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Abstract. Tautological systems developed in [6],[7] are Picard-Fuchs type systems
to study period integrals of complete intersections in Fano varieties. We generalize
tautological systems to local complete intersections, which are zero loci of global sections
of vector bundles over Fano varieties. In particular, we obtain similar criterion as [6, 7]
about holonomicity and regularity of the system. We also prove solution rank formulas
and geometric realizations of solutions following the work of hypersurfaces [5, 4].
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1. Introduction

Computing period integral has a long history in algebraic geometry. One way is to find

enough linear differential operators that annihilate period integrals and study the cor-

responding Picard-Fuchs systems. Following this idea, tautological system is introduced

in [6], [7]. It is a generalization of hypergeometric system by Gel’fand, Kapranov, and

Zelevinski [3].

Let Xn/C be a smooth n-dimensional Fano variety and E be a vector bundle of rank

r over X. Denote the dual space of global sections by V = H0(X,E)∨. Assume that
1
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any generic section s ∈ V ∨ defines a nonsingular subvariety Ys = {s = 0} in X with

codimension r. (When E is very ample, the zero locus of a generic section is either

empty or smooth due to a Bertini-type theorem for vector bundles proved by Cayley’s

trick. For example, see Lemma 1.6 in [9]. When it is empty, we can consider the quotient

bundle of E by the trivial line bundle.) The dimension of Ys is denoted by d = n − r.
Consider the family of nonsingular varieties formed by zero loci of sections in V ∨, denoted

by π : Y → B = V ∨ − D, where D is the discriminant locus. If we further assume

detE ∼= K−1
X , the adjunction formula implies that

(1.1) KYs
∼= KX ⊗ detE|Ys ∼= OYs .

A section s of KX ⊗ detE ∼= OX gives a family of holomorphic top forms Ωs on Ys

corresponding to constant section 1 of OYs , also called the residue of s. We want to

consider the period integral

(1.2)

∫
γ

Ωs, γ ∈ Hn(Ys)

If E splits as a direct sum of line bundles, the residue map is defined on line bundles and

generalized to E by induction. In the nonsplitting case, we can apply the residue formula

in the splitting case locally and glue it together to get a global residue formula. The first

isomorphism in (1.1) is induced by writing s as line bundle sections and independent on

the decomposition. This direct formula turns out to be hard for computations. Following

the idea in [6],[7], we use the Calabi-Yau bundle structures to lift the bundles and sections

to the principal bundles. Similar computations give us the differential relations from the

symmetry of the bundles and geometric constrains from the defining ideal of P(E∨) the

projectivation of E∨ in P(V ).

2. Calabi-Yau bundles and adjunction formulas

Motivated by the residue formulas for projective spaces and toric varieties, the notion of

Calabi-Yau bundles is introduced in [7] and used to write down an adjunction formula on

principal bundles. The canonical sections of holomorphic top forms used in period integral

are given by this construction. First we recall the definition of Calabi-Yau bundles in [7]

and adapted it to the local complete intersections.

Definition 2.1 (Calabi-Yau bundle). Denote H and G to be complex Lie groups. Let

p : P → X be a principal H-bundle with G equivariant action. A Calabi-Yau bundle

structure on (X,H) says that the canonical bundle of X is the associated line bundle with

character χ : H → C∗. The following short exact sequence

(2.1) 0→ Ker p∗ → TP → p∗TX → 0
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induces an isomorphism

(2.2) KP
∼= p∗KX ⊗ det(P ×ad(H) h

∨).

Fixing an isomorphism P ×H Cχ ∼= KX , the isomorphism (2.2) implies that KP is a

trivial bundle on P and has a section ν which is the tensor product of nonzero elements

in Cχ and det h∨. This holomorphic top form satisfies that

(2.3) h∗(ν) = χ(h)χ−1
h (h)ν,

where χh is the character of H on det h by adjoint action. The tuple (P,H, ν, χ) satisfying

(2.3) is called a Calabi-Yau bundle.

Conversely, any section ν satisfying (2.3) determines an isomorphism P ×H Cχ ∼= KX .

Since the only line bundle automorphism of KX → X fixing X is rescaling when X is

compact, such ν is determined up to rescaling (Theorem 3.12 in [7]). So the equivariant

action of G on P → X changes ν according to a character β−1 of G. We say the Calabi-

Yau bundle is (G, β−1)-equivariant.

Example 2.2. Let X be CPd+1 and P be Cd+2 \ {0} with nature actions of G = GL(d+

2,C) and H = C∗. The volume form is ν = dx0 ∧ · · · ∧ dxd+1. The character β−1 = det g

for any g ∈ G.

When E is the line bundle K−1
X , the following is the residue formula for Calabi-Yau

bundles:

Theorem 2.3 ([7], Theorem 4.1). If (P,H, ν, χ) is a Calabi-Yau bundle over a Fano

manifold X, the middle dimensional variation of Hodge structure Rdπ∗(C) associated

with the family π : Y → B of Calabi-Yau hypersurfaces has a canonical section of the

form

(2.4) ω = Res
ιξ1 · · · ιξmν

f
.

Here ξ1, · · · , ξm are independent vector fields generating the distribution of H-action on P ,

and f : B×P → C is the function representing the universal section of P×HCχ−1
∼= K−1

X .

When E is a direct sum of line bundles associated to characters of H, the residue

formula is similar to (2.4) by induction.

Definition 2.4. When E is a vector bundle associated with representation ρ : H →
GL(W ), we can also construct a residue formula as follows. Under the assumption that

E = P ×H W , a sections of E is a (H, ρ)-equivariant map f : P → W , i.e. f(p · h) =

h · f(p). Choose a basis e1, · · · , er for W , then f = f1e1 + · · ·+ f rer. Assume f defines a
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smooth Calabi-Yau subvariety Yf with codimsion r in X. We have the following residue

formula:

(2.5) ω = ιξ1 · · · ιξmRes
ν

f1 · · · f r

The residue defines a holomorphic top form on the zero locus of f i = 0 on P , which is the

restriction of the principal bundle on the Calabi-Yau subvariety. After contracting with

ξ1, · · · , ξm, the holomorphic d-form w is invariant under the action of H and vanishes

for the vertical distribution, hence it defines a d-form on Yf .

The vector bundle E can be associated with different principal bundles. The residue

construction is canonical in the following sense.

Proposition 2.5. For different choice of principal bundles P or basis e1, · · · , er, the

residue form ω is unique up to a scalar which is independent of f .

Proof. Firstly, for different choices of basis of W , the functions fi are changed by a

linear transformation. Hence the denominator of the residue formula is changed by the

determinant of the linear transformation along the common zero locus of fi. So the residue

is changed by a scalar.

Secondly, we prove the independence on the choice of principal bundles. Let P ′ be the

frame bundle of E. We only need to compare any P with P ′. The frame bundle can be

constructed by P ′ = P ×H GL(W ). So we have a quotient map from P ×GL(W ) to P ′.

Especially we have a principal bundle map

(2.6) c : P → P ′,

which is equivariant under the actions of H and GL(W ) on both sides related by ρ : H →
GL(W ). Then we have a morphism between the exact sequence

(2.7)

0 Ker p∗ TP p∗TX 0

0 Ker p′∗ TP ′ p′∗TX 0

Notice that one exact sequence gives an isomorphism p∗KX
∼= KP ⊗ det(P ×ad(H) h) and

induces the form ν and ιξ1 · · · ιξmν. So we have

(2.8) ιξ1 · · · ιξmν = c∗(ιξ′1 · · · ιξ′rν
′).

Furthermore, the functions fi defined on P are also pull back of the corresponding func-

tions on P ′. So we have the same residue formula. �
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With the canonical choice of ω, the period integral for the family is defined to be

(2.9) Πγ =

∫
γ
ω.

Here γ is a local horizontal section of the d-th homology group of the family. The period

integrals are local holomorphic functions on the base B and generates a subsheaf of OB
called period sheaf.

3. Tautological systems

In order to study the period sheaf, we look for differential operators which annihilate

the period integrals. In [6] and [7], tautological systems are the introduced and the

solution sheaves contain the period sheaves. When H is the complex torus and X toric

variety, tautological systems are the GKZ systems and extended GKZ systems. When X is

homogenous variety, tautological systems provide new interesting D-modules. The notion

of tautological system also provides convenient ways to apply D-module theory to study

the solution sheaves and period sheaves. The regularity and holonomicity are discussed

in [6], [7]. The Riemann-Hilbert problems and geometric realizations are discussed in [1],

[4], [5].

The differential operators in tautological systems come from two sources: one from

symmetry group G called symmetry operators and the other from the defining ideal

of X in the linear system |K−1
X | called geometric constrains. In this section we have

similar constructions. First we fix a basis a1, · · · , am of V and dual basis a∨1 , · · · , a∨m
of V ∨. Viewing ai as coordinates on V ∨, the universal section of E is denoted by f =

a1a
∨
1 + · · ·+ama

∨
m. According to the discussion in last section, the section a∨i corresponds

to a map fi : P →W and a tuple of functions fi = (f1
i , · · · , f ri ). Then the residue formula

has the following form:

(3.1) ω = ιξ1 · · · ιξmRes
ν

(
∑

i aif
1
i ) · · · (

∑
i aif

r
i )
.

Considering the action of G on V , we have a Lie algebra representation

(3.2) Z : g→ EndV

For any x ∈ g, we denote Z(x) =
∑

i,j xjiaja
∨
i and the dual representation Z∨(x) =∑

i,j −xija∨i aj .

From Proposition 2.5, the uniqueness of residue formula, we know that the G action

changes period integral according to a character of G. So the first order differential
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operators
∑

ij xijai
∂
∂aj

+β(x) annihilate the period integral. More specifically, consider the

action of the one parameter group exp(tx) acting on the period integral. From Cartan’s

formula,

(3.3) Lxιξ1 · · · ιξm
ν

(
∑

i aif
1
i ) · · · (

∑
i aif

r
i )

= d(ιxιξ1 · · · ιξm
ν

(
∑

i aif
1
i ) · · · (

∑
i aif

r
i )

).

So we have

(3.4)

∫
γ
ιξ1 · · · ιξmRes(Lx

ν

(
∑

i aif
1
i ) · · · (

∑
i aif

r
i )

) = 0.

The Lie derivative is

Lx
ν

(
∑

i aif
1
i ) · · · (

∑
i aif

r
i )

(3.5)

= −β(x)
ν

(
∑

i aif
1
i ) · · · (

∑
i aif

r
i )

+
∑
k

∑
i,j aixijf

k
j ν

(
∑

i aif
1
i ) · · · (

∑
i aif

k
i )2 · · · (

∑
i aif

r
i )

(3.6)

= (−β(x)−
∑
ij

xijai
∂

∂aj
)

ν

(
∑

i aif
1
i ) · · · (

∑
i aif

r
i )
.(3.7)

So we have

(3.8) (β(x) +
∑
ij

xijai
∂

∂aj
)Πγ = 0.

The geometric constrains arise from the following observation. Consider the first order

differential operators:

(3.9)
∂

∂aj

ν

(
∑

i aif
1
i ) · · · (

∑
i aif

r
i )

= −
∑
k

fkj ν

(
∑

i aif
1
i ) · · · (

∑
i aif

k
i )2 · · · (

∑
i aif

r
i )

;

the second order differential operators:

(3.10)
∂2

∂al∂aj

ν

f1 · · · f r
=

∑
a,b

Pabf
a
l f

b
j ν

Here Pab are rational functions of f1, · · · , fr, not depending on j, l. By induction, we will

have similar formula for higher order differential operators ∂i1,··· ,is and the P coefficients

are independent of the multi-index i1, · · · , is.Notice that we can switch the order of l

and j. So we have Pab = Pba. On the other hand, consider the product of a∨l and a∨j
in H0(X,Sym2E). The symmetric product Sym2E is associated with the symmetric

product of the representation of ρ. Hence a∨l · a∨k can be viewed as a map P → Sym2W

(3.11) (
∑
a

fal ea) · (
∑
b

faj eb) =
∑
a

fal f
a
j e

2
a +

∑
a<b

(fal f
b
j + faj f

b
l )eaeb.

Consider the elements in the kernel of the map

(3.12) H0(X,E)⊗H0(X,E)→ H0(X,Sym2E).
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The Fourier transform of these elements annihilate period integral. For example if (a∨1 )2−
a∨2 a

∨
3 = 0, then

(3.13)

(
∂2

∂a1
2
− ∂2

∂a2∂a3
)

ν

f1 · · · f r
= (

∑
a

Paa((f
a
1 )2−fa2 fa3 )+

∑
a<b

Pab(2f
a
1 f

b
1 +fa2 f

b
3 +fa3 f

b
2))ν = 0.

This is because the terms of fai are the coefficients of (a∨1 )2 − a∨2 a∨3 written under the

basis e2
a, eaeb.

In order to describe the geometric origin of the differential operators above, we need

the well-known facts relating the vector bundle E and hyperplane line bundle O(1) on

P(E∨).

Proposition 3.1. Assume E → X is a holomorphic vector bundle on complex manifold

X and O(1) → P(E∨) is the hyperplane bundle on the projectivation of E∨. There is a

canonical ring isomorphism

(3.14) ⊕k H0(X,Symk(E)) ∼= ⊕kH0(P(E∨),O(k)).

Proof. It follows from Leray-Hirsch spectral sequence computing H0(P(E∨),O(k)). �

The above identification of V ∨ with H0(P(E∨),O(1)) gives a map P(E∨) → P(V ) by

O(1) when |O(1)| is base-point free. Consider the ideal determined by image of this map

I(P(E∨), V ), which is the kernel of the map

(3.15) ⊕k Symk(V ∨)→ ⊕kH0(X,Symk(E))

With the discussion above, we collect all the differential operators in the following

theorem.

Theorem 3.2. The period integral Πγ satisfies the following system of differential equa-

tions:

Q(∂a)Πγ = 0 (Q ∈ I(P(E∨), V ))(3.16)

(Zx + β(x))Πγ = 0 (x ∈ g)(3.17)

(
∑
i

ai
∂

∂ai
+ r)Πγ = 0.(3.18)

The last operator is called Euler operator and comes from ω being homogenous of

degree −r with respect to ai. We can also view Euler operator as symmetry operator.
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Consider the frame bundle of E with structure group H = GL(r). It has a symmetry

G = C∗ acting as the center of H. The symmetry operator of G is the Euler operator.

We call the differential system in Theorem 3.2 tautological system for (X,E,H,G).

It’s the same as the cyclic D-module τ(G,P(E∨),O(−1), β̂) defined in [6] [7] by

(3.19) τ = DV ∨/DV ∨(J(P(E∨)) + Z(x) + β̂(x), x ∈ ĝ).

Here J(P(E∨)) = {Q(∂a)|Q ∈ I(P(E∨))}, Ĝ = G × C∗ with Lie algebra ĝ = g ⊕ Ce and

β̂ = (β, r).

We can apply the holonomicity criterion for tautological system in [6],[7].

Theorem 3.3. If the induced action of G on P(E∨) has finite orbits, the corresponding

tautological system τ is regular holonomic.

4. Examples

Example 4.1 (Complete intersections). When E = ⊕r1Li is a direct sum of very ample

line bundles, the above system recovers the tautological system for complete intersections

in [7]. This case is equivalent to say that the structure group of E is reduced to the complex

torus (C∗)r. So we have symmetry group (C∗)r acting on the fibers of E. This gives the

usual Euler operators in [7]. Let X̂i be the cone of X inside Vi = H0(X,Li)
∨ under the

linear system of Li. The cone of P(E∨) inside V = ⊕ri=1Vi is fibered product X̂i over

X. So the geometric constrains are the same as [7]. Assume X is a G-variety consisting

of finite G-orbits and Li are G-homogenous bundles. Then P(E∨) admits an action of

G̃ = G × (C∗)r−1 with finite orbits. This is the same holonomicity criterion as [7] for

complete intersections.

Example 4.2 (Homogeneous varieties). Let G be a semisimple complex Lie group and

X = G/P is a generalized flag variety quotient by a parabolic subgroup P . This forms

a principal P -bundle over X. We assume E to be a homogenous vector bundle from a

representation of P and the action of G on P(E∨) is transitive. Then the projectivation

of P(E∨) is also a generalized flag variety for a parabolic subgroup P ′ ⊂ P . Hence the

G-action on P(E∨) is transitive. If O(1) is very ample on P(E∨), the defining ideal of

P(E∨) in P(V ) is given by the Kostant-Lichtenstein quadratic relations. Furthermore, any

character of G is trivial, hence β is zero. So the differential system is regular holonomic

and explicitly given in this case.
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5. Global residue on P(E∨)

The residue formula in Definition 2.4 is motivated by residue formulas for hypersurfaces.

It is locally the same as complete intersections. In this section, we introduce another

approach more directly related to the geometry of P(E∨) by Cayley’s trick.

First we fix some notations. Let P = P(E∨) and O(1) for the hyperplane section bundle.

The projection map is denoted by π : P → X. Any section f ∈ H0(X,E) is identified

with a section f ∈ H0(P,O(1)). The zero locus of f ∈ H0(P,O(1)) is denoted by Ỹf .

We collect the propositions relating the geometry of X and P in the following.

Proposition 5.1. (1) Hypersruface Ỹf is smooth if and only if Yf is smooth with

codimension r or empty.

(2) There is an natural isomorphism KP ∼= π∗(KX ⊗ detE)⊗O(−r)

Proof. The proof of first two propositions are the same as toric complete intersections

[8]. �

From now on, we assume Yf is smooth with codimesion r.

Definition 5.2. The variable cohomology Hd
var(Yf ) is defined to be cokernel of Hd(X)→

Hd(Yf ).

Using the same argument for toric complete intersections in [8], we have the following

propositions

Proposition 5.3. There is an long exact sequence of mixed hodge structures

(5.1) 0→ Hn−r−1(X)→ Hn+r−1(X)→ Hn+r−1(X − Yf )→ Hd
var(Yf )⊗ C[r]→ 0

Here C[r] is the r-th Tate twist.

Proposition 5.4. The map π : P − Ỹf → X − Yf is fibration with fibers isomorphic to

Cr−1 and induces an isomorphism of mixed Hodge structures π∗ : Hn+r−1(X − Yf ) →
Hn+r−1(P− Ỹf ).

We now consider the Calabi-Yau case, equivalently detE ∼= K−1
X , for simplicity. Then

we have the vanishings in the Hodge filtration Fn+r−1−k = 0 for k < r − 1 and isomor-

phisms

(5.2) H0(P,OP)→ H0(P,KP ⊗O(r))→ FnHn+r−1(P− Ỹf )→ Fn−rHn−r(Yf ).
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Proposition 5.5. The constant function 1 is sent to holomorphic top form ωf on Yf via

this sequence of isomorphisms. Then ωf is the same as ω in Definition 2.4.

Consider the principle bundle adjunction formula for base space P. Let (P,H, ν, χ) is

a Calabi-Yau bundle over P. The image of 1 in H0(P,KP ⊗ O(r)) has the form Ω
fr on

principle bundle P . If we write f as universal section, then similar calculation can recover

the differential operators in Theorem 3.2.

6. Solution rank

Now we discuss the solution rank for the system. There are two versions of solution

rank formula for hypersurfaces. One is in terms of Lie algebra homology, see [1]. One is

in terms of perverse sheaves on X, see [4]. Here we have similar description for zero loci

of vector bundle sections.

6.1. Lie algebra homology description. We fix some notations. LetR = C[V ]/I(P(E∨))

be the coordinate ring of P. Let Z : ĝ → End(V ) be the extended representation by e

acting as identity. We extend the character β : ĝ→ C by assigning β(e) = r.

Definition 6.1. We define DV ∨-module structure on R[a]ef ∼= R[a1, · · · aN ] as follows.

The functions ai acts as left multiplication on R[a1, · · · aN ]. The action of ∂ai on R[a1, · · · aN ]

is ∂ai + a∨i .

Then we have the following DV ∨-module isomorphism.

Theorem 6.2. There is a canonical isomorphism of DV ∨-module

(6.1) τ ∼= R[a]ef/Z∨(ĝ)R[a]ef

This leads to the Lie algebra homology description of (classical) solution sheaf

Corollary 6.3. If the action of G on P(E∨) has finitely many orbits, then the stalk of

the solution sheaf at b ∈ V ∨ is

(6.2) sol(τ) ∼= HomD(Ref(b)/Z∨(ĝ)Ref(b),Ob) ∼= H0(ĝ, Ref(b))
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6.2. Perverse sheaves description. We follow the notations in [4].

(1) Let L∨ be the total space of O(1) and L̊∨ the complement of the zero section.

(2) Let ev : V ∨ × P→ L∨, (a, x) 7→ a(x) be the evaluation map.

(3) Assume L⊥ = ker(ev) and U = V ∨ × P− L⊥. Let π : U → V ∨. Notice that U is

the complement of the zero locus of the universal section.

(4) Let DP,β = (DP⊗kβ)⊗Ugk, where kβ is the 1-dimensional g-module with character

β and k is the trivial g-character.

(5) Let N = OV ∨ �DP,β.

We have the following theorem. See Theorem 2.1 in [4].

Theorem 6.4. There is a canonical isomorphism

(6.3) τ ∼= H0π∨+(N|U )

Proof. The proof follows the same arguments of Theorem 2.1 in [4]. The only difference

is that the universal section f = ai ⊗ a∨i defines a trivialization of OV ∨ � O(1). So f−r

instead of f−1 defines a nonzero section of OV ∨ � ωP. Hence we have isomorphism

(6.4) OUf−r ∼= ωU/V ∨ .

Let R := OV ∨/OV ∨J(P) be a DV ∨ × ĝ-module. Then from Theorem 6.2, we have

(6.5) τ ∼= (R⊗ kβ)⊗ĝ k.

The DV ∨ × ĝ-morphism in the technical Lemma 2.6 is now changed to

(6.6) φ : R⊗ kβ → OUf−r

by setting

(6.7) φ(a⊗ b) =
(−1)l(l + r)!

f l+r
a⊗ b

Here we identify R with OV ∨ ⊗ S and S is the graded coordinate ring of (P,O(1)). The

element b ∈ S has degree l. Since β(e) = r, we have an isomorphism induced by φ

(6.8) τ ∼= (R⊗ kβ)⊗ĝ k ∼= (OUf−r)⊗g k.

�

A direct corollary is the following
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Corollary 6.5. If β(g) = 0, there is a canonical surjective map

(6.9) τ → H0π∨+OU .

In terms of period integral, we have an injective map

(6.10) Hn+r−1(X − Yb)→ Hom(τ,OV ∨,b)

given by

(6.11) γ 7→
∫
γ

Ω

f r

We have similar solution rank formula. We assume G-action on P has finitely many

orbits. Let F = Sol(DP,β) = RHomDan(DanP,β,OanP ) be a perverse sheaf on P.

Corollary 6.6. Let b ∈ V ∨. Then the solution rank of τ at b is dimH0
c (Ub,F|Ub

).

Now we apply the solution rank formulas to different cases.

6.3. Irreducible homogeneous vector bundles. In this subsection, we assume X is

homogeneous G-variety and the lifted G-action on P is also transitive. In other words, we

have X = G/P and P = G/P ′ with P/P ′ ∼= Pr−1. Then we have the following corollary

Corollary 6.7. If β(g) = 0, then the solution rank of τ at point b ∈ V ∨ is given by

dimHn+r−1(X − Yb).

Proof. The solution sheaf in this case is F ∼= C[n+ r − 1]. So the solution rank is

(6.12) dimH0
c (Ub,C[n+ r − 1]) = dimHn+r−1(Ub) = dimHn+r−1(X − Yb)

�

Example 6.8. Let X = G(k, l) be Grassmannian and F be the tautological bundle of

rank k. Then E ∼= F∨ ⊗ O( l−1
k ) is an ample vector bundle with detE ∼= K−1

X . The

corresponding P is homogenous under the action of SL(l + 1)

6.4. Complete intersections. We first fix some assumptions.

(1) Let E split as direct sum of homogenous G-line bundles L1, · · · , Lr.
(2) Let G̃ = G× (C∗)r−1 acting on P as Example 4.1.

(3) Let G-action of X have finitely many orbits. Then G̃-action on P has finitely

many orbits.
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(4) We further assume β(g) = 0. This implies β(g̃) = 0. In this case, there are always

some invariant divisor on P.

Let [t1, · · · , tr] be the local homogenous coordinates on P in Pr−1-direction. Each ti comes

from the coordinate on L∨i . Then ti = 0 defines globally a divisor on P. We denote it by

Di. The complement of ∪iDi is denoted by P̊. Let j : P̊→ P be the open embedding. We

treat the following two special cases with X being homogenous or toric.

Let X = G/P be a homogenous G-variety. Then we have the isomorphism

Proposition 6.9. DP,β ∼= j!j
!DP,β

Proof. The proof follows from the proof in [5]. The key observation is that Lemma 3.2 and

Corollary 3.3 only uses the condition that toric divisors have normal crossing singularities

and the ambient space is a log homogenous variety with respect to these divisors. See the

section about chain integral in log homogenous varieties. �

So we have the following description of solution rank

Theorem 6.10. The solution rank at point b ∈ V ∨ is given by

(6.13) Hn+r−1(P− Ỹb, (P− Ỹb) ∩ (∪iDi))

This theorem is not satisfying because the final cohomology is not directly related to

X. Let Y1, · · · , Yr be the zero locus of the Li component of section sb. From the geometric

realization of some solutions as period integral as rational forms along the cycles in the

complement of Y1 ∪ · · · ∪ Yr, we have the following conjecture:

Conjecture 6.11. There is a natural isomorphism of solution sheave as period integrals

(6.14) HomDV ∨ (τV ,O)|b ∼= Hn(X − (Y1 ∪ · · · ∪ Yr))

7. Chain integrals in log homogenous varieties

Let X be a complex variety with normal crossing divisor D. The log D tangent bundle

TX(− logD) is a subsheaf of TX defined as follows. If x1, · · · , xn is the local coordinate

of X and D is the hyperplanes defined by z1 = 0, · · · , zr = 0, then the generating sec-

tions of TX(− logD) are z1∂1, · · · , zr∂r, ∂zr+1, · · · , zn. Then we say X is log homogenous
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if TX(− logD) is globally generated. Let g be H0(X,TX(− logD) and G be the cor-

responding Lie group. Then X is an G-variety. Let L be a G-equivariant line bundle

defined on X. We assume L is very ample and L + KX is base point free. Then the

period integrals of sections in W∨ = H0(X,L+KX)on hypersurface families cut out by

V ∨ = H0(X,L) satisfies the tautological systems τVW with character β = 0. See [7] and

[4]. Then τ is holonomic because G-action on X is stratified by D with finite orbits. See

[2] for discussion of log homogenous varieties.

We consider the solution rank of τVW in this case. Following the same proof in [5], we

have the following description of solution rank of τVW .

Theorem 7.1. There is an natural isomorphism

(7.1) HomDV ∨×W∨ (τVW ,O)|(a, b) ∼= Hn(X − Ya, (X − Ya) ∩ (∪D))

given by period integral.
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