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Abstract: This article pertains to the classification of pairs of simple random curves
with conformal Markov property and symmetry. We give the complete classification
of such curves: conformal Markov property and symmetry single out a two-parameter
family of random curves—Hypergeometric SLE—denoted by hSLE, (v) for x € (0, 4]
and v < k — 6. The proof relies crucially on Dubédat’s commutation relation (Com-
mun Pure Appl Math 60(12):1792—1847,2007) and a uniqueness result proved in Miller
and Sheffield (Ann Probab 44(3):1647-1722, 2016). The classification indicates that
hypergeometric SLE is the only possible scaling limit of the interfaces in critical lattice
models (conjectured or proved to be conformally invariant) in topological rectangles
with alternating boundary conditions. We also prove various properties of hSLE, (v)
with « € (0, 8): continuity, reversibility, target-independence, and conditional law char-
acterization. As by-products, we give two applications of these properties. The first one
is about the critical Ising interfaces. We prove the convergence of the Ising interface in
rectangles with alternating boundary conditions. This result was first proved by Izyurov
(Commun Math Phys 337(1):225-252, 2015), and our proof is different. Our method is
based on the properties of hSLE and is easy to generalize to more complicated boundary
conditions and to other models. The second application is the existence of the so-called
pure partition functions of multiple SLEs. Such existence was proved for x € (0, 8)\Q
in Kyt6ld and Peltola (Commun Math Phys 346(1):237-292, 2016), and it was later
proved for k € (0, 4] in Peltola and Wu (Commun. Math. Phys. 366(2):469-536, 2019).
We give a new proof of the existence for « € (0, 6] using the properties of hSLE.

1. Introduction

Conformal invariance and critical phenomena in two-dimensional lattice models play
a central role in mathematical physics in the last few decades. We take Ising model as
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an example (see details in Sect. 5). Suppose £2 is a simply connected domain and x, y
are distinct boundary points. When one considers the critical Ising model in £2 N Z?2
with Dobrushin boundary conditions: @ along the boundary arc (xy) and © along the
boundary arc (yx), an interface from x to y appears naturally which separates @-spin
from ©-spin. The scaling limit of the interface is believed to satisfy conformal invariance
and domain Markov property. We call the combination of the two as conformal Markov
property. Thus, to understand the scaling limit of interfaces in critical lattice models,
one needs to understand random curves with conformal Markov property.

In [Sch00], O. Schramm introduced SLE which is a random growth process in simply
connected domain starting from one boundary point to another boundary point. This is
a one-parameter family of random curves, denoted by SLE, with x > 0. This family
is the only one with conformal Markov property, and is conjectured to be the scaling
limits of interfaces in critical models. Since its introduction, this conjecture has been
rigorously proved for several models: percolation [SmiO1,CNO7], loop-erased random
walk and uniform spanning tree [LSWO04], level lines of the discrete Gaussian free field
[SS09,SS13], and the critical Ising and FK-Ising models [CS12,CDCH+14].

SLE process corresponds to the scaling limit of interface in critical model with
Dobrushin boundary conditions. It is natural to consider critical model with more com-
plicated boundary conditions. In this article, we focus on the alternating boundary con-
ditions in topological rectangles (quads for short). We take Ising model as an example
again. Suppose £2 is a simply connected domain and x®, y&, y% xI are four distinct
boundary points in counterclockwise order. Consider critical Ising model in £2 N Z?
with alternating boundary conditions: @ along the boundary arcs (x®y®) and (yLx1),
and © along the arcs (xx%) and (yRy%). With such boundary conditions, a pair of
interfaces appears naturally. This pair of interfaces connects between the four points
xR yR yL xL and the two interfaces cannot cross, see Fig. 1. The scaling limit of
the pair of interfaces, if exists, should satisfy conformal Markov property (see Defi-
nition 1.2). This article concerns probability measures on pairs of simple curves with
conformal Markov property, and they should describe scaling limits of pairs of interfaces
in critical lattice model with alternating boundary conditions in quads.

In the case of Dobrushin boundary conditions, there are two boundary points, and
conformal Markov property determines the one-parameter family of random curves

Fig. 1. The Ising interface with alternating boundary conditions
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SLE,. However, in the case of alternating boundary conditions in quads, there are four
boundary points, and conformal Markov property is not sufficient to naturally single out
random processes. We go back to the critical Ising model. As described before, there is
a pair of interfaces when the boundary conditions are alternating. The scaling limit of
such pair should satisfy conformal Markov property; at the same time, it is clear that the
pair of curves also satisfy a particular symmetry (see Definition 1.3). To understand the
scaling limit of such pair, it is then natural to require the symmetry as well as conformal
Markov property.

It turns out that the combination of conformal Markov property and symmetry deter-
mines a two-parameter family of pairs of curves. These curves are hypergeometric SLES.

1.1. Hypergeometric SLE. Hypergeometric SLE is a two-parameter family of random
curves in quad. The two parameters are « € (0, 8) and v € R, and we denote it by
hSLE, (v). We denote it by hSLE, when v = 0. For a quad (£2; x1, x2, x3, x4) where
the four boundary points x1, x2, X3, x4 are in counterclockwise order, hSLE, (v) is a
random process from x; to x4 with two marked points (x2, x3). We will give definition
of this process in Sect. 3, and the main theorem of Sect. 3 is continuity and reversibility
of hypergeometric SLEs.

Theorem 1.1. Fix x € (0,8),v > (—4) V (k/2 — 6), and x1 < x3 < x3 < x4. Let 1) be
the hSLE, (v) in H from x| to x4 with marked points (x2, x3). The process n is almost
surely generated by a continuous curve for all times. Moreover, the process 1 enjoys
reversibility for v > k /2 — 4: the time reversal of n is the hNSLE, (v) in H from x4 to xi
with marked points (x3, x3).

Here we briefly summarize the relation between hSLE and SLE, (or SLE, (p)) pro-
cess. Fix x1 = 0 < x» < x3 < x4 = 00. Suppose 7 is hSLE, (v) in H from 0 to oo with
marked points (x7, x3).

— When v = —2, the law of n equals SLE,.
— When « = 4, the law of n equals SLE4(v + 2, —v — 2) with force points (x2, x3).
— When x3 — x4, the law of n converges weakly to the law of SLE, (v +2) with force
point x2. See Lemma 3.7. In particular, the reversibility in Theorem 1.1 implies that
the time reversal of SLE, (v + 2) is hSLE, (v).

When « € (4, 8) and v = k — 6, the law of 5 equals the law of SLE, conditioned
to avoid the interval (x>, x3). See Proposition 3.9.

From these relations, we see that hSLE, (v) is a generalization of SLE, (p) process. In
general, the driving function of hSLE has a drift term which involves a hypergeometric
function. When v > (—4) V (k/2 — 6), the process is almost surely generated by a
continuous curve from x to x4. The process is also defined when v < (—4) Vv (k /2 —6).
In this case, it is defined up to the swallowing time x>. When « = 4, the hypergeometric
term becomes zero, and the process coincides with SLE4(v + 2, —v — 2) process. See
more discussion in Sect. 3.4.

1.2. Conformal Markov characterization. We denote by Q the collection of all quads,
and for each quad ¢ = (2; x%, y&, yL, xL), we denote by Xo(£2; x®, y&, yL xL) the
collection of pairs of disjoint simple curves (n”; n®) such that n® connects x® and
yR and n’ connects x* and y. The following definition concerns conformal Markov
property for pairs of simple curves. See Fig. 2 for an illustration.
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Fig. 2. Suppose the pair (n; n®) satisties CMP. For any n’-stopping time v and any 5% -stopping time
R let ¢ be a conformal map from .Q\(nL[O, L1n nR[O, 7R7) onto a quad ¢ = (2; iR, ﬁR, ﬁL,)EL)
such that (R (tR)) = IR o(yF) = FR o(vF) = 5L, o(* (z1)) = #L. Then the conditional law of
(go(nL); go(nR)) given nL[O, rLJ U nR[O, rRJ is the same as ]P’q

Definition 1.2. Suppose (P;, ¢ € Q) is a family of probability measures on pairs of
disjoint simple curves (nL; nR) € Xo(£2; x&, yR, yL, xLy. We say that (P;,q € Q)
satisfies conformal Markov property (CMP) if it satisfies the following two properties.

— Conformal invariance. Suppose g = (§2; x®, yR, yL xL), g = (2; iR, 3%, 3L 7L €
Q,and ¥ : 2 — £2 is a conformal map with ¢ (x®) = 8, v F) = 38, v (L) =
5. ¥ (xh) = & Then for (n™; ) ~ Py, we have (y(n"): ¥ (")) ~ Py

— Domain Markov property. Suppose (n%; n%) ~ IP,. Then for every n’-stopping
time % and n®-stopping time t®, the conditional law of (T]thZTL; T]R|t2.[R) given
nL[O, 78] and nR[O, 7R] is the same as ]P’qTL & where

et or = (2\(" 10, 11U nR[0, TRy R (e ®), y R, yE nE (b,

In Definition 1.2, we need to specify what happens when %[0, T®] disconnects y*
from y’ (resp. n~[0, t1] disconnects y’ from yX). In this case, we think the CMP in
Definition 1.2 becomes the CMP for n’| />L (resp. nk| /> &) with three marked points,
as in Definition 2.7. - -
The following definition concerns symmetries. For pairs of simple curves in

Xo(2; xR, yR yL xL), there are two symmetries: left-right symmetry and top-bottom
symmetry. To distinguish them, we call the former as symmetry, and the latter as
reversibility.

Definition 1.3. Suppose (Py, g € Q) is a family of probability measures on pairs of
disjoint simple curves (n%; n®) € Xo(£2; xR, yR, yL x1).

— We say that (P, ¢ € Q) satisfies symmetry if for all ¢ € Q the following is true.
Suppose (n%; n®) ~ P,, and ¢ : £2 — £2 is the anti-conformal map which swaps
xb, yband x®, y®. Then (v (n®); y (")) ~ Py

— We say that (P, g € Q) satisfies reversibility if for all ¢ € Q the following is true.
Suppose (nk; n¥) ~ Py, and ¥ : £2 — $2 is the anti-conformal map which swaps
xb, x®and yb, y®. Then (y (n®): y (")) ~ By

It turns out that the combination of CMP and the symmetry determines a two-
parameter family of pairs of curves—hSLE, (v). In Theorem 1.4, we consider pairs of
random curves with CMP and the symmetry, and we also require “Condition C1". This
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is a technical requirement concerning certain regularity of the curves and its definition
is in Sect. 2.3.

Theorem 1.4. Suppose (P, q € Q) satisfies CMP in Definition 1.2, the symmetry in
Definition 1.3 and Condition C1. Then there exist k € (0,4] and v < k — 6 such that,
for g = (82; x®, yR yL xL) € Q and (nt; n®) ~ Py, the marginal law of n® (up to
the first hitting time of [y® yL1) equals hRSLE, (v) in 2 from x X to x* with marked points
(R, yL) conditioned to hit [yRyL] (up to the first hitting time of [yR yL1).

The combination of CMP, the symmetry and the reversibility singles out a one-
parameter family of pairs of curves.

Corollary 1.5. Suppose (P, q € Q) satisfies CMP in Definition 1.2, the symmetry and
the reversibility in Definition 1.3, and Condition CI. Then there exists k € (0, 4] such
that, for any g = (2; x®, y&, yL xL) € Qand (n*; n®) ~ Py, the marginal law of nk
equals hSLE, in 2 from xR to y® with marked points (x*, y*).

1.3. Convergence of critical planar Ising interfaces. Letus go back to the critical Ising
model. We take it as an example to explain the interest in pairs of random curves and the
motivation for the definition of conformal Markov property and symmetries. We find that
the combination of conformal Markov property and symmetries singles out hypergeo-
metric SLEs. In this section, we point out that hypergeometric SLE DOES correspond
to the scaling limit of critical Ising model with alternating boundary conditions.

Proposition 1.6. Ler ($25; st , y(SR, yaL, xaL ) be a sequence of quads on 87.* converging
toaquadq = (2; xR, yR yL xL) in the Carathéodory sense as § — 0 (see Sect. 2.1).
Consider the critical Ising model in §25 with the following boundary conditions:

© along (x(;Lxge), ® along (xfyf) U (yaLxg‘), & € {6, free} along (yfy(;L).

Denote by CS(q) the event that the quad is vertically crossed by & and by C,ef (q) the
event that the quad is horizontally crossed by ®. See Fig. 5 and Fig. 6.

— Suppose € = ©. On the event C$(q), let ns be the interface connecting x(f and

yf . Then the law of s converges weakly to hSLE3 in 2 from x® to y® with marked

points (x, yL) as § — 0.

- Suppose & = free. On the event C$(q), let ns be the interface connecting xf and
. Then the law of ns (up to the ﬁrst hitting time of [y(S y(S 1) converges weakly to

hSLE3( 7/2) in §2 from x® to x© conditioned to hit [yRy] (up to the first hitting

time of [yRyL]) as 8§ — 0.

— Suppose .§ = free. On the event CZB (q), let ns be the interface connecting x§ and

xSL. Then the law of 15 converges weakly to hSLE3(—3/2) in 2 from x® to x* with

marked points (YR, y&) as § — 0.

The conclusions in Proposition 1.6 are not new. They were proved by K. Izyurov
[Izy15], and we will give a new proof in Sect. 5. There are three features on the method
developed there.

— No need to construct new observable. Constructing holomorphic observable is the
usual way to prove the convergence of interfaces in the critical lattice models (as in
[Izy15]); however, our method does not require new observable. The only input we
need is the convergence of the interface with Dobrushin boundary conditions.
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— The result is “global". There are many works on multiple SLEs trying to study
the scaling limit of interfaces in critical lattice model with alternating boundary
conditions, see [Dub07,BBKO05,KP16,1zy15], and their works study the local growth
of these interfaces. Whereas, we prove the convergence of the entire interface.

— Easy to generalize. Our method can be generalized to more complicated boundary
conditions, and the method also works for other critical lattice models including
FK-Ising model and percolation, see [BPW18].

1.4. Pure partition functions of multiple SLEs. The motivation to study hypergeometric
SLE is to understand the scaling limits of interfaces in critical lattice models in quad
with alternating boundary conditions. It is natural to consider the interfaces in gen-
eral polygon. We call (§2; x1, ..., x2n) a polygon if £ C C is simply connected and
X1, ..., Xx2n are 2N boundary points in counterclockwise order. We take Ising model as
an example again. Suppose (£2°; x‘f, ey xg ) are discrete domains on 87?2 that approx-
imate some polygon (£2; x1, ..., xax). Consider the critical Ising model in 2% with
alternating boundary conditions:

@on (x3; 1, x3,), forje{l,....N}; ©on(x};,x3;,)), forjef0,1,... N}

with the convention that xo = xpn and xony4+1 = x1. Then N interfaces (77(135 e 77;3\,)
arise in the model and they connect the 2N boundary points xf, ey ng, forming
a planar connectivity. We describe the connectivities by planar pair partitions o =
{{ai, b1}, ..., {an, by}} where {ay, by, ...,an,by} ={1,2,...,2N}. We call such «
link patterns and we denote the set of them by LPy. We denote LP = Liy>oLPy. Given
alink pattern ¢ € LPy and {a, b} € o, we denote by «/{a, b} the link pattern in LPy_;
obtained by removing {a, b} from « and then relabelling the remaining indices so that
they are the first 2(N — 1) integers.

It turns out that the scaling limits of (n‘f e, nfv) are the Loewner chains associated
to the so-called pure partition functions: Fix « € (0, 8), multiple SLE pure partition
functions are a collection of positive smooth functions

Zy:Xony > Ry, aelPy

defined on the space Xon = {(x1,...,x2n8) : X1 < --- < xon} with following three
properties:

— PDE system (PDE): foralli € {1,...,2N},

K 2 2h
—0% + < 9 — )Z(xl,...,sz):O. (1.1)
Zl ; xj—x,- / (Xj—xi)z

— Conformal covariance (COV): for all Mobius maps ¢ of H such that p(x1) < --- <
@(x2n),

2N
6 —«k
Z(x.-xn) = [[@'0)" x Z(e(), ... @(an).  where h =

i=1

2K
(1.2)
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— Asymptotics (ASY): for all « € LPy and for all j € {1,...,2N — 1} and & €
(xj—1,Xj42),

Zy(xy,...,xon) )0 if{j,j+1} ¢«
XjXjr1—E (x]'+1—x]')72h Z&(xl,...,xj_l,xj+2,...,x2N) if{j,j+1} e
(1.3)

where ¥ = «/{j, j + 1} € LPy_1.

The appearance of such three properties is natural. Assuming the existence of scaling
limits of interfaces in polygon, the Loewner chain of interfaces should satisfies the
so-called “commutation relation" which gives rise to the PDE system. The conformal
covariance comes from the conformal invariance of the scaling limit. The asymptotics
correspond to “comptability” for the system of functions for different N. See [Pel19] for
the background from statistical mechanics and from conformal field theory. Although the
scaling limits of interfaces in polygon lead to the introduction of pure partition functions,
it is far from clear why such functions exist, and we will discuss the existence of such
functions in the following theorem.

Theorem 1.7. Let « € (0, 6]. There exists a unique collection {Z,, : o € LP} of smooth
functions 2, : Xon — Ry, for a € LPy, satisfying the normalization Zy = 1 and
PDE (1.1), COV (1.2), ASY (1.3) and, forall @« = {{a1, b1}, ..., {an,bn}} € LPy, the
power law bound

N

0 < Zy(r, .oy xan) < [ ] by —xa, 172 (1.4)
j=1

The uniqueness is a deep result and it follows from results in [FK15, Lemma 1] for all
k € (0, 8). The existence part was proved for « € (0, 8)\Q in [KP16] using Coulomb
gas techniques. The difficulty with the Coulomb gas techniques is that the authors could
not show the positivity of the constructed functions, neither the upper bound in (1.4).
The existence was later proved for k € (0,4] in [PW19] using the construction of
global multiple SLEs. Since the construction used Brownian loop soup, it only gives
the existence for k < 4. In this paper, we will give a new proof of the existence for
k € (0, 6] using properties of hypergeometric SLE. We will construct the pure partition
by cascade relation and then show that they satisfies all the requirements. The main
obstacle in this construction is checking the PDE, and this is obtained using properties
of hypergeometric SLEs.

Outline and relation to previous work. We will give preliminaries on SLEs in Sect. 2.
We will introduce hypergeometric SLE in Sect. 3. Hypergeometric SLEs were previously
introduced by D. Zhan [Zhal0] and W. Qian [Qial8] with different motivations and
definitions: D. Zhan introduced it to describe the time-reversal of SLE, (p) and W. Qian
introduced it to describe the boundary of the so-called trichordal restriction samples.
Our motivation is to describe the scaling limits of interfaces in critical lattice models in
quad. Our definition is different from the one in [Qial8]. The definition in [Zhal0] is a
particular case of ours. We will prove Theorem 1.1 in Sect. 3 and many other interesting
properties of hSLE. We prove Theorem 1.4 in Sect. 4. We introduce Ising model in
Sect. 5 and prove Proposition 1.6. We complete the proof of Theorem 1.7 in Sect. 6.
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2. Preliminaries

2.1. Space of curves. A planar curve is a continuous mapping from [0, 1] to C modulo
reparameterization. Let X be the set of planar curves. The metric d on X is defined by

d(m,m) = inf sup [n1(g1(1)) — n2(e2(1))l,
P1.92 10,1
where the inf is over increasing homeomorphisms ¢g, ¢, : [0, 1] — [0, 1]. The metric
space (X, d) is complete and separable. A simple curve is a continuous injective mapping
from [0, 1] to C modulo reparameterization. Let Xsimple be the subspace of simple curves
in X and denote by Xj its closure. The curves in X( may have multiple points but they
do not have self-crossings.

We call (£2; x1, ..., x,) a (topological) polygon if §2 is a non-empty simply con-
nected proper subset of Cand x1, . . ., x,, are boundary points appearing in counterclock-
wise order and lying on locally connected boundary segments. If the points xy, ..., x,
of the polygon (£2; x1, . . ., X,) lie on sufficiently regular boundary segments (e.g. C'*¢
for some € > 0), we call (£; x1,...,Xx,) a nice polygon. Let (£2; x1,...,x,) be a
bounded polygon. We say that a sequence of polygons (£2°; xf, ey xﬁ) converges to
(82; x1, ..., %) as 8 — 0 in the Carathéodory sense if there exist conformal maps f?
from the unit disc U to £2° and conformal map f from U to £ such that f — f
uniformly on any compact subset of U, and lims_.o(f 5)_1(xf.) = ;) for all
je{l,...,n}

We call a polygon (£2; x1, . .., x,) a Dobrushin domain if n = 2. Given a Dobrushin
domain (£2; x, y), denote by (xy) the arc of 952 from x to y counterclockwise, and
by [xy] the closed arc. We call (£2; x1, ..., x,) a triangle if n = 3, and we denote by
T the collection of all triangles (£2; x1, x2, x3) with x; # x3. We call (£2; xq, ..., x,)
a quad if n = 4, and we denote by Q the collection of all quads (£2; x1, x2, x3, x4)
with x; # x4. Given a quad (§2; a, b, ¢, d), we denote by dq ((ab), (cd)) the extremal
distance between (ab) and (cd) in £2.

Given a Dobrushin domain (£2; x, y), let Xmple(£2; x, y) be the space of simple
curves 7 such that n(0) = x, n(1) = y, and (0, 1) C £2. Denote by Xo(£2; x, y) the
closure of Xgimple (£2; x, ¥).

Given a quad (£2; xL xR, yR, yL), let Xgimple (£2; xL xR, yR, yL) be the collec-
tion of pairs of simple curves (nL; nR) such that nL € Xgimple (£2; xL, yL) and nR €
Xsimple (£2; xR, yR) and that nL N nR = (). The definition of X (£2; xL xR, yR, yL) is
a little bit complicated. Given € > 0, let XS (£2; xL, xR, yR, yL) be the set of pairs of
curves (n©; n®) such that

- 0" e Xo(82; x5, yb) and n® € Xo(£2; x, y);

—dgot (%, (x®yR)) > e where 27 is the connected component of 2\ n% with (xR yR)
on the boundary, and 5 ¥ is contained in the closure of 27 ;

— dgor (nR, (nyL)) > e where 2% isthe connectedcomponentofﬂ\nR with (nyL)
on the boundary, and n* is contained in the closure of £2%.

Define the metric on X§($2; xb xR yR yLy by
D((t, nf), (., %)) = max{d (nf, nd). d(nf. n¥)).

One can check D is a metric and the space X§(52; x&, x®, yR, yL') with D is complete
and separable. Finally, set

Xo(2; xb, xR yRyly = U X§(82; xb xR yR O yEy.

e>0
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Note that X (£2; xL xR, yR, yL) is no longer complete.
Suppose E is a metric space and B is the Borel o-field. Let P be the space of
probability measures on (E, Bg). The Prohorov metric dp on P is defined by

dp(Py,Py) = inf {€ > 0: P[A] < Po[A°] +¢, Po[A] < Pi[A°] +¢,VA € B},

where A€ is the e-neighborhood of the set A. When E is complete and separable, the
space P is complete and separable ([Bil99, Theorem 6.8]); moreover, a sequence P, in
‘P converges weakly to PP if and only if dp (P, P) — O.

Let X be a family of probability measures on (E, Bg). We call X' relatively compact
if every sequence of elements in X' contains a weakly convergent subsequence. We call
X tight if, for every € > 0, there exists a compact set K such that P[K.] > 1 — € for
all P € X¥. By Prohorov’s Theorem ([Bil99, Theorem 5.2]), when E is complete and
separable, relative compactness is equivalent to tightness.

2.2. Loewner chain and SLE. We call a compact subset K of H an H-hull if H\K
is simply connected. Riemann’s Mapping Theorem asserts that there exists a unique
conformal map gx from H\K onto H such that lim,_, |gx(z) — z| = 0. We call
such gk the conformal map from H\ K onto H normalized at co and we call a(K) :=
lim;_, o 2(g:(z) — z) the half-plane capacity of K seen from oo.

Loewner chain is a collection of H-hulls (K;, t > 0) associated with the family of
conformal maps (g;, ¢ > 0) obtained by solving the Loewner equation: for each z € Hi,

081 (2) = go(z) =z,

8@ — W,
where (W;, t > 0) is a one-dimensional continuous function which we call the driving
function. Let T be the swallowing time of z defined as sup{t > 0 : minse[o ] |1g5s(2) —
Ws| > 0}. Let K; := {z e H: T, <t}. Then g is the unique conformal map from
H, := H\ K, onto H normalized at co. Since the half-plane capacity of K, is 2¢ for all
t > 0, we say that the process (K;, t > 0) is parameterized by the half-plane capacity.
We say that (K;,t > 0) can be generated by the continuous curve (1(¢),t > 0) if for
any ¢, the unbounded connected component of H\7[0, 7] coincides with H, = H\K;.

Indeed, a continuous simple curve under mild constraints does solve the Loewner
equation with continuous driving function. Suppose T' € (0, co] and 7 : [0, T) — H is
a continuous simple curve with 7(0) = 0. Assume 7 satisfies the following: for every
te(0,7),

— n(t, T) is contained in the closure of the unbounded connected component of
H\7[O0, ¢] and
— n7'(n[0, 1] UR) has empty interior in (¢, T).

For each t > 0, let g, be the conformal map which maps the unbounded connected
component of H\7n[0, #] onto H normalized at co. After reparameterization, (g;, t > 0)
solves the above Loewner equation with continuous driving function [Law05, Section
4.1].

Here we discuss the evolution of a point y € R under g,. We assume y > 0. There
are two possibilities: if y is not swallowed by K;, then we define ¥; = g;(y); if y is
swallowed by K/, then we define Y; to be the image of the rightmost of point of K; "R
under g;. Suppose that (K;,t > 0) is generated by a continuous curve (n(t),7 > 0)
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and that the Lebesgue measure of 1[0, co] N R is zero. Then the process Y; is uniquely
characterized by the following equation:

Y, = +/t 2ds oy W, Wi =0
t =Y OYs—Ws’ t = Wi, = V.

In this paper, we may write g;(y) for the process Y.

Schramm Loewner Evolution SLE, is the random Loewner chain (K;, t > 0) driven
by W; = /k B; where (B;,t > 0) is a standard one-dimensional Brownian motion. In
[RSO5], the authors prove that (K;, ¢ > 0) is almost surely generated by a continuous
transient curve, i.e. there almost surely exists a continuous curve 7 such that for each ¢ >
0, H; is the unbounded connected component of H\ [0, ¢] and that lim,_, o |1(#)| = oo.
There are phase transitions at k = 4 and k = 8: SLE,. are simple curves when k € (0, 4];
they have self-touchings when « € (4, 8); and they are space-filling when « > 8.

For any Dobrushin domain (£2; x, y), SLE, in (£2; x, y) is defined via conformal
image: Let ¢ be any conformal map from £2 onto H that sends x to 0 and y to co. Then
SLE, in (£2; x, y) is ¢~ (n) where 7 is an SLE, in H from 0 to co. For « € (0, 8), the
curves SLE, enjoy reversibility: let n be an SLE, in £2 from x to y, then the time-reversal
of n has the same law as SLE, in £2 from y to x. The reversibility for « € (0, 4] was
proved in [Zha08], and it was proved for « € (4, 8) in [MS16c].

2.3. Convergence of curves. In this section, we first recall the main result of [KS17]
and then show a similar result for pairs of curves. Suppose (Q; a, b, ¢, d) is a quad. We
say that a curve n crosses Q if there exists a subinterval [s, ¢] such that n(s,t) C Q
and n[s, t] intersects both (ab) and (cd). Given a Dobrushin domain (£2; x, y), for any
curve 1 in Xo(§2; x, y) and any time 7, define §2; to be the connected component of
£2\n[0, t] with y on the boundary. Consider a quad (Q; a, b, ¢, d) in §2; such that (bc)
and (da) are contained in 9£2;. We say that Q is avoidable if it does not disconnect 7 (7)
from y in £2;.

Definition 2.1. A family X of probability measures on curves in Ximple (§2; x, y) is said
to satisfy Condition C2 if, for any € € (0, 1), there exists a constant c(¢) > 0 such that
for any P € X, any stopping time 7, and any avoidable quad (Q; a, b, ¢, d) in £2; such
that dp ((ab), (cd)) > c(€), we have

Pn[z, 1] crosses Q | n[0, t]] <1 —e.
If the above property holds for T = 0, we say that the family satisfies Condition C1.
It is clear that the combination of Condition C1 and CMP implies Condition C2.

Theorem 2.2 [KS17, Corollary 1.7, Proposition 2.6]. Fix a Dobrushin domain (£2; x, y).
Suppose that {n,}neN is a sequence of random curves in Xgimple(§2; x, y) satisfying
Condition C2. Denote by (W, (t),t > 0) the driving process of n,,. Then

— the family of laws of {W), }neN is tight in the metrisable space of continuous functions
on [0, 0o) with the topology of uniform convergence on compact subsets of [0, 00);

— the family of laws of {n,}neN is tight in the space of curves X;

— the family of laws of {nn}neN, when each curve is parameterized by the half-plane
capacity, is tight in the metrisable space of continuous functions on [0, 00) with the
topology of uniform convergence on compact subsets of [0, 00).
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Moreover, if the sequence converges in any of the topologies above it also converges in
the two other topologies and the limits agree in the sense that the limiting random curve
is driven by the limiting driving function.

Next, we will explain a similar result for pairs of curves. Fix a quad (£2; xL xR,

yR vh).
Definition 2.3. A family X of probability measures on pairs of curves in Xgmpie (£2;

xL xR, yR, yL) is said to satisfy Condition C2 if, for any € € (0, 1), there exists a

constant ¢(€) > 0 such that for any P € ¥, the following holds. Given any n*-stopping
time t% and any n®-stopping time T %, and any avoidable quad (QX; a®, bR, ¢k, d¥)
for n® in 2\(n*[0, T£]U n®[0, X)) such that d y& ((a®b®), (cRd®)) = c(e), and any
avoidable quad (QF; al, bl ¢l d") for n* in 2\(n*[0, t%1 U nR[0, R]) such that
dor((a“b"), (ctd")) = c(e), we have

P [n*[z®, 1] crosses 0% 510, 711, (0. 2R]| < 1 - e,
P [nL[rL, 1] crosses QL | nL[O, rL], nR[O, rR]] <1-—e.

If the above property holds for t% = TR = 0, we say that the family satisfies Condition
Cl.

Theorem 2.4 Suppose that {(77,1,‘; ﬁf)}neN is a sequence of pairs of random curves in
Xsimple (£2; xL, xR, yR, yL) and denote their laws by {P, }, en. Let .Q,{‘ be the connected

component of §2 \n,f with (x®yR) on the boundary and .Q,f be the connected component
of.Q\nf with (yx™) on the boundary. Define, for each n,

Dy =dor(ny, (x*y%), DX =dor(ny, (v"x").

Assume that the family of laws of {(77,%; nf)}neN satisfies Condition C2 and that the
Sfamily of laws of{(D,I;; ’Df)}neN is tight in the following sense: for any u > 0, there
exists € > 0 such that

Pn[Dﬁze,sze]zl—u, Vn.

Then the sequence {(n,’;; n,’f)}neN is relatively compact in Xo(82; xL, xR y& yL).

Proof. By Theorem 2.2, there is subsequence nj — oo such that i (resp. n ) con-
verges weakly in all three topologies in Theorem 2.2. By Skorohod Representation
Theorem, we could couple all (n,ﬁ‘k; nfk) in a common space so that n,l;k — nt and

n,fk — n® almost surely. For € > 0, define
Ke = {0 1%) € Xoimpre(@2: x5, 2%, y%, y8) < dgu (', (R yR) = e,

dor(m®, (yExh)) = e}.

From the assumption, we know that, for any u > 0, there exists ¢ > 0 such that
inf, P,[K¢] > 1 — u. Therefore, with probability at least 1 — u, the sequence (n,fk; nfk)
converges to (nL; nR)inXg(.Q; xL xR, yR, yL) C Xo(£2; xL xR, yR, yL).Thisistrue
for any u > 0, thus we have (n,fk; n,’fk) converges to (17L; nR) in Xo($2; xL xR, yR, yL)
almost surely. O
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2.4. Conformal Markov characterization of SLE(p). SLE,(p) processes are variants
of SLE, where one keeps track of one extra point on the boundary. SLE, (p) process
with force point w € R is the Loewner evolution driven by W; which is the solution to
the system of integrated SDEs:

t t
pds
W:ﬁB+/—,V:w+/
' ' O”s_Vs ! 0

where B; is one-dimensional Brownian motion. For p € R, the process is well-defined
up to the first time that w is swallowed. When p > —2, the process is well-defined
for all time and it is generated by a continuous transient curve. Assume w > 0. When
p > k/2 — 2, the curve never hits the interval [w, 00); when p < k/2 — 2, the curve
hits the interval [w, co) at finite time; and when p < k/2 — 4, the curve accumulates at
the point w almost surely. We define SLE, (p) in any triangle via conformal image.

Lemma 2.5. Fixx € (0,8)and p > (—=2)V (k/2—4). Then SLE, (p) satisfies Condition
Cl.

2ds
Vs — W

’

Proof. Suppose 71 is an SLE, (p) in H from O to oo with force point w € R. Then there
exists a function p(§) — 0 as § — 0 such that

P[n hits B(1, 8)] < p(5), 2.1)

and that p depends only on «, p and is uniform over w, see for instance [Wul8, Lemma
A.5].

Suppose (Q; a, b, ¢, d) is an avoidable quad for n. It is explained in
[KS17,Eq.(12) in the proof of Theorem 1.10] that {5 crosses Q} implies {#n hits B(u, r)}
for some u € R, r > 0 such that

ro <exp(ndQ((ab), (cd))) ]>‘
lul 16 '

Combining with (2.1), it implies that  satisfies Condition C1. O

Lemma 2.6 [SWO05, Theorem 3]. Fix x > 0 and p € R and a triangle (£2; x, w, y).
Let n be an SLE, (p) in 2 from x to y with force point w. Then n has the same law as
SLE, (k — 6 — p) in $2 from x to w with force point y, up to the first time that the curve
disconnects w from y.

Next, we explain the conformal Markov characterization of SLE, (p) derived in
[MS16b]. Recall that 7 is the collection of all triangles (£2; x1, x2, x3) with x| # x3.

Definition 2.7. Suppose (P;, ¢ € 7) is a family of probability measures on continuous
curves from x to y in £2. We say that (P., ¢ € 7)) satisfies conformal Markov property
(CMP) if it satisfies the following two properties.

— Conformal invariance. Suppose that ¢ = (§2; x, w, y), ¢ = (fz; X, w,y) € T,and
¥ : 2 — £2 is the conformal map with ¥ (x) = X, ¥ (w) = w, ¥ (y) = y. Then for
n ~ P., we have ¥ (n) ~ P:.

— Domain Markov property. Suppose n ~ P, then for every n-stopping time
7, the conditional law of (n|;>;) given n[0, t] is the same as P.. where ¢; =
(£2¢; n(t), we, ¥). Here £2; is the connected component of £2\n[0, r] with y on
the boundary, and w, = w if w is not swallowed by n[0, t] and w; is the last point
of n[0, ] N (xy) if w is swallowed by 5[0, t].
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Theorem 2.8 [MS16b, Theorem 1.4]. Suppose (P, c € T) satisfies CMP in Defini-
tion 2.7 and Condition CI, then there exist k € (0,8) and p > (=2) Vv (k/2 — 4) such
that, for each ¢ = (£2; x, w,y) € 7, P, is the law of SLE, (p) in 2 from x to y with
force point w.

In [MS16b, Theorem 1.4], the authors do not require Condition C1; instead, they
require the assumption that, when 952 is smooth, the Lebesgue measure of n N 942 is
zero almost surely. Note that Condition C1 implies this latter assumption, and we find
Condition C1 is more natural, since it is the continuum counterpart of Russo-Symour-
Welsh bound for critical lattice models, see Proposition 5.1.

2.5. SLE with multiple force points. SLE, (p) processes are variants of SLE, where one
keeps track of multiple points on the boundary. Suppose y = (0 < y; < yp < --- <
Vn) and p = (o1, ..., pn) with p; € R. An SLE, (,0) process with force points y is
the Loewner evolution driven by W, which is the solution to the following system of
integrated SDEs:

ids ) ' 2ds )
W, = ‘/—Bt+2/ W’_Vl Vi=yi+ /Om, forl <i <n,

where B, is an one-dimensional Brownian motion. Note that the process V; is the time

evolution of the point y;, and we may write g,(y;) for Vli. We define the continuation
threshold of the SLE, (p) to be the infimum of the time ¢ for which

Z pi < —2.

iVi=w,

By [MS16a, Theorem 1.3], the SLE, (p) process is well-defined up to the continuation
threshold, and it is almost surely generated by a continuous curve up to and including the
continuation threshold. The Radon-Nikodym derivative between SLE, (p) and SLE, is
given by the following lemma. N

Lemma 2.9 [SWOS5]. The process SLE, (p) with force points y is the same as SLE, pro-
cess weighted by the following local martingale, up to the first time that y; is swallowed:

M= TT (80279189 () = W) s T (arlog) — g5/,

1<i<n I<i<j<n

3. Hypergeometric SLE: Basic Properties

3.1. Definition of hSLE. We first define hSLE in the upper-half plane H. Fix « € (0, 8)
and v € R, and four boundary points x; < x; < x3 < x4. We are interested in Euler’s
hypergeometric differential equation

F(z) =0. 3.1)

. 2v+8  2v+2k , 20 +2)(k —4)
z2(l—2)F (Z)+< Z>F(Z)_—2
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When v > (—4) VvV (k/2 — 6), define F to be the hypergeometric function (see
Appendix A):

2v+4 4 2v+8 )
- = ;2.

F(z) :=2F ( P 1 (3.2)

k' K
When v < (—4) V (k/2 — 6), define F to be the following:

v+ 12 — 4 8
F(z):=(1—2)¥1G(1 —z), where G(z) =2F (M,—,—; )
K K

K
(3.3)

Note that the functions F defined in both (3.2) and (3.3) are solutions to (3.1).
Lemma 3.1. Fix « € (0, 8).

— Whenv > (—4) V (k/2 — 6), the function F defined in (3.2) is uniformly bounded
forz €10, 1]:

O0<IAF(1)<F(E@ <1VF()<oo, Vzel0l1]

— Whenv < (—4) Vv (k/2 — 6), the function G defined in (3.3) is uniformly bounded
forz € [0, 1]:

0<1AGA)<G@E@ <1VvG() <oo, Vzel01]
Proof. Denote by

2v+4 4 2v+8
A= B C

., B=1--, C= .

When v > (—4) v (k/2 — 6), we have
C>0, C>A, C>B, C>A+8B.
Then F (1) € (0,00) by (A.1). If AB > 0, F is increasing by Lemma A.1. If AB = 0,
wehave F = 1.If AB < 0, F is decreasing by Lemma A.2. In summary, F is monotone,
and it is bounded by F(0) = 1 and F(1).
Note that
G(z)=Fi(C—B,C—A,1+C—-—A—-B;2).

When v < (—4) Vv (k/2 — 6), we have

1+C—-A-B>0, 1+C-A—-B>C—-B, 1+C—-A—-B>C-A,
l1+C—-A—-B>2C—-A—-B.

Then G(1) € (0, 00) by (A.1). Similarly, G is monotone, and it is bounded by G(0) = 1
and G(1). |
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Set
6 — +2 +2)(v+6—
PR ek S b A Gl 0] 2y (3.4)
2K K 4k
For x| < x3 < x3 < x4, define partition function
Zew (1, x2, %3, x4) = (x4 — x1) 2 (x3 — x2) P2 F (2),
where 7= (27 *)04 = %3) (3.5)

(3 —x1) (s —x2)

Suppose g = (£2; x1, X2, X3, X4) is a nice quad, then we may extend the above definition
to ¢ via conformal image:

Ziev (825 X1, X2, X3, X4)
= o' D)|"@' (x2) P19 (x3)1° 19" (xa) " Ze 1 (@(x1), 9(x2), 9(x3), 9(x4)), (3.6)

where ¢ is any conformal map from §2 onto H such that ¢(x1) < ¢(x2) < p(x3) <
@(x4).

The process hSLE, (v) in H from x; to x4 with marked points (x;, x3) is the Loewner
chain driven by W, which is the solution to the following SDEs:

dW; = ikd B + (31108 Z¢ ) (Wr, 8:(x2), 81(x3), g (xa))d1,
2 . (3.7)
0,8 (xj)) = ————, fori =2,3,4.
gr(xi) — Wy
In particular, this implies that the law of 7 is the same as SLE, in H from x; to oo
weighted by the following local martingale:

M, = g (x2)" g (x3)? &/ (x2)" Ze ., (W, 1(x2), 81 (x3), 81 (x4)). (3.8)

In the above definition, hSLE is well-defined up to the swallowing time of x2. We
will define the whole process in the following way.

— When « € (0,4] and v > —4, the process is well-defined for all times from (3.7);
moreover, it is generated by a continuous curve. See Proposition 3.2.

When k € (4, 8) and v > k/2 — 6, the process is well-defined up to and including
the swallowing time of x3 which is finite; moreover, it is generated by a continuous
curve up to and including the same time. See Proposition 3.2. After the swallowing
time of x3, we continue the process as a standard SLE, towards x4.

When v < (—4) V (k/2 — 6), the process is well-defined up to the swallowing time
X7 and we stop the process there. The process is generated by a continuous curve up
to and including the same time, see Proposition 3.3.

As Z, , in (3.5) is scaling covariant, hSLE in H is scaling invariant. hSLE in general
quad is defined via conformal image. For any quad ¢ = (£2; x1, x2, x3, x4), hSLE, (v)
in §2 from x| to x4 with marked points (x7, x3) is @1 (n) where ¢ is any conformal map
from £2 onto H such that ¢(x1) < ¢(x2) < ¢(x3) < ¢(x4) and n is an hSLE, (v) in H
from ¢(x1) to ¢(x4) with marked points (¢(x2), ¢(x3)).

Recall that we write hSLE, for hSLE, (0) with v = 0. When v = 0, the partition
function defined in (3.5) is the same as the partition function for two SLEs defined in
[KLO7, Section 3.3] and in [Dub06, Section 4.1].
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We end this section with a discussion on the phase transition of the two parame-
ters ¥ and v in the definition of hSLE. From (3.8), the partition function Z, , gives
the Radon-Nikodym derivative between hSLE, (v) and standard SLE,. As a Radon-
Nikodym derivative, it is important to understand whether it is positive and bounded.
Thus, it is important to consider the positivity and bound of the hypergeometric function
F in the definition of Z, , in (3.5). As in the proof of Lemma 3.1, in order for F to
be positive and bounded on [0, 1], weneed C > 0,C > A,C > B,C > A + B. This
explains the phase transition for v at (—4) V (k/2 — 6).

3.2. Continuity of hSLE. To derive the continuity of the process, it is more convenient
to work with hSLE in H from 0 to co with two marked points 0 < x < y. The process
hSLE, (v) in H from O to oo with marked points (x, y) is the random Loewner chain
driven by W which is the solution to the following system of SDEs:

+2)dt  —(v+2)dt F'(Z 1-Z
thzﬁdB,+(v )X+ (v )y . (z)( ! t>d’
Wl_‘/t W[—Vt F(Zl) V[ _Wl (3 9)
L 2 , i Vi = W, '
dv; =, dv; ==, where Z,=y—,
VS — W, v, —w, Vi =W

where B, is one-dimensional Brownian motion, and the initial values are Wy = O,
Vi = x and VO’ = y. Denote by T the swallowing time of x and by T, the swallowing
time of y.

Proposition 3.2. Fix x € (0,8),v > (—=4) vV (k/2 — 6) and 0 < x < y. Consider
hSLE, (v) in H from 0 to oo with marked points (x, y) defined from (3.9).

— When k € (0,4], it is well-defined for all times. Moreover, it is generated by a
continuous transient curve almost surely.

— Whenk € (4, 8), itiswell-defined up to Ty. Moreover, it is generated by a continuous
curve up to and including T, almost surely.

— When v > k/2 — 4, it never hits the interval [x, y] almost surely.

Before proving Proposition 3.2, let us compare hSLE, (v) with SLE, (v+2, k —6—)
process. By Lemma 2.9 and (3.8), the law of hSLE, (v) with marked points (x, y) is the
same as the law of SLE, (v + 2, x — 6 — v) with force points (x, y) weighted by R;/ Ry
where

K— (X) — W,
R = (2:(y) — W)"* " F(z,), andz, =5C2 " 21
&) —W;

Note that 0 < Z; < 1 for all r and F (z) is bounded for z € [0, 1]. For n > 1, define
Sy =1inf{t : g/(y) — W; < 1/nor g (y) — W; > n}.

Then Rg, is bounded. Therefore, the law of hSLE, (v) is absolutely continuous with
respect to the law of SLE, (v+2,k —6 —v) upto S,. Since SLE, (v +2,k —6 — V) is
generated by a continuous curve up to 7, hSLE, (v) is generated by a continuous curve
up to Sy,. Letn — oo, hSLE, (v) is generated by a continuous curve up to Ty = lim,, S,.
However, the absolute continuity is not preserved as n — 00, since R, may be no longer
bounded away from 0 or oo as ¢t — T),. Thus the difficulty in proving Proposition 3.2 is
to analyze the behavior of hSLE, (v) as t — Ty.
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Proof of Proposition 3.2. When « € (0,8),v > (—4) V (k/2 — 6), the function F(z)
defined in (3.2) is uniformly bounded for z € [0, 1] between F(0) = 1 and F(1) €
(0, 00). Since hSLE, (v) is scaling invariant, we may assume y = 1 and x € (0, 1), and
denote Ty, by T. We will analyze the behavior of hSLE, (v) as t — T'. To this end, we
perform a standard change of coordinates and parameterize the process according the
capacity seen from the point 1, see [SWO0S5, Theorem 3].

Set f(z) = z/(1 — 7). Clearly, f is the Mobius transform of H sending the points
(0, 1, 00) to (0, co, —1). Consider the image of (K;,0 <t < T) under f, denoted by
(I? 5, 0<s < S‘), where we parameterize this curve by its capacity s(¢) seen from oco. Let
(g5) be the corresponding family of conformal maps and (W) be the driving function.
Let f; be the Mobius transform of H such that g; o f = f; o g where s = s(7). By
expanding g = f; o g; o f~! around co and comparing the coefficients in both sides,
we have

AU
2g/() g =z

fim) =-1

Thus, with s = s(¢),

A0 g/ ()
2g/(1)  gi(1) — W,

v _ Wk —0gi(hdr g ()W,

T (@) = W) (g (1) — W2

Wy = fi(W,) = —1

Define
L - 5 - VY —W.
Vi =gs(X) = fi(V}), Vsoo =g(=1) = fi(c0), Zs= m = 2.
Plugging in the time change
. g (1)?
§1) = fl(W)? = — =0,
ST () — Wy
we obtain
. . 2)d —6)d F'(Z d
AW, = JedB, + LT Rds e =06ds | F(Z)  ds

Wy =V Wy —V>®  F(Z) V¥ — Ve

where BS is one-dimensional Brownian motion. By Girsanov’s Theorem, the law of K
is the law of SLE, (x — 6; v + 2) with force points (—1; x := x/(1 — x)) weighted by
R/ Ry where

gs ()?) - Ws
gs(X) — & (=1)
Note that 0 < ZS < 1 and F(z) is bounded for z € [0, 1]; and that the process g;(x) —
gs(—1) is increasing, thus g,(x) — gs(—1) > 1/(1 — x). Let S be the swallowing time
of —1. Define, forn > 1,

Ry = F(Zy) (35(%) — g5 (=142 ' and Z, =

S, = inf{t : K, exits B(0, n)}.

Then Ry is bounded up to SA S',,. The process SLE, (k — 6; v + 2) with force points
(—1;x = x/(1 — x)) is generated by a continuous curve up to and including the con-
tinuation threshold. Moreover, it has the following properties.
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(a) When« € (0,4],sincek —6 < k/2—4and v +2 > —2, the curve accumulates at
the point —1 in finite time almost surely.

(b) Whenk € (4, 8),sincek —6 € (=2, k/2—2)and v+2 > —2, the curve accumulates
at a point on the interval (—oo, —1) in finite time almost surely.

(¢) Whenv > k/2—4,since v+2 > k/2 — 2, the curve does not hit the interval [x, co)
almost surely.

From items (a) and (b), lim,,, o, SA S‘n = § < co. Thus K is generated by a continuous
curve up to and including S. This implies that our original h\SLE, (v) process (K;, t > 0)
is generated by a continuous curve up to and including 7. When « < 4, hSLE, (v)
process goes to co without touching the interval [1, 0o), thus T = co. When k € (4, 8),
hSLE, (v) process accumulates at a point on the interval (1, co) in finite time, thus 7 <
oo. From item (c), hSLE, (v) process does not hit the interval [x, 1] when v > k/2 — 4.

O

Proposition 3.3. Fixx € (0,8) andv < (—4) vV (k/2 —6) and 0 < x < y. hSLE, (v)
in H from 0 to oo with marked points (x, y) is well-defined up to Ty. Moreover, it is
generated by a continuous curve up to and including Ty, and it accumulates at a point
onlx,y)ast — Ty.

Proof. Suppose 77 is an SLE, (v + 2, v + 2) in H from 0 to oo with force points (x, y).
The law of 1 is the same as the law of 7 weighted by R;/Ry where

Ry = (g/(y) — W) &/2=670) (1 — z)3/k=1=abvd=/D G (1 — 7,), and
Cg(x) =W,
&) —W;

t

Here G is defined in (3.3). For n > 1, define S, to be the minimum of
inf{t : n(¢) exits B(0,n)}, and inf{t: g, (y) —gx) < 1/n}.

Then Rt s, is bounded. Thus 7 is continuous up to Tx A S,.

First, we assume x € (4,8) and v < k/2 —6.Sincev+2 <k/2 —4and2v +4 <
k /2 — 4, the process 1 accumulates at the point x as t — T, (see [Dub09, Lemma 15]).
Combining the fact that it is generated by a continuous curve up to and including 7, we
have R7 A5, — Rr, € (0,00) as n — oo. Therefore, n is generated by a continuous
curve up to and including 7 and it accumulates at the point x as t — T.

Next, we assume k € (0,4]andv < —4.Sincev+2 < k/2—2and2v+4 < k/2—4,
the process 7 accumulates at a point on [x, y] as t — T (see [Dub09, Lemma 15]).
In fact, we can further derive that  accumulates at a point on [x, y) as t — Ty. Let
¢ be the Mobius transform of H sending the triple (0, x, y) to (0, x, 0o). Then the law
of (1) is SLE, (¢ — 10 — 2v; v + 2) from 0 to co with force points (¢(00); x). Since
k—10—2v >«/2 —2and v +2 < /2 — 2, the curve ¢(7) almost surely hits [x, co)
before reaching co. This implies that 7 accumulates at a point on [x, y) as t — Ty.
Combing the fact that it is generated by a continuous curve up to and including 7, we
have Ry s, — R1, € (0,00) as n — oo. Therefore, n is generated by a continuous
curve up to and including 7 and it accumulates at a point on [x, y). This completes the
proof. O
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3.3. Reversibility of hSLE. In this section, we still work with hSLE in H from 0 to oo.
In this case, the local martingale in (3.8) has a more explicit expression.

Lemma 3.4. Fixx € (0,8),v € Rand 0 < x < y. Suppose n is an SLE, in H from
0 to oo and (g;,t > 0) is the corresponding family of conformal maps. Let Ty be the
swallowing time of x. Define, fort < Ty,
_ gWg ) 5 _ s =W,
=, [ ——

(8:(y) — & (x)? & () — W,

Then the following process is a local martingale:
M, :=Z8JPF(Z) 1o,
where a, b are defined through (3.4) and F is defined through (3.2) or (3.3).

Proposition 3.5. Fix k € (0,8),v > /2 —4 and 0 < x < y. The local martingale
defined in Lemma 3.4 is a uniformly integrable martingale for n, and the law of n
weighted by M, is the same as hSLE, (v) with marked points (x, y). Furthermore,

t

Moo = (Hp(x, y))? Linnie, 1= »

where D is the connected component of H\n with (xy) on the boundary, and Hp(x, y)
is the boundary Poisson kernel.!

Proof. We firstargue that M, is auniformly integrable martingale. Note that J; is decreas-
ing in ¢, thus J; < Jy. Therefore M; is bounded as long as J; and Z; are bounded from
below. Define, forn > 1,

Sy, =inf{¢t : J, <1/norZ, <1/n}.

Denote by PP the law of 5. Define P} by dP)/dP = Mg, /My. Then PP} is the same
as hSLE, (v) up to S,. Since {IP}},, are compatible in n, there exists a probability P*
such that, under IP*, and for each n, the process is the same as hSLE, (v) up to S,,. By
Proposition 3.2, hSLE, (v) is generated by a continuous transient curve and the curve
never hits the interval [x, y] when v > k/2 — 4. Hence P* is the same as the law of
hSLE, (v). This implies that M; is a uniformly integrable martingale.

It remains to derive the explicit expression of M. As t — oo, we find

g g ()
(g(y) — gx)?’

where g is any conformal map from D onto H. In fact, the quantity J, is the boundary
Poisson kernel Hp (x, y). Thus we have almost surely Mo, = lim;—.ooc M; = Hp(x, y)b
as desired. O

Z[—>1, J;—>JOOI=

Proof of Theorem 1.1. We have shown that hSLE, (v) is generated by a continuous tran-
sient curve in Proposition 3.2. Thus, to show Theorem 1.1, it remains to show the
reversibility when v > k/2 — 4. By Proposition 3.5, the Radon-Nikodym derivative of
the law of hSLE, (v) with marked points (x, y) with respect to the law of SLE,. is given
by Mo/ Mo where M is the boundary Poison kernel to the power b. Combining the
reversibility of standard SLE, and the conformal invariance of the boundary Poisson
kernel, we have the reversibility of hSLE, (v). m|

! Fix a nice Dobrushin domain (£2; x, y). The boundary Poisson kernel Hg, (x, y) is aconformally covariant
function which, in H with x, y € Ris given by Hyg(x,y) = |y — x|72, and in £ it is defined via conformal
image: we may set Ho (x, y) = ¢’ ()¢’ ()| Hp(¢(x), ¢(y)) for any conformal map ¢ : £2 — H.
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From the above analysis, we obtain the reversibility of hSLE, (v) for v > k/2 — 4.
In fact, we believe the reversibility holds for all v > (—4) Vv (k/2 — 6).

Conjecture 3.6. Fixx € (0,8)andv > (—4) V (k/2—6) and a quad (£2; x1, x2, X3, X4).
Let n be an hSLE, (v) in §2 from x; to x4 with marked points (x>, x3). The time-reversal
of n has the same law as hSLE, (v) in §2 from x4 to x; with marked points (x3, x2).

3.4. Relation to SLE,(p). In the following lemma, we explain the relation between
hSLE, (v) and SLE, (p).

Lemma 3.7. Fix k € (0,8),v € Rand x1 < xp < x3 < x4. When x3 — x4, the
process hSLE, (v) in H from x| to x4 with marked points (x2, x3) converges weakly to
SLE, (v +2) in H from x| to x4 with force point x;.

Proof. We may assume x; = 0 and x4 = 00, and the two marked points are 0 < x < y.
Let n be hSLE, (v) in H from 0 to oo with marked points (x, y). Let 7 be SLE, (v + 2)
in H from 0 to oo with force point x. The law of 7 is the same as the law of 7 weighted
by the following Radon-Nikodym derivative

cob (&) = Wi\ F(Zy) &) =W
&) ( ) Fzo M ATy —w

b
Ry
and F is the function in (3.2) or (3.3).

Let T be the continuation threshold of 7. Forn > 1, let S, be the first time that 7 exits
the ball B(0, n). Fixn,andlety — oo, we see that Zg, Z7 5, — Oand RrAs,/Ro — 1.
Furthermore, Rt s, /Ro is uniformly bounded when y is large enough. Thus, for any
fixedn > 1, the law of nup to T A S,, converges weakly to the law of 7 up to the same
time. This gives the conclusion. O

The special case: k = 4

When « = 4, the hypergeometric SLE process degenerates. When v > —4, we have
F = 1in(3.2). From (3.9), it is clear that hNSLE4(v) is the same as SLE4(v+2, —v —2).
When v < —4, although hSLE4(v) is distinct from SLE4(v + 2, —v — 2) in this case,
they are still closely related. To explain the relation, we first do a calculation with
SLE4(v+2, —v —2).

Suppose 7 is an SLE4(v + 2, —v — 2) in H from x; to x4 with force points (x3, x3).
In this case, the process 7 can be viewed as the level line of Gaussisan Free Field with
the following boundary data (A = 7/2): (see [SS13,WW17])

—Xon (_OO,.XI), A on (xlvxz)v )\.(l)+3) on (-x27x3)1
Aon (x3,x4), —Xon (x4, 00).

In particular, the process 7 is generated by a continuous curve up to and including the
continuation threshold, denoted by 7. When v + 3 < —1, the curve 77 may terminate at
either x; or x4. Furthermore, we can calculate the probabilities of these two events.

Lemma 3.8. Fixv < —4 andseta = —(v+2)/2 > 1. Suppose 1) isan SLE4(v+2, —v —
2) in H from x1 to x4 with force points (x2, x3). Let T be its continuation threshold. We
have

(= xp)(xg —x3)

Pi(T) =x31=1—2z%, and P[iH(T) =x4] =2z%, where z = .
(x3 — x1) (x4 — x2)
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Proof. Recall that the driving function of 7 satisfies the following:

—(v+2)dt N (v +2)dt 2dt

dW; = 2dB; + + .
g(x2) =W, g(x3) =W, g(xg) =W,

Define

. o (gr(2) — W) (g (xa) — 8/(x3))
;1 =2z;, where z; = .
(8r(x3) — Wi)(gr(xa) — 81 (x2))

By It6’s Formula, one can check that M, is a local martingale for 7. We see that, as
t—T,

(3.10)

M; — 0, ifn) — x2; and M; — 1, if () — x4.
Note that 0 < M; < 1. Thus Optional Stopping Theorem implies that
P[(T) = x4] = E[M7] = My = z*.
This gives the conclusion. O

When v < —4, from (3.3), we have F(z) = 1 — z*. In this case, the law of hNSLE4(v)
in H from x; to x4 with marked points (x3, x3) is the same as  weighted by 1 — M,
where M, is the martingale defined in (3.10). Equivalently, the law of hSLE4(v) is the
same as 7 conditioned on the event {7(T) = x»}.

3.5. Relation between different hSLE’s. Recall that hSLE in general quad (£2; x1, x2,
Xx3,x4) is defined via conformal image as in the end of Sect. 3.1. Denote by
P v(82; x1, X2, x3, x4) the law of hSLE, (v) in £2 from x; to x4 with marked points
(x2, x3). Proposition 3.9 derives the relation between hSLEs with different v’s. Propo-
sition 3.10 derives the relation between hSLEs in different domains. Proposition 3.11
derives the relation between hSLEs with different target points.

Proposition 3.9. Fix k € (0,8),v € R and a quad (£2; x1, x2, x3, x4). When v >
k /2 —4, we have n N[xx3] = @ almost surely. When (—4)V (k/2—6) < v < k/2—4,
the event {n N [xax3] = @} has positive chance which is given by

Zyeic—8—v(82; x1, x2, x3, x4) ' ((2v +8) /i) " () — 4 — 2v) /i)
Ziev(82;x1,x2, x3, x4) ' (Qv + 12 — k) /)" ((26 — 8 — 2v)//<)'

(3.11)

Moreover, for (—4) V (k/2 — 6) < v < k/2 — 4, we have
Pev(82; x1, x2, x3, x4) [ | 7 O [x2x3] = B] = Py o8- (£2; x1, X2, X3, x4)[-].

In particular, when k € (4, 8), the law of SLE,. from x to x4 conditioned to avoid (x2x3)
is the same as hSLE, (k — 6) from x| to x4 with marked points (x>, x3).

Proof. We may assume 2 = Handx; =0 <x; =x <x3 =y < x4 = 00. Letn be
an hSLE, (v) from 0 to co with marked points (x, y). Denote by T the swallowing time
of x and by Ty the swallowing time of y. The fact that nN[x, y] = #whenv > k/2—41is
proved in Proposition 3.2. In the following, we assume (—4) V (k/2—6) < v < k/2—4.
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Setv =k —8 —vanda = (V +2)/k, and let ij be an hSLE, (V) from 0 to co with
marked points (x, y). The following process is a local martingale for n:

F 4
M, =747 (er) ——1y<1,}, Where Z; = gulx) = Wi
F(z) &) —

and F is defined through (3.2) and

P R, (2(K —K6 —) o g 2k —K - v)’ Z)

Moreover, the law of n weighted by M is the same as 7 up to Ty. Since D > «/2 — 4,
7} does not hit the closed interval [x, y] and thus T, = T). Using a similar argument
as in the proof of Proposition 3.5, M is a uniformly integrable martingale for n. As
t — Ty, we have Z, — 1. Thus the law of 7 is the same as 1 weighted by 1{,n[x,y1=g}-
In particular, we have

JF@/FQ)
F(z)/F(1)’

This gives (3.11). o

PlnN[x,yl =0] =" where z:%,

Next, we derive the boundary perturbation property of the hSLE, (v), which is a
generalization of the boundary perturbatlon property of SLE, derived in [LSWO03, Sec-
tion 5]. Suppose £ C £ such that £ is simply connected and agrees with £2 in a
neighborhood of the arc (x1x4). In the following proposition, we will derive the rela-
tion between ]P’K,U([A); X1, X2, x3, x4) and Py ,,(£2; x1, x2, x3, x4). To this end, we need
to introduce Brownian loop measure.

The Brownian loop measure is aconformally invariant measure on unrooted Brownian
loops in the plane. In the present article, we will not need the precise definition of this
measure, so we content ourselves with referring to the literature for the definition: see,
e.g., [Law09] or [LWO04, Sections 3 and 4]. Given a non-empty simply connected domain
£2 C C and two disjoint subsets Vi, V, C £2, we denote by u(£2; Vi, V,) the Brownian
loop measure of loops in £2 that intersect both V; and V. This quantity is conformally
invariant: w(@(£2); o(V1), ¢(V2)) = u(82; Vi, V) for any conformal transformation
¢ 1 2 — @(£2). In general, the Brownian loop measure is an infinite measure. By
[Law09, Corollary 4.6], we have 0 < wu($2; Vi, Vo) < oo when both of Vi, V, are
closed, one of them is compact, and dist(Vy, V2) > 0.

Proposition 3.10. Fix k € (0,4],v > —4 and a quad (§2; x1, X2, X3, X4). Assume that
RCis simply connected and it agrees with S2 in a neighbourhood of the arc (x1x4).
Then hSLE, (v) in Qs absolutely continuous with respect to hSLE, (v) in $2, and the
Radon-Nikodym derivative is given by

dPy v (825 x1, %2, X3, X4)  Zic (823 X1, X2, X3, X4)
dPK,v(Q;xl,XZ,x&M) ZK,,,([AZ;xl,xz,xyx;;)

Liycg) SXP(en(2; 1, 2\82)),

where ¢ = 3k — 8)(6 — k) /(2k).

When v = 0, the same conclusion appeared in [KLO7, Section 3].
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Proof. We may assume 2 = Handx; =0 < x; =x <x3 =y < x4 = 00. Let
¢ be the conformal map from 2 onto H such that ¢(0) =0and lim,—.» ¢ (z)/z = 1.
Suppose 71 (resp. 7)) is hSLE, (v) in H (resp. in .Q) from 0 to oo with marked points
(x, y). Let (g;, ¢ > 0) be the corresponding family of conformal maps, and V,*, v} are
the evolutions of x, y respectively. Let T be the first time when 7 exits 2. We will study
the law of 77(t) = ¢ (n(¢)) for t < T. Define g, to be the conformal map from H\7[0, ¢]
onto H normalized at co and let ¢; be the conformal map from H\ g, (K) onto H such
that ¢; o g = g; o ¢. One can check that the following process is a local martingale for
n:

M, =Ty -1y, (W)l (VY (V)P

Vy _ v —2b R
(W) exp(cyu(H; 1[0, 1], H\$2))
t Tt

F ((ﬂz (Vf.)*% (Wy) )
o (V) —@i(Wy)

Vi =W, ’
F (v:"—wf)
where a, b, h are defined through (3.4) and F is defined through (3.2). Moreover, the
law of n weighted by M is the same as 77 up to 7. Since k < 4, the process 1 never exits
£2 and goes to co. Using a similar argument as in the proof of Proposition 3.5, M is a

uniformly integrable martingale for 1 and the law of n weighted by M7 /M) is the same
as 1) where

<<Pt(Vtx) — o (W) V[v - Wt>a
‘/’I(Vty) — (W) Vi =W,

My = lim M; =1, 6, exp(cpu(El; 1, H\$2).

This completes the proof. O

Proposition 3.11. Fix« € (0, 8) and a quad (§2; x1, X2, X3, x4). Let n be an hSLE,. (k —
8) in 2 from x| to x4 with marked points (x3, x3). Let 11 be an hSLE,. in $2 from x1 to x;
with marked points (xa, x3). Then 1) (up to the first hitting time of [x2x3]) has the same
law as n conditioned to hit [xyx3] (up to the first hitting time of [x2x3]).

Proof. We may assume §2 = H and x; < xp < x3 < x4. For n, let T be its swallowing
time of x;. Denote X ;1 = g/(x;) — W, for2 < j <4 and X;; = g/(x;) — g (x;) for
2<i<j<4 Whenv =« — 8, we have

v+2 (l)+2)(l)+6—l()_

a= =-2h, b=
K i

h.

First, we assume « € (4, 8). In this case, we have k — 8 > /2 — 6. Define

12 4 8 . 4 4 8
F(iz) =2F1|2——,1——=,2——;z|, F@:=2F(-1——-,—z2]).
K K K K K K

In this case, both F and F are bounded for 7 € [0, 1]. The law of n is the same as SLE,
in H from x; to oo weighted by the following local martingale:

X21X43

M; = g (x2) gl () g} xa)" X 2 X35 27 F(z),  where 7, = ===
X31 X1
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The law of 7} is the same as SLE, in H from x; to oo weighted by the following local
martingale:

~ —ho—2h 2/Kk = X32X41
M, = gl (2) g/ (x3)" gl (xa) X5 2 X 27K F(si),  where s, = —22L
X31X42

Comparing these two local martingales, we see that the law of 7 is the same as  weighted
by the following local martingale up to 7':

LG Fd -z
_ _ 8/k—1
Nt - (1 Zt) F(Zt)

We have the following observation.

— On the event {n N [x2, x3] # @}, the curve n accumulates at a point on (x2, x3) as
t—> T.Thusz; > Oast — T.

— On the event {n N [x2, x3] = @}, the curve n accumulates at a point on (x3, x4) as
t— T.Thusz;, > last — T.

Combining these two facts, we see that the law of 77 (up to the first hitting time of [x>, x3])
is the same as n conditioned on {n N [x2, x3] # @} (up to the first hitting time of [x7, x3]).
Next, we assume « € (0, 4]. In this case, we have k — 8 < —4. Define

4 48
G(z):=2F <1 - =, —;Z).

K K K

The law of 7 is the same as SLE, in H from x; to co weighted by the following local
martingale up to T':

M, = g,(x2)" g1 (x3)" g} ()" X 2 X327 (1 = 201G A - zy).

Therefore, the law of 7 is the same as n weighted by the following local martingale up
toT:

_F(l—2z)
G-z

t

With the analysis in the end the proof of Proposition 3.3, since v+2 = x —6 < x/2 —4,
the curve n accumulates at the point x almost surely. Thus z; — 0 as ¢t — T almost
surely. Therefore, the law of 7 is the same as 7. O

We end this section with a discussion on the definition of hSLE. In the definition of
hSLE in Sect. 3.1, it is important that the process in (3.8) is a local martingale. This
is equivalent to that the function F in (3.5) needs to satisfy (3.1). Whereas, there is a
two-dimensional solution space for (3.1). The readers may wonder why we choose the
particular solution as in (3.2) or (3.3). Indeed, there is freedom in choosing F as long as
it is in the solution space. But we choose the one as in (3.2) or (3.3) with the following
consideration.

Whenv > (—4) V (k /2 —6), we choose F as in (3.2). First of all, when v = 0, this is
consistent with the hypergeometric SLE discussed in [KL07, Section 3.3] and in [Dub06,
Section 4.1]. Second, it is consistent with the definition of SLE, (p) in the following
sense: it is believed that the time-reversal of SLE, (p) when p > (=2) V (k/2 — 4) is
hSLE, (p — 2), as in Conjecture 3.6.
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yr wh _w' yt oyt =wh Yt =wh

-

,’L’I’ l‘R JL‘" .’L’R

Fig. 3. Fix aquad ¢ = (£2; xR, yR, yL, xL) and consider disjoint continuous simple curves % n®) in the
space Xo($2; xR y® yL xL) Let TR be the first time that n® hits the closed arc [y® y£], and denote by
wR the point nR (TR), and by 2R the connected component of .Q\nR [0, TR with (nyL) on the boundary.
In the figure, the gray part indicates 2R Note that TR, w® 2R are deterministic functions of n®. Let TE
be the first time that n hits the closed arc [yRyL], and denote by wk the point nL(TL), and by 2L the
connected component of .Q\nL[O, TL] with (nyR) on the boundary

When v < (—4) Vv (k/2 — 6), we choose F as in (3.3) with the following reason: the
corresponding hSLE, (v) process accumulates at a point on the interval [x», x3) almost
surely, as proved in Proposition 3.3. This makes the answer in Theorem 1.4 explicit: if
k € (0,4] and v < —4, the marginal law of nR up to the first hitting time of [yR yL]
equals hSLE, (v) up to the same time (without conditioning).

4. Hypergeometric SLE: Conformal Markov Characterization

The focus of this section is to give characterization of pairs of simple random curves in
quad, and then to prove Theorem 1.4. Fix a quad g = (£2; XX yR, yL, xL), consider
disjoint continuous simple curves (nl‘; nR) € Xo(£2; xX, yR, yL, xL). We will show in
Propositions 4.1 and 4.2 that the joint law on such pairs are uniquely characterized by
the conditional laws. These results play an important role in proving Theorem 1.4. To
state the main results, we first introduce some notations in Fig. 3.

Proposition 4.1. Assume the same notations as in Fig. 3. Fix k € (0,4] and p* >
-2, ,oR > —2 and a quad q = ($2; xR, yR, yL,xL).

— (Existence and Uniqueness) There exists a unique probability measure on disjoint
continuous simple curves (r}L; r}R) e Xo(82; xX yR, yL, xL) such that the condi-
tional law of n® given n* is SLE, (p®) in 2F from xR to y® with force point xf;
and that the conditional law of n* given n® is SLE, (p) in 2% from x* to y* with
force point xE.

— (Identification) Under this probability measure, when p* = 0, the marginal law of
nL is hSLE, (,OR) in §2 from xL o yL with marked points (xR, yR).

Proposition 4.2. Assume the same notations as in Fig. 3. Fix kx € (0,4] and p > —2
and a quad q = ($2; xX, yR, yL, xL).

— (Existence and Uniqueness) There exists a unique probability measure on disjoint
continuous simple curves (nL; r}R) e Xo(82; xX yR, yL, xL) such that the condi-
tional law of n® given n* is SLE, (p) in 2F from xX to y® with force point w* ; and
that the conditional law of n* given n® is SLE, (p) in 2 from x* to y* with force
point wRk. We denote this probability measure by Qq(k, p).
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— (Identification) Under this probability measure, the marginal of n® stopped at the

first hitting time of [yRy*] is the same as hSLE, (kx — 8 — p) in 2 from xR to x*

with marked points (yX, yL) conditioned to hit [yRyL1, stopped at the first hitting

time of [yRyL.

We will prove Proposition 4.1 in Sect. 4.1 and prove Proposition 4.2 in Sect. 4.2. We
will prove Theorem 1.4 in Sect. 4.3.

4.1. Proof of Proposition4.1. The uniqueness in Proposition 4.1 was proved in [MS16b,
Theorem 4.1] and [MSW 16, Appendix A], we only need to show the existence and the
identification. To construct the pair (n; n®) in Proposition 4.1, we need to introduce
boundary perturbation property of SLE, (p) process. This is a particular case of Propo-
sition 3.10.

Lemma 4.3 [WW13, Section 3]. Fix x € (0,4], p > —2 and a Dobrushin domain
(£2; x, y). Assume that Q2 cCRis simply connected and it agrees with S2 in a neighbor-
hood of the arc (xy). Then SLE, (p) in 2 from x to y with force point x,. is absolutely
continuous with respect to SLE,(p) in §2 from x to y with force point x,, and the
Radon-Nikodym derivative is given by

L, coyl9 ()6 I explepn(2; 1, 2\82)),
where

(b+2)(p+6—rk) _ Bk=8)(6-k)

b =
4k 2K

and p is Brownian loop measure, and ¢ is any conformal map from 2 onto 2 fixing x
and y.

Proof of Proposition 4.1, Existence and Identification. First, we will construct a prob-
ability measure on (n%; n®) e Xo(82; x%, x®, y®, yL). By conformal invariance, it
suffices to give the construction for the quad (H; 0, x, y, oo) with 0 < x < y. Denote
by Py the law of SLE, (,oL) in H from 0 to oo with force point O_ and denote by Pr
the law of SLE, (,oR) in H from x to y with force point x;. Define measure M on
Xo(H; 0, x, y, 00) by

Mldn®, dn®) = 1,00y exp (e b, n®)) Py [dnt] @ Py [dn®].
We argue that the total mass of M, denoted by | M|, is finite. Given n € X (H; 0, 00),

denote by D the connected component of H\»’ with (xy) on the boundary and let g be
any conformal map from D onto H. Then

M| =EL @ Eg | Lyt oxp (e nF, 0 ) |

=E; (M)b (by Lemma 4.3)
(g(x) —g(y)?
<(y-x)? (where b = (p® +2)(p® +6 — 1) /(4x).)

This implies that | M| is positive and finite. We define the probability measure M?* to
be M/|M].
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Second, we show that, under M?¥, the conditional law of ¥ given n’ is SLE, (o).
By symmetry in the definition of M, the conditional law of n given n® is SLE, (p%).
Given n’, denote by D the connected component of H\n’ with (xy) on the boundary
and let g be any conformal map from D onto H. Denote by P the law of SLE, (p*) in
H from x to y and by ]f”R the law of SLEK(,oR) in D from x to y. By Lemma 4.3, for
any bounded continuous function F on continuous curves, we have

ME[F@®) In*| = 1MITEr [ Liye oy oxp (cn: nt n®)) F o) |

—I./\/ll_l M be []:( R)]
N @ —g?) L

This implies that the conditional law of nk given n’ is SLE, (p®) in D.
Finally, we show that, under M* and fixing p* = 0, the marginal law of n’ is
hSLE, (p®). In fact, the above equation implies that the law of n’ is the law of SLE, in

H from 0 to oo weighted by
( g'®g W) )1’
(g(x) —g()?)
By Proposition 3.5, the law of n’ coincides with hSLE, (o) as desired. |

4.2. Proof of Proposition 4.2. We will prove the existence (plus identification) and
uniqueness in Proposition 4.2 separately. For the existence, our proof relies on Dubédat’s
commutation relation, which is explained in Appendix B, and the continuity of hSLE
proved in Sect. 3. For the uniqueness, although our setup is different from the one in
[MS16b, Theorem 4.1], their proof also works in our setting with minor modification,
as detailed below.

Proof of Proposition 4.2, Existence. Note that, given nL[O, TL], the conditional law of
the remaining part of n is SLE, (p) from w’ to y© with force point w; given n®[0, TX],
the conditional law of the remaining part of n* is SLE, (p) from w® to y® with force
point w?®. Thus, to show the existence of the pair (nL; nR) in Proposition 4.2, it is
sufficient to show the existence of the pair (n* l0.7275 nk li0.7%))-

Set v := k — 8 — p. Let n® be hSLE,(v) in £ from xR to x’ with marked
points (yX, y) conditioned to hit (yRyl) (since v < «/2 — 4, this event has posi-
tive chance). For € > 0, let T€R be the first time that nR hits the e-neighborhood of
(yRyE). Given nR[0, T.R], let n% be hSLE, (v) in £2\n®[0, TX] from x% to nR(TX)
with marked points (y%, yX) conditioned to hit (y®y%). Let TeL be the first time that
n’ hits the e-neighborhood of (yXy’). Here we obtain a pair of continuous simple
curves (nt 0,721} nR ljo,7.x1)- We could also sample the pair by first sampling 7% and
then sampling n” conditionally on 5. Corollary B.3 and Lemma B.1 guarantee that the
law on the pair (n* 10,7215 nR|[0’TER]) does not depend on the sampling order. Here it is
important that x < 4 and the curves do not hit each other almost surely.

Let € — 0. The continuity of hSLE, (v) in Propositions 3.2 and 3.3 implies that the
law on the pair (T]L|[0’TL]; T]R|[O’TR]) does not depend on the sampling order. Consider
the pair (n*|;.71: 1% |j0.7&)), by Lemma 3.7, the conditional law of n* given n®[0, T ]
is SLE, (v +2) in 2% from x* to w® with force point y* up to the first hitting time of
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(yRyL). By Lemma 2.6, this is the same as SLE, (p) in 2% from xL to yL with force
point w® up to the first hitting time of (yXy%). Similarly, the conditional law of n®
given nL[0, TX] is SLE,(p) in 2% from x® to y® with force point w’ up to the first
hitting time of (y®y). This implies the existence part (as well as the identification part)
of Proposition 4.2. O

Proof of Proposition 4.2, Uniqueness. The uniqueness part could be proved similarly
as the proof of [MS16b, Theorem 4.1]. We will briefly summarize the proof and
point out the different places. We construct a Markov chain on configurations in
Xo(2; xR, yR yL xL): one transitions from one configuration (n’; n®) by picking
i € {L, R} uniformly and then resampling 1’ according to the conditional law given the
other one. The uniqueness of Q, («, p) will follow from the uniqueness of the station-
ary measure of this Markov chain. The e-Markov chain is defined similarly except in
each step we resample the paths conditioned on them staying in X§(2; x®, y®, y&', x).
Denote by P, the transition kernel for the e-Markov chain. It suffices to show that there
is a unique stationary distribution for the e-Markov chain. Sending ¢ — 0 implies that
the original chain has a unique stationary distribution.

It is proved in [MS16b] that the transition kernel for e-Markov chain is continuous.
In this part, the requirements are that the conditional law—SLE, (p)— can be sampled
as flow lines of GFF, and that the two curves do not hit each other almost surely. In our
case, the conditional law is SLE, (p) with force point wk e (yRyL) orwk € (yRyL),
thus the two curves do not hit for all p > —2 as long as ¥ < 4. So our setting satisfies
the two requirements. Let ;o be any stationary distribution of the Markov chain, and
let e be u conditioned on X§(52; x®, y® y& xL). Then p. is stationary for the -
Markov chain. Let S be the set of all such stationary probability measures. Then S is
convex and compact by the continuity of the transition kernel of the e-Markov chain.
By Choquet’s Theorem, the measure it can be uniquely expressed as a superposition of
extremal elements of S,. To show that S¢ consists of a single element, it suffices to show
that there is only one extremal in S¢. Suppose that v, ¥ are two extremal elements in S.
By Lebesgue decomposition theorem, one can uniquely write v = vg + vy such that vy is
absolutely continuous and v is singular with respect to v. If vy and v; are both nonzero,
since v = vy Pc + v1 Pe, by the uniqueness of the Lebesgue decomposition, we see that
Vo and v are both stationary and thus can be normalized as stationary distributions for
the e-Markov chain. This contradicts that v is an extremal measure. This implies that
either v is absolutely continuous with respect to v or singular.

Next, it is proved in [MS16b] that it is impossible for v to be absolutely continuous
with respect to v. The same proof for this part also works here. The last part is showing
that v cannot be singular with respect to V. Suppose (né; ng) ~ vand (7%; 7%) ~ ¥ are
two initial states for the e-Markov chain. Then they argued that it is possible to couple
(5 0%y and (7%; 7%) such that the event (n}; n%) = (71%; 7%X) has positive chance.
This implies that v and ¥ cannot be singular. The key ingredient in this part is [MS16b,
Lemma 4.2] which needs to be replaced by Lemma 4.4 in our setting. O

Lemma 4.4. Fix € (0,8) and p > (=2) V (k/2 — 4). Suppose (§2; x®, y& yL xL)
is a quad, wX € (yLyR) is a boundary point, and 2 C §2 is such that 2 agrees with
2 in a neighborhood of (wRx"™). Let ) be an SLE, (p) in 2 from x* to y* with force
point yX and let 7 be an SLE (p) in 2 from x to y& with force point w®. Then there
exists a coupling between n and 1) such that the event {n = 1} has positive chance.

Proof. Although our setting is different from that of the proof of [MS16b, Lemma 4.2],
the same proof works here. We can view n (resp. 77) as the flow line of a GFF & in £2
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(resp. the flow line of a GFF hin £2). The key point is that the boundary value of 4 and h
agree in a neighborhood U of (w®x™). Therefore |y and h|y are mutually absolutely
continuous. Since the flow lines are deterministic functions of the GFF, this implies that
the laws of 1 and 7 stopped upon first exiting U are mutually absolutely continuous.
Since there is a positive chance for 7 to stay in U, the absolute continuity implies the
conclusion. O

4.3. Proof of Theorem 1.4 and Corollary 1.5.

Proof of Theorem 1.4. Suppose (n*; n®) ~ P, with g = (£2; xR YR yL xL), and
assume the same notations as in Fig. 3. Since (n; n®) satisfies CMP, the conditional
law of n’ given n® satisfies CMP in Definition 2.7. By Theorem 2.8, we know that
the conditional law of n’ given n* is SLE, (p) with force point w® for some « and p.
Since we require the curves to be simple, we have x € (0,4] and p > —2. Similarly,
the conditional law of n® given n’ is SLE;(p) for some & € (0,4] and § > —2. By
the symmetry in Definition 1.3, we have k = « and p = p. This implies the only
possible candidate for P, is the probability measure Q, (k, p) in Proposition 4.2. To
finish the proof, we still need to argue that Q, («, p) does satisfy all the requirements in
Theorem 1.4.

First, we show that the pair (nL; nR) ~ Qq(k, p) satisfies CMP. For every nL-
stopping time 7’ and every n®-stopping time %, consider the conditional law of
(" 1,=71: nR],~ &) given L0, £ and [0, X], it is clear that the conditional law of
nR l,~& given nL|,>TL is SLE, (p) and the conditional law of nL|,>TL given T’]th>TR is
SLE, (p). Therefore, the pair (n*; %) satisfies CMP.

Next, we show that the pair (n%; n®) ~ Q, (k, p) satisfies Condition C1. We only
need to show that nL satisfies Condition C1. Suppose (Q; a, b, ¢, d) is an avoidable quad
for nt. By the comparison principle of extremal distance (see [Ahl10, Section 4-3]), we
have

do\,r((ab), (cd)) = do((ab), (cd)).

Note that the conditional law of n* given n® is SLE, (p) and SLE, (p) satisfies Condition
C1 (by Lemma 2.5), combining with the above inequality, n’ satisfies Condition C1. O

Next, we will show Corollary 1.5. To this end, we first discuss the reversibility of
SLE, (p) processes. Suppose x < w < y, and let n be an SLE, (p) in H from x to y
with force point w. The process 1 does not have reversibility when x < w < y, see
Lemma 4.5; but it enjoys reversibility when w = x4, see [MS16b, Theorem 1.1] and
[MS16c, Theorem 1.2]. The reversibility for w = x, is a deep result and it is a particular
case of Conjecture 3.6 when x; = x3 and x3 = x4.

Lemma 4.5. Fixx € (0,8), p > —2and x < w, w < y. Suppose n is an SLE, (p) in
H from x to y with force point w. Then the time-reversal of n is an SLEg(p) from y to
x with force point w if and only if k = k and p = p = 0.

Proof. Let 7) be the time-reversal of 5. If 7 has the law of SLE (0), since the dimension
of SLE, (p) process is 1 + x/8 [Bef08], we have k = «. It remains to show p = p = 0.
Let 7 be an SLE, (p) in H from y to x with force point w.

Whenk € (4,8)and p > k/2—2,wehave nN(w, y) = #and nN(w, y) # @ almost
surely. Thus 7 cannot have the same law as 7. Whenk € (4, 8)and p € (x/2—4, k/2-2),
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we have almost surely (see [MW17, Theorem 1.6])

dim(pN(wVvw,y)=1-(p+2)(p+4—«/2)/k,
dm@N(wvVvw,y)=1—8—«)/k.

If 7} has the same law as 7}, then these two dimensions have to coincide, and hence p = 0
and therefore p = 0. When « € (4,8) and p € (=2, «/2 — 4], the curve 7 fills the
interval (w V w, y), whereas 7 N (w V w, y) has no interior point. Thus the 7 cannot
have the same law as 7.

Whenk € (0,4]and p < x/2—2,wehave nN(wVw, y) # BandnN(wVvw,y) =7
almost surely. Thus 7 cannot have the same law as 7. Whenk € (0,4]and p > «/2 —2,
it is proved in Theorem 1.1 that 77 is hSLE, (p — 2) in H from y to x with marked points
(y—, w) which equals SLE, (p) process from y to x with force point w if and only if
p=p=0. O

Now, we are ready to show Corollary 1.5.

Proof of Corollary 1.5. Suppose (n%; n®) ~ P, for g = (2; xR, y®, yL, xL). By the
proof of Theorem 1.4, there exists k € (0,4] and p > —2 such that the conditional
law of n% given n® is SLE, (p) in 27 from x’ to y’ with force point w®. Denote
by #% the time-reversal of n’ and by AR the time-reversal of n®. By the reversibility
in Definition 1.3, we can apply Theorem 1.4 on the pair (4, /%), then there exists
k € (0,4] and 5 > —2 such that the conditional law of 4% given #¥ is SLE(5) from
yL to xL with force point xR, From Lemma 4.5, we see that & = «, p=p=0.
Therefore, the conditional law of n’ given n® is SLE,. Similarly, the conditional law of
n® given n’ is SLE,.. By Proposition 4.1, there exists a unique such probability measure
and the marginal of 7% is hSLE,. O

We end this section with several remarks on Propositions 4.1 and 4.2.

— When pf # 0 or pR # 0, the pair (n~; n®) in Proposition 4.1 does not satisfy
CMP in Definition 1.2; whereas, it satisfies the reversibility in Definition 1.3, and it
satisfies the symmetry in Definition 1.3 when p~ = p&.

— We compare Proposition 4.2 with p = 0 and Proposition 4.1 with p* = p® = 0.
In this case, the two propositions describe the same law on the pair (n; n®). From
Proposition 4.2, we see that the marginal law of nR is hSLE, (k — 8) from x % to xL;
whereas, from Proposition 4.1, the marginal law of nR is hSLE, from x® to yR . This
implies that hSLE, from x® to y® has the same law as hSLE, (k — 8) from x* to
xL. This is consistent with the target-independence proved in Proposition 3.11.

— I expect the conclusions in Propositions 4.1 and 4.2 also hold for k € (4, 8). When
k € (4, 8), the uniqueness follows from [MSW16, Appendix A]; the existence when
ol = p® = 0 in Proposition 4.1 and the existence when p = 0 in Proposition 4.2
are given by Proposition 6.10; whereas, the existence in general case is not clear to
me. For Proposition 4.1, the construction in Sect. 4.1 relies essentially on the fact
that the two curves do not intersect. For Proposition 4.2, the construction in Sect. 4.2
is based on Commutation Relation, and it does not allow the two curves to hit each
other. These give the restriction on k¥ < 4.

— Theorem 1.4 holds for k € (4, 8) as long as Proposition 4.2 holds. Corollary 1.5
holds for k € (4, 8). In the above proof of Corollary 1.5, we only need to replace
Proposition 4.1 by Proposition 6.10 when « € (4, 8).

— It is clear that the uniqueness in Propositions 4.1 and 4.2 fails for « > 8.
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5. Convergence of Ising Interfaces to Hypergeometric SLE

5.1 Ising model.

Notation and terminology. We focus on the square lattice Z2. Two vertices x = (x1, x2)
and y = (y1, y2) are neighbors if |[x; — y1|+|x2 — y2| = 1, and we write x ~ y. The dual
square lattice (Z*)* is the dual graph of Z2. The vertex set is (1/2, 1/2) + Z* and the
edges are given by nearest neighbors. The vertices and edges of (Z?)* are called dual-
vertices and dual-edges. For each edge e of Z2, it is associated to a dual edge, denoted
by e*. The dual edge e* crosses e in the middle. For a finite subgraph G, we define G*
to be the subgraph of (Z%)* with edge-set E(G*) = {e* : ¢ € E(G)} and vertex set
given by the end-points of these dual-edges. The medial lattice (Z*)° is the graph with
the centers of edges of Z> as vertex set, and edges connecting nearest vertices. This
lattice is a rotated and rescaled version of Z2. The vertices and edges of (Z?)° are called
medial-vertices and medial-edges. We identify the faces of (Z2)® with the vertices of
72 and (Z*)*. A face of (Z2)° is said to be black if it corresponds to a vertex of 72 and
white if it corresponds to a vertex of (Z2)*.

Let £2 be a finite subset of Z2. The Ising model with free boundary conditions is a
random assignment o € {©, ®} of spins o, € {©, ®}, where o, denotes the spin at
the vertex x. The Hamiltonian of the Ising model is defined by

nge(a) =— Zoxoy.
X~y
The Ising measure is the Boltzmann measure with Hamiltonian nge and inverse-
temperature > 0:

exp(—BHE (0
Mge.(ez o] = %, where de_g = Zexp(—ﬂnge(a)).
B.$2 o

Foragraph 2 and t € {©, @}Zz, one may also define the Ising model with boundary
conditions t by the Hamiltonian

HS(0) = — Z 00y, ifoy =1, ¥x & 2.
x~y,{x,y}N2#£H

Suppose that (§2; a, b) is a Dobrushin domain. The Dobrushin boundary conditions is
the following: & along (ab), and & along (ba).

The set {©, @} is equipped with a partial order: 0 < o’ if o, < o/ forall x € £2.
A random variable X is increasing if 0 < o’ implies X(0) < X (0’). An event A is
increasing if 1 4 is increasing. The Ising model satisfies FKG inequality: Let §2 be a
finite subset and 7 be boundary conditions, and 8 > 0. For any two increasing events .A
and B, we have u,fg olANB] > ,ufi ol Al u,fg o[B]. As a consequence of FKG inequality,
we have the comparison between boundary conditions: For boundary conditions 71 < 7
and an increasing event .4, we have

The critical Ising model (8 = B,.) is conformally invariant in the scaling limit, see
[DC13] for general background. We only collect several properties of the critical Ising
model that will be useful later: strong RSW and the convergence of the interface.

Given a quad (Q; a, b, ¢, d) on the square lattice, we denote by dg ((ab), (cd)) the
discrete extermal distance between (ab) and (cd) in Q, see [Chel6, Section 6]. The
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Fig. 4. The Ising interface with Dobrushin boundary conditions

discrete extremal distance is uniformly comparable to and converges to its continuous
counterpart—the classical extremal distance. The quad (Q; a, b, c, d) is crossed by &
in an Ising configuration o if there exists a path of @ going from (ab) to (cd) in Q. We

denote this event by (ab) PN (cd).

Proposition 5.1 [CDCH16, Corollary 1.7]. For each L > 0 there exists c(L) > 0 such
that the following holds: for any quad (Q; a, b, ¢, d) with dg((ab), (cd)) > L,

whe [(ab) < (cd)] <1—c(L),

where the boundary conditions are free on (ab) U (cd) and & on (bc) U (da).

For 8 > 0, we consider the rescaled square lattice 8Z>. The definitions of dual lattice,
medial lattice and Dobrushin domains extend to this context, and they will be denoted by
(8255 as, bs), (825 a3, by), (825 a5, by) respectively. Consider the critical Ising model
on (£2§; ag, by). The boundary 9£2; is divided into two parts (a5 b3) and (b5ay). We fix
the Dobrushin boundary conditions: © on (bjay) and @ on (a3 bj). Define the interface
as follows. It starts from ag, lies on the primal lattice and turns at every vertex of £2;
is such a way that it has always dual vertices with spin © on its left and & on its right.
If there is an indetermination when arriving at a vertex (this may happen on the square
lattice), turn left. See Fig. 4. We have the convergence of the interface:

Theorem 5.2 [CDCH+14]. Let ($25; ag, bg) be a sequence of Dobrushin domains con-
verging to a Dobrushin domain ($2; a, b) in the Carathéodory sense as § — 0. The
interface of the critical Ising model in ($2§; aj, by) with Dobrushin boundary condi-
tions converges weakly to SLE3 as § — 0.

Theorem 5.3. Let ($25; ag, wy, by) be a sequence of triangles converging to a triangle
(£2; a, w, b) in the Carathéodory sense as § — 0. The interface of the critical Ising
modelin ($25; a3, wy, by) withthe boundary conditions © along (bjay), ® along (a5 wy)
and free along (w§bys) converges weakly to SLE3(—3/2) as § — 0.

Proof. [HK13, Theorem 1] proves that the initial segment of the interface, i.e. the inter-
face stopped at the first hitting time of the free segment (w3bj), converges weakly to
SLE3(—3/2). Based on this result and crossing estimates in [CDCH16], the convergence
of the whole process is obtained in [BDCH16, Theorem 4]. O
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5.1. Proof of Proposition 1.6. Let (£25; xf, yf, yg‘, xg‘) be a sequence of quads on 872
converging to a quad ¢ = (£2; xR, yR, yL, xL) in the Carathéodory sense as § — 0.
Consider the critical Ising model in £2§ with alternating boundary conditions:

© along (xLxFyu fyl), &R e (@, free} along (xFyE),
gL e (@, free} along (yExl). (5.2)

The quad is vertically crossed by © if there exists a path of & going from (xg‘)cge ) to
(y§ ySL). The quad is horizontally crossed by @ in an Ising configuration if there exists
a path of @ going from (yFxf) to (xXyX). We denote these events by

o @) = {ebxd) <= ofb). @ ={okb < oy

Suppose there is a vertical crossing of ©. Let r;SL be the interface starting from xg“

lying on the primal lattice. It turns at every vertex in the way that it has spin € on its left
and © on its right, and that it turns left when there is ambiguity. Let g be the interface

starting from x SR lying on the primal lattice. It turns at every vertex in the way that it has
spin © to its left and @ to its right, and turns right when there is ambiguity. Then 775L
will end at ysL and n (5 will end at y§ .See Fig. 1. Let £2 (SL be the connected component of
.Q‘;\nSL with (x 5R y§) on the boundary and denote by D‘SL the discrete extremal distance
between nk and (x£yf) in 2} . Define 2F and DF similarly.

Lemma 5.4. The family of random variables {(DL; D(f)}bo is tight in the following
sense: for any u > 0, there exists € > 0 such that

IP’[D§ > ¢, Df ze|Cve(q)] >1—u, V§>0.

Proof. Since (£2s; x(SL, xf, yf, ySL) approximates (£2; xL xR, yR, yL), by Proposi-
tion 5.1 and (5.1), the probability P[CS (¢)] can be bounded from below by some quantity
that depends only on the extremal distance in £2 between (xx%) and (yRy’) and that
is uniform over 8. Thus, it is sufficient to show that P [{D} < €} N CP(q)] is small for
€ > (0 small. Given ng‘ and on the event {D5L < €}, combining Proposition 5.1 and (5.1),
the probability to have a vertical crossing of © in .QSL is bounded by c(e) which only

depends on € and goes to zero as € — 0. Thus ]P’[{DSL <e€}Nn Cve(q)] < c(¢). This
implies the conclusion. O

Lemma 5.5. Conditionally on the event C$ (q), there exists a pair of interfaces (773L; ng)
where n BL (resp. n § ) is the interface connecting x (SL toy (;L (resp. connecting x § to ySR ). The
law of the pair (77,;L ; 17§e ) converges weakly to the pair of SLE curves in Proposition 4.1

as 8§ — 0 where k = 3 and ER EL, pR, pl are related in the following way: for
q € {L.R},

p? =0, ife! =@; p?=-3/2, if§? = free.

Proof. We only prove the conclusion for é8 = £ = @, and the other cases can be
proved similarly (by replacing Theorem 5.2 with 5.3 when necessary). Combining the
crossing estimates in [CDCH16] (see also [CDCH+14, Remark 4]) and Lemma 5.4, the
sequence {(nEL; n§ )}s=0 satisfies the requirements in Theorem 2.4, so the sequence is
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Fig. 5. Consider the critical Ising model in §25 with the following boundary conditions: & along (x Sfo) u
(yBRy(SL) and @ along (xBRyf) U (yaLxBL). In the left panel, there is a vertical crossing of ©. Then there exists
a pair of interfaces ('73L; 77§ ): ?75R connects x § to yf and 175L connects xs" to yg‘. In the right panel, there is

R L

a horizontal crossing of @. Then there exists a pair of interfaces (nf ; n(ST): r)? connects xg' to x5 and ﬂ,;T

connects y§ to y(SL

relatively compact. Suppose (n%; n%) € Xo(£2; x, x%, yR, yL) is any sub-sequential
limit and, for some §; — O,
5 ) — " n®) i Xo(82; x5, x%, y%, 5.

For convenience, we couple them in the same space so that there is almost sure conver-
gence. Since n (SLk — n’, by Theorem 2.2, we have the convergence in all three topologies.
In particular, this implies the convergence of £2 (i in the Carathéodory sense. Note that
the conditional law of 7§ in 2§ given nj is the interface of the critical planar Ising
model with Dobrushin boundary conditions. Combining with Theorem 5.2, we derive
that the conditional law of n® in 2 given n* is SLE3. By symmetry, the conditional law
of n in 2% given n® is SLE3. By Proposition 4.1, there exists a unique such measure.

Thus it has to be the unique sub-sequential limit. This proves the convergence of the
whole sequence. O

Corollary 5.6. Suppose & = R = @ in (5.2).

— On the event C$(q), let ns be the interface connecting xSR and y§ . Then the law of

ns converges weakly to hSLE;3 in 2 from x® to y® with marked points (x*, y&) as
8§ — 0.
— On the event Cﬁf (), let ns be the interface connecting xSR and xSL. Then the law of

ns converges weakly to hSLE3 in §2 from x® to x* with marked points (yX, y*) as
s — 0.

Proof. On the event C(q), there is a pair of Ising interfaces (ng‘; n§ ), as indicated in
Fig. 5. By Lemma 5.5, the sequence (773L ; 77§ ) converges weakly to the pair of SLEs in
Proposition 4.1 with k = 3 and p* = p® = 0. In particular, the law of n¥ conditioned

on CS (q) converges weakly to hSLE3 in §2 from xR to yR. The other case can be proved
similarly. O

Corollary 5.7. Consider the critical Ising model in 25 with the following boundary
conditions:

© along (xfxf), @ along (xFy®yu (yExl), free along (yEFyl).



Hypergeometric SLE 467

y* free YR y* free yB
\y T]T
! pd o ®
T e
e o T]R - AN S .
® el ® @ N PR
nk @ ) d\o ,,LP
> P
at S) xft zk S) 2t

Fig. 6. Consider the critical Ising model in §25 with the following boundary conditions: © along (xafo ), ®
along (x§ y§) U (ySLxBL), and free along (ygeyaL). In the left panel, there is a vertical crossing of ©. Then there
exists a pair of interfaces (r)BL; ’7(5)5 n§ connects x§ to yge and ng‘ connects st to yéL. In the right panel, there

B. T R L

is a horizontal crossing of @. Then there exists a pair of interfaces (15’ ; 15 ): ngg connects xj* to xy* and ng-

connects y§ to ySL

— On the event C$(q), let ns be the interface connecting xf and ySR. Then the law of
ns (up to the first hitting time of[yge yaL]) converges weakly to hSLE3(—7/2) from x %
to x* conditioned to hit [yRyL] (up to the first hitting time of [yRy*]) as 8§ — 0.

— On the event C;? (q), let ns be the interface connecting xf and x({‘. Then the law of
ns converges weakly to hSLE3(—3/2) from x® to x* as § — 0.

Proof. On the event CS(q), there is a pair of Ising interfaces (r;aL; n ,5 ), as indicated in
Fig. 6. By a similar argument as in Lemma 5.5, the sequence (néL; n §) converges weakly
to the pair of SLEs in Proposition 4.2 with k = 3 and p = —3/2. In particular, the law
of n§ conditioned on CUe (g) converges weakly to hSLE3(—7/2) in £2 from xR to xL
conditioned to hit [y®yZ] (here is hSLE3(—7/2) from x*® to x’, this is not a typo).

On the event Cf?(q), there is a pair of Ising interfaces (nf; Tl(;T) as indicated in Fig. 6.
By Lemma 5.5, the sequence (n gg ; 773T) converges weakly to the pair of SLEs in Propo-

sition 4.1 (rotated by 90 degrees counterclockwise) with k = 3 and p = —3/2. In
particular, the law of 1783 conditioned on C;B(q) converges weakly to hSLE3(—3/2) in
2 from x® to xL. O

Proof of Proposition 1.6. Proposition 1.6 is a collection of Corollaries 5.6 and 5.7. O

6. Pure Partition Functions of Multiple SLEs

In this section, we will prove Theorem 1.7. Recall that the multiple SLE pure partition
functions is the collection {Z, : « € LP} of positive smooth functions Z, : Xony — R,
for « € LPy, satisfying Z3 = 1, PDE (1.1), COV (1.2), ASY (1.3), and the power law
bound (1.4). To state the main result of this section, we need to introduce some notations
and properties first.

Fix the constants in this section:

6 —
k €(0,6], h=

The pure partition functions introduced in Sect. 1.4 are only defined for the upper half-
plane, we may extend the definition to general polygon via conformal image. Suppose
(£2; x1, ..., xn) 18 a nice polygon. Define, for o € LPy,
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Ty

k

Fig. 7. In the left panel, the blue marked points correspond to o kL and the green marked points correspond to
o If . In the right panel, the orange marked points correspond to « an and the green marked points correspond

to oz,ie

2N
Zu(@5 51, vaw) = [[ WG % Zalplr), . 9Gan)),  (6.1)
j=1

where ¢ is any conformal map from £2 onto H with ¢(x1) < --- < ¢(x2n).

Next, we introduce the cascade relation of the pure partition functions. Suppose
(£2; x1, ..., x2n) is anice polygon. Suppose o = {{ay, b1}, ..., {an,by}} € LPy, and
assumea; < bjforall1 < j < N.Forl <k < N, letn be an SLE, in £2 from x4, to
Xp,. The link {ay, b} divides the link pattern « into two sub-link patterns, connecting
{ar+1,...,br —1}and {br + 1, ..., ar — 1} respectively. After relabelling the indices,
we denote these two link patterns by « ,f and oc,f, see Fig. 7.

We first explain the cascade relation when « € (0, 4] as the notations in this case

are simpler. Consider the set £2\ni, denote by D,f the connected component having

(Xg +1Xp,—1) on the boundary, and denote by D,{‘ the connected component having
(Xp+1%q,—1) on the boundary, see Fig. 7. We expect the following cascade relation of
the pure partition functions:

Za(g;xl, ..-,sz)

h R. L.
= H.Q(-xakv -xbk) E I:Zaf(Dk s Xag+ls - v-xbk—l) X ZD(,{‘(D]C s Xbg+ls - - - v-xak—l):l .

We then explain the cascade relation when k € (4, 6]. The idea is similar as above, but
the situation is more complicated as n; may hit boundary segments in this case. Consider
the set £2\n. If n; does not hit the boundary segments (x4, +1Xp,—1) NOT (Xp,4+1Xa,—1),
then we define D,f and DkL as above. Whereas, it is also possible that n; does hit these
boundary segments. We say that ny is allowed by « if, for all j # k, the points x,; and
Xp; lie on the boundary of the same connected component of £2\7;. In other words,
Nk is allowed by « if it does not disconnect any pair of points {x4;, xp;} for j # k.

We denote this event by 55. On the event S§ , the points x4 41, ..., Xp,—1 are divided

into smaller groups. We denote the connected components of §2\ 1 having these points

on the boundary by D,f’l, e D,f’r in counterclockwise order. We denote by D,f the
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union of D,f ’1, el D,f " The sub-link pattern oe,ﬁe are divided into smaller sub-link
patterns, after relabelling the indices, we denote these link patterns by oz,f ’1, ey a,f !
Now define
Z r(DE: x Xpo1) = Z e (DR )y x oo x Z k(DR
af ks Xagp+ls - -5 Xbp—1) = alf,l koo alf.r ko o)

where the points on the boundary of D,f’i are clear and we omit them from the notation.
We define DkL’l, e, DkL’l, DkL, akL’l, e, ot,:"l in similar way, and set

L. L,1, L.,
Zosz(Dk S Xppals e Xap—1) = ZakL,l(Dk o) X e X ZakL,z(Dk N

Finally, the cascade relation is the following:
Zy(825x1, ..., X2N)

= Hq (xqp, xp,)"E [ZakR(D;f; Xagtls - o xbkfl)XZalg(DkL; Xp+1, '--,xakfl)]lgé] .
(6.2)

The main result of this section is the following.

Proposition 6.1. Let k € (0, 6]. For each N > 1, there exists a collection {Z, : o €
LP,,n < N} of smooth functions Z, : Xo, — Ry, for o € LP,, satisfying the
normalization Zy = 1, PDE (1.1), COV (1.2), ASY (1.3), the power law bound (1.4),
and the cascade relation (6.2).

The uniqueness in Proposition 6.1 follows from [FK15, Lemma 1]. In fact, the unique-
ness proved in [FK15, Lemma 1] is much stronger. Using our notations, [FK15, Lemma
1] reads as follows: Let k € (0, 8). Suppose F : Xpy — C is a smooth function
satisfying PDE (1.1), COV (1.2), and the following two properties.

— There exists constants C > 0 and p > 0 such that, for all (x1, ..., xan) € Xon, we
have

|[F(x1,...,x2n)| < C l_[ (xj — x;)!i P where
l<i<j<2N

I P A )
wip)=4_ if |x; —x; < 1.

— The asymptotics:

F(x1,...,xN)

lim )=2h

=0, forallje{23,..., 2N—1}and$e(xj_1,xj+2)
Xj.Xjp1—>E (xj+1 —Xj

(with the convention that xg = —o0 and xyny4+1 = 00).

Then F = 0. From this result, the uniqueness part in Proposition 6.1 is immediate. We
focus on the existence part in this section. Note that the existence part in Proposition 6.1
is different from the one in Theorem 1.7: In Proposition 6.1, we also require the cascade
relation in the statement. In fact, the cascade relation plays an essential role in our proof.

Before we proceed, we collect some basic properties here. Recall that, given a nice
Dobrushin domain (£2; x, y), the notation Hg (x, y) denotes the boundary Poisson ker-
nel. With the general definition of Z, in (6.1) for general nice polygon (£2; x1, ..., xon),



470 H. Wu

we can rewrite ASY (1.3) as follows: for all « € LPy and for all j € {1,...,2N} and
& € (xj_1xj+2),

Zo(82;5x1, ..., x2N)

lim 7
xpx—~E  Ho(xj, xj41)
0 if {j,j+1
- ST (6
Za(82;x1, .., Xj—1,Xj42, ..., xan) if{j,j+1} €
where ¥ = «/{j, j + 1} € LPy_1.
Define, for « = {{ay, b1}, ..., {an,by}} € LPy,
N
Bo(2:x1,.... xan) = [ | Ha(xa;. x5/
j=1
Then the power law bound (1.4) can be written as follows:
0 < Zo(R:x1,....508) < Ba(2:x1, ..., x28)"" (6.4)

The boundary Poisson kernel has monotonicity: suppose (£2;x,y) is a nice
Dobrushin domain and suppose U C §2 is simply connected and agrees with §2 in
neighborhoods of x and y. Then Hy (x, y) < Hg(x, ¥). As a consequence, we have the

monotonicity of By: suppose (£2; x1, ..., x2x) is a nice polygon and suppose U C 2
is simply connected and agrees with £2 in neighborhoods of {xi, ..., xan}. Then, for
any @ € LPy,

Bo(U; x1, ..., x2n) < Bo (825 x1, ..., x2n). (6.5)

6.1. Proof of Proposition 6.1. We will prove the existence in Proposition 6.1 by induc-
tion on N. It is immediate to check the existence for N = 1and N = 2. When N =1,
forx < yand —-= {1, 2}}:,

Zo(z,y)=(y—=x) "

When N = 2, we obtain for £~ = {{1,4},{2,3}} and-o>—- = {{1,2},{3,4}},
and for x| < x2 < x3 < x4,

on o F
2) 22 (2)

Z o (21, %0, 3, 74) = (w4 — 1) (w3 — F(1)’

F(1-2)
F(1) 7 (6.6)

where z is the cross-ratio and F' is the hypergeometric function in (3.2) with v = O:

= (x2 — x1) (x4 —X3)’ F(z) = o F) <f 1 — f §; z) _
(x4 — x2)(x3 — x1) K K K

Z ooz, 12,73, 74) = (T2 — xl)_%(aM — mg)_zh(l — 2)2/”

Suppose the collection of pure partition functions exists up to N, and consider LP y .
Assume @ = {{a1, b1}, ..., {an+1, bys1}} anda; < bjforall1 < j < N + 1. Suppose
(£2; x1, ..., xan+2) is a nice polygon. For | < k < N + 1, let nx be an SLE, in £
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from x4, to xp,. We denote by 55 the event that 7, is allowed by o and we define
D,f’l, ol D,f’r, D,f, D,f’l, o, D,f’l, DkL, a,f’l, o, a,f’r, a,f’l, e akL’l in the same
way as before. As the collection of pure partition functions exists up to N, the following
two functions are well-defined:

R. L.
Z R(D}' Xapa1, Xaga2, - ooy Xop—1)s 2yt (D3 Xppals Xbga2s + -+ Xag—1)-
Olk 0[1‘
Then, we define

k
Z(g)(9§xl,---,x2N+2)

= Hg (o, xp)'E [zakR(D,f; Kagls s 1) X 2yt (DFs Xy, .,xak_l)ﬂgg] :
6.7)

Eq. (6.7) is analog of (6.2) for 2N + 2 marked points. The expectation in the right hand
side is finite, see Lemma 6.7. Thus the function Zék) (£2; x1, ..., xon42) In (6.7) is well-
defined. When 2 = H, we denote Z(gk)(H; X1, ..., X2N+2) DY Zék)(xl, ey XON$2).

From above definition, Zék) depends on the choice of k € {1, ..., N + 1}, but we will
show that it does not:

Lemma 6.2. Suppose Proposition 6.1 holds up to N. The function Zék) (825 x1, ..., X2N42)
defined in (6.7) does not depend on the choice of k.

This lemma is the one that we need to use properties of hypergeometric SLE. We leave

its proof to Sect. 6.2. Next, we show that the functions Zo(lk) satisfy all the requirements
in Proposition 6.1 one by one in Lemmas 6.3 to 6.7.

Lemma 6.3. Suppose Proposition 6.1 holds up to N. The function Zék) (X1, ..., X2N42)
defined in (6.7) is smooth and satisfies two PDEs in (1.1) withi = ay and i = by.

Proof. We only prove the conclusion for i = ay and the case when i = by can be proved
similarly as SLE is reversible.

Recall that, in the definition of 2(5"), the curve 7y is an SLE, in H from x4, (= x;)
to x;,. We parametrize n, by the half-plane capacity and denote by (g;,¢ > 0) the
corresponding conformal maps in the Loewner chain. Let us calculate the conditional

expectation E [Zaf(Df; o)X ZakL(D,f; ...)]lg(/; | %[0, t]] for small ¢+ > 0. By the
conformal covariance of Za,f and Za;f in the hypothesis, we have

E [Zakkw;f; Xivls oo Xpp—1) X 21 (D3 Xt Xi-D) Lgg | melO, t]]
= [T &) x B[ 2,5 (8(DP) gitian), . g i)
J#i, bk
x Zyp (81 (DEY; g1 i) 80xim) ) Ly | el 1]
= ] erap x (gi) — W
J#i bk
x ZP(gi(x1). . g (im1) Wi g (Xisn). - 81 (xan42).
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Therefore, the following process is a martingale for n:

[T &G x (giGan) — W x ZE (gixn). o g (imn), Wi, g0 (Xis) - - 80 (xan+2)).-
J#i, bk

By Itd’s formula, the function Z(gk) satisfies the PDE (1.1) with i = gy in the distribution
sense, see details in [PW19, Proof of Lemma 4.4]. By [Dubl5, Lemma 5] (see also
[PW19, Proposition 2.5]), the operator

2h
+Z< (x,/ —Xi)2>

JF

in PDE (1.1) is hypoelliptic. Therefore, the function Z,S,k) is a smooth solution to the
PDE (1.1) with i = ay. ]

Lemma 6.4. Suppose Proposition 6.1 holds up to N. The function Zé,k) (X1, ...y X2N42)
defined in (6.7) is smooth and satisfies 2N + 2) PDEs in (1.1).

Proof. In Lemma 6.3, we show that Z{ satisfies PDE (1.1) with i = ai and i = by.
By Lemma 6.2, we have Z(k) Z(") for any n # k. Combining with Lemma 6.3,
Zy ® =2y () also satisfies PDE (1.1) with i = a, and i = b,,. This completes the proof.

O

Lemma 6.5. Suppose Proposition 6.1 holds up to N. The function Zé,k) (X1, ..., X2N+2)
defined in (6.7) satisfies COV (1.2).
Proof. This is true because: (a) SLE, is conformally invariant; (b) the boundary Pois-
son kernel is conformally covariant; (c) the pure partition functions Za,f and ZakL are
conformally covariant by the hypothesis.

]

Lemma 6.6. Suppose Proposition 6.1 holds up to N. The function Z(S,k) (£2;x1,...,X2N+2)
defined in (6.7) satisfies ASY (6.3).

Proof. In order to prove ASY (6.3), we need to check the following cases: Case (a).
{ak, br} = {j, j+1}; Case (b).ay = jand by # j+1.Thecases #{a, br}N{j, j+1} =1
can be proved similarly; Case (c). {ar, bk} N {j, j+ 1} = 2.

Case (a). Suppose {ar, by} = {j, J + 1}. Note that n; is the SLE, in H from x; to
xj+1. In this case, ak @ and ak =& :=a/{j, j + 1}. Then we have

202 x1, ..., xane2) = Ho(xj, xj+1)"E [Z&(D/f; Xj42, .. -,xj—l)ﬂg/;] .
By the power law bound in the hypothesis, (6.5) and 4 > 0, we have
Zy(DE; xju2, o xj21) < Ba(25 x40, - - - xj71)2h.
Bounded convergence theorem gives
. 20221, xone)
lim A
XjXje1 =€ Ho(xj, xj41)

— lim E[z&(p,f;xm,...,x,-,l)lgg]

Xj,Xj1—>E




Hypergeometric SLE 473

= Z5(82; Xji2, ..o, Xj-1).

This completes the proof of Case (a).
Case (b). ax = j and by # j + 1. In this case, we have

k
Z0@5x1, . )
Ho(xj, xj)"

R.
Zoz,f(Dk S Xap+ls - - .,xbk,])

h
= Hg(xq;, xp )" E
e Ho(xj, xj)"

L.
X Za,’;(Dk 3 Xbg+1s - - ‘sxak—l)ﬂg£:| .

When k < 6 (thus 2 > 0), by the power law bound in the hypothesis and (6.5), we
have

L. . 2h.
Zol]f‘ (Dk ) xbk+19 e xak—l) S Balf(g’ xbk+lv B xak—l) )

Z k(D Xaet o Xpm1) Bur(2i Xt - )

—)0, anj',x]‘.,.] — %’

Ho(xj, xjs)h Ho(xj, xjs)h

Therefore, when k¥ < 6, we have

k
) ZP@ix1, .. xave)

lim A =0.
XjXjs1—E Ho(xj, xj+1)

When k = 6 (thus i = 0), by the power law bound in the hypothesis, we have
Z (D3 et Y1) < 1 Zor(Df Xaet o xp—1) < 1

Therefore, when k¥ = 6, we have

lim Z®P(Q2:x;,...,xon02) < lLim  PE=0.

Xj.Xje1—>§ Xj.Xje1—>§

This completes the proof of Case (b).
Case (¢). {ar, bx} N {j, j+ 1} = @. We may assume a; < j < j+ 1 < bg. In this
case, we have

k
zP(@ix1, .. xanen)
Ho(xj, xj)"

Zd;f(DE; Xap4ls - oo xbk—l)

= HQ(Xak,xbk)hE |: X Za,f(le; Xbetls - - .,xakl)ﬂg§:| .

Hgo(xj, xj)"
By the power law bound in the hypothesis, (6.5) and # > 0, we have

L. ) 2h.
ZakL(Dk § Xbgals -+ o Xag—1) < BakL(.Q, Xppals - o5 Xap—1)"'3

R. . 2h
Zalf(Dk 5 -xak+1a R xbk—l) Ba]f(95 xak+17 R -xbk—])

Ho(xj, xjw)" Ho(xj, xjw)"
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If {j, j + 1} € «, then we have {j, j + 1} ea,f,denoteby& =a/{j,j+ 1} and
ak —oek/{] j + 1}. We have

. ) 21
Zaf(D,f, Xagtls - > Xbp—1) Balge(f?, Xagtls -+ s Xbp—1)

Ho(xj, xjs)" Ho(xj, xjs)"

. 2h
= B&f(g’ xak+17 sy xj—l7 Xj+2, ey xbk—l)
By the asymptotic in the hypothesis, we have almost surely on 55,

R.
Za]f(Dk S Xagtls « ey Xbp—1)

: R
lim =Zr(D;"; x Xi_1,X; Xbp—1)

k ak+17"'5 J 1, j+2""’ bk 1)
X5 Xj—>E Ho(xj, xjs)h %k

Bounded convergence theorem and the cascade relation in the hypothesis give

ZP@ix, . xave)

lim
XjXje1—>E HQ(Xj,XjH)h
= HQ(xak, xbk)h
x E I:Z&kR(DkR; Xl ooy Xjo1, Xj42,s o vy Xpp—1) X ZakL(DkL; Xbp+1s - - - ,xak—l)]lgg]
= Z5(82; X1, ooy Xj 1, Xj42s o ooy XON).

If{j,j+1} € @ and k < 6 (thus & > 0), we have

B“;f (825 Xgpals oo s Xpy1) 2"

— 0, asxj,xj; — &
’ JoMjt
HQ()Cj,Xj+1)h

Thus

k
zZP@2 1, ... xane)
Xj.Xje1—>E H.Q(xj’xjﬂ)h

=0.

If{j, j+1} € o and k = 6 (thus & = 0), by the power law bound and the asymptotic
in the hypothesis, we have

L. .
Zaf(Dk 7xbk+ls "'s-xak—l) S 17

R. .
Zaf]f(Dk 7xak+ls"-7xbk—l) S 1a hm Z R(Dk 7xak+ls"'a-xbk—l):O'

Xj, x]+1—>§

Bounded convergence theorem gives

lim 282 x1, ..., xan42) = 0.

XjXje1—>§
This completes the proof of Case (c¢) and completes the proof of this lemma. O

Lemma 6.7. Suppose Proposition 6.1 holds up to N. The function Z(S,k) (£2; x1, ..

-» X2N+2)
defined in (6.7) satisfies the power law bound (6.4).
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Proof. By the power law bound in the hypothesis, (6.5) and & > 0, we have

0o

Z()(()(anla"-asz-i-z)

<H " x B (£2: M x B (82 2

< Ho(xg, xp )" X alf( P Xapals - Xpp—1)T X “kL( S Xbptls - v -0 Xag—1)
. 2h

:B(I(‘an]5"'ax2N+2) .

Now, we are ready to prove the conclusion.

Proof of Proposition 6.1—Existence. It is clear that the conclusion holds for N = 1.
Suppose the conclusion holds up to N. For 1 < k < N + 1, define Zék) as in (6.7). By
Lemma 6.2, it does not depend on the choice of k. Thus we denote it by Z. Consider
the functions {Z,, @ € LPy41}. By Lemma 6.4, they satisfy (2N + 2) PDEs in (1.1).
By Lemma 6.5, they satisfy COV (1.2). By Lemma 6.6, they satisfy ASY (1.3). By
Lemma 6.7, they satisfy the power law bound (1.4). Combining Lemma 6.2 and (6.7),
we obtain the cascade relation (6.2). These complete the proof. O

It is clear that Proposition 6.1 implies Theorem 1.7. Moreover, as a consequence of
Proposition 6.1, we also obtain the cascade relation of the pure partition functions.

Corollary 6.8. The collection of pure partition functions in Theorem 1.7 also satisfies
the cascade relation (6.2).

In fact, the proof of Lemma 6.6 implies the following refined asymptotic. We do not
need this refined asymptotic in this paper, but it is very useful when one tries to derive
probabilities for certain crossing events in related models, see [PW19, Section 5] and
[PW18]. So we record this result here.

Corollary 6.9. The collection of pure partition functions in Theorem 1.7 also satisfies
the following refined asymptotic: for all « € LPy and forall j € {1,...,2N — 1} and

X1 <X <--<Xj1<&<Xjpp<---<X2N,
. Zy (X1, .., X2N)
_ lim =5
Xj,Xjs1—E, (Xj+1 — Xj)
Xi—>xi fori#j,j+1
_Jo flj,j+1} ¢a
Za(X1, .o Xjo1 X ja2, .., Xon) if{j j+ 1 ea’

where @ = a/{j, j + 1}.

Finally, let us discuss the range of « in Theorem 1.7. The proofs of Lemmas 6.2, 6.4,
and 6.5 hold for all ¥ € (0, 8); whereas, the proofs of Lemmas 6.6 and 6.7 only hold for
k € (0, 6] because we use & > 0 in various places.

6.2. Proof of Lemma 6.2. To show Lemma 6.2, we need the following property of
hypergeometric SLE and Proposition 3.5.

Proposition 6.10. Fix « € (0, 8) and a quad q = (£2; x®, y&, yL xL).
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— (Existence and Uniqueness) There exists a unique probability measure on pairs of
continuous curves (nL; 77R) € Xo(£2; xX, yR, yL, xL) such that the conditional law
of n® given n* is SLE, in 2% from x® to y® and the conditional law of n* given
n® is SLE, in 28 from x* to y’.

— (Identification) Under this probability measure, the marginal law of n* is hSLE,
in 82 from x* to y* with marked points (x®, y®).

Proof. When k < 4, this proposition is a special case of Proposition 4.1 when pt =
p® = 0. When « € (4, 8), the existence and the uniqueness were proved in [MS16¢]
and [MSW16, Appendix A]. In [BPW18], the authors provided another perspective for
the existence and the uniqueness with « € (4, 6]. We define global 2-SLE,. to be this
unique probability measure. It remains to derive the marginal law of »* in global 2-
SLE,. Such question is included in some form in previous papers: [BBKO0S, Section 8],
[Dub06, Section 4], and [MW 18, Section 4]. Let us briefly summarize how they derived
the marginal law.

Suppose (n%;n®) e Xo(82; xR, yR, yL, xL) is the global 2-SLE,. Suppose
Uy, ..., Usare neighborhoods of the points Xk, yL, yR xR respectively such that 2\ U ;
are simply connected and U; NUy, = ¥ for j # k. Let y; be the part of n’ that starts from
xL and ends at exiting U ; let y be the part of n¥ that starts from x X and ends at exiting
Uy; let y3 be the part of the time-reversal of n® that starts from y® and ends at exiting
Us; let y4 be the part of the time-reversal of n” that starts from y” and ends at exiting
Uy. By the conformal invariance of the global 2-SLE,. and the reversibility of SLE,, we
could argue that (y1, ..., y4) is a local 2-SLE,, as described in [KP16, Theorem A.4].
By the commutation relation in [Dub07] and a complete classification summarized in
[KP16, Theorem A.4], we know that y; has the law of hSLE, . In other words, the law of
n’ restricted to Uy has the law of hSLE, . This is true for any localization neighborhoods
(U1, ..., Us). This implies that n* is an hSLE, up to any stopping time 7 as long as
n[0, ] has positive distance from the points {xX, yR, yL}. By Proposition 3.2, hSLE,
in £2 from x* to y’ with marked points (x®, y®) is generated by continuous transient
curuve and it does have positive distance from the points {x%, y®} almost surely, thus
the whole process n” has the law of hSLE, as desired. O

Proof of Lemma 6.2. Pick n # k, we will show that 2 = 2 Assume a; < a, <
b, < by. Recall that n is an SLE, in £2 from x,, to xp,, and that

ZW(@2;x1, ..., xan+2)

h R L
= Ho(xq, xp)"E [Zak’?(Dk P Xagals e Xbp—1) X Z(ka(Dk 3 Xpgtls - - ~,xak—1)]lg§] .

Let n, be an SLE, in D,f from x,, to x;,. Define 85" to be the event that 5, is
allowed by of in Df. On Ekn let DR be the union of the connected components of
D,f \n, having x4, +1, ..., xp,—1 on the boundary, and D% be the union of the connected
components of D,f\nn having x4, +1, ..., Xa,—1, Xb,+15 - - - » Xp,—1 on the boundary, see
Fig. 7.

The links {ax, br} and {a,, b, } divide the link pattern « into three sub-link patterns,
connecting {by +1,...,ar — 1}, {ax +1,...,a, — 1,0, + 1,...,b — 1}, and {a, +
1,..., b, — 1} respectively. After relabelling the remaining indices, we denote these link
patterns by o, ! X, The marked points of the domains D}, DM DR are clear, so
we omit them from the notation.
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By the cascade relation in the hypothesis, we have

R. _ h R. M.
2, (D Xqpe1 - 3y -1) = Hpp (xa xp,)'E [Zaf(Dn ) X 2 (DY .)]155,1] .

Plugging into the definition of Zék), we have

Z0(2: x1, ..., xan42)
= Hg (xak ’ xbk)h

x E[HDkR(xan,x,,n)h X Zax (DR ) x Zu (DY) x 2,0 (DF; ...)155055,1] .

Here E corresponds to the following probability measure: sample ;. as SLE, in £2 from
Xg; t0 Xp, ; given ng and on EX, sample 7, as SLE, in D,f from x,, to xp,. Note that
EE'N &k can be written as EX N E" N FA" where the event FX" is that ny stays to the
left of n,,.

From Proposition 3.5, the law of n; weighted by H DE (xq, xbn)h becomes hSLE,
in §2 from x, to x; with marked points (x,,, xp,). Moreover, the Radon-Nikodym
derivative between hSLE, and SLE, is the following

Ho(ta,,@,)" Hpr(2a,, zb,)"

Z@(‘Qv ZaysLa, Lo, xbk)

where Z /=~ is defined in (6.6).

Denote by g = (£2; x4, , Xp,, Xy Xa;) and denote by Q, the following probability
measure: sample 1y as hSLE, in £ from x,, to xj, with marked points (x4, , Xp,); given
Nk, sample n, as SLE, in D,f from x,, to xp,. Then we have

Zc(tk) (97 Tlyeeny x2N+2)
= Z@(‘Q? xak I xan? xbn7 xbk)

x Qq [Zag(Df; ) X Zap (Dini ) X Zar(Di - -)ﬂs};ms,gmfg;n} 68
By Proposition 6.10, Q, is the same as the unique probability measure there. In

particular, it is symmetric in 1 and n,,. Therefore, the function Zé") (£2;x1, ..., X2N42)
can be expanded in the same way as the right hand side of (6.8). As a consequence,

ZW(2; x1, .. xane2) = 20025 X1, ., Xon+2)s

as desired. m]
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A. Appendix: Hypergeometric Functions

For A, B, C € R, the hypergeometric function is defined for |z] < 1 by the power series:

B e (A(B),
F(z) =2F1(A,B,C;2) = g—w)n e

where (x), is the Pochhammer symbol (x), :=x(x +1)---(x +n — 1) forn > 1 and
(x), = 1 for n = 0. The power series is well-defined when C ¢ {0, —1, =2, =3, ...},
and it is absolutely convergent on z € [0, 1] when C > A+ B. When C > A + B and
C ¢{0,—1,-2,-3,...}, we have

I'(C)I'(C — A — B)
rC—AT(C—B)

F(l)= (A.D)

where I" is Gamma Function. The hypergeometric function is a solution of Euler’s
hypergeometric differential equation

21— 2)F"(2)+(C — (A+ B+ 1)2)F'(z) — ABF(z) = 0. (A2)

Lemma A.1. When C > 0 and AB > 0, the function F (z) is increasing for z € [0, 1).

Proof. We have F(0) = 1 and F'(0) = AB/C > 0. If the conclusion is false, then
there exists zg € (0, 1) such that F is increasing for z € (0, z9) and is decreasing for z €
(z0, zo +€) for some € > 0. This implies that z¢ is a local maximum and thus F (zp) > 1,
F'(z9) = 0and F”(z9) < 0. However, by (A.2), we have zo(1—2z0) F"(z0) = ABF (2),
contradiction. O

Lemma A.2. WhenC > 0,C > A,C > B,C > A+Band AB < 0, the function F(z)
is decreasing for z € [0, 1].

Proof. We assume B < 0 < A. There existsn € {1,2,...} suchthat1 > B+n > 0.
By [AS92, Eq. (15.2.2)], we have, for j > 1,

FU(z) = szl(A+j, B+j,C+j;2).
(OF

To get the monotinicity of F, we will consider the sign and monotonicity of F/) with
1 < j < n. Note that,

(A); >0, sign((B)j)=(—1)j, (€); >0, forl<j<n.
Since C > A+ B +n — 1, by (A.1), we have
2Fi(A+j,B+j,C+j;1)e(0,00), forO0<j<n-—1.

Since A+n > 0,B+n > 0,C+n > 0, the function ,F{(A+n, B +n,C +n;-)is
increasing, thus

2Fi(A+n,B+n,C+n;z)>1, forzel0,1).
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If n is even, we have F™(z) > 0. Thus F~1(.) is increasing. In particular,

A)p_1(B)y—
F(”_l)(z)5F("_l)(l)z()8#2F1(A+n—1,B+n—1,C+n—1;1)50.
n—1

Thus F"=2(.) is decreasing and FU=2(z) > F®=2(1) > 0. In this way, we could
argue that F*~7)(.) is decreasing for even j and it is increasing for odd j. In particular,
F is decreasing.
If n is odd, we have F"™ (z) < 0. Thus F®~1(.) is decreasing, and
(A)p—1(B)n—1

F"= D) > F=D(1) = TZFI(A +n—1,B+n—1,C+n—1;1)>0.
n—1

Thus F®=2(.) is increasing and F=2(z) > F®=2(0) > 0. In this way, we could
argue that "~/ (.) is increasing for even j and it is decreasing for odd j. In particular,
F is decreasing. o

B. Appendix: Commutation Relation

In [Dub07] and [KP16, Appendix A], the authors studied local multiple SLEs and clas-
sified them according to the so-called partition functions. Following the same idea, we
will define a local SLE that describes two initial segments with two extra marked points.

Fix a quad ¢ = (£2; x1, x2, x3, x4). We will study a local SLE in 2 that describes
two initial segments y; and y4 starting from x; and x4 respectively, with two extra
marked points x» and x3, up to exiting some neighborhoods Uy and Uy. The localization
neighborhoods U; and U, are assumed to be closed subsets of 2 such that £2\U; are
simply connected for j = 1, 4 and that Uy NU4 = ¥ and that dist({x, x3}, U1 UUs) > 0.
A local SLE, in £2, started from (x, x4) and localized in (U;, Us) with two marked
points (x2, x3), is a probability measure on two curves (yi, y4) such that, for j € {1, 4},
the curve y; : [0, 1] — U starts at y;(0) = x; and ends at y; (1) € dU;. A local SLE,
is the indexed collection

P = (P(q;U],U4))q;U1,U4 ’

This collection of probability measures is required to satisfy the following three prop-
erties.

— Conformal invariance. Suppose thatg = (§2; x1, x2, X3, X4), § = (§2; X1, X2, X3, %4) €
Q,and ¥ : 2 — £ is a conformal map with ¥ (x;) = x; for j € {1, 2,3, 4}. Then
for (y1, ya) ~ Pg;uy,us)» we have (W (y1), ¥ (va)) ~ PGy i),y Ua))-

— Domain Markov property. Suppose that 71 is a stopping time for y; and 74
is a stopping time for y4. The conditional law of (yili>¢, V4li>z,), given the
initial segments y[0, t1] and y4[0, 4], is the same as P(é;f/lf/z;) where ¢ =

(fZ; y1(t1), X2, X3, v4(74)) and Q2 is the connected component of £2\(y[0, t;] U

y410, t4]) with (x2x3) on the boundary, and lj,' =U;N 2 for je{l,4}.
Absolute continuity of the marginals. Define

Xy = {(x1,x2,%3,%4) € RY 1 x1 < x2 < x3 < xq).

There exist smooth functions F; : X4 — R, for j € {1, 4}, such that for the domain
£2 = H, boundary points x; < x3 < x3 < x4, and localization neighborhoods
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Ui and Uy, the marginal law of y; under Py, x,x3,xs;0,,U4) 1S the Loewner chain
driven by the solution to the following SDEs:

foryy : dW, = /kdB, + F{(W,, V2, V>, Vdr,

; 2dt .
dV/ = ——, fori =2,3,4;
Vi — W,
- - . (B.1)
forys: dW; = /kdB; + Fa(V,', V7, V7, Wy)dt,
- 2dt
thl = =, fori = 1,2,3;
Vi—W,

where Wy = x1, VO2 = X7, VO3 = x3 and V(;‘ = x4 and Wo = X4, \701 = X, ‘702 =
X2, V03 = X3.
Lemma B.1. Suppose both (U1, Us) and (V1, V4) are localization neighborhoods for
quad g = (82; x1, X2, x3, x4) and that V; C Uj for j € {1,4}. Suppose (y1,ys) ~
P,uy,uy) andlettj bey;’s firsttime to exit V; for j € {1, 4}. Then (y1l[0,¢,], Y4l[0,241) ~
Pig:viva)-

Proof. Itisclear that the restriction measures also satisfy all the required three properties.
O

It turns out that the existence of local SLE with two extra points is related to positive
functions Z : X4 — R, which satisfy a certain PDE system and conformal covariance:
h = (6 —k)/(2k) and b is a constant parameter,

— PDE system (PDE):

20, 2 —2h —2b —2b
—azz Z - ( S+ S+ 2)2:0,
S N T X (x4 —x1)* (2 —x1)*  (x3 —x1)

20, Z ( _2h 2 2 )
Z i + + Z = O,
2 P 1;3 i —xs \ (1 —x4)? (2 —x4)? (x3 — x4)?

(B.2)

— Conformal covariance (COV): for all Mobius maps ¢ of H such that ¢(x;) <
P(x2) < p(x3) < @(xa),

Z(x1, %2, %3, x4) = |/ eI 19" (x2) 110" (x3) 1Pl (xa) |
X Z(p(x1), 9(x2), 9(x3), 9(x4)). (B.3)

Proposition B.2. We have the following correspondence between local SLE with two
extra marked points and positive solutions to PDE (B.2) and COV (B.3).

(a) Suppose Z : X4 — R is a positive solution to PDE (B.2) and COV (B.3). Then there
exists a local SLE, with two extra marked points such that the drift terms in (B.1)
are given by F| = kdy, log Z and F4 = k9y, log Z.

(b) Suppose there exists a local SLE, with two extra marked points. Then there exists a
positive solution Z : X4 — R to PDE (B.2) and COV (B.3) such that the drift terms
in (B.1) are given by F| = k 0y, log Z and F4 = 0y, log Z.
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Proof of Proposition B.2—Part (a). There are two ways to sample y; and y4: Method
1—sample y; first, and Method 2—sample y4 first.

Method 1. Since Z satisfies PDE (B.2), the following process is a local martingale
with respect to the law of SLE,. in H from x; to oo:

MY = gl () gl (x3)0 gl (xa) Z(Wy, g1 (x2). 81 (x3), g1 (x4)).

We sample y; according to the law of SLE, in H from x; to oo weighted by the local

martingale M,(l), up to the first time o7 that the process exits U;. Let G = g4, and denote
by

X1 =GWi(o1), X2=G(x2), X3=0G(x3), X4=G(xq).

Since Z satisfies PDE (B.2), the following process is a local martingale with respect
to the law of SLE, in H from x4 to oo:

MP = g (@) 8 (7" 2 (73)" 2(8s (1), & (F2), & (F3), Wy).
We sample ys4 according to the the law of SLE, in H from X4 to oo weighted by the
local martingale ]l7l 54), up to the first time &4 that the process exits G (Uy). Finally, set
_1 ~
va =G (ya).

Method 2. This is defined in the same way as in Method 1 except we switch the roles
of y1 and y4.

According to the local commutation relation in [Dub07, Theorem 7.1], these two
methods give the same law on pairs (1, y4). The probability measure defined by the
sampling procedure clearly satisfies the domain Markov property and the absolute conti-
nuity of the marginals. By COV (B.3), we could define the law on (y, y4) in any simple
connected domain via conformal image. This implies the conformal invariance. O

Proof of Proposition B.2—Part (b). Since a local SLE with extra two points is confor-
mally invariant, we could assume x, = 00, x3 = 0,x4 = x,x; = yfor0 < x < y. By
[Dub07, Theorem 7.1], the existence of local SLE, in neighborhoods of x and y with two
extra marked points 0 and oo implies that there exists a positive function ¢ : X — R
that solves the following PDE system:

“oyaZowr (22 Vo (s TE )y =0
27 T x y—x)" (v —x)2  x2 =Y
K, 5 2 2 2 —2h —n

92y + 2o z 9 ) [/
2"w+yyw+<y+x—y> xw+((x—y)2+y2 v

where u is a constant parameter, and i is homogeneous of some fixed degree. Moreover,
the marginal laws of 1, y4 are the Loewner chains driven by the solutions to the following
SDEs:

(B4)

for y1 :{dW; = JKkdB, + Kk (dy log gﬁ)(V,4 — V,3, W, — Vf)dl,

; 2dt
avi= " i=34
Vi —W,
for y4 :dW; = /ikd B, + k(05 log ) (W, — V,, V' = V)at,
- 2dt
thl:...—~, l:1,3

Vi—W,
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Suppose ¥ is homogeneous of degree —\. Then there exists a positive function
f :(0,1) - Rsuch that Y (x,y) = (y — x)_Rf(x/y). Then the two PDEs in (B.4)
become

%zz [1@+ 7 Q+EN =92 [)

1
K
+< =y )2<§N(N+l)—2k~k—2h))f=0,

Ez2f”(z) + kR +Kk —4+2—-K)2) f(2)
2 1 — 7
1
+<—M+( s ( R+ 1) — 28 — 2h)>f=0.

In order to have non-zero solution, we must have X = 24 and f satisfies the following
ODE:

3@ Q@ =00f@) — wf ) = 0. (B.5)

Define, for x| < xp < x3 < x4,

(x2 — x1) (x4 — x3)
(x3 — x1)(xa — x2)

One can check that Z satisfies PDE (B.2) and COV (B.3) with b = /2. |

Z(x1, X2, X3, X4) 1= (x4 — x1) (x5 — x2) " f(z), wherez =

Corollary B.3. For any k € (0, 8) and v € R, there exists a local SLE, with two extra
marked points such that the drift term in (B.1) are given by F| = kdy, log Z, , and
F4 = K0y, log 2, where Z, , is defined in (3.5). In particular, the marginal law of y,
is hNSLE, (v) in H from x| to x4 with marked points (x2, x3) stopped at the first exiting
time of Uy, and the marginal law of ya is hSLE, (v) in H from x4 to x| with marked
points (x3, x2) stopped at the first exiting time of Uy.

Proof. The function Z, ,, defined in (3.5) satisfies PDE (B.2) and COV (B.3) for
b=W+2)(v+6—«)/(4k).

Combining with Proposition B.2—Part (a), we obtain the conclusion. O
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