
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-020-03697-1
Commun. Math. Phys. 374, 433–484 (2020) Communications in

Mathematical
Physics

Hypergeometric SLE: Conformal Markov
Characterization and Applications

Hao Wu

Yau Mathematical Sciences Center, Tsinghua University, Beijing, China. E-mail: hao.wu.proba@gmail.com

Received: 2 May 2018 / Accepted: 19 December 2019
Published online: 19 February 2020 – © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract: This article pertains to the classification of pairs of simple random curves
with conformal Markov property and symmetry. We give the complete classification
of such curves: conformal Markov property and symmetry single out a two-parameter
family of random curves—Hypergeometric SLE—denoted by hSLEκ(ν) for κ ∈ (0, 4]
and ν < κ − 6. The proof relies crucially on Dubédat’s commutation relation (Com-
mun Pure Appl Math 60(12):1792–1847, 2007) and a uniqueness result proved inMiller
and Sheffield (Ann Probab 44(3):1647–1722, 2016). The classification indicates that
hypergeometric SLE is the only possible scaling limit of the interfaces in critical lattice
models (conjectured or proved to be conformally invariant) in topological rectangles
with alternating boundary conditions. We also prove various properties of hSLEκ(ν)

with κ ∈ (0, 8): continuity, reversibility, target-independence, and conditional law char-
acterization. As by-products, we give two applications of these properties. The first one
is about the critical Ising interfaces. We prove the convergence of the Ising interface in
rectangles with alternating boundary conditions. This result was first proved by Izyurov
(Commun Math Phys 337(1):225–252, 2015), and our proof is different. Our method is
based on the properties of hSLE and is easy to generalize to more complicated boundary
conditions and to other models. The second application is the existence of the so-called
pure partition functions of multiple SLEs. Such existence was proved for κ ∈ (0, 8)\Q

in Kytölä and Peltola (Commun Math Phys 346(1):237–292, 2016), and it was later
proved for κ ∈ (0, 4] in Peltola andWu (Commun. Math. Phys. 366(2):469–536, 2019).
We give a new proof of the existence for κ ∈ (0, 6] using the properties of hSLE.

1. Introduction

Conformal invariance and critical phenomena in two-dimensional lattice models play
a central role in mathematical physics in the last few decades. We take Ising model as
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an example (see details in Sect. 5). Suppose Ω is a simply connected domain and x, y
are distinct boundary points. When one considers the critical Ising model in Ω ∩ Z2

with Dobrushin boundary conditions: ⊕ along the boundary arc (xy) and � along the
boundary arc (yx), an interface from x to y appears naturally which separates ⊕-spin
from�-spin. The scaling limit of the interface is believed to satisfy conformal invariance
and domain Markov property. We call the combination of the two as conformal Markov
property. Thus, to understand the scaling limit of interfaces in critical lattice models,
one needs to understand random curves with conformal Markov property.

In [Sch00], O. Schramm introduced SLE which is a random growth process in simply
connected domain starting from one boundary point to another boundary point. This is
a one-parameter family of random curves, denoted by SLEκ with κ ≥ 0. This family
is the only one with conformal Markov property, and is conjectured to be the scaling
limits of interfaces in critical models. Since its introduction, this conjecture has been
rigorously proved for several models: percolation [Smi01,CN07], loop-erased random
walk and uniform spanning tree [LSW04], level lines of the discrete Gaussian free field
[SS09,SS13], and the critical Ising and FK-Ising models [CS12,CDCH+14].

SLE process corresponds to the scaling limit of interface in critical model with
Dobrushin boundary conditions. It is natural to consider critical model with more com-
plicated boundary conditions. In this article, we focus on the alternating boundary con-
ditions in topological rectangles (quads for short). We take Ising model as an example
again. Suppose Ω is a simply connected domain and x R, yR, yL , x L are four distinct
boundary points in counterclockwise order. Consider critical Ising model in Ω ∩ Z2

with alternating boundary conditions: ⊕ along the boundary arcs (x R yR) and (yL x L),
and � along the arcs (x L x R) and (yR yL). With such boundary conditions, a pair of
interfaces appears naturally. This pair of interfaces connects between the four points
x R, yR, yL , x L and the two interfaces cannot cross, see Fig. 1. The scaling limit of
the pair of interfaces, if exists, should satisfy conformal Markov property (see Defi-
nition 1.2). This article concerns probability measures on pairs of simple curves with
conformalMarkov property, and they should describe scaling limits of pairs of interfaces
in critical lattice model with alternating boundary conditions in quads.

In the case of Dobrushin boundary conditions, there are two boundary points, and
conformal Markov property determines the one-parameter family of random curves
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Fig. 1. The Ising interface with alternating boundary conditions
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SLEκ . However, in the case of alternating boundary conditions in quads, there are four
boundary points, and conformal Markov property is not sufficient to naturally single out
random processes. We go back to the critical Ising model. As described before, there is
a pair of interfaces when the boundary conditions are alternating. The scaling limit of
such pair should satisfy conformal Markov property; at the same time, it is clear that the
pair of curves also satisfy a particular symmetry (see Definition 1.3). To understand the
scaling limit of such pair, it is then natural to require the symmetry as well as conformal
Markov property.

It turns out that the combination of conformal Markov property and symmetry deter-
mines a two-parameter family of pairs of curves. These curves are hypergeometric SLEs.

1.1. Hypergeometric SLE. Hypergeometric SLE is a two-parameter family of random
curves in quad. The two parameters are κ ∈ (0, 8) and ν ∈ R, and we denote it by
hSLEκ(ν). We denote it by hSLEκ when ν = 0. For a quad (Ω; x1, x2, x3, x4) where
the four boundary points x1, x2, x3, x4 are in counterclockwise order, hSLEκ(ν) is a
random process from x1 to x4 with two marked points (x2, x3). We will give definition
of this process in Sect. 3, and the main theorem of Sect. 3 is continuity and reversibility
of hypergeometric SLEs.

Theorem 1.1. Fix κ ∈ (0, 8), ν > (−4) ∨ (κ/2 − 6), and x1 < x2 < x3 < x4. Let η be
the hSLEκ(ν) in H from x1 to x4 with marked points (x2, x3). The process η is almost
surely generated by a continuous curve for all times. Moreover, the process η enjoys
reversibility for ν ≥ κ/2 − 4: the time reversal of η is the hSLEκ(ν) in H from x4 to x1
with marked points (x3, x2).

Here we briefly summarize the relation between hSLE and SLEκ (or SLEκ(ρ)) pro-
cess. Fix x1 = 0 < x2 < x3 < x4 = ∞. Suppose η is hSLEκ(ν) in H from 0 to ∞ with
marked points (x2, x3).

– When ν = −2, the law of η equals SLEκ .
– When κ = 4, the law of η equals SLE4(ν + 2,−ν − 2) with force points (x2, x3).
– When x3 → x4, the law of η converges weakly to the law of SLEκ(ν +2)with force
point x2. See Lemma 3.7. In particular, the reversibility in Theorem 1.1 implies that
the time reversal of SLEκ(ν + 2) is hSLEκ(ν).

– When κ ∈ (4, 8) and ν = κ − 6, the law of η equals the law of SLEκ conditioned
to avoid the interval (x2, x3). See Proposition 3.9.

From these relations, we see that hSLEκ(ν) is a generalization of SLEκ(ρ) process. In
general, the driving function of hSLE has a drift term which involves a hypergeometric
function. When ν > (−4) ∨ (κ/2 − 6), the process is almost surely generated by a
continuous curve from x1 to x4. The process is also defined when ν ≤ (−4)∨ (κ/2−6).
In this case, it is defined up to the swallowing time x2. When κ = 4, the hypergeometric
term becomes zero, and the process coincides with SLE4(ν + 2,−ν − 2) process. See
more discussion in Sect. 3.4.

1.2. Conformal Markov characterization. We denote by Q the collection of all quads,
and for each quad q = (Ω; x R, yR, yL , x L), we denote by X0(Ω; x R, yR, yL , x L) the
collection of pairs of disjoint simple curves (ηL ; ηR) such that ηR connects x R and
yR and ηL connects x L and yL . The following definition concerns conformal Markov
property for pairs of simple curves. See Fig. 2 for an illustration.
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Fig. 2. Suppose the pair (ηL ; ηR) satisfies CMP. For any ηL -stopping time τ L and any ηR -stopping time
τ R , let ϕ be a conformal map from Ω\(ηL [0, τ L ] ∩ ηR [0, τ R ]) onto a quad q̃ = (Ω̃; x̃ R , ỹ R , ỹL , x̃ L )

such that ϕ(ηR(τ R)) = x̃ R , ϕ(yR) = ỹ R , ϕ(yL ) = ỹL , ϕ(ηL (τ L )) = x̃ L . Then the conditional law of
(ϕ(ηL ); ϕ(ηR)) given ηL [0, τ L ] ∪ ηR [0, τ R ] is the same as Pq̃

Definition 1.2. Suppose (Pq , q ∈ Q) is a family of probability measures on pairs of
disjoint simple curves (ηL ; ηR) ∈ X0(Ω; x R, yR, yL , x L). We say that (Pq , q ∈ Q)

satisfies conformal Markov property (CMP) if it satisfies the following two properties.

– Conformal invariance. Supposeq = (Ω; x R, yR, yL , x L), q̃ = (Ω̃; x̃ R, ỹ R, ỹL , x̃ L) ∈
Q, and ψ : Ω → Ω̃ is a conformal map with ψ(x R) = x̃ R, ψ(yR) = ỹ R, ψ(yL) =
ỹL , ψ(x L) = x̃ L . Then for (ηL ; ηR) ∼ Pq , we have (ψ(ηL);ψ(ηR)) ∼ Pq̃ .
– Domain Markov property. Suppose (ηL ; ηR) ∼ Pq . Then for every ηL -stopping
time τ L and ηR-stopping time τ R , the conditional law of (ηL |t≥τ L ; ηR |t≥τ R ) given
ηL [0, τ L ] and ηR[0, τ R] is the same as Pq

τ L ,τ R
where

qτ L ,τ R = (Ω\(ηL [0, τ L ] ∪ ηR[0, τ R]); ηR(τ R), yR, yL , ηL(τ L)).

In Definition 1.2, we need to specify what happens when ηR[0, τ R] disconnects yR

from yL (resp. ηL [0, τ L ] disconnects yL from yR). In this case, we think the CMP in
Definition 1.2 becomes the CMP for ηL |t≥τ L (resp. ηR |t≥τ R ) with three marked points,
as in Definition 2.7.

The following definition concerns symmetries. For pairs of simple curves in
X0(Ω; x R, yR, yL , x L), there are two symmetries: left-right symmetry and top-bottom
symmetry. To distinguish them, we call the former as symmetry, and the latter as
reversibility.

Definition 1.3. Suppose (Pq , q ∈ Q) is a family of probability measures on pairs of
disjoint simple curves (ηL ; ηR) ∈ X0(Ω; x R, yR, yL , x L).

– We say that (Pq , q ∈ Q) satisfies symmetry if for all q ∈ Q the following is true.
Suppose (ηL ; ηR) ∼ Pq , and ψ : Ω → Ω is the anti-conformal map which swaps
x L , yL and x R, yR . Then (ψ(ηR);ψ(ηL)) ∼ Pq .
– We say that (Pq , q ∈ Q) satisfies reversibility if for all q ∈ Q the following is true.
Suppose (ηL ; ηR) ∼ Pq , and ψ : Ω → Ω is the anti-conformal map which swaps
x L , x R and yL , yR . Then (ψ(ηR);ψ(ηL)) ∼ Pq .

It turns out that the combination of CMP and the symmetry determines a two-
parameter family of pairs of curves—hSLEκ(ν). In Theorem 1.4, we consider pairs of
random curves with CMP and the symmetry, and we also require “Condition C1". This
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is a technical requirement concerning certain regularity of the curves and its definition
is in Sect. 2.3.

Theorem 1.4. Suppose (Pq , q ∈ Q) satisfies CMP in Definition 1.2, the symmetry in
Definition 1.3 and Condition C1. Then there exist κ ∈ (0, 4] and ν < κ − 6 such that,
for q = (Ω; x R, yR, yL , x L) ∈ Q and (ηL ; ηR) ∼ Pq , the marginal law of ηR (up to
the first hitting time of [yR yL ]) equals hSLEκ(ν) inΩ from x R to x L with marked points
(yR, yL) conditioned to hit [yR yL ] (up to the first hitting time of [yR yL ]).

The combination of CMP, the symmetry and the reversibility singles out a one-
parameter family of pairs of curves.

Corollary 1.5. Suppose (Pq , q ∈ Q) satisfies CMP in Definition 1.2, the symmetry and
the reversibility in Definition 1.3, and Condition C1. Then there exists κ ∈ (0, 4] such
that, for any q = (Ω; x R, yR, yL , x L) ∈ Q and (ηL ; ηR) ∼ Pq , the marginal law of ηR

equals hSLEκ in Ω from x R to yR with marked points (x L , yL).

1.3. Convergence of critical planar Ising interfaces. Let us go back to the critical Ising
model. We take it as an example to explain the interest in pairs of random curves and the
motivation for the definition of conformalMarkov property and symmetries.We find that
the combination of conformal Markov property and symmetries singles out hypergeo-
metric SLEs. In this section, we point out that hypergeometric SLE DOES correspond
to the scaling limit of critical Ising model with alternating boundary conditions.

Proposition 1.6. Let (Ωδ; x Rδ , yRδ , yLδ , x Lδ ) be a sequence of quads on δZ2 converging
to a quad q = (Ω; x R, yR, yL , x L) in the Carathéodory sense as δ → 0 (see Sect. 2.1).
Consider the critical Ising model in Ωδ with the following boundary conditions:

� along (x Lδ x
R
δ ), ⊕ along (x Rδ yRδ ) ∪ (yLδ x

L
δ ), ξ ∈ {�, free} along (yRδ yLδ ).

Denote by C�
v (q) the event that the quad is vertically crossed by � and by C⊕

h (q) the
event that the quad is horizontally crossed by ⊕. See Fig. 5 and Fig. 6.

– Suppose ξ = �. On the event C�
v (q), let ηδ be the interface connecting x Rδ and

yRδ . Then the law of ηδ converges weakly to hSLE3 in Ω from x R to yR with marked
points (x L , yL) as δ → 0.
– Suppose ξ = free. On the event C�

v (q), let ηδ be the interface connecting x Rδ and
yRδ . Then the law of ηδ (up to the first hitting time of [yRδ yLδ ]) converges weakly to
hSLE3(−7/2) in Ω from x R to x L conditioned to hit [yR yL ] (up to the first hitting
time of [yR yL ]) as δ → 0.
– Suppose ξ = free. On the event C⊕

h (q), let ηδ be the interface connecting x Rδ and
xLδ . Then the law of ηδ converges weakly to hSLE3(−3/2) in Ω from x R to x L with
marked points (yR, yL) as δ → 0.

The conclusions in Proposition 1.6 are not new. They were proved by K. Izyurov
[Izy15], and we will give a new proof in Sect. 5. There are three features on the method
developed there.

– No need to construct new observable. Constructing holomorphic observable is the
usual way to prove the convergence of interfaces in the critical lattice models (as in
[Izy15]); however, our method does not require new observable. The only input we
need is the convergence of the interface with Dobrushin boundary conditions.
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– The result is “global". There are many works on multiple SLEs trying to study
the scaling limit of interfaces in critical lattice model with alternating boundary
conditions, see [Dub07,BBK05,KP16,Izy15], and their works study the local growth
of these interfaces. Whereas, we prove the convergence of the entire interface.

– Easy to generalize. Our method can be generalized to more complicated boundary
conditions, and the method also works for other critical lattice models including
FK-Ising model and percolation, see [BPW18].

1.4. Pure partition functions of multiple SLEs. The motivation to study hypergeometric
SLE is to understand the scaling limits of interfaces in critical lattice models in quad
with alternating boundary conditions. It is natural to consider the interfaces in gen-
eral polygon. We call (Ω; x1, . . . , x2N ) a polygon if Ω � C is simply connected and
x1, . . . , x2N are 2N boundary points in counterclockwise order. We take Ising model as
an example again. Suppose (Ωδ; xδ

1, . . . , x
δ
2N ) are discrete domains on δZ2 that approx-

imate some polygon (Ω; x1, . . . , x2N ). Consider the critical Ising model in Ωδ with
alternating boundary conditions:

⊕ on (xδ
2 j−1, x

δ
2 j ), for j ∈ {1, . . . , N }; � on (xδ

2 j , x
δ
2 j+1), for j ∈ {0, 1, . . . , N },

with the convention that x0 = x2N and x2N+1 = x1. Then N interfaces (ηδ
1, . . . , η

δ
N )

arise in the model and they connect the 2N boundary points xδ
1, . . . , x

δ
2N , forming

a planar connectivity. We describe the connectivities by planar pair partitions α =
{{a1, b1}, . . . , {aN , bN }} where {a1, b1, . . . , aN , bN } = {1, 2, . . . , 2N }. We call such α

link patterns and we denote the set of them by LPN . We denote LP = N≥0LPN . Given
a link pattern α ∈ LPN and {a, b} ∈ α, we denote by α/{a, b} the link pattern in LPN−1
obtained by removing {a, b} from α and then relabelling the remaining indices so that
they are the first 2(N − 1) integers.

It turns out that the scaling limits of (ηδ
1, . . . , η

δ
N ) are the Loewner chains associated

to the so-called pure partition functions: Fix κ ∈ (0, 8), multiple SLE pure partition
functions are a collection of positive smooth functions

Zα : X2N → R+, α ∈ LPN

defined on the space X2N := {(x1, . . . , x2N ) : x1 < · · · < x2N } with following three
properties:

– PDE system (PDE): for all i ∈ {1, . . . , 2N },
⎡
⎣κ

2
∂2i +

∑
j �=i

(
2

x j − xi
∂ j − 2h

(x j − xi )2

)⎤
⎦Z(x1, . . . , x2N ) = 0. (1.1)

– Conformal covariance (COV): for all Möbius maps ϕ of H such that ϕ(x1) < · · · <

ϕ(x2N ),

Z(x1, . . . , x2N ) =
2N∏
i=1

ϕ′(xi )h × Z(ϕ(x1), . . . , ϕ(x2N )), where h = 6 − κ

2κ
.

(1.2)
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– Asymptotics (ASY): for all α ∈ LPN and for all j ∈ {1, . . . , 2N − 1} and ξ ∈
(x j−1, x j+2),

lim
x j ,x j+1→ξ

Zα(x1, . . . , x2N )

(x j+1 − x j )−2h =
{
0 if { j, j + 1} /∈ α

Zα̂(x1, . . . , x j−1, x j+2, . . . , x2N ) if { j, j + 1} ∈ α

(1.3)

where α̂ = α/{ j, j + 1} ∈ LPN−1.

The appearance of such three properties is natural. Assuming the existence of scaling
limits of interfaces in polygon, the Loewner chain of interfaces should satisfies the
so-called “commutation relation" which gives rise to the PDE system. The conformal
covariance comes from the conformal invariance of the scaling limit. The asymptotics
correspond to “comptability" for the system of functions for different N . See [Pel19] for
the background from statisticalmechanics and from conformal field theory. Although the
scaling limits of interfaces in polygon lead to the introduction of pure partition functions,
it is far from clear why such functions exist, and we will discuss the existence of such
functions in the following theorem.

Theorem 1.7. Let κ ∈ (0, 6]. There exists a unique collection {Zα : α ∈ LP} of smooth
functions Zα : X2N → R+, for α ∈ LPN , satisfying the normalization Z∅ = 1 and
PDE (1.1), COV (1.2), ASY (1.3) and, for all α = {{a1, b1}, . . . , {aN , bN }} ∈ LPN , the
power law bound

0 < Zα(x1, . . . , x2N ) ≤
N∏
j=1

|xb j − xa j |−2h . (1.4)

The uniqueness is a deep result and it follows from results in [FK15, Lemma 1] for all
κ ∈ (0, 8). The existence part was proved for κ ∈ (0, 8)\Q in [KP16] using Coulomb
gas techniques. The difficulty with the Coulomb gas techniques is that the authors could
not show the positivity of the constructed functions, neither the upper bound in (1.4).
The existence was later proved for κ ∈ (0, 4] in [PW19] using the construction of
global multiple SLEs. Since the construction used Brownian loop soup, it only gives
the existence for κ ≤ 4. In this paper, we will give a new proof of the existence for
κ ∈ (0, 6] using properties of hypergeometric SLE. We will construct the pure partition
by cascade relation and then show that they satisfies all the requirements. The main
obstacle in this construction is checking the PDE, and this is obtained using properties
of hypergeometric SLEs.

Outline and relation to previous work.We will give preliminaries on SLEs in Sect. 2.
Wewill introduce hypergeometric SLE in Sect. 3. Hypergeometric SLEswere previously
introduced by D. Zhan [Zha10] and W. Qian [Qia18] with different motivations and
definitions: D. Zhan introduced it to describe the time-reversal of SLEκ(ρ) and W. Qian
introduced it to describe the boundary of the so-called trichordal restriction samples.
Our motivation is to describe the scaling limits of interfaces in critical lattice models in
quad. Our definition is different from the one in [Qia18]. The definition in [Zha10] is a
particular case of ours. We will prove Theorem 1.1 in Sect. 3 and many other interesting
properties of hSLE. We prove Theorem 1.4 in Sect. 4. We introduce Ising model in
Sect. 5 and prove Proposition 1.6. We complete the proof of Theorem 1.7 in Sect. 6.
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2. Preliminaries

2.1. Space of curves. A planar curve is a continuous mapping from [0, 1] to C modulo
reparameterization. Let X be the set of planar curves. The metric d on X is defined by

d(η1, η2) = inf
ϕ1,ϕ2

sup
t∈[0,1]

|η1(ϕ1(t)) − η2(ϕ2(t))|,

where the inf is over increasing homeomorphisms ϕ1, ϕ2 : [0, 1] → [0, 1]. The metric
space (X, d) is complete and separable. A simple curve is a continuous injectivemapping
from [0, 1] toCmodulo reparameterization. Let Xsimple be the subspace of simple curves
in X and denote by X0 its closure. The curves in X0 may have multiple points but they
do not have self-crossings.

We call (Ω; x1, . . . , xn) a (topological) polygon if Ω is a non-empty simply con-
nected proper subset ofC and x1, . . . , xn are boundary points appearing in counterclock-
wise order and lying on locally connected boundary segments. If the points x1, . . . , xn
of the polygon (Ω; x1, . . . , xn) lie on sufficiently regular boundary segments (e.g. C1+ε

for some ε > 0), we call (Ω; x1, . . . , xn) a nice polygon. Let (Ω; x1, . . . , xn) be a
bounded polygon. We say that a sequence of polygons (Ωδ; xδ

1, . . . , x
δ
n) converges to

(Ω; x1, . . . , xn) as δ → 0 in the Carathéodory sense if there exist conformal maps f δ

from the unit disc U to Ωδ and conformal map f from U to Ω such that f δ → f
uniformly on any compact subset of U, and limδ→0( f δ)−1(xδ

j ) = f −1(x j ) for all
j ∈ {1, . . . , n}.

We call a polygon (Ω; x1, . . . , xn) aDobrushin domain if n = 2. Given a Dobrushin
domain (Ω; x, y), denote by (xy) the arc of ∂Ω from x to y counterclockwise, and
by [xy] the closed arc. We call (Ω; x1, . . . , xn) a triangle if n = 3, and we denote by
T the collection of all triangles (Ω; x1, x2, x3) with x1 �= x3. We call (Ω; x1, . . . , xn)
a quad if n = 4, and we denote by Q the collection of all quads (Ω; x1, x2, x3, x4)
with x1 �= x4. Given a quad (Ω; a, b, c, d), we denote by dΩ((ab), (cd)) the extremal
distance between (ab) and (cd) in Ω .

Given a Dobrushin domain (Ω; x, y), let Xsimple(Ω; x, y) be the space of simple
curves η such that η(0) = x, η(1) = y, and η(0, 1) ⊂ Ω . Denote by X0(Ω; x, y) the
closure of Xsimple(Ω; x, y).

Given a quad (Ω; x L , x R, yR, yL), let Xsimple(Ω; x L , x R, yR, yL) be the collec-
tion of pairs of simple curves (ηL ; ηR) such that ηL ∈ Xsimple(Ω; x L , yL) and ηR ∈
Xsimple(Ω; x R, yR) and that ηL ∩ ηR = ∅. The definition of X0(Ω; x L , x R, yR, yL) is
a little bit complicated. Given ε > 0, let X ε

0(Ω; x L , x R, yR, yL) be the set of pairs of
curves (ηL ; ηR) such that
– ηL ∈ X0(Ω; x L , yL) and ηR ∈ X0(Ω; x R, yR);
– dΩL (ηL , (x R yR)) ≥ εwhereΩL is the connected component ofΩ\ηL with (x R yR)

on the boundary, and ηR is contained in the closure of ΩL ;
– dΩR (ηR, (yL x L)) ≥ εwhereΩ R is the connected component ofΩ\ηR with (yL x L)

on the boundary, and ηL is contained in the closure of Ω R .
Define the metric on X ε

0(Ω; x L , x R, yR, yL) by

D((ηL
1 , ηR

1 ), (ηL
2 , ηR

2 )) = max{d(ηL
1 , ηL

2 ), d(ηR
1 , ηR

2 )}.
One can check D is a metric and the space X ε

0(Ω; x L , x R, yR, yL) with D is complete
and separable. Finally, set

X0(Ω; x L , x R, yR, yL) =
⋃
ε>0

X ε
0(Ω; x L , x R, yR, yL).
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Note that X0(Ω; x L , x R, yR, yL) is no longer complete.
Suppose E is a metric space and BE is the Borel σ -field. Let P be the space of

probability measures on (E,BE ). The Prohorov metric dP on P is defined by

dP (P1, P2) = inf
{
ε > 0 : P1[A] ≤ P2[Aε] + ε, P2[A] ≤ P1[Aε] + ε,∀A ∈ BE

}
,

where Aε is the ε-neighborhood of the set A. When E is complete and separable, the
space P is complete and separable ([Bil99, Theorem 6.8]); moreover, a sequence Pn in
P converges weakly to P if and only if dP (Pn, P) → 0.

Let Σ be a family of probability measures on (E,BE ). We call Σ relatively compact
if every sequence of elements in Σ contains a weakly convergent subsequence. We call
Σ tight if, for every ε > 0, there exists a compact set Kε such that P[Kε] ≥ 1 − ε for
all P ∈ Σ . By Prohorov’s Theorem ([Bil99, Theorem 5.2]), when E is complete and
separable, relative compactness is equivalent to tightness.

2.2. Loewner chain and SLE. We call a compact subset K of H an H-hull if H\K
is simply connected. Riemann’s Mapping Theorem asserts that there exists a unique
conformal map gK from H\K onto H such that limz→∞ |gK (z) − z| = 0. We call
such gK the conformal map from H\K onto H normalized at ∞ and we call a(K ) :=
limz→∞ z(gt (z) − z) the half-plane capacity of K seen from ∞.

Loewner chain is a collection of H-hulls (Kt , t ≥ 0) associated with the family of
conformal maps (gt , t ≥ 0) obtained by solving the Loewner equation: for each z ∈ H,

∂t gt (z) = 2

gt (z) − Wt
, g0(z) = z,

where (Wt , t ≥ 0) is a one-dimensional continuous function which we call the driving
function. Let Tz be the swallowing time of z defined as sup{t ≥ 0 : mins∈[0,t] |gs(z) −
Ws | > 0}. Let Kt := {z ∈ H : Tz ≤ t}. Then gt is the unique conformal map from
Ht := H\Kt onto H normalized at ∞. Since the half-plane capacity of Kt is 2t for all
t ≥ 0, we say that the process (Kt , t ≥ 0) is parameterized by the half-plane capacity.
We say that (Kt , t ≥ 0) can be generated by the continuous curve (η(t), t ≥ 0) if for
any t , the unbounded connected component of H\η[0, t] coincides with Ht = H\Kt .

Indeed, a continuous simple curve under mild constraints does solve the Loewner
equation with continuous driving function. Suppose T ∈ (0,∞] and η : [0, T ) → H is
a continuous simple curve with η(0) = 0. Assume η satisfies the following: for every
t ∈ (0, T ),

– η(t, T ) is contained in the closure of the unbounded connected component of
H\η[0, t] and

– η−1(η[0, t] ∪ R) has empty interior in (t, T ).

For each t > 0, let gt be the conformal map which maps the unbounded connected
component of H\η[0, t] onto H normalized at ∞. After reparameterization, (gt , t ≥ 0)
solves the above Loewner equation with continuous driving function [Law05, Section
4.1].

Here we discuss the evolution of a point y ∈ R under gt . We assume y ≥ 0. There
are two possibilities: if y is not swallowed by Kt , then we define Yt = gt (y); if y is
swallowed by Kt , then we define Yt to be the image of the rightmost of point of Kt ∩ R

under gt . Suppose that (Kt , t ≥ 0) is generated by a continuous curve (η(t), t ≥ 0)
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and that the Lebesgue measure of η[0,∞] ∩ R is zero. Then the process Yt is uniquely
characterized by the following equation:

Yt = y +
∫ t

0

2ds

Ys − Ws
, Yt ≥ Wt , ∀t ≥ 0.

In this paper, we may write gt (y) for the process Yt .
Schramm Loewner Evolution SLEκ is the random Loewner chain (Kt , t ≥ 0) driven

by Wt = √
κBt where (Bt , t ≥ 0) is a standard one-dimensional Brownian motion. In

[RS05], the authors prove that (Kt , t ≥ 0) is almost surely generated by a continuous
transient curve, i.e. there almost surely exists a continuous curve η such that for each t ≥
0, Ht is the unbounded connected component ofH\η[0, t] and that limt→∞ |η(t)| = ∞.
There are phase transitions at κ = 4 and κ = 8: SLEκ are simple curves when κ ∈ (0, 4];
they have self-touchings when κ ∈ (4, 8); and they are space-filling when κ ≥ 8.

For any Dobrushin domain (Ω; x, y), SLEκ in (Ω; x, y) is defined via conformal
image: Let ϕ be any conformal map from Ω onto H that sends x to 0 and y to ∞. Then
SLEκ in (Ω; x, y) is ϕ−1(η) where η is an SLEκ in H from 0 to ∞. For κ ∈ (0, 8), the
curves SLEκ enjoy reversibility: let η be an SLEκ inΩ from x to y, then the time-reversal
of η has the same law as SLEκ in Ω from y to x . The reversibility for κ ∈ (0, 4] was
proved in [Zha08], and it was proved for κ ∈ (4, 8) in [MS16c].

2.3. Convergence of curves. In this section, we first recall the main result of [KS17]
and then show a similar result for pairs of curves. Suppose (Q; a, b, c, d) is a quad. We
say that a curve η crosses Q if there exists a subinterval [s, t] such that η(s, t) ⊂ Q
and η[s, t] intersects both (ab) and (cd). Given a Dobrushin domain (Ω; x, y), for any
curve η in X0(Ω; x, y) and any time τ , define Ωτ to be the connected component of
Ω\η[0, τ ] with y on the boundary. Consider a quad (Q; a, b, c, d) in Ωτ such that (bc)
and (da) are contained in ∂Ωτ . We say that Q is avoidable if it does not disconnect η(τ)

from y in Ωτ .

Definition 2.1. A familyΣ of probability measures on curves in Xsimple(Ω; x, y) is said
to satisfy Condition C2 if, for any ε ∈ (0, 1), there exists a constant c(ε) > 0 such that
for any P ∈ Σ , any stopping time τ , and any avoidable quad (Q; a, b, c, d) in Ωτ such
that dQ((ab), (cd)) ≥ c(ε), we have

P[η[τ, 1] crosses Q | η[0, τ ]] ≤ 1 − ε.

If the above property holds for τ = 0, we say that the family satisfies Condition C1.

It is clear that the combination of Condition C1 and CMP implies Condition C2.

Theorem 2.2 [KS17,Corollary 1.7, Proposition2.6]. Fix aDobrushin domain (Ω; x, y).
Suppose that {ηn}n∈N is a sequence of random curves in Xsimple(Ω; x, y) satisfying
Condition C2. Denote by (Wn(t), t ≥ 0) the driving process of ηn. Then

– the family of laws of {Wn}n∈N is tight in themetrisable space of continuous functions
on [0,∞) with the topology of uniform convergence on compact subsets of [0,∞);
– the family of laws of {ηn}n∈N is tight in the space of curves X;
– the family of laws of {ηn}n∈N, when each curve is parameterized by the half-plane
capacity, is tight in the metrisable space of continuous functions on [0,∞) with the
topology of uniform convergence on compact subsets of [0,∞).
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Moreover, if the sequence converges in any of the topologies above it also converges in
the two other topologies and the limits agree in the sense that the limiting random curve
is driven by the limiting driving function.

Next, we will explain a similar result for pairs of curves. Fix a quad (Ω; x L , x R,

yR, yL).

Definition 2.3. A family Σ of probability measures on pairs of curves in Xsimple(Ω;
x L , x R, yR, yL) is said to satisfy Condition C2 if, for any ε ∈ (0, 1), there exists a
constant c(ε) > 0 such that for any P ∈ Σ , the following holds. Given any ηL -stopping
time τ L and any ηR-stopping time τ R , and any avoidable quad (QR; aR, bR, cR, dR)

for ηR in Ω\(ηL [0, τ L ] ∪ ηR[0, τ R]) such that dQR ((aRbR), (cRdR)) ≥ c(ε), and any
avoidable quad (QL ; aL , bL , cL , dL) for ηL in Ω\(ηL [0, τ L ] ∪ ηR[0, τ R]) such that
dQL ((aLbL), (cLdL)) ≥ c(ε), we have

P

[
ηR[τ R, 1] crosses QR | ηL [0, τ L ], ηR[0, τ R]

]
≤ 1 − ε,

P

[
ηL [τ L , 1] crosses QL | ηL [0, τ L ], ηR[0, τ R]

]
≤ 1 − ε.

If the above property holds for τ L = τ R = 0, we say that the family satisfiesCondition
C1.

Theorem 2.4 Suppose that {(ηL
n ; ηR

n )}n∈N is a sequence of pairs of random curves in
Xsimple(Ω; x L , x R, yR, yL) and denote their laws by {Pn}n∈N. LetΩL

n be the connected
component ofΩ\ηL

n with (x R yR) on the boundary andΩ R
n be the connected component

of Ω\ηR
n with (yL x L) on the boundary. Define, for each n,

DL
n = dΩL

n
(ηL

n , (x R yR)), DR
n = dΩR

n
(ηR

n , (yL x L)).

Assume that the family of laws of {(ηL
n ; ηR

n )}n∈N satisfies Condition C2 and that the
family of laws of {(DL

n ;DR
n )}n∈N is tight in the following sense: for any u > 0, there

exists ε > 0 such that

Pn

[
DL

n ≥ ε,DR
n ≥ ε

]
≥ 1 − u, ∀n.

Then the sequence {(ηL
n ; ηR

n )}n∈N is relatively compact in X0(Ω; x L , x R, yR, yL).

Proof. By Theorem 2.2, there is subsequence nk → ∞ such that ηL
nk (resp. ηR

nk ) con-
verges weakly in all three topologies in Theorem 2.2. By Skorohod Representation
Theorem, we could couple all (ηL

nk ; ηR
nk ) in a common space so that ηL

nk → ηL and
ηR
nk → ηR almost surely. For ε > 0, define

Kε =
{
(ηL ; ηR) ∈ Xsimple(Ω; x L , x R, yR, yL) : dΩL (η

L , (x R yR)) ≥ ε,

dΩR (ηR, (yL x L)) ≥ ε
}

.

From the assumption, we know that, for any u > 0, there exists ε > 0 such that
infn Pn[Kε] ≥ 1− u. Therefore, with probability at least 1− u, the sequence (ηL

nk ; ηR
nk )

converges to (ηL ; ηR) in X ε
0(Ω; x L , x R, yR, yL) ⊂ X0(Ω; x L , x R, yR, yL). This is true

for any u > 0, thus we have (ηL
nk ; ηR

nk ) converges to (ηL ; ηR) in X0(Ω; x L , x R, yR, yL)

almost surely. �
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2.4. Conformal Markov characterization of SLEκ(ρ). SLEκ(ρ) processes are variants
of SLEκ where one keeps track of one extra point on the boundary. SLEκ(ρ) process
with force point w ∈ R is the Loewner evolution driven by Wt which is the solution to
the system of integrated SDEs:

Wt = √
κBt +

∫ t

0

ρds

Ws − Vs
, Vt = w +

∫ t

0

2ds

Vs − Ws
,

where Bt is one-dimensional Brownian motion. For ρ ∈ R, the process is well-defined
up to the first time that w is swallowed. When ρ > −2, the process is well-defined
for all time and it is generated by a continuous transient curve. Assume w ≥ 0. When
ρ ≥ κ/2 − 2, the curve never hits the interval [w,∞); when ρ < κ/2 − 2, the curve
hits the interval [w,∞) at finite time; and when ρ ≤ κ/2− 4, the curve accumulates at
the point w almost surely. We define SLEκ(ρ) in any triangle via conformal image.

Lemma 2.5. Fix κ ∈ (0, 8) andρ > (−2)∨(κ/2−4). ThenSLEκ(ρ) satisfies Condition
C1.

Proof. Suppose η is an SLEκ(ρ) in H from 0 to ∞ with force point w ∈ R. Then there
exists a function p(δ) → 0 as δ → 0 such that

P[η hits B(1, δ)] ≤ p(δ), (2.1)

and that p depends only on κ, ρ and is uniform over w, see for instance [Wu18, Lemma
A.5].

Suppose (Q; a, b, c, d) is an avoidable quad for η. It is explained in
[KS17, Eq.(12) in the proof of Theorem 1.10] that {η crosses Q} implies {η hits B(u, r)}
for some u ∈ R, r > 0 such that

r

|u| =
(
exp(πdQ((ab), (cd)))

16
− 1

)−1

.

Combining with (2.1), it implies that η satisfies Condition C1. �
Lemma 2.6 [SW05, Theorem 3]. Fix κ > 0 and ρ ∈ R and a triangle (Ω; x, w, y).
Let η be an SLEκ(ρ) in Ω from x to y with force point w. Then η has the same law as
SLEκ(κ − 6− ρ) in Ω from x to w with force point y, up to the first time that the curve
disconnects w from y.

Next, we explain the conformal Markov characterization of SLEκ(ρ) derived in
[MS16b]. Recall that T is the collection of all triangles (Ω; x1, x2, x3) with x1 �= x3.

Definition 2.7. Suppose (Pc, c ∈ T ) is a family of probability measures on continuous
curves from x to y in Ω . We say that (Pc, c ∈ T ) satisfies conformal Markov property
(CMP) if it satisfies the following two properties.

– Conformal invariance. Suppose that c = (Ω; x, w, y), c̃ = (Ω̃; x̃, w̃, ỹ) ∈ T , and
ψ : Ω → Ω̃ is the conformal map with ψ(x) = x̃, ψ(w) = w̃, ψ(y) = ỹ. Then for
η ∼ Pc, we have ψ(η) ∼ Pc̃.
– Domain Markov property. Suppose η ∼ Pc, then for every η-stopping time
τ , the conditional law of (η|t≥τ ) given η[0, τ ] is the same as Pcτ where cτ =
(Ωτ ; η(τ), wτ , y). Here Ωτ is the connected component of Ω\η[0, τ ] with y on
the boundary, and wτ = w if w is not swallowed by η[0, τ ] and wτ is the last point
of η[0, τ ] ∩ (xy) if w is swallowed by η[0, τ ].
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Theorem 2.8 [MS16b, Theorem 1.4]. Suppose (Pc, c ∈ T ) satisfies CMP in Defini-
tion 2.7 and Condition C1, then there exist κ ∈ (0, 8) and ρ > (−2) ∨ (κ/2 − 4) such
that, for each c = (Ω; x, w, y) ∈ T , Pc is the law of SLEκ(ρ) in Ω from x to y with
force point w.

In [MS16b, Theorem 1.4], the authors do not require Condition C1; instead, they
require the assumption that, when ∂Ω is smooth, the Lebesgue measure of η ∩ ∂Ω is
zero almost surely. Note that Condition C1 implies this latter assumption, and we find
Condition C1 is more natural, since it is the continuum counterpart of Russo-Symour-
Welsh bound for critical lattice models, see Proposition 5.1.

2.5. SLE with multiple force points. SLEκ(ρ) processes are variants of SLEκ where one
keeps track of multiple points on the boundary. Suppose y = (0 ≤ y1 < y2 < · · · <

yn) and ρ = (ρ1, . . . , ρn) with ρi ∈ R. An SLEκ(ρ) process with force points y is
the Loewner evolution driven by Wt which is the solution to the following system of
integrated SDEs:

Wt = √
κBt +

n∑
i=1

∫ t

0

ρi ds

Ws − V i
s
, V i

t = yi +
∫ t

0

2ds

V i
s − Ws

, for 1 ≤ i ≤ n,

where Bt is an one-dimensional Brownian motion. Note that the process V i
t is the time

evolution of the point yi , and we may write gt (yi ) for V i
t . We define the continuation

threshold of the SLEκ(ρ) to be the infimum of the time t for which

∑

i :V i
t =Wt

ρi ≤ −2.

By [MS16a, Theorem 1.3], the SLEκ(ρ) process is well-defined up to the continuation
threshold, and it is almost surely generated by a continuous curve up to and including the
continuation threshold. The Radon-Nikodym derivative between SLEκ(ρ) and SLEκ is
given by the following lemma.

Lemma 2.9 [SW05]. The process SLEκ(ρ)with force points y is the same as SLEκ pro-
cess weighted by the following local martingale, up to the first time that y1 is swallowed:

Mt =
∏

1≤i≤n

(
g′
t (yi )

ρi (ρi+4−κ)/(4κ)(gt (yi ) − Wt )
ρi /κ

)
×

∏
1≤i< j≤n

(gt (y j ) − gt (yi ))
ρiρ j /(2κ).

3. Hypergeometric SLE: Basic Properties

3.1. Definition of hSLE. We first define hSLE in the upper-half plane H. Fix κ ∈ (0, 8)
and ν ∈ R, and four boundary points x1 < x2 < x3 < x4. We are interested in Euler’s
hypergeometric differential equation

z(1 − z)F ′′(z) +
(
2ν + 8

κ
− 2ν + 2κ

κ
z

)
F ′(z) − 2(ν + 2)(κ − 4)

κ2 F(z) = 0. (3.1)
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When ν > (−4) ∨ (κ/2 − 6), define F to be the hypergeometric function (see
Appendix A):

F(z) := 2F1

(
2ν + 4

κ
, 1 − 4

κ
,
2ν + 8

κ
; z

)
. (3.2)

When ν ≤ (−4) ∨ (κ/2 − 6), define F to be the following:

F(z) := (1 − z)8/κ−1G(1 − z), where G(z) = 2F1

(
2ν + 12 − κ

κ
,
4

κ
,
8

κ
; z

)
.

(3.3)

Note that the functions F defined in both (3.2) and (3.3) are solutions to (3.1).

Lemma 3.1. Fix κ ∈ (0, 8).

– When ν > (−4) ∨ (κ/2 − 6), the function F defined in (3.2) is uniformly bounded
for z ∈ [0, 1]:

0 < 1 ∧ F(1) ≤ F(z) ≤ 1 ∨ F(1) < ∞, ∀z ∈ [0, 1].

– When ν ≤ (−4) ∨ (κ/2 − 6), the function G defined in (3.3) is uniformly bounded
for z ∈ [0, 1]:

0 < 1 ∧ G(1) ≤ G(z) ≤ 1 ∨ G(1) < ∞, ∀z ∈ [0, 1].

Proof. Denote by

A = 2ν + 4

κ
, B = 1 − 4

κ
, C = 2ν + 8

κ
.

When ν > (−4) ∨ (κ/2 − 6), we have

C > 0, C > A, C > B, C > A + B.

Then F(1) ∈ (0,∞) by (A.1). If AB > 0, F is increasing by Lemma A.1. If AB = 0,
we have F ≡ 1. If AB < 0, F is decreasing by LemmaA.2. In summary, F is monotone,
and it is bounded by F(0) = 1 and F(1).

Note that

G(z) = 2F1 (C − B,C − A, 1 + C − A − B; z) .

When ν ≤ (−4) ∨ (κ/2 − 6), we have

1 + C − A − B > 0, 1 + C − A − B > C − B, 1 + C − A − B > C − A,

1 + C − A − B > 2C − A − B.

Then G(1) ∈ (0,∞) by (A.1). Similarly, G is monotone, and it is bounded by G(0) = 1
and G(1). �
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Set

h = 6 − κ

2κ
, a = ν + 2

κ
, b = (ν + 2)(ν + 6 − κ)

4κ
. (3.4)

For x1 < x2 < x3 < x4, define partition function

Zκ,ν(x1, x2, x3, x4) = (x4 − x1)
−2h(x3 − x2)

−2bza F(z),

where z = (x2 − x1)(x4 − x3)

(x3 − x1)(x4 − x2)
. (3.5)

Suppose q = (Ω; x1, x2, x3, x4) is a nice quad, then we may extend the above definition
to q via conformal image:

Zκ,ν(Ω; x1, x2, x3, x4)
= |ϕ′(x1)|h |ϕ′(x2)|b|ϕ′(x3)|b|ϕ′(x4)|hZκ,ν(ϕ(x1), ϕ(x2), ϕ(x3), ϕ(x4)), (3.6)

where ϕ is any conformal map from Ω onto H such that ϕ(x1) < ϕ(x2) < ϕ(x3) <

ϕ(x4).
The process hSLEκ(ν) inH from x1 to x4 with marked points (x2, x3) is the Loewner

chain driven by Wt which is the solution to the following SDEs:

dWt = √
κdBt + κ(∂1 logZκ,ν)(Wt , gt (x2), gt (x3), gt (x4))dt,

∂t gt (xi ) = 2

gt (xi ) − Wt
, for i = 2, 3, 4.

(3.7)

In particular, this implies that the law of η is the same as SLEκ in H from x1 to ∞
weighted by the following local martingale:

Mt = g′
t (x2)

bg′
t (x3)

bg′
t (x4)

hZκ,ν(Wt , gt (x2), gt (x3), gt (x4)). (3.8)

In the above definition, hSLE is well-defined up to the swallowing time of x2. We
will define the whole process in the following way.

– When κ ∈ (0, 4] and ν > −4, the process is well-defined for all times from (3.7);
moreover, it is generated by a continuous curve. See Proposition 3.2.

– When κ ∈ (4, 8) and ν > κ/2 − 6, the process is well-defined up to and including
the swallowing time of x3 which is finite; moreover, it is generated by a continuous
curve up to and including the same time. See Proposition 3.2. After the swallowing
time of x3, we continue the process as a standard SLEκ towards x4.

– When ν ≤ (−4) ∨ (κ/2− 6), the process is well-defined up to the swallowing time
x2 and we stop the process there. The process is generated by a continuous curve up
to and including the same time, see Proposition 3.3.

AsZκ,ν in (3.5) is scaling covariant, hSLE in H is scaling invariant. hSLE in general
quad is defined via conformal image. For any quad q = (Ω; x1, x2, x3, x4), hSLEκ(ν)

in Ω from x1 to x4 with marked points (x2, x3) is ϕ−1(η)where ϕ is any conformal map
from Ω onto H such that ϕ(x1) < ϕ(x2) < ϕ(x3) < ϕ(x4) and η is an hSLEκ(ν) in H

from ϕ(x1) to ϕ(x4) with marked points (ϕ(x2), ϕ(x3)).
Recall that we write hSLEκ for hSLEκ(0) with ν = 0. When ν = 0, the partition

function defined in (3.5) is the same as the partition function for two SLEs defined in
[KL07, Section 3.3] and in [Dub06, Section 4.1].
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We end this section with a discussion on the phase transition of the two parame-
ters κ and ν in the definition of hSLE. From (3.8), the partition function Zκ,ν gives
the Radon-Nikodym derivative between hSLEκ(ν) and standard SLEκ . As a Radon-
Nikodym derivative, it is important to understand whether it is positive and bounded.
Thus, it is important to consider the positivity and bound of the hypergeometric function
F in the definition of Zκ,ν in (3.5). As in the proof of Lemma 3.1, in order for F to
be positive and bounded on [0, 1], we need C > 0,C > A,C > B,C > A + B. This
explains the phase transition for ν at (−4) ∨ (κ/2 − 6).

3.2. Continuity of hSLE. To derive the continuity of the process, it is more convenient
to work with hSLE in H from 0 to ∞ with two marked points 0 < x < y. The process
hSLEκ(ν) in H from 0 to ∞ with marked points (x, y) is the random Loewner chain
driven by W which is the solution to the following system of SDEs:

dWt = √
κdBt +

(ν + 2)dt

Wt − V x
t

+
−(ν + 2)dt

Wt − V y
t

− κ
F ′(Zt )

F(Zt )

(
1 − Zt

V y
t − Wt

)
dt,

dV x
t = 2dt

V x
t − Wt

, dV y
t = 2dt

V y
t − Wt

, where Zt = V x
t − Wt

V y
t − Wt

,

(3.9)

where Bt is one-dimensional Brownian motion, and the initial values are W0 = 0,
V x
0 = x and V y

0 = y. Denote by Tx the swallowing time of x and by Ty the swallowing
time of y.

Proposition 3.2. Fix κ ∈ (0, 8), ν > (−4) ∨ (κ/2 − 6) and 0 < x < y. Consider
hSLEκ(ν) in H from 0 to ∞ with marked points (x, y) defined from (3.9).

– When κ ∈ (0, 4], it is well-defined for all times. Moreover, it is generated by a
continuous transient curve almost surely.
– When κ ∈ (4, 8), it is well-defined up to Ty.Moreover, it is generated by a continuous
curve up to and including Ty almost surely.
– When ν ≥ κ/2 − 4, it never hits the interval [x, y] almost surely.
Before proving Proposition 3.2, let us compare hSLEκ(ν)with SLEκ(ν+2, κ−6−ν)

process. By Lemma 2.9 and (3.8), the law of hSLEκ(ν) with marked points (x, y) is the
same as the law of SLEκ(ν + 2, κ − 6− ν) with force points (x, y) weighted by Rt/R0
where

Rt = (gt (y) − Wt )
4/κ−1 F(Zt ), and Zt = gt (x) − Wt

gt (y) − Wt
.

Note that 0 ≤ Zt ≤ 1 for all t and F(z) is bounded for z ∈ [0, 1]. For n ≥ 1, define

Sn = inf{t : gt (y) − Wt ≤ 1/n or gt (y) − Wt ≥ n}.
Then RSn is bounded. Therefore, the law of hSLEκ(ν) is absolutely continuous with
respect to the law of SLEκ(ν + 2, κ − 6− ν) up to Sn . Since SLEκ(ν + 2, κ − 6− ν) is
generated by a continuous curve up to Ty , hSLEκ(ν) is generated by a continuous curve
up to Sn . Let n → ∞, hSLEκ(ν) is generated by a continuous curve up to Ty = limn Sn .
However, the absolute continuity is not preserved as n → ∞, since Rt may be no longer
bounded away from 0 or ∞ as t → Ty . Thus the difficulty in proving Proposition 3.2 is
to analyze the behavior of hSLEκ(ν) as t → Ty .
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Proof of Proposition 3.2. When κ ∈ (0, 8), ν > (−4) ∨ (κ/2 − 6), the function F(z)
defined in (3.2) is uniformly bounded for z ∈ [0, 1] between F(0) = 1 and F(1) ∈
(0,∞). Since hSLEκ(ν) is scaling invariant, we may assume y = 1 and x ∈ (0, 1), and
denote Ty by T . We will analyze the behavior of hSLEκ(ν) as t → T . To this end, we
perform a standard change of coordinates and parameterize the process according the
capacity seen from the point 1, see [SW05, Theorem 3].

Set f (z) = z/(1 − z). Clearly, f is the Möbius transform of H sending the points
(0, 1,∞) to (0,∞,−1). Consider the image of (Kt , 0 ≤ t ≤ T ) under f , denoted by
(K̃s, 0 ≤ s ≤ S̃), where we parameterize this curve by its capacity s(t) seen from∞. Let
(g̃s) be the corresponding family of conformal maps and (W̃s) be the driving function.
Let ft be the Möbius transform of H such that g̃s ◦ f = ft ◦ gt where s = s(t). By
expanding g̃s = ft ◦ gt ◦ f −1 around ∞ and comparing the coefficients in both sides,
we have

ft (z) = −1 − g′′
t (1)

2g′
t (1)

+
g′
t (1)

gt (1) − z
.

Thus, with s = s(t),

W̃s = ft (Wt ) = −1 − g′′
t (1)

2g′
t (1)

+
g′
t (1)

gt (1) − Wt
,

dW̃s = (κ − 6)g′
t (1)dt

(gt (1) − Wt )3
+

g′
t (1)dWt

(gt (1) − Wt )2
.

Define

Ṽ x
s = g̃s(x̃) = ft (V

x
t ), Ṽ∞

s = g̃s(−1) = ft (∞), Z̃s = Ṽ x
s − W̃s

Ṽ x
s − Ṽ∞

s

= Zt .

Plugging in the time change

ṡ(t) = f ′
t (Wt )

2 = g′
t (1)

2

(gt (1) − Wt )4
,

we obtain

dW̃s = √
κd B̃s +

(ν + 2)ds

W̃s − Ṽ x
s

+
(κ − 6)ds

W̃s − Ṽ∞
s

− κ
F ′(Z̃s)

F(Z̃s)

ds

Ṽ x
s − Ṽ∞

s

,

where B̃s is one-dimensional Brownian motion. By Girsanov’s Theorem, the law of K̃
is the law of SLEκ(κ − 6; ν + 2) with force points (−1; x̃ := x/(1 − x)) weighted by
Rs/R0 where

Rs = F(Z̃s) (g̃s(x̃) − g̃s(−1))a(4−κ)/2 , and Z̃s = g̃s(x̃) − W̃s

g̃s(x̃) − g̃s(−1)
.

Note that 0 ≤ Z̃s ≤ 1 and F(z) is bounded for z ∈ [0, 1]; and that the process g̃s(x̃) −
g̃s(−1) is increasing, thus g̃s(x̃) − g̃s(−1) ≥ 1/(1 − x). Let S̃ be the swallowing time
of −1. Define, for n ≥ 1,

S̃n = inf{t : K̃t exits B(0, n)}.
Then Rs is bounded up to S̃ ∧ S̃n . The process SLEκ(κ − 6; ν + 2) with force points
(−1; x̃ = x/(1 − x)) is generated by a continuous curve up to and including the con-
tinuation threshold. Moreover, it has the following properties.
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(a) When κ ∈ (0, 4], since κ − 6 ≤ κ/2− 4 and ν + 2 > −2, the curve accumulates at
the point −1 in finite time almost surely.

(b) When κ ∈ (4, 8), since κ−6 ∈ (−2, κ/2−2) and ν+2 > −2, the curve accumulates
at a point on the interval (−∞,−1) in finite time almost surely.

(c) When ν ≥ κ/2−4, since ν +2 ≥ κ/2−2, the curve does not hit the interval [x̃,∞)

almost surely.

From items (a) and (b), limn→∞ S̃∧ S̃n = S̃ < ∞. Thus K̃ is generated by a continuous
curve up to and including S̃. This implies that our original hSLEκ(ν) process (Kt , t ≥ 0)
is generated by a continuous curve up to and including T . When κ ≤ 4, hSLEκ(ν)

process goes to ∞ without touching the interval [1,∞), thus T = ∞. When κ ∈ (4, 8),
hSLEκ(ν) process accumulates at a point on the interval (1,∞) in finite time, thus T <

∞. From item (c), hSLEκ(ν) process does not hit the interval [x, 1] when ν ≥ κ/2− 4.
�

Proposition 3.3. Fix κ ∈ (0, 8) and ν ≤ (−4) ∨ (κ/2 − 6) and 0 < x < y. hSLEκ(ν)

in H from 0 to ∞ with marked points (x, y) is well-defined up to Tx . Moreover, it is
generated by a continuous curve up to and including Tx , and it accumulates at a point
on [x, y) as t → Tx .

Proof. Suppose η̃ is an SLEκ(ν + 2, ν + 2) in H from 0 to ∞ with force points (x, y).
The law of η is the same as the law of η̃ weighted by Rt/R0 where

Rt = (gt (y) − Wt )
a(κ/2−6−ν)(1 − Zt )

8/κ−1−a(ν+4−κ/2)G(1 − Zt ), and

Zt = gt (x) − Wt

gt (y) − Wt
.

Here G is defined in (3.3). For n ≥ 1, define Sn to be the minimum of

inf{t : η̃(t) exits B(0, n)}, and inf{t : gt (y) − gt (x) ≤ 1/n}.

Then RTx∧Sn is bounded. Thus η is continuous up to Tx ∧ Sn .
First, we assume κ ∈ (4, 8) and ν ≤ κ/2 − 6. Since ν + 2 ≤ κ/2 − 4 and 2ν + 4 ≤

κ/2− 4, the process η̃ accumulates at the point x as t → Tx (see [Dub09, Lemma 15]).
Combining the fact that it is generated by a continuous curve up to and including Tx , we
have RTx∧Sn → RTx ∈ (0,∞) as n → ∞. Therefore, η is generated by a continuous
curve up to and including Tx and it accumulates at the point x as t → Tx .

Next, we assume κ ∈ (0, 4] and ν ≤ −4. Since ν+2 < κ/2−2 and 2ν+4 ≤ κ/2−4,
the process η̃ accumulates at a point on [x, y] as t → Tx (see [Dub09, Lemma 15]).
In fact, we can further derive that η̃ accumulates at a point on [x, y) as t → Tx . Let
ϕ be the Möbius transform of H sending the triple (0, x, y) to (0, x,∞). Then the law
of ϕ(η̃) is SLEκ(κ − 10 − 2ν; ν + 2) from 0 to ∞ with force points (ϕ(∞); x). Since
κ − 10 − 2ν ≥ κ/2 − 2 and ν + 2 < κ/2 − 2, the curve ϕ(η̃) almost surely hits [x,∞)

before reaching ∞. This implies that η̃ accumulates at a point on [x, y) as t → Tx .
Combing the fact that it is generated by a continuous curve up to and including Tx , we
have RTx∧Sn → RTx ∈ (0,∞) as n → ∞. Therefore, η is generated by a continuous
curve up to and including Tx and it accumulates at a point on [x, y). This completes the
proof. �
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3.3. Reversibility of hSLE. In this section, we still work with hSLE in H from 0 to ∞.
In this case, the local martingale in (3.8) has a more explicit expression.

Lemma 3.4. Fix κ ∈ (0, 8), ν ∈ R and 0 < x < y. Suppose η is an SLEκ in H from
0 to ∞ and (gt , t ≥ 0) is the corresponding family of conformal maps. Let Tx be the
swallowing time of x. Define, for t < Tx ,

Jt = g′
t (x)g

′
t (y)

(gt (y) − gt (x))2
, Zt = gt (x) − Wt

gt (y) − Wt
.

Then the following process is a local martingale:

Mt := Za
t J

b
t F(Zt )1{t<Tx },

where a, b are defined through (3.4) and F is defined through (3.2) or (3.3).

Proposition 3.5. Fix κ ∈ (0, 8), ν ≥ κ/2 − 4 and 0 < x < y. The local martingale
defined in Lemma 3.4 is a uniformly integrable martingale for η; and the law of η

weighted by M∞ is the same as hSLEκ(ν) with marked points (x, y). Furthermore,

M∞ = (HD(x, y))b 1{η∩[x,y]=∅},
where D is the connected component of H\η with (xy) on the boundary, and HD(x, y)
is the boundary Poisson kernel.1

Proof. Wefirst argue thatMt is a uniformly integrablemartingale.Note that Jt is decreas-
ing in t , thus Jt ≤ J0. Therefore Mt is bounded as long as Jt and Zt are bounded from
below. Define, for n ≥ 1,

Sn = inf{t : Jt ≤ 1/n or Zt ≤ 1/n}.
Denote by P the law of η. Define P∗

n by dP∗
n/dP = MSn/M0. Then P∗

n is the same
as hSLEκ(ν) up to Sn . Since {P∗

n}n are compatible in n, there exists a probability P∗
such that, under P∗, and for each n, the process is the same as hSLEκ(ν) up to Sn . By
Proposition 3.2, hSLEκ(ν) is generated by a continuous transient curve and the curve
never hits the interval [x, y] when ν ≥ κ/2 − 4. Hence P∗ is the same as the law of
hSLEκ(ν). This implies that Mt is a uniformly integrable martingale.

It remains to derive the explicit expression of M∞. As t → ∞, we find

Zt → 1, Jt → J∞ := g′(x)g′(y)
(g(y) − g(x))2

,

where g is any conformal map from D onto H. In fact, the quantity J∞ is the boundary
Poisson kernel HD(x, y). Thus we have almost surely M∞ = limt→∞ Mt = HD(x, y)b

as desired. �
Proof of Theorem 1.1. We have shown that hSLEκ(ν) is generated by a continuous tran-
sient curve in Proposition 3.2. Thus, to show Theorem 1.1, it remains to show the
reversibility when ν ≥ κ/2 − 4. By Proposition 3.5, the Radon-Nikodym derivative of
the law of hSLEκ(ν) with marked points (x, y) with respect to the law of SLEκ is given
by M∞/M0 where M∞ is the boundary Poison kernel to the power b. Combining the
reversibility of standard SLEκ and the conformal invariance of the boundary Poisson
kernel, we have the reversibility of hSLEκ(ν). �

1 Fix a niceDobrushin domain (Ω; x, y). The boundary Poisson kernel HΩ(x, y) is a conformally covariant
function which, in H with x, y ∈ R is given by HH(x, y) = |y − x |−2, and in Ω it is defined via conformal
image: we may set HΩ(x, y) = |ϕ′(x)ϕ′(y)|HH(ϕ(x), ϕ(y)) for any conformal map ϕ : Ω → H.
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From the above analysis, we obtain the reversibility of hSLEκ(ν) for ν ≥ κ/2 − 4.
In fact, we believe the reversibility holds for all ν > (−4) ∨ (κ/2 − 6).

Conjecture 3.6. Fix κ ∈ (0, 8) and ν > (−4)∨ (κ/2−6) and a quad (Ω; x1, x2, x3, x4).
Let η be an hSLEκ(ν) inΩ from x1 to x4 with marked points (x2, x3). The time-reversal
of η has the same law as hSLEκ(ν) in Ω from x4 to x1 with marked points (x3, x2).

3.4. Relation to SLEκ(ρ). In the following lemma, we explain the relation between
hSLEκ(ν) and SLEκ(ρ).

Lemma 3.7. Fix κ ∈ (0, 8), ν ∈ R and x1 < x2 < x3 < x4. When x3 → x4, the
process hSLEκ(ν) in H from x1 to x4 with marked points (x2, x3) converges weakly to
SLEκ(ν + 2) in H from x1 to x4 with force point x2.

Proof. We may assume x1 = 0 and x4 = ∞, and the two marked points are 0 < x < y.
Let η be hSLEκ(ν) in H from 0 to ∞ with marked points (x, y). Let η̃ be SLEκ(ν + 2)
in H from 0 to ∞ with force point x . The law of η is the same as the law of η̃ weighted
by the following Radon-Nikodym derivative

Rt

R0
= g′

t (y)
b
(
gt (y) − Wt

y

)−a F(Zt )

F(Z0)
, where Zt = gt (x) − Wt

gt (y) − Wt
,

and F is the function in (3.2) or (3.3).
Let T be the continuation threshold of η̃. For n ≥ 1, let Sn be the first time that η̃ exits

the ball B(0, n). Fix n, and let y → ∞, we see that Z0, ZT∧Sn → 0 and RT∧Sn/R0 → 1.
Furthermore, RT∧Sn/R0 is uniformly bounded when y is large enough. Thus, for any
fixed n ≥ 1, the law of η up to T ∧ Sn converges weakly to the law of η̃ up to the same
time. This gives the conclusion. �
The special case: κ = 4

When κ = 4, the hypergeometric SLE process degenerates. When ν > −4, we have
F ≡ 1 in (3.2). From (3.9), it is clear that hSLE4(ν) is the same as SLE4(ν +2,−ν −2).
When ν ≤ −4, although hSLE4(ν) is distinct from SLE4(ν + 2,−ν − 2) in this case,
they are still closely related. To explain the relation, we first do a calculation with
SLE4(ν + 2,−ν − 2).

Suppose η̃ is an SLE4(ν + 2,−ν − 2) in H from x1 to x4 with force points (x2, x3).
In this case, the process η̃ can be viewed as the level line of Gaussisan Free Field with
the following boundary data (λ = π/2): (see [SS13,WW17])

−λ on (−∞, x1), λ on (x1, x2), λ(ν + 3) on (x2, x3),

λ on (x3, x4), −λ on (x4,∞).

In particular, the process η̃ is generated by a continuous curve up to and including the
continuation threshold, denoted by T . When ν + 3 ≤ −1, the curve η̃ may terminate at
either x2 or x4. Furthermore, we can calculate the probabilities of these two events.

Lemma 3.8. Fix ν ≤ −4 and set α = −(ν+2)/2 ≥ 1. Suppose η̃ is an SLE4(ν+2,−ν−
2) in H from x1 to x4 with force points (x2, x3). Let T be its continuation threshold. We
have

P[η̃(T ) = x2] = 1 − zα, and P[η̃(T ) = x4] = zα, where z = (x2 − x1)(x4 − x3)

(x3 − x1)(x4 − x2)
.
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Proof. Recall that the driving function of η̃ satisfies the following:

dWt = 2dBt +
−(ν + 2)dt

gt (x2) − Wt
+

(ν + 2)dt

gt (x3) − Wt
+

2dt

gt (x4) − Wt
.

Define

Mt = zαt , where zt = (gt (x2) − Wt )(gt (x4) − gt (x3))

(gt (x3) − Wt )(gt (x4) − gt (x2))
. (3.10)

By Itô’s Formula, one can check that Mt is a local martingale for η̃. We see that, as
t → T ,

Mt → 0, if η̃(t) → x2; and Mt → 1, if η̃(t) → x4.

Note that 0 ≤ Mt ≤ 1. Thus Optional Stopping Theorem implies that

P[η̃(T ) = x4] = E[MT ] = M0 = zα.

This gives the conclusion. �
When ν ≤ −4, from (3.3), we have F(z) = 1− zα . In this case, the law of hSLE4(ν)

in H from x1 to x4 with marked points (x2, x3) is the same as η̃ weighted by 1 − Mt
where Mt is the martingale defined in (3.10). Equivalently, the law of hSLE4(ν) is the
same as η̃ conditioned on the event {η̃(T ) = x2}.

3.5. Relation between different hSLE’s. Recall that hSLE in general quad (Ω; x1, x2,
x3, x4) is defined via conformal image as in the end of Sect. 3.1. Denote by
Pκ,ν(Ω; x1, x2, x3, x4) the law of hSLEκ(ν) in Ω from x1 to x4 with marked points
(x2, x3). Proposition 3.9 derives the relation between hSLEs with different ν’s. Propo-
sition 3.10 derives the relation between hSLEs in different domains. Proposition 3.11
derives the relation between hSLEs with different target points.

Proposition 3.9. Fix κ ∈ (0, 8), ν ∈ R and a quad (Ω; x1, x2, x3, x4). When ν ≥
κ/2−4, we have η ∩[x2x3] = ∅ almost surely. When (−4)∨ (κ/2−6) < ν < κ/2−4,
the event {η ∩ [x2x3] = ∅} has positive chance which is given by

Zκ,κ−8−ν(Ω; x1, x2, x3, x4)Γ ((2ν + 8)/κ)Γ ((κ − 4 − 2ν)/κ)

Zκ,ν(Ω; x1, x2, x3, x4)Γ ((2ν + 12 − κ)/κ)Γ ((2κ − 8 − 2ν)/κ)
. (3.11)

Moreover, for (−4) ∨ (κ/2 − 6) < ν < κ/2 − 4, we have

Pκ,ν(Ω; x1, x2, x3, x4)[· | η ∩ [x2x3] = ∅] = Pκ,κ−8−ν(Ω; x1, x2, x3, x4)[·].
In particular, when κ ∈ (4, 8), the law of SLEκ from x1 to x4 conditioned to avoid (x2x3)
is the same as hSLEκ(κ − 6) from x1 to x4 with marked points (x2, x3).

Proof. We may assume Ω = H and x1 = 0 < x2 = x < x3 = y < x4 = ∞. Let η be
an hSLEκ(ν) from 0 to ∞ with marked points (x, y). Denote by Tx the swallowing time
of x and by Ty the swallowing time of y. The fact that η∩[x, y] = ∅when ν ≥ κ/2−4 is
proved in Proposition 3.2. In the following, we assume (−4)∨(κ/2−6) < ν < κ/2−4.
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Set ν̂ = κ − 8 − ν and â = (ν̂ + 2)/κ , and let η̂ be an hSLEκ(ν̂) from 0 to ∞ with
marked points (x, y). The following process is a local martingale for η:

Mt = zâ−a
t

F̂(zt )

F(zt )
1{t<Tx }, where Zt = gt (x) − Wt

gt (y) − Wt
,

and F is defined through (3.2) and

F̂(z) = 2F1

(
2(κ − 6 − ν)

κ
, 1 − 4

κ
,
2(κ − 4 − ν)

κ
; z

)
.

Moreover, the law of η weighted by M is the same as η̂ up to Tx . Since ν̂ ≥ κ/2 − 4,
η̂ does not hit the closed interval [x, y] and thus Tx = Ty . Using a similar argument
as in the proof of Proposition 3.5, M is a uniformly integrable martingale for η. As
t → Ty , we have Zt → 1. Thus the law of η̂ is the same as η weighted by 1{η∩[x,y]=∅}.
In particular, we have

P[η ∩ [x, y] = ∅] = zâ−a F̂(z)/F̂(1)

F(z)/F(1)
, where z = x

y
.

This gives (3.11). �
Next, we derive the boundary perturbation property of the hSLEκ(ν), which is a

generalization of the boundary perturbation property of SLEκ derived in [LSW03, Sec-
tion 5]. Suppose Ω̂ ⊂ Ω such that Ω̂ is simply connected and agrees with Ω in a
neighborhood of the arc (x1x4). In the following proposition, we will derive the rela-
tion between Pκ,ν(Ω̂; x1, x2, x3, x4) and Pκ,ν(Ω; x1, x2, x3, x4). To this end, we need
to introduce Brownian loop measure.

TheBrownian loopmeasure is a conformally invariantmeasure onunrootedBrownian
loops in the plane. In the present article, we will not need the precise definition of this
measure, so we content ourselves with referring to the literature for the definition: see,
e.g., [Law09] or [LW04, Sections 3 and 4]. Given a non-empty simply connected domain
Ω � C and two disjoint subsets V1, V2 ⊂ Ω , we denote by μ(Ω; V1, V2) the Brownian
loop measure of loops in Ω that intersect both V1 and V2. This quantity is conformally
invariant: μ(ϕ(Ω);ϕ(V1), ϕ(V2)) = μ(Ω; V1, V2) for any conformal transformation
ϕ : Ω → ϕ(Ω). In general, the Brownian loop measure is an infinite measure. By
[Law09, Corollary 4.6], we have 0 ≤ μ(Ω; V1, V2) < ∞ when both of V1, V2 are
closed, one of them is compact, and dist(V1, V2) > 0.

Proposition 3.10. Fix κ ∈ (0, 4], ν > −4 and a quad (Ω; x1, x2, x3, x4). Assume that
Ω̂ ⊂ Ω is simply connected and it agrees with Ω in a neighbourhood of the arc (x1x4).
Then hSLEκ(ν) in Ω̂ is absolutely continuous with respect to hSLEκ(ν) in Ω , and the
Radon-Nikodym derivative is given by

dPκ,ν(Ω̂; x1, x2, x3, x4)
dPκ,ν(Ω; x1, x2, x3, x4) = Zκ,ν(Ω; x1, x2, x3, x4)

Zκ,ν(Ω̂; x1, x2, x3, x4)
1{η⊂Ω̂} exp(cμ(Ω; η,Ω\Ω̂)),

where c = (3κ − 8)(6 − κ)/(2κ).

When ν = 0, the same conclusion appeared in [KL07, Section 3].
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Proof. We may assume Ω = H and x1 = 0 < x2 = x < x3 = y < x4 = ∞. Let
φ be the conformal map from Ω̂ onto H such that φ(0) = 0 and limz→∞ φ(z)/z = 1.
Suppose η (resp. η̂) is hSLEκ(ν) in H (resp. in Ω̂) from 0 to ∞ with marked points
(x, y). Let (gt , t ≥ 0) be the corresponding family of conformal maps, and V x

t , V y
t are

the evolutions of x, y respectively. Let T be the first time when η exits Ω̂ . We will study
the law of η̃(t) = φ(η(t)) for t < T . Define g̃t to be the conformal map from H\η̃[0, t]
onto H normalized at ∞ and let ϕt be the conformal map from H\gt (K ) onto H such
that ϕt ◦ gt = g̃t ◦ φ. One can check that the following process is a local martingale for
η:

Mt :=1{t<T }ϕ′
t (Wt )

hϕ′
t (V

x
t )bϕ′

t (V
y
t )b

(
ϕt (V

y
t ) − ϕt (V x

t )

V y
t − V x

t

)−2b

exp(cμ(H; η[0, t], H\Ω̂))

×
(

ϕt (V x
t ) − ϕt (Wt )

ϕt (V
y
t ) − ϕt (Wt )

V y
t − Wt

V x
t − Wt

)a

×
F

(
ϕt (V x

t )−ϕt (Wt )

ϕt (V
y
t )−ϕt (Wt )

)

F
(
V x
t −Wt

V y
t −Wt

) ,

where a, b, h are defined through (3.4) and F is defined through (3.2). Moreover, the
law of η weighted by M is the same as η̂ up to T . Since κ ≤ 4, the process η̂ never exits
Ω̂ and goes to ∞. Using a similar argument as in the proof of Proposition 3.5, M is a
uniformly integrable martingale for η and the law of η weighted by MT /M0 is the same
as η̂ where

MT := lim
t→T

Mt = 1{η⊂Ω̂} exp(cμ(H; η, H\Ω̂)).

This completes the proof. �
Proposition 3.11. Fix κ ∈ (0, 8) and a quad (Ω; x1, x2, x3, x4). Let η be an hSLEκ(κ −
8) in Ω from x1 to x4 with marked points (x2, x3). Let η̃ be an hSLEκ in Ω from x1 to x2
with marked points (x4, x3). Then η̃ (up to the first hitting time of [x2x3]) has the same
law as η conditioned to hit [x2x3] (up to the first hitting time of [x2x3]).
Proof. We may assume Ω = H and x1 < x2 < x3 < x4. For η, let T be its swallowing
time of x2. Denote X j1 = gt (x j ) − Wt for 2 ≤ j ≤ 4 and Xi j = gt (x j ) − gt (xi ) for
2 ≤ i < j ≤ 4. When ν = κ − 8, we have

a = ν + 2

κ
= −2h, b = (ν + 2)(ν + 6 − κ)

4κ
= h.

First, we assume κ ∈ (4, 8). In this case, we have κ − 8 > κ/2 − 6. Define

F(z) := 2F1

(
2 − 12

κ
, 1 − 4

κ
, 2 − 8

κ
; z

)
, F̃(z) := 2F1

(
4

κ
, 1 − 4

κ
,
8

κ
; z

)
.

In this case, both F and F̃ are bounded for z ∈ [0, 1]. The law of η is the same as SLEκ

in H from x1 to ∞ weighted by the following local martingale:

Mt = g′
t (x2)

hg′
t (x3)

hg′
t (x4)

h X−2h
41 X−2h

32 z−2h
t F(zt ), where zt = X21X43

X31X42
.
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The law of η̃ is the same as SLEκ in H from x1 to ∞ weighted by the following local
martingale:

M̃t = g′
t (x2)

hg′
t (x3)

hg′
t (x4)

h X−2h
21 X−2h

43 s2/κt F̃(st ), where st = X32X41

X31X42
.

Comparing these two localmartingales, we see that the law of η̃ is the same as ηweighted
by the following local martingale up to T :

Nt = (1 − zt )
8/κ−1 F̃(1 − zt )

F(zt )
.

We have the following observation.

– On the event {η ∩ [x2, x3] �= ∅}, the curve η accumulates at a point on (x2, x3) as
t → T . Thus zt → 0 as t → T .

– On the event {η ∩ [x2, x3] = ∅}, the curve η accumulates at a point on (x3, x4) as
t → T . Thus zt → 1 as t → T .

Combining these two facts, we see that the law of η̃ (up to the first hitting time of [x2, x3])
is the same as η conditioned on {η∩[x2, x3] �= ∅} (up to the first hitting time of [x2, x3]).

Next, we assume κ ∈ (0, 4]. In this case, we have κ − 8 ≤ −4. Define

G(z) := 2F1

(
1 − 4

κ
,
4

κ
,
8

κ
; z

)
.

The law of η is the same as SLEκ in H from x1 to ∞ weighted by the following local
martingale up to T :

Mt = g′
t (x2)

hg′
t (x3)

hg′
t (x4)

h X−2h
41 X−2h

32 z−2h
t (1 − zt )

8/κ−1G(1 − zt ).

Therefore, the law of η̃ is the same as η weighted by the following local martingale up
to T :

Nt = F̃(1 − zt )

G(1 − zt )
.

With the analysis in the end the proof of Proposition 3.3, since ν +2 = κ −6 ≤ κ/2−4,
the curve η accumulates at the point x2 almost surely. Thus zt → 0 as t → T almost
surely. Therefore, the law of η̃ is the same as η. �

We end this section with a discussion on the definition of hSLE. In the definition of
hSLE in Sect. 3.1, it is important that the process in (3.8) is a local martingale. This
is equivalent to that the function F in (3.5) needs to satisfy (3.1). Whereas, there is a
two-dimensional solution space for (3.1). The readers may wonder why we choose the
particular solution as in (3.2) or (3.3). Indeed, there is freedom in choosing F as long as
it is in the solution space. But we choose the one as in (3.2) or (3.3) with the following
consideration.

When ν > (−4)∨ (κ/2−6), we choose F as in (3.2). First of all, when ν = 0, this is
consistent with the hypergeometric SLE discussed in [KL07, Section 3.3] and in [Dub06,
Section 4.1]. Second, it is consistent with the definition of SLEκ(ρ) in the following
sense: it is believed that the time-reversal of SLEκ(ρ) when ρ > (−2) ∨ (κ/2 − 4) is
hSLEκ(ρ − 2), as in Conjecture 3.6.
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xRxL

yRyL wL wR

ηL ηR

xL

yL = wL

ηL

xR

yR = wR

ηR

Fig. 3. Fix a quad q = (Ω; x R , yR , yL , xL ) and consider disjoint continuous simple curves (ηL ; ηR) in the
space X0(Ω; x R , yR , yL , xL ). Let T R be the first time that ηR hits the closed arc [yR yL ], and denote by
wR the point ηR(T R), and by ΩR the connected component of Ω\ηR [0, T R ] with (yL xL ) on the boundary.
In the figure, the gray part indicates ΩR . Note that T R , wR ,ΩR are deterministic functions of ηR . Let T L

be the first time that ηL hits the closed arc [yR yL ], and denote by wL the point ηL (T L ), and by ΩL the
connected component of Ω\ηL [0, T L ] with (x R yR) on the boundary

When ν ≤ (−4) ∨ (κ/2− 6), we choose F as in (3.3) with the following reason: the
corresponding hSLEκ(ν) process accumulates at a point on the interval [x2, x3) almost
surely, as proved in Proposition 3.3. This makes the answer in Theorem 1.4 explicit: if
κ ∈ (0, 4] and ν ≤ −4, the marginal law of ηR up to the first hitting time of [yR yL ]
equals hSLEκ(ν) up to the same time (without conditioning).

4. Hypergeometric SLE: Conformal Markov Characterization

The focus of this section is to give characterization of pairs of simple random curves in
quad, and then to prove Theorem 1.4. Fix a quad q = (Ω; x R, yR, yL , x L), consider
disjoint continuous simple curves (ηL ; ηR) ∈ X0(Ω; x R, yR, yL , x L). We will show in
Propositions 4.1 and 4.2 that the joint law on such pairs are uniquely characterized by
the conditional laws. These results play an important role in proving Theorem 1.4. To
state the main results, we first introduce some notations in Fig. 3.

Proposition 4.1. Assume the same notations as in Fig. 3. Fix κ ∈ (0, 4] and ρL >

−2, ρR > −2 and a quad q = (Ω; x R, yR, yL , x L).

– (Existence and Uniqueness) There exists a unique probability measure on disjoint
continuous simple curves (ηL ; ηR) ∈ X0(Ω; x R, yR, yL , x L) such that the condi-
tional law of ηR given ηL is SLEκ(ρR) in ΩL from x R to yR with force point x R+ ;
and that the conditional law of ηL given ηR is SLEκ(ρL) in Ω R from xL to yL with
force point x L−.
– (Identification) Under this probability measure, when ρL = 0, the marginal law of
ηL is hSLEκ(ρR) in Ω from xL to yL with marked points (x R, yR).

Proposition 4.2. Assume the same notations as in Fig. 3. Fix κ ∈ (0, 4] and ρ > −2
and a quad q = (Ω; x R, yR, yL , x L).

– (Existence and Uniqueness) There exists a unique probability measure on disjoint
continuous simple curves (ηL ; ηR) ∈ X0(Ω; x R, yR, yL , x L) such that the condi-
tional law of ηR given ηL is SLEκ(ρ) in ΩL from x R to yR with force point wL; and
that the conditional law of ηL given ηR is SLEκ(ρ) in Ω R from xL to yL with force
point wR. We denote this probability measure by Qq(κ, ρ).
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– (Identification) Under this probability measure, the marginal of ηR stopped at the
first hitting time of [yR yL ] is the same as hSLEκ(κ − 8 − ρ) in Ω from x R to x L

with marked points (yR, yL) conditioned to hit [yR yL ], stopped at the first hitting
time of [yR yL ].
We will prove Proposition 4.1 in Sect. 4.1 and prove Proposition 4.2 in Sect. 4.2. We

will prove Theorem 1.4 in Sect. 4.3.

4.1. Proof of Proposition 4.1. The uniqueness in Proposition 4.1was proved in [MS16b,
Theorem 4.1] and [MSW16, Appendix A], we only need to show the existence and the
identification. To construct the pair (ηL ; ηR) in Proposition 4.1, we need to introduce
boundary perturbation property of SLEκ(ρ) process. This is a particular case of Propo-
sition 3.10.

Lemma 4.3 [WW13, Section 3]. Fix κ ∈ (0, 4], ρ > −2 and a Dobrushin domain
(Ω; x, y). Assume that Ω̂ ⊂ Ω is simply connected and it agrees with Ω in a neighbor-
hood of the arc (xy). Then SLEκ(ρ) in Ω̂ from x to y with force point x+ is absolutely
continuous with respect to SLEκ(ρ) in Ω from x to y with force point x+, and the
Radon-Nikodym derivative is given by

1{η⊂Ω̂}|ϕ′(x)ϕ′(y)|−b exp(cμ(Ω; η,Ω\Ω̂)),

where

b = (ρ + 2)(ρ + 6 − κ)

4κ
, c = (3κ − 8)(6 − κ)

2κ
,

and μ is Brownian loop measure, and ϕ is any conformal map from Ω̂ onto Ω fixing x
and y.

Proof of Proposition 4.1, Existence and Identification. First, we will construct a prob-
ability measure on (ηL ; ηR) ∈ X0(Ω; x L , x R, yR, yL). By conformal invariance, it
suffices to give the construction for the quad (H; 0, x, y,∞) with 0 < x < y. Denote
by PL the law of SLEκ(ρL) in H from 0 to ∞ with force point 0− and denote by PR
the law of SLEκ(ρR) in H from x to y with force point x+. Define measure M on
X0(H; 0, x, y,∞) by

M[dηL , dηR] = 1{ηL∩ηR=∅} exp
(
cμ(H; ηL , ηR)

)
PL

[
dηL

]
⊗ PR

[
dηR

]
.

We argue that the total mass ofM, denoted by |M|, is finite. Given ηL ∈ X0(H; 0,∞),
denote by D the connected component of H\ηL with (xy) on the boundary and let g be
any conformal map from D onto H. Then

|M| = EL ⊗ ER

[
1{ηL∩ηR=∅} exp

(
cμ(H; ηL , ηR)

)]

= EL

[(
g′(x)g′(y)

(g(x) − g(y))2

)b
]

(by Lemma 4.3)

≤ (y − x)−2b (where b = (ρR + 2)(ρR + 6 − κ)/(4κ).)

This implies that |M| is positive and finite. We define the probability measure M� to
beM/|M|.
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Second, we show that, under M�, the conditional law of ηR given ηL is SLEκ(ρR).
By symmetry in the definition of M, the conditional law of ηL given ηR is SLEκ(ρL).
Given ηL , denote by D the connected component of H\ηL with (xy) on the boundary
and let g be any conformal map from D onto H. Denote by PR the law of SLEκ(ρR) in
H from x to y and by P̃R the law of SLEκ(ρR) in D from x to y. By Lemma 4.3, for
any bounded continuous function F on continuous curves, we have

M�
[
F(ηR) | ηL

]
= |M|−1ER

[
1{ηL∩ηR=∅} exp

(
cμ(H; ηL , ηR)

)
F(ηR)

]

= |M|−1
(

g′(x)g′(y)
(g(x) − g(y))2

)b

ẼR

[
F(ηR)

]
.

This implies that the conditional law of ηR given ηL is SLEκ(ρR) in D.
Finally, we show that, under M� and fixing ρL = 0, the marginal law of ηL is

hSLEκ(ρR). In fact, the above equation implies that the law of ηL is the law of SLEκ in
H from 0 to ∞ weighted by

(
g′(x)g′(y)

(g(x) − g(y))2

)b

.

By Proposition 3.5, the law of ηL coincides with hSLEκ(ρR) as desired. �

4.2. Proof of Proposition 4.2. We will prove the existence (plus identification) and
uniqueness in Proposition 4.2 separately. For the existence, our proof relies onDubédat’s
commutation relation, which is explained in Appendix B, and the continuity of hSLE
proved in Sect. 3. For the uniqueness, although our setup is different from the one in
[MS16b, Theorem 4.1], their proof also works in our setting with minor modification,
as detailed below.

Proof of Proposition 4.2, Existence. Note that, given ηL [0, T L ], the conditional law of
the remaining part ofηL is SLEκ(ρ) fromwL to yL with force pointwL

+ ; givenηR[0, T R],
the conditional law of the remaining part of ηR is SLEκ(ρ) from wR to yR with force
point wR−. Thus, to show the existence of the pair (ηL ; ηR) in Proposition 4.2, it is
sufficient to show the existence of the pair (ηL |[0,T L ]; ηR |[0,T R ]).

Set ν := κ − 8 − ρ. Let ηR be hSLEκ(ν) in Ω from x R to x L with marked
points (yR, yL) conditioned to hit (yR yL) (since ν < κ/2 − 4, this event has posi-
tive chance). For ε > 0, let T R

ε be the first time that ηR hits the ε-neighborhood of
(yR yL). Given ηR[0, T R

ε ], let ηL be hSLEκ(ν) in Ω\ηR[0, T R
ε ] from x L to ηR(T R

ε )

with marked points (yL , yR) conditioned to hit (yR yL). Let T L
ε be the first time that

ηL hits the ε-neighborhood of (yR yL). Here we obtain a pair of continuous simple
curves (ηL |[0,T L

ε ]; ηR |[0,T R
ε ]). We could also sample the pair by first sampling ηR and

then sampling ηL conditionally on ηR . Corollary B.3 and Lemma B.1 guarantee that the
law on the pair (ηL |[0,T L

ε ]; ηR |[0,T R
ε ]) does not depend on the sampling order. Here it is

important that κ ≤ 4 and the curves do not hit each other almost surely.
Let ε → 0. The continuity of hSLEκ(ν) in Propositions 3.2 and 3.3 implies that the

law on the pair (ηL |[0,T L ]; ηR |[0,T R ]) does not depend on the sampling order. Consider
the pair (ηL |[0,T L ]; ηR |[0,T R ]), by Lemma 3.7, the conditional law of ηL given ηR[0, T R]
is SLEκ(ν + 2) in Ω R from x L to wR with force point yL up to the first hitting time of
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(yR yL). By Lemma 2.6, this is the same as SLEκ(ρ) in Ω R from x L to yL with force
point wR up to the first hitting time of (yR yL). Similarly, the conditional law of ηR

given ηL [0, T L ] is SLEκ(ρ) in ΩL from x R to yR with force point wL up to the first
hitting time of (yR yL). This implies the existence part (as well as the identification part)
of Proposition 4.2. �
Proof of Proposition 4.2, Uniqueness. The uniqueness part could be proved similarly
as the proof of [MS16b, Theorem 4.1]. We will briefly summarize the proof and
point out the different places. We construct a Markov chain on configurations in
X0(Ω; x R, yR, yL , x L): one transitions from one configuration (ηL ; ηR) by picking
i ∈ {L , R} uniformly and then resampling ηi according to the conditional law given the
other one. The uniqueness of Qq(κ, ρ) will follow from the uniqueness of the station-
ary measure of this Markov chain. The ε-Markov chain is defined similarly except in
each step we resample the paths conditioned on them staying in X ε

0(Ω; x R, yR, yL , x L).
Denote by Pε the transition kernel for the ε-Markov chain. It suffices to show that there
is a unique stationary distribution for the ε-Markov chain. Sending ε → 0 implies that
the original chain has a unique stationary distribution.

It is proved in [MS16b] that the transition kernel for ε-Markov chain is continuous.
In this part, the requirements are that the conditional law—SLEκ(ρ)— can be sampled
as flow lines of GFF, and that the two curves do not hit each other almost surely. In our
case, the conditional law is SLEκ(ρ) with force point wL ∈ (yR yL) or wR ∈ (yR yL),
thus the two curves do not hit for all ρ > −2 as long as κ ≤ 4. So our setting satisfies
the two requirements. Let μ be any stationary distribution of the Markov chain, and
let με be μ conditioned on X ε

0(Ω; x R, yR, yL , x L). Then με is stationary for the ε-
Markov chain. Let Sε be the set of all such stationary probability measures. Then Sε is
convex and compact by the continuity of the transition kernel of the ε-Markov chain.
By Choquet’s Theorem, the measure με can be uniquely expressed as a superposition of
extremal elements of Sε . To show that Sε consists of a single element, it suffices to show
that there is only one extremal in Sε . Suppose that ν, ν̃ are two extremal elements in Sε .
By Lebesgue decomposition theorem, one can uniquely write ν = ν0 +ν1 such that ν0 is
absolutely continuous and ν1 is singular with respect to ν̃. If ν0 and ν1 are both nonzero,
since ν = ν0Pε + ν1Pε , by the uniqueness of the Lebesgue decomposition, we see that
ν0 and ν1 are both stationary and thus can be normalized as stationary distributions for
the ε-Markov chain. This contradicts that ν is an extremal measure. This implies that
either ν is absolutely continuous with respect to ν̃ or singular.

Next, it is proved in [MS16b] that it is impossible for ν to be absolutely continuous
with respect to ν̃. The same proof for this part also works here. The last part is showing
that ν cannot be singular with respect to ν̃. Suppose (ηL

0 ; ηR
0 ) ∼ ν and (η̃L ; η̃R) ∼ ν̃ are

two initial states for the ε-Markov chain. Then they argued that it is possible to couple
(ηL

2 ; ηR
2 ) and (η̃L

2 ; η̃R
2 ) such that the event (ηL

2 ; ηR
2 ) = (η̃L

2 ; η̃R
2 ) has positive chance.

This implies that ν and ν̃ cannot be singular. The key ingredient in this part is [MS16b,
Lemma 4.2] which needs to be replaced by Lemma 4.4 in our setting. �
Lemma 4.4. Fix κ ∈ (0, 8) and ρ > (−2) ∨ (κ/2 − 4). Suppose (Ω; x R, yR, yL , x L)

is a quad, wR ∈ (yL yR) is a boundary point, and Ω̃ ⊂ Ω is such that Ω̃ agrees with
Ω in a neighborhood of (wRxL). Let η be an SLEκ(ρ) in Ω from xL to yL with force
point yR and let η̃ be an SLEκ(ρ) in Ω̃ from xL to yL with force point wR. Then there
exists a coupling between η and η̃ such that the event {η = η̃} has positive chance.
Proof. Although our setting is different from that of the proof of [MS16b, Lemma 4.2],
the same proof works here. We can view η (resp. η̃) as the flow line of a GFF h in Ω
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(resp. the flow line of a GFF h̃ in Ω̃). The key point is that the boundary value of h and h̃
agree in a neighborhood U of (wRxL). Therefore h|U and h̃|U are mutually absolutely
continuous. Since the flow lines are deterministic functions of the GFF, this implies that
the laws of η and η̃ stopped upon first exiting U are mutually absolutely continuous.
Since there is a positive chance for η to stay in U , the absolute continuity implies the
conclusion. �

4.3. Proof of Theorem 1.4 and Corollary 1.5.

Proof of Theorem 1.4. Suppose (ηL ; ηR) ∼ Pq with q = (Ω; x R, yR, yL , x L), and
assume the same notations as in Fig. 3. Since (ηL ; ηR) satisfies CMP, the conditional
law of ηL given ηR satisfies CMP in Definition 2.7. By Theorem 2.8, we know that
the conditional law of ηL given ηR is SLEκ(ρ) with force point wR for some κ and ρ.
Since we require the curves to be simple, we have κ ∈ (0, 4] and ρ > −2. Similarly,
the conditional law of ηR given ηL is SLEκ̃ (ρ̃) for some κ̃ ∈ (0, 4] and ρ̃ > −2. By
the symmetry in Definition 1.3, we have κ̃ = κ and ρ̃ = ρ. This implies the only
possible candidate for Pq is the probability measure Qq(κ, ρ) in Proposition 4.2. To
finish the proof, we still need to argue that Qq(κ, ρ) does satisfy all the requirements in
Theorem 1.4.

First, we show that the pair (ηL ; ηR) ∼ Qq(κ, ρ) satisfies CMP. For every ηL -
stopping time τ L and every ηR-stopping time τ R , consider the conditional law of
(ηL |t≥τ L ; ηR |t≥τ R ) given ηL [0, τ L ] and ηR[0, τ R], it is clear that the conditional law of
ηR |t≥τ R given ηL |t≥τ L is SLEκ(ρ) and the conditional law of ηL |t≥τ L given ηR |t≥τ R is
SLEκ(ρ). Therefore, the pair (ηL ; ηR) satisfies CMP.

Next, we show that the pair (ηL ; ηR) ∼ Qq(κ, ρ) satisfies Condition C1. We only
need to show that ηL satisfies Condition C1. Suppose (Q; a, b, c, d) is an avoidable quad
for ηL . By the comparison principle of extremal distance (see [Ahl10, Section 4-3]), we
have

dQ\ηR ((ab), (cd)) ≥ dQ((ab), (cd)).

Note that the conditional law of ηL given ηR is SLEκ(ρ) and SLEκ(ρ) satisfies Condition
C1 (by Lemma 2.5), combining with the above inequality, ηL satisfies Condition C1. �

Next, we will show Corollary 1.5. To this end, we first discuss the reversibility of
SLEκ(ρ) processes. Suppose x ≤ w ≤ y, and let η be an SLEκ(ρ) in H from x to y
with force point w. The process η does not have reversibility when x < w < y, see
Lemma 4.5; but it enjoys reversibility when w = x+, see [MS16b, Theorem 1.1] and
[MS16c, Theorem 1.2]. The reversibility forw = x+ is a deep result and it is a particular
case of Conjecture 3.6 when x1 = x2 and x3 = x4.

Lemma 4.5. Fix κ ∈ (0, 8), ρ > −2 and x < w, w̃ < y. Suppose η is an SLEκ(ρ) in
H from x to y with force point w. Then the time-reversal of η is an SLEκ̃ (ρ̃) from y to
x with force point w̃ if and only if κ̃ = κ and ρ = ρ̃ = 0.

Proof. Let η̂ be the time-reversal of η. If η̂ has the law of SLEκ̃ (ρ̃), since the dimension
of SLEκ(ρ) process is 1 + κ/8 [Bef08], we have κ̃ = κ . It remains to show ρ̃ = ρ = 0.
Let η̃ be an SLEκ(ρ̃) in H from y to x with force point w̃.

When κ ∈ (4, 8) and ρ ≥ κ/2−2, we have η∩(w, y) = ∅ and η̃∩(w, y) �= ∅ almost
surely. Thus η̂ cannot have the same lawas η̃.Whenκ ∈ (4, 8) andρ ∈ (κ/2−4, κ/2−2),
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we have almost surely (see [MW17, Theorem 1.6])

dim(η ∩ (w ∨ w̃, y)) = 1 − (ρ + 2)(ρ + 4 − κ/2)/κ,

dim(η̃ ∩ (w ∨ w̃, y)) = 1 − (8 − κ)/κ.

If η̂ has the same law as η̃, then these two dimensions have to coincide, and hence ρ = 0
and therefore ρ̃ = 0. When κ ∈ (4, 8) and ρ ∈ (−2, κ/2 − 4], the curve η fills the
interval (w ∨ w̃, y), whereas η̃ ∩ (w ∨ w̃, y) has no interior point. Thus the η̂ cannot
have the same law as η̃.

When κ ∈ (0, 4] and ρ < κ/2−2, we have η∩(w∨w̃, y) �= ∅ and η̃∩(w∨w̃, y) = ∅
almost surely. Thus η̂ cannot have the same law as η̃. When κ ∈ (0, 4] and ρ ≥ κ/2−2,
it is proved in Theorem 1.1 that η̂ is hSLEκ(ρ − 2) in H from y to x with marked points
(y−, w) which equals SLEκ(ρ̃) process from y to x with force point w̃ if and only if
ρ = ρ̃ = 0. �

Now, we are ready to show Corollary 1.5.

Proof of Corollary 1.5. Suppose (ηL ; ηR) ∼ Pq for q = (Ω; x R, yR, yL , x L). By the
proof of Theorem 1.4, there exists κ ∈ (0, 4] and ρ > −2 such that the conditional
law of ηL given ηR is SLEκ(ρ) in Ω R from x L to yL with force point wR . Denote
by η̂L the time-reversal of ηL and by η̂R the time-reversal of ηR . By the reversibility
in Definition 1.3, we can apply Theorem 1.4 on the pair (η̂L , η̂R), then there exists
κ̃ ∈ (0, 4] and ρ̃ > −2 such that the conditional law of η̂L given η̂R is SLEκ̃ (ρ̃) from
yL to x L with force point x R . From Lemma 4.5, we see that κ̃ = κ, ρ̃ = ρ = 0.
Therefore, the conditional law of ηL given ηR is SLEκ . Similarly, the conditional law of
ηR given ηL is SLEκ . By Proposition 4.1, there exists a unique such probability measure
and the marginal of ηR is hSLEκ . �

We end this section with several remarks on Propositions 4.1 and 4.2.

– When ρL �= 0 or ρR �= 0, the pair (ηL ; ηR) in Proposition 4.1 does not satisfy
CMP in Definition 1.2; whereas, it satisfies the reversibility in Definition 1.3, and it
satisfies the symmetry in Definition 1.3 when ρL = ρR .

– We compare Proposition 4.2 with ρ = 0 and Proposition 4.1 with ρL = ρR = 0.
In this case, the two propositions describe the same law on the pair (ηL ; ηR). From
Proposition 4.2, we see that the marginal law of ηR is hSLEκ(κ − 8) from x R to x L ;
whereas, from Proposition 4.1, the marginal law of ηR is hSLEκ from x R to yR . This
implies that hSLEκ from x R to yR has the same law as hSLEκ(κ − 8) from x R to
x L . This is consistent with the target-independence proved in Proposition 3.11.

– I expect the conclusions in Propositions 4.1 and 4.2 also hold for κ ∈ (4, 8). When
κ ∈ (4, 8), the uniqueness follows from [MSW16, Appendix A]; the existence when
ρL = ρR = 0 in Proposition 4.1 and the existence when ρ = 0 in Proposition 4.2
are given by Proposition 6.10; whereas, the existence in general case is not clear to
me. For Proposition 4.1, the construction in Sect. 4.1 relies essentially on the fact
that the two curves do not intersect. For Proposition 4.2, the construction in Sect. 4.2
is based on Commutation Relation, and it does not allow the two curves to hit each
other. These give the restriction on κ ≤ 4.

– Theorem 1.4 holds for κ ∈ (4, 8) as long as Proposition 4.2 holds. Corollary 1.5
holds for κ ∈ (4, 8). In the above proof of Corollary 1.5, we only need to replace
Proposition 4.1 by Proposition 6.10 when κ ∈ (4, 8).

– It is clear that the uniqueness in Propositions 4.1 and 4.2 fails for κ ≥ 8.
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5. Convergence of Ising Interfaces to Hypergeometric SLE

5.1 Ising model.

Notation and terminology.We focus on the square latticeZ2. Two vertices x = (x1, x2)
and y = (y1, y2) are neighbors if |x1− y1|+ |x2− y2| = 1, and we write x ∼ y. The dual
square lattice (Z2)∗ is the dual graph of Z2. The vertex set is (1/2, 1/2) + Z2 and the
edges are given by nearest neighbors. The vertices and edges of (Z2)∗ are called dual-
vertices and dual-edges. For each edge e of Z2, it is associated to a dual edge, denoted
by e∗. The dual edge e∗ crosses e in the middle. For a finite subgraph G, we define G∗
to be the subgraph of (Z2)∗ with edge-set E(G∗) = {e∗ : e ∈ E(G)} and vertex set
given by the end-points of these dual-edges. The medial lattice (Z2)� is the graph with
the centers of edges of Z2 as vertex set, and edges connecting nearest vertices. This
lattice is a rotated and rescaled version of Z2. The vertices and edges of (Z2)� are called
medial-vertices and medial-edges. We identify the faces of (Z2)� with the vertices of
Z2 and (Z2)∗. A face of (Z2)� is said to be black if it corresponds to a vertex of Z2 and
white if it corresponds to a vertex of (Z2)∗.

Let Ω be a finite subset of Z2. The Ising model with free boundary conditions is a
random assignment σ ∈ {�,⊕}Ω of spins σx ∈ {�,⊕}, where σx denotes the spin at
the vertex x . The Hamiltonian of the Ising model is defined by

H free
Ω (σ) = −

∑
x∼y

σxσy .

The Ising measure is the Boltzmann measure with Hamiltonian H free
Ω and inverse-

temperature β > 0:

μfree
β,Ω [σ ] = exp(−βH free

Ω (σ))

Z free
β,Ω

, where Z free
β,Ω =

∑
σ

exp(−βH free
Ω (σ)).

For a graphΩ and τ ∈ {�,⊕}Z2
, one may also define the Ising model with boundary

conditions τ by the Hamiltonian

H τ
Ω(σ ) = −

∑
x∼y,{x,y}∩Ω �=∅

σxσy, if σx = τx ,∀x �∈ Ω.

Suppose that (Ω; a, b) is a Dobrushin domain. The Dobrushin boundary conditions is
the following: ⊕ along (ab), and � along (ba).

The set {�,⊕}Ω is equipped with a partial order: σ ≤ σ ′ if σx ≤ σ ′
x for all x ∈ Ω .

A random variable X is increasing if σ ≤ σ ′ implies X (σ ) ≤ X (σ ′). An event A is
increasing if 1A is increasing. The Ising model satisfies FKG inequality: Let Ω be a
finite subset and τ be boundary conditions, and β > 0. For any two increasing eventsA
andB, we haveμτ

β,Ω [A∩B] ≥ μτ
β,Ω [A]μτ

β,Ω [B]. As a consequence of FKG inequality,
we have the comparison between boundary conditions: For boundary conditions τ1 ≤ τ2
and an increasing event A, we have

μ
τ1
β,Ω [A] ≤ μ

τ2
β,Ω [A]. (5.1)

The critical Ising model (β = βc) is conformally invariant in the scaling limit, see
[DC13] for general background. We only collect several properties of the critical Ising
model that will be useful later: strong RSW and the convergence of the interface.

Given a quad (Q; a, b, c, d) on the square lattice, we denote by dQ((ab), (cd)) the
discrete extermal distance between (ab) and (cd) in Q, see [Che16, Section 6]. The
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Fig. 4. The Ising interface with Dobrushin boundary conditions

discrete extremal distance is uniformly comparable to and converges to its continuous
counterpart—the classical extremal distance. The quad (Q; a, b, c, d) is crossed by ⊕
in an Ising configuration σ if there exists a path of ⊕ going from (ab) to (cd) in Q. We

denote this event by (ab)
⊕←→ (cd).

Proposition 5.1 [CDCH16, Corollary 1.7]. For each L > 0 there exists c(L) > 0 such
that the following holds: for any quad (Q; a, b, c, d) with dQ((ab), (cd)) ≥ L,

μmixed
βc,Q

[
(ab)

⊕←→ (cd)
]

≤ 1 − c(L),

where the boundary conditions are free on (ab) ∪ (cd) and � on (bc) ∪ (da).

For δ > 0, we consider the rescaled square lattice δZ2. The definitions of dual lattice,
medial lattice and Dobrushin domains extend to this context, and they will be denoted by
(Ωδ; aδ, bδ), (Ω∗

δ ; a∗
δ , b∗

δ ), (Ω
�
δ ; a�

δ , b�
δ ) respectively. Consider the critical Ising model

on (Ω∗
δ ; a∗

δ , b∗
δ ). The boundary ∂Ω∗

δ is divided into two parts (a∗
δ b

∗
δ ) and (b∗

δa
∗
δ ). We fix

the Dobrushin boundary conditions: � on (b∗
δa

∗
δ ) and ⊕ on (a∗

δ b
∗
δ ). Define the interface

as follows. It starts from a�
δ , lies on the primal lattice and turns at every vertex of Ωδ

is such a way that it has always dual vertices with spin � on its left and ⊕ on its right.
If there is an indetermination when arriving at a vertex (this may happen on the square
lattice), turn left. See Fig. 4. We have the convergence of the interface:

Theorem 5.2 [CDCH+14]. Let (Ω�
δ ; a�

δ , b�
δ ) be a sequence of Dobrushin domains con-

verging to a Dobrushin domain (Ω; a, b) in the Carathéodory sense as δ → 0. The
interface of the critical Ising model in (Ω∗

δ ; a∗
δ , b∗

δ ) with Dobrushin boundary condi-
tions converges weakly to SLE3 as δ → 0.

Theorem 5.3. Let (Ω�
δ ; a�

δ , w�
δ , b�

δ ) be a sequence of triangles converging to a triangle
(Ω; a, w, b) in the Carathéodory sense as δ → 0. The interface of the critical Ising
model in (Ω∗

δ ; a∗
δ , w∗

δ , b
∗
δ )with the boundary conditions�along (b∗

δa
∗
δ ),⊕along (a∗

δ w∗
δ )

and free along (w∗
δb

∗
δ ) converges weakly to SLE3(−3/2) as δ → 0.

Proof. [HK13, Theorem 1] proves that the initial segment of the interface, i.e. the inter-
face stopped at the first hitting time of the free segment (w∗

δb
∗
δ ), converges weakly to

SLE3(−3/2). Based on this result and crossing estimates in [CDCH16], the convergence
of the whole process is obtained in [BDCH16, Theorem 4]. �
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5.1. Proof of Proposition 1.6. Let (Ωδ; x Rδ , yRδ , yLδ , x Lδ ) be a sequence of quads on δZ2

converging to a quad q = (Ω; x R, yR, yL , x L) in the Carathéodory sense as δ → 0.
Consider the critical Ising model in Ω∗

δ with alternating boundary conditions:

� along (x Lδ x
R
δ ) ∪ (yRδ yLδ ), ξ R ∈ {⊕, free} along (x Rδ yRδ ),

ξ L ∈ {⊕, free} along (yLδ x
L
δ ). (5.2)

The quad is vertically crossed by � if there exists a path of � going from (x Lδ x
R
δ ) to

(yRδ yLδ ). The quad is horizontally crossed by ⊕ in an Ising configuration if there exists
a path of ⊕ going from (yLδ x

L
δ ) to (x Rδ yRδ ). We denote these events by

C�
v (q) =

{
(x Lδ x

R
δ )

�←→ (yRδ yLδ )
}

, C⊕
h (q) =

{
(yLδ x

L
δ )

⊕←→ (x Rδ yRδ

}
.

Suppose there is a vertical crossing of �. Let ηL
δ be the interface starting from x Lδ

lying on the primal lattice. It turns at every vertex in the way that it has spin ⊕ on its left
and � on its right, and that it turns left when there is ambiguity. Let ηR

δ be the interface
starting from x Rδ lying on the primal lattice. It turns at every vertex in the way that it has
spin � to its left and ⊕ to its right, and turns right when there is ambiguity. Then ηL

δ

will end at yLδ and ηR
δ will end at yRδ . See Fig. 1. Let Ω

L
δ be the connected component of

Ωδ\ηL
δ with (x Rδ yRδ ) on the boundary and denote by DL

δ the discrete extremal distance
between ηL

δ and (x Rδ yRδ ) in ΩL
δ . Define Ω R

δ and DR
δ similarly.

Lemma 5.4. The family of random variables {(DL
δ ;DR

δ )}δ>0 is tight in the following
sense: for any u > 0, there exists ε > 0 such that

P

[
DL

δ ≥ ε,DR
δ ≥ ε | C�

v (q)
]

≥ 1 − u, ∀δ > 0.

Proof. Since (Ωδ; x Lδ , x Rδ , yRδ , yLδ ) approximates (Ω; x L , x R, yR, yL), by Proposi-
tion 5.1 and (5.1), the probabilityP[C�

v (q)] can be bounded frombelow by some quantity
that depends only on the extremal distance in Ω between (x L x R) and (yR yL) and that
is uniform over δ. Thus, it is sufficient to show that P

[{DL
δ ≤ ε} ∩ C�

v (q)
]
is small for

ε > 0 small. Given ηL
δ and on the event {DL

δ ≤ ε}, combining Proposition 5.1 and (5.1),
the probability to have a vertical crossing of � in ΩL

δ is bounded by c(ε) which only
depends on ε and goes to zero as ε → 0. Thus P

[{DL
δ ≤ ε} ∩ C�

v (q)
] ≤ c(ε). This

implies the conclusion. �
Lemma 5.5. Conditionally on the event C�

v (q), there exists a pair of interfaces (ηL
δ ; ηR

δ )

where ηL
δ (resp. ηR

δ ) is the interface connecting x
L
δ to yLδ (resp. connecting x Rδ to yRδ ). The

law of the pair (ηL
δ ; ηR

δ ) converges weakly to the pair of SLE curves in Proposition 4.1
as δ → 0 where κ = 3 and ξ R, ξ L , ρR, ρL are related in the following way: for
q ∈ {L , R},

ρq = 0, if ξq = ⊕; ρq = −3/2, if ξq = free.

Proof. We only prove the conclusion for ξ R = ξ L = ⊕, and the other cases can be
proved similarly (by replacing Theorem 5.2 with 5.3 when necessary). Combining the
crossing estimates in [CDCH16] (see also [CDCH+14, Remark 4]) and Lemma 5.4, the
sequence {(ηL

δ ; ηR
δ )}δ>0 satisfies the requirements in Theorem 2.4, so the sequence is
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Fig. 5. Consider the critical Ising model in Ωδ with the following boundary conditions: � along (xLδ x Rδ ) ∪
(yRδ yLδ ) and ⊕ along (x Rδ yRδ ) ∪ (yLδ xLδ ). In the left panel, there is a vertical crossing of �. Then there exists

a pair of interfaces (ηLδ ; ηRδ ): ηRδ connects x Rδ to yRδ and ηLδ connects xLδ to yLδ . In the right panel, there is

a horizontal crossing of ⊕. Then there exists a pair of interfaces (ηBδ ; ηTδ ): ηBδ connects x Rδ to xLδ and ηTδ
connects yRδ to yLδ

relatively compact. Suppose (ηL ; ηR) ∈ X0(Ω; x L , x R, yR, yL) is any sub-sequential
limit and, for some δk → 0,

(ηL
δk

; ηR
δk

)−→(ηL ; ηR) in X0(Ω; x L , x R, yR, yL).

For convenience, we couple them in the same space so that there is almost sure conver-
gence. Since ηL

δk
→ ηL , by Theorem2.2, we have the convergence in all three topologies.

In particular, this implies the convergence of ΩL
δk

in the Carathéodory sense. Note that

the conditional law of ηR
δk

in ΩL
δk

given ηL
δk

is the interface of the critical planar Ising
model with Dobrushin boundary conditions. Combining with Theorem 5.2, we derive
that the conditional law of ηR inΩL given ηL is SLE3. By symmetry, the conditional law
of ηL in Ω R given ηR is SLE3. By Proposition 4.1, there exists a unique such measure.
Thus it has to be the unique sub-sequential limit. This proves the convergence of the
whole sequence. �
Corollary 5.6. Suppose ξ L = ξ R = ⊕ in (5.2).

– On the event C�
v (q), let ηδ be the interface connecting x Rδ and yRδ . Then the law of

ηδ converges weakly to hSLE3 in Ω from x R to yR with marked points (x L , yL) as
δ → 0.
– On the event C⊕

h (q), let ηδ be the interface connecting x Rδ and xLδ . Then the law of
ηδ converges weakly to hSLE3 in Ω from x R to x L with marked points (yR, yL) as
δ → 0.

Proof. On the event C�
v (q), there is a pair of Ising interfaces (ηL

δ ; ηR
δ ), as indicated in

Fig. 5. By Lemma 5.5, the sequence (ηL
δ ; ηR

δ ) converges weakly to the pair of SLEs in
Proposition 4.1 with κ = 3 and ρL = ρR = 0. In particular, the law of ηR

δ conditioned
on C�

v (q) converges weakly to hSLE3 inΩ from x R to yR . The other case can be proved
similarly. �
Corollary 5.7. Consider the critical Ising model in Ωδ with the following boundary
conditions:

� along (x Lδ x
R
δ ), ⊕ along (x Rδ yRδ ) ∪ (yLδ x

L
δ ), free along (yRδ yLδ ).
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Fig. 6. Consider the critical Ising model in Ωδ with the following boundary conditions: � along (xLδ x Rδ ), ⊕
along (x Rδ yRδ )∪ (yLδ xLδ ), and free along (yRδ yLδ ). In the left panel, there is a vertical crossing of�. Then there

exists a pair of interfaces (ηLδ ; ηRδ ): ηRδ connects x Rδ to yRδ and ηLδ connects xLδ to yLδ . In the right panel, there

is a horizontal crossing of ⊕. Then there exists a pair of interfaces (ηBδ ; ηTδ ): ηBδ connects x Rδ to xLδ and ηTδ
connects yRδ to yLδ

– On the event C�
v (q), let ηδ be the interface connecting x Rδ and yRδ . Then the law of

ηδ (up to the first hitting time of [yRδ yLδ ]) converges weakly to hSLE3(−7/2) from x R

to x L conditioned to hit [yR yL ] (up to the first hitting time of [yR yL ]) as δ → 0.
– On the event C⊕

h (q), let ηδ be the interface connecting x Rδ and xLδ . Then the law of
ηδ converges weakly to hSLE3(−3/2) from x R to x L as δ → 0.

Proof. On the event C�
v (q), there is a pair of Ising interfaces (ηL

δ ; ηR
δ ), as indicated in

Fig. 6. By a similar argument as in Lemma 5.5, the sequence (ηL
δ ; ηR

δ ) converges weakly
to the pair of SLEs in Proposition 4.2 with κ = 3 and ρ = −3/2. In particular, the law
of ηR

δ conditioned on C�
v (q) converges weakly to hSLE3(−7/2) in Ω from x R to x L

conditioned to hit [yR yL ] (here is hSLE3(−7/2) from x R to x L , this is not a typo).
On the event C⊕

h (q), there is a pair of Ising interfaces (ηB
δ ; ηTδ ) as indicated in Fig. 6.

By Lemma 5.5, the sequence (ηB
δ ; ηTδ ) converges weakly to the pair of SLEs in Propo-

sition 4.1 (rotated by 90 degrees counterclockwise) with κ = 3 and ρ = −3/2. In
particular, the law of ηB

δ conditioned on C⊕
h (q) converges weakly to hSLE3(−3/2) in

Ω from x R to x L . �
Proof of Proposition 1.6. Proposition 1.6 is a collection of Corollaries 5.6 and 5.7. �

6. Pure Partition Functions of Multiple SLEs

In this section, we will prove Theorem 1.7. Recall that the multiple SLE pure partition
functions is the collection {Zα : α ∈ LP} of positive smooth functions Zα : X2N → R+
for α ∈ LPN , satisfying Z∅ = 1, PDE (1.1), COV (1.2), ASY (1.3), and the power law
bound (1.4). To state the main result of this section, we need to introduce some notations
and properties first.

Fix the constants in this section:

κ ∈ (0, 6], h = 6 − κ

2κ
.

The pure partition functions introduced in Sect. 1.4 are only defined for the upper half-
plane, we may extend the definition to general polygon via conformal image. Suppose
(Ω; x1, . . . , x2N ) is a nice polygon. Define, for α ∈ LPN ,
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Zα(Ω; x1, . . . , x2N ) =
2N∏
j=1

|ϕ′(x j )|h × Zα(ϕ(x1), . . . , ϕ(x2N )), (6.1)

where ϕ is any conformal map from Ω onto H with ϕ(x1) < · · · < ϕ(x2N ).
Next, we introduce the cascade relation of the pure partition functions. Suppose

(Ω; x1, . . . , x2N ) is a nice polygon. Suppose α = {{a1, b1}, . . . , {aN , bN }} ∈ LPN , and
assume a j < b j for all 1 ≤ j ≤ N . For 1 ≤ k ≤ N , let ηk be an SLEκ in Ω from xak to
xbk . The link {ak, bk} divides the link pattern α into two sub-link patterns, connecting
{ak + 1, . . . , bk − 1} and {bk + 1, . . . , ak − 1} respectively. After relabelling the indices,
we denote these two link patterns by αR

k and αL
k , see Fig. 7.

We first explain the cascade relation when κ ∈ (0, 4] as the notations in this case
are simpler. Consider the set Ω\ηk , denote by DR

k the connected component having
(xak+1xbk−1) on the boundary, and denote by DL

k the connected component having
(xbk+1xak−1) on the boundary, see Fig. 7. We expect the following cascade relation of
the pure partition functions:

Zα(Ω; x1, . . . , x2N )

= HΩ(xak , xbk )
hE

[
ZαR

k
(DR

k ; xak+1, . . . , xbk−1) × ZαL
k
(DL

k ; xbk+1, . . . , xak−1)
]
.

We then explain the cascade relationwhen κ ∈ (4, 6]. The idea is similar as above, but
the situation is more complicated as ηk may hit boundary segments in this case. Consider
the set Ω\ηk . If ηk does not hit the boundary segments (xak+1xbk−1) nor (xbk+1xak−1),
then we define DR

k and DL
k as above. Whereas, it is also possible that ηk does hit these

boundary segments. We say that ηk is allowed by α if, for all j �= k, the points xa j and
xb j lie on the boundary of the same connected component of Ω\ηk . In other words,
ηk is allowed by α if it does not disconnect any pair of points {xa j , xb j } for j �= k.
We denote this event by Ek

α . On the event Ek
α , the points xak+1, . . . , xbk−1 are divided

into smaller groups. We denote the connected components of Ω\ηk having these points
on the boundary by DR,1

k , . . . , DR,r
k in counterclockwise order. We denote by DR

k the
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union of DR,1
k , . . . , DR,r

k . The sub-link pattern αR
k are divided into smaller sub-link

patterns, after relabelling the indices, we denote these link patterns by α
R,1
k , . . . , α

R,r
k .

Now define

ZαR
k
(DR

k ; xak+1, . . . , xbk−1) = Z
α
R,1
k

(DR,1
k ; . . .) × · · · × Z

α
R,r
k

(DR,r
k ; . . .),

where the points on the boundary of DR,i
k are clear and we omit them from the notation.

We define DL ,1
k , . . . , DL ,l

k , DL
k , α

L ,1
k , . . . , α

L ,l
k in similar way, and set

ZαL
k
(DL

k ; xbk+1, . . . , xak−1) = Z
α
L ,1
k

(DL ,1
k ; . . .) × · · · × Z

α
L ,l
k

(DL ,l
k ; . . .).

Finally, the cascade relation is the following:

Zα(Ω; x1, . . . , x2N )

= HΩ(xak , xbk )
hE

[
ZαR

k
(DR

k ; xak+1, . . . , xbk−1)×ZαL
k
(DL

k ; xbk+1, . . . , xak−1)1Ek
α

]
.

(6.2)

The main result of this section is the following.

Proposition 6.1. Let κ ∈ (0, 6]. For each N ≥ 1, there exists a collection {Zα : α ∈
LPn, n ≤ N } of smooth functions Zα : X2n → R+, for α ∈ LPn, satisfying the
normalization Z∅ = 1, PDE (1.1), COV (1.2), ASY (1.3), the power law bound (1.4),
and the cascade relation (6.2).

The uniqueness in Proposition 6.1 follows from [FK15, Lemma1]. In fact, the unique-
ness proved in [FK15, Lemma 1] is much stronger. Using our notations, [FK15, Lemma
1] reads as follows: Let κ ∈ (0, 8). Suppose F : X2N → C is a smooth function
satisfying PDE (1.1), COV (1.2), and the following two properties.

– There exists constants C > 0 and p > 0 such that, for all (x1, . . . , x2N ) ∈ X2N , we
have

|F(x1, . . . , x2N )| ≤ C
∏

1≤i< j≤2N

(x j − xi )
μi j (p), where

μi j (p) =
{
p, if |x j − xi | > 1,
−p, if |x j − xi | ≤ 1.

– The asymptotics:

lim
x j ,x j+1→ξ

F(x1, . . . , x2N )

(x j+1 − x j )−2h
= 0, for all j ∈ {2, 3, . . . , 2N − 1} and ξ ∈ (x j−1, x j+2)

(with the convention that x0 = −∞ and x2N+1 = ∞).

Then F ≡ 0. From this result, the uniqueness part in Proposition 6.1 is immediate. We
focus on the existence part in this section. Note that the existence part in Proposition 6.1
is different from the one in Theorem 1.7: In Proposition 6.1, we also require the cascade
relation in the statement. In fact, the cascade relation plays an essential role in our proof.

Before we proceed, we collect some basic properties here. Recall that, given a nice
Dobrushin domain (Ω; x, y), the notation HΩ(x, y) denotes the boundary Poisson ker-
nel.With the general definition ofZα in (6.1) for general nice polygon (Ω; x1, . . . , x2N ),
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we can rewrite ASY (1.3) as follows: for all α ∈ LPN and for all j ∈ {1, . . . , 2N } and
ξ ∈ (x j−1x j+2),

lim
x j ,x j+1→ξ

Zα(Ω; x1, . . . , x2N )

HΩ(x j , x j+1)h

=
{
0 if { j, j + 1} /∈ α

Zα̂(Ω; x1, . . . , x j−1, x j+2, . . . , x2N ) if { j, j + 1} ∈ α
(6.3)

where α̂ = α/{ j, j + 1} ∈ LPN−1.
Define, for α = {{a1, b1}, . . . , {aN , bN }} ∈ LPN ,

Bα(Ω; x1, . . . , x2N ) =
N∏
j=1

HΩ(xa j , xb j )
1/2.

Then the power law bound (1.4) can be written as follows:

0 < Zα(Ω; x1, . . . , x2N ) ≤ Bα(Ω; x1, . . . , x2N )2h . (6.4)

The boundary Poisson kernel has monotonicity: suppose (Ω; x, y) is a nice
Dobrushin domain and suppose U ⊂ Ω is simply connected and agrees with Ω in
neighborhoods of x and y. Then HU (x, y) ≤ HΩ(x, y). As a consequence, we have the
monotonicity of Bα: suppose (Ω; x1, . . . , x2N ) is a nice polygon and suppose U ⊂ Ω

is simply connected and agrees with Ω in neighborhoods of {x1, . . . , x2N }. Then, for
any α ∈ LPN ,

Bα(U ; x1, . . . , x2N ) ≤ Bα(Ω; x1, . . . , x2N ). (6.5)

6.1. Proof of Proposition 6.1. We will prove the existence in Proposition 6.1 by induc-
tion on N . It is immediate to check the existence for N = 1 and N = 2. When N = 1,
for x < y and ,

When N = 2,weobtain for and ,
and for x1 < x2 < x3 < x4,

(6.6)

where z is the cross-ratio and F is the hypergeometric function in (3.2) with ν = 0:

z = (x2 − x1)(x4 − x3)

(x4 − x2)(x3 − x1)
, F(z) := 2F1

(
4

κ
, 1 − 4

κ
,
8

κ
; z

)
.

Suppose the collection of pure partition functions exists up to N , and consider LPN+1.
Assume α = {{a1, b1}, . . . , {aN+1, bN+1}} and a j < b j for all 1 ≤ j ≤ N + 1. Suppose
(Ω; x1, . . . , x2N+2) is a nice polygon. For 1 ≤ k ≤ N + 1, let ηk be an SLEκ in Ω
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from xak to xbk . We denote by Ek
α the event that ηk is allowed by α and we define

DR,1
k , . . . , DR,r

k , DR
k , DL ,1

k , . . . , DL ,l
k , DL

k , α
R,1
k , . . . , α

R,r
k , α

L ,1
k , . . . , α

L ,l
k in the same

way as before. As the collection of pure partition functions exists up to N , the following
two functions are well-defined:

ZαR
k
(DR

k ; xak+1, xak+2, . . . , xbk−1), ZαL
k
(DL

k ; xbk+1, xbk+2, . . . , xak−1).

Then, we define

Z(k)
α (Ω; x1, . . . , x2N+2)

= HΩ(xak , xbk )
hE

[
Z

αR
k
(DR

k ; xak+1, . . . , xbk−1) × Z
αL
k
(DL

k ; xbk+1, . . . , xak−1)1Ek
α

]
.

(6.7)

Eq. (6.7) is analog of (6.2) for 2N + 2 marked points. The expectation in the right hand
side is finite, see Lemma 6.7. Thus the functionZ(k)

α (Ω; x1, . . . , x2N+2) in (6.7) is well-
defined. When Ω = H, we denote Z(k)

α (H; x1, . . . , x2N+2) by Z(k)
α (x1, . . . , x2N+2).

From above definition, Z(k)
α depends on the choice of k ∈ {1, . . . , N + 1}, but we will

show that it does not:

Lemma 6.2. SupposeProposition6.1holds up to N.The functionZ(k)
α (Ω; x1, . . . , x2N+2)

defined in (6.7) does not depend on the choice of k.

This lemma is the one that we need to use properties of hypergeometric SLE. We leave
its proof to Sect. 6.2. Next, we show that the functions Z(k)

α satisfy all the requirements
in Proposition 6.1 one by one in Lemmas 6.3 to 6.7.

Lemma 6.3. Suppose Proposition 6.1 holds up to N. The function Z(k)
α (x1, . . . , x2N+2)

defined in (6.7) is smooth and satisfies two PDEs in (1.1) with i = ak and i = bk.

Proof. We only prove the conclusion for i = ak and the case when i = bk can be proved
similarly as SLE is reversible.

Recall that, in the definition of Z(k)
α , the curve ηk is an SLEκ in H from xak (= xi )

to xbk . We parametrize ηk by the half-plane capacity and denote by (gt , t ≥ 0) the
corresponding conformal maps in the Loewner chain. Let us calculate the conditional

expectation E

[
ZαR

k
(DR

k ; . . .) × ZαL
k
(DL

k ; . . .)1Ek
α
| ηk[0, t]

]
for small t > 0. By the

conformal covariance of ZαL
k
and ZαR

k
in the hypothesis, we have

E

[
ZαR

k
(DR

k ; xi+1, . . . , xbk−1) × ZαL
k
(DL

k ; xbk+1, . . . , xi−1)1Ek
α
| ηk[0, t]

]

=
∏
j �=i,bk

g′
t (x j )

h × E

[
ZαR

k

(
gt (D

R
k ); gt (xi+1), . . . , gt (xbk−1)

)

×ZαL
k

(
gt (D

L
k ); gt (xbk+1), . . . , gt (xi−1)

)
1Ek

α
| ηk[0, t]

]

=
∏
j �=i,bk

g′
t (x j )

h × (gt (xbk ) − Wt )
2h

× Z(k)
α (gt (x1), . . . , gt (xi−1),Wt , gt (xi+1), . . . , gt (x2N+2)).
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Therefore, the following process is a martingale for ηk :
∏
j �=i,bk

g′
t (x j )

h × (gt (xbk ) − Wt )
2h × Z(k)

α (gt (x1), . . . , gt (xi−1),Wt , gt (xi+1), . . . , gt (x2N+2)).

By Itô’s formula, the functionZ(k)
α satisfies the PDE (1.1) with i = ak in the distribution

sense, see details in [PW19, Proof of Lemma 4.4]. By [Dub15, Lemma 5] (see also
[PW19, Proposition 2.5]), the operator

κ

2
∂2i +

∑
j �=i

(
2

x j − xi
∂ j − 2h

(x j − xi )2

)

in PDE (1.1) is hypoelliptic. Therefore, the function Z(k)
α is a smooth solution to the

PDE (1.1) with i = ak . �
Lemma 6.4. Suppose Proposition 6.1 holds up to N. The function Z(k)

α (x1, . . . , x2N+2)

defined in (6.7) is smooth and satisfies (2N + 2) PDEs in (1.1).

Proof. In Lemma 6.3, we show that Z(k)
α satisfies PDE (1.1) with i = ak and i = bk .

By Lemma 6.2, we have Z(k)
α = Z(n)

α for any n �= k. Combining with Lemma 6.3,
Z(k)

α = Z(n)
α also satisfies PDE (1.1) with i = an and i = bn . This completes the proof.

�
Lemma 6.5. Suppose Proposition 6.1 holds up to N. The function Z(k)

α (x1, . . . , x2N+2)

defined in (6.7) satisfies COV (1.2).

Proof. This is true because: (a) SLEκ is conformally invariant; (b) the boundary Pois-
son kernel is conformally covariant; (c) the pure partition functions ZαR

k
and ZαL

k
are

conformally covariant by the hypothesis.
�

Lemma 6.6. SupposeProposition6.1holds up to N.The functionZ(k)
α (Ω; x1, . . . , x2N+2)

defined in (6.7) satisfies ASY (6.3).

Proof. In order to prove ASY (6.3), we need to check the following cases: Case (a).
{ak, bk} = { j, j+1}; Case (b). ak = j and bk �= j+1. The cases #{ak, bk}∩{ j, j+1} = 1
can be proved similarly; Case (c). {ak, bk} ∩ { j, j + 1} = ∅.

Case (a). Suppose {ak, bk} = { j, j + 1}. Note that ηk is the SLEκ in H from x j to
x j+1. In this case, αR

k = ∅ and αL
k = α̂ := α/{ j, j + 1}. Then we have

Z(k)
α (Ω; x1, . . . , x2N+2) = HΩ(x j , x j+1)

hE

[
Zα̂(DL

k ; x j+2, . . . , x j−1)1Ek
α

]
.

By the power law bound in the hypothesis, (6.5) and h ≥ 0, we have

Zα̂(DL
k ; x j+2, . . . , x j−1) ≤ Bα̂(Ω; x j+2, . . . , x j−1)

2h .

Bounded convergence theorem gives

lim
x j ,x j+1→ξ

Z(k)
α (Ω; x1, . . . , x2N+2)

HΩ(x j , x j+1)h

= lim
x j ,x j+1→ξ

E

[
Zα̂(DL

k ; x j+2, . . . , x j−1)1Ek
α

]



Hypergeometric SLE 473

= Zα̂(Ω; x j+2, . . . , x j−1).

This completes the proof of Case (a).
Case (b). ak = j and bk �= j + 1. In this case, we have

Z(k)
α (Ω; x1, . . . , x2N+2)

HΩ(x j , x j+1)h

= HΩ(xak , xbk )
hE

⎡
⎣Z

αR
k
(DR

k ; xak+1, . . . , xbk−1)

HΩ(x j , x j+1)h
× Z

αL
k
(DL

k ; xbk+1, . . . , xak−1)1Ek
α

⎤
⎦ .

When κ < 6 (thus h > 0), by the power law bound in the hypothesis and (6.5), we
have

ZαL
k
(DL

k ; xbk+1, . . . , xak−1) ≤ BαL
k
(Ω; xbk+1, . . . , xak−1)

2h;
ZαR

k
(DR

k ; xak+1, . . . , xbk−1)

HΩ(x j , x j+1)h
≤

BαR
k
(Ω; xak+1, . . . , xbk−1)

2h

HΩ(x j , x j+1)h
→ 0, as x j , x j+1 → ξ.

Therefore, when κ < 6, we have

lim
x j ,x j+1→ξ

Z(k)
α (Ω; x1, . . . , x2N+2)

HΩ(x j , x j+1)h
= 0.

When κ = 6 (thus h = 0), by the power law bound in the hypothesis, we have

ZαL
k
(DL

k ; xbk+1, . . . , xak−1) ≤ 1, ZαR
k
(DR

k ; xak+1, . . . , xbk−1) ≤ 1.

Therefore, when κ = 6, we have

lim
x j ,x j+1→ξ

Z(k)
α (Ω; x1, . . . , x2N+2) ≤ lim

x j ,x j+1→ξ
P[Ek

α] = 0.

This completes the proof of Case (b).
Case (c). {ak, bk} ∩ { j, j + 1} = ∅. We may assume ak < j < j + 1 < bk . In this

case, we have

Z(k)
α (Ω; x1, . . . , x2N+2)

HΩ(x j , x j+1)h

= HΩ(xak , xbk )
hE

⎡
⎣Z

αR
k
(DR

k ; xak+1, . . . , xbk−1)

HΩ(x j , x j+1)h
× Z

αL
k
(DL

k ; xbk+1, . . . , xak−1)1Ek
α

⎤
⎦ .

By the power law bound in the hypothesis, (6.5) and h ≥ 0, we have

ZαL
k
(DL

k ; xbk+1, . . . , xak−1) ≤ BαL
k
(Ω; xbk+1, . . . , xak−1)

2h;
ZαR

k
(DR

k ; xak+1, . . . , xbk−1)

HΩ(x j , x j+1)h
≤

BαR
k
(Ω; xak+1, . . . , xbk−1)

2h

HΩ(x j , x j+1)h
.
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If { j, j + 1} ∈ α, then we have { j, j + 1} ∈ αR
k , denote by α̂ = α/{ j, j + 1} and

α̂R
k = αR

k /{ j, j + 1}. We have

ZαR
k
(DR

k ; xak+1, . . . , xbk−1)

HΩ(x j , x j+1)h
≤

BαR
k
(Ω; xak+1, . . . , xbk−1)

2h

HΩ(x j , x j+1)h

= Bα̂R
k
(Ω; xak+1, . . . , x j−1, x j+2, . . . , xbk−1)

2h .

By the asymptotic in the hypothesis, we have almost surely on Ek
α ,

lim
x j ,x j+1→ξ

ZαR
k
(DR

k ; xak+1, . . . , xbk−1)

HΩ(x j , x j+1)h
= Zα̂R

k
(DR

k ; xak+1, . . . , x j−1, x j+2, . . . , xbk−1).

Bounded convergence theorem and the cascade relation in the hypothesis give

lim
x j ,x j+1→ξ

Z(k)
α (Ω; x1, . . . , x2N+2)

HΩ(x j , x j+1)h

= HΩ(xak , xbk )
h

× E

[
Zα̂R

k
(DR

k ; xak+1, . . . , x j−1, x j+2, . . . , xbk−1) × ZαL
k
(DL

k ; xbk+1, . . . , xak−1)1Ek
α

]

= Zα̂(Ω; x1, . . . , x j−1, x j+2, . . . , x2N ).

If { j, j + 1} �∈ α and κ < 6 (thus h > 0), we have

BαR
k
(Ω; xak+1, . . . , xbk−1)

2h

HΩ(x j , x j+1)h
→ 0, as x j , x j+1 → ξ.

Thus

lim
x j ,x j+1→ξ

Z(k)
α (Ω; x1, . . . , x2N+2)

HΩ(x j , x j+1)h
= 0.

If { j, j +1} �∈ α and κ = 6 (thus h = 0), by the power law bound and the asymptotic
in the hypothesis, we have

ZαL
k
(DL

k ; xbk+1, . . . , xak−1) ≤ 1;
ZαR

k
(DR

k ; xak+1, . . . , xbk−1) ≤ 1; lim
x j ,x j+1→ξ

ZαR
k
(DR

k ; xak+1, . . . , xbk−1) = 0.

Bounded convergence theorem gives

lim
x j ,x j+1→ξ

Z(k)
α (Ω; x1, . . . , x2N+2) = 0.

This completes the proof of Case (c) and completes the proof of this lemma. �
Lemma 6.7. SupposeProposition6.1holds up to N.The functionZ(k)

α (Ω; x1, . . . , x2N+2)

defined in (6.7) satisfies the power law bound (6.4).
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Proof. By the power law bound in the hypothesis, (6.5) and h ≥ 0, we have

Z(k)
α (Ω; x1, . . . , x2N+2)

≤ HΩ(xak , xbk )
h × BαR

k
(Ω; xak+1, . . . , xbk−1)

2h × BαL
k
(Ω; xbk+1, . . . , xak−1)

2h

= Bα(Ω; x1, . . . , x2N+2)
2h .

�
Now, we are ready to prove the conclusion.

Proof of Proposition 6.1—Existence. It is clear that the conclusion holds for N = 1.
Suppose the conclusion holds up to N . For 1 ≤ k ≤ N + 1, define Z(k)

α as in (6.7). By
Lemma 6.2, it does not depend on the choice of k. Thus we denote it by Zα . Consider
the functions {Zα, α ∈ LPN+1}. By Lemma 6.4, they satisfy (2N + 2) PDEs in (1.1).
By Lemma 6.5, they satisfy COV (1.2). By Lemma 6.6, they satisfy ASY (1.3). By
Lemma 6.7, they satisfy the power law bound (1.4). Combining Lemma 6.2 and (6.7),
we obtain the cascade relation (6.2). These complete the proof. �

It is clear that Proposition 6.1 implies Theorem 1.7. Moreover, as a consequence of
Proposition 6.1, we also obtain the cascade relation of the pure partition functions.

Corollary 6.8. The collection of pure partition functions in Theorem 1.7 also satisfies
the cascade relation (6.2).

In fact, the proof of Lemma 6.6 implies the following refined asymptotic. We do not
need this refined asymptotic in this paper, but it is very useful when one tries to derive
probabilities for certain crossing events in related models, see [PW19, Section 5] and
[PW18]. So we record this result here.

Corollary 6.9. The collection of pure partition functions in Theorem 1.7 also satisfies
the following refined asymptotic: for all α ∈ LPN and for all j ∈ {1, . . . , 2N − 1} and
x1 < x2 < · · · < x j−1 < ξ < x j+2 < · · · < x2N ,

lim
x̃ j ,x̃ j+1→ξ,

x̃i→xi for i �= j, j+1

Zα(x̃1, . . . , x̃2N )

(x̃ j+1 − x̃ j )−2h

=
{
0 if { j, j + 1} /∈ α

Zα̂(x1, . . . , x j−1, x j+2, . . . , x2N ) if { j, j + 1} ∈ α
,

where α̂ = α/{ j, j + 1}.
Finally, let us discuss the range of κ in Theorem 1.7. The proofs of Lemmas 6.2, 6.4,

and 6.5 hold for all κ ∈ (0, 8); whereas, the proofs of Lemmas 6.6 and 6.7 only hold for
κ ∈ (0, 6] because we use h ≥ 0 in various places.

6.2. Proof of Lemma 6.2. To show Lemma 6.2, we need the following property of
hypergeometric SLE and Proposition 3.5.

Proposition 6.10. Fix κ ∈ (0, 8) and a quad q = (Ω; x R, yR, yL , x L).



476 H. Wu

– (Existence and Uniqueness) There exists a unique probability measure on pairs of
continuous curves (ηL ; ηR) ∈ X0(Ω; x R, yR, yL , x L) such that the conditional law
of ηR given ηL is SLEκ in ΩL from x R to yR and the conditional law of ηL given
ηR is SLEκ in Ω R from xL to yL .
– (Identification) Under this probability measure, the marginal law of ηL is hSLEκ

in Ω from xL to yL with marked points (x R, yR).

Proof. When κ ≤ 4, this proposition is a special case of Proposition 4.1 when ρL =
ρR = 0. When κ ∈ (4, 8), the existence and the uniqueness were proved in [MS16c]
and [MSW16, Appendix A]. In [BPW18], the authors provided another perspective for
the existence and the uniqueness with κ ∈ (4, 6]. We define global 2-SLEκ to be this
unique probability measure. It remains to derive the marginal law of ηL in global 2-
SLEκ . Such question is included in some form in previous papers: [BBK05, Section 8],
[Dub06, Section 4], and [MW18, Section 4]. Let us briefly summarize how they derived
the marginal law.

Suppose (ηL ; ηR) ∈ X0(Ω; x R, yR, yL , x L) is the global 2-SLEκ . Suppose
U1, . . . ,U4 are neighborhoods of the points x L , yL , yR, x R respectively such thatΩ\Uj

are simply connected andUj ∩Uk = ∅ for j �= k. Let γ1 be the part of ηL that starts from
x L and ends at exitingU1; let γ2 be the part of ηR that starts from x R and ends at exiting
U2; let γ3 be the part of the time-reversal of ηR that starts from yR and ends at exiting
U3; let γ4 be the part of the time-reversal of ηL that starts from yL and ends at exiting
U4. By the conformal invariance of the global 2-SLEκ and the reversibility of SLEκ , we
could argue that (γ1, . . . , γ4) is a local 2-SLEκ , as described in [KP16, Theorem A.4].
By the commutation relation in [Dub07] and a complete classification summarized in
[KP16, Theorem A.4], we know that γ1 has the law of hSLEκ . In other words, the law of
ηL restricted toU1 has the law of hSLEκ . This is true for any localization neighborhoods
(U1, . . . ,U4). This implies that ηL is an hSLEκ up to any stopping time τ as long as
ηL [0, τ ] has positive distance from the points {x R, yR, yL }. By Proposition 3.2, hSLEκ

in Ω from x L to yL with marked points (x R, yR) is generated by continuous transient
curuve and it does have positive distance from the points {x R, yR} almost surely, thus
the whole process ηL has the law of hSLEκ as desired. �
Proof of Lemma 6.2. Pick n �= k, we will show that Z(k)

α = Z(n)
α . Assume ak < an <

bn < bk . Recall that ηk is an SLEκ in Ω from xak to xbk , and that

Z(k)
α (Ω; x1, . . . , x2N+2)

= HΩ(xak , xbk )
hE

[
ZαR

k
(DR

k ; xak+1, . . . , xbk−1) × ZαL
k
(DL

k ; xbk+1, . . . , xak−1)1Ek
α

]
.

Let ηn be an SLEκ in DR
k from xan to xbn . Define Ekn

α to be the event that ηn is
allowed by αR

k in DR
k . On Ekn

α , let DR
n be the union of the connected components of

DR
k \ηn having xan+1, . . . , xbn−1 on the boundary, and DM

kn be the union of the connected
components of DR

k \ηn having xak+1, . . . , xan−1, xbn+1, . . . , xbk−1 on the boundary, see
Fig. 7.

The links {ak, bk} and {an, bn} divide the link pattern α into three sub-link patterns,
connecting {bk + 1, . . . , ak − 1}, {ak + 1, . . . , an − 1, bn + 1, . . . , bk − 1}, and {an +
1, . . . , bn −1} respectively. After relabelling the remaining indices, we denote these link
patterns by αL

k , αM
kn, α

R
n . The marked points of the domains DL

k , DM
kn, D

R
n are clear, so

we omit them from the notation.
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By the cascade relation in the hypothesis, we have

Z
αR
k
(DR

k ; xak+1, . . . , xbk−1) = HDR
k
(xan , xbn )

hE

[
ZαR

n
(DR

n ; . . .) × Z
αM
kn

(DM
kn; . . .)1Ekn

α

]
.

Plugging into the definition of Z(k)
α , we have

Z(k)
α (Ω; x1, . . . , x2N+2)

= HΩ(xak , xbk )
h

× E

[
HDR

k
(xan , xbn )

h × ZαR
n
(DR

n ; . . .) × ZαM
kn

(DM
kn; . . .) × ZαL

k
(DL

k ; . . .)1Ek
α∩Ekn

α

]
.

Here E corresponds to the following probability measure: sample ηk as SLEκ inΩ from
xak to xbk ; given ηk and on Ek

α , sample ηn as SLEκ in DR
k from xan to xbn . Note that

Ek
α ∩ Ekn

α can be written as Ek
α ∩ En

α ∩ Fkn
α where the event Fkn

α is that ηk stays to the
left of ηn .

From Proposition 3.5, the law of ηk weighted by HDR
k
(xan , xbn )

h becomes hSLEκ

in Ω from xak to xbk with marked points (xan , xbn ). Moreover, the Radon-Nikodym
derivative between hSLEκ and SLEκ is the following

where is defined in (6.6).
Denote by q = (Ω; xan , xbn , xbk , xak ) and denote by Qq the following probability

measure: sample ηk as hSLEκ in Ω from xak to xbk with marked points (xan , xbn ); given
ηk , sample ηn as SLEκ in DR

k from xan to xbn . Then we have

(6.8)

By Proposition 6.10, Qq is the same as the unique probability measure there. In

particular, it is symmetric in ηk and ηn . Therefore, the function Z(n)
α (Ω; x1, . . . , x2N+2)

can be expanded in the same way as the right hand side of (6.8). As a consequence,

Z(k)
α (Ω; x1, . . . , x2N+2) = Z(n)

α (Ω; x1, . . . , x2N+2),

as desired. �
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A. Appendix: Hypergeometric Functions

For A, B,C ∈ R, the hypergeometric function is defined for |z| < 1 by the power series:

F(z) = 2F1(A, B,C; z) =
∞∑
n=0

(A)n(B)n

(C)n

zn

n! ,

where (x)n is the Pochhammer symbol (x)n := x(x + 1) · · · (x + n − 1) for n ≥ 1 and
(x)n = 1 for n = 0. The power series is well-defined when C �∈ {0,−1,−2,−3, . . .},
and it is absolutely convergent on z ∈ [0, 1] when C > A + B. When C > A + B and
C �∈ {0,−1,−2,−3, . . .}, we have

F(1) = Γ (C)Γ (C − A − B)

Γ (C − A)Γ (C − B)
, (A.1)

where Γ is Gamma Function. The hypergeometric function is a solution of Euler’s
hypergeometric differential equation

z(1 − z)F ′′(z) + (C − (A + B + 1)z)F ′(z) − ABF(z) = 0. (A.2)

Lemma A.1. When C > 0 and AB > 0, the function F(z) is increasing for z ∈ [0, 1).
Proof. We have F(0) = 1 and F ′(0) = AB/C > 0. If the conclusion is false, then
there exists z0 ∈ (0, 1) such that F is increasing for z ∈ (0, z0) and is decreasing for z ∈
(z0, z0 +ε) for some ε > 0. This implies that z0 is a local maximum and thus F(z0) ≥ 1,
F ′(z0) = 0 and F ′′(z0) ≤ 0. However, by (A.2), we have z0(1−z0)F ′′(z0) = ABF(z0),
contradiction. �
Lemma A.2. When C > 0,C > A,C > B,C > A+ B and AB < 0, the function F(z)
is decreasing for z ∈ [0, 1].
Proof. We assume B < 0 < A. There exists n ∈ {1, 2, . . .} such that 1 > B + n ≥ 0.
By [AS92, Eq. (15.2.2)], we have, for j ≥ 1,

F ( j)(z) = (A) j (B) j

(C) j
2F1(A + j, B + j,C + j; z).

To get the monotinicity of F , we will consider the sign and monotonicity of F ( j) with
1 ≤ j ≤ n. Note that,

(A) j > 0, sign((B) j ) = (−1) j , (C) j > 0, for 1 ≤ j ≤ n.

Since C > A + B + n − 1, by (A.1), we have

2F1(A + j, B + j,C + j; 1) ∈ (0,∞), for 0 ≤ j ≤ n − 1.

Since A + n > 0, B + n ≥ 0,C + n > 0, the function 2F1(A + n, B + n,C + n; ·) is
increasing, thus

2F1(A + n, B + n,C + n; z) ≥ 1, for z ∈ [0, 1).
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If n is even, we have F (n)(z) ≥ 0. Thus F (n−1)(·) is increasing. In particular,

F (n−1)(z) ≤ F (n−1)(1) = (A)n−1(B)n−1

(C)n−1
2F1(A + n − 1, B + n − 1,C + n − 1; 1) ≤ 0.

Thus F (n−2)(·) is decreasing and F (n−2)(z) ≥ F (n−2)(1) ≥ 0. In this way, we could
argue that F (n− j)(·) is decreasing for even j and it is increasing for odd j . In particular,
F is decreasing.

If n is odd, we have F (n)(z) ≤ 0. Thus F (n−1)(·) is decreasing, and

F (n−1)(z) ≥ F (n−1)(1) = (A)n−1(B)n−1

(C)n−1
2F1(A + n − 1, B + n − 1,C + n − 1; 1) ≥ 0.

Thus F (n−2)(·) is increasing and F (n−2)(z) ≥ F (n−2)(0) ≥ 0. In this way, we could
argue that F (n− j)(·) is increasing for even j and it is decreasing for odd j . In particular,
F is decreasing. �

B. Appendix: Commutation Relation

In [Dub07] and [KP16, Appendix A], the authors studied local multiple SLEs and clas-
sified them according to the so-called partition functions. Following the same idea, we
will define a local SLE that describes two initial segments with two extra marked points.

Fix a quad q = (Ω; x1, x2, x3, x4). We will study a local SLE in Ω that describes
two initial segments γ1 and γ4 starting from x1 and x4 respectively, with two extra
marked points x2 and x3, up to exiting some neighborhoodsU1 andU4. The localization
neighborhoods U1 and U4 are assumed to be closed subsets of Ω such that Ω\Uj are
simply connected for j = 1, 4 and thatU1∩U4 = ∅ and that dist({x2, x3},U1∪U4) > 0.
A local SLEκ in Ω , started from (x1, x4) and localized in (U1,U4) with two marked
points (x2, x3), is a probability measure on two curves (γ1, γ4) such that, for j ∈ {1, 4},
the curve γ j : [0, 1] → Uj starts at γ j (0) = x j and ends at γ j (1) ∈ ∂Uj . A local SLEκ

is the indexed collection

P = (
P(q;U1,U4)

)
q;U1,U4

.

This collection of probability measures is required to satisfy the following three prop-
erties.

– Conformal invariance. Suppose thatq = (Ω; x1, x2, x3, x4), q̃ = (Ω̃; x̃1, x̃2, x̃3, x̃4) ∈
Q, and ψ : Ω → Ω̃ is a conformal map with ψ(x j ) = x̃ j for j ∈ {1, 2, 3, 4}. Then
for (γ1, γ4) ∼ P(q;U1,U4), we have (ψ(γ1), ψ(γ4)) ∼ P(q̃;ψ(U1),ψ(U4)).

– Domain Markov property. Suppose that τ1 is a stopping time for γ1 and τ4
is a stopping time for γ4. The conditional law of (γ1|t≥τ1 , γ4|t≥τ4), given the
initial segments γ1[0, τ1] and γ4[0, τ4], is the same as P

(q̃;Ũ1,Ũ4)
where q̃ =

(Ω̃; γ1(τ1), x2, x3, γ4(τ4)) and Ω̃ is the connected component of Ω\(γ1[0, τ1] ∪
γ4[0, τ4]) with (x2x3) on the boundary, and Ũ j = Uj ∩ Ω̃ for j ∈ {1, 4}.

– Absolute continuity of the marginals. Define

X4 = {(x1, x2, x3, x4) ∈ R4 : x1 < x2 < x3 < x4}.
There exist smooth functions Fj : X4 → R, for j ∈ {1, 4}, such that for the domain
Ω = H, boundary points x1 < x2 < x3 < x4, and localization neighborhoods
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U1 and U4, the marginal law of γ j under P(H;x1,x2,x3,x4;U1,U4) is the Loewner chain
driven by the solution to the following SDEs:

for γ1 : dWt = √
κdBt + F1(Wt , V

2
t , V 3

t , V 4
t )dt,

dV i
t = 2dt

V i
t − Wt

, for i = 2, 3, 4;

for γ4 : dW̃t = √
κd B̃t + F4(Ṽ

1
t , Ṽ 2

t , Ṽ 3
t , W̃t )dt,

dṼ i
t = 2dt

Ṽ i
t − Wt

, for i = 1, 2, 3;

(B.1)

where W0 = x1, V 2
0 = x2, V 3

0 = x3 and V 4
0 = x4 and W̃0 = x4, Ṽ 1

0 = x1, Ṽ 2
0 =

x2, Ṽ 3
0 = x3.

Lemma B.1. Suppose both (U1,U4) and (V1, V4) are localization neighborhoods for
quad q = (Ω; x1, x2, x3, x4) and that Vj ⊂ Uj for j ∈ {1, 4}. Suppose (γ1, γ4) ∼
P(q;U1,U4) and let τ j be γ j ’s first time to exit Vj for j ∈ {1, 4}. Then (γ1|[0,τ1], γ4|[0,τ4]) ∼
P(q;V1,V4).

Proof. It is clear that the restrictionmeasures also satisfy all the required three properties.
�

It turns out that the existence of local SLE with two extra points is related to positive
functions Z : X4 → R+ which satisfy a certain PDE system and conformal covariance:
h = (6 − κ)/(2κ) and b is a constant parameter,

– PDE system (PDE):

κ

2
∂2x1Z +

∑
2≤i≤4

2∂xiZ
xi − x1

+

( −2h

(x4 − x1)2
+

−2b

(x2 − x1)2
+

−2b

(x3 − x1)2

)
Z = 0,

κ

2
∂2x4Z +

∑
1≤i≤3

2∂xiZ
xi − x4

+

( −2h

(x1 − x4)2
+

−2b

(x2 − x4)2
+

−2b

(x3 − x4)2

)
Z = 0,

(B.2)

– Conformal covariance (COV): for all Möbius maps ϕ of H such that ϕ(x1) <

ϕ(x2) < ϕ(x3) < ϕ(x4),

Z(x1, x2, x3, x4) = |ϕ′(x1)|h |ϕ′(x2)|b|ϕ′(x3)|b|ϕ′(x4)|h
×Z(ϕ(x1), ϕ(x2), ϕ(x3), ϕ(x4)). (B.3)

Proposition B.2. We have the following correspondence between local SLE with two
extra marked points and positive solutions to PDE (B.2) and COV (B.3).

(a) SupposeZ : X4 → R is a positive solution to PDE (B.2) and COV (B.3). Then there
exists a local SLEκ with two extra marked points such that the drift terms in (B.1)
are given by F1 = κ∂x1 logZ and F4 = κ∂x4 logZ .

(b) Suppose there exists a local SLEκ with two extra marked points. Then there exists a
positive solution Z : X4 → R to PDE (B.2) and COV (B.3) such that the drift terms
in (B.1) are given by F1 = κ∂x1 logZ and F4 = κ∂x4 logZ .
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Proof of Proposition B.2—Part (a). There are two ways to sample γ1 and γ4: Method
1—sample γ1 first, and Method 2—sample γ4 first.

Method 1. Since Z satisfies PDE (B.2), the following process is a local martingale
with respect to the law of SLEκ in H from x1 to ∞:

M (1)
t = g′

t (x2)
bg′

t (x3)
bg′

t (x4)
hZ(Wt , gt (x2), gt (x3), gt (x4)).

We sample γ1 according to the law of SLEκ in H from x1 to ∞ weighted by the local
martingale M (1)

t , up to the first time σ1 that the process exitsU1. LetG = gσ1 and denote
by

x̃1 = G(γ1(σ1)), x̃2 = G(x2), x̃3 = G(x3), x̃4 = G(x4).

Since Z satisfies PDE (B.2), the following process is a local martingale with respect
to the law of SLEκ in H from x4 to ∞:

M̃ (4)
s = g̃′

s(x̃1)
h g̃′

s(x̃2)
bg̃′

s(x̃3)
bZ(g̃s(x̃1), g̃s(x̃2), g̃s(x̃3), W̃s).

We sample γ̃4 according to the the law of SLEκ in H from x̃4 to ∞ weighted by the
local martingale M̃ (4)

s , up to the first time σ̃4 that the process exits G(U4). Finally, set
γ4 = G−1(γ̃4).

Method 2. This is defined in the same way as in Method 1 except we switch the roles
of γ1 and γ4.

According to the local commutation relation in [Dub07, Theorem 7.1], these two
methods give the same law on pairs (γ1, γ4). The probability measure defined by the
sampling procedure clearly satisfies the domainMarkov property and the absolute conti-
nuity of the marginals. By COV (B.3), we could define the law on (γ1, γ4) in any simple
connected domain via conformal image. This implies the conformal invariance. �
Proof of Proposition B.2—Part (b). Since a local SLE with extra two points is confor-
mally invariant, we could assume x2 = ∞, x3 = 0, x4 = x, x1 = y for 0 < x < y. By
[Dub07, Theorem 7.1], the existence of local SLEκ in neighborhoods of x and y with two
extra marked points 0 and ∞ implies that there exists a positive function ψ : X2 → R

that solves the following PDE system:

κ

2
∂2xψ +

2

x
∂xψ +

(
2

x
+

2

y − x

)
∂yψ +

( −2h

(y − x)2
+

−μ

x2

)
ψ = 0,

κ

2
∂2yψ +

2

y
∂yψ +

(
2

y
+

2

x − y

)
∂xψ +

( −2h

(x − y)2
+

−μ

y2

)
ψ = 0,

(B.4)

whereμ is a constant parameter, andψ is homogeneous of some fixed degree.Moreover,
themarginal laws ofγ1, γ4 are theLoewner chains driven by the solutions to the following
SDEs:

for γ1 :dWt = √
κdBt + κ(∂y logψ)(V 4

t − V 3
t ,Wt − V 3

t )dt,

dV i
t = 2dt

V i
t − Wt

, i = 3, 4;

for γ4 :dW̃t = √
κd B̃t + κ(∂x logψ)(W̃t − Ṽ 3

t , Ṽ 1
t − Ṽ 3

t )dt,

dṼ i
t = 2dt

Ṽ i
t − W̃t

, i = 1, 3.
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Suppose ψ is homogeneous of degree −ℵ. Then there exists a positive function
f : (0, 1) → R such that ψ(x, y) = (y − x)−ℵ f (x/y). Then the two PDEs in (B.4)
become

κ

2
z2 f ′′(z) + z

1 − z
(2 + (κℵ − 4)z) f ′(z)

+

(
−μ +

z2

(1 − z)2

(κ

2
ℵ(ℵ + 1) − 2ℵ − 2h

))
f = 0,

κ

2
z2 f ′′(z) + z

1 − z
(κℵ + κ − 4 + (2 − κ)z) f ′(z)

+

(
−μ +

1

(1 − z)2

(κ

2
ℵ(ℵ + 1) − 2ℵ − 2h

))
f = 0.

In order to have non-zero solution, we must have ℵ = 2h and f satisfies the following
ODE:

κ

2
z2 f ′′(z) + z

1 − z
(2 + (2 − κ)z) f ′(z) − μ f (z) = 0. (B.5)

Define, for x1 < x2 < x3 < x4,

Z(x1, x2, x3, x4) := (x4 − x1)
−2h(x3 − x2)

−μ f (z), where z = (x2 − x1)(x4 − x3)

(x3 − x1)(x4 − x2)
.

One can check that Z satisfies PDE (B.2) and COV (B.3) with b = μ/2. �
Corollary B.3. For any κ ∈ (0, 8) and ν ∈ R, there exists a local SLEκ with two extra
marked points such that the drift term in (B.1) are given by F1 = κ∂x1 logZκ,ν and
F4 = κ∂x4 logZκ,ν where Zκ,ν is defined in (3.5). In particular, the marginal law of γ1
is hSLEκ(ν) in H from x1 to x4 with marked points (x2, x3) stopped at the first exiting
time of U1, and the marginal law of γ4 is hSLEκ(ν) in H from x4 to x1 with marked
points (x3, x2) stopped at the first exiting time of U4.

Proof. The function Zκ,ν defined in (3.5) satisfies PDE (B.2) and COV (B.3) for

b = (ν + 2)(ν + 6 − κ)/(4κ).

Combining with Proposition B.2—Part (a), we obtain the conclusion. �
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