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Volume doubling, Poincaré inequality and
Gaussian heat kernel estimate

for non-negatively curved graphs
By Paul Horn at Denver, Yong Lin at Beijing, Shuang Liu at Beijing and

Shing-Tung Yau at Cambridge, MA

Abstract. Studying the heat semigroup, we prove Li–Yau-type estimates for bounded
and positive solutions of the heat equation on graphs. These are proved under the assump-
tion of the curvature-dimension inequality CDE0.n; 0/, which can be considered as a notion of
curvature for graphs. We further show that non-negatively curved graphs (that is, graphs satis-
fying CDE0.n; 0/) also satisfy the volume doubling property. From this we prove a Gaussian
estimate for the heat kernel, along with Poincaré and Harnack inequalities. As a consequence,
we obtain that the dimension of the space of harmonic functions on graphs with polynomial
growth is finite. In the Riemannian setting, this was originally a conjecture of Yau, which was
proved in that context by Colding and Minicozzi. Under the assumption that a graph has pos-
itive curvature, we derive a Bonnet–Myers-type theorem. That is, we show the diameter of
positively curved graphs is finite and bounded above in terms of the positive curvature. This is
accomplished by proving some logarithmic Sobolev inequalities.

1. Introduction

The Li–Yau inequality is a very powerful tool for studying positive solutions to the heat
equation on manifolds. In its simplest case, it states that a positive solution u (that is, a positive
u satisfying àtu D �u) on a compact n-dimensional manifold with non-negative curvature
satisfies

(1.1)
jruj2

u2
�
àtu
u
�
n

2t
:

Beyond its utility in the study of Riemannian manifolds, variants of the Li–Yau inequality have
proven to be an important tool in non-Riemannian settings as well. Recently, in [8], the au-
thors proved a discrete version of Li–Yau inequality valid for solutions to the heat equation on
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2 Horn, Lin, Liu and Yau, Volume doubling

graphs. The discrete setting provided myriad challenges. Many of these stemmed from the lack
of a chain rule for the Laplacian in the graph setting. Overcoming this involved introducing a
new notion of curvature for graphs and exploiting crucially the fact that a chain rule formula for
the Laplacian does hold in a few isolated cases, along with a discrete version of maximum prin-
ciple. Indeed, while there are two main methods known to prove the gradient estimate (1.1) –
one being the maximum principle (as in [5,31] on manifolds and [32] on graphs), and the other
being semigroup methods ([4, 7] on manifolds) – the standard application of both techniques
relies heavily on the chain rule and the continuous nature of the underlying space.

The Li–Yau inequality has many applications in Riemannian geometry, but among the
most important of these is establishing Harnack inequalities. Indeed, inequality (1.1) can be
integrated over space-time in order to derive a Harnack inequality of the form

(1.2) u.x; s/ � C.x; y; s; t/u.y; t/;

where C.x; y; s; t/ depends only on the distance of .x; s/ and .y; t/ in space-time. The Li–Yau
inequality, and more generally parabolic Harnack inequalities like (1.2), can also be used to
derive further heat kernel estimates. In this direction, one of the most important estimates are
Gaussian-type bounds of the following form:

(1.3)
clm.y/

V.x;
p
t /
e�Cl

d.x;y/2

t � Pt .x; y/ �
Crm.y/

V.x;
p
t /
e�cr

d.x;y/2

t ;

where Pt .x; y/ is a fundamental solution of the heat equation (heat kernel). The Li–Yau
inequality can be used to prove exactly such bounds for the heat kernel on non-negatively
curved manifolds. Thus, the Li–Yau inequality implies that non-negatively curved manifolds
satisfy a strong form of the Harnack inequality (1.2), along with a Gaussian estimate (1.3).
It also is known, by combining the Bishop–Gromov comparison theorem [10] and the work
of Buser [11], that non-negatively curved manifolds also satisfy the volume growth condition
known as volume doubling and the Poincaré inequality (see also the paper of Grigor’yan, [21]).

In the manifold setting, Grigor’yan [21] and Saloff-Coste [37] independently gave
a complete characterization of manifolds satisfying (1.2). They showed that satisfying a volume
doubling property along with Poincaré inequalities is actually equivalent to satisfying the
Harnack inequality (1.2), and is also equivalent to satisfying the Gaussian estimate (1.3). Thus,
in the manifold setting the three conditions discussed above that are implied by non-negative
curvature are actually equivalent. Curvature still plays an important role however, as a local
property certifying that a manifold satisfies the three (equivalent) global properties.

In the case of graphs, Delmotte [18] proved a characterization analogous to the one on
manifolds discussed above, studying both continuous-time and discrete-time variants of the
Gaussian bounds. Until now, however, no known notion of curvature on graphs has been suf-
ficient to imply that a graph satisfies these three conditions. The relationship between these
properties and curvature has attracted work in the non-Riemannian case, however. On met-
ric measure spaces, for instance, under some curvature lower bound assumptions, Sturm [39],
Rajala [36], Erbar, Kuwada and Sturm [19] and Jiang, Li and Zhang [26] studied the volume
doubling property, along with Poincaré inequalities and Gaussian heat kernel estimates.

Despite the successes of [8] in establishing a discrete analogue of the Li–Yau inequality,
their ultimate result also had some limitations. Most notably, the results of [8] were insuffi-
cient to derive the equivalent conditions of volume doubling and Poincaré inequalities, along
with Gaussian heat kernel bounds, and the strongest form of a Harnack inequality. This failure
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Horn, Lin, Liu and Yau, Volume doubling 3

arose from the generalization of (1.1) achieved when considering only a positive solution inside
a ball of radius R: in the classical case an extra term of the form “ 1

R2
” occurred, but in the

graph case in general the authors were only able to prove a result with an extra term of the
factor “ 1

R
”. This difference resulted in only being able to establish weaker bounds on the

heat kernel, and polynomial volume growth as opposed to the stronger condition of volume
doubling. Ultimately one of the reasons for these weaker implications was the methods used:
[8] used maximum principle arguments, and ultimately ran into problems when cutoff functions
were needed.

In this paper, we develop a way to apply semigroup techniques in the discrete setting
in order to study the heat kernel of graphs with non-negative Ricci curvature. From here, we
obtain a family of global gradient estimates for bounded and positive solutions to the heat
equation on an infinite graph, mainly by proving the discrete variational inequality, which is
an analogue to the theorem of Baudoin and Garofalo [6] in the manifold setting. The curvature
notion used, as in [8], is a modification of the so-called curvature dimension inequality. Satisfy-
ing a curvature dimension inequality has proven to be an important generalization of having a
Ricci curvature lower bound in the non-Riemannian setting (see, e.g., [2,4]). The classical cur-
vature dimension inequality however seems weaker when the Laplace operator involved does
not satisfy a chain rule. This led to the modification used in this paper (and in [8]) the so-called
exponential curvature dimension inequalities. A more detailed description of the curvature no-
tion used in this paper, and the motivation behind it, is given in Section 2.2. We note that in the
Riemannian case (and more generally when the Laplacian generates a diffusive semigroup) the
classical curvature dimension inequality, and the exponential curvature dimension inequalities
are equivalent.

From our new methods, we show that non-negatively curved graphs (in the sense of
the exponential curvature dimension inequalities) satisfy volume doubling. This improves the
results of [8], which only derives polynomial volume growth. We use volume doubling to
establish discrete-time Gaussian lower and upper estimates of the heat kernel and ultimately to
establish the Poincaré inequality and a Harnack inequality.

As an important technical point, we do not simply establish volume doubling and
a Poincaré inequality, and then apply the results of Delmotte [18] to establish the other (equiva-
lent) properties. Instead, after proving volume doubling we attack the Gaussian bounds directly
– using volume doubling along with additional information from our methods to establish the
bounds. Once the Gaussian bounds are established, we apply the results of Delmotte then “com-
plete the circle” and establish the remaining desired properties. We emphasize that although
a number of notions of curvature for graphs have been introduced (see, e.g., [8, 32]), no pre-
vious notion has been shown to imply these properties. In fact, [8] was the first paper to show
that a non-negative curvature condition for graphs implied polynomial volume growth.

We further derive a continuous-time Gaussian lower bound on the heat kernel. Continu-
ous-time Gaussian upper bounds on the heat kernel on graphs turn out not to hold in general,
at least for small t . Work of Davies [16] and Pang [34] obtained non-Gaussian upper and lower
bounds for the heat kernel on one-dimensional lattice graphs (cf. [34, Theorem 3.5]). They
show, for small t , lower bounds that are much larger than the Gaussian bounds would predict.

While our results hold for any non-negatively curved graphs, it is important to note that
Gaussian estimates for the heat kernel for Cayley graphs of a finitely generated group of poly-
nomial growth were proved by Hebisch and Saloff-Coste in [24]. For non-uniform transition
case, Strook and Zheng proved related Gaussian estimates on lattices in [38].
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4 Horn, Lin, Liu and Yau, Volume doubling

Establishing that a graph satisfies both volume doubling and the Poincaré inequality
has important consequences. For example, under these assumptions on graphs, Delmotte in
[17] proved that the dimension of the space of harmonic functions on graphs with polynomial
growth is finite. This is an analogue of a similar result on Riemannian manifolds by Colding
and Minicozzi from [13], see also Li in [30]. The original problem came from a conjecture
of Yau ([42]) which stated for Riemannian manifolds with non-negative Ricci curvature these
spaces should be finite dimensional. Thus, our result answers the graph theoretical analogue of
Yau’s conjecture in the affirmative.

Finally, under the assumption that a graph is positively curved (again, with respect to the
exponential curvature dimension inequality), we derive a Bonnet–Myers-type theorem that the
diameter of graphs in terms of the canonical distance is finite. We accomplish this by prov-
ing certain logarithmic Sobolev inequalities. Here we establish that certain diameter bounds
of Bakry ([3]) still hold, even though the Laplacian on graphs does not satisfy the diffusion
property that Bakry used. Under the same assumption, we show that the diameter of graphs in
terms of graph distance (as opposed to the canonical distance) is also finite. This is done by
proving finiteness of measure, and using volume doubling.

The paper is organized as follows: We introduce our notation and formally state our main
results in Section 2. In Section 3, we prove our main variational inequality. This inequality
leads to a different proof of the Li–Yau gradient estimates on graphs from the one given in [8].
From this main inequality we establish an additional exponential integrability result, and ulti-
mately, volume doubling in Section 4. From volume doubling, we can prove the Gaussian heat
kernel estimate, parabolic Harnack inequality and Poincaré inequality in Section 5. Finally, in
Section 6, we prove a Bonnet–Myers-type theorem on graphs.

Acknowledgement. We thank Bobo Hua, Matthias Keller and Gabor Lippner for useful
discussion. We also thank Daniel Lenz for many nice comments on the paper. Part of the work
of this paper was done when P. Horn and Y. Lin visited S.-T. Yau in The National Center
for Theoretical Sciences in Taiwan University in May 2014 and when P. Horn visited Y. Lin
in Renmin University of China in June 2014. We acknowledge the support from NCTS and
Renmin University. We are grateful to the referees for their helpful comments and suggestions.

2. Preliminaries and statement of main results

In this section we develop the preliminaries needed to state our main results. Through
the paper, we let G D .V;E/ be a finite or infinite connected graph. We allow the edges on the
graph to be weighted. Weights are given by a function ! W V � V ! Œ0;1/; the edge xy from
x to y has weight !xy > 0. In this paper, we assume this weight function is symmetric (that is,
!xy D !yx). Furthermore, we assume that

!min D inf
e2E;!e>0

!e > 0:

We furthermore allow loops, so it is permissible for x � x (and hence !xx > 0.) Finally, we
restrict our interest to the locally finite graphs. That is, we assume that

m.x/ WD
X
y�x

!xy <1 for all x 2 V:
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For our work, especially in the context of deriving Gaussian heat kernel bounds, one
additional technical assumption is needed. This is essentially needed to compare the continuous
time and discrete time heat kernels. In order for the comparison to work smoothly, we need two
requirements: First, no edge can be too “small” (this is essentially the content of our assumption
!min > 0). Second, at each vertex there must be a loop. That is, we must assume x � x –
this prevents “parity problems” of bipartiteness that would make the continuous and discrete
time kernels incomparable. This condition is neatly captured in the following �.˛/ used by
Delmotte in [18], but has also been used previously by other authors.

Definition 2.1. Let ˛ > 0. G satisfies �.˛/ if

(1) x � x for every x 2 V , and

(2) if x; y 2 V , and x � y, !xy � ˛m.x/.

As a remark, if a loop is on every edge and supx m.x/ <1, then the condition !min > 0

is sufficient to certify that a graph satisfies�.!min=supx m.x//: In general, this is a rather mild
condition. It is easy to check, for instance, that adding loops does not decrease the curvature
for our curvature condition (see Section 2.2 below) nor change many the geometric quantities
we seek to understand (e.g., volume growth, and diameter). Thus even graphs without loops
may safely be altered to satisfy this condition.

2.1. Laplace operators on graphs. Let � W V ! RC be a positive measure on the
vertices of the G. Let V R be the space of real-valued functions on V and, for any 1 � p <1,
let

`p.V; �/ D

²
f 2 V R

W

X
x2V

�.x/jf .x/jp <1

³
be the set of `p integrable functions on V with respect to the measure �. For p D1, let

`1.V; �/ D
°
f 2 V R

W sup
x2V

jf .x/j <1
±

be the set of bounded functions. For any f; g 2 `2.V; �/, we let

hf; gi D
X
x2V

�.x/f .x/g.x/

denote the standard inner product. This makes `2.V; �/ a Hilbert space. As is usual, we define
the `p norm of f 2 `p.V; �/; 1 � p � 1:

kf kp D

�X
x2V

�.x/jf .x/jp
� 1
p

; 1 � p <1; and kf k1 D sup
x2V

jf .x/j:

We define the �-Laplacian � W V R ! V R on G by, for any x 2 V ,

�f .x/ D
1

�.x/

X
y�x

!xy.f .y/ � f .x//:

Similar summations occur frequently, so we introduce the following shorthand notation for
such an “averaged sum”:

eX
y�x

h.y/ D
1

�.x/

X
y�x

!xyh.y/ for all x 2 V:
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6 Horn, Lin, Liu and Yau, Volume doubling

We treat the case of �-Laplacians quite generally, but the two most natural choices are
the case where �.x/ D m.x/ for all x 2 V , which is the normalized graph Laplacian, and the
case � � 1 which is the standard graph Laplacian. In this paper, we assume

�max WD sup
x2V

�.x/ <1:

Furthermore, we assume

D� WD max
x2V

m.x/

�.x/
<1:

It is easy to check that D� <1 is equivalent to the Laplace operator � being bounded
on `2.V; �/ (see also [23]). The graph is endowed with its natural graph metric d.x; y/,
i.e. the smallest number of edges of a path between two vertices x and y. We define balls
B.x; r/ D ¹y 2 V W d.x; y/ � rº, and the volume of a subset A of V , V.A/ D

P
x2A �.x/.

We will write V.x; r/ for V.B.x; r//.

2.2. Curvature dimension inequalities. In order to study curvature of non-Riemann-
ian spaces, it is important to have a definition that captures, in the non-Riemannian setting,
many important consequences of curvature from the manifold setting. One way to do this is
through the so-called curvature-dimension inequality or CD-inequality. An immediate conse-
quence of the well-known Bochner identity is that on any n-dimensional manifold with curva-
ture bounded below by K, any smooth f WM ! R satisfies

(2.1)
1

2
�jrf j2 � hrf;r�f i C

1

n
.�f /2 CKjrf j2:

It was an important insight of Bakry and Emery [2] that (2.1) serves as a substitute for a lower
Ricci curvature bound on spaces where a direct generalization of Ricci curvature is not avail-
able. Since all known proofs of the Li–Yau gradient estimate exploit non-negative curvature
condition through the CD-inequality, Bakry and Ledoux [4] succeeded to use it to general-
ize (1.1) to Markov operators on general measure spaces when the operator satisfies a chain
rule-type formula.

To formally state this notion in the graph setting, we first introduce some notation.

Definition 2.2. The gradient form � , associated with a �-Laplacian is defined by

2�.f; g/.x/ D .�.f � g/ � f ��.g/ ��.f / � g/.x/

D
eX
y�x

.f .y/ � f .x//.g.y/ � g.x//:

We write �.f / D �.f; f /.

Similarly:

Definition 2.3. The iterated gradient form �2 is defined by

2�2.f; g/ D ��.f; g/ � �.f;�g/ � �.�f; g/:

We write �2.f / D �2.f; f /.
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Horn, Lin, Liu and Yau, Volume doubling 7

Definition 2.4. The graphG satisfies the CD-inequality CD.n;K/ if, for any function f
and at every vertex x 2 V.G/,

(2.2) �2.f / �
1

n
.�f /2 CK�.f /:

On graphs – where the Laplace operator fails to satisfy the chain rule – satisfying the
CD.n; 0/ inequality seems insufficient to prove a generalization of (1.1). None the less, in [8]
the authors prove a discrete analogue of the Li–Yau inequality. The curvature notion they use
is a modification of the standard curvature notion, which they call the exponential curvature
dimension inequality. In reality, the authors of [8] introduce two slightly different curvature
conditions, which they call CDE and CDE0, both of which we recall below.

Definition 2.5. We say that a graph G satisfies the exponential curvature dimension
inequality CDE.x;n;K/ if for any positive functionf WV !RC such that�f .x/ < 0, we have

f�2.f /.x/ D �2.f /.x/ � ��f; �.f /
f

�
.x/ �

1

n
.�f /.x/2 CK�.f /.x/:

We say that CDE.n;K/ is satisfied if CDE.x; n;K/ is satisfied for all x 2 V .

Definition 2.6. We say that a graph G satisfies the CDE0.x; n;K/ if for any positive
function f W V ! RC, we have

(2.3) f�2.f /.x/ � 1

n
f .x/2.� logf /.x/2 CK�.f /.x/:

We say that CDE0.n;K/ is satisfied if CDE0.x; n;K/ is satisfied for all x 2 V .

The reason these are known as the exponential curvature dimension inequalities is illus-
trated in [8, Lemma 3.15], which states the following:

Proposition 2.1. If the semigroup generated by � is a diffusion semigroup (e.g., the
Laplacian on a manifold), then CD.n;K/ and CDE0.n;K/ are equivalent.

To show that CDE0.n;K/) CD.n;K/, one takes an arbitrary function f , and applies
(2.3) to exp.f / to verify that (2.2) holds. Likewise, to verify that CD.n;K/) CDE0.n;K/
one takes an arbitrary positive function f , and applies (2.2) to log.f / to verify (2.3). This
equivalence, however, makes strong use of the chain rule, and hence the fact that � generates
a diffusion semigroup.

Condition CDE0.n;K/ is a stronger condition than CDE.n;K/ as seen in the following.

Remark 1. Condition CDE0.n;K/ implies CDE.n;K/.

Proof. Let f W V !RC be a positive function for which�f .x/ < 0. Since log s � s�1
for all positive s, we can write

� logf .x/ DeX
y�x

.logf .y/ � logf .x// DeX
y�x

log
f .y/

f .x/

�
eX
y�x

f .y/ � f .x/

f .x/
D
�f .x/

f .x/
< 0:
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8 Horn, Lin, Liu and Yau, Volume doubling

Hence squaring everything reverses the above inequality and we get

.4f .x//2 � f .x/2.4 logf .x//2;

and thus CDE.x; n;K/ is satisfied

f�2.f /.x/ � 1

n
f .x/2.4 logf /.x/2 CK�.f /.x/ >

1

n
.�f /.x/2 CK�.f /.x/:

In [8], the CDE.n;K/ inequality is preferred: the � log.f / term occurring in the CDE0

inequality is awkward in the discrete case, the CDE.n;K/ inequality is weaker in general, and
the CDE.n;K/ inequality sufficed for proving the Li–Yau inequality.

None the less, as the results in this paper will show, for the purposes of applying semi-
group arguments the CDE0.n;K/ inequality is to be preferred. The primary reason for this is
the fact that CDE0.n;K/ implies a non-trivial lower bound on e�2.f / for a positive function f
at every point on a graph, as opposed to just the points where�f < 0. For maximum principle
arguments, restricting to points where�f < 0 turns out not to be a major restriction, but in the
more global arguments we apply in this paper CDE0.n;K/ appears to be more useful.

We note that, in general, the conditions CDE0 and CDE better capture the spirit of a Ricci
curvature lower bound for graphs than the classical CD condition. For instance, every graph
satisfies CD.2;�1/ – that is, there is an absolute lower bound to the curvature of graphs. On
the other hand, a k-regular tree satisfies CDE.2;�k

2
/ and this negative curvature is (asymptot-

ically) sharp. Thus with the exponential curvature condition, negative curvature is unbounded.
This is unique amongst graph curvature notions.

Moreover, [8] showed that lattices, and more generally Ricci-flat graphs in the sense of
Chung and Yau [12] which include the abelian Cayley graphs, have non-negative curvature
CDE.n; 0/ and CDE0.n; 0/. Note that CDE0.n;K/ satisfies a product property (cf. the sim-
ilar result for CD.n;K/ in [33]). As a result, one can construct many graphs satisfying the
CDE0.n; 0/ assumption with different dimensions n by taking the Cartesian product of graphs
satisfying CDE0.n; 0/.

2.3. Main results. The first main result, alluded to in the introduction, is that satisfying
CDE0.n; 0/ is sufficient to imply that a graph satisfies several important conditions: volume
doubling, the Poincaré inequality, Gaussian bounds for the heat kernel, and the continuous-
time Harnack inequality. For preciseness, we state these conditions now:

Definition 2.7. Let G be a graph.

(DV) The graph G satisfies the volume doubling property DV.C / for a constant C > 0 if for
all x 2 V and all r > 0,

V.x; 2r/ � CV.x; r/:

(P) The graph G satisfies the Poincaré inequality P.C / for a constant C > 0 ifX
x2B.x0;r/

m.x/jf .x/ � fB j
2
� Cr2

X
x;y2B.x0;2r/

!xy.f .y/ � f .x//
2

for all f 2 V R, for all x0 2 V , and for all r 2 RC, where

fB D
1

V.x0; r/

X
x2B.x0;r/

m.x/f .x/:
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Horn, Lin, Liu and Yau, Volume doubling 9

(H ) Fix � 2 .0; 1/ and 0 < �1 < �2 < �3 < �4 and C > 0. The graph G satisfies the contin-
uous-time Harnack inequality H .�; �1; �2; �3; �4; C /, if for all x0 2 V and s; R 2 RC,
and every positive solution u.t; x/ to the heat equation onQ D Œs; sC�4R2��B.x0; R/,
we have

sup
Q�

u.t; x/ � C inf
QC

u.t; x/;

where

Q� D Œs C �1R
2; s C �2R

2� � B.x0; �R/;

QC D Œs C �3R
2; s C �4R

2� � B.x0; �R/:

(H) Fix � 2 .0; 1/ and 0 < �1 < �2 < �3 < �4 and C > 0. The graphG satisfies the discrete-
time Harnack inequality H.�; �1; �2; �3; �4; C / if for all x0 2 V and s; R 2 RC, and
every positive solution u.x; t/ to the heat equation onQ D .Œs; sC�4R2�\Z/�B.x0; R/,
we have

.n�; x�/ 2 Q�; .nC; xC/ 2 QC; d.x�; xC/ � nC � n�

implies
u.n�; x�/ � Cu.nC; xC/;

where

Q� D .Œs C �1R
2; s C �2R

2� \ Z/ � B.x0; �R/;

QC D .Œs C �3R
2; s C �4R

2� \ Z/ � B.x0; �R/:

(G) Fix positive constants cl ; Cl ; Cr ; cr > 0. The graph G satisfies the Gaussian estimate
G.cl ; Cl ; Cr ; cr/ if, whenever d.x; y/ � n,

clm.y/

V.x;
p
n/
e�Cl

d.x;y/2

n � pn.x; y/ �
Crm.y/

V.x;
p
n/
e�cr

d.x;y/2

n :

The first main result of this paper is the following.

Theorem 2.2 (cf. Theorem 5.5). Suppose that G is a locally finite graph satisfying
CDE0.n0; 0/ and �.˛/. Then G has the following four properties.

(1) There exist C1; C2; ˛ > 0 such that DV.C1/, P.C2/, and �.˛/ are true.

(2) There exist cl ; Cl ; Cr ; cr > 0 such that G.cl ; Cl ; Cr ; cr/ is true.

(3) For any � 2 .0; 1/ and 0 < �1 < �2 < �3 < �4, there exists a constant CH such that
H.�; �1; �2; �3; �4; CH / is true.

(3)’ For any � 2 .0; 1/ and 0 < �1 < �2 < �3 < �4, there exists a constant CH such that
H .�; �1; �2; �3; �4; CH / is true.

A function u on V.G/ is harmonic if �u D 0. A harmonic function u on G has polyno-
mial growth if there is positive number d such that there exist x0 2 V and C > 0 such that for
all x 2 V ,

ju.x/j � Cd.x0; x/
d :

Combining Theorem 2.2 and [17, Theorem 3.2], we establish the following graph theoretical
analogue of a conjecture of Yau ([42]).
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10 Horn, Lin, Liu and Yau, Volume doubling

Theorem 2.3. Suppose thatG is a locally finite graph satisfying CDE0.n0; 0/ and�.˛/.
Then the dimension of the space of harmonic functions onG having polynomial growth is finite.

Finally, we prove the following Bonnet–Myers theorems for graphs. We defer the defini-
tion of canonical distance of graphs until Section 6.

Theorem 2.4 (cf. Theorem 6.8 and Theorem 6.10). Suppose thatGD .V;E/ is a locally
finite, connected graph satisfying CDE0.n;K/ for someK >0. Then the diameter eD of graphG
in terms of the canonical distance is bounded by

eD � 4p3�r n

K
;

and in particular is finite. Furthermore the diameter D of graph G in terms of the graph
distance is also finite, and satisfies

D � 2�

r
6D�n

K
:

3. A variational inequality, and Li–Yau-type estimates

In this section we establish our main variational inequality which we develop in order
to apply semigroup theoretic arguments in the non-diffusive graph case. This is the content of
Section 3.2. An immediate application of this variational inequality is a family of Li–Yau-type
inequalities which we derive in Section 3.3.

3.1. The heat kernel on graphs.

3.1.1. The heat equation. A function u W Œ0;1/ � V ! R is a positive solution to the
heat equation on G D .V;E/ if u > 0 and u satisfies the differential equation

�u D àtu

at every x 2 V .
In this paper we are primarily interested in the heat kernel, that is, the fundamental solu-

tions pt .x; y/ of the heat equation. These are defined so that for any bounded initial condition
u0 W V ! R, the function

u.t; x/ D
X
y2V

�.y/pt .x; y/u0.y/; t > 0; x 2 V;

satisfies the heat equation, and

lim
t!0C

u.t; x/ D u0.x/:

For any subset U � V , we denote by VU D ¹x 2 U W for all y � x; y 2 U º the interior
of U . The boundary of U is àU D U n VU . We make use of the following version of the maxi-
mum principle.
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Horn, Lin, Liu and Yau, Volume doubling 11

Lemma 3.1. Let U � V be finite and T > 0, and assume that u W Œ0; T � � U ! R is
differentiable with respect to the first component and satisfies the inequality

àtu � �u

on Œ0; T � � VU . Then u attains its maximum on the parabolic boundary

àP .Œ0; T � � U/ D .¹0º � U/ [ .Œ0; T � � àU/:

Proof. Suppose that u attains its maximum at a point .t0; x0/ 2 .0; T � � VU such that

(3.1) àtu.t0; x0/ < �u.t0; x0/

Then

(3.2) 0 � àtu.t0; x0/ < �u.t0; x0/ D
eX
y�x0

.u.t0; y/ � u.t0; x0//;

contradicting the maximality of u.
Otherwise, if at all .t0; x0/ 2 .0; T � � VU which are maximum points at u, there is equality

in (3.1) we are done unless there is also equality in (3.2). But this implies that u is constant on
.0; T � � U , and hence there is a maximum point on the boundary as desired.

3.1.2. The heat equation an a domain. Suppose that U � V is a finite subset of the
vertex set of a graph. We consider the Dirichlet problem (DP),8̂<̂

:
àtu.t; x/ ��Uu.t; x/ D 0; x 2 VU , t > 0,

u.0; x/ D u0.x/; x 2 VU ,

ujŒ0;1/�àU D 0:

where �U W `2. VU ;�/! `2. VU ;�/ denotes the Dirichlet Laplacian on VU .
Note that��U is positive and self-adjoint, and n WD dim `2. VU ;�/ <1. Thus the opera-

tor ��U has eigenvalues 0 < �1 � �2 < � � � � �n, along with an orthonormal set of eigen-
vectors �i . Here the orthonormality is with respect to the inner product with respect to the
measure �, i.e.

h�i ; �j i D
X
x2V

�.x/�i .x/�j .x/:

The operator �U is a generator of the heat semigroup Pt;U D et�U , t > 0. Finite-
dimensionality makes the fact that et�U �i D e�t�i�i transparent. The heat kernel pU .t; x; y/
for the finite subset U is then given by

pU .t; x; y/ D Pt;U
ıyp
�.y/

.x/ for all x; y 2 VU ;

where

ıy.x/ D

nX
iD1

h�i ; ıyi�i .x/ D

nX
iD1

�i .x/�i .y/
p
�.y/:

The heat kernel satisfies

pU .t; x; y/ D

nX
iD1

e��i t�i .x/�i .y/ for all x; y 2 VU :
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12 Horn, Lin, Liu and Yau, Volume doubling

3.1.3. Heat equation on an infinite graph. The heat kernel for an infinite graph can be
constructed and its basic properties can be derived using the above ideas by taking an exhaus-
tion of the graph. An exhaustion ofG is a sequence .Uk/ of subsets of V such that Uk � VUkC1
and

S
k2N Uk D V . For any connected, countable graph G such a sequence exists. One may,

for instance, fix a vertex x0 2 V take the sequence Uk D Bk.x0/ of metric balls of radius k
around x0. The connectedness of our graph G implies that the union of these Uk equals V .

Denoting by pk , the heat kernel pUk on Uk , we may extend pk to all of .0;1/ � V � V ,

pk.t; x; y/ D

´
pUk .t; x; y/; x; y 2 VUk ,

0; otherwise.

Then, for any t > 0 and x; y 2 V , we let

p.t; x; y/ D lim
k!1

pk.t; x; y/:

The maximum principle implies the monotonicity of the heat kernels, i.e. pk � pkC1, so the
above limit exists (but could a priori be infinite). Similarly, it is not a priori clear that p is
independent of the exhaustion chosen. Nonetheless, the limit is finite and independent of the
exhaustion and p is the desired heat kernel. This construction is carried out in [40] and [41] for
unweighted graphs, where the measure � � 1. For the general case, we refer to [27].

For convenience, we record some important properties of the heat kernel p which we will
use in the paper.

Remark 2. For t; s > 0 and for all x; y 2 V , the heat kernel p.t; x; y/ satisfies

(1) p.t; x; y/ D p.t; y; x/,

(2) p.t; x; y/ � 0,

(3)
P
y2V �.y/p.t; x; y/ � 1,

(4) limt!0C
P
y2V �.y/p.t; x; y/ D 1,

(5) àtp.t; x; y/ D �yp.t; x; y/ D �xp.t; x; y/,
(6)

P
z2V �.z/p.t; x; z/p.s; z; y/ D p.t C s; x; y/.

From here, the semigroup Pt W V R ! V R acting on bounded functions f W V ! R is
as follows. For any bounded function f 2 V R,

Ptf .x/ D lim
k!1

X
y2V

�.y/pk.t; x; y/f .y/ D
X
y2V

�.y/p.t; x; y/f .y/;

where limt!0C Ptf .x/ D f .x/. Note that Ptf .x/ is a solution of the heat equation. From
the properties of the heat kernel, and the boundedness of f , there exists a constant C > 0 such
that for any x 2 V , if supx2V jf .x/j � C , thenˇ̌̌̌X

y2V

�.y/p.t; x; y/f .y/

ˇ̌̌̌
� C lim

k!1

X
y2V

�.y/pk.t; x; y/ � C <1;

so the semigroup is well-defined. The different definitions of the heat semigroup coincide when
� is a bounded operator or in finite graphs, that is,

Ptf .x/ D e
t�f .x/ D

C1X
kD0

tk�k

kŠ
f .x/ D

X
y2V

�.y/p.t; x; y/f .y/:
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Horn, Lin, Liu and Yau, Volume doubling 13

Again we record, without proof, some well-known but useful properties of the semi-
group Pt .

Proposition 3.1. For any bounded function f; g 2 V R, and t; s > 0, for any x 2 V , the
following statements hold:

(1) If 0 � f .x/ � 1, then 0 � Ptf .x/ � 1.

(2) Pt ı Psf .x/ D PtCsf .x/.

(3) �Ptf .x/ D Pt�f .x/.

3.2. The main variational inequality. Finiteness of D� implies the operators � and
� are bounded. We in turn derive the following lemma:

Lemma 3.2. Suppose that G is a (finite or infinite) graph satisfying CDE0.n;K/. Then,
for a positive and bounded solution u.t; x/ to the heat equation on G, the function �u

2
p
u

on G
is bounded at all t > 0.

Proof. The statement is obvious for finite graphs G, so we restrict our attention to infi-
nite graphs.

Fix R 2 N and vertex x0 2 V . We define a cutoff function ' by letting

'.x/ D

8̂<̂
:
0; d.x; x0/ > 2R;
2R�d.x;x0/

R
; R � d.x; x0/ � 2R;

1; d.x; x0/ < R:

Let

F D ' �
�.
p
u/

p
u

:

It is easy to observe that, as 0 � '.x/ � 1 for any x 2 V , j�'j � 2D�. As u is bounded, there
exists constants c1; c2 so that 0 � �.

p
u/ � c1, and j�.�.

p
u/; '/j � c2 as well.

Fix an arbitrary T > 0, let .x�; t�/ be a maximum point of F in V � Œ0; T �. Clearly,
such a maximum exists, as F � 0 and F is only positive on a bounded region. We may
assume F.x�; t�/ > 0. In what follows all computations take place at the point .x�; t�/. Let
L D � � àt , we apply [8, Lemma 4.1] with the choice of g D

p
u. This gives

L.
p
uF / � L.

p
u/F D

�
�.
p
u/ �
àtu
2
p
u

�
F D

2
p
u�.
p
u/ ��u

2
p
u

F D �
F 2

'
:

Further, note that for any x 2 V ,

àt�.
p
u/.x/ D àt

1

2

eX
y�x

�p
u.y/ �

p
u.x/

�2
D

eX
y�x

.
p
u.y/ �

p
u.x//.àt

p
u.y/ � àt

p
u.x//

D 2�

�
p
u;

�u

2
p
u

�
.x/
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14 Horn, Lin, Liu and Yau, Volume doubling

yielding

L.
p
uF / D L.' � �.

p
u// D �' � �.

p
u/C 2�.�.

p
u/; '/C 2' �e�2.pu/:

Applying the CDE0.n;K/ condition and discarding the 1
n
u.� log

p
u/2 term, we obtain

�
F 2

'
� �' � �.

p
u/C 2�.�.

p
u/; '/C 2'K�.

p
u/:

From here, we conclude that

F 2.x�; t�/ � 2.D� C jKj/c1 C c2;

Thus there exists some C > 0 so that

F.x�; t�/ � C:

For x 2 B.x0; R/,
�.
p
u/

p
u

.T; x/ D F.x; T / � F.x�; t�/ � C:

The equation�u D 2
p
u�
p
uC 2�.

p
u/ then implies that �u

2
p
u

is bounded at any positive T
as well.

Thus for any bounded function 0 < f 2 `1.V; �/ onG.V;E/, the function �.
p
PT�tf /

is likewise bounded, for any 0 � t < T .
Given a positive bounded f , we let �.t; x/ be the function

�.t; x/ D Pt .�.
p
PT�tf //.x/; 0 � t < T; x 2 V:

From here we obtain the following (rather crucial) result.

Lemma 3.3. Suppose that G is a locally finite graph satisfying condition CDE0.n;K/.
Then, for every 0 � t < T , any x 2 V , the function � satisfies

àt�.t; x/ D 2Pt .e�2.pPT�tf //.x/:
Proof. For any x 2 V ,

àtPt .�.
p
PT�tf //.x/

D àt
�X
y2V

�.y/p.t; x; y/�.
p
PT�tf /.y/

�
D

X
y2V

�.y/
�
�p.t; x; y/�.

p
PT�tf /.y/C p.t; x; y/àt�.

p
PT�tf /.y/

�
D

X
y2V

�.y/

�
�p.t; x; y/�.

p
PT�tf /.y/ � 2p.t; x; y/�

�p
PT�tf ;

�PT�tf

2
p
PT�tf

�
.y/

�

D

X
y2V

�.y/p.t; x; y/

�
��.

p
PT�tf /.y/ � 2�

�p
PT�tf ;

�PT�tf

2
p
PT�tf

�
.y/

�
D 2Pt .e�2.pPT�tf //.x/:
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For the third equality, we observe that for any x 2 V ,

àt�.
p
PT�tf /.x/ D àt

1

2

eX
y�x

�p
PT�tf .y/ �

p
PT�tf .x/

�2
D

eX
y�x

.
p
PT�tf .y/ �

p
PT�tf .x//.àt

p
PT�tf .y/ � àt

p
PT�tf .x//

D 2�.
p
PT�tf ; àt

p
PT�tf /.x/

and

àt
p
PT�tf D

àtPT�tf
2
p
PT�tf

D �
�PT�tf

2
p
PT�tf

;

where
àtPT�tf D ��PT�tf :

In the fourth step, note that due to the boundedness of f , the function ��.
p
PT�tf /

is likewise bounded. Similarly from Lemma 3.2, �.
p
PT�tf ;

�PT�tf

2
p
PT�tf

/ is bounded as well.
ThenX

y2V

�.y/

�
�p.t; x; y/�.

p
PT�tf /.y/ � 2p.t; x; y/�

�p
PT�tf ;

�PT�tf

2
p
PT�tf

�
.y/

�
D

X
y2V

�.y/�p.t; x; y/�.
p
PT�tf /.y/

�

X
y2V

�.y/2p.t; x; y/�

�p
PT�tf ;

�PT�tf

2
p
PT�tf

�
.y/

D

X
y2V

�.y/p.t; x; y/��.
p
PT�tf /.y/

�

X
y2V

�.y/2p.t; x; y/�

�p
PT�tf ;

�PT�tf

2
p
PT�tf

�
.y/

D

X
y2V

�.y/p.t; x; y/

�
��.

p
PT�tf /.y/ � 2�.

p
PT�tf ;

�PT�tf

2
p
PT�tf

/.y/

�
;

where various interchanges of sums is justified due to the boundedness of the terms multiplied
by the heat kernel (and hence absolute convergence of the sums).

Finally, we justify the exchange of summation and derivation in the second step, which
we do by showing the summand converges uniformly on Œ0; T �. To that end, first note the
different definitions of the heat semigroup coincide since � is a bounded operator. Thus

Ptf .x/ D e
t�f .x/ D

C1X
kD0

tk�k

kŠ
f .x/ D

X
y2V

�.y/p.t; x; y/f .y/:

Let 't .x/ D 2e�2.pPT�tf /.x/; consider Pt't .x/ which is the function arising in the sum-
mand. As we have shown, there exists a constantC > 0 such that j't .x/j � C for any t 2 Œ0; T �,

j�'t .x/j D

ˇ̌̌̌eX
y�x

.'t .y/ � 't .x//

ˇ̌̌̌
� 2D�C:
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16 Horn, Lin, Liu and Yau, Volume doubling

Iterating, for any k 2 N�0 and x 2 V ,

j�k't .x/.x/j � 2kDk�C:

Then
C1X
kD0

ˇ̌̌̌
tk�k

kŠ
't .x/

ˇ̌̌̌
�

C1X
kD0

T k

kŠ
2kDk�C D Ce

2D�T <1:

Therefore, the series

Pt'
t .x/ D

X
y2V

�.y/p.t; x; y/'t .y/ D

C1X
kD0

tk�k

kŠ
't .x/

converges uniformly on Œ0; T �, justifying the interchange.
This ends the proof of Lemma 3.3.

We now obtain some graph theoretical analogues to theorems of Baudoin–Garofalo [6]
originating in the manifold setting. In some sense, our main observation is that the CDE0.n;K/
condition can be used in order to overcome the diffusive semigroup assumption usually needed
for arguments involving the heat semigroup. This is one of the primary places in this paper
where the CDE.n;K/ condition favored in [8] is seemingly insufficient to prove the result.

Theorem 3.2. Suppose that G D .V;E/ is a locally finite, connected graph satisfy-
ing CDE0.n;K/. Then, for every positive smooth function ˛ W Œ0; T �! RC, and non-positive
smooth function 
 W Œ0; T �! R, every positive and bounded function f satisfies

(3.3) àt .˛�/ �
�
˛0 �

4˛


n
C 2˛K

�
� C

2˛


n
�PT f �

2˛
2

n
PT f:

Proof. For any x 2 V ,

àt .˛�/.x/ D ˛0�.x/C 2˛Pt .e�2.pPT�tf //.x/
� ˛0�.x/C 2˛Pt

�
1

n

�p
PT�tf � log

p
PT�tf

�2
CK�.

p
PT�tf /

�
.x/

� .˛0 C 2˛K/�.x/C 2˛
X
y�x

�
p
PT�tf .y/<0

�.y/p.t; x; y/
1

n

�
�
p
PT�tf

�2
.y/

C 2˛
X
y�x

�
p
PT�tf .y/�0

�.y/p.t; x; y/
1

n

�p
PT�tf � log

p
PT�tf

�2
.y/

� .˛0 C 2˛K/�.x/C
2˛

n
Pt .
�PT�tf � 2
�.

p
PT�tf / � 


2PT�tf /.x/

D .˛0 C 2˛K/�.x/C
2˛


n
Pt .�PT�tf /.x/ �

4˛


n
Pt .�.

p
PT�tf //.x/

�
2˛
2

n
Pt .PT�tf /.x/

D

�
˛0 �

4˛


n
C 2˛K

�
�.x/C

2˛


n
�PT f .x/ �

2˛
2

n
PT f .x/:
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The first inequality in the above proof comes from applying the CDE0.n;K/ inequality to the
function

p
PT�tf . The second one comes from Jensen’s inequality, under the assumption

that .�
p
PT�tf /.y/ < 0. This is essentially the contents of Remark 1 – really we apply the

CDE.n;K/ inequality at points so that �
p
PT�tf .y/ < 0.

The third inequality is a bit more subtle and is derived as follows: Clearly, for any func-
tion 
 , one has

.�
p
PT�tf /.y/

2
� 2


p
PT�tf .y/�

p
PT�tf .y/ � 


2PT�tf .y/:

Since 
 is non-positive, if �
p
PT�tf .y/ � 0, the right-hand of the above inequality is also

non-positive. Thus in this case it is also true that�p
PT�tf4 log

p
PT�tf

�2
.y/ � 2


p
PT�tf .y/4

p
PT�tf .y/ � 


2PT�tf .y/;

as the left-hand side of this inequality is clearly non-negative. Furthermore, by the identity

�u D 2
p
u�
p
uC 2�.u/;

one has

2
p
PT�tf �

p
PT�tf D �PT�tf � 2�.

p
PT�tf /;

Therefore, X
y�x

�
p
PT�tf .y/<0

�.y/p.t; x; y/
�
�
p
PT�tf

�2
.y/

C

X
y�x

�
p
PT�tf .y/�0

�.y/p.t; x; y/PT�tf .y/
�
� log

p
PT�tf

�2
.y/

� Pt .
�PT�tf � 2
�.
p
PT�tf / � 


2PT�tf /.x/;

as desired.

3.3. Li–Yau inequalities. The power of Theorem 3.2 is, perhaps, a bit hard to appre-
ciate at first. As an application, it can be used to give an alternative derivation of the Li–Yau
inequality. Indeed, it can be used to derive a family of similar differential Harnack inequalities.
The key in applying Theorem 3.2 is to choose 
 so that a nice simplification occurs.

For instance, suppose that for some (smooth) function ˛ we choose 
 in such a way that

˛0 �
4˛


n
C 2˛K D 0:

That is, choose


 D
n

4

�
˛0

˛
C 2K

�
:

If ˛ is chosen appropriately to make 
 non-positive, then integrating inequality (3.3)
obtained in Theorem 3.2 from 0 to T yields an estimate. Setting W D

p
˛, one obtains the

following result.
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18 Horn, Lin, Liu and Yau, Volume doubling

Theorem 3.3. Suppose that G D .V;E/ is a locally finite and connected graph satisfy-
ing CDE0.n;K/, and let W W Œ0; T �! RC be a smooth function such that

W.0/ D 1;W.T / D 0;

and so that
W 0.t/ � �KW.t/

for 0 � t � T: Then, for any bounded and positive function f 2 V R,

�.
p
PT f /

PT f
�
1

2

�
1 � 2K

Z T

0

W.s/2 ds

�
�PT f

PT f
(3.4)

C
n

2

�Z T

0

W 0.s/2 ds CK2
Z T

0

W.s/2 ds �K

�
:

Here, the condition W 0 � �KW amounts to the non-positivity of 
 . As observed in [6],
the family obtained by taking

W.t/ D

�
1 �

t

T

�b
for any b > 1

2
is quite interesting in the region where � b

T
< K. For this family,Z T

0

W.s/2 ds D
T

2b C 1

and Z T

0

W 0.s/2 ds D
b2

.2b � 1/T
:

Thus for such a choice of W , estimate (3.4) yields

(3.5)
�.
p
PT f /

PT f
�
1

2

�
1 �

2KT

2b C 1

�
�PT f

PT f
C
n

2

�
b2

.2b � 1/T
C

K2T

2b C 1
�K

�
:

When K D 0 and b D 1, this reduces to the familiar Li–Yau inequality on graphs (as derived
by [8]). Indeed, per the identity �Ptf D àtPtf D 2

p
Ptf àt

p
Ptf and switching the

notion T to t , (3.5) reduces to

�.
p
Ptf /

Ptf
�
àt
p
Ptfp
Ptf

�
n

2t
; t > 0:

4. Volume growth

While the Li–Yau inequality is an attractive consequence of Theorem 3.2, a version
was already known to hold on graphs using the CDE.n;K/ curvature-dimensional inequality
(which is slightly weaker than the CDE0.n;K/ inequality used in Theorem 3.2).

In this section, we begin by exhibiting a further application of the variational inequality,
and use it derive volume doubling from non-negative curvature. Establishing volume doubling
was out of reach of previous work.
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Horn, Lin, Liu and Yau, Volume doubling 19

Theorem 4.1. LetG D .V;E/ be a locally finite and connected graph satisfying condi-
tion CDE0.n; 0/. There exists an absolute positive constant � > 0, and A > 0, depending only
on n, such that

(4.1) PAr2.1B.x;r//.x/ � �; x 2 V; r >
1

2
:

Proof. Again, we proceed by carefully choosing a 
 to apply Theorem 3.2. Let

˛.t/ D � C T � t; 
.t/ D �
n

4.� C T � t /

for � > 0, and K D 0. For such a choice

˛0 �
4˛


n
C 2˛K D 0;

2˛


n
D �

1

2
;

2˛
2

n
D

n

8.� C T � t /
;

after simplifying the main inequality. Integrate the inequality from 0 to T to obtain

(4.2) �PT .�.
p
f // � .T C �/�.

p
PT f / � �

T

2
�PT f �

n

8
log
�
1C

T

�

�
PT f:

Now, suppose that f is a non-positive c-Lipschitz function (that is, jf .y/ � f .x/j � c
if x � y.) Fix � � 0, and consider the function ' D e2�f . Clearly, ' is positive and bounded.
Let

 .�; t/ D
1

2�
log.Pte2�f /

so that Pt' D Pt .e2�f / D e2� .
Applying (4.2) to ', and switching notation from T to t , one obtains that

(4.3) �Pt .�.e
�f // � .t C �/�.e� / � �

t

2
�Pt' �

n

8
log
�
1C

t

�

�
e2� :

Fix x 2 V . Taking C.�; c/ D
q
D�
2
ce�c <1,

�.e�f /.x/ D
1

2

eX
y�x

�
e�f.y/ � e�f.x/

�2
D
1

2
e2�f .x/

eX
y�x

�
e�.f .y/�f .x// � 1

�2
D
1

2
e2�f .x/

�FX
0�f .y/�f .x/�c

�
e�.f .y/�f .x// � 1

�2
C

GX
�c�f .y/�f .x/�0

�
e�.f .y/�f .x// � 1

�2�

�
1

2
e2�f .x/

�
e2�c

FX
0�f .y/�f .x/�c

�
1 � e��c

�2
C

GX
�c�f .y/�f .x/�0

�
e��c � 1

�2�

�
1

2
e2�f .x/e2�c

eX
y�x

�
e��c � 1

�2
� C.�; c/2�2e2�f .x/:
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20 Horn, Lin, Liu and Yau, Volume doubling

This allows us to upper bound the left-hand side of (4.3), obtaining

�Pt .�.e
�f // � .t C �/�.e� / � �Pt .�.e

�f // � C.�; c/2�2�Pt .e
2�f /

D C.�; c/2�2�e2� :

Combining this with the fact that

�Pt' D àte2� D 2�e2� àt ;

we obtain that

(4.4) àt � �
�

t

�
C.�; c/2� C

n

8�2
log
�
1C

t

�

��
:

Since (4.4) holds for all � , we optimize. Set � to be the optimal value

�0 D
t

2

�r
1C

n

2�2C.�; c/2t
� 1

�
;

and substitute into (4.4) to obtain

(4.5) � àt � �C.�; c/2G
�

1

�2C.�; c/2t

�
:

Here,

G.s/ D
1

2

�r
1C

n

2
s � 1

�
C
n

8
s log

�
1C

2q
1C n

2
s � 1

�
; s > 0:

Note that G.s/! 0 as s ! 0C, and that G.s/ �
q
ns
2

as s !C1. Integrate inequality
(4.5) between t1 and t2 (for t1 � t2) to obtain

 .�; t1/ �  .�; t2/C �C.�; c/
2

Z t2

t1

G

�
1

�2C.�; c/2t

�
dt:

Jensen’s inequality in  yields that

2� .�; t/ D ln.Pte2�f / � Pt .ln e2�f / D 2�Ptf:

This yields that �Pt1f � � .�; t1/. Combining with the previous inequality shows that for
all t1 � t2,

Pt1.�f / � � .�; t2/C �
2C.�; c/2

Z t2

t1

G

�
1

�2C.�; c/2t

�
dt:

Replacing t2 with t , and letting t1 ! 0C, we obtain

(4.6) �f � � .�; t/C �2C.�; c/2
Z t

0

G

�
1

�2C.�; c/2�

�
d�:

Now fix a vertex x 2 V . Let B D B.x; r/, and consider the function f .y/ D �d.y; x/.
Clearly, f is 1-Lipschitz. For such a 1-Lipschitz function, we may use

C.�; c/ D

r
D�

2
e�

in the proceeding.
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Horn, Lin, Liu and Yau, Volume doubling 21

Clearly,
e2�f � e�2�r1Bc C 1B :

Thus for every t > 0 one has

e2� .�;t/.x/ D Pt .e
2�f /.x/ � e�2�r C Pt .1B/.x/;

which yields the lower bound

Pt .1B/.x/ � e2� .�;t/.x/ � e�2�r :

Inequality (4.6) allows us to estimate the first term in this lower bound. If

�.�C.�; c/; t/ D �2C.�; c/2
Z t

0

G

�
1

�2C.�; c/2�

�
d�;

then (4.6) yields
1 D e2�f .x/ � e2� .�;t/.x/e2�.�C.�;c/;t/:

Hence
Pt .1B/.x/ � e�2�.�C.�;c/;t/ � e�2�r :

Choose �C.�; c/ D 1
r

, t D Ar2 to obtain

PAr2.1B/.x/ � e
�2�. 1

r
;Ar2/

� e�
2

C.�;c/ :

To finish, we must choose A > 0 sufficiently small, depending only on n, and a � > 0 so
that for every x 2 V and r > 1

2
,

(4.7) e�2�.
1
r
;Ar2/

� e�
2

C.�;c/ � �:

(Note that, actually, the point that r > 1
2

simply implies that the term e�
2

C.�;c/ is not one.
Replacing this by r > � for any positive � would likewise suffice.)

To see that such an A exists, consider the function

�

�
1

r
; Ar2

�
D

1

r2

Z Ar2

0

G

�
r2

�

�
d� D

Z 1
A�1

G.t/

t2
dt:

One has �.1
r
; Ar2/! 0 as A! 0C, and hence such a sufficiently small A exists to ensure

that (4.7) holds and this completes the proof.

Now we use the previous result to show that non-negatively curved graphs (with respect
to CDE0) satisfy the volume doubling property. That is, we prove:

Theorem 4.2. Suppose thatG is a locally finite, connected graph satisfying CDE0.n; 0/.
Then G satisfies the volume doubling property DV.C /. That is, there exists a positive constant
C D C.n;D�; �max; !min/ such that for all x 2 V and all r > 0,

V.x; 2r/ � CV.x; r/:

Actually, some simple computations give slightly stronger conclusions on volume regu-
larity. We will find these useful later, in the proof of a Gaussian estimate.

Brought to you by | Renmin University of China
Authenticated | linyong01@ruc.edu.cn author's copy

Download Date | 10/19/17 7:12 AM



22 Horn, Lin, Liu and Yau, Volume doubling

Remark 3. For any r � s,

V.x; r/ � V
�
x; 2

�
log. rs /

log2

�
C1
s
�

� C
1C

log. rs /
log2 V.x; s/

D C

�
r

s

� logC
log2

V.x; s/;

where Œx� denotes the integer part of x.

One final tool in the proof of Theorem 4.2 is an explicit form of a Harnack inequality
arising from the Li–Yau inequality as derived in [8]. In the (simplified by our assumption that
K D 0) form in which we apply it, it states the following:

Corollary 4.3. Suppose that G is a finite or infinite graph satisfying CDE0.n; 0/. Then,
for every x 2 V and .t; y/; .s; z/ 2 .0;C1/ � V with t < s, one has

p.t; x; y/ � p.s; x; z/

�
s

t

�n
exp

�
4�maxd.y; z/

2

!min.s � t /

�
:

We now turn to the proof of Theorem 4.2.

Proof. From the semigroup property and the symmetry of the heat kernel given in
Remark 2, for any y 2 V and t > 0 one has

p.2t; y; y/ D
X
z2V

�.z/p.t; y; z/2:

Consider a cutoff function h 2 V R such that 0 � h � 1, h � 1 on B.x;
p
t
2
/ and h � 0 out-

side B.x;
p
t /. We have

Pth.y/ D
X
z2V

�.z/p.t; y; z/h.z/

�

�X
z2V

�.z/p.t; y; z/2
� 1
2
�X
z2V

�.z/h.z/2
� 1
2

� .p.2t; y; y//
1
2 .V .x;

p
t //

1
2 :

Take y D x, and t D r2 to obtain

(4.8)
�
Pr2.1B.x; r2 //.x/

�2
� .Pr2h.x//

2
� p.2r2; x; x/V .x; r/:

At this point we use the crucial inequality (4.1), which gives for some 0 < A < 1, depending
on the dimension n,

PAr2.1B.x;r//.x/ � �; x 2 V; r >
1

2
:

Combine the latter inequality with (4.8) and Corollary 4.3 to obtain an on-diagonal lower
bound

(4.9) p.2r2; x; x/ �
��

V.x; r/
; x 2 V; r >

1

2
:
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Horn, Lin, Liu and Yau, Volume doubling 23

Apply Corollary 4.3 to p.t; x; y/, to obtain that for every y 2 B.x;
p
t /,

(4.10) p.t; x; x/ � C.n; �max; !min/p.2t; x; y/:

Integrating the above inequality over B.x;
p
t / with respect to y gives

p.t; x; x/V .x;
p
t / � C

X
y2B.x;

p
t/

�.y/p.2t; x; y/ � C:

Taking t D 4r2 yields the on-diagonal upper bound

(4.11) p.4r2; x; x/ �
C

V.x; 2r/
:

Combining (4.9) and (4.10) with (4.11), we finally obtain for any r > 1
2

,

V.x; 2r/ �
C

p.4r2; x; x/
�

C �

p.2r2; x; x/
� C ��V.x; r/:

When 0 < r � 1
2

, V.x; 2r/ � V.x; r/ D �.x/, the result is obvious. This completes the proof
of the corollary.

As a remark, while the proof is fairly simple, it illustrates the power of inequality (4.8).
In [8], polynomial volume growth was proved for non-negatively curved graphs through a di-
rect, but somewhat unusual, application of the Harnack inequality (cf. [8, Corollary 7.5]).
A stronger Harnack inequality, of the type introduced in Section 2 and which implies vol-
ume doubling, was only proven under the assumption of a “strong cutoff function”. Such a
function was shown to exist in some cases, but for non-negatively curved graphs in general
only a weaker Li–Yau inequality was proved which led to a weaker Harnack inequalities could
not imply volume doubling. The lesson here should be taken that using the heat-semigroup ar-
guments as done above allows us to work around the lack of strong cutoff functions for graphs.

5. Gaussian estimates

In this section we focus on the normalized Laplacian: that is, we take our measure � to
be �.x/ D m.x/. We will prove a discrete-time Gaussian estimate on an infinite, connected
and locally finite graph G D .V;E/.

Let Pt .x; y/ D p.t; x; y/m.y/ be the continuous-time Markov kernel on the graph. It is
also a solution of the heat equation. By symmetry, the heat kernel p.t; x; y/ satisfies

Pt .x; y/

m.y/
D

Pt .y; x/

m.x/
:

Let pn.x; y/ be the discrete-time kernel on G, which is defined by8̂<̂
:

p0.x; y/ D ıxy ;

pkC1.x; z/ D
X
y2V

p.x; y/pk.y; z/;
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24 Horn, Lin, Liu and Yau, Volume doubling

where p.x; y/ WD !xy
m.x/

, and ıxy D 1 only when x D y, otherwise equals 0. We know the two
kernels satisfy

(5.1) e�t
C1X
kD0

tk

kŠ
pk.x; y/ D Pt .x; y/:

In order to obtain our desired Gaussian estimate, we first establish a continuous-time
Gaussian on-diagonal estimate for graphs. Work in [8] shows that their Harnack inequality
suffices to prove a Gaussian upper bound for bounded degree graphs satisfying CDE.n; 0/.
A Gaussian lower bound was not proven, however. This failure is closely tied to the inability to
use CDE to imply volume doubling. With the new information gleaned from our modified cur-
vature condition, we are however able to derive a Gaussian lower bound, as we now illustrate.

Theorem 5.1. Suppose that G is a locally finite graph satisfying CDE0.n0; 0/. Then G
satisfies the continuous-time Gaussian estimate. That is, there exists a constant C depending
on n0 so that, for any x; y 2 V and for all t > 0,

Pt .x; y/ �
Cm.y/

V.x;
p
t /
:

Furthermore, for any t0 > 0, there exist constants C 0 and c0 so that for all t > t0,

Pt .x; y/ �
C 0m.y/

V.x;
p
t /

exp
�
�c0

d.x; y/2

t

�
:

Proof. The upper bound follows from the methods of [8], as the Harnack inequal-
ity obtained in that paper still applies for graphs satisfying CDE0.n0; 0/. For completeness,
we include the brief proof. From Corollary 4.3, for any t > 0, choosing s D 2t and for any
z 2 B.x;

p
t /, we have

p.t; x; y/ � p.2t; z; y/2n0 exp
�
4�max

!min

�
:

Integrating the above inequality over B.x;
p
t / with respect to z gives

p.t; x; y/ �
C

V.x;
p
t /

X
z2B.x;

p
t/

�.z/p.2t; z; y/ �
C

V.x;
p
t /
:

We now prove the lower bound estimate. Recall that we only claim the result under the
assumption that t > t0. The result is most transparent if t0 > 1

2
. In this case, then taking t > 1

2

and choosing 2r2 D "t for some 0 < " < 1, equation (4.9) implies that every x 2 V satisfies

(5.2) p."t; x; x/ �
��

V.x;
q
"t
2
/
�

��

V.x;
p
t /
:

Applying Corollary 4.3, taking "t as “t”, taking t to be “s”, and choosing y D x; z D y, we
obtain

(5.3) p."t; x; x/ � p.t; x; y/"n0 exp
�
4�maxd.x; y/

2

!min.1 � "/t

�
:
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Combining (5.2) with (5.3), we finally obtain for any t > 1
2

,

p.t; x; y/ �
"�n0��

V.x;
p
t /

exp
�
�
4�maxd.x; y/

2

!min.1 � "/t

�
D

C 0

V.x;
p
t /

exp
�
�c0

d.x; y/2

t

�
:

While we assumed that t > 1
2

here, if we fix any t0 > 0, it is easy to rework the proof Theo-
rem 4.1 to work with such an arbitrary t0 and this completes the proof of the theorem.

The remaining difficulty is verifying that the lower bound holds for small t (as t ! 0C).
This we will defer to Remark 4, which we prove after establishing the discrete-time Gaussian
estimate. Together, this will complete the proof of Theorem 5.1.

As a special case, note that if t � max¹d.x; y/2; 1
2
º, then the lower estimate can be writ-

ten as

(5.4) p.t; x; y/ �
C 00

V.x;
p
t /
:

Before we ultimately finish the continuous-time lower bound, we address the discrete-time
estimate. We begin with the on-diagonal estimate:

Proposition 5.2. Suppose that G is a graph satisfying CDE0.n0; 0/ and �.ˇ/. Then
there exist cd ; Cd > 0, for any x; y 2 V , such that

pn.x; y/ �
Cdm.y/

V.x;
p
n/

for all n > 0;

pn.x; y/ �
cdm.y/

V.x;
p
n/

if n � d.x; y/2:

This proposition follows the methods of Delmotte from [18]. To prove it, we first intro-
duce some necessary results. Assume that �.˛/ holds (cf. Definition 2.1), so that we can
consider the positive submarkovian kernel

p.x; y/ D p.x; y/ � ˛ıxy :

Now, compute Pn.x; y/ and pn.x; y/ with p.x; y/,

Pn.x; y/ D e
.˛�1/n

C1X
kD0

nk

kŠ
pk.x; y/ D

C1X
kD0

akpk.x; y/;

pn.x; y/ D

nX
kD0

C kn ˛
n�kpk.x; y/ D

nX
kD0

bkpk.x; y/:

There is a lemma from [18] to compare the two sums as follows.

Lemma 5.1. Let ck D
bk
ak

, for 0 � k � n, and suppose ˛ � 1
4

. Then the following state-
ments hold:
� ck � C.˛/ when 0 � k � n,
� ck � C.a; ˛/ > 0 when n � a2

˛2
and jk � .1 � ˛/nj � a

p
n.

Note that the condition that ˛ � 1
4

implies that n
2
� k � n in the second assertion. Note

that assuming ˛ � 1
4

does not inhibit us: it is clear from the definition that if �.˛/ holds, so
does �.˛0/ for any ˛0 < ˛.
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26 Horn, Lin, Liu and Yau, Volume doubling

Now we turn to the proof of Proposition 5.2.

Proof of Proposition 5.2. The proof comes from Delmotte of [18].
The first assertion in Lemma 5.1 implies, for any n 2 N,

pn.x; y/ � C.ˇ/Pn.x; y/:

The upper bound, then, is an immediate consequence of Theorem 5.1: for any x; y 2 V ,

pn.x; y/ �
C.ˇ/Cm.y/

V .x;
p
n/
D

Cdm.y/

V.x;
p
n/
:

The second assertion is a little more complicated.
Suppose, for a minute, that for any " > 0, there exists an a > 0 such that

(5.5)
X

jk�.1�˛/nj>a
p
n

akpk.x; y/ �
"m.y/

V .x;
p
n/
:

We return briefly to prove that such an a always exists. Fix such an a for a sufficiently small ",
taking, say,

0 < " <
1

2
C 0 �

1

2
Pn.x; y/ �

V.x;
p
n/

m.y/
:

We set ˛ D ˇ
2

, and n � N D a2

˛2
. For such choices, the second assertion of Lemma 5.1 implies

that

pn.x; y/ �
X

jk�.1�˛/nj�a
p
n

bkpk.x; y/

� C.a; ˛/
X

jk�.1�˛/nj�a
p
n

akpk.x; y/;

and furthermore

C.a; ˛/Pn.x; y/ D C.a; ˛/
X

jk�.1�˛/nj�a
p
n

akpk.x; y/

C C.a; ˛/
X

jk�.1�˛/nj>a
p
n

akpk.x; y/

� pn.x; y/C C.a; ˛/
X

jk�.1�˛/nj>a
p
n

akpk.x; y/

� pn.x; y/C C.a; ˛/
"m.y/

V .x;
p
n/
:

Since we assume n � d.x; y/2, by applying the second assertion of (5.4) we obtain

pn.x; y/ � C.a; ˛/

�
Pn.x; y/ �

"m.y/

V .x;
p
n/

�
� C.a; ˛/

�
C 0m.y/

V.x;
p
n/
�

"m.y/

V .x;
p
n/

�
D

cdm.y/

V.x;
p
n/
;

as desired.

Brought to you by | Renmin University of China
Authenticated | linyong01@ruc.edu.cn author's copy

Download Date | 10/19/17 7:12 AM



Horn, Lin, Liu and Yau, Volume doubling 27

Thus it remains to prove that (5.5) can be satisfied. First consider another, slightly modi-
fied, Markov kernel p0 D p

1�˛
. Such a kernel is generated by weights !0xy as follows:

!0xx D
!xx � ˛m.x/

1 � ˛
� ˛m.x/ for all x 2 V;

!0xy D
!xy

1 � ˛
for all x ¤ y 2 V;

m0.x/ D m.x/:

Note that �.˛/ is true in G with the new weights. Condition CDE0.n0; 0/ also still holds for
the new weights, because if one lets �0 be the new Laplacian for !0xy , then for any f; g 2 V R

we obtain
�0f .x/ D

1

1 � ˛
�f .x/; � 0.f; g/ D

1

1 � ˛
�.f; g/;

� 02.f; g/ D
1

.1 � ˛/2
�2.f; g/; e� 02.f / D 1

.1 � ˛/2
e�2.f /:

Furthermore, the process of proving DV.C / still works when adding loops to every point of
graph. Then DV.C / is still satisfied for the new weights. This yields

p0k.x; y/ �
C 0
d
m.y/

V.x;
p
k/
;

and hence

pk.x; y/ �
C 0
d
m.y/.1 � ˛/k

V.x;
p
k/

:

Next, we prove the following estimate:

e.˛�1/n
X

jk�.1�˛/nj>a
p
n

..1 � ˛/n/k

kŠ

1

V .x;
p
k/
�

"0

V.x;
p
n/
:

The sum for k > a
p
nC .1 � ˛/n is easier because we simply use

V.x;
p
k/ � V

�
x;

r
n

2

�
� V

�
x;

p
n

2

�
�
V.x;

p
n/

C1

giving

e.˛�1/n
X

k>a
p
nC.1�˛/n

..1 � ˛/n/k

kŠ

1

V .x;
p
k/

� e.˛�1/n
C1

V.x;
p
n/

X
k>a
p
nC.1�˛/n

..1 � ˛/n/k

kŠ

� e.˛�1/n
C1

V.x;
p
n/

..1 � ˛/n/.1�˛/nCa
p
n

.a
p
nC .1 � ˛/n/Š

1

1 � .1�˛/n

a
p
nC.1�˛/n

�
CC1

V.x;
p
n/

exp
�
a
p
n � .a

p
nC .1 � ˛/n/ log

�
1C

a

.1 � ˛/
p
n

��
�

1p
a
p
nC .1 � ˛/n

a
p
nC .1 � ˛/n

a
p
n

�
"0

2V.x;
p
n/
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28 Horn, Lin, Liu and Yau, Volume doubling

for our (arbitrary) choice of "0, so long as a is sufficiently large. The second to last inequality
follows from the inequality

kŠ �
kke�k

p
k

C
:

The final line holds by as our assumption n � a2

˛2
implies

1p
a
p
nC .1 � ˛/n

a
p
nC .1 � ˛/n

a
p
n

�
1

a
:

Finally, observe that, by the inequality

log.1C u/ �
u

1C u
C

u2

2.1C u/2

for any real number u � 0, then the exponential is negative and for a sufficiently large a the
claim holds.

Remark 3 allows us to deal with 1 � k < �a
p
nC .1 � ˛/n. It gives

V.x;
p
k/ � C

� p
k

p
k � 1

� logC
log2

V.x;
p
k � 1/ � C2V.x;

p
k � 1/:

The terms 1 � k � .1�a/n
2C2

satisfy

..1 � ˛/n/k�1

.k � 1/Š

1

V .x;
p
k � 1/

�
1

2

..1 � ˛/n/k

kŠ

1

V .x;
p
k/
;

and the estimate is straightforward. When .1�a/n
2C2

< k < �a
p
nC.1�˛/n, applying Remark 3

gives

V.x;
p
k/ � V

�
x;

s
.1 � a/n

2C2

�
� C3V.x;

p
n/:

This completes the proof.

To prove our discrete-time Gaussian upper bounds, we first recall the following result
from [14].

Theorem 5.3. For a reversible nearest neighborhood random walk on the locally finite
graph G D .V;E/, the following properties are equivalent:

(1) The relative Faber–Krahn inequality .FK/.

(2) The discrete-time Gaussian upper estimate in conjunction with the doubling property
DV.C /.

(3) The discrete-time on-diagonal upper estimate in conjunction with the doubling property
DV.C /.

Now we complete the proof of the discrete-time Gaussian estimate.
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Theorem 5.4. Suppose thatG is a locally finite graph satisfying CDE0.n0; 0/ and�.˛/.
Then G satisfies the discrete-time Gaussian estimate G.cl ; Cl ; Cr ; cr/.

Proof. We have already observed that the discrete-time on-diagonal upper estimate and
the doubling property DV.C / both hold for graphs satisfying CDE0.n0; 0/ and �.˛/. Theo-
rem 5.3 immediately implies the discrete-time Gaussian upper estimate.

The lower bound follows from the on-diagonal one. The strategy is similar to Delmotte
of [18]. We repeatedly apply the second assertion of Proposition 5.2. Set n D n1Cn2C� � �Cnj ,
x D x0; x1; : : : ; xj D y and B0 D x, Bi D B.xi ; ri /, Bj D y such that8̂<̂

:
j � 1 � C d.x;y/2

n
;

ri � c
p
niC1; so that V.z;

p
niC1/ � AV.Bi /, when z 2 Bi ,

supz2Bi�1;z02Bi d.z; z
0/2 � ni ; so that pni .z; z

0/ � cdm.z
0/

V.z;
p
ni /

.

Such a decomposition allows us to immediately derive the lower bound. Indeed,

pn.x; y/ �
X

.z1;:::;zj�1/2B1�����Bj�1

pn1.x; z1/pn2.z1; z2/ � � �pnj .zj�1; y/

�

X
.z1;:::;zj�1/2B1�����Bj�1

cdm.z1/

V .x;
p
n1/

cdm.z2/

V .z1;
p
n2/
� � �

cdm.y/

V.zj�1;
p
nj /

� c
j

d
A1�j

X
.z1;:::;zj�1/2B1�����Bj�1

m.z1/

V .x;
p
n1/

m.z2/

V .B1/
� � �

m.y/

V.Bj /

D
cdm.y/

V.x;
p
n1/

�
cd

A

�j�1
:

If we choose Cl � C log. A
cd
/, and V.x;

p
n1/ � V.x;

p
n/, the Gaussian lower bound

pn.x; y/ �
cdm.y/

V.x;
p
n/
e�Cl

d.x;y/2

n ;

and thus the theorem, follows.

From the discrete-time Gaussian estimate, we return to derive a continuous-time Gauss-
ian lower bound estimate for small t promised in the discussion after Theorem 5.1.

Remark 4. If G is a graph satisfying CDE0.n0; 0/, and�.˛/ and t is sufficiently small,
then for any x; y 2 V ,

Pt .x; y/ �
C 0m.y/

V.x;
p
t /

exp
�
�c0

d.x; y/2

t

�
holds, with c0; C 0 depending on the dimension parameter n0 and ˛.

Proof. We first consider d.x; y/ D 0; in other words when x D y. We need to prove
that

Pt .x; x/ �
C 0m.x/

V.x;
p
t /
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30 Horn, Lin, Liu and Yau, Volume doubling

when t for small t . In fact, the relationship between the continuous-time heat kernel and the
discrete-time heat kernel (5.1) gives that for any t > 0,

Pt .x; x/ D e
�t
C1X
kD0

tk

kŠ
pk.x; x/

D e�tp0.x; x/C e
�t
X
k�1

tk

kŠ
pk.x; y/

� e�tp0.x; x/ D e
�t :

For sufficiently small t , then, Pt .x; x/ � C
0 for some C 0 > 0. On the other hand, one has

V.x;
p
t / D m.x/ when t is small enough and so the desired lower bound holds.

Now we consider d.x; y/ � 1. When k < d.x; y/, clearly pk.x; y/ D 0. We obtain

Pt .x; y/ D e
�t
C1X
kD0

tk

kŠ
pk.x; y/

D e�t
X

k�d.x;y/

tk

kŠ
pk.x; y/

� e�t
X

k�d.x;y/

tk

kŠ

cdm.y/

V.x;
p
k/
e�Cl

d.x;y/2

k

� e�t
t .d.x;y/C1/

.d.x; y/C 1/Š

cdm.y/

V.x;
p
d.x; y/C 1/

e�Cl
d.x;y/2

d.x;y/C1

C e�t
X

k¤d.x;y/C1; k�d.x;y/

tk

kŠ

cdm.y/

V.x;
p
k/
e�Cl

d.x;y/2

k

� e�t
t .d.x;y/C1/

.d.x; y/C 1/Š

cdm.y/

V.x;
p
d.x; y/C 1/

e�Cl .d.x;y/C1/

�
cde
�t

C0

m.y/

m.x/
�

e�Cl .d.x;y/C1/t .d.x;y/C1/

.d.x; y/C 1/n0.d.x; y/C 1/Š
:

In the third step, we apply the discrete-time Gaussian lower bound estimate of heat kernel
pk.x; y/ under the assumption of CDE0.n0; 0/ and�.˛/ from Theorem 5.4. In the fourth step,
we separate the sum in to two parts to emphasize that, in the fifth step, we drop the (positive)
second part and keep only the term k D d.x; y/C 1 > 1 from the original summation. Finally,
we use polynomial volume growth in the last step (which follows from condition CDE.n0; 0/
and hence from CDE0.n0; 0/) from [8, Corollary 7.8]. This states that, under CDE.n0; 0/, there
exists a constant C0 > 0 such that, for any r > 1,

V.x;
p
r/ � C0m.x/r

n0 :

To finish, consider the following function f , where here d D d.x; y/ � 1:

f .t; d/ D �
t

d2
ln
�
e�Cl .dC1/t .dC1/

.d C 1/n0.d C 1/Š

�
D �t ln t

d C 1

d2
C t

�
Cl.d C 1/

d2
C n0

ln.d C 1/
d2

C
ln.d C 1/Š

d2

�
! 0 .t ! 0C/;
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One easily observes that f .t; d/ is positive for t small enough, and moreover both dC1
d2

and
Cl .dC1/

d2
C n0

ln.dC1/
d2

C
ln.dC1/Š
d2

are bounded by a constant not depending on d . Thus, for t
small enough, there exists a constant c0 > 0 independent of d such that

f .t; d/ � c0:

But then, for all positive integers d � 1,

e�Cl .dC1/t .dC1/

.d C 1/n0.d C 1/Š
� exp

�
�c0

d2

t

�
.t ! 0C/:

Moreover, when t is small enough, V.x;
p
t / D m.x/, and e�t is bounded. Combining, we

obtain

Pt .x; y/ �
C 0m.y/

V.x;
p
t /

exp
�
�c0

d.x; y/2

t

�
.t ! 0C/:

This completes the proof.

Combining yields the following.

Theorem 5.5. Suppose thatG is a locally finite graph satisfying CDE0.n0; 0/ and�.˛/.
Then G satisfies the following four properties:

(1) There exist C1; C2; ˛ > 0 such that DV.C1/, P.C2/, and �.˛/ are true.

(2) There exist cl ; Cl ; Cr ; cr > 0 such that G.cl ; Cl ; Cr ; cr/ is true.

(3) For any � 2 .0; 1/ and 0 < �1 < �2 < �3 < �4, there exists a constant CH such that
H.�; �1; �2; �3; �4; CH / is true.

(3)’ For any � 2 .0; 1/ and 0 < �1 < �2 < �3 < �4, there exists a constant CH such that
H .�; �1; �2; �3; �4; CH / is true.

Proof. Condition CDE0.n0; 0/ implies DV.C1/ (by Theorem 4.2), and Theorem 5.4
states that CDE0.n0; 0/ and �.˛/ implies G.cl ; Cl ; Cr ; cr/. From (2), work of Delmotte in
[18] implies that P.C2/ is true, and that (3) and (3)’ hold as well.

6. Diameter bounds

In this section we will show another application of Theorem 3.2. We prove that positively
curved graphs (that is, graphs satisfying CDE0.n;K/ for some K > 0 are finite. In order to
prove this, we consider an alternate to the graph distance function on a graph, the so-called
canonical distance and diameter of G associated with a Laplace operator �:ed.x; y/ D sup

f 2`1.V;�/; k�.f /k1�1

jf .x/ � f .y/j; x; y 2 V;

eD D sup
x;y2V

ed.x; y/:
This distance was introduced in [9], and has been used for example in [1,25,29]. In this section
we are concerned with simple, connected and loopless graphs.
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32 Horn, Lin, Liu and Yau, Volume doubling

6.1. Global heat kernel bounds. In this subsection, under the assumption that a graph
is positively curved, we prove a bound on the total measure of a graph. This is used to derive
a global heat kernel bound, and ultimately to establish that the graph’s diameter is finite. The
most crucial of these steps is an estimate proving that the total measure of the graph is finite.

We apply Theorem 3.2, choosing 
 in a such a way that

˛0 �
4˛


n
C 2˛K D 0:

That is, choose


 D
n

4

�
˛0

˛
C 2K

�
:

Integrating both sides of the inequality (3.3) from 0 to T , we obtain

˛.T /
PT .�.

p
f //

PT f
� ˛.0/

�.
p
PT f /

PT f
(6.1)

�
2

n

�Z T

0

˛
 dt

�
�PT .f /

PT f
�
2

n

Z T

0

˛
2 dt:

Our first result in the subsection is the following.

Proposition 6.1. Let G D .V;E/ be a locally finite, connected graph satisfying condi-
tion CDE0.n;K/ for some K > 0. Then, for all 0 < � < K and t0 > 0, there exists a constant
C1 > 0 such that for every non-negative f satisfying kf k1 � 1, and every t � t0,

j
p
Ptf .x/ �

p
Ptf .y/j � C1e

� �
2
ted.x; y/; x; y 2 V:

Remark. Of course, it is easy to replace the assumption that kf k1 � 1 by kf k1 �M
for any M � 0.

Proof. Fix some 0 < � < K and some 0 < t0 � T . We show the inequality holds at
time T assuming T is sufficiently large. In (6.1), we take

˛.t/ D 2Ke��t .e��t � e��T /
2K
�
�1;

so that
˛.0/ D 2K.1 � e��T /

2K
�
�1 and ˛.T / D 0:

With such a choice a simple computation gives


 D
n

4

�
�e��T

2K � �

e��t � e��T

�
;

which is non-positive for 0 � t � T . Then, for any T > 0,

(6.2) �Kn.1 � e��T /
2K
�
�1�.

p
PT f /

PT f
�

�Z T

0

˛
 dt

�
�PT .f /

PT f
�

Z T

0

˛
2 dt:

Now, we compute Z T

0

˛
 dt D �
nK

2
.1 � e��T /

2K
�
�1.e��T /

and Z T

0

a
2 dt D
Kn2

8
.1 � e��T /

2K
�
�2e�2�T �

�
�.2K

�
� 1/2

2K
�
� 2

�
:
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We thus obtain from (6.2) that for any T > t0 � 0,

0 � �Kn.1 � e��T /
2K
�
�1�.

p
PT f /

PT f
(6.3)

� �
nK

2
.1 � e��T /

2K
�
�1e��T

�PT f

PT f

�
Kn2�.2K

�
� 1/2

8.2K
�
� 2/

.1 � e��T /
2K
�
�2e�2�T :

Dividing, and switching notation from T to t , we obtain that

�.
p
Ptf / �

1

2
e��t�Ptf C

n�.2K
�
� 1/2

4.2K
�
� 2/.1 � e��t /

e�2�tPtf � C
2
1 e
��t ;(6.4)

with

C1 D

vuutD� C
n�.2K

�
� 1/2

8.2K
�
� 2/.e�t0 � 1/

:

Consider the function

u.x/ D
1

C1
e
�
2
t
p
Ptf .x/ 2 `

1.V; �/:

By construction, we have normalized u so that for any t � t0, k�.u/k1 � 1. By the definition
of the canonical distanceed.x; y/,

ju.x/ � u.y/j � ed.x; y/;
In turn,

j
p
Ptf .x/ �

p
Ptf .y/j � C1e

� �
2
ted.x; y/:

as desired.

Proposition 6.2. Let G D .V;E/ be a locally finite, connected graph satisfying condi-
tion CDE0.n;K/ for some K > 0. Then, for all 0 < � < K and t0 > 0, there exists a constant
C2 > 0 such that for every non-negative function f with kf k1 � 1, and for every t � t0,

jàtPtf j � C2e�
�
2
t :

Proof. Let Ptf D u. Then

j�uj �
eX
y�x

ju.y/ � u.x/j

D
eX
y�x

�p
u.y/C

p
u.x/

�
j
p
u.y/ �

p
u.x/j

�

�eX
y�x

�p
u.y/C

p
u.x/

�2� 12�eX
y�x

�p
u.y/ �

p
u.x/

�2� 12
� 2

p
2D�C

q
�.
p
u/:

Combing with (6.4), we let C2 D 2
p
2D� � C1. This yields the desired result.
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34 Horn, Lin, Liu and Yau, Volume doubling

Proposition 6.3. Let G D .V;E/ be a locally finite, connected graph satisfying condi-
tion CDE0.n;K/ with K > 0. Then the measure � is finite, that is, �.V / <1.

Proof. By Proposition 6.2, the limit of p.t; x; � / exists and is finite when t !1. More-
over, Proposition 6.1 along with property (2) of the heat kernel from Remark 2, imply that
limt!1 p.t; x; � / is some non-negative value c.x/ � 0. The symmetry of the heat kernel im-
plies that c.x/ actually does not depend on x.

To show the finiteness of the measure, it will suffice to prove that this limit is actually
strictly positive under our assumption that CDE0.n;K/ holds for some K > 0.

We apply the lower bound in Proposition 6.2, integrating it from some t1 > t0 to 1
to obtain

lim
t!1

p.t; x; � / � p.t1; x; y/ D

Z 1
t1

àtp.t; x; � / dt � �
2C2

s
e�

�
2
t1 :

Let y D x. Theorem 7 of [8] states that there is some constant C 0 > 0 so that

p.t1; x; x/ �
C 0

tn1

under condition CDE.n; 0/, and hence CDE.n;K/ – and hence CDE0.n;K/ – for any K > 0.
Thus combining,

lim
t!1

p.t; x; x/ �
C 0

tn1
�
2C2

�
e�

�
2
t1 > 0:

This implies that limt!1 p.t; x; y/ D c > 0 for any x; y 2 V . This, in turn, (from property (3)
in Remark 2) implies that the measure � is finite.

Finally, we state a result from [22], which says the having infinite measure and having
infinite diameter are equivalent properties for locally compact separable metric spaces M sat-
isfying volume doubling (DV).

Lemma 6.1. Assume that .M; d/ is connected and satisfies DV. Then

�.M/ D1 ” diam.M/ D1:

Locally finite graphs satisfy the hypothesis of this lemma where d is the graph distance
on graphs. We have already shown in Theorem 4.2 that a graph satisfying CDE0.n; 0/ (and
hence CDE0.n;K/, as CDE0.n;K/) CDE0.n; 0/, for any K > 0) has the volume doubling
property. Combining with Proposition 6.3 and the first equivalence in Lemma 6.1, we get the
following statement that positively curved graphs have finite diameter.

Theorem 6.4. Suppose that G is a locally finite, connected, simple graph satisfying
condition CDE0.n;K/ with K > 0. Then the diameter of G, in terms of the graph distance, is
finite.

Per Proposition 6.3, we may assume � is a probability measure – renormalizing so that
limt!1 p.t; x; � / D 1.
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Proposition 6.5. Suppose thatG is a connected, locally finite graph satisfying condition
CDE0.n;K/ with K > 0. Then, for any x; y 2 V , t > 0,

p.t; x; y/ �
1

.1 � e�
2K
3
t /n
:

Proof. We apply (6.3) with � D 2K
3

. Considering p.�; x; y/, we obtain

à� logp.�; x; y/ � �
2nK

3

e���

1 � e���
:

Integrating from t to1, and using the fact that limt!1 p.t; x; y/ D 1 gives

p.t; x; y/ �
1

.1 � e��t /n
:

This ends the proof.

6.2. Diameter bounds. In this subsection we derive an explicit diameter bound for
graphs satisfying CDE0.n;K/.

The idea is to prove that the operator � satisfies an entropy-energy inequality, as men-
tioned in the introduction. First we derive, for graphs, an analogue of Davies’ theorem ([15]) on
manifolds. Note that, obviously, if � is a finite measure, f 2 `1.V; �/ implies f 2 `p.V; �/
for any p > 1.

Lemma 6.2. Suppose that G is a locally finite, connected graph with �.V / bounded.
Let f 2 `1.V; �/ satisfy kPtf k1 � eM.t/kf k2 for some continuous and decreasing func-
tion M.t/. If kf k2 D 1, then for any t > 0,X

x2V

�.x/f 2.x/ lnf 2.x/ � 2t
X
x2V

�.x/�.f /.x/C 2M.t/:

Proof. Let p.s/ be a bounded, continuous function with p.s/ � 1 and p0.s/ bounded.
For any function 0 � f 2 `1.V; �/, consider the function .Psf /p.s/. Note that .Psf /p.s/

is in `1.V; �/. Likewise, the two functions .Psf /p.s/ lnPsf and �Psf .Psf /p.s/�1 are also
in `1.V; �/. (Note here that at s D 0, if f D 0, we take .Psf /p.s/ lnPsf to be zero as well.)
This tells us that

d

ds
kPsf k

p.s/

p.s/
D

d

ds

X
x2V

�.x/.Psf .x//
p.s/

D

X
x2V

�.x/
d

ds
.Psf .x//

p.s/

D

X
x2V

�.x/
�
p0.s/.Psf .x//

p.s/ lnPsf .x/C p.s/.Psf .x//0.Psf .x//p.s/�1
�

D p0.s/
X
x2V

�.x/.Psf .x//
p.s/ lnPsf .x/

C p.s/
X
x2V

�.x/�Psf .x/.Psf .x//
p.s/�1:
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36 Horn, Lin, Liu and Yau, Volume doubling

At s D 0, specializing to p.s/ D 2t
t�s

(where 0 � s � t � t1, with t > t1 > 0) gives

d

ds
kPsf k

p.s/

p.s/

ˇ̌̌
sD0
D
2

t

X
x2V

�.x/f 2.x/ lnf .x/C 2
X
x2V

�.x/f .x/�f .x/:

On the other hand, we give a lower bound on this derivative. Combining our assump-
tion that kPtf k1 � eM.t/kf k2, for continuous and decreasingM.t/ and our assumption that
kf k2 D 1, and using the Stein interpolation theorem, we obtain

kPsf kp.s/ � e
M.t/s
t :

Then
d

ds
kPsf k

p.s/

p.s/

ˇ̌̌
sD0
�
2M.t/

t
:

This holds due to the fact that

kPsf k
p.s/

p.s/

ˇ̌̌
sD0
D kp.s/k2 D 1;

and e
M.t/sp.s/

t jsD0 D 1. Direct computation gives

1 � lim
s!0C

kPsf k
p.s/

p.s/
� 1

e
M.t/sp.s/

t � 1
D

d

ds
kPsf k

p.s/

p.s/

ˇ̌̌
sD0

t

2M.t/
:

The identity
�

X
x2V

�.x/f .x/�f .x/ D
X
x2V

�.x/�.f /.x/

holds for any f 2 `1.V; �/. Combining with the above equality givesX
x2V

�.x/f 2.x/ lnf 2.x/ � 2t
X
x2V

�.x/�.f /.x/C 2M.t/; t > t1:

This completes the proof.

Proposition 6.6. Let G D .V;E/ be a locally finite, connected graph satisfying condi-
tion CDE0.n;K/. Any 0 � f 2 `1.V; �/ such that kf k2 D 1 satisfiesX

x2V

�.x/f 2.x/ lnf 2.x/ � ˆ
�X
x2V

�.x/�.f /.x/

�
;

where

ˆ.x/ D 2n

��
1C

1

�n
x

�
ln
�
1C

1

�n
x

�
�
1

�n
x ln

�
1

�n
x

��
:

Proof. Fix such an f . Using Proposition 6.5 and the Cauchy–Schwarz inequality gives

kPtf k1 �
1

.1 � e��t /n
kf k2;

where � D 2K
3

. Therefore from Lemma 6.2, we obtainX
x2V

�.x/f 2.x/ lnf 2.x/ � 2t
X
x2V

�.x/�.f /.x/ � 2n ln.1 � e��t /; t > t1 > 0:
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By minimizing the right-hand side of the above inequality over t , we obtainX
y2V

�.y/f 2.y/ lnf 2.y/ � �
2

�
x ln

�
x

x C �n

�
C 2n ln

�
x C �n

�n

�

D 2n

��
1C

1

�n
x

�
ln
�
1C

1

�n
x

�
�
1

�n
x ln

�
1

�n
x

��
;

where x D
P
y2V �.y/�.f /.y/.

We observe that ˆ is a non-negative, monotonically increasing, and concave function, as
we shall use these properties later.

In order to finish the result and bound the diameter, we first define some notation. For
a positive bounded real-valued function f on V , letE.f / denote the entropy of f with respect
to � defined by

E.f / D
X
x2V

�.x/f .x/ lnf .x/ �
X
x2V

�.x/f .x/ ln
�X
x2V

�.x/f .x/

�
:

To ease the notation, we useZ
f d� D

X
x2V

�.x/f .x/:

The Laplace operator � satisfies a logarithmic Sobolev inequality if there exists a � > 0 such
that for all functions f 2 `1.V; �/,

�E.f 2/ � 2

Z
�.f / d�;

Equivalently, it suffices to say that a general logarithmic Sobolev inequality holds if all
f 2 `1.V; �/ with kf k2 D 1 satisfy

(6.5) E.f 2/ � ˆ

�Z
�.f / d�

�
;

where ˆ is a concave and non-negative function on Œ0;1/.

Proposition 6.7. Suppose that� satisfies a general logarithmic Sobolev inequality, and
the function ˆ from (6.5) is non-negative and monotonically increasing. Then G has diameter

eD � p2 Z 1
0

1

x2
ˆ.x2/ dx:

Proof. Consider any function g 2 `1.V; �/, with k�.g/k1 � 1. Let f� D e�g for
some � 2 RC. We will apply (6.5) to the family of non-negative functions

ff� D f�=2

kf�=2k2
:

Let
G.�/ D kf�=2k

2
2 D

Z
e�g d�

and observe that

G0.�/ D

Z
ge�g d�

�
D
1

�

Z
f 2�=2 lnf 2�=2 d�

�
:
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On one hand, it is immediate by the definition of ef that

E.ef 2�/ D 1

G.�/

�
�G0.�/ �G.�/ lnG.�/

�
:

We also must consider the right-hand side of the Sobolev inequality, which contains a term of
the form Z

�.ef �/ d� D 1

kf�=2k
2
2

Z
�.e

�g
2 / d�:

Such terms can be bounded as follows:Z
�.e

�g
2 / d� D

1

2

X
x2V

X
y�x

!xy

�
e
�g.y/
2 � e

�g.x/
2

�2
D
1

2

X
x2V

X
y�x

g.x/>g.y/

!xy

�
e
�g.y/
2 � e

�g.x/
2

�2

C
1

2

X
x2V

X
y�x

g.x/<g.y/

!xy

�
e
�g.y/
2 � e

�g.x/
2

�2

D

X
x2V

X
y�x

g.x/>g.y/

!xy

�
e
�g.y/
2 � e

�g.x/
2

�2

�

X
x2V

X
y�x

g.x/>g.y/

!xy

�
e
�
2
.g.y/�g.x//

� 1
�2
e�g.x/

�
�2

4

X
x2V

e�g.x/
X
y�x

g.x/>g.y/

!xy.g.y/ � g.x//
2

�
�2

2

Z
e�g�.g/ d�:

Since �.g/ � 1, and the function ˆ is monotonically increasing, one has

ˆ

�Z
�.ff�/ d�� D ˆ� 1

kf�=2k
2
2

Z
�.e

�g
2 / d�

�
� ˆ

�
�2

2

�
:

By the logarithmic Sobolev inequality,

�G0.�/ �G.�/ lnG.�/ � G.�/ˆ
�
�2

2

�
:

Let H.�/ D 1
�

lnG.�/. Then the above inequality reads

H 0.�/ �
1

�2
ˆ

�
�2

2

�
:

Since H.0/ D lim�!0 1� lnG.�/ D
R
g d�, it follows that

H.�/ D H.0/C

Z �

0

H 0.u/ du �

Z
g d�C

Z �

0

1

u2
ˆ

�
u2

2

�
du:
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Therefore for any � � 0,X
x2V

�.x/e�.g.x/�
R
g d�/

� exp
²
�

Z �

0

1

u2
ˆ

�
u2

2

�
du

³
:

Let

C D

Z 1
0

1

u2
ˆ

�
u2

2

�
du D

1
p
2

Z 1
0

1

x2
ˆ.x2/ dx:

Then, for every � � 0 and " > 0, when we apply the above inequality to g and �g and apply
Chebyshev’s inequality,

�

�²
x 2 V W

ˇ̌̌̌
g.x/ �

Z
g d�

ˇ̌̌̌
� C C "

³�
�

X
x2V

g.x/�
R
g d�CCC"

�.x/C
X
x2V

g.x/�
R
g d��C�"

�.x/

�

X
x2V

g.x/�
R
g d�CCC"

e�.g.x/�
R
g d�/

e�.CC"/
�.x/C

X
x2V

g.x/�
R
g d��C�"

e�.�g.x/C
R
g d�/

e�.CC"/
�.x/

� 2e��.CC"/e�C

D 2e��" ! 0 .�!1/:

That is, we obtain 



g.x/ � Z g d�






1

� C:

The diameter bound follow immediately by the definition of eD: Since g was arbitrary, one has

eD � p2 Z 1
0

1

x2
ˆ.x2/ dx;

as promised.

Finally, we obtain:

Theorem 6.8. Let G be a locally finite, connected graph satisfying CDE0.n;K/, and
K > 0. Then the diameter eD of graph G in terms of canonical distance is finite, and

eD � 4p3�r n

K
:

Proof. Combining Proposition 6.6 and Proposition 6.7, we conclude that graphs satis-
fying CDE0.n;K/ for some K > 0 also satisfy

eD � p2 Z 1
0

1

x2
ˆ.x2/ dx;

where

ˆ.x/ D 2n

��
1C

1

�n
x

�
ln
�
1C

1

�n
x

�
�
1

�n
x ln

�
1

�n
x

��
;
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and � D 2K
3

. Since Z 1
0

1

x2
ˆ.x2/ dx D

1

2

Z 1
0

1

x
3
2

ˆ.x/ dx

D

Z 1
0

1
p
x
ˆ0.x/ dx

D �2

Z 1
0

p
xˆ00.x/ dx <1;

the diameter is finite, and ˆ00.x/ D � 2n
x.xC�n/

. From this

�2

Z 1
0

p
xˆ00.x/ dx D 4�

r
n

�
;

completing the proof.

While this bounds the canonical diameter, it is possible to recover a bound for the usual
graph distance. To this end, we first define intrinsic metrics. These give us a way to relate graph
distance and canonical distance.

Intrinsic metrics on graphs were first introduced by Frank, Lenz and Wingert in [20].
A function � W V � V ! RC is called an intrinsic metric if, at all x 2 V ,X

y�x

!xy�
2.x; y/ � �.x/:

This induces a metric � on a graph via finding shortest paths. One example of such a function,
given by Xueping Huang in his thesis [25], is the function, defined for all x 2 V and y � x,

e�.x; y/ D min
²s

�.x/

m.x/
;

s
�.y/

m.y/

³
;

where m.x/ D
P
y�x !xy .

As mentioned, these metrics give a way of comparing graph distance with the canonical
distance we have been using. Indeed, part (a) of the remark following [28, Definition 1.2] gives:

Proposition 6.9. For any x; y 2 V , the inequality following holds:
p
2e�.x; y/ � ed.x; y/:

In fact, [28] shows that the above inequality holds for any intrinsic metric. For the met-
ric Q� in particular, under the assumption that D� is finite, then

e�.x; y/ � d.x; y/p
D�

for any x and y (by, again, extending the metric Q� along shortest paths.)
The above inequalities, combined with Theorem 6.8 and Proposition 6.9, yield:

Theorem 6.10. Suppose that G is a locally finite, connected graph and satisfies con-
dition CDE0.n;K/ with K > 0. Then the diameter, in terms of graph distance is finite, with
a quantitative upper bound given by

D � 2�

r
6D�n

K
:
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Remark. In a recent result of [35], Liu, Münch and Peyerimhoff proved a upper bound
on the diameter under the weaker assumption CD.n;K/ by using a different method.
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