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CURVATURE ASPECTS OF GRAPHS
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(Communicated by Lei Ni)

Abstract. We prove the Lichnerowicz type lower bound estimates for finite
connected graphs with positive Ricci curvature lower bound.

1. Introduction

The Ricci curvature on Riemannian manifolds plays a very important rule in
geometric analysis. For a diffusion operator on measure metric space, the curva-
ture dimension conditions are defined via the Γ operator and the iterated operator
denoted by Γ2, which was initiated in Bakry and Émery [1]. The curvature di-
mension condition on graphs, in the nondiffusion case, was introduced by Lin and
Yau [7] and serves as a combination of a lower bound of Ricci curvature and an
upper bound of the dimension; see Section 2 below. For bounded Laplacians on
graphs, Bauer et al. [3] introduced the involved curvature dimension condition, the
so-called CDE(K,n) condition and CDE′(K,n) condition, to imply the Li-Yau
inequality on graphs.

In this paper, we discuss different aspects of Ricci curvature on finite weighted
graphs, either in the sense of D. Bakry and M. Emery [1] and [7] or in the sense
of Y. Ollivier [9]; see also [8]. We give estimates of nonzero eigenvalues of the as-
sociated Laplacian via the positive curvature values, together with some examples
to show that these bounds can be sharp. Bauer and Horn also obtained a simi-
lar estimate under the CDE(K,n) condition [2] by using the maximum principle
argument.

The basic setting is as follows. Denote by G a finite nonoriented connected graph
composed of a vertex set V with an edge set E, and ρ(x, y) the distance function
which equals the minimal number of edges in any path connecting x and y in V .
Write x ∼ y when x is adjacent to y, in particular, a loop x ∼ x is possible. In this
paper, we use the notation

∑
y∼x

to mean summing over all edges adjacent to x. We

also use (x, y) to denote an edge in E connecting vertices x and y, and
∑

(x,y)∈E

to

mean summing over all edges in E.
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Let’s equip G with a weight μ• which is a symmetric function on V × V such
that μxy > 0 if x ∼ y and μxy = 0 otherwise. Then (G,μ•) becomes a weighted
graph. μ• is called standard if μxy = 1 for any x ∼ y and μxx = 0. Denote by
dx =

∑
y∼x μxy the degree at x, and VolG =

∑
x∈V dx the volume of G. Define the

transition matrix (or Markov operator) M by

M(x, y) :=
μxy

dx
,

which satisfies that∑
y∼x

M(x, y) = 1, M(x, y)dx = M(y, x)dy.

Define V R to be the space of real valued functions on V , and Δ the Laplace operator
acting on V R by

Δ := M − Id,

which means for any f ∈ V R that

−Δf(x) =
1

dx

∑
y∼x

μxy[f(x)− f(y)].

Suppose a function f : V → R satisfies

(−Δ)f(x) = λf(x);

then f is called an eigenfunction of the Laplace operator on G with eigenvalue λ.
Note that 0 is a trivial eigenvalue of −Δ associated to the constant eigenfunction.

Let λ > 0 be a nontrivial eigenvalue of −Δ. In Section 2, we define the Ricci
curvature in the sense of Bakry and Emery, and give an estimate λ � mK

m−1 through

the curvature-dimension type inequality CD(m,K) for some m > 1 and K > 0.
There is a similar bound for an eigenvalue in a compact Riemannian manifold with
a positive Ricci curvature lower bound proved by Lichnerowicz. In Section 3, we
introduce the Ricci curvature from Ollivier, and give another estimate λ ∈ [κ, 2κ]
via the curvature’s lower bound κ. We also prove that any finite weighted connected
graph can be equipped with a new distance function and transition matrix such that
it has a positive Ricci curvature.

2. The eigenvalue bound in terms of a positive Ricci curvature

in the sense of Bakry and Émery

According to Bakry and Émery [1], define a bilinear operator Γ : V R×V R → V R

by

Γ(f, g)(x) :=
1

2
{Δ(f(x)g(x))− f(x)Δg(x)− g(x)Δf(x)},

and then the Ricci curvature operator on graphs Γ2 by iterating Γ as

Γ2(f, g)(x) :=
1

2
{ΔΓ(f, g)(x)− Γ(f,Δg)(x)− Γ(g,Δf)(x)}.
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More explicitly, we have

Γ(f, f)(x) =
1

2

1

dx

∑
y∼x

μxy|f(x)− f(y)|2.

From the proof of Theorem 1.2 in [7] we have the following formula for the Ricci
curvature operator on graphs:

Γ2(f, f)(x) =
1

4

1

dx

∑
y∼x

μxy

dy

∑
z∼y

μyz[f(x)− 2f(y) + f(z)]2

−1

2

1

dx

∑
y∼x

μxy[f(x)− f(y)]2 +
1

2
[
1

dx

∑
y∼x

μxy(f(x)− f(y))]2.

We say that the Laplacian Δ satisfies the curvature-dimension type inequality
CD(m,K) for some m > 1 if for any f ∈ V R and for any x ∈ V ,

(2.1) Γ2(f, f)(x) �
1

m
(Δf)(x)2 +KΓ(f, f)(x).

Here m is called the dimension of Δ, and K the lower bound of the Ricci curvature
of Δ. In particular, if Γ2(x) � KΓ(x), we say that Δ satisfies CD(∞,K). Cor-
respondingly, for the Laplace-Beltrami operator Δ on a complete m-dimensional
Riemannion manifold, it fulfills CD(m,K) iff the Ricci curvature of the Riemanian
manifold is bounded below by a constant K.

We proved in [7] that the Ricci flat graphs defined by F. Chung and Yau in [4]
and [5] have the nonnegative Ricci curvature in the sense of Bakry-Emery, and also
that any locally finite connected graph satisfies either CD(2, 1

d∗
− 1) if d∗ is finite

or CD(2,−1) if d∗ is infinite, where

d∗ := sup
x∈V

sup
y∼x

dx
μxy

.

Moreover, we have

Theorem 2.1. Suppose that Δ satisfies a curvature-dimension type inequality
CD(m,K) with finite m > 1 and K > 0. Then any nonzero eigenvalue λ of
−Δ has a lower bound mK

m−1 . In particular, if m = ∞, any nonzero eigenvalue λ of
−Δ has a lower bound K.

Proof. Suppose f is an eigenfunction satisfying

−Δf(x) = λf(x).
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We consider∑
x

dxΓ2(f, f)(x) =
1

4

∑
x

dxΔ|∇f |2(x) + λ
∑
x

dxΓ(f, f)(x)

= λ
∑
x

dxΓ(f, f)(x)

=
λ

2

∑
x

dx|∇f |2(x)

=
λ

2

∑
x

∑
y∼x

(f(x)− f(y))2

= λ
∑
x∼y

(f(x)− f(y))2

= λ
∑
x

f(x)(−Δf(x))dx

= λ2
∑
x

f(x)2dx.

In the first item, we use the following fact:∑
x

dxΔf(x) =
∑
x

∑
y∼x

μxy[f(x)− f(y)]

=
∑
x

∑
y∼x

μxyf(x)−
∑
x

∑
y∼x

μxyf(y)

= 2[
∑

(x,y)∈E

μxyf(x)−
∑

(x,y)∈E

μxyf(y)]

= 2[
∑

(x,y)∈E

μxyf(x)−
∑

(y,x)∈E

μyxf(x)]

= 0.

Combining this with (2.1), we have

λ2
∑
x

f(x)2dx � 1

m

∑
x

dxλ
2f(x)2 +K

∑
x

dxΓ(f, f)(x)

=
λ2

m

∑
x

f(x)2dx +K
∑
x∼y

(f(x)− f(y))2

= (
λ2

m
+Kλ)

∑
x

f(x)2dx.

Thus we have

λ � mK

m− 1
.

We can also see from the last inequality that the eigenvalue 0 does not work in
the proof of the theorem. �

We give an alternative proof of Theorem 2.1 using a maximum principle argu-
ment.
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Proof. Suppose f is an eigenfunction satisfying

Δf(x) = −λf(x)

for all x ∈ V . We define the function

Q(x) = Γ(f, f)(x) +
λ

m
f2(x).

At the maximum point x∗ of Q we have ΔQ(x∗) ≤ 0. Thus we have

0 ≥ ΔQ(x∗)

= 2Γ2(f, f)(x
∗) + 2Γ(f,Δf)(x∗) +

λ

m
(2fΔf(x∗) + 2Γ(f, f)(x∗))

≥ 2KΓ(f, f)(x∗)− 2λΓ(f, f)(x∗) + 2
λ

m
Γ(f, f)(x∗).

Rearranging yields

λ ≥ m

m− 1
K.

�

We calculate the curvature-dimension type inequalities for some graphs such as
a path, cube or square. One can find details in Appendix A.

Example 1. Let G = {a, b} be a path. Then it has a nonzero eigenvalue λ = 2 and
satisfies CD(2, 1), which means m = 2, K = 1 and mK

m−1 = 2. Here the estimate in
Theorem 2.1 is sharp for m finite.

Example 2. Let G = {a, b, c} be a path. Then it has two nonzero eigenvalues
λ = 1 or 2 and satisfies CD(4, 12 ), which means m = 4, K = 1

2 and mK
m−1 = 2

3 .

Example 3. LetG1 and G2 be two graphs as in Figure 1 and Figure 2 together with
standard weights. Then G1 has a nonzero eigenvalue λ = 2

3 and satisfies CD(∞, 23 ),

so the estimate in Theorem 2.1 is sharp for m = ∞. G2 satisfies CD(∞, 16 ).

3. The eigenvalue bound in terms of positive Ricci curvature

in the sense of Ricci-Wasserstein

The Ricci curvature or Ricci-Wasserstein curvature for Markov chains was intro-
duced recently by Y. Ollivier [9]. In general, let (X, d) be a separable and complete
metric space, Lip1(d) the set of 1-Lipschitz functions, P(X) the set of all Borel
probability measures, and C(μ, ν) the set of couplings of any μ and ν ∈ P(X).
Here, a coupling in C(μ, ν) is a probability measure on X ×X associated with two
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marginals μ and ν respectively. Let m = {mx}x∈X be a family in P(X). Tech-
nically, suppose mx depends measurably on x and has a finite first moment, i.e.∫
d(o, y)dmx(y) < ∞ for some o ∈ X. Then m is called a random walk on (X, d).
Define the L1 transportation distance (or Wasserstein distance) between mx and

my as

T1(mx,my) := inf
π∈C(mx,my)

∫
X×X

d(ξ, η) dπ(ξ, η).

(P(X), T1) becomes a complete metric space. Equivalently, via the Kantorovich
duality,

T1(mx,my) = sup
f∈Lip1(d)

∫
f dmx −

∫
f dmy.

One can find more details in C. Villani [10].
According to [9], define the Ricci curvature of (X, d,m) as

κ(x, y) := 1− T1(mx,my)

d(x, y)
.

When (X, d) is a finite weighted connected graph (G, ρ, μ•), we can define the
transition family mx(y) := μxy/dx. In [7], we proved that the Ricci curvature in
the sense of Ollivier is bounded below; see also [8] for some modification of Ollivier’s
Ricci curvature. In this paper, we can estimate the eigenvalues associated to −Δ
by the lower bound of κ(x, y); see also Proposition 30 in [9].

Theorem 3.1. Suppose that the Ricci curvature of a finite weighted connected graph
(G, ρ, μ•) is at least κ. Then any nonzero eigenvalue λ of −Δ falls in [κ, 2− κ].

Proof. Let f ∈ Lip1(ρ) be an eigenfunction satisfying −Δf = λf . We have

f(x)−
∫

f dmx =
1

dx

∑
y∼x

μxy(f(x)− f(y)) = −Δf(x) = λf(x),

which implies by the definition of Ricci curvature κ(x, y) for any x ∼ y that

1− κ � 1− κ(x, y) �
∣∣∣∣
∫

f dmx −
∫

f dmy

∣∣∣∣/ρ(x, y) = |(1− λ)(f(x)− f(y))|.

Since there exist x and y such that f(x)− f(y) = 1, we obtain κ � λ � 2− κ. �

Now we give an instance to show that two interval end-points can be attained.

Example 4. Let G = {a, b, c} be a complete graph equipped with the usual dis-
tance ρ and two transition matrices, respectively,

M1 =

⎛
⎜⎜⎜⎜⎝

0 1
2

1
2

1
2 0 1

2

1
2

1
2 0

⎞
⎟⎟⎟⎟⎠ , M2 =

⎛
⎜⎜⎜⎜⎝

1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

⎞
⎟⎟⎟⎟⎠ .

Then, we calculate that (G, ρ,M1) has a Ricci curvature at least 1
2 and double

eigenvalues 3
2 and that (G, ρ,M2) has a Ricci curvature at least 3

4 and double

eigenvalues 3
4 .
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We can apply Theorem 3.1 to general complete graphs.

Corollary 3.2. Let G be a complete graph with n vertices satisfying that n � 2 and
μxy = 1

n−1 for any x 	= y. Then the associated operator −Δ has a unique nonzero
eigenvalue λ = n

n−1 .

Proof. Let p ∈ [0, 1). We define a family of “lazy” transition matrices by

Mp :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p 1−p
n−1 · · · 1−p

n−1
1−p
n−1

1−p
n−1 p · · · 1−p

n−1
1−p
n−1

...
. . .

. . .
. . .

...

1−p
n−1

1−p
n−1 · · · p 1−p

n−1

1−p
n−1

1−p
n−1 · · · 1−p

n−1 p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which corresponds to the laplacian Δp = Mp − Id. Clearly, Δp = (1 − p)Δ, in
particular, Δ0 = Δ. So −Δp has a nonzero eigenvalue (1− p)λ.

Define mp,x(y) = Mp(x, y). Then

T1(mp,x,mp,y) = sup
f∈Lip1(ρ)

∣∣∣∣pf(x) + 1− p

n− 1
f(y)− pf(y)− 1− p

n− 1
f(x)

∣∣∣∣ � |np− 1|
n− 1

,

which means (G, ρ,mp) has a Ricci curvature at least κ = 1− |np−1|
n−1 . By Theorem

3.1, we have

1− |np− 1|
n− 1

� (1− p)λ � 1 +
|np− 1|
n− 1

.

Taking p = n−1, we obtain λ = n
n−1 . �

Remark 3.3. When p = n−1, the Ricci curvature κ(x, y) attains the maximum 1
everwhere.

In fact, every finite weighted connected graph G always has a positive Ricci
curvature with some kind of distance function and random walk. Let μ be the
normalized volume measure and E the associated quadratic form, that is,

μ(x) :=
dx

VolG
, E(f, f) := 1

2VolG

∑
x∼y

μxy|f(x)−f(y)|2 = −
∫

f(x) ·Δf(x)dμ(x).

Write E [f ] = E(f, f). Define the effective resistance

R(x, y) := sup
E[f ] �=0

|f(x)− f(y)|2
E [f ] .

Note that
√
R(x, y) is a metric. Define the heat semigroup Pt = etΔ for any t � 0,

and a new random walk m∗ = {m∗
x}x∈V (depending on α) by

m∗
x(y) :=

∫ ∞

0

αe−αtPt(x, y)dt.

Alternatively, recall the resolvent family {Gα}α>0 in [6]; we denote
∫
f dm∗

x =:
αGαf(x).
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Theorem 3.4. (G,
√
R,m∗) yields a Ricci curvature at least κ > 0 provided that

for some α > 0 and v ∈ V there holds (2α
∫
R(v, x)dμ(x))1/2 � 1− κ.

Proof. For any f satisfying |f(x)− f(y)| �
√
R(x, y),

∣∣∫ f dm∗
x −

∫
f dm∗

y

∣∣√
R(x, y)

=
|αGαf(x)− αGαf(y)|√

R(x, y)
�

√
E [αGαf ].

Without loss of generality, let f(v) = 0 for some v. Since E [αGαf ] =
α(f − αGαf, αGαf) according to [6], we estimate that

|f(x)− αGαf(x)| �
∫ √

R(x, y)dm∗
x(y), |αGαf(x)| �

∫ √
R(v, y)dm∗

x(y).

Denote g(x) =
∫ √

R(v, y)dm∗
x(y); we have by using the Hölder inequality that

E [αGαf ] � α

∫ (√
R(v, x)g(x) + g2(x)

)
dμ(x) � 2α

∫
R(v, x)dμ(x).

Recall the definition of Ricci curvature; it follows from above estimates. �

Corollary 3.5. With the above conditions, any nonzero eigenvalue λ of −Δ has a
lower bound κα

1−κ .

Proof. Let f ∈ Lip1(
√
R) be an eigenfunction satisfying −Δf = λf , thus αGαf =

α
α+λf . By the same argument as Theorem 3.1, we have 1− κ � α

α+λ . �

Remark 3.6. It is not hard to obtain another lower bound (
∫
R(v, x)dμ(x))−1 better

than κα
1−κ .

Appendix A. Calculations of examples in Section 2

Recall the formulas of Γ and Γ2.
1. For Example 1, consider path P1 with vertices a and b:

Γ2(f, f)(a) =
1

4
|f(a)− 2f(b) + f(a)|2 − 1

2
|f(a)− f(b)|2 + 1

2
|f(a)− f(b)|2

= |f(a)− f(b)|2

=
1

2
|f(a)− f(b)|2 + 1

2
|f(a)− f(b)|2

=
1

2
(Δf(a))2 + Γ(f, f)(a).

So m = 2, K = 1.
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Example 2 can be proved similarly.
2. Consider the cube in Figure 1:

Γ2(φ, φ)(a)

=
1

4
· 1
3

∑
y∼a

1

3

∑
z∼y

|φ(a)− 2φ(y) + φ(z)|2 − 1

2
· 1
3

∑
y∼a

|φ(a)− φ(y)|2

+
1

2

(
1

3

∑
y∼a

(φ(a)− φ(y))

)2

=
1

36

(∑
z∼b

|φ(a)− 2φ(b) + φ(z)|2 +
∑
z∼d

|φ(a)− 2φ(d) + φ(z)|2

+
∑
z∼e

|φ(a)− 2φ(e) + φ(z)|2
)

−1

6

∑
y∼a

|φ(a)− φ(y)|2 + 1

18

(∑
y∼a

(φ(a)− φ(y))

)2

=
1

36

(
|2φ(a)− 2φ(b)|2 + |φ(a)− 2φ(b) + φ(c)|2 + |φ(a)− 2φ(b) + φ(f)|2

+ |2φ(a)− 2φ(d)|2 + |φ(a)− 2φ(d) + φ(c)|2 + |φ(a)− 2φ(d) + φ(h)|2

+ |2φ(a)− 2φ(e)|2 + |φ(a)− 2φ(e) + φ(f)|2 + |φ(a)− 2φ(e) + φ(h)|2
)

−1

6

∑
y∼a

|φ(a)− φ(y)|2 + 1

18
|3φ(a)− φ(b)− φ(d)− φ(e)|2

� 1

36

(
2|φ(b)− φ(d)|2 + 2|φ(b)− φ(e)|2 + 2|φ(d)− φ(e)|2

)
+

(
4

36
− 1

6

)∑
y∼a

|φ(a)− φ(y)|2 + 1

18
|3φ(a)− φ(b)− φ(d)− φ(e)|2

=
1

9

∑
y∼a

|φ(a)− φ(y)|2 =
2

3
Γ(φ, φ)(a).

So m = ∞, K = 2
3 .

The square in Figure 2 can be proved similarly.
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