— D42 1
160%72)1?1 K5(L+ K5 )p n,y

Cpas2
16C3 5,

Cpaz2
S
5Ch 21

Y+ R

w pan-

. For E{Tgﬂ o Tl()") }, we have

n n

{T(”) } Z(H £2> { Mg, 1r,. <2>OD(S)1@n1TH<2)}
s=1 \r=s+1

S (M1, ) e S (ML 1)l o)

because for s # s,
E{D(S)l@nlmfl(z) o D<S’>1QH1T5_1(2)} - E{D(S) o D1g, 1T371(2)1TS,71(2)}
= P{T,-1(2) N Ty (2} B{ D 0 D1g, | Tooa(2) Ty (2) }
= P{T,-1(2) N Ty (D} E{B{ D"1g, | Fyvyr1} o DEM | T, 1(2) N Tyr1(2)]

:O,
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and
E{D(S)l@n 1, ,(2)© D(s)lQTLlTS_l@)} = E{D(s) ° D(s/)lQn 1Ts_1(2)}
- P{TS_1(2)}E{E{D(S) oD®1g ’ Fs_l} \ TS_1(2)}
< s Ho + E{Rff)lmfl(z)}-
On the event Ts_1(2), by Aipuno(1+1,) < 1, we have
s _ 1
||R£) )11.,1(2)”2 < 2V1V1/2/\§~pu27727's—1 (1 + {1 + v 1/2} Te1 +T2 + 57'33—1>
2
+ 8N} S (1472 ,) 2 [1 +72 4+ V1V_1/2Ts—1}
2
< 8y N2t [5 4 V2] 4 8VBUAL 5+ 20 ?]
< AS8VENT _1n? + 392vEUiNY  utnd.

Thus,

z": ( ﬁ 53> E{Rgs)lm,l(z)}

s=1 \r=s+1 2

IN

3 (T 101 (150 4 a2 )

s=1 r=s+1

IN

FUua80202 2 + Fl3)392v/50203 i
< A8CD 2 2Vi A iy~ + 392V5C D 3 2 AT P2y

4801)7272

48CDas 2, 39V5C0ps2 oy 52,12 2772
= 200035, o '

2\—2, —1
VIAL T oyt + 500003, , o PR

Collecting all estimates together, we obtain

E{Tm) oT™: H, N Qn} < (f[l gf) TOoT® 42 f:nf <f[ ﬁ%) H, + R,

s=1 =s+1

where

1 2Cpa2 _ 6Cp 2,2 o _
1Bll> < —zp™ " 2pung >y e + S22 ™ puy + VA oy

" OYD22
NG 5Ch 21 25C% 51
49v5Cp 3.9 V2ATB ) B/21/2 2 7/
100063, ,, 7" o
1 Cpa2 _ 3Cpo2 o _ 49v5Cp 32 o\ 3
< 1.3 A4, 1,26 22 232 —1,.22 32 23\=3 —3/2,1/2,7/2.4
fr\/gﬂ € "‘716002&271,“ Mo€ +75OC%,271V1 1B E +716000C%72,1V1 I /M
2
< C'ulg)\fz;fl’yZEZ < CR%?
1n:;—1

in which ¢’ and Cr are absolute constants.

5 Conclusion

We have presented a convergence analysis of the Oja’s method for online/streaming PCA iteration with
sub-Gaussian samples, by combining the idea in Li et al. [18] and Liang et al. [19] and the convergence
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result from a random guess to a good guess by Huang et al. [15]. Our results show for the first time that
the Oja’ method for online PCA is optimal in the sense that with high probability the convergence rate
exactly matches the minimax information lower bound for offline PCA.

Recently [3, 11] developed a method to decide the learning rate adaptively. Though our framework
works for different strategies on choosing the learning rates, it remains an open but very worthwhile
problem to consider how fast the adaptive learning rates would accelerate the convergence, because with
a small probability to cover bad events, it is quite possible to attain a convergence rate even below the
lower bound.
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