MINIMAL LENGTH ELEMENTS OF EXTENDED
AFFINE WEYL GROUPS

XUHUA HE AND SIAN NIE

ABSTRACT. Let W be an extended affine Weyl group. We prove
that the minimal length elements we of any conjugacy class O of
W satisfy some nice properties, generalizing results of Geck and
Pfeiffer [7] on finite Weyl groups. We also study a special class of
conjugacy classes, the straight conjugacy classes. These conjugacy
classes are in a natural bijection with the Frobenius-twisted conju-
gacy classes of some p-adic group and satisfy additional interesting
properties. Furthermore, we discuss some applications to the affine
Hecke algebra H. We prove that Ty, , where O ranges over all the
conjugacy classes of W, forms a basis of the cocenter H/[H, H].
We also introduce the class polynomials, which play a crucial role
in the study of affine Deligne-Lusztig varieties [12].

INTRODUCTION

0.1. Let W be a finite Weyl group and O be a conjugacy class of
W. In [7] and [8], Geck and Pfeiffer proved the following remarkable
properties:

(1) For any w € O, there exists a sequence of conjugations by simple
reflections that reduces w to a minimal length element in O, with the
lengths of the elements in the sequence weakly decreasing;

(2) If w and w’ are both of minimal length in O, then they are
strongly conjugate.

Such properties play an important role in the study of finite Hecke
algebras. They lead to the definition and determination of “character
tables” for finite Hecke algebras, analogous to character tables for finite
groups. They also play a role in the study of Deligne-Lusztig varieties
(see, e.g. [23], [2], and [13]) and in the study of links between conju-
gacy classes in finite Weyl groups and unipotent conjugacy classes in
reductive groups (see [21]).

0.2. The main purpose of this paper is to study minimal length ele-
ments in a conjugacy class of an (extended) affine Weyl group and to
establish some remarkable properties. These properties play an impor-
tant role in the study of affine Hecke algebras and p-adic groups. We
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will discuss some applications to affine Hecke algebras in §0.4. These
properties also play a key role in the study of affine Deligne-Lusztig
varieties, see [12] and [5].

The minimal length elements for some affine Weyl groups of classical
types were first studied by the first author in [11] using a case-by-case
analysis. The method we use here is quite different. We give a case-
free proof that works for all cases, including the affine Weyl groups of
exceptional type, which seem very difficult using the approach in [11].
The present method is based on three main ingredients:

e the “partial conjugation” method introduced in [10];

e the geometric interpretation of the length function in terms of
alcoves and Weyl chambers introduced in [14];

e straight conjugacy classes and Newton points.

The first two ingredients were also used by the authors in [14] to
provide a case-free proof of the remarkable properties mentioned in
§0.1 for finite Weyl groups.

The third ingredient is a new feature for affine Weyl groups. Not
only is it a crucial ingredient that allows us to pass from the finite
Weyl groups to affine Weyl groups; it also has independent interest.
We will discuss this in more detail below.

0.3. For simplicity, we only consider (unextended) affine Weyl groups
and (untwisted) conjugacy classes in the introduction. However, we
will also cover the general case in this paper.

Let Pa be the set of dominant rational coweights. To each element
x in the affine Weyl group W, we may associate the dominant Newton
point 7, € Py (see §3.4). We call an element x straight if {(z) =
(g, 2p), where p is the sum of fundamental weights. This is equivalent
to saying that ¢(z") = nl(x) for all n > 0. A conjugacy class is called
straight if it contains a straight element. The minimal length elements
in a straight conjugacy class are just the straight elements it contains.
The notion of straight element/conjugacy class was first introduced by
Krammer in [18] to study the conjugacy problem.

The first author observed in [11] that the straight conjugacy classes
have a geometric meaning: there is a natural bijection between the set
of Frobenius-twisted conjugacy classes of a p-adic group and the set of
straight conjugacy classes of the corresponding affine Weyl group W.
There is no known counterpart for finite Weyl groups.

We prove that

Theorem A. (=Theorem 2.9 and Theorem 3.8)

Let W be an affine Weyl group and O be a conjugacy class of W.
Then

(1) For any w € O, there exists a sequence of conjugations by simple
reflections that reduces w to a minimal length element in O, with the
lengths of the elements in the sequence weakly decreasing.
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(2) If w and w’ are both of minimal length in O, then they are
strongly conjugate.

(3) If, moreover, O is straight, then any two minimal length elements
are conjugate by “cyclic shifts”.

Theorem B. (=Theorem 3.3 and Theorem 3.4)

Let W be an affine Weyl group. Then

(1) The map f : W — PJ, x + b, is constant on each conjugacy
class of W.

(2) The map f induces a bijection from the set of straight conjugacy
classes of W to f(W).

(3) Any conjugacy class O of W can be “reduced” to the unique
straight conjugacy class in the fiber of f(O) in the sense of Theorem
3.4.

The statement of Theorem 3.4 is technical and we don’t include
it here. We would like to point out that in fact Theorem B implies
Theorem A. Moreover, Theorem B is a crucial ingredient in the study
of affine Deligne-Lusztig varieties in [12]. Theorem A is not enough for
this purpose.

0.4. Now we discuss some applications to affine Hecke algebras.

The affine Hecke algebra H is a free Z[q, ¢~']-module with basis T,
for w ranges over elements in W. By the density theorem and the trace
Paley-Wiener theorem [17], if ¢ is a power of a prime, then the trace
function gives a natural bijection from the dual space of the cocenter
H/[H, H] to the space of the Grothendieck group of representations of
H

We prove that

Theorem C. (=Corollary 5.2 and Theorem 6.7)

(1) Let O be a conjugacy class of W and we be a minimal length
representative. Then the image of T),, in the cocenter H does not
depend on the choice of a minimal length representative wg. We denote
the image by T.

(2) The set {Tp}, where O ranges over all the conjugacy classes of
W, is a basis of the cocenter H/[H, H].

Here part (1) and the fact that {Tn} spans the cocenter follow from
the special properties for W discussed above, and the fact that {Tp} is
a linearly independent set follows from the density theorem for affine
Weyl groups, which will be proved in section 6.

As a consequence,

Theorem D. (=Part of Theorem 5.3)
For any w € W, the image of T,, in the cocenter of H is a linear
combination of Ty and the coefficients are the “class polynomials” f,, .
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It is worth mentioning that the class polynomials are closely related
to the affine Deligne-Lusztig varieties [12, Theorem 6.1 & Proposition
8.3].

1. PRELIMINARY

1.1. Let S be a finite set and (ms)stes be a matrix with entries in
N U {oo} such that mss = 1 and mgy = my, > 2 for all s # t. Let W
be a group generated by S with relations (st)™s* =1 for s,t € S with
msy < co. We say that (W, S) is a Coxeter group. Sometimes we just
call W itself a Coxeter group.

Let Aut(W,S) be the group of automorphisms of the group W that
preserve S. Let €2 be a group with a group homomorphism to Aut(W, S).
Set W = W x Q. Then an element in W is of the form wd for some
w € W and § € Q. We have that (wé)(w'd’) = wd(w')68' € W with
0,0 € Q. Since we are mainly interested in the action of Q on W, we
may assume without loss of generality that €2 is finite.

For w € W and ¢ € 2, we set {(wd) = ¢(w), where £(w) is the length
of w in the Coxeter group (W, S). Thus Q2 consists of length 0 elements
in . We sometimes call the elements in Q basic elements in W.

We are mainly interested in the W-conjugacy classes in W. By 6,
Remark 2.1], for any 6 € Q, the map W — W, w — wé gives a bijection
between the d-conjugacy classes in W and the W-conjugacy classes in
W that are contained in W.

1.2. For w,w' € W and s € S, we write w > o' if ' = sws
and l(w') < l(w). We write w — w’ if there is a sequence w =
Wo, Wy, « Wy =

for some s € S.

We write w ~ w’ if w — w’ and w’ — w. In this case, we say that w
and w’ are conjugate by “cyclic shifts”. It is easy to see that w =~ w’ if
w — w' and {(w) = L(w').

We call @, @' € W elementarily strongly conjugate if ((w) = (')
and there exists x € W such that @' = zwz ™! and {(zw) = ((z) + ()
or L(wz™) = l(x) + £(w). We call w,w' strongly conjugate if there
is a sequence w = Wy, Wi, -+ ,Ww, = w' such that for each 7, w;_; is
elementarily strongly conjugate to w;. We write w ~ @’ if @ and @’
are strongly conjugate. We write @~ if w ~ 6@'d~* for some § € €.

The following result is proved in [7], [6] and [10] via a case-by-case
analysis with the aid of computer for exceptional type. A case-free
proof which does not rely on computer calculation was recently ob-
tained in [14].

).
w’ of elements in W such that for any k, wy_; 2wy,

Theorem 1.1. Assume that W is a finite Coxeter group. Let O be a
conjugacy class in W and Oy, be the set of minimal length elements
i O. Then



(1) For each w € O, there exists W' € Oy such that w — w'.
(2) Let w,w' € Oy, then w ~ w'.

The main purpose of this paper is to extend the above theorem to
the cases of affine Weyl groups and to discuss its application to affine
Hecke algebras. To do this, we first recall some basic facts on affine
Weyl groups and Bruhat-Tits building.

1.3. Let ® be a reduced root system and W the corresponding finite
Weyl group. Then (W, Sy) is a Coxeter group, where Sy is the set of
simple reflections in W,

Let @ be the coroot lattice spanned by ®V and

W =0Q x Wy ={tXw; x € Q,w € Wy}

be the affine Weyl group. The multiplication is given by the formula
(tXw) (X' w'") = F*Xww'. Moreover, (W, S) is a Coxeter group, where
S D5 is the set of simple reflections in W.

The length function on W is given by the following formula (see [16])

(Pw)y= Y |xa)l+ > O @) — 1.

a,w(a)edt aedt wl(a)ed-

1.4. Let V = Q ®z R. Then we have a natural action of W on V.
For z,y € V, define (z,y) = > o7, @)(y,a). Then by [1, Ch. VI,
§1, no.1, Proposition 3], (,) is a positive-definite symmetric bilinear
form on V invariant under W. We define the norm || - || : V — R by
l|z]| = /(z,x) for z € V.

For « € ® and k € Z, define H,, = {z € V;(z,a) = k}. Let
H={Hup; o€ ® ke Z}. Foreach hyperplane H € 9, let sy € W
be the orthogonal reflection with respect to H. Connected components
of V. — UgegH are called alcoves. We denote by A the closure of an
alcove A. We denote by A the fundamental alcove, i.e. the alcove in
the dominant chamber such that 0 € A.

Let H € $. If the interior H4 = (H N A)° C HN A spans H, then
we call H a wall of A and Hy a face of A.

For p # q € V, we denote by L(p,q) C V the affine subspace spanned
by p and q.

Let K C V be a convex subset. We call z € K a regular point of K
if for any H € $, v € H implies that K C H. It is clear that all the
regular points of K form an open dense subset of K.

1.5. The action of W on V sends hyperplanes in §) to hyperplanes in
$ and thus induces an action on the set of alcoves. It is known that
the affine Weyl group W acts simply transitively on the set of alcoves.
For any alcove A, we denote by x4 the unique element in W such that
T AA = A.
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For any @ € W and alcove A, set Wy = 2,0z 4. Then any element
in the W-conjugacy class of w is of the form w, for some alcove A.

For any two alcoves A, A’, let $(A, A") denote the set of hyperplanes
in § separating them. Then H € $H(A,wA) if and only if w'a is a
negative affine root, where « is the positive affine root corresponding to
H. In this case, {(sgw) < £(w). We also have that ¢(w) = (A, wA).

2. MINIMAL LENGTH ELEMENTS IN AFFINE WEYL GROUPS

Unless otherwise stated, we write Wy for finite Weyl group and W
for affine Weyl group in the rest of this paper.

2.1. Similar to [14], we may view conjugation by a simple reflection in
the following way:.

Let A, A’ be two alcoves with a common face Hy = H s, here H € §).
Let sy be the reflection along H and set s = :L'AflsHa;A. Then s € S.
Now

Wy = (spxa) " W(spyra) = 87, 0T A8 = S1WAS

is obtained from w4 by conjugating the simple reflection s. Similar to
[14, Lemma 1.1}, we have the following criterion to check if ¢(wa/) >
U(wWay).

Lemma 2.1. We keep the notations as above. Define fg :V — R by
v |Jw(v) —v||?. Let h be a reqular point in Hy and v € V such that
(v,h—h") =0 forall W' € Ha and h—ev € A for sufficient small € > 0.
Set

() = 2(w(h) — h,w(v) — w(0) — v).

If E(’LZJA/) = g(SﬁJAS) = E(IZJA) + 2, then vaﬂ,(h) > 0.

2.2. Let gradfgz denote the gradient of the function fz; on V', that is,
for any other vector field X on V', we have X fz = (X, gradfy). Here
we naturally identify V' with the tangent space of any point in V.

We'll describe where the gradient vanishes. To do this, we introduce
an affine subspace V. 3 .

Notice that 2 is a finite subgroup of W. For any w € W, there
exists n € N such that w™ € W. Hence there exists m € N such that
W™ = t* for some A € Q. Set vy = \/mn € V and call it the Newton
point of w. Then it is easy to see that vz doesn’t depend on the choice
of m and n. We set

Vo={veV;uww)=v+vg}

Lemma 2.2. Let w € W. Then Vi C V is a nonempty affine subspace
such that Vg = wVyz = Vg + vg.
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Proof. Since w is an affine transformation, for any p # ¢ € Vg, the
affine line L(p, q) is also contained in Vj;. Thus V; is an affine subspace
of V.

Now we prove that Vj is nonempty. Assume @w" = t"® for some
n>0.Let g € V. Set p= 13" "(q). Then w(p) —p = L(w"(p) —
p) = vg. In particular, Vy # .

For any o € Vg, |[@*(z) — @ (2)]] = [[@(z) — al| = |[vel| and
wW"(x) — x = nvg. Hence w*(z) = @*(z) + vy for all k € Z. In
particular, w(z) = x + vy € V. O

Lemma 2.3. Let w € W. Then

(1) Forv €V, gradfs(v) =0 if and only if v € V.

(2) Let Cy - V X R = V denote the integral curve of the vector field
gradfs with Cg(v,0) = v for allv € V. Define

Lim:V — V@, v — lim C@(U,t) S Vw.

t——o0

Then Lim : 'V — Vg is a trivial vector bundle over V.

Proof. (1) Let p € V. Set T, : V. — V by v — v + p. Define
W, =T, owoT, and Vg, = T, 'V = {v € V; wWy(v) = v+vg}. Then
Vi, C V is a linear subspace. Let qu; ={v e V;(v,Vy,) = 0} be its
orthogonal complement.

Then w,(z +y) = Wp(x) +Wy(y) —wW,(0) = x+wy(y) for any x € Vi,
and y € Vﬁt . Since w, is an isometry on V', we have that

[zl + 1yl]* = [lz + yl* = [l@p(2 + y) — @,(0)]”
= ||2]* + [l (y) — @, (0)|[* + 2(, Wy (y) — W,(0)).

In particular, (z,w,(y) — w,(0)) = 0 for all z € V3, and y € th.
Hence 1w, (y) — w,(0) € Vg, for all y € V. Let M : Vi — Vi be the
linear transformation defined by y — w,(y) — w,(0) —y. By definition,
ker M C Vg, N'Vz = {0} for ,(0) = v. Hence M is invertible.

For x € Vy, and y € Vqﬁ;,

fa,(x+y) = [|[wp(x+y) — (z+y)|]> = [|My)|]* + [|w,(0)]]?
= (y,"MM(y)) + ||vall?,

where ‘M is the transpose of M with respect to the inner product ()
on V. Thus grad fa,(z +y) = 2"MM(y) € V5 . Hence grad fg, which
vanishes exactly on Vg, .

Notice that f3, = fs 0T, and T}, is an isometry. We have that
grad fs(v) = gradfg, (v — p) for any v € V. Hence gradfy vanishes
exactly on V.

(2) The integral curve of grad f;, can be written explicitly as Cy, (2 +
y,t) = x + exp(2t'MM)(y) for any z € Vg, and y € Vu{;. Hence
the integral curve Cy(t,v) of gradfs is given by Cg(x + y,t) = = +
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exp(2t! M M)(y) for x € Vi and y € Vﬁfp. Since ' M M is self adjoint with
positive eigenvalues, lim;, o, exp(2t'M M) = 0. Hence Lim(z +y) =
for any x € Vz and y € Vjp . Thus Lim is a trivial vector bundle over
V- O

Proposition 2.4. Let w € W and A be an alcove. Then there exists
an alcove A’ such that A’ contains a reqular point of Vg and wa — War.

Remark. The proof is similar to [14, Proposition 1.2]. The difference
is that we consider here Dy = {v € V;v & Cg(V>2, R)ULim *(V2)},
where Vf ' € Vj is the complement of the set of regular points of Vj
and V22 be the complement of all alcoves and faces in V. We omit the
details.

2.3. As a consequence, there exists a minimal length element in the
conjugacy class of @ which is of the form w, for some alcove A with
VN A # (. However, not every minimal length element is of this form.
Now we give an example. .

Let W be the affine group of type A, with a set of simple reflections
{81 = Say, 82 = Say, S0 = ta\1/+a¥818281}7 where aq, ay are the simple
roots. The corresponding fundamental coweight is denoted by wy, wy
respectively. Let § € AutWW such that § : s; +> s9,89 > S1,80 — So.
Let @ = 271205 § and A = t*7 s15,A. Then £() = (4) = 8 and 14
is of minimal length in W-w. Note that Vi = {v € V; (v,0f —a) = 0}.
The vertices (extremal points) of A are wy, wy —wy and 2wy —wy which
all lie in the same connected component of V — Vj;. Hence V; N A = ().

2.4. Now we recall the “partial conjugation action” introduced in [10].

For J C §, we denote by W; the standard parabolic subgroup of W
generated by J and by JW the set of minimal coset representatives in
WAW. .

For w € /W, set

I(J,w) = max{K C J,w(K) = K}.

The following result is proved in [10, Section 2 & 3]. See also [11,

Theorem 2.1].

Theorem 2.5. Let J C S such that W; s finite. We consider the
(partial) conjugation action of Wj on W. Let O be an orbit. Then
(1) There exists © € "W, such that for any @' € O, there exists
x € Wi such that @' — xw.
(2) If @', 0" € Opn, then @' ~ w".

2.5. We'll show that w4 appeared in Proposition 2.4 is of the form xy
for some y € W and x € Wi(a)- To do this, we introduce some more
notations.

Let K C V be a convex subset. Let Hx = {H € $; K C H} and
Wik C W be the subgroup generated by sy with H € . For any two
alcoves A and A’, define H (A, A') = H(A, A') N H.
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Let A be an alcove. We set Wi 4 = mZIWKxA and I(K,A) = {sy €
S;K C xaH}. If A contains a regular point of K, then Wi 4 =
Wik, a)-

Lemma 2.6. Let w € W and K C Vg be an affine subspace with
w(K) = K. Let A be an alcove such that A and WA are in the same
connected component C' of V. — Uyeg, H. Assume furthermore that A
contains an element v € K such that for each H € $, v,w(v) € H
implies that K C H. Then

(i) = £9(A, BA) = (7, 2p).

Here p is the half sum of the positive roots in ® and vg is the unique
dominant element in the Wy-orbit of vg.

Proof. By our assumption, w fixes C. Hence $(w'A, 0w/ A) C $ — Hx
for any i,j € Z. Since v € A and w(v) € wA, any H € H(A, wA)
intersects with the closed interval [v,w(v)] at a single point.

If vy = 0, then w(v) = v. For any H € $(A,wA), we have v € H,
hence H € . That is a contradiction. Hence $H(A,wA) = () and
U(wa) = (Pa, 2p) = 0. ,

Now we assume vg # 0. Set v; = @'(v) = v+ vy € K for i € Z.
Then all the v; span an affine line L. We prove that

(a) If i < j, then H(@" LA, @' A) N H (@ A, @A) = 0,

Let H € $(w A, @A) N H(w A, @/ A). Then HNL = H N
Vi1, ] N [vj_1,v5] # 0. Thus i@ = j — 1 and v; € H. Hence H €
(WA I A). Therefore w'A and w/ A are in the same connected
component of V' — H, that is, H ¢ $(w' 1A, w7 A).

(a) is proved.

Now we prove that '

(b) For i < j, H(@' A, 7 A) = i_,,, H(0" 1A, i* A).

IfH ¢ U£:i+1ﬁ(wk_1A, wFA), then w'A, wtA, -+ 7 A are all in
the same connected component of V' — H. Thus H ¢ §(w'A, w’ A).

Let H € H(w 1A, w"A) for some i < r < j. Then HNL =
HnN[v—1,v,] = {e}. If e ¢ {v,v;}, then H € H(w'A, w7 A). If e = vy,
then H € (0w’ A, w/ A) and v;_; and v; are in the same connected
component of V — H. Hence w'A and w0/~ A are in the same connected
component of V — H, while /"' A4 and 1w’ A are in different connected
components of V — H. Hence H € $(1w'A, 0w’ A). If e = v;, by a similar
argument we have that H € $(w'A, w’ A).

Let n € Z such that @™ = t"#. Then by (a) and (b), we have that

nﬁﬁ(A,IZ}A) = iﬁﬁ(w1A7wz+1A) _ ﬁf)(A,UN}n/D _ ﬁf)(A,th’DA)_
=0

Hence ((wa) = (vg, 2p). O



10 XUHUA HE AND SIAN NIE

Proposition 2.7. Let 0 € W and K C Vg be an affine subspace
with w(K) = K . Let A be an alcove such that A contains a reqular
point v of K. Then wy = uwg a for some u € Wik a) and Wi s €
HEAWIEA) yith 0(u) = 19k (A, DA), wxa(I(K,A)) = I(K,A) and
é(ﬁ}K?A) = <77j, 2p>

Proof. We may assume that A is the fundamental alcove A by replacing
W by wy. We simply write I for I(K,A).

We have that @ = «/@'u” for some «/,u” € W; and @' € TW. Since
wkK =K, then QD(S’:)K) = Hx and UNJWIID_l = W7. Hence w/W](w/)_l =
W; and @'(I) = I.

Let C' be the connected component of V —Upgeg, H that contains A.
We claim that @'(A) C C. Otherwise, there exists H € $i separating
A and w'(A). Hence ¢(syw') < £(w'). This contradicts our assumption
that @' € 'W. Hence ((u) = t9x (A, WA) and Hy (A, 7' (A)) = 0.

Since W7 is a finite group and the conjugation by w is a group au-
tomorphism on Wy, there exists n > 0 such that

(m/)nﬁ)—n _ u_l(u?u_lw_l) L. (wn—lu—lw—n-i—l) = 1.
Hence (@')" = @™ and there exists m > 0 such that mnvg € @ and
(,(D/)mn — U’“Jmn — tmm/u;'

Note that v and w(v) = @w'(v) = v + vy are regular points in K.

Applying Lemma 2.6, we have {(0') = (g, 2p) = (Ug, 2p). O

Corollary 2.8. Let w € W be of minimal length in its conjugacy class.
Then w is of finite order if and only if w € Wy x (0) for some proper
subset J of S and 6 € Q with 6(J) = J such that the corresponding
parabolic subgroup W is finite.

Proof. The “if” part is clear.

Now assume that w is of finite order. Let K = V;;. By Proposition
2.4 and 2.7, there exists an alcove A such that @ ~ w, and wy =
ug, 4 for some v € Wik 4y and Wi 4 € HEAW with g a(I(K, A)) =
I(K,A) and ¢(wW 4) = (Ug,2p). Since w is of finite order, v; = 0 and
4(12)[(714) =0. So wK,A e Q.

By definition, I(K, A) is a subset of S such that Wy(x 4y is finite. We
have that wq € Wig 4k and w = ws. Hence w € Wik 4yt a-

O

Now we may prove the main result of this section, generalizing §0.1
(1) and (2) to affine Weyl groups.

Theorem 2.9. Let O be a W-conjugacy class in W and Oy be the
set of minimal length elements in O. Then

(1) For each element W' € O, there ezists W € Oy such that W' —
,L’l"]//

(2) Let W', 0" € Owin, then W' ~ ",
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Proof. (1) We fix an element w of O. Set K = Vj;. Then any element in
O is of the form w4 for some alcove A’. By Proposition 2.4, W — w4
for some alcove A such that A contains a regular point of K.

If C'is a connected component of V' — Upeg, H, then @(C) is also a
connected component of V —Upgegq,. H. We denote by £(C') the number
of hyperplanes in i that separate C' and w(C). By definition, if C'is
the connected component that contains A, then ¢(C) = 9k (A, wA).
Now by Proposition 2.7, {(wa) = ((C) + (V, 2p).

Let Cy be a connected component of V' —Upgeg, H such that ¢(Cp) is
minimal among all the connected components of V' — Upeg, . Then
U(War) = U(wa) = L(Co) + (P, 2p). In particular, let Ay be the alcove
in Cy such that Ay = uA for some u € Wy, then Ay contains a regular
point of K and w4, € Opin.

We have that w4, = u/w4 (')~ for some v’ € Wi 4 and w0, is a min-
imal length element in the Wi 4-conjugacy class 0" = {awz™ ;2 €
Wik} C O. Hence by Theorem 2.5, there exists @w” € Ol ;. such that
Wa — Wy — W'~ W4, - Since Wy, € Omin, W' € Opi. Part (1) is
proved.

(2) Let @' € Opin. We have showed that there exists an alcove
Afy € Cp such that Aj contains a regular point of K and @' ~ .
Now it suffices to prove that wa, ~ way.

Let A¢, be the set of all alcoves in Cy whose closures contain regular
points of K. Then Ux¢ ACOA D K. Hence there exists a finite sequence
of alcoves A = Ay, -+ , A, = A} € Ag, such that K; = A,NA; ,NK # ()
for all 0 < ¢ < r. Then there exists u; € Wk, such that A;.; = u;A;.
Hence wa,,, = ufa, (u;)~" for some u € Wi, 4,. Notice that w,,,, and
w,, are minimal length elements in {zwa,2 ;2 € Wk, 4,}. (Actually
by the proof of (i), they are of minimal lengths in O.) Thus by Theorem
2.5, Wa,,, ~ wa,. Therefore wa, ~ wa;. 4

As a consequence, we have a similar result for any conjugacy class
of W, which is a union of W-conjugacy classes.

Corollary 2.10. Let O be a conjugacy class of W and Opn be the set
of minimal length elements in O. Then

(1) For each element @' € O, there ezists 0" € Oy such that W' —
"

(2) Let W', 0" € Owin, then @' ~w".

3. STRAIGHT CONJUGACY CLASS

3.1. Following [18], we call an element @ € W a straight element if for
any m € N, £(0™) = ml(w). We call a conjugacy class straight if it
contains some straight element. It is easy to see that w is straight if
and only if () = (g, 2p) (see [11]).
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By definition, any basic element of W is straight. Also t* is also
straight with A € ). In Proposition 3.1, we’ll give some nontrivial
examples of straight elements.

3.2. We follow [25, 7.3]. Let 6 € Q. For each d-orbit in S, we pick a
simple reflection. Let g be the product of these simple reflections (in
any order) and put ¢ = (g,0) € W x (6). We call ¢ a twisted Cozeter
element of W. The following result will be used in [15] in the study of
basic locus of Shimura varieties.

Proposition 3.1. Let ¢ be a twisted Cozeter element of W. Then ¢ is
a straight element.

Remark. The case where § = 1 (for any Coxeter group of infinite order)
was first obtained by Speyer in [24]. Our method here is different from
loc.cit.

Proof. Assume that ¢ € W§ for 6 € ). By Proposition 2.4 and 2.7,
¢ — ux for some I C S with W7 finite, u € W7, and a straight element
x with z(]) = I. It is easy to see that ux is also a twisted Coxeter
element and ¢ ~ uz. In particular, x = wd for some w € Wy_;. For
any s € I, wé(s)w™ € I. Hence §(s) € I and commutes with w. So
d(I)=1Tand §(S—1)=S—1I. Since uz is a twisted Coxeter element
of W, 2 = wé is a twisted Coxeter element of Wg_; x (§). On the
other hand, w commutes with any element in I. Thus [ is a union of
connected components of the Dynkin diagram of S. Hence I = () since

W is finite. So u = 1 and ¢ = z is also a straight element. U

3.3. We'll give some algebraic and geometric criteria for straight con-
jugacy classes. In order to do this, we first make a short digression and
discuss another description of W.

Let GG be a connected complex reductive algebraic group and T' C G
be a maximal torus of G. Let W, be the finite Weyl group of G and
So the set of simple roots. We denote by @ (resp. P) the coroot
lattice (resp. coweight lattice) of 7' in G. Then Wg = @ x W, is
an affine Weyl group in 1.3. Set Wz = P x Wy. For the group €
of diagram automorphisms of Sy that induces an action on G, we set
WG’7Q/ = Wg x Q. Then WG7Q/ = Wg % Q for some Q C Aut(Wg, S)
with Q(S) = S. It is easy to check that for any affine Weyl group
W, W x Aut(W,S) = WQQ/. Here G is the corresponding semisimple
group of adjoint type and € is the group of diagram automorphisms
on So.

For any J C Sy, set Q, = {6 € ;0(J) = J} and

Wy = (P xW;)xQ,.

We call an element in W basic if it is of length 0 with respect to the
length function on Wj.
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In the rest of this section, we assume that W = W and W= WG@/
unless otherwise stated.

Proposition 3.2. Let O be a Wg-conjugacy class of W. Then the
following conditions are equivalent:

(1) O is straight;

(2) For some (or equivalently, any) weQO, VgL H forany H € §;

(8) O contains a basic element of W, for some J C Sy.

In this case, there exist a basic element x in WJO and y € Wg°
such that v, = vo and yry ' € Opw. Here vo = vy for some (or
equivalently, any) w € O and Jo = {i € So; (vo, ;) = 0}.

Proof. (1) < (2). By Proposition 2.4 and Proposition 2.7, there is an
alcove A such that A contains a regular point of Vg and w4 € Omin.
Moreover £(wa) = (D, 2p) + v, (A, WA).

If Hy, =0, then Hy, (A, wA) = 0. Hence {(wa) = (U, 2p) and 0 is
a straight element.

If O is straight, then £y, (A, wA) = 0, that is, @ fixes the connected
component C of V. — Upey, H containing A. Choose v € C and set

y=1 Zk o W (v), where n € N with @w" = ¢"#. Since C'is convex, we
have - y € C'N Vg, which forces )y, to be empty.

(3) = (2). Denote by ®; C & the set of roots spanned by «; for
i€ J. Assume @ = tXwd’ € O is a basic element in ;. Then it is a
straight element in ;. By condition (2) for Wy, Vi € H,y for any
a€ dyand k € Z.

0, ifieJ

1, ifieSy—J
d' () = p. Hence wd' () = pand Ru+Vy = V. Therefore (V, ) = R
forany a € ® —®,. Thus Vyp € Hyp € H with v € @ — @ and k € Z.

(1) = (3). By Proposition 2.7 and Condition (2) there exists @ €
(‘)mm such that A contains a regular point e of V. Let y € de © with

=y Yvg). Set x = y~ly. Then v, = vy is dominant.

Assume that x = tXwd’ € O with y € P, w € Wy and ¢’ € . Let
n € N with 2" = t"°. Then

tnuo+xw5/ — WO — ™o — twé/(VO)+Xw(5,.

Let p € V with (u, o) = . Since ¢'(J) = J, then

Thus vo = wd’'(ve) is the unique dominant element in Wy-9'(vp). Hence
8 (vo) = vo and wyvy = vy. Therefore w € W, and ¢'(Jy) = Jo. Hence
T € WJO.

Let C be the connected component of V —U,U,eq , H, i, that contains
A. Since y € Wi, for any a € ), ya €  and 0 < (y~'(e), ) =
(e,y(a)) < 1. Hence y~'(e) € C. Moreover,

vy te) =y tw(e) =y e+ vg) =y (e) + vo.

Since (vy, ) = 0 for all & € @7, we have y~'(e) and y~*(e)+vy are con-
tained in the same connected component of V' — U, Uyea, Ha k. Hence
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C >y~ !(e) and zC > zy~!(e) are the same connected component of
V — Uk Usea, Ha . Thus there is no hyperplane of the form H,  with
a € & that separates C' from zC. So x is a basic element in W;. 0O

3.4. The next task of this section is to give a parametrization of
straight conjugacy classes. Such parametrization coincides with the
set of o-conjugacy classes of p-adic groups [12].

Let P* be the set of dominant coweights of G and

={AeP®;Q;(\a)=>0foralla e ®"} CV.

Then we may identify Py with (P ®z Q)/Wy. For any X € P ®z Q,
we denote by A the unique element in Pé{ that lies in the Wy-orbit of

A. The group € acts naturally on Py and on Wg/We = P/Q. Let
§ el

For © € Wgd', we call 7, the dominant Newton point of . The map
z — (28~ 'Wg, ;) induces a natural map

f5/ : Wg(y — (P/Q)g/ X P&

Here Wgd' € We\W is a right Wg-coset containing o' and (P/Q)y is
the ¢’-coinvariants of P/@Q). We denote the image by B(Wg,d').

Theorem 3.3. The map fs induces a bijection between the straight
We-conjugacy classes of Wed' and B(Wg, 8).

Proof. We first show that

(a) The map fy is constant on each W- -conjugacy class.

Let w = tXwd’ € W and @ = thu € W(;, where y,A € P and
w,u € Wy. Then awa ! = tAux- N R (uwd'u’). Notice that
for any z € Wy and p € P, xp— i € Q. Hence ¢ Hux—(uwdu™(5)7H)'A
AX=I' N, and

it € T NWG (wwd'u! (87) 1) = MUY N,

Hence the images of awa ! and w in (P/Q)s are the same. Assume
that n € N and @" = t"™. Then (twa!)" = at™oq ! = Aot =
t"wo . Therefore vgga-1 = u(vg) and Vgga—1 = Ug.

(a) is proved.

Moreover, t"o = @t™op~! = txgwnd Wa)g—x = ¢wnd'(va)  Thus vy =
wd'(vg). Hence

(b) g = &' () for all w € Wgd'.

By Proposition 2.4 and 2.7, for any @ € W, & — uw; for some I C S
with W finite, u € W}, and a straight element w; with @w;(I) = I. By
the proof of [11, Proposition 2.2, fs(w) = fs(uw;) = fs(r). So fs
is surjective.

Now we prove that fy is injective.
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Let 0,0 € Wgd' with fy () = fy(@'). Assume @ = t*wd’ and
W = tNw'¢ for some A\, N € P, w,w’ € Wg. Then after conjugating
by a suitable element of W, we can assume further that WWg = &' We.

Let J = {’l S So, <Dﬁ), Oéi> = 0} By (b), Vg = (5’(5@). Then 5,(J) =J.
By Proposition 3.2, after conjugating by some elements in Wy, we may
assume that @, € Wy and v = vg = vg € P(S.

Let J' = Sp — J and Q;, Q; be the sublattices of () spanned by
simple roots of J and J' respectively. Then

V=PzR=0Q,2zR®QrzR

We may write A and X as A = ay + ay and N = o/, + o/, with
ay,a; € Q;zRand ay,d’; € Qr@zR. Since \=XN € Q, a;—ad; € Qy
and ay —a), € Q.

Choose n € N such that (wd")" = (w'd’)" = 1. Then

S
—
,_.

n—

1 , 1 ,
v==> (wd)*A) e=> (6)ay)+ Qs 2z Q.
e "=
Similarly,
1 n—1
ve =Y (")) +Q;2zQ.
"=
Hence
n—1
> (0 (ay —dl) =0.
k=0

Since ay — a’y € Qp, then ay —a; = 0 — §(0) for some 0 € Q.
Let @" = t%0't=?. By Condition (2) of Theorem 3.2, @' and @" are
conjugate to basic elements in W by elements in Q; x W). Moreover,
A€ )\/+9—5’(€)+QJ and (QJNWJ)UNJ = (QJNWJ)UNJH S (QJNWJ)\WJ.
Thus @ and @ are conjugate to the same basic element of W, by an
element in Q; x W; and @ and @' are in the same We-conjugacy
class. |

Combining Proposition 2.4, Proposition 2.7 and the proof of The-
orem 2.9, any Weg-conjugacy class of Wgd' can be “reduced” to the
unique stralght conjugacy class in the same fiber of fs as follows.

Theorem 3.4. Let O be a Wg-conjugacy class of Wed' and @ € O.
Then there exists W' € Oy Such that

(1) W — W'

(2) There exists a straight element x € Wgd' with fy(z) = fs (),
a subset J of S with W finite, x € 7(Wgd') and x=*(J) = J, and an

element u € W such that W' = ux.
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3.5. Let 7 € 2. Conjugation by 7 gives a permutation on the set of
affine simple reflections S of W. We say that 7 is superbasic if each
orbit is a union of connected components of the Dynkin diagram of S.

In this case, any two vertices in the same connected components of .S
have the same numbers of edges and thus .S is a union of affine Dynkin
diagrams of type A. Hence it is easy to see that 7 € ) is a superbasic
element of W if and only if W = W™ x ... x W™, where W; is an
affine Weyl group of type flni,l and 7 gives an order n;m; permutation
on W/™.

3.6. We follow the notation in §3.4. Let 0’ € €2'. Then any fiber of the
map fy : Wad — (P/Q)s X P@ is a union of Wg-conjugacy classes.
We call a Wg-conjugacy class in Wed' superstraight if it is a fiber of
fs. By Theorem 3.3, any fiber contains a straight We-conjugacy class.
Hence a superstraight conjugacy class is in particular straight. Now

we give a description of superstraight Wg-conjugacy classes which is
analogous to Proposition 3.2.

Proposition 3.5. We keep notations in §3.3. Let O be a Wg-conjugacy
class of W. Then the following are equivalent:

(1) O is a superstraight.

(2) For some (or, equivalently any) w € O, HN Vg = 0 for any
H € H(vg). Here H € H(vg) = {Hox € 9; (vg, ) =0,k € Z}.

(3) There exists a superbasic element x in W, and y € VVC‘;]O such
that v, = vo and yxy~' € Opin.

Proof. We assume that O C W' for some & € €.

(1)=(3). By Proposition 3.2, there exists a basic element x in Wy,
and y € VV(‘;]o such that v, = vy and yary™' € Ony,. Assume that x
is not superbasic in WJO. Then there exists an x-orbit O such that
CNO ¢ C for each connected component C' of the Dynkin diagram
Wy,

Note that C' N O C (' is the Dynkin diagram of a finite Weyl group.
Hence Wy is a finite product of Weyl groups corresponding to CNO and
hence is finite. By the proof of [11, Proposition 2.2, fs(wz) = fs(z)
for all w € Wo. In particular, s;x and x are in the same fiber of f5 for
any j € O.

However, {(s;x) = ¢(z) +1 mod 2. Thus s;z and = are not in the
same conjugacy class. So O is not superstraight.

(2)=(1). Note that H € $H(vg) if Vz € H € $. Hence by Propo-
sition 3.2 (2), O is straight. Let O be another Wg-conjugacy class
such that O and O are in the same fiber of fs. By Proposition 2.4
and Proposition 2.7, O’ contains an element of the form ux, where x is
straight, fs(ux) = fs(z) and v € Wy, . By Theorem 3.3, z € O. By
the proof of [11, Proposition 2.2], v, = v,.
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Let v € V,,,. By Lemma 2.2, ux(v) = v + vy = v + v, € Vi, Since
u e Wy, z(v) = v lur(v) = ur(v) = v+ v, and v € V,. Thus
Ve C V.

Let H € Hy,, C H(v,). Then by our assumption, HNV,, C HNV, =
(), which forces $y,, = 0. Hence Wy, = {1} and u = 1. So 0’ = 0.

(3)=(2). Let C be the unique connected component of V—Ugeg(y) H
containing A. We call H € $(vp) a wall of C if HN C spans H. Let
$H(C) be the set of walls of C'. Note that xC' = C' for x is basic. Since
C'is convex, V, N C # ).

Suppose that V, N H' # () for some H € $H(vp). Let p € V, N H'
and ¢ € V, N C. Then the affine line L(p,q) C V, intersects with
the boundary OC C Ugeg(c)H of C. Choose v € L(p,q) N OC. Then
v € Hy for some Hy € H(C). Thus 2™(v) = v+muy € x™Hy for m € Z.
Notice that Rvy + H = H for all H € $(vy). Thus v € 2™ H, for all
m € Z. As z is superbasic, the orbit O = {x'Hy;i € Z} is a union
of connected components of the Dynkin diagram of {sy; H € H(C)}.
Hence v € NgeoH = (. That is a contradiction. g

3.7. In the rest of this section, we’ll show that any two straight ele-
ments in the same conjugacy class are conjugate by cyclic shift, which
is analogous to §0.1 (3) for an elliptic conjugacy class of a finite Coxeter
group.

In order to do this, we use the following length formula. The proof
is similar to [14, Proposition 2.3] and is omitted here.

Proposition 3.6. Let w € W and K C Vj be an affine subspace
with w(K) = K. Let A and A’ be two alcoves in the same connected
component of V. — Upeg, H. Assume that AN A' N K spans a codi-
mension 1 subspace of K of the form Hy N K for some Hy € $ and

Uioa) = L(ibar) = (7, 20) + £ (A, D A).

Lemma 3.7. Let w € W. Let K C Vi be an affine subspace such that
wK = K. Let A and A’ be two alcoves such that AN A’ contains a
reqular point of K and w4, wa: are straight elements. Then wa = W4 .

Proof. We may assume that A is the fundamental alcove A by replacing
W by wa. We simply write I for I(K, A). By Proposition 2.7 and the
straightness of @, w € W' and w(I) = I. Since A’ N A contains a
regular point of K, x4 € W;. Thus

Wpr = iL‘;l/lﬁJl’A/ = (1’2/11[)1’,4/11’)71)@0
and 2, Wz W™t € W;. Therefore ((wa) = ((0) + €(x ) Wz 4.
Since (/) = (), we have 2/ x4t =1 and W = 0. O

Theorem 3.8. Let O be a straight W -conjugacy class of W. Then for
any W, W' € Opin, W~ W',
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Proof. Let uw € O and K = V3. Then by Proposition 2.4 and Proposi-
tion 2.7, we may assume that @ = 44 and @' = @y, where A and A’
are two alcoves whose closures contain regular points of K. Let C' be
the connected component of V' — Upegq, H that contains A and let A”
be the unique alcove in C such that A’N A” contains a regular point of
K. By Proposition 2.7, we have u4s € On,. By Lemma 3.7, we have
that '&A’ = ﬂA//.

It remains to show that @y ~ tUsv. Assume A # A”. Similar
to the proof of [14, Lemma 2.4], there is a sequence of alcoves A =
Ag, A1,--- A, = A” in C such that A; contains a regular point of K
and A;_; N A; N K spans a codimension one affine subspace P; of K for
t=1,2,---,r. By Proposition 2.7, ti4, € O, for any i.

If uP;, = P, by Lemma 3.7, we have that ug4, , ﬂAi. If au(P;) # P,
then there is a sequence of alcoves A;,_; = By, Bl, By =A;in C
such that Bi_; and By share a common face and By, 1ﬁBk F‘lK spans P;
for k =1,---,s. By Proposition 3.6, we have that {(up, ,) = {(ugp,)
and up, , ~ up, for k = 1,---,s5. So U4, , = ua,. Hence iy =~
Upr. O

4. CENTRALIZER IN W

4.1. Let (W, S) be a Coxeter group and € be a group with a group
homomorphism to Aut(W,S). Let W = W x Q. Let & € W be a
minimal length element in its conjugacy class. Let Pz be the set of
sequences i = (sy,- -+, s,) of S such that

~ S ~ S S ~
W= 51108 > -+ 5 8-+ S1WS] -+ - Sy

We call such sequence a path form w to s, ---sjws; ---s,.. Denote by
P, the set of all paths from @ to itself. Let Wy = {z € W;{(z ™ ox) =
((w)} and Z(w) = {x € W;zw = wz}.

There is a natural map

T@:Twﬁw’lﬂa (817"' as’l‘)'_>81"'87"-

which induces a natural map 74 4 : Po.g — Z(0).

We call a W-conjugacy class O of W nice if for some (or equivalently,
any) W € Omin, the map 7 : Py — Wy is surjective. It is easy to see
that O is nice if and only if propertles (1) and (2) below hold for O:

(1) For any w, 0" € Oy, 0 ~ W';

(2) For any @ € Oyyin, the map 744 : Pop — Z (W) is surjective.

The definition of nice conjugacy classes is inspired by a conjecture of
Lusztig [22, 1.2] that property (2) holds for elliptic conjugacy classes
of a finite Weyl group.

4.2. For finite Weyl groups, nice conjugacy classes play an important
role in the study of Deligne-Lusztig varieties and representations of
finite groups of Lie type. Property (1) is a key ingredient to prove that
Deligne-Lusztig varieties corresponding to minimal length elements in a
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nice conjugacy class are universally homeomorphic. Property (2) leads
to nontrivial (quasi-)automorphisms on Deligne-Lusztig varieties and
their cohomology groups. For more details, see [3] and [22].

Nice conjugacy classes for affine Weyl groups will also play an im-
portant role in the study of affine Deligne-Lusztig varieties. See [12].

4.3. The main goal of this section is to classify nice conjugacy classes
for both finite Coxeter groups and affine Weyl groups.

We first consider finite Coxeter groups. Let (Wp,Sy) be a finite
Coxeter group and Q' C Aut(Wy, Sy). Set Wy = Wy x Q. Let 2 =
wo € Wy with w € Wy and o € €. We denote by supp(w) the support
of w, i.e., the set of simple reflections appearing in a reduced expression
of w. Set supp(z) = Upezo™supp(w). We call supp(z) the support of
z. It is a o-stable subset of Sj. ~

We call a Wy-conjugacy class O of Wy elliptic if supp(w) = Sy for any
w € O. An element in an elliptic conjugacy class is called an elliptic
element.

We have the following result.

Theorem 4.1. Any elliptic conjugacy class in a finite Coxeter group
1S nice.

4.4. In order to classify nice conjugacy classes for finite Coxeter group,
we first recall the geometric interpretation of conjugacy classes and
length function in [14].

Let V' be a finite dimensional Euclidean vector space over R and
o be a finite set of hyperspaces of V' through the origin such that
sg($Ho) = $Ho for all H € Hy. Let Wy € GL(V) be the subgroup
generated by sy for H € $),. Let €(£)g) be the set of connected com-
ponents of V' — Upyeg, H. We call an element in €($)g) a chamber. We
fix a fundamental chamber Cy. For any two chambers C, C’, we denote
by $0(C,C") the set of hyperspaces in )y separating C' from C’. Let
So = {suy € Wy; £90(Co, syCo) = 1}. Then (W, Sp) is a finite Coxeter
group. Let Wy = Wy x Q' where Q' € GL(V) consists of automorphism
preserving Sy. Then ¢(w) = £90(Co, wCy) is the length function on W.

It is known that Wy acts simply transitively on the set of chambers.
For any chamber C', we denote by z¢ the unique element in W, with
xcCy = C. Here () is the fundamental chamber. Then any element
in the Wy-conjugacy class of w is of the form we = xalwxc for some
chamber C. R

For any w € Wy, we denote by €4z($o) the set of chambers C' such
that we is of minimal length in its Wy-conjugacy class. We denote
by Vg:breg the set of points in V' that is contained in at most one
hyperplane of §)y. By [14, Lemma 4.1],

(a) A Wo-conjugacy class O of T is nice if and only if (Uace,, (sy)A)N

V;:breg is connected for some (or equivalently, any) w € O.
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By [10, Lemma 7.2], a Wy-conjugacy class © of Wy is elliptic if and
only if for some (or equivalently, any) element w € O, the fixed point
set V¥ C V"o, Now we introduce the weakly elliptic conjugacy classes.

Proposition 4.2. Let O be a Wy-conjugacy class of Wy. Then the
following conditions are equivalent:

(1) For some @ € Oy, supp(w) is a union of some connected com-
ponents of the Dynkin diagram of Sy and w commutes with any element
in Sp — supp(w).

(2) For any w € O, supp(w) is a union of some connected compo-
nents of the Dynkin diagram of Sy and W commutes with any element
in Sp — supp(w).

(3) For some (or equivalently, any) element w € O, sgV® = V¥ for
all H € 9.

In this case, we call O a weakly elliptic conjugacy class and any
element in O a weakly elliptic element.

Proof. (1)=(2). Assume that O C Wyo for o € Y. By our assumption,
o(s) = s for all s € Sy — S} and supp(xwz~') C S) for any x € Wj.
Since w0 is elliptic in Wg; » (o), then supp(zwz~") = Sj for any z € Wj.

(2)=(3). Assume that O C Wyo for some o € €. By assumption,
there exists S C Sp, which is a union of some connected components
of the Dynkin diagram of Sy such that o(s) = s for all s € Sy — 5] and
supp(w) = S for any w € O. Then O is elliptic in W x (o). Therefore

Ve VS for all @ € O. Hence sy V'™ = V7 for all H € §.

(3)=(1). By [14, Proposition 2.2], there exists w € Oy, such that
C, contains a regular point e of V. Assume that @ = wo for w € W,
and o € . Then wo(e) = e and thus e = o(e) = w(e) for e,o(e) € Cy
are dominant.

Let J = {s € Sp;s(e) = e}. Then o(J) = J and w € W;. Note
that V% c VW7 for e is a regular element in V?. Hence w is an elliptic
element in W; x (o) and supp(w) = J.

Let s € Sy — J. Then s(V%) = V% Thus s(e) = e+ {e,a)a” € V¥,
where « is the positive root corresponding to s. Since s ¢ J, we have
s(e) # e and ¥ € V%, Hence ws = sw. The statement follows from
the following Lemma 4.3. O

Lemma 4.3. Let w = wo with w € Wy and o € Q. Let s € Sy —
supp(w). Then sw = ws if and only if s = o(s) and s commutes with
each element of supp(w).

Proof. Let K = supp(w) and K’ = {¢' € K;ss' = s's}. Write w as
w = abc for a € Wgr, ¢ € Wykry and b € KW, K) . Then sb = bo(s).
Since s ¢ K and each element of K — K’ does not commute with
s, we have that bo(s) = sb € K~K'W,. Therefore b € K~ KWy for
o(s) ¢ K. Since b € X'Wyg, we must have that b = 1. Hence s = o(s)
and K = supp(a)Usupp(c) C K’. Hence for any n € Z and any r € K,
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sa™(r) = o"(sr) = o™ (rs) = o™(r)s. Therefore s commutes with every
element of supp(w) = Upezo™(K). O

Now we classify nice conjugacy classes for W

Theorem 4.4. Let O be a Wy-conjugacy class of Wy. Then O is nice
if and only if it s weakly elliptic.

Proof. Suppose that O is nice. Let @ € Oy, and S = supp(w). Then
wowwy € Omin, where wy is the largest element of W,. Hence there

exists a reduced expression wg = s1S9---s, such that wy, ~ w;, =~
- & W, where w; = (s1---8;) "0(sy--+s;). By [10, Lemma 7.4],
supp(w;) = supp(w) = S for all i. Therefore s; 1w;s;11 = w; if

sj+1 ¢ S). By Lemma 4.3, st = ts and wt = tw for any s € S and any
t € Sy — 5. Hence O is weakly elliptic.

Suppose that O is weakly elliptic. Let w € O, and J = supp(w).
Let x € W, such that ¢(z'wz) = ((w). We may write x as xox;
with some z; € W; and zy € Wg,_; for J and Sy — J are unions
of connected components of the Dynkin diagram of Sy and w. Then
v Mor = oyt (xg rg)ry = 27 'wr;. Since @ commutes with each
simple reflection of Sy — J, x5 is in the image of 7;. By assumption, w
is elliptic in W; x (o) for some o € €. Thus by [14, Corollary 4.4], x,
is in the image of 75. Hence so is xox1. Thus O is nice. O

4.5. Now we study affine Weyl groups. We keep the notations in §3.3.
Let Wy =Wy x Q. Then W = Wg xQ =P xW,. For any w € W, we
denote by 2A; the set of alcoves A such that w, is of minimal length
in its W-conjugacy class. We denote by V5% the set of points in V
that is contained in at most one hyperplane of §. Similar to the proof
of [14, Lemma 4.1],

(a) A W-conjugacy class O of W is nice if and only if (Ugeg, A) N
Vsubred s connected for some (or equivalently, any) @ € O.

4.6. Lety € W. Let K C V, be an affine subspace such that y K = K.
Choose p € K. Define y =1_,,_,oyoT, € GL(V), where T, denotes
the map of translation by v € V. Then ¢(0) = 0 and g is the image of
y under the map W = P x Wy — W,. In other words, § is the finite
part of y.

Set Hrp = T-p(Hx). Then any element in Hy, , is a hyperplane
through 0 and contains V¥ = T_,(V,). Since y preserves ), § pre-
serves g p-

The following result relates §4.4 (a) with §4.5 (a).

Lemma 4.5. Keep notations as above. Assume p is a reqular point
of K and A,A" € A, withp € AnA. Let C (resp. C') be the
unique element of €(Hk ) such that A C T,(C) (resp. A C T,(C")).
Then A and A’ are in the same connected component of (Uaea, A) N
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Vsubreg if and only if C' and C" are in the same connected component
A subre
of (UCEQ;,(.BK,,,)O) N Vﬁx,p g,

Proof. Suppose that C' and C” are in the same connected component of
(UCE%(ﬁK,p)C_')ﬂV;g;eg. Then there is a sequence C' = C,Cy, -+ ,C; =
C" in €;($Hk,p) such that C;NCiyq spans H, € Drpfori=0,---,t—1.
Note that all the numbers 8§k ,(C;, yC;) are the same. Let A; be the
unique alcove in T,,(C;) whose closure contains p. Then A;NA; 4 spans
T,(H!) € HK for each i. By Proposition 2.7,

ﬂ'ﬁ(Ala yAz) = ﬂ‘sﬁK(Ala yA’L) + <Dy7 2p> = ﬁﬁK,P<C’i7gCi) + <ﬂy7 2p>
= 19(A,yA).
Hence all A4;’s lie in the same connected component of (Uaeg,A) N
Vsubreg.

Suppose that A and A’ are in the same connected component of
(Uaea, A)NV5ured There is a sequence of alcoves A = Ay, Ay, -+ , A, =
A"in A, such that A; and A;;; share a common face which spans H; € $
for all 7. By Proposition 2.7, C,C" € €;(Hk,p). Now we define a se-
quence of chambers in €;($Hk ) as follows. Let C; = C. Assume that
C; is already defined for ¢ > 1. Let j; = max{k;T_,(Ax) C C;}. Let
Cit1 be the unique connected component containing 7" ,(A;,+1). We
obtain a sequence C' = (1, -+ ,Cy = C" in this way.

Notice that Hj, € Hx (hence so is yH;,) and

ﬁ(Ajﬂ iji)_{Hji7 iji} - fJ(Aji-H’ ijH—l) - f)(Aji’ iji)U{Hji7 ijz}
Since ﬂﬁ (Ajm iji) = ﬂ'ﬁ (Aj¢+17 ijiJrl)? then {Hjia ijz}ﬂﬁ (Ajz‘+1? yA 'Hrl)
consists of at most one element. Hence

{T-p(Hj,), T-p(yHj,) = §(T-p(Hj,)) } N 9rp(Civr, YCisa)
consists of at most one element. Notice that £ ,(Cy,yC1) is minimal
among all the chambers in €($k ). Thus

ﬂfJK,p(Clv gCl) = hﬁK@(CZ;gCQ) == ﬁﬁK,p(Csa gcs)
and Cy,---,Cs € €4(Hk,). By our construction C; N Ci41 spans
T ,(Hj,)fori=0,---,s—1. So Cy,---,Cs are in the same connected
component of (Ucee, (s, C) N Vgib;eg. O

Now we classify nice conjugacy classes for affine Weyl groups.

Theorem 4.6. Let O be a W-conjugacy class of W and O C Wgo for
o € Q. Then the following conditions are equivalent:

(1) O is nice.

(2) For some (or equivalently, any) y € O, sy(V,) =V, for any
H € $(v,) with HNV, # 0.

(3) For some (or equivalently, any) y € O with v, = ve, ¥ is a weakly
elliptic element in W, x (o).
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Proof. (3) = (2). Let y € O with v, = vy. Let p € HNV, and
H' =T _,H. Hence sy/(VY) = V¥ by Proposition 4.2 (3) and Theorem
4.4. Thus sp(V,) =V, for V, = T,(V7).

(2) = (3). Let H = H, with (v,,a) = 0. It suffices to show the
sp(V¥) = VY. This is trivial if V¥ C H. Otherwise, (V¥ a) = R.
Let p € V,, then H intersects with V, = T,(V¥). By condition (2),
su(Vy,) =V,. Hence ¥ € and sy (V¥) = VY.

(1) = (2). Let H € 9(v,) such that K = HNV, # 0. Then K
is an affine subspace of V, of codimension at most 1 and yK = K.
By Proposition 2.7 and [14, Lemma 2.3}, there exists an alcove A € 2,
whose closure contains a regular point p of K. Since O is nice, applying
Lemma 4.5 yields, (Ucee,(sx,)C) N Vgilf;eg is connected. By Theorem
4.4, we have sp_ () (VY) = V¥, that is, sg(V,) = V.

(2) = (1). Let y € O with v, = vy. By Proposition 2.4, it suffices
to prove the following statement:

Let A, A’ € 2, such that A and A’ contain regular points of Vy. Then
A and A" are in the same connected component of (Uaeq, A) N V5409,

Let C' be the connected component of V —Upeg,, H that contains A
and A” be the unique alcove in C such that A’ N A” contains a regular

point ¢ of V,. By condition (3) and §4.4 (a), (Ucee, sy, ,)C) mvg:j:’?:g is
connected. Hence by Lemma 4.5, A" and A” are in the same connected
component of (Ugey, B) N Vs,

Similar to the proof of [14, Lemma 2.4], there is a sequence of alcoves
A= Ay, Ay, -+ A, = A” in C such that A; contains a regular point of V,
and A;_; ﬁfllﬂ% spans a codimension one affine subspace P, = H;NV,,
of V, for 1 <7 <.

If P, =yP,. Then H; € H(v,). By condition (2), sg,(V,) = V. Since
V, ¢ H;, H; is the affine hyperplane containing P; and orthogonal to
Vy. Hence H; is the unique element in §) whose intersection with V;, is
P; and thus the unique hyperplane separating A; ; from A;. So A; 1
and 4; are in the same connected component of (Upeg, B) N V54070,

If y P, # P;, then there is a sequence of alcoves A; 1 = By, By,--+ , By =
A; in C such that Bj_; and By, have a common face and By_; N By, NVy
spans P; for k = 1,--- ,s. By Proposition 3.6, we see that all By €
2(,. Hence A;,_; and A; are in the same connected component of
(UBEQlyB) N Vsub'reg‘

Hence A and A” are in the same connected component of (Ugea, B)N
Vsubreg. 0

Corollary 4.7. Let y € W such that § is an elliptic element in Wy.
Then the W -conjugacy class of y is nice.

Now we classify straight nice conjugacy classes.
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Proposition 4.8. Let O be a straight W -conjugacy class of W and
O C Wgo with o € . Then O is nice if and only if there exists
z € O such that v, = vo and x is superbasic in Wy, where J C Jy is
a union of connected components of Dynkin diagram of Jo and o fizes
each element of Jo — J.

Proof. Assume that z € O such that v, = vg and x is superbasic in W,
where J C Jy is a union of connected components of Dynkin diagram
of Jo and o fixes each element of Jo —J. Let H = H,; € H(v,). Then
(Vz, &) = 0 and « is a linear combination of roots in Jy. If a is a linear
combination of roots in J, then by Proposition 3.5, H NV, = (. If
a is a linear combination of roots in Jy — J, then sy (V) = V, since
a¥ € V*. By Theorem 4.6, O is nice.

Assume that O is nice. By Proposition 3.2 and Theorem 4.6, there
exists a basic element x € WJO such that v, = vy and T is weakly
elliptic in Wy, x (o). Set J = supp(z). Then J is a union of connected
components of Dynkin diagram of Jy and o fixes each element of Jy—J.
Let H = H,j, such that « is a linear combination of roots in J. By
assumption, x is elliptic in W x (o), i.e., VT C VW’ we have that
V® C H,p. By Proposition 3.2, V,, € H. Notice that V,, = p + V* for
some p € V. Thus V., N H = (). By Proposition 3.5, x is superbasic in
Wj. 0

Corollary 4.9. Let O be a superstraight W -conjugacy class of W.
Then O is nice.

5. CLASS POLYNOMIAL

5.1. Set A = Z[v,v™!]. The Hecke algebra H associated to W is the
associated A-algebra with basis T, for w € W and the multiplication
law is given by

1,17, =T, iffl(zx)+y)="Lzy);

(T, —v) (T, +v 1) =0, forsesS.

Then T;' =T, — (v—ov~"') and T, is invertible in H for all w € W.
If 0 is an automorphism of W with 6(S) = S, then T,, — Ty, induces
an A-linear automorphism of H which is still denoted by ¢. The Hecke
algebra associated to W = W x Q is defined to be H = H x Q. Tt is
casy to see that H is the associated A-algebra with basis Ty for @ € W
and multiplication is given by

Ty = Tay, it £(F) + £(3) = 0(i9);
(T, —v)(T,+v ') =0, forses.

Let h,h' € H, we call [h, h] = hh' — h'h the commutator of h and A’
Let [H, H] be the A-submodule of H generated by all commutators.
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For finite Hecke algebras, Geck and Pfeiffer introduced class polyno-
mials in [7]. We'll show in the section that their construction can be
generalized to affine Hecke algebra based on Theorem 2.9.

Lemma 5.1. Let w, @' € W with w~w'. Then
T@ET@/ mod [ﬁ,ﬁ]

Proof. By definition of ~, it suffices to prove the case that there
exists © € W such that @' = zwz~! with £(@) = £(@') and either
U(zw) = £(z) + L(w) or L(wx™t) = l(x) + L(D).

If {(zw) = £(x) +L(W), then l('x) = L(zw) = £(W')+£(5(z)). Hence
T Ty = Taw = Ton = T T and Ty = T TsT:' =T, mod [H, HJ.

If {(wx~t) = l(x) + ( ), then ¢(xz~'w’) = €( ) = 4(w') + ((z).
Hence T,-1Ty = Ty-140 = Tgp1 = TTo-1 and Ty = T\ TyT, 1 =
[H, H). O

Now Corollary 2.10 (2) implies that

Corollary 5.2. Let O be a conjugacy class of W and @, % € Omin.
Then

Ty =Ty mod [H, H.

Remark. We denote by Ty the image of Ty € H/[H, H] for any @ €
Omln

Theorem 5.3. Let @ € W. Then for any conjugacy class O of W,
there exists a polynomial fg0 € Zlv—v~'] with nonnegative coefficients
such that fg o is nonzero only for finitely many O and

(a) Tw:wa,oToeﬁ/[ﬁ,ﬁ].

Proof. We argue by induction on ¢(w).
If @ is a minimal element in a conjugacy class of W, then we set

foo = {1’ ?f Uj €0 . In this case, the statement automatically holds.
’ 0, ifwego
Now we assume that @ is not a minimal element in the conjugacy
class of W that contains it and that for any @' € W with ¢(0") < (),
the statement holds for @w’. By Theorem 2.9, there exist w; ~ w and
i € S such that ¢(s;wys;) < (W) = £(w). In this case, {(s;w) < (W)
and we define f; ¢ as

foo =0 =0 faa0+ Fsons,o-

By inductive hypothesis, fs,a,.0, fs;@,5,.0 € Z[v —v!] with nonnega-
tive coefficients. Hence fz0 € Z[v —v™!] with nonnegative coefficients.
Moreover, there are only finitely many O such that fs,4,0 # 0 or
fsins;, 0 7 0. Hence there are only finitely many O such that fz o # 0.
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By Lemma 5.1, T = Ty, mod [H, H]. Now

Ty = W T TsiTsiwlsiTsi = siwlsiTSiTsi
-1 -1
= (U - v )TsiﬁnSiTSi + Tsiirs = (U -V )Tsﬂf)l + Ty,

Hence the image of Tj; in H/[H, H] is
=0 fumoTo+ Y fumsolo =Y faoTo.
0 0 0
U

5.2. We call f3 0 in the above theorem the class polynomial associated
to w and O.

Notice that the construction of f; e depends on the choice of the
sequence of elements in S used to conjugate w to a minimal length
element in its conjugacy class. We'll show in the next section that f o
is in fact, independent of such choice and is uniquely determined by the
identity (a) in Theorem 5.3. For a finite Hecke algebra, similar result
was obtained by Geck and Rouquier in [9, Theorem 4.2].

6. COCENTER OF H

6.1. We call H/[H, H] the cocenter of H. Now for any conjugacy class
O of W, we choose a minimal length representative weo. By Theorem
5.3, Ty, where O ranges over all conjugacy classes of W, spans the
cocenter of H. The main purpose of this section is to show that Ty are

linearly independent in the cocenter of H and thus form a basis. We
call it the standard basis of H/[H, H].

6.2. Following [19], let J be the based ring of W with basis (¢, )wew -
For each § € €, the map ¢, + %54 gives a ring homomorphism of
J, which we still denote by 6. Set J = J % Q, Jqs = J ®7 A and
Jyp=J®z A

Let (cy)wew be the Kazhdan-Lusztig basis of H. Then c,c, =
ZZGW hgy.c. with hy, . € A. There is a homomorphisms of A-
algetzras ¢ H — J, defined by ¢, +— Zd@’a(d):a(x) M d ztz, Where
a : W — N is Lusztig’s a-function and D is the set of distinguished
involutions of W. It is easy to see that for each § €

©(0(cw)) = p(csw)) = Z s (w).5(d),5(2)ts(2) = 0P (Cw)-
deD,a(d)=a(x)

Hence ¢ extends in a natural way to a homomorphism ¢ : H — J,.
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6.3. Set J(C = J®ZC and j(c = j@z (C Set H(c = H®A (C[U,U_l] and
He = H®4 Clo,v7 Y. For any ¢ € C*, let C, be the one-dimensional
A-module over C such that v acts as the scalar q. Set H, = H ®4 C,
and ﬁq = IN{®_A (Cq.

Let E be a Je-module. Through the homomorphism

Pq =P lv=q: Hy = Jc,

it is endowed with an ﬁq—module structure. We denote this ﬁq—module
by Ej,.

For an associative C-algebra R, we denote by K(R) the Grothendieck
group of all finite dimensional representations of R over C.

Thus the map E — E, induces a homomorphism (3,), : K(J¢) —

K(H,). We have that
Lemma 6.1. The map (@) : K(Jc) — K(H,) is surjective.

Proof. The proof is similar to [20, Lemma 1.9]. Since ) preserves a-
function, we associate to each ﬁq—module M an integer a,; such that
cwM = 0 whenever a(w) > ap and ¢y M # 0 for some w' € W
with a(w’) = ay;. For each simple lffq—module M, we construct as in
the proof of [20, Lemma 1.9] a finite dimensional Je-module M and
a Nonzero I:Iq—morphism D Mq — M with M’ = kerp such that
ayr < ap. Since the a-function is bounded, it follows easily that ().
is surjective. O

6.4. Let K*(H,) = Homg(K(H,),C) be the space of linear functions

on K(H,). The map H, — K*(H,) sending h € H, to the function
M — Try(h) on K(H,) induces a map

Uy ﬁ]q/[ﬁm f{q] — K*(H,).
It is proved in [17, Theorem B| and [4, Main Theorem| that W, is

injective if ¢ is a power of prime. We’ll show below that W, is also
injective. Here H; = C[W] is the group algebra.

Lemma 6.2. Let w,w' € w. If W and W' are not in the same conjugacy
class of W, then there exists n > 0 such that the images of w and W'
in W /nP are not in the same conjugacy class.

Proof. Tt suffices to consider the case where W C W xAut(W, S). Then
we have that W/ W is finite. Notice that () is a normal subgroup of 1474
and W /mQ is a quotient group of W. Since W /W and W/Q are both
finite groups, W /@ is also a finite group. We choose a representative
x; for each coset of Q. Set W; = rybz;'. Then any element conjugate
to 0 is of the form t*;t~* for some i and \ € Q.

Now we show that

(a) for any 4, there exists n; > 0 such that the images of w; and @’
are not conjugate by an element in n;Q).
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Otherwise, there exists ¢ such that @' = tXw; for some x € @ such
that y € (1 — w;)Q 4+ n@ for all n > 0. Therefore the image of y in
Q/(1 — w;)Q is divisible by all the positive integer n. So the image
of x in @/(1 —w;)Q@ is 0 and x = A — w;\ for some A € Q. Hence
W' = t*o;t~ is conjugate to W in V. That is a contradiction.

(a) is proved.

Now set n = II;n;. If the images of w and @ in W/nQ are in the
same conjugacy class, then there exists ¢ such that the images of w; and
@' in W/ n() are conjugate by an element in ). Hence their images in
W/ nQ — W /n;Q are conjugate by an element in (). That contradicts
(a). O

Proposition 6.3. Let wy,--- ,w, € W be elements in distinct conju-
gacy classes of W. The the elements Uy (W), -+, ¥i(w,) are linearly

independent functions on K(C[W]).

Proof. Again, it suffices to consider the case where W/ @ is finite.

For any 1 <@ < j < r, there exists n;; > 0 such that the image of
w; and w; in W/an are not in the same conjugacy class.

Set n = Ili<icj,ny; and F = W/nP Then F' is a finite group. Let
w,; be the image of w; in F. If w; and w; are in the same conjugacy
class of F', then their images in W /n;; P under the map F — W /n,; P
are still in the same conjugacy class. That is a contradiction. Hence
Wy, - ,w, are in distinct conjugacy classes of F.

The surjection W — F induces an injection K(C[F]) — K(C[W])

and a surjection K*(C[W]) — K*(C[F]). We have the following com-
mutative diagram

W — K (C[V])

|,

F——K*(C[F])
Here ¥ : F' — K*(C[F]) is defined in the same way as ¥, in §6.4.
Since F' is a finite group and w,,--- ,w, are in distinct conjugacy
classes of F, W(w,), -+ ,¥(w,) are linearly independent functions on
K(C[F]). Hence ¥y (w)--- , ¥y (w,) are linearly independent functions
on K(C[W]). O

Corollary 6.4. The map ¥, : C[W]/[C[W],C[W]] — K*(C[W]) is

mjective.

Now we prove the main result of this section.

Theorem 6.5. Let wy,--- ,w, € W be elements in distinct conjugacy
classes of W. Then the image of Tg,, -+ ,Tg, in Hc/[Hc,Hc| are
linearly independent.
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Proof. Set Ac = Clv,v™"]. Assume that Y°I_, ¢;Ty, € [He, He] with
all ¢; € Ac. Suppose that not all ¢;’s are 0. Then there exist ¢ € Ac¢
and ¢, € A¢ for 1 < i < r such that ¢; = ¢} and there exists 1 < s < r
with ¢ |,217# 0.

_Let E be a J-module over C. Set Ec = E ®@c Ac. Then Ec is a
Ja.-module over Ac. Via the homomorphism ¢ : H — Jy, Ec admits
an Hc-module structure over Ac. We denote it by E,. For h € H,
let Trg(h) € Ac be the trace of the endomorphism h on E, over Ac.
Then Trp(3 ), ¢iTs;) = c(>i_, & Trg(Ty,)) = 0 € Ac. Since Ac is an
integral domain and ¢ # 0, we have that > ., ¢;Trg(Tg,) = 0 for all
J-modules E. Set v = 1, then

T

(a) > ¢ fom1 Trp(Ts,) =0
i=1
for all J-module E. Hence by Lemma 6.1, (a) holds for all W-modules.

Now by Proposition 6.3,, ¢, |,—1= 0 for all <. That is a contradiction.
O

Corollary 6.6. The class polynomial fgz o is uniquely determined by
the identity (a) in Theorem 5.3.

Now combining Theorem 5.3 and Theorem 6.5, we have that

Theorem 6.7. The setN{TQ}, where O ranges over the conjugacy classes
of W, is a A-basis of H/[H, H]|.
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