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We prove pointwise gradient bounds for heat semigroups 
associated to general (possibly unbounded) Laplacians on 
infinite graphs satisfying the curvature dimension condition 
CD(K, ∞). Using gradient bounds, we show stochastic
completeness for graphs satisfying the curvature dimension 
condition.
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1. Introduction and main results

Let M be a complete, noncompact Riemannian manifold without boundary. It is called 
stochastically complete if∫

M

pt(x, y)dvol(y) = 1, ∀t > 0, x ∈ M, (1)
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where pt(·, ·) is the (minimal) heat kernel on M . Yau [41] first proved that any complete 
Riemannian manifold with a uniform lower bound of Ricci curvature is stochastically 
complete. Karp and Li [23] showed the stochastic completeness in terms of the following 
volume growth property:

vol(Br(x)) ≤ Cecr
2
, some x ∈ M, ∀r > 0, (2)

where vol(Br(x)) is the volume of the geodesic ball of radius r and centered at x. 
Varopoulos [35], Li [27] and Hsu [19] extended Yau’s result to Riemannian manifolds 
with general conditions on Ricci curvature. So far, the optimal volume growth condi-
tion for stochastic completeness was given by Grigor’yan [14]. We refer to [15] for the 
literature on stochastic completeness of Riemannian manifolds. These results have been 
generalized to a quite general setting, namely, regular strongly local Dirichlet forms by 
Sturm [34].

Compared to local operators, graphs (discrete metric measure spaces) are nonlocal 
in nature and can be regarded as regular Dirichlet forms associated to jump processes. 
A general Markov semigroup is called a diffusion semigroup if chain rules hold for the 
associated infinitesimal generator, see Bakry, Gentil and Ledoux [3, Definition 1.11.1], 
which is a property related to the locality of the generator. As a common point of view 
to many graph analysts, the absence of chain rules for discrete Laplacians is the main 
difficulty for the analysis on graphs. This causes many problems and various interesting 
phenomena emerge on graphs. A graph is called stochastically complete (or conservative) 
if an equation similar to (1) holds for the continuous time heat kernel, see Definition 3.1. 
The stochastic completeness of graphs has been thoroughly studied by many authors 
[7,8,13,21,24–26,32,36–39]. In particular, the volume criterion (2) with respect to the 
graph distance is no longer true for unbounded Laplacians on graphs, see [39]. This can 
be circumvented by using intrinsic metrics introduced by Frank, Lenz and Wingert [9], 
see e.g. [11,13,22].

Gradient bounds of heat semigroups can be used to prove stochastic completeness. 
Nowadays, the so-called Γ-calculus has been well developed in the framework of general 
Markov semigroups where Γ is called the “carré du champ” operator, see [3, Defini-
tion 1.4.2]. Given a smooth function f on a Riemannian manifold, Γ(f) stands for |∇f |2, 
see Section 2 for the definition on graphs. Heuristically, on a Riemannian manifold M if 
one can show the gradient bound for the heat semigroup

Γ(Ptf) ≤ CtPt(Γ(f)), ∀f ∈ C∞
0 (M), (3)

where Pt = etΔM is the heat semigroup induced by the Laplace–Beltrami operator ΔM , 
Ct a function on t and C∞

0 (M) the space of compactly supported smooth functions 
on M , then the stochastic completeness follows from approximating the constant func-
tion 1 by compactly supported smooth functions. The gradient bounds (3) can be proved 
under curvature assumptions, e.g. a uniform lower bound of Ricci curvature, and then 
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the function Ct depends on the curvature bound. This approach has been systemat-
ically generalized to Markov diffusion semigroups, i.e. local operators, see [3]. In this 
paper, we closely follow this strategy and prove the stochastic completeness under cur-
vature dimension conditions on graphs, see Section 2 for definitions. This shows that 
the gradient-bound approach works even in the nonlocal setting. Note that on graphs 
one can also interpret the curvature bounds by the bounds of Laplacians of distance 
functions, and the stochastic completeness has been obtained in this curvature notion 
by Dodziuk [8, Theorem 4.2], Weber [36, Theorem 4.5] and Huang [21, Theorem 5.3].

We introduce the setting of graphs and refer to Section 2 for details. Let (V, E) be a 
connected, undirected, (combinatorial) infinite graph with the set of vertices V and the 
set of edges E. We say x, y ∈ V are neighbors, denoted by x ∼ y, if (x, y) ∈ E. The graph 
is called locally finite if each vertex has finitely many neighbors. In this paper, we only 
consider locally finite graphs. We assign a weight m to each vertex, m : V → (0, ∞), and 
a weight μ to each edge,

μ : E → (0,∞), E 	 (x, y) 
→ μxy,

and refer to the quadruple G = (V, E, m, μ) as a weighted graph. We denote by

C0(V ) := {f : V → R | {x ∈ V | f(x) �= 0} is of finite cardinality}

the set of finitely supported functions on V and by �p(V, m), p ∈ [1, ∞], the �p spaces of 
functions on V with respect to the measure m.

For any weighted graph G = (V, E, m, μ), it associates with a Dirichlet form with 
respect to the Hilbert space �2(V, m) corresponding to the Dirichlet boundary condition,

Q(D) : D(Q(D)) ×D(Q(D)) → R

(f, g) 
→ 1
2
∑
x∼y

μxy(f(y) − f(x))(g(y) − g(x)), (4)

where the form domain D(Q(D)) is defined as the completion of C0(V ) under the norm 
‖ · ‖Q given by

‖f‖2
Q = ‖f‖2

�2(V,m) + 1
2
∑
x∼y

μxy(f(y) − f(x))2, ∀f ∈ C0(V ),

see Keller and Lenz [25]. For the Dirichlet form Q(D), its (infinitesimal) generator, 
denoted by L, is called the (discrete) Laplacian. Here we adopt the sign convention 
such that −L is a nonnegative operator. The associated C0-semigroup is denoted by 
Pt = etL : �2(V, m) → �2(V, m). For locally finite graphs, the generator L acts as

Lf(x) = 1
m(x)

∑
y∼x

μxy(f(y) − f(x)), ∀f ∈ C0(V ),
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see [25, Theorems 6 and 9]. Obviously, the measure m plays an essential role in the 
definition of the Laplacian. Given the weight μ on E, typical choices of m of particular 
interest are:

• m(x) =
∑

y∼x μxy for any x ∈ V and the associated Laplacian is called the normal-
ized Laplacian.

• m(x) = 1 for any x ∈ V and the Laplacian is called combinatorial (or physical) 
Laplacian.

Note that normalized Laplacians are bounded operators, so that these graphs are always 
stochastically complete, see [8] or Keller and Lenz [24]. Thus, the only interesting cases 
are combinatorial Laplacians, or more general unbounded Laplacians.

Following the strategy in [3], to show stochastic completeness for the semigroups 
associated to unbounded Laplacians on graphs, it suffices to prove the gradient bounds 
as in (3). For that purpose, we first introduce a completeness condition for infinite graphs: 
A graph G = (V, E, m, μ) is called complete if there exists a nondecreasing sequence of 
finitely supported functions {ηk}∞k=1 such that

lim
k→∞

ηk = 1 and Γ(ηk) ≤
1
k
, (5)

where 1 is the constant function 1 on V . Without loss of generality, we may assume 
0 ≤ ηk ≤ 1 for all k ∈ N by taking the positive part of ηk, i.e. max{ηk, 0}. Note that the 
measure m plays a role in the definition of Γ, see Definition 2.3, so that it is essential to 
the completeness of a weighted graph. This condition was defined for Markov diffusion 
semigroups in [3, Definition 3.3.9]; here we adapt it to graphs. As is well-known, this 
condition is equivalent to the geodesic completeness for Riemannian manifolds, see [33]. 
For the discrete setting, this condition is satisfied for a large class of graphs which possess 
intrinsic metrics, see Theorem 2.8.

For gradient bounds (3), besides completeness we need curvature dimension condi-
tions. For Markov diffusion semigroups, the curvature dimension conditions are defined 
via the Γ operator and the iterated operator denoted by Γ2, see [3, Eq. 1.16.1]. This 
approach, using curvature dimension conditions to obtain gradient bounds, was ini-
tiated in Bakry and Émery [2]. The curvature dimension condition on graphs, the 
non-diffusion case, was first introduced by Lin and Yau [31] which serves as a com-
bination of a lower bound of Ricci curvature and an upper bound of the dimen-
sion, see Definition 2.4 for an infinite dimensional version CD(K, ∞). For bounded 
Laplacians on graphs, Bauer et al. [5] introduced an involved curvature dimension 
condition, the so-called CDE(K, n) condition, to prove the Li–Yau gradient estimate 
for heat semigroups. Also restricted to bounded Laplacians, Lin and Liu [29] proved 
the equivalence between the CD(K, ∞) condition and the gradient bounds (3) for 
heat semigroups, see Liu and Peyerimhoff [30] for finite graphs. In this paper, under 
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some mild assumptions, we prove the gradient bounds for unbounded Laplacians on 
graphs.

Theorem 1.1 (see Theorem 4.1). Let G = (V, E, m, μ) be a complete graph and m be 
non-degenerate, i.e. infx∈V m(x) > 0. Then the following are equivalent:

(a) G satisfies CD(K, ∞).
(b) For any f ∈ C0(V ),

Γ(Ptf) ≤ e−2KtPt(Γ(f)).

Since it is not clear what volume growth is for a graph satisfying the CD(K, ∞) condi-
tion, our result cannot be derived from the criteria involving volume growth conditions. 
For unbounded Laplacians, standard techniques for bounded Laplacians as in [29,30]
fail due to essential difficulties in the summability of solutions to heat equations. For 
instance, we don’t know whether Γ(Ptf) lies in the form domain (or, more strongly, in 
the domain of the generator), see Remark 4.2. In order to overcome these difficulties, 
we add a mild assumption on the measure m, i.e. the non-degeneracy of the measure, 
and critically utilize techniques from partial differential equations, see Lemma 3.4 for the 
Caccioppoli inequality and Theorem 4.5. For Caccioppoli inequalities for general graph 
Laplacians, one may refer to [18, Lemma 3.4], [9, Theorem 11.1] or [16, Theorem 1.8]. 
The assumption of the non-degeneracy of the measure m is mild since it is automatically 
satisfied for any combinatorial Laplacian.

A direct consequence of the gradient bounds is the stochastic completeness for graphs 
satisfying the CD(K, ∞) condition.

Theorem 1.2. Let G = (V, E, μ, m) be a complete graph satisfying the CD(K, ∞) con-
dition for some K ∈ R. Suppose that the measure m is non-degenerate, then G is 
stochastically complete.

We give an example, see Example 2.5, of a weighted graph with unbounded Laplacian 
satisfying the CD(0, ∞) condition where we may apply this theorem.

The paper is organized as follows: In next section, we set up basic notations of weighted 
graphs. The Γ-calculus is introduced to define curvature dimension conditions. We define 
a new concept on the completeness of a graph and prove the completeness under the 
assumptions involving intrinsic metrics on graphs. In Section 3, we adopt some PDE 
techniques to prove a (discrete) Caccioppoli inequality for Poisson’s equations. In Sec-
tion 4, we prove our main results: the equivalence of curvature dimension conditions 
and the gradient bounds for heat semigroups on complete graphs, Theorem 1.1, and the 
stochastic completeness for graphs satisfying the curvature dimension condition, Theo-
rem 1.2.
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2. Graphs

2.1. Weighted graphs

Let (V, E) be a (finite or infinite) undirected graph with the set of vertices V and 
the set of edges E where E is a symmetric subset of V × V . Two vertices x, y are called 
neighbors if (x, y) ∈ E, in this case denoted by x ∼ y. At a vertex x, if (x, x) ∈ E, we say 
there is a self-loop at x. In this paper, we do allow self-loops for graphs. A graph (V, E)
is called connected if for any x, y ∈ V there is a finite sequence of vertices, {xi}ni=0, such 
that

x = x0 ∼ x1 ∼ · · · ∼ xn = y.

In this paper, we only consider locally finite connected graphs.
We assign weights, m and μ, on the set of vertices V and edges E respectively and 

refer to the quadruple G = (V, E, m, μ) as a weighted graph: Here μ : E → (0, ∞), E 	
(x, y) 
→ μxy is symmetric, i.e. μxy = μyx for any (x, y) ∈ E, and m : V → (0, ∞) is a 
measure on V of full support. For convenience, we extend the function μ on E to the 
total set V × V , μ : V × V → [0, ∞), such that μxy = 0 for any x � y.

For functions defined on V , we denote by �p(V, m) or simply �pm, the space of �p
summable functions w.r.t. the measure m and by ‖ · ‖�pm the �p norm of a function. 
Given a weighted graph (V, E, m, μ), there is an associated Dirichlet form w.r.t. �2m
corresponding to the Neumann boundary condition, see [17],

Q(N) : D(Q(N)) ×D(Q(N)) → R

(f, g) 
→ Q(N)(f, g) := 1
2

∑
x,y∈V

μxy(f(y) − f(x))(g(y) − g(x)),

where D(Q(N)) := {f ∈ �2m| 
∑

x,y μxy(f(y) − f(x))2 < ∞}. For simplicity, we write 
Q(N)(f) := 1

2
∑

x,y μxy(f(y) − f(x))2 for any f : V → R. Let D(Q(D)) denote the 
completion of C0(V ) under the norm ‖ · ‖Q defined by

‖f‖Q =
√
‖f‖2

�2m
+ Q(N)(f), ∀f ∈ C0(V ).

Another Dirichlet form Q(D), defined as the restriction of Q(N) to D(Q(D)), corresponds 
to the Dirichlet boundary condition, see (4) in Section 1.

For the Dirichlet form Q(N), there is a unique self-adjoint operator L(N) on �2m with

D(Q(N)) = Domain of definition of (−L(N)) 1
2

and
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Q(N)(f, g) =
〈
(−L(N)) 1

2 f, (−L(N)) 1
2 g

〉
, f, g ∈ D(Q(N))

where 〈·, ·〉 denotes the inner product in �2m. The operator L(N) is the infinitesimal 
generator associated to the Dirichlet form Q(N), also called the (Neumann) Laplacian. 
The associated C0-semigroup on �2m is denoted by P (N)

t = etL
(N) . For the Dirichlet form 

Q(D), L(D) and P (D)
t are defined in the same way. In case that the Dirichlet forms 

corresponding to Neumann and Dirichlet boundary conditions coincide, i.e.

Q(N) = Q(D),

we omit the superscripts and simply write

Q = Q(N) = Q(D), L = L(N) = L(D) etc.

The following integration by parts formula is useful in further applications, see [12, 
Corollary 1.3.1].

Lemma 2.1 (Green’s formula). Let (V, E, m, μ) be a weighted graph. Then for any f ∈
D(Q(N)) and g ∈ D(L(N)),

∑
x∈V

f(x)L(N)g(x)m(x) = −Q(N)(f, g). (6)

A similar consequence holds for the case of Dirichlet boundary condition.

For locally finite graphs, we define the formal Laplacian, denoted by Δ, as

Δf(x) = 1
m(x)

∑
y∈X

μxy(f(y) − f(x)) ∀f : V → R.

This formal Laplacian can be used to identify the generators defined before. A result of 
Keller and Lenz, [25, Theorem 9], states that

L(D)f = Δf, ∀f ∈ D(L(D)), (7)

and a similar result holds for Neumann condition, see [17]. Note that

Δf ∈ C0(V ), ∀f ∈ C0(V ).

Different choices for the measure m induce different Laplacians. The typical choices are 
normalized Laplacians and combinatorial Laplacians, see Section 1. Define the weighted 
vertex degree Deg : V → [0, ∞) by
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Deg(x) = 1
m(x)

∑
y∈V

μxy, x ∈ V.

Then it is known, see e.g. [25], that the Laplacian associated with the graph (V, E, m, μ)
is a bounded operator from �2m to �2m if and only if

sup
x∈V

Deg(x) < ∞.

The measure m on V is called non-degenerate if

δ := inf
x∈V

m(x) > 0. (8)

The non-degeneracy of the measure m yields a very useful fact for �p(V, m) spaces.

Proposition 2.2. Let m be a non-degenerate measure on V as in (8). Then for any 
f ∈ �p(V, m), p ∈ [1, ∞),

|f(x)| ≤ δ−
1
p ‖f‖�pm ∀x ∈ V.

Moreover, for any 1 ≤ p < q ≤ ∞, �p(V, m) ↪→ �q(V, m).

Proof. The first assertion follows from |f(x)|pδ ≤ |f(x)|pm(x) ≤ ‖f‖p
�pm

. The second one 
is a consequence of the interpolation theorem. �

Under assumptions of non-degeneracy of the measure m and local finiteness of the 
graph, the Dirichlet forms corresponding to Neumann and Dirichlet boundary conditions 
coincide, i.e.

Q(N) = Q(D),

see [25, Theorem 6] and [17, Corollary 5.3], and the domains of generators are charac-
terized as

D(L(N)) = D(L(N)) = {f ∈ �2m | Δf ∈ �2m}.

2.2. Gamma calculus

We introduce the Γ-calculus and curvature dimension conditions on graphs following 
[5,31].

First we define two natural bilinear forms associated to the Laplacian. Given f :
V → R and x, y ∈ V , we denote by ∇xyf := f(y) − f(x) the difference of the function 
f on the vertices x and y.
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Definition 2.3. The gradient form Γ, called the “carré du champ” operator, is defined by

Γ(f, g)(x) = 1
2(Δ(fg) − fΔg − gΔf)(x)

= 1
2m(x)

∑
y

μxy∇xyf∇xyg.

For simplicity, we write Γ(f) := Γ(f, f). Moreover, the iterated gradient form, denoted 
by Γ2, is defined as

Γ2(f, g) = 1
2(ΔΓ(f, g) − Γ(f,Δg) − Γ(g,Δf)).

We write Γ2(f) := Γ2(f, f) = 1
2ΔΓ(f) − Γ(f, Δf).

The Cauchy–Schwarz inequality implies that

Γ(f, g) ≤
√

Γ(f)Γ(g) ≤ 1
2(Γ(f) + Γ(g)). (9)

In addition, one can easily see that Q(N)(f) = ‖Γ(f)‖�1m .
Now we can introduce curvature dimension conditions on graphs.

Definition 2.4. We say a graph (V, E, m, μ) satisfies the CD(K, ∞) condition, K ∈ R, if 
for any x ∈ V ,

Γ2(f)(x) ≥ KΓ(f)(x).

In the following, we give an example with unbounded weighted vertex degree, i.e. 
supx∈V Deg(x) = ∞, satisfying the CD(0, ∞) condition.

Example 2.5. Let V = N, E = {(i, j) : |i − j| = 1, i, j ∈ N}, m(i) = 1 and μi,i+1 = i, 
∀i ∈ N.

Proof. Consider general weights m and μ on (V, E). To simplify the notation, we set 
μi = μi,i+1 and mi = m(i) for all i ∈ N. First, consider i ≥ 3. For any function f , set 
x = f(i − 1) − f(i − 2), y = f(i) − f(i − 1), z = f(i + 1) − f(i), w = f(i + 2) − f(i + 1)
which are arbitrary since f is. We calculate the quantity Γ2(f) at the vertex i which is 
a quadratic form in x, y, z and w. Using basic estimates C1x

2 + 2C1xy ≥ −C1y
2 and 

C2w
2 + 2C2wz ≥ −C2z

2 for C1, C2 > 0 to eliminate the variables x and w, we have

2miΓ2(f)(i) ≥
(
μi−1(3μi−1 − μi−2)

2mi−1
+ μi−1(μi−1 − μi)

2mi

)
y2 − 2μiμi−1

mi
yz

+
(
μi(3μi − μi+1) + μi(μi − μi−1)

)
z2.
2mi+1 2mi
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Then plugging into it the assumptions of μ and m for the example, one can show that

Γ2(f)(i) ≥ 0, ∀i ≥ 3.

For i = 1, 2, it is also true by direct calculation. �
By our theorem, Theorem 1.2, this graph is stochastically complete. Note that this 

can also been obtained by using the curvature notion of Laplacians of distance functions, 
e.g. [36] and [21], or other volume growth criteria, e.g. [13].

One can also define a finite dimensional version, CD(K, n) condition (see [31]), which 
is stronger than CD(K, ∞). In fact, the previous example satisfies the CD(0, 2) condition. 
An involved curvature dimension condition, called CDE(K, n), was introduced in [5]. In 
this paper, we only consider CD(K, ∞) conditions.

2.3. Completeness of graphs

Yau [41] first proved that complete Riemannian manifolds with Ricci curvature uni-
formly bounded from below are stochastically complete. Bakry [1] proved the stochastic 
completeness for weighted Riemannian manifolds satisfying CD(K, ∞) condition for 
weighted Laplacians, see also Li [28]. The completeness of Riemannian manifolds plays 
an important role in these problems.

For a graph (V, E, m, μ), we define the completeness of a graph as in (5), see Section 1. 
The following lemma shows the importance of the completeness of a graph. Note that 
we don’t need the non-degeneracy of the measure m here. A similar result can be found 
in [18, Theorem 1].

Lemma 2.6. Let (V, E, m, μ) be a complete graph. For any f ∈ �2m such that Q(N)(f) < ∞
we have

‖fηk − f‖Q → 0, k → ∞.

That is, C0(V ) is a dense subset of the Hilbert space (D(Q(N)), ‖ · ‖Q) and Q(N) = Q(D).

Proof. Since we can take 0 ≤ ηk ≤ 1 and limk→∞ ηk = 1, the dominated convergence 
theorem yields that fk := fηk → f in �2m. So it suffices to show that Q(N)(fk − f) → 0, 
k → ∞.

Q(N)(fk − f) = 1
2
∑
x,y

μxy|∇xyf(ηk − 1)|2

= 1
2
∑
x,y

μxy|∇xyf · (ηk(y) − 1) + f(x)∇xyηk|2

≤
∑

μxy(|∇xyf |2|ηk(y) − 1|2 + f2(x)|∇xyηk|2)

x,y
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= Ik + IIk.

By the dominated convergence theorem, Ik → 0 as k → ∞. For the second term,

IIk ≤ 2
k2

∑
x

f2(x)m(x) → 0, k → ∞.

This proves the lemma. �
Hence for a complete graph, Q(N) = Q(D). In the rest of the paper, given a complete 

graph we simply write Q = Q(N) = Q(D), and by (7)

L = Δ, on D(L).

2.4. Intrinsic metrics

In order to deal with unbounded Laplacians, we need the following intrinsic metrics 
on graphs introduced in [9].

A pseudo metric ρ is a symmetric function, ρ : V × V → [0, ∞), with zero diagonal 
which satisfies the triangle inequality.

Definition 2.7 (Intrinsic metric). A pseudo metric ρ on V is called intrinsic if
∑
y∈V

μxyρ
2(x, y) ≤ m(x), ∀x ∈ V.

In various situations the natural graph distance, called the combinatorial distance, 
proves to be insufficient for the investigations of unbounded Laplacians, see [26,38,39]. For 
this reason the concept of intrinsic metrics received quite some attention as a candidate to 
overcome these problems. Indeed, intrinsic metrics already have been applied successfully 
to various problems on graphs [4,6,10,11,13,16,18].

Fix a base point o ∈ V and denote the distance balls by

Br(o) = {x ∈ V | ρ(x, o) ≤ r}, r ≥ 0.

The choice of the base point o will be irrelevant to our results later. We say Br(o) is 
finite, if it is of finite cardinality, i.e. �Br(o) < ∞.

Theorem 2.8. Let G = (V, E, m, μ) be a graph and ρ be an intrinsic metric on G. Suppose 
that each ball Br(o), r > 0, is finite, then G is a complete graph.

Proof. For any 0 < r < R, we denote by ηr,R the cut-off function on BR(o) \ Br(o)
defined as
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ηr,R(·) = min
{

max
{
R− ρ(·, o)

R− r
, 0
}
, 1
}
.

Set ηk := ηk,2k. Then {ηk} is a nondecreasing sequence of finitely supported functions 
which converges to the constant function 1 pointwise. Moreover,

Γ(ηk)(x) = 1
2m(x)

∑
y∈V

μxy|∇xyηk|2

≤ 1
2m(x)k2

∑
y∈V

μxyρ
2(x, y)

≤ 1
2k2 <

1
k
,

where we used the definition of the intrinsic metric ρ. This proves the theorem. �
For any weighted graph (V, E, m, μ), intrinsic metrics always exist. There is a natural 

intrinsic metric introduced by Huang [20, Lemma 1.6.4].

Example 2.9. For any given weighted graph there is an intrinsic path metric defined by

δ(x, y) = inf
x=x0∼...∼xn=y

n−1∑
i=0

(Deg(xi) ∨ Deg(xi+1))−
1
2 , x, y ∈ V,

where the infimum is taken over all finite paths connecting x and y.

For the completeness of the graph, it suffices to find an intrinsic metric satisfying the 
conditions in Theorem 2.8. For instance, one can check whether each ball of finite radius 
under the metric δ is finite.

3. Semigroups and Caccioppoli inequality

3.1. Semigroups on graphs

In this section, we study the properties of heat semigroups on graphs, which will be 
used later.

We denote by P (D)
t = etL

(D) the C0-semigroup associated to the Dirichlet form Q(D)

on �2m. It extrapolates to C0-semigroups on �pm for all p ∈ [1, ∞], for simplicity still 
denoted by P (D)

t , see [25].

Definition 3.1. A weighted graph (V, E, m, μ) is called stochastically complete if

P
(D)
t 1 = 1, ∀t > 0,

where 1 is the constant function 1 on V .
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The next proposition is a consequence of standard Dirichlet form theory, see [12]
and [25].

Proposition 3.2. For any f ∈ �pm, p ∈ [1, ∞], we have P (D)
t f ∈ �pm and

‖P (D)
t f‖�pm ≤ ‖f‖�pm , ∀t ≥ 0.

Moreover, P (D)
t f ∈ D(L(D)) for any f ∈ �2m.

The next property follows from the spectral theorem.

Proposition 3.3. For any f ∈ D(L(D)),

L(D)P
(D)
t f = P

(D)
t L(D)f.

3.2. Caccioppoli inequality

For elliptic partial differential equations on Riemannian manifolds, the Caccioppoli 
inequality is well-known and yields the Lp Liouville theorem for harmonic functions for 
p ∈ (1, ∞), see Yau [40].

By adapting PDE techniques on manifolds to graphs, we obtain the Caccioppoli in-
equality for subsolutions to Poisson’s equations.

Lemma 3.4. Let (V, E, m, μ) be a weighted graph and g, h : V → R satisfying the following

Δg ≥ h.

Then for any η ∈ C0(V ),

‖Γ(g)η2‖�1m ≤ C(‖Γ(η)g2‖�1m + ‖ghη2‖�1m). (10)

Proof. Multiplying η2g to both sides of the inequality, Δg ≥ h, and summing over x ∈ V

w.r.t. the measure m, we get
∑
x

η2gh(x)m(x) ≤
∑
x

η2gΔg(x)m(x)

= −1
2
∑
x,y

∇xyg∇xy(η2g)μxy

= −1
2
∑
x,y

∇xyg(∇xygη
2(x) + g(y)∇xy(η2))μxy

= −1
2
∑

|∇xyg|2η2(x)μxy −
1
2
∑

∇xygg(y)(|∇xyη|2 + 2η(x)∇xyη)μxy,

x,y x,y
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where we used Green’s formula, see e.g. Lemma 2.1, in the second line since η ∈ C0(V ). 
For the second term in the last line, by symmetry one has

−1
2
∑
x,y

∇xygg(y)|∇xyη|2μxy = −1
4
∑
x,y

|∇xyg|2|∇xyη|2μxy ≤ 0.

Hence, by this observation, the previous estimate leads to

1
2
∑
x,y

|∇xyg|2η2(x)μxy

≤ −
∑
x,y

∇xygg(y)η(x)∇xyημxy −
∑
x

η2gh(x)m(x)

≤ 1
4
∑
x,y

|∇xyg|2η2(x)μxy +
∑
x,y

|∇xyη|2g2(y)μxy −
∑
x

η2gh(x)m(x),

where we used basic inequality ab ≤ 1
4a

2 + b2 for a, b ∈ R. The lemma follows from 
canceling the first term in the last line with the left hand side of the system of inequali-
ties. �

Using this Caccippoli inequality, we get a uniform upper bound of the Dirichlet energy 
of Ptf for t > 0 and f ∈ C0(V ).

Lemma 3.5. Let (V, E, m, μ) be a complete graph. Then for any f ∈ C0(V ) and t ∈ [0, ∞),

Q(Ptf) = ‖Γ(Ptf)‖�1m ≤ C‖f‖�2m‖Δf‖�2m ,

where C is a uniform constant.

Proof. For f ∈ C0(V ), the local finiteness of the graph implies that Δf ∈ C0(V ). By the 
completeness of the graph, let ηk ∈ C0(V ) satisfy (5). Since Ptf satisfies the equation 
d
dtPtf = ΔPtf for any t > 0, applying the Caccippoli inequality in Lemma 3.4 with 
g = Ptf , h = d

dtPtf and η = ηk, we have

‖Γ(Ptf)η2
k‖�1m ≤ C(‖Γ(ηk)|Ptf |2‖�1m + ‖Ptf · d

dt
Ptf · η2

k‖�1m)

≤ C

(
1
k
‖Ptf‖2

�2m
+ ‖Ptf‖�2m‖ d

dt
Ptf‖�2m

)
.

By Proposition 3.2,

‖Ptf‖�2m ≤ ‖f‖�2m

and by Proposition 3.3 and the equation (7),
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‖ d

dt
Ptf‖�2m = ‖ΔPtf‖�2m = ‖PtΔf‖�2m ≤ ‖Δf‖�2m .

Hence

‖Γ(Ptf)η2
k‖�1m ≤ C

(
1
k
‖f‖2

�2m
+ ‖f‖�2m‖Δf‖�2m

)
.

By passing to the limit, k → ∞, the monotone convergence theorem yields the 
lemma. �

The following result is an improved estimate of the previous lemma which will be 
useful in further applications.

Lemma 3.6. Let (V, E, m, μ) be a complete graph. Then for any f ∈ C0(V ) and T > 0, 
we have max[0,T ] Γ(Ptf) ∈ �1m and

∥∥∥∥max
[0,T ]

Γ(Ptf)
∥∥∥∥
�1m

≤ C1(T, f), (11)

where C1(T, f) is a constant depending on T and f . Moreover,

max
[0,T ]

|Γ(Ptf,
d

dt
Ptf)| ∈ �1m and

∥∥∥∥max
[0,T ]

|Γ(Ptf,
d

dt
Ptf)|

∥∥∥∥
�1m

=
∥∥∥∥max

[0,T ]
|Γ(Ptf,ΔPtf)|

∥∥∥∥
�1m

≤ C2(T, f). (12)

Proof. The local finiteness yields that Δf ∈ C0(V ) and Δ2f ∈ C0(V ) for f ∈ C0(V ).
For the first assertion, the Newton–Leibniz formula yields, for any t > 0,

Γ(Ptf) = Γ(f) +
t∫

0

d

ds
Γ(Psf)ds

= Γ(f) + 2
t∫

0

Γ(Psf,
d

ds
Psf)ds

= Γ(f) + 2
t∫

0

Γ(Psf,ΔPsf)ds

= Γ(f) + 2
t∫

0

Γ(Psf, Ps(Δf))ds,

where the last equality follows from Proposition 3.3. Hence by the equation (9) and 
Lemma 3.5
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∥∥∥∥max
[0,T ]

Γ(Ptf)
∥∥∥∥
�1m

≤ ‖Γ(f)‖�1m + 2

∥∥∥∥∥∥
T∫

0

|Γ(Psf, Ps(Δf))|ds

∥∥∥∥∥∥
�1m

≤ ‖Γ(f)‖�1m +
T∫

0

(‖Γ(Psf)‖�1m + ‖Γ(Ps(Δf))‖�1m)ds

≤ ‖Γ(f)‖�1m + CT‖Δf‖�2m(‖f‖�2m + ‖Δ2f‖�2m) =: C1(T, f).

The second assertion is a direct consequence of the first one. By Δf ∈ C0(V ) and (9),
∥∥∥∥max

[0,T ]
|Γ(Ptf,

d

dt
Ptf)|

∥∥∥∥
�1m

=
∥∥∥∥max

[0,T ]
|Γ(Ptf,ΔPtf)|

∥∥∥∥
�1m

=
∥∥∥∥max

[0,T ]
|Γ(Ptf, PtΔf)|

∥∥∥∥
�1m

≤ 1
2

∥∥∥∥max
[0,T ]

Γ(Ptf)
∥∥∥∥
�1m

+ 1
2

∥∥∥∥max
[0,T ]

Γ(PtΔf)
∥∥∥∥
�1m

≤ 1
2(C1(T, f) + C1(T,Δf)) =: C2(T, f).

This proves the lemma. �
Now we can show that the Dirichlet energy, t 
→ Q(Ptf), decays in time for the 

semigroup Pt on complete graphs.

Proposition 3.7. Let (V, E, m, μ) be a complete graph. Then for any f ∈ C0(V ),

Q(Ptf) ≤ Q(f), ∀t ≥ 0.

Moreover, for any f ∈ D(Q),

Q(Ptf) ≤ Q(f), ∀t ≥ 0.

Proof. For the first assertion, taking the formal derivative of time in Q(Ptf) for t > 0, 
we get

d

dt
Q(Ptf) = 2

∑
x∈V

Γ(Ptf,
d

dt
Ptf)(x)m(x). (13)

Given a fixed T > t, note that for any t ∈ [0, T ],

|Γ(Ptf,
d

dt
Ptf)(x)| ≤ max

t∈[0,T ]
|Γ(Ptf,

d

dt
Ptf)(x)| =: g(x) ∈ �1m

which follows from (12) in Lemma 3.6. Hence the absolute value of the summand on 
the right hand side of (13) is uniformly (for t ∈ [0, T ]) bounded above by a summable 



B. Hua, Y. Lin / Advances in Mathematics 306 (2017) 279–302 295
function g. The differentiability theorem yields that Q(Ptf) is differentiable in time and 
whose derivative is given by (13).

Since Ptf ∈ D(L) and ΔPtf = PtΔf ∈ D(Q), Green’s formula in Lemma 2.1 yields

d

dt
Q(Ptf) = 2

∑
x∈V

Γ(Ptf,ΔPtf)(x)m(x)

= −2
∑
x∈V

|ΔPtf(x)|2m(x) ≤ 0.

This proves the first assertion.
For the second assertion, set fk := fηk for f ∈ D(Q). It follows from the previous 

result that

Q(Ptfk) ≤ Q(fk).

By Lemma 2.6, fk → f in the norm ‖ · ‖Q. The monotone convergence theorem yields 
that

Ptfk → Ptf

pointwise. By Fatou’s lemma,

Q(Ptf) ≤ lim inf
k→∞

Q(Ptfk) ≤ lim inf
k→∞

Q(fk) = Q(f).

This proves the result.
An alternative proof provided by the referee. Let f ∈ D(Q(D)) and μ be the spectral 

measure of L(D) with respect to the function g = (−L(D)) 1
2 f (which is in �2m since 

f ∈ D(Q(D)) = D((−L(D)) 1
2 ). Since −L(D) has nonnegative spectrum, one concludes by 

the spectral theorem

Q(D)(P (D)
t f) = 〈etL(D)

g, etL
(D)

g〉 =
∞∫
0

e−2txdμ(x) ≤
∞∫
0

dμ(x) = 〈g, g〉 = Q(D)(f).

Note that this proof doesn’t use the completeness of the graph at the moment. Then one 
may apply Q(D) = Q(N) by the completeness. �
4. Stochastic completeness

4.1. Gradient bounds and curvature dimension conditions

The curvature dimension condition implies gradient bounds, see [3] for the case of 
Markov diffusion semigroups. In fact, they are equivalent on locally finite graphs under 
some mild assumptions.
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Theorem 4.1. Let G = (V, E, m, μ) be a complete graph with a non-degenerate measure 
m, i.e. infx∈V m(x) > 0. Then the following are equivalent:

(a) G satisfies CD(K, ∞).
(b) For any f ∈ C0(V ),

Γ(Ptf) ≤ e−2KtPt(Γ(f)).

(c) For any f ∈ D(Q),

Γ(Ptf) ≤ e−2KtPt(Γ(f)).

Remark 4.2. For the case of finite graphs or bounded Laplacians, this result has been 
proven by [29,30]. To illustrate their proof strategy, we consider a finite graph (V, E, m, μ)
satisfying the CD(0, ∞) condition.

(a) ⇒ (b): For any f : V → R, set Λ(s) = Ps(Γ(Pt−sf)). Then

Λ′(s) = ΔPs(Γ(Pt−sf)) − 2Ps(Γ(Pt−sf,ΔPt−sf))

= Ps(ΔΓ(Pt−sf) − 2Γ(Pt−sf,ΔPt−sf)) ≥ 0,

where the last inequality follows from the CD(0, ∞) condition. However, for the case of 
infinite graphs, ΔPs(Γ(Pt−sf)) = PsΔ(Γ(Pt−sf)) may not hold since in general we don’t 
know whether Γ(Pt−sf) ∈ D(L).

In addition, a strong version of gradient bounds has been proved using the following 
stronger curvature condition, see [3, equation 3.2.4]

Γ(Γ(g)) ≤ 4Γ(g)[Γ2(g) −KΓ(g)], ∀g ∈ C0(V ). (14)

However, this stronger curvature condition can never be fulfilled for graphs. In fact, the 
inequality (14) fails e.g. for g = δx.

4.2. Curvature dimension conditions and the properties of heat semigroups

In order to prove the gradient estimate under the CD(K, ∞) condition, we need some 
lemmata. For graphs satisfying the CD(K, ∞) condition, the following lemma states 
that Γ(Ptf) is a subsolution to the heat equation associated to the Schrödinger operator 
Δ − 2K, a standard definition in the theory of PDEs.

Lemma 4.3. Let (V, E, m, μ) be a complete graph satisfying the CD(K, ∞) condition. 
Then for any f ∈ C0(V )

d

dt
Γ(Ptf) ≤ ΔΓ(Ptf) − 2KΓ(Ptf).
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Proof. This follows from direct calculation by means of the CD(K, ∞) condition and 
local finiteness of the graph. �
Lemma 4.4. Let (V, E, m, μ) be a complete graph. Then for any f ∈ C0(V ) and t ≥ 0,

∥∥∥∥ d

dt
Γ(Ptf)

∥∥∥∥
�1m

≤ 2
√

Q(f)Q(Δf).

Proof. This follows by the computation,
∥∥∥∥ d

dt
Γ(Ptf)

∥∥∥∥
�1m

= 2
∑
x

∣∣∣∣Γ(Ptf,
d

dt
Ptf)(x)

∣∣∣∣m(x)

= 2
∑
x

|Γ(Ptf,ΔPtf)(x)|m(x) = 2
∑
x

|Γ(Ptf, PtΔf)(x)|m(x)

≤ 2
√∑

x

Γ(Ptf)m(x)
∑
x

Γ(PtΔf)m(x)

≤ 2
√∑

x

Γ(f)m(x)
∑
x

Γ(Δf)m(x) < ∞,

where we used Proposition 3.3 for f ∈ C0(V ) in the third equality and Proposition 3.7
for f, Δf ∈ C0(V ) in the last one. �

For complete graphs satisfying the CD(K, ∞) condition, we have higher summability 
of the solutions to heat equations.

Theorem 4.5. Let G = (V, E, m, μ) be a complete graph with a non-degenerate measure 
m. If G satisfies the CD(K, ∞) condition, then for any f ∈ C0(V ) and t ≥ 0,

Γ(Ptf) ∈ D(Q).

Proof. From the proof of Proposition 3.7, Γ(Ptf) ∈ �1(V, m). Hence by the non-
degeneracy of m, Γ(Ptf) ∈ �2(V, m). It suffices to prove that Q(Γ(Ptf)) < ∞.

Let {ηk} be the sequence in (5) by the completeness of the graph. Note that Lemma 4.3
implies that Γ(Ptf) is a subsolution to the heat equation associated to Δ −2K. Applying 
the Caccioppoli inequality (10) with g = Γ(Ptf), h = d

dtg + 2Kg and η = ηk, we get

‖Γ(g)η2
k‖�1m ≤ C(‖Γ(ηk)g2‖�1m + ‖g( d

dt
g + 2Kg)η2

k‖�1m)

≤ C

(
1
k
‖g‖2

�2m
+ ‖g d

dt
g‖�1m + 2|K| · ‖g‖2

�2m

)

≤ C(K)(‖g‖2
�2 + ‖g d

g‖�1 )

m dt m
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= I + II,

where the constant C(K) only depends on K. By the assumption that m is non-
degenerate, Propositions 2.2 and 3.7 yield that

I ≤ C‖Γ(Ptf)‖2
�1m

≤ C‖Γ(f)‖2
�1m

< ∞.

For the other term, noting that ‖g‖�∞ ≤ C‖g‖�1m , by Lemma 4.4, we have

II ≤ C‖g‖�∞‖ d

dt
g‖�1m

≤ C‖g‖�1m‖ d

dt
g‖�1m < ∞.

Thus, ‖Γ(g)η2
k‖�1m ≤ C < ∞ where the right hand side is independent of k. By passing 

to the limit, k → ∞, Fatou’s lemma yields that

‖Γ(Γ(Ptf))‖�1m ≤ lim inf
k→∞

‖Γ(Γ(Ptf))η2
k‖�1m ≤ C.

This proves the theorem. �
4.3. The proofs of main theorems

Theorem 4.6. Let (V, E, m, μ) be a complete graph with a non-degenerate measure m and 
satisfying the CD(K, ∞) condition. For any f ∈ C0(V ), 0 ≤ ζ ∈ C0(V ) and t > 0, the 
following function

s 
→ G(s) :=
∑
x∈V

Γ(Pt−sf)(x)Psζ(x)m(x)

satisfies

G′(s) ≥ 2KG(s), 0 < s < t.

Proof. First, we show that G(s) is differentiable in s ∈ (0, t). Without loss of generality, 
we assume that ε < s < t − ε for some ε > 0. Taking the formal derivative of G(s) in s, 
we get

−2
∑
x

Γ(Pt−sf,ΔPt−sf)(x)Psζ(x)m(x) +
∑
x

Γ(Pt−sf)(x)Δ(Psζ)(x)m(x) (15)

This formal derivative is, in fact, the derivative of G(s) if one can show that the absolute 
values of summands are uniformly (in s) controlled by summable functions. For the first 
term in (15), note that ‖Psζ‖�∞ ≤ ‖ζ‖�∞ < ∞. Then the equation (12) in Lemma 3.6
yields that for any s ∈ (ε, t − ε)
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2|Γ(Pt−sf,ΔPt−sf)(x)|Psζ(x) ≤ sup
s∈(ε,t−ε)

2|Γ(Pt−sf,ΔPt−sf)(x)|Psζ(x)

≤ 2‖ζ‖�∞ sup
s∈(ε,t−ε)

|Γ(Psf,ΔPsf)(x)| =: g(x) ∈ �1m.

For the second term in (15), the equation (11) in Lemma 3.6 implies that for any s ∈
(ε, t − ε)

Γ(Pt−sf)(x)|Δ(Psζ)(x)| ≤ sup
s∈(ε,t−ε)

Γ(Pt−sf)(x)|Δ(Psζ)(x)|

= sup
s∈(ε,t−ε)

Γ(Pt−sf)(x)|PsΔζ(x)|

≤ ‖Δζ‖�∞ sup
s∈(ε,t−ε)

Γ(Psf)(x) =: h(x) ∈ �1m.

Since g+h ∈ �1m which is independent of s ∈ (ε, t −ε), the differentiability theorem yields 
that G(s) is differentiable and its derivative equals to (15). Note that Theorem 4.5 and 
Proposition 3.2 yield Γ(Pt−sf) ∈ D(Q) and Psζ ∈ D(L) ⊂ D(Q). Hence, using Green’s 
formula (6) in Lemma 2.1, we obtain that

G′(s) = −2
∑
x

Γ(Pt−sf,ΔPt−sf)(x)Psζ(x)m(x) −
∑
x

Γ(Γ(Pt−sf), Psζ)(x)m(x). (16)

We claim that for any 0 ≤ h ∈ D(Q),

−2
∑
x

Γ(Pt−sf,ΔPt−sf)(x)h(x)m(x) −
∑
x

Γ(Γ(Pt−sf), h)(x)m(x) (17)

≥ 2K
∑
x

Γ(Pt−sf)h(x)m(x).

Once this claim is verified, by applying h = Psζ in (17) and the self-adjointness of 
operators Pt, we can prove the theorem. This claim can be proved by a density argument. 
Firstly, the CD(K, ∞) condition yields that (17) holds for 0 ≤ h ∈ C0(V ): In fact, by 
Green’s formula for h ∈ C0(V ),

−2
∑
x

Γ(Pt−sf,ΔPt−sf)(x)h(x)m(x) −
∑
x

Γ(Γ(Pt−sf), h)(x)m(x)

= −2
∑
x

Γ(Pt−sf,ΔPt−sf)(x)h(x)m(x) +
∑
x

Δ(Γ(Pt−sf))(x)h(x)m(x)

≥ 2K
∑
x

Γ(Pt−sf)h(x)m(x),

where in the last inequality we used the CD(K, ∞) condition.
For general 0 ≤ h ∈ D(Q), set hk = hηk where {ηk} is defined in (5). It is 

obvious that 0 ≤ hk ∈ C0(V ). Note that Lemma 3.5 and Theorem 4.5 yield that 
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Γ(Pt−sf, ΔPt−sf), Γ(Pt−sf) ∈ �1m and Γ(Pt−sf) ∈ D(Q). Hence applying (17) for hk, 
passing to the limit, k → ∞, we prove the theorem. �

Now we can prove the gradient bounds of heat semigroups under the CD(K, ∞)
condition.

Proof of Theorem 4.1. (a) ⇒ (b): Using the same notation as in Theorem 4.6, we get

G′(s) ≥ 2KG(s).

Hence G(s) ≥ e2KsG(0). Since Ps is a self-adjoint operator on �2m and Γ(Ptf) ∈ �2m by 
Theorem 4.5,

G(s) =
∑
x∈V

Ps(Γ(Pt−sf))(x)ζ(x)m(x).

By choosing delta functions, such as ζ(x) = δy(x) (y ∈ V ), we prove the theorem.
(b) ⇒ (a): Fix a vertex x ∈ V . By (b),

F (t) := e−2KtPt(Γ(f))(x) − Γ(Ptf)(x) ≥ 0.

It is easy to see that F (t) is differentiable and F ′(0) ≥ 0. Note that

d

dt

∣∣∣∣
t=0

Pt(Γ(f))(x) = ΔPt(Γ(f))(x)|t=0 = Δ(Γ(f))(x).

Since the graph is locally finite,

d

dt

∣∣∣∣
t=0

Γ(Ptf)(x) = 2Γ(Ptf,ΔPtf)(x)|t=0 = 2Γ(f,Δf)(x).

This proves the assertion by using F ′(0) ≥ 0.
(b) ⇔ (c): This follows from a density argument. �
Now we are ready to prove the analogue to Yau’s result [41] on graphs.

Proof of Theorem 1.2. It suffices to prove that Pt1 = 1 where 1 is the constant function 1
on V . By completeness, let ηk ∈ C0(V ) satisfy (5). The dominated convergence theorem 
yields that Ptηk → Pt1 pointwise. By the local finiteness of the graph, for any x ∈ V

and t > 0,

Γ(Pt1)(x) = lim
k→∞

Γ(Ptηk)(x) ≤ lim inf
k→∞

e−2KtPt(Γ(ηk))(x)

≤ lim inf e−2Kt · 1 = 0.

k→∞ k



B. Hua, Y. Lin / Advances in Mathematics 306 (2017) 279–302 301
This means that for any t > 0, Pt1 is a constant function on V . Since the function Pt1
is continuous in t pointwise and P01 = 1, we get Pt1 = 1 for any t > 0. This proves the 
theorem. �
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