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Abstract. In this paper, we study the relationship between the cocenter and

the representation theory of affine Hecke algebras. The approach is based
on the interaction between the rigid cocenter, an important subspace of the

cocenter, and the dual object in representation theory, the rigid quotient of

the Grothendieck group of finite dimensional representations.

1. Introduction

Affine Hecke algebras appear naturally in the representation theory of reductive
p-adic groups as convolution algebras of compactly supported functions, such as
Iwahori-Hecke algebras e.g., [Bo], [IM], and their generalizations in the theory of
types, e.g., [HM], [BK], or as endomorphism algebras of certain projective gener-
ators [Be], [Hei]. The representation theory of affine Hecke algebras with (equal
and unequal) parameters that are not roots of unity was extensively studied, e.g.,
[KL], [CG], [Lu1, Lu2], [BM1, BM2], [Xi1], [Op, OS1, OS2, So], [Ree], [Kat]. The
representation theory of affine Hecke algebras for parameter equal to a root of unity
plays an important role in the study of modular representations of p-adic groups
[Vi] and the simple modular representations for affine Hecke algebras associated to
general linear groups were classified in [AM]. The representations of affine Hecke
algebras of classical types at roots of unity were subsequently studied in [VV, SVV]
via the theory of canonical bases, and for G2 in [Xi2].

In this paper, we consider finite dimensional representations of the affine Hecke
algebra H from the perspective of its relation with the cocenter of the algebra. The
cocenter H̄ is the quotient of the algebra by the subspace of commutators, and thus
appears naturally in duality (given by the trace) with the (complexification of the)
Grothendieck group R(H) of finite dimensional H-modules.

1.1. We explain our main results. In the body of the paper, we consider the more
general case of an affine Hecke algebra with an automorphism δ of the root system
and the δ-twisted cocenter, but, for simplicity, in the introduction, we present the
results in the untwisted case only. We also consider arbitrary (nonzero) parameters.

The affine Hecke algebra H is a deformation of the group algebra C[W̃ ] of the

extended affine Weyl group W̃ . Let cl(W̃ ) denote the set of conjugacy classes in
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W̃ . It is easy to see that for any two elements w,w′ in the same conjugacy class

of W̃ , the images of w and w′ in the cocenter of C[W̃ ] are the same and the set

{[O];O ∈ cl(W̃ )]} is a basis of the cocenter of C[W̃ ]. Here [O] is the image of w in

the cocenter of C[W̃ ] for any w ∈ O.

However, for w,w′ in a conjugacy class O of W̃ , the images in H̄ of the standard
basis elements Tw and Tw′ of H are not the same in general. It is showed in [HN1]
that if w and w′ are of minimal length in O, then the images of Tw and Tw′ in H̄
are the same. We denote this image by TO. Moreover, the whole cocenter H̄ is

spanned by {TO;O ∈ cl(W̃ )}.
Note that cl(W̃ ) is a countable infinite set and the set of irreducible represen-

tations of H is an uncountable infinite set. To compare the cocenter with repre-
sentations, we would like to develop a reduction method from infinite sets to finite
sets.

A familiar object in the literature is the elliptic quotient R̄0(H) obtained by
taking the quotient of R(H) by the span of all proper parabolically induced modules
[BDK]. The elliptic representation theory of reductive p-adic groups and associated
Hecke algebras has been an area of active research, e.g., [Ar], [BDK], [Be], [Kaz1],
[SS], [Ree], [OS2]. The dual object to R̄0(H) is the elliptic cocenter H̄ell, the
subspace of H̄ on which all proper parabolically induced modules vanish. However,
as shown in [BDK], the elliptic cocenter is very complicated.

1.2. The solution we provide in this paper is another quotient of R(H) and another
subspace of H̄, which we call the rigid quotient and rigid cocenter, respectively.

Let us first describe our motivation which leads to the definitions and then
describe the main result and its consequences.

For simplicity, we only consider affine Hecke algebras associated to semisimple
root data in this introduction. In the beginning, we would like to get a nice finite

subset of cl(W̃ ). A natural choice is cl(W̃ )ell, the set of elliptic conjugacy classes

of W̃ . The problem is that there is no relation between the subspace spanned by

{TO;O ∈ cl(W̃ )ell} and the elliptic cocenter.

The finite subset of cl(W̃ ) we use here is cl(W̃ )0, the conjugacy classes of W̃

with zero Newton point. We have the inclusion cl(W̃ )ell ⊂ cl(W̃ )0 ⊂ cl(W̃ ). The

definition of cl(W̃ )0 and the idea to use it in the study of affine Hecke algebras
are inspired by a classical result in arithmetic geometry: Kottwitz’s classification
of σ-isocrystals, [Ko1, Ko2].

Here we provide more content. While this is not needed in our theory of rigid
cocenter and rigid quotient, it serves as motivations for it.

Let G be a connected reductive group split over Qp and L = W (F̄p)[ 1
p ] be the

completion of the maximal unramified extension of Qp. Let σ be the (relative)
Frobenius morphism on G(L) and B(G) be the set of σ-conjugacy classes of G(L).
Kottwitz showed that a σ-conjugacy class is determined by two invariants: the
image of the Kottwitz map B(G) → π(G); and the Newton map from B(G) to
the rational coweight lattice. A σ-conjugacy class is called basic if its Newton
point is zero. Moreover, Kottwitz shows that any σ-conjugacy class comes from a
basic σ-conjugacy class of some Levi subgroup M(L) of G(L) via the inclusion map
M → G.
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In [He], the second-named author studied the natural map cl(W̃ )→ B(G). This
map is finite-to-one and it is compatible with both the Kottwitz map and the
Newton map. Thus we have a Cartesian diagram

cl(W̃ )0
//

��

B(G)basic

��
cl(W̃ ) // B(G),

where B(G)basic is the set of basic σ-conjugacy classes.
As the basic σ-conjugacy classes capture the whole of B(G) in an essential way,

we expect that cl(W̃ )0 plays an essential role in the study of H̄. This leads to the
following definition of the rigid cocenter:

H̄rigid = span{TO;O ∈ cl(W̃ )0}.

It turns out that for generic parameters, the quotient of R(H) dual to H̄rigid

is also a natural object. Namely, R̄(H)rigid is defined as the quotient of R(H)
by R(H)diff−ind, the span of differences of central twists of parabolically induced
modules, see Definition 6.1.

The main result concerning the rigid cocenter is the following theorem.

Theorem 1.1. (1) The set {TO;O ∈ cl(W̃ )0} is a basis of H̄rigid for an affine
Hecke algebra H with arbitrary parameters.

(2) Suppose that the parameters of the affine Hecke algebra are admissible in
the sense of Definition 6.6. Then the trace pairing tr : H̄ × R(H) → C
induces a perfect pairing

tr : H̄rigid × R̄(H)rigid → C.

In particular, the dimension of R̄(H)rigid equals the number of classes in

cl(W̃ )0.
(3) For arbitrary parameters, the trace map tr : H̄rigid → R(H)∗rigid is surjective.

Theorem 1.1 in particular explains where the name “rigid” for H̄rigid comes from:

• The traces of any given element in H̄rigid on parabolically induced modules
are constant if we deform the central characters and the image under the
trace map of H̄rigid gives all such “rigid” linear functions on the induced
modules.

• The rigid cocenter H̄rigid has a basis which is independent of the parameters
of the Hecke algebra and thus H̄rigid is “rigid” if we deform the parameters.

As far as the relation between the rigid and elliptic cocenters/quotients, clearly,
H̄ell ⊂ H̄rigid and R̄(H)rigid � R̄0(H). But as we show in the paper, the rigid
cocenter, in fact, combines together the elliptic cocenters of all the semisimple
parts of parabolic subalgebras, up to a certain equivalence (see Proposition 7.5).
Dually, the rigid quotient admits a section formed by the elliptic quotients of the
semisimple parts of parabolic subalgebras (up to equivalence), see Corollary 6.9.
Thus the rigid cocenter/quotient allows us to study the elliptic theory for all the
parabolic subalgebras at once.

As a consequence, we obtain the basis theorem of H̄.
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Theorem 1.2. The set {TO;O ∈ cl(W̃ )} is a basis of H̄ for an affine Hecke algebra
H with arbitrary parameters.

This theorem in particular shows that the cocenter of H has a description inde-
pendent of the parameters. For finite Hecke algebras, Tits’ deformation theorem
says that for generic parameters, the finite Hecke algebra is isomorphic to the group
algebra. However, affine Hecke algebras of the same type but different parameters
are almost never isomorphic. The basis theorems for H̄ and H̄rigid provide a substi-
tute for Tits’ deformation theorem in the affine setting.

1.3. As consequences of our approach, we obtain direct, algebraic proofs of the
analogues of classical results from p-adic groups: the Density Theorem and the
trace Paley-Wiener Theorem. For p-adic groups, proofs of these results are known
from [BDK] and [Kaz2], see also [Da] and [Fl]. For affine Hecke algebras with
positive parameters, the Density Theorem and trace Paley-Wiener theorem are
studied in [So, Theorem 3.4] by different methods.

We summarize our results in the next theorem.

Theorem 1.3. (1) (Density Theorem) Suppose that the parameters of the affine
Hecke algebra are admissible. Then the trace map tr : H̄ → R(H)∗ is injec-
tive.

(2) (Trace Paley-Wiener Theorem) For arbitrary parameters, the image of the
trace map tr : H̄ → R(H)∗ is the space R∗(H)good of good forms (Definition
3.5).

We would like to point out that the density theorem fails for affine Hecke algebras
at some roots of unity but the trace Paley-Wiener theorem always holds. The trace
Paley-Wiener Theorem for affine Hecke algebras at roots of unity seems to be a
new result and will play a role in the modular representations of p-adic groups.

1.4. As a different application, in section 9, we show how Theorem 1.1 can be used
to simplify the arguments of [BM1, BM2] for the preservation of unitarity under the
Borel functor for the category of smooth representations with Iwahori fixed vectors
of a semisimple p-adic group G. Let I be an Iwahori subgroup and if H ⊂ G
is a closed subgroup containing I, let H(H//I) denote the Iwahori-Hecke algebra
of I-biinvariant compactly supported functions with support in H. The Borel-
Casselman correspondence says that the functor V → V I is an equivalence between
the subcategory of smooth complex G-representations generated by their I-fixed
vectors and the category of H(G//I)-modules. The main result of [BM1, BM2],
see also [BC], is the following theorem conjectured by Borel.

Theorem 1.4 (Barbasch-Moy preservation of unitarity). Under the functor V →
V I , the G-representation V is unitary if and only if the H(G//I)-module V I is
unitary.

The classical arguments of [BM1, BM2] use two main ingredients. The first is
an analogue of Vogan’s signature character [Vo] which expresses the signature of
an irreducible hermitian representation in terms of the K-character (K a maximal
compact open subgroup) of tempered modules. The second ingredient is a linear
independence of the H(K0//I)-characters (K0 hyperspecial) of irreducible tem-
pered representations with ”real infinitesimal character” combined with a subtle
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reduction to real infinitesimal character in [BM2] via endoscopic groups. The rigid
quotient provides a simplification of the argument (without the need for the reduc-
tion to real infinitesimal character) by: firstly, considering the K-characters for all
maximal parahoric subgroups, and, secondly, the fact that, by Theorem 1.1(2), the
characters of a basis of the rigid quotient (the basis can be chosen to consist of
tempered representations) are linearly independent when restricted to the union of
H(K//I)’s.

1.5. We give an outline of the paper. In sections 2 and 3, we establish the notation
and give the basic definitions for the affine Hecke algebra (extended by outer auto-
morphisms), the cocenter and R(H). In section 4, we recall in our setting the main
definitions and properties of the induction and restriction functors, as introduced
for p-adic groups in [BDK] and studied further in [Da]. In section 5, we record the
main cocenter results from [HN1, HN2] that we will use in the rest of the paper.
In sections 6 and 7, we define the rigid and elliptic cocenters and the rigid and
elliptic quotients of R(H), and prove the main results about the duality between
the rigid cocenter and rigid quotient, in particular, Theorem 1.1. Some of these
results are proven under the assumption that (PDT), the density theorem for para-
bolic subalgebras, holds. In section 8, we prove (by induction) the Basis Theorem,
Density Theorem, and Trace Paley-Wiener Theorem, as enumerated in Theorem
1.3. In particular, we now see that the assumption (PDT) can be removed from
the previous results. We also obtain sharp bounds for the dimension of the elliptic
quotient for arbitrary parameters. Finally, in section 9, we give our application to
the preservation of unitarity argument.

Notation. If B is a complex associative algebra, denote by B-mod the cat-
egory of B-modules, by R(B) the complexification of the Grothendieck group of
finite dimensional modules, and by IrrB the set of isomorphism classes of simple
B-modules.

2. Preliminaries

2.1. Let Φ = (X,R,X∨, R∨,Π) be a reduced based root datum. In particular,

(a) X,X∨ are free abelian groups of finite rank with a perfect pairing 〈 , 〉 :
X ×X∨ → Z;

(b) R ⊂ X, R∨ ⊂ X∨ are the roots and coroots, respectively, in bijection
α↔ α∨;

(c) Π ⊂ R is the set of simple roots.

Let R+ denote the positive roots defined by Π, and Π− = −Π+; let R∨,+, R∨,−

denote the corresponding positive and negative coroots. For every α ∈ R, let
sα ∈ GL(X) be the reflection sα(x) = x− 〈x, α∨〉α. Let W ⊂ GL(X) be the finite
Weyl group, generated by S = {sα;α ∈ Π}.

2.2. The set of affine roots is Ra = R∨×Z. Let ≤ be the partial order of R∨ defined
by β∨ ≤ α∨ is α∨− β∨ is a nonnegative integer linear combination of {α∨;α ∈ Π}.
Set Rm = {γ ∈ R; γ∨ is minimal in (R∨,≤)}. The simple affine roots are

Πa = {(α, 0);α ∈ Π} ∪ {(γ∨, 1); γ ∈ Rm}. (2.1)

Define the extended affine Weyl group:

W̃ = X oW. (2.2)
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We write a typical element in W̃ as txw, x ∈ X, w ∈W . The multiplication is then

(txw) · (tx′w′) = tx+w(x′)ww
′. The group W̃ acts on X by (txw) · y = x+ w(y).

Define also the affine Weyl group:

W a = QoW, (2.3)

where Q ⊂ X is the root lattice, i.e., the Z-span of R. The group W a is an infinite
Coxeter group generated by Sa = S∪{t−γsγ ; γ ∈ Rm}. Define positive and negative
affine roots as follows:

Ra,+ = (R∨ × Z>0) ∪ (R∨,+ × {0}),
Ra,− = (R∨ × Z<0) ∪ (R∨,− × {0}),

(2.4)

and the length function ` : W̃ → Z≥0,

`(w) = #{αa ∈ Ra,+;wαa ∈ Ra,−}, w ∈ W̃ . (2.5)

Set Ω = {w ∈ W̃ ; `(w) = 0}. Then W̃ = W a o Ω, and Ω ∼= X/Q.

2.3. Fix a set of invertible, commuting indeterminates q = {q(s); s ∈ Sa} such that

q(wsw−1) = q(s) for all w ∈ W̃ with wsw−1 ∈ Sa, and let Λ = C[q(s)±1; s ∈ Sa].

Definition 2.1 (Iwahori-Matsumoto presentation). The affine Hecke algebra H =

H(Φ, q) is the Λ-algebra generated by {Tw;w ∈ W̃} subject to the relations:

(1) Tw · Tw′ = Tww′ , if `(ww′) = `(w) + `(w′);
(2) (Ts + 1)(Ts − q(s)2) = 0, s ∈ Sa.

The algebra H(Φ, q) admits a second presentation, due to Bernstein and Lusztig,
that we recall next. If w ∈W a has a reduced expression w = s1 · · · sk, si ∈ Sa, set

q(w) =
∏

q(si). Extend this further to W̃ by setting q(u) = 1 for all u ∈ Ω.
Define X+ = {x ∈ X; 〈x, α∨〉 ≥ 0, for all α ∈ Π}. If x ∈ X, write x = x1 − x2,

x1, x2 ∈ X+. Define

θx = q(tx1
)−1q(tx2

)Ttx1
T−1
tx2
. (2.6)

Then {Twθx;w ∈W,x ∈ X} forms a Λ-basis of H, and we have the relations ([Lu1,
3.3(b), Lemma 3.4, Propositions 3.6, 3.7]):

θx · θx′ = θx+x′ , for all x, x′ ∈ X; θ0 = 1; (2.7)

θxTs−Tsθs(x) =

{
(q(s)2 − 1)

θx−θs(x)

1−θ−α , if α∨ /∈ 2X∨,

((q(s)2 − 1) + θ−α(q(s)q(s̃)− q(s)q(s̃)−1))
θx−θs(x)

1−θ−2α
, if α∨ ∈ 2X∨,

(2.8)
s = sα ∈ S, x ∈ X. Here s̃ is defined as follows. Let S(α) ⊂ Sa be the connected
component of the Coxeter graph containing s. When α∨ ∈ 2X∨, S(α) must be

of affine type C̃l, l ≥ 1. Let s̃ be the image of s under the nontrivial graph

automorphism of C̃l.

Denote A = Λ[θx;x ∈ X], an abelian subalgebra of H. The center of H is
Z = AW , see [Lu1, Proposition 3.11] and [OS1, §2.1.3]. In particular, H is finite
over its center and the simple H-modules are finite dimensional.

The central characters are identified with elements of T/W × SpecΛ, where T =
HomZ[X,C×].
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Remark 2.2. When q is specialized to a set of nonzero complex numbers {qs : s ∈
Sa} (such that qwsw−1 = qs for all w ∈ W̃ with wsw−1 ∈ Sa), we say that H has
arbitrary parameters.

2.4. Let J ⊂ Π be given, and put J∨ = {α∨;α ∈ J}. Let RJ = R ∩ QJ and
R∨J = {α∨;α ∈ RJ}. Let WJ ⊂ W be the parabolic subgroup defined by the

reflections in J . Denote W̃J = X o WJ , and let qJ be the restriction of q to

W̃J . Consider the based root datum ΦJ = (X,RJ , X
∨, R∨J , J) and the affine Hecke

algebra HJ = H(ΦJ , qJ). This algebra can be identified with the subalgebra of
H(Φ, q) generated by Tw, w ∈WJ and θx, x ∈ X. One calls it a parabolic subalgebra
of H.

Define the induction functor

iJ = H⊗HJ − : HJ -mod→ H-mod. (2.9)

To define the “semisimple part” of H, one introduces

XJ = X/X ∩ (J∨)⊥ and X∨J = X∨ ∩QJ∨, (2.10)

where (J∨)⊥ = {x ∈ X; 〈x, α∨〉 = 0, for all α ∈ J}. Consider the root datum
Φss
J = (XJ , RJ , X

∨
J , R

∨
J , J) and the affine Hecke algebra Hss

J = H(Φss
J , qJ). For

every

t ∈ T J = HomZ(X/X ∩QJ,C×), (2.11)

let χt : HJ → Hss
J be the algebra homomorphism (cf. [OS1])

χt(θxTw) = t(x)θxJTw, x ∈ X,w ∈W, (2.12)

where xJ is the image of x in XJ . For every σ ∈ Hss
J -mod and every t ∈ T J , one

can therefore construct the parabolically induced module

X(J, σ, t) = iJ(σ ◦ χt). (2.13)

3. Clifford Theory for Ho 〈δ〉

In this section, we consider the affine Hecke algebras H together with an auto-
morphism δ and its Clifford theory.

Even if one is only interested in the representation theory ofH, automorphisms of
its parabolic subalgebras appear in the study of induction and restriction functors.
See also §4.

3.1. Suppose δ is an automorphism of Φ of finite order d. Then δ induces an

automorphism on W̃ with δ(Sa) = Sa. If the indeterminates q satisfy q(δ(w)) =

q(w), for all w ∈ W̃ , we can define an extension of the affine Hecke algebra H by
Γ = 〈δ〉:

H′ = Ho Γ. (3.1)

Set W̃ ′ = W̃oΓ and W ′ = WoΓ. The center ofH′ is AW ′ , so the central characters
are parameterized by points in T/W ′ × SpecΛ.

If J ⊂ Π, set ΓJ = {δi ∈ Γ; δi(RJ) = RJ}. The parabolic subalgebra is then
H′J = HJ oΓJ . We denote the induction functor again by iJ : H′J -mod→ H′-mod.

If K ⊂ Sa, set ΓK = {δi ∈ Γ; δi(K) = K}. We denote by WK the subgroup
generated by the reflections in K and W ′K = WK o ΓK . If WK is finite, then we
call it a parahoric subgroup.



8 DAN CIUBOTARU AND XUHUA HE

3.2. We define the δ-commutators and cocenters. This section is analogous to [CH,
section 3.1], where similar notions in the setting of the graded affine Hecke algebra
were considered.

Definition 3.1. If h, h′ ∈ H and i ∈ Z, define the δi-commutator of h and h′

by [h, h′]δi = hh′ − h′δi(h). Let [H,H]δi be the submodule of H generated by all
δi-commutators.

Denote by H̄[i] the quotient of H/[H,H]δi by the image of (1−δ). The following
result was proved in [CH] for extended graded Hecke algebras, but the proof applies
to any associative algebra extended by a finite cyclic group.

Proposition 3.2 ([CH, Proposition 3.1.1]). Set H̄′ = H′/[H′,H′]. Then:

(1) H̄′ = ⊕d−1
i=0Hδi/([H′,H′] ∩Hδi);

(2) The map h 7→ hδi induces a linear isomorphism H̄[i] → Hδi/([H′,H′] ∩
Hδi).

3.3. We discuss Clifford theory for H′. This is standard and analogous with the
graded affine Hecke algebra case from [CH, section 3.2], and the proofs are identical.

Let Γ = 〈δ〉. If (π,M) is a finite dimensional H-module, let (δ
i

π, δ
i

M) denote

the H-module with the action δiπ(h)m = π(δ−i(h))m, for all m ∈M, h ∈ H. If M

is a simple module, define the inertia group ΓM = {δi;M ∼= δiM}.
Fix a family of isomorphisms φδi : M → δ−iM of H-modules for each δi ∈ ΓM

such that φδki = φkδi . This is possible since ΓM is cyclic.
If U is an irreducible ΓM -module, there is an action of Ho ΓM on M ⊗ U :

(hδi)(m⊗ u) = hφδi(m)⊗ δiu. (3.2)

One can form the induced H′-module M o U = IndHoΓ
HoΓM

(X ⊗ U).

Theorem 3.3 (cf. [RR, Appendix A]). (1) If M is an irreducible H-module
and U an irreducible ΓM -module, the induced H′-module M o U is irre-
ducible.

(2) Every irreducible H′-module is isomorphic to an M o U.
(3) If M oU ∼= M ′ oU ′, then M,M ′ are Γ-conjugate H-modules, and U ∼= U ′

as ΓM -modules.

For every δ′ ∈ Γ, set Irrδ
′
H = {M ∈ IrrH; δ′ ∈ ΓM} and let Rδ

′
(H) denote the

Z-linear span of Irrδ
′
H. If (π,M) ∈ Irrδ

′
H, let φδ′ ∈ EndC(M) be the intertwiner as

before. The twisted trace is

trδ
′
(π) : H → C, trδ

′
(π)(h) = tr(π(h) ◦ φδ′).

Let also tr( , ) : H′ × R(H′) → C be the trace pairing, i.e., tr(h, π) = trπ(h),
h ∈ H′, π ∈ R(H′).

Lemma 3.4 (cf. [CH, Lemma 3.2.1]). Let M o U be an irreducible H′-module as
in Theorem 3.3. For h ∈ H, δ′ ∈ Γ,

tr(hδ′,M o U) =

{
δ′(U)

∑
γ∈Γ/ΓM

trδ
′
(M)(γ−1(h)), if δ′ ∈ ΓM ,

0, if δ′ /∈ ΓM ,
(3.3)

where δ′(U) is the root of unity by which δ′ acts on U .
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Let O be a Γ-orbit on IrrH. Set ΓO = ΓM for any M ∈ O. This is well-
defined since Γ is cyclic. Then for any irreducible ΓO-module U and M ∈ O,
M oU = ⊕M ′∈OM ′⊗U is independent of the choice of M . We denote it by OoU .
By Theorem 3.3, IrrH′ = {OoU}, where O runs over Γ-orbits on IrrH and U runs
over isomorphism classes of irreducible representations of ΓO.

Suppose that δi ∈ ΓO. Let UO,i be the virtual representation of ΓO whose
character is the characteristic function on δi. Then

{O o UO,i;O ∈ IrrH/Γ, i ∈ Z/dZ with δi ∈ ΓO}
is a basis of R(H′).

Let R[i](H′) be the subspace of R(H′) spanned by O o UO,i, where O runs over
Γ-orbits on IrrH with δi ∈ ΓO. Then

R(H′) =

d−1⊕
i=0

R[i](H′). (3.4)

By definition, R[i](H′) is a vector space with basis (Irrδ
i

H)Γ. The map M ∈
Irrδ

i

(H) 7→ M o UΓM ,i induces an isomorphism Rδ
i

(H)Γ,C → R[i](H′). Here

Rδ
i

(H)Γ,C is the Γ-coinvariants of Rδ
i

(H)C.
By Lemma 3.4, for 0 ≤ i, j < d with i 6= j, tr(Hδi, O o UO,j) = 0.

3.4. Define the trace linear map

tr : H̄′ → R(H′)∗, h 7→ (fh : R(H′)→ C, fh(π) = trπ(h)). (3.5)

This map is compatible with the decompositions from Proposition 3.2 and (3.4) as
follows. Let R∗δ(H) = HomC(Rδ(H),C). The twisted trace map

trδ : H → R∗δ(H), h 7→ (fδh : Rδ(H)→ C, fδh(π) = trδ(π)) (3.6)

descends to a linear map

trδ : H̄δ = H/[H,H]δ → R∗δ(H). (3.7)

Definition 3.5. A form f ∈ R∗δ(H) is called a trace form if f ∈ im trδ. Denote the
subspace of trace forms by R∗δ(H)tr.

A form f ∈ R∗δ(H) is called good if for every J ⊂ I such that δ(J) = J , and

every σ ∈ Irrδ(Hss
J ), the function t 7→ f(X(J, σ, t)) is a regular function on (T J)δ.

Denote the subspace of good forms by R∗δ(H)good.

It is clear that R∗δ(H)tr ⊂ R∗δ(H)good.

4. Induction and restriction

In this section, we collect some known facts about induction and restriction
maps.

4.1. If K ⊂ J are given subsets of Π, denote by iJK : R(HK) → R(HJ), and by
rJK : R(HJ) → R(HK) the map on complexified Grothendieck groups induced by
the induction and restriction functors respectively. When J and K are δ-invariant,
we also have the corresponding maps, denoted again by iJK and rJK between Rδ(HK)
and Rδ(HJ).

It is obvious that

Lemma 4.1. For L ⊂ K ⊂ J ⊂ Π, iJL = iJK ◦ iKL and rJL = rKL ◦ rJK .
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The following “Mackey decomposition” is the analogue of [BDK, Lemma 5.4]
and [Fl, Lemma 2.1]. See also [Mi, Theorem 1].

Lemma 4.2. Let δ be an automorphism of Φ of finite order. If K = δ(K) and
J = δ(J), then

rK ◦ iJ =
∑

w∈KWJ∩W δ

iKKw ◦ w ◦ r
J
Jw , (4.1)

as maps from Rδ(HJ) to Rδ(HK), where KW J is the set of representatives of
minimal length for WK\W/WJ , Kw = K ∩ wJw−1 and Jw = J ∩ w−1Kw.

4.2. We recall certain elements defined in [Lu1, section 5.1]. Let F be the quotient
field of Z. For every α ∈ Π, set

G(α) =

{
q(sα)2θα−1

θα−1 , if α∨ /∈ 2X∨,
(q(s)q(s̃)θα−1)(q(s)q(s̃)−1)θα+1)

θ2α−1 , if α∨ ∈ 2X∨,
(4.2)

see [Lu1, section 3.8]. Set AF = A ⊗Z F . This is naturally isomorphic to the
quotient field of A, see [Lu1, §3.12(a)]. Therefore, we have G(α) ∈ AF . Define the
following elements in HF = H⊗Z F :

τα = (Tsα + 1)G(α)−1 − 1. (4.3)

By [Lu1, Proposition 5.2], the assignment sα 7→ τα, α ∈ Π extends to a unique
group homomorphism W → H×F . Denote by τw the image of w ∈W. Moreover,

fτw = τww
−1(f), for all w ∈W, f ∈ AF . (4.4)

The following lemma is also well known, see for example [BM3, section 1.6], where
a similar statement was verified in the context of graded Hecke algebras.

Lemma 4.3. Suppose K,J ⊂ Π are such that K = w(J), where w ∈ KW J . For
every α ∈ J, Tsατw−1 = τw−1Tsβ , where β = w(α) ∈ K.

Proof. We calculate:

Tsατw−1 = ((τα + 1)G(α)− 1)τw−1

= (τα + 1)τw−1G(β)− τw−1 , by (4.4)

= (τw−1τβ + τw−1)G(β)− τw−1 , since τ is a homomorphism

= τw−1Tsβ . �

Lemma 4.4. Suppose that K,J ⊂ Π are δ-stable subsets. Let KW J(δ) denote the
subset of δ-fixed elements in KW J . If w ∈ KW J(δ) and K = w(J), then iK ◦w = iJ
in Rδ(H).

Proof. Let (σ ◦ χt, V ) be an irreducible module in HJ -mod, t ∈ T J , and let (σw ◦
χw(t), V

w = V ) ∈ HK-mod be its twist by w. We need to prove that in Rδ(H),
iK(σw ◦χw(t)) = iJ(σ ◦χt). Since the characters of both sides are regular functions
in t, it is sufficient to prove this for t generic. Define

φw(σ, t) : H⊗HJ V → H⊗HK V w, h⊗ v 7→ vτw−1 ⊗ v. (4.5)

This is a well-defined intertwining operator. To see this, notice first that since we
are assuming t is generic, τw−1 evaluated at σ⊗χt has no poles. Secondly, by (4.4)
and Lemma 4.3, if h′ ∈ HJ , then h′τw−1 = τw−1w(h′), and thus φw(σ, t)(hh′⊗ v) =
φw(σ, t)(h ⊗ (σ(h′) ◦ χt)v). Since the action of H on the induced modules is by
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left multiplication, φw is indeed an intertwiner. Finally, for generic t, φw(σ, t) is
invertible, and the inverse is φw−1(σw, w(t)). �

4.3. For every J ⊂ Π, let ĩJ : H′J → H′ denote the inclusion. Define r̃J : H′ → H′J
as follows. Given h ∈ H′, let ψh : H′ → H′ be the linear map given by left
multiplication by h. This can be viewed as a right H′J -module morphism. Since
H′ is free of finite rank as a right H′J -module, one can consider trψh ∈ H′J . Set
r̃J(h) = trψh.

As before, for every K ⊂ J, we may also define ĩJK and r̃JK .

Suppose δ(J) = J. Define H̄J,δ = HJ/[HJ ,HJ ]δ. Then ĩJ gives rise to a well-
defined map (not necessarily injective)

īJ : H̄J,δ → H̄δ.
Since r̃J [H,H]δ ⊂ [HJ ,HJ ]δ, r̃J descends to a well-defined map

r̄J : H̄δ → H̄J,δ
sending h + [H,H]δ to the image of r̃J(hδ)δ−1 in HJ,δ. Define the similar notions
īJK and r̄JK .

Lemma 4.5 (cf. [CH, Lemma 4.5.1]). The maps īJ and r̄J are tr( , )-adjoint to
rJ and iJ , respectively.

4.4. We introduce the following hypothesis:

(PDT) The Density Theorem holds for every proper parabolic subalgebra HJ ,
δ(J) = J .

The following properties are dual to those of iJ and rJ .

Lemma 4.6. Suppose (PDT) holds. Then

(i) For L ⊂ K ⊂ J , īJL = īJK ◦ īKL and r̄JL = r̄KL ◦ r̄JK .
(ii) If K = δ(K) and J = δ(J), then

r̄J ◦ īK =
∑

w∈KWJ (δ)

īJJw ◦ w
−1 ◦ r̄KKw , (4.6)

as maps from H̄K,δ → H̄J,δ, where Kw = K∩wJw−1 and Jw = J∩w−1Kw.
(iii) If w ∈ KW J(δ) and K = w(J),

w−1 ◦ r̄K = r̄J . (4.7)

Remark 4.7. (1) We will see in section 8 that the (PDT) hypothesis is not neces-
sary.

(2) In general, if J , K, and w are as in Lemma 4.6(iii), īK ◦ w 6= īJ in H̄δ. For
example, suppose δ = 1, J = K = ∅, and take θx ∈ H̄∅. Then, for w ∈W, θx 6≡ θw(x)

in H̄, in general. To see this, one can use the (one-dimensional) Steinberg module
St of H, and the fact that tr(θx,St) 6= tr(θw(x),St), in general.

4.5. In the end of this section, we recall the A-operators. For any J = δ(J) ⊂ Π,
set NJ = {z ∈ JW J ; z = δ(z), J = z(J)}.

As in [BDK, section 5.5], see also [Da, section 2], fix an order of the subsets K
of every given size, and define

A` =
∏

K=δ(K),|K|=|Π|−`

(iK ◦ rK − |NK |), and A = A|Π| ◦ · · · ◦A1 : Rδ(H)→ Rδ(H).

(4.8)
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Let

Ā` =
∏

δ(K)=K,|K|=|Π|−`

(̄iK ◦ r̄K − |NK |), Ā = Ā1 ◦ Ā2 ◦ · · · ◦ Ā|Π|, (4.9)

be the adjoint operator.

The following proposition is proved in [BDK, sections 5.4, 5.5] and [Da, Propo-
sition 2.5 (i)].

Proposition 4.8. We have A2 = aA for some a 6= 0 and

kerA =
∑

J=δ(J)$I

iJ(Rδ(HJ)).

The following proposition is the dual result to Proposition 4.8 and it follows by
adjunction.

Proposition 4.9. Suppose (PDT) holds.
(1) Ā2 = aĀ for some a 6= 0.
(2) Set H̄ell

δ = ∩J=δ(J)$I ker r̄J . Then H̄ell
δ = im Ā.

5. Spanning sets of the cocenter

In this section, we recall the explicit description of the cocenter of H obtained
in [HN1] and [HN2].

5.1. We first recall some properties on the minimal length elements of conjugacy

classes of W̃ ′.
We follow [HN1]. For w,w′ ∈ W̃ ′ and s ∈ Sa, we write w

s−→ w′ if w′ = sws and
`(w′) ≤ `(w). We write w → w′ if there is a sequence w = w0, w1, · · · , wn = w′ of

elements in W̃ such that for any k, wk−1
s−→ wk for some s ∈ Sa.

We call w,w′ ∈ W̃ ′ elementarily strongly conjugate if `(w) = `(w′) and there

exists x ∈ W̃ ′ such that w′ = xwx−1 and `(xw) = `(x) + `(w) or `(wx−1) = `(x) +
`(w). We call w,w′ strongly conjugate if there is a sequence w = w0, w1, · · · , wn =
w′ such that for each i, wi−1 is elementarily strongly conjugate to wi and we write
w ∼ w′ in this case.

The following result is proved in [HN1, Theorem A].

Theorem 5.1. Let O be a conjugacy class of W̃ ′ and Omin be the set of minimal
length elements in O. Then

(1) For any w′ ∈ O, there exists w′′ ∈ Omin such that w′ → w′′.
(2) Let w′, w′′ ∈ Omin, then w′ ∼ w′′.

5.2. By definition, if w ∼ w′, then Tw ≡ Tw′ mod [H′,H′]. Let O be a conjugacy

class of W̃ ′. Let TO be the image of Tw in H̄′, where w is a minimal length element
in O. By Theorem 5.1 (2), TO is independent of the choice of w.

Moreover, we have the following result.

Theorem 5.2. The elements {TO}, where O ranges over all the conjugacy classes

of W̃ ′, span H̄′ as an Λ-module.

The equal parameter case was proved in [HN1, Theorem 5.3]. The general case
can be proved in the same way and we omit the details. In [HN1, Theorem 6.7], it
is proved in the equal parameter case that {TO} is a basis of H̄′. The proof there
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is to use the base ring to reduce the question to the group algebra of W̃ ′ and then
to prove the density theorem for the group algebra.

In this paper, we will prove that {TO} is a basis of H̄′ for arbitrary after estab-
lishing the trace Paley-Wiener Theorem and the Density Theorem.

5.3. The expression for a minimal length element Tw in O is usually very compli-
cated. To study the induction and restriction maps on the cocenter, we also need
the Bernstein-Lusztig presentation of H̄′ established in [HN2].

5.4. Let XC = X ⊗Z C and N = |W ′|. For any w ∈ W̃ ′, wn = tλ for some λ ∈ X.
Let νw = λ/n and ν̄w be the unique dominant element in the W0-orbit of νw. Then

the map W̃ → XC, w 7→ ν̄w is constant on the conjugacy classes of W̃ ′. For any
conjugacy class O, we set νO = ν̄w for any w ∈ O and call it the Newton point of
O. We set

JO = {α ∈ Π; sα(νO) = νO}. (5.1)

We say that the Newton point of O is central if JO = Π.

5.5. Let p : W̃ ′ = X o W ′ → W ′ be the projection map. We call an element

w ∈W ′ elliptic if (XC)w ⊂ (XC)W and an element w ∈ W̃ elliptic if p(w) is elliptic

in W ′. A conjugacy class O in W̃ ′ is called elliptic if w is elliptic for some (or,
equivalently any) w ∈ O. By definition, if O is elliptic, then νO ∈ XW

C . In other
words, elliptic conjugacy classes have central Newton point.

5.6. Let ℵ be the set of pairs (J,C), where J ⊂ S, C is an elliptic conjugacy class

of W̃J o ΓJ and νw is dominant for some (or, equivalently any) w ∈ C. For any
(J,C), (J ′, C ′) ∈ ℵ, we write (J,C) ∼ (J ′, C ′) if νw = νw′ for w ∈ C and w′ ∈ C ′
and there exists x ∈WJνw o ΓJνw such that xCx−1 = C ′.

By [HN2, Lemma 5.8], the map from ℵ to the set of conjugacy classes of W̃ ′

sending (J,C) to the unique conjugacy class O of W̃ with C ⊂ O gives a bijection

from ℵ/ ∼ to the set of conjugacy classes of W̃ . We denote this map by τ . It is
proved in [HN2, Theorem B] that

Theorem 5.3. Let (J,C) ∈ ℵ and O = τ(J,C). Then

TO = īJ(T JC ).

Here T JC is the image of Ty in H̄′J for any minimal length element y of C (with

respect to the length function on W̃JoΓJ). However, in general, y is not a minimal

length element in O (with respect to the length function on W̃ ′). The expression
of īJ(T JC ) involves the Bernstein-Lusztig presentation of H′J and H′.

5.7. As we will see later, the conjugacy classes with central Newton points play a
crucial role in this paper. Here we discuss a variation of §5.6 and Theorem 5.3.

LetO be a conjugacy class of W̃ ′ and J = JO. We may assume thatO = τ(K,C).

Then it is easy to see that K ⊂ J . Let O′ be the conjugacy class of W̃ ′J o ΓJ such
that O′ = τJ(K,C). Then JO′ = J and T JO′ = īJK(TKC ). Hence

TO = īK(TKC ) = īJ(T JO′).
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6. Elliptic quotients and rigid quotients

In this section, we discuss two natural quotients for Rδ(H): the elliptic quotient
introduced in [BDK] and the rigid quotient, which we introduce below.

Unless specified otherwise, H is assumed to have arbitrary parameters.

6.1. The elliptic quotient of Rδ(H) is defined to be

R̄δ0(H) = Rδ(H)/
∑

J=δ(J)$I

iJ(Rδ(HJ)).

Now we introduce the rigid quotient.

Definition 6.1. Set

Rδ(H)diff−ind = span{iJ(σ)− iJ(σ ◦ χt); J = δ(J), σ ∈ Rδ(Hss
J ),

t ∈ HomZ(X ∩QR/X ∩QJ,C∗)δ} ⊂ Rδ(H)
(6.1)

and define the rigid quotient of Rδ(H) to be

R̄δ(H)rigid = Rδ(H)/Rδ(H)diff−ind. (6.2)

Notice in the definition the presence of X ∩ QR, rather than X. This is to
account for the fact that the root datum may not be semisimple.

In the rest of this section, we assume that the root datum Φ for H is semisimple.
We estimate the dimension of the elliptic quotient and rigid quotient of Rδ(H). By
Proposition 4.9, the subspace H̄ell

δ of H̄ is the image of Ā if (PDT) holds.

Proposition 6.2. Suppose (PDT) holds and that the root datum for H is semisim-
ple. Then the rank of the restriction of the trace map tr : H̄ell

δ × R̄δ0(H)→ C equals
dim R̄δ0(H). In particular, dim R̄δ0(H) ≤ dim H̄ell

δ .

Remark 6.3. In fact, we will see in section 8 that the (PDT) assumption can be
dropped.

Proof. Suppose {π1, π2, . . . , πk} is a set in Rδ(H) such that its image in R
δ

0(H) is
linearly independent. Applying the operator A, one obtains a linearly independent

set {A(π1), A(π2), . . . , A(πk)} in Rδ(H). This is because A(π) ≡ aπ in R
δ

0(H), and
a 6= 0.

Since the characters of simple modules are linear independent, so are the charac-
ters of any linear independent set in Rδ(H). Thus there exist elements h1, h2, . . . , hk
of H̄, such that the matrix (tr(hiδ, A(πj))i,j is invertible. By Lemma 4.5, the ma-
trix (tr(Ā(hi)δ, πj))i,j is also invertible, hence {Ā(hi)} is a linear independent set
in H̄δ. Now the Proposition follows from Proposition 4.9. �

6.2. Let Iδ = {J ⊂ Π; J = δ(J)}. For J, J ′ ∈ Iδ, we write J ∼δ J ′ if there exists

w ∈ W δ ∩ J′W J such that w(J) = J ′. For each ∼δ-equivalence class in Iδ, we
choose a representative. We denote by Iδ♠ ⊂ Iδ the set of representatives. Recall

that NJ = {z ∈ JW J ; z = δ(z), J = z(J)}. Then NJ acts on Rδ(Hss
J ) and on

R̄δ0(Hss
J ).

By Lemma 4.1 and Lemma 4.2, we have

Lemma 6.4. If K = δ(K) ( Π, then iK(Rδ(HK)diff−ind) ⊆ Rδ(H)diff−ind and
rK(Rδ(H)diff−ind) ⊆ Rδ(HK)diff−ind.
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The first result is an equality on the dimension of R̄δ(H)rigid.

Proposition 6.5. Suppose that the root datum for H is semisimple. Then

dim R̄δ(H)rigid =
∑
J∈Iδ♠

dim R̄δ0(Hss
J )NJ

Proof. Let m = |Π| and consider first the natural projection

pm : R̄δ(H)rigid → R̄δ0(H).

By definition,

ker pm =
∑

J=δ(J)(Π

[iJ(Rδ(HJ))],

where [iJ(Rδ(HJ))] = iJ(Rδ(HJ))/iJ(Rδ(HJ)) ∩ Rδ(H)diff−ind. By Lemma 4.4, we
can replace the right hand side by

ker pm =
∑
J∈Iδ♠

[iJ(Rδ(HJ)NJ )].

Let rss
J = χ1 ◦ rJ : Rδ(H))→ Rδ(HJ)→ Rδ(Hss

J ). Let J1, . . . , Jk be the representa-
tives in Iδ♠ of the maximal δ-stable proper subsets of Π. Then consider:

pm−1 : ker pm →
k⊕
i=1

R̄0(Hss
Ji)

NJi , pm−1 =
∑
i

rss
Ji .

By Lemma 4.2, this map is well-defined. It is also surjective, given the definition
of ker pN .

Continue in this way and define

pm−2 : ker pm−1 →
⊕

J∈Iδ♠,|J|=m−2

R̄0(Hss
J )NJ , pm−2 =

∑
J∈Iδ♠,|J|=m−2

rss
J ,

etc., until p0 : ker p1 → R̄0(Hss
∅ )W = {0}.

Therefore, dim R̄δ(H)rigid =
∑N
j=0 dim im pj =

∑
J∈Iδ♠

dim R̄δ0(Hss
J )NJ . �

Definition 6.6. A specialization of the parameter q of H is called admissible if
Lusztig’s reduction [Lu1, Theorems 8.6, 9.3] from affine Hecke algebras to graded
affine Hecke algebras holds for all the parabolic subalgebras of H (in particular,
including H itself). For example, this is the case if q is specialized to q(α) = qL(α),
where L(α) ∈ Z≥0 and q ∈ C× has infinite order, or more generally, q’s order is
not small (so that both the numerators and denominators in the first displayed
equation in the proof of [Lu1, Lemma 9.5] are nonzero).

6.3. Now we give a precise formula for the dimensions of elliptic quotient and rigid

quotient of Rδ(H) in terms of δ-conjugacy classes of W̃ .

Let cl(W̃ , δ) be the set of δ-conjugacy classes of W̃ . Let cl(W̃ , δ)ell be the set of

elliptic δ-conjugacy classes of W̃ , and let cl(W̃ , δ)0 be the set of δ-conjugacy classes

O of W̃ such that νO = 0. Then

cl(W̃ , δ)ell ⊂ cl(W̃ , δ)0 ⊂ cl(W̃ , δ).

Let cl(W, δ)ell ⊂ cl(W, δ) denote the set of elliptic δ-conjugacy classes, respectively
all δ-conjugacy classes in W .
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By [HN2, Lemma 5.8], we have∑
J⊂Iδ♠

|cl(W̃J , δ)ell/NJ | = |cl(W̃ , δ)0|. (6.3)

For s ∈ T = HomZ(X,C∗), set Ws = {w ∈ W ;w · s = s}. We call s isolated
if Ws contains a δ-elliptic element of W . By [OS2, Theorem 3.2], Clifford-Mackey
induction gives a natural isomorphism

R̄δ0(W̃ ) ∼=
⊕

s∈T/W ′ isolated

R̄δ(Ws). (6.4)

Now suppose that we are given a finite group of automorphisms Φ that commutes

with δ. The action of N on Φ induces actions on W̃ and on T . We denote by ZN (s)
the stabilizer of s ∈ T . Then the previous isomorphism implies

R̄δ0(W̃ )N ∼=
⊕

s∈T/W ′N isolated

R̄δ(Ws)
ZN (s), (6.5)

and in particular, considering the dimensions of the spaces involved, one finds

|cl(W̃ , δ)ell/N | =
∑
s

|cl(Ws, δ)ell/ZN (s)|, (6.6)

where s ranges over N -orbits of isolated representatives in T/W ′.
We have the following result on the dimension of the elliptic quotient.

Proposition 6.7. Suppose that q is specialized to an admissible parameter and
that the root datum for H is semisimple. Let N be a group of automorphisms on

W̃ that preserves Sa and commutes with δ. Then

(1) dim R̄δ0(H)N = |cl(W̃ , δ)ell/N |.
(2) dim R̄δ(H)Nrigid = |cl(W̃ , δ)0/N |.

Remark 6.8. In particular, the parameterization of irreducible representations of
an affine Hecke algebra with (possibly unequal) admissible parameters is the same
as the parameterization of irreducible representations of the extended affine Weyl
group once we identify the elliptic quotient for the parabolic subalgebras of affine
Hecke algebra and the group algebra.

Proof. Recall that the complex torus T has a polar decomposition T = TcTu, where
Tc = HomZ(X,S1) is the compact part of the torus T and Tu = HomZ(X,R>0). For
every s ∈ Tc/W ′, let Rδ(H)s denote the span of the irreducible δ-stable H-modules
whose central characters have compact part s. Clearly, we have decompositions

Rδ(H) =
⊕

s∈Tc/W ′
Rδ(H)s, and

Rδ(H)N =
⊕

s∈Tc/W ′N

Rδ(H)ZN (s)
s .

Let R̄δ0(H)s denote the image of Rδ0(H) in R̄δ0(H). Then, since the action of N
preserves RδInd(H), we have

R̄δ0(H)N =
⊕

s∈Tc/W ′N

R̄δ0(H)ZN (s)
s .
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If s is not isolated, then R̄δ0(H)s = 0, so the decomposition becomes

R̄δ0(H)N =
⊕

s∈Tc/W ′N isolated

R̄δ0(H)ZN (s)
s . (6.7)

Let Hs be the graded affine Hecke algebra constructed from H and the W -orbit
of s in [Lu1, section 8], see also [BM2, section 3]. When s is isolated, the root
system corresponding to Hs is semisimple. By [Lu1, Theorems 8.3 and 9.2] and
the fact that parabolic induction commutes with the reduction to graded Hecke
algebras (e.g., [BM2, Theorem 6.2]), it follows that

R̄δ0(H)s ∼= R̄δ0(Hs) and R̄δ0(H)ZN (s)
s

∼= R̄δ0(Hs)ZN (s). (6.8)

By [CH, Theorems B and C] applied to the semisimple graded Hecke algebra Hs,
there exists a perfect pairing between the finite dimensional spaces

tr : R̄δ0(Hs)× (H̄s)δ,0 → C. (6.9)

This implies that the subspace R̄δ0(Hs)ZN (s) is in perfect duality with the space
of ZN (s)-coinvariants ((H̄s)δ,0)ZN (s). By [CH, Theorem 7.2.1], (H̄s)δ,0 has a basis
{wC ;C ∈ cl(Ws, δ)ell}, where wC is a representative of C. This means that

dim R̄δ0(Hs)ZN (s) = dim((H̄s)δ,0)ZN (s) = |cl(Ws, δ)ell/ZN (s)|. (6.10)

Then (6.8) gives dim R̄δ0(H)
ZN (s)
s = |cl(Ws, δ)ell/ZN (s)|, and therefore part (1) of

the proposition follows from (6.7) and (6.6).
Part (2) of the proposition follows from part (1), Proposition 6.5 and 6.6. �

6.4. In fact, the proof of Proposition 6.5 gives a section of R̄δ(H)rigid → Rδ(H). To
define it, recall the [BDK]-map defined in (4.8)

A : Rδ(H)→ Rδ(H),

which by Proposition 4.8 has the property that

kerA = Rδ1(H), and so imA ∼= R̄δ0(H). (6.11)

Let AJ : Rδ(HJ)→ Rδ(HJ) be the similar maps for the parabolic subalgebras HJ .
As a consequence of the proof of Proposition 6.5, we have

Corollary 6.9. If the root datum for H is semisimple, a section of R̄δ(H)rigid is
given by ⊕

J∈Iδ♠

iJ im(AJ : R(Hss
J )→ R(Hss

J ))NJ .

7. Duality between H̄ and R(H)

Our strategy to prove the main results is to use traces of finite dimensional
H-modules to separate the elements {TO} that span the cocenter H̄.

7.1. Recall that R∗δ(H) = HomC(Rδ(H),C). Let (R̄δ(H)rigid)∗ be the subspace of
R∗δ(H) consisting of linear functions on Rδ(H) that vanish on Rδ(H)diff−ind. Define

H̄rigid = span{TO; JO = Π}.
We have the following separation theorem.

Theorem 7.1. Suppose that (PDT) holds. Then

H̄rigid
δ = {h ∈ H̄δ; trδ(h)(Rδ(H)diff−ind) = 0}.



18 DAN CIUBOTARU AND XUHUA HE

Proof. We assume that the root datum for H is semisimple. The reduction from
the reductive root system to the semisimple root system will be discussed in a more
general setting in section 8.1.

Let O be a conjugacy class with JO = Π. There exist K ( Πa such that TO = Tw
(in H̄δ) for some elliptic element w in the parahoric subgroup W ′K . Since W ′K is a
finite group,

iJ(σ) ∼= iJ(σ ◦ χt) as H′K-representations,

for all J = δ(J) ⊂ Π and t ∈ Hom(X ∩QR/X ∩QJ,C∗)δ. This means that

tr(Tw, π) = 0, for all π ∈ Rδ(H)diff−ind,

and hence TO = Tw ∈ H̄rigid
δ .

For the converse inclusion, suppose trδ(
∑
O aOTO)(Rδ(H)diff−ind) = 0. Let J be

a minimal subset of Π such that J = JO for some O with aO 6= 0. If J = Π, we
are done. Otherwise, suppose J ( Π. Apply iJ(σt−t′) = iJ(σ ◦ (χt − χt′)), where
σ ∈ Rδ(HJ) will be chosen conveniently later, to the linear combination to obtain:

pJ(t, t′) =
∑
O
aO tr(TO, iJ(σt−t′))

=
∑
JO=J

aO tr(TO, iJ(σt−t′)) +
∑
JO 6=J

aO tr(TO, iJ(σt−t′)),

as a polynomial function in t, t′ ∈ Hom(X ∩QR/X ∩QJ,C∗)δ.
In pJ(t, t′), the part

∑
JO=J is more regular in t, t′ than the second part

∑
JO 6=J .

Since by assumption pJ(t, t′) = 0 for all t, t′, it follows that∑
JO=J

aO tr(TO, iJ(σt−t′)) = 0.

By Theorem 5.3 and §5.7, for any O with JO = J , we have TO = īJ(T JO′) for some

conjugacy class O′ of W̃J o ΓJ with JO′ = J and O′ ⊂ O.

Set h =
∑
JO=J aOT

J
O′ . By induction, h ∈ (H̄rigid

J,δ )NJ . Then∑
JO=J

aO tr(TO, iJ(σt−t′)) =
∑
JO=J

aO tr(̄iJ(T JO′), iJ(σt−t′)) = tr(h, rJ◦iJ(σt−t′)) = 0.

(7.1)
By Lemmas 4.2 and 4.4, we have

rJ ◦ iJ =
∑
w∈NJ

w +
∑

w∈JWJ (δ)\NJ

iJJw ◦ r
J
Jw , Jw = J ∩ w−1Jw.

Notice that the second part of the sum involves only Jw that are proper subsets of
J . By Lemma 6.4, we find that tr(h, ) vanishes on this part, and so tr(h,

∑
w∈NJ w◦

σt−t′)) = 0. Since t, t′ are arbitrary, this implies that
∑
w∈NJ tr(h,w ◦ σ) = 0, for

all σ ∈ Rδ(HJ). Now specialize σ ∈ Rδ(HJ)NJ and get

tr(h, σ) = 0, for all σ ∈ Rδ(HJ)NJ . (7.2)

The (PDT) assumption says that tr : H̄J,δ × Rδ(HJ) → C is nondegenerate on
the left. Passing to NJ -coinvariants and NJ -invariants, respectively, it follows that
tr : (H̄J,δ)NJ ×Rδ(HJ)NJ → C is also nondegenerate on the left. Then (7.2) gives

h = 0 in (H̄rigid
J,δ )NJ . Therefore

∑
JO=J aOTO = 0 and this is a contradiction.

�
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7.2. When the specialized parameters of the Hecke algebra are not roots of unity,
the rigid cocenter H̄rigid appears naturally in relation with K0(H), the Grothendieck
group of finitely generated projective H-modules. Let

Rk : K0(H)→ H̄ (7.3)

be the Hattori-Stallings rank map, see for example [Da, §1.2]. If P ∈ K0(H) is a
finitely generated projective module, then P is a direct summand of Hn for some
positive integer n. As such, there exists an idempotent eP ∈ Mn×n(H) such that
P = HneP as left H-modules. The rank map is defined to be the image in H̄ of the
matrix trace of eP , i.e.,

Rk(P ) = Tr(eP ) mod [H,H]. (7.4)

Example 7.2. For every subset K ⊂ Sa with WK finite, letHK ⊂ H be the (finite)
parahoric Hecke algebra generated by Tsi , i ∈ K. If τ is a simple finite dimensional
HK-module, form the ”compactly induced” module P (K, τ) = H⊗HK τ. When the
parameters of H are such that HK is a semisimple algebra, these modules are all
finitely generated projective.

Lemma 7.3. The image of the rank map Rk lies in H̄rigid.

Proof. Let P ∈ K0(H) be a finitely generated projective module. By Theorem
7.1, for J ⊂ Π, (σ, Vσ) ∈ Hss

J -mod and t ∈ Hom(X ∩ QR/X ∩ QJ,C∗), we need
to show that tr(Rk(P ), iJ(σt)) is independent of t, where σt = σ ◦ χt are acting
on the same vector space Vσ. By the adjunction property, tr(Rk(P ), iJ(σ ◦ χt)) =
tr(r̄J(Rk(P )), σ ◦ χt). Let rJ : K0(H) → K0(HJ) be the restriction map, then
r̄J(Rk(P )) = Rk(rJ(P )). Since rJ(P ) is a finitely generated projective HJ -module,
let eJP ∈ Mn×n(HJ) be a corresponding idempotent. Thus, we have arrived at
tr(Tr(eJP ), σ ◦χt). This is equivalent to computing the matrix trace of the family of
idempotents σt(e

J
P ) ∈ EndC[Vσ]. Now {σt(eJP )} is a continuous family of idempo-

tents, and by the rigidity of the trace of an idempotent, Tr(σt(e
J
P )) is independent

of t. �

Remark 7.4. One may regard this result as the affine Hecke algebra analogue of
the ”Selberg principle” for reductive p-adic groups of [BB], see [Da, Theorem 1.6].

7.3. We need a decomposition of H̄rigid
δ dual to the one for R̄δ(H)rigid from Propo-

sition 6.5 and Corollary 6.9.

Proposition 7.5. Suppose the root datum for H is semisimple and that (PDT)
holds. Then

H̄rigid
δ =

⊕
J∈Iδ♠

īJ(ĀJ((H̄ss
J )

rigid
)NJ ).

Proof. The proof follows the lines of the proof of Proposition 6.5.

By Theorem 7.1, H̄ell
δ ⊆ H̄

rigid
δ . By Proposition 4.8, Ā(H̄rigid

δ ) = H̄ell
δ . Hence

Hell
δ = Ā(Hell

δ ) ⊆ Ā(Hrigid
δ ) ⊆ Ā(Hδ) = Hell

δ . Thus

Ā(H̄rigid
δ ) = H̄ell

δ ⊂ H̄
rigid
δ .

Set p̄0 = Ā |H̄rigid
δ

. Since Ā2 = aĀ, a 6= 0, by Proposition 4.9, we have H̄rigid
δ =

Ā(H̄rigid
δ )⊕ ker p̄0.
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Since Ā = a+
∑
J=δ(J)(Π c

′
J∆̄J , ker p̄0 ⊂

∑
J∈Iδ♠,J 6=Π īJ(H̄δ,J). Recall that H̄rigid

δ

is spanned by TO, with JO = Π. From Theorem 5.3, we see then that

ker p̄0 ⊆
∑

J∈Iδ♠,J 6=Π

īJ(H̄ss,rigid
δ,J )NJ .

Consider the projection

p̄1 : ker p̄0 →
⊕

J∈Iδ♠,|J|=|Π|−1

īJ(ĀJ(H̄ss,rigid
δ,J )NJ ).

By Theorem 5.3, the map is well-defined, i.e., the range of p̄1 is indeed a direct sum

(rather than a sum). Moreover, p̄1 is surjective because the range of p̄1 is in H̄rigid
δ ,

and it is orthogonal to H̄ell
δ . Write ker p̄0 = ker p̄1 ⊕ im p̄1 and continue as in the

proof of Proposition 6.5. �

Now we state our main theorem.

Theorem 7.6. Suppose the root datum for H is semisimple, the (PDT) holds1,
and that q is specialized to an admissible parameter. Then

(1) tr : H̄rigid
δ × R̄(H)δrigid → C is a perfect pairing.

(2) tr : H̄ell
δ × R̄δ0(H)→ C is a perfect pairing.

Proof. We show that the pairing tr is block upper triangular with respect to the

decomposition of H̄rigid
δ from Proposition 7.5 and the decomposition of R̄δ(H)rigid

from Corollary 6.9. For every J ∈ Iδ♠, denote

H̄rigid
δ [J ] = īJ(ĀJ((H̄ss

J )
rigid

)NJ ) and R̄δ(H)rigid[J ] = iJ(AJ(R(Hss
J ))NJ ).

Let J,K ∈ Iδ♠ be given. Then, for h ∈ (H̄ss
K)rigid and π ∈ R(Hss

J ),

tr(̄iK(ĀK(h)), iJ(AJ(π))) = tr(h,AK ◦ (rK ◦ iJ)(AJ(π))), by Lemma 4.5,

=
∑

w∈KWJ (δ)

tr(h,AK ◦ (iKKw ◦ w ◦ r
J
Jw)(AJ(π))), by Lemma 4.2.

In particular, if J 6⊇ K (as elements of Iδ♠), then all Kw are proper subsets of

K, and therefore AK kills the induced modules. This means that tr : H̄rigid
δ [K] ×

R̄(H)δrigid[J ]→ C is identically zero if J 6⊇ K.
On the other hand, if J = K, the only nonzero contribution to the trace comes

from w ∈ KWK(δ) in the right hand side, and we obtain

tr(̄iK(ĀK(h)), iK(AK(π))) = |NK | tr(ĀK(h), AK(π)).

This is because AK(π) is chosen to be NK-invariant.

The rank of this pairing equals the rank of trss
K : (H̄ss,0

K,δ)NK × R̄δ0(Hss
K)NK → C,

which, by Proposition 6.2, equals dim R̄δ0(Hss
K)NK .

1In section 8, the Density Theorem 8.2 is proven, based on an inductive argument, and there-
fore, this assumption can be removed then.
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Table 1. The rigid cocenter/quotient table for SL(2)

SL(2) St π+ i∅(1)
T0 −1 −1 q− 1
T1 −1 q q− 1
1 1 1 2

Therefore,

rank tr(H̄rigid
δ × R̄(H)δrigid) =

∑
J∈Iδ♠

rank tr(H̄rigid
δ [J ]× R̄(H)δrigid[J ])

=
∑
J∈Iδ♠

dim R̄δ0(Hss
J )NJ

= dim R̄(H)δrigid.

(7.5)

This implies that dim H̄rigid
δ ≥ dim R̄(H)δrigid. On the other hand, from Theorem

7.1, we know that dim H̄rigid
δ ≤ |cl(W̃ , δ)0|. When q is admissible, dim R̄(H)δrigid =

|cl(W̃ , δ)0|, and therefore dim H̄rigid
δ = dim R̄(H)δrigid = |cl(W̃ , δ)0|, in this case. This

proves claim (1).
In light of the inequality in Proposition 6.2 (applied to each J), (1) implies that

the equality of dimensions must hold for each J , i.e., dim H̄rigid
δ [J ] = dim R̄δ(H)rigid[J ].

In particular, when J = Π, this is claim (2). �

7.4. Examples. In this subsection, we illustrate the pairing between the rigid
quotient and the rigid cocenter in some concrete examples.

Example 7.7 (SL(2)). Let H be the affine Hecke algebra for the root datum of
SL(2). This is generated by T0 and T1 subject to

T 2
i = (q− 1)Ti + q, i = 0, 1.

There are three conjugacy classes of finite order in W̃ : s0 (the affine reflection),
s1 (the finite reflection), and 1. Accordingly, we have the three basis elements of
H̄rigid: T0, T1, and 1.

There are four one-dimensional modules corresponding to Ti ∈ {−1, q}. A basis
of the elliptic space R̄0(H) in the admissible case is given by the classes of St =
(T0 = −1, T1 = −1) and any one of the two modules π+ = (T0 = −1, T1 = q) or
π− = (T0 = q, T1 = −1). Choose the class of π+.

The third basis element of R̄(H)rigid is the (tempered) principal series i∅(1). The
resulting 3× 3 table is in Table 1.

The determinant of this matrix is −(q+1)2, and therefore the matrix is invertible
for all q 6= −1.

To get a block upper-triangular matrix, one needs to replace Ti by Ā(Ti), i = 0, 1,
as in Theorem 7.6.

Example 7.8 (PGL(2)). Let H be the affine Hecke algebra for the root datum of
PGL(2). This is generated by T0, T1, τ subject to

T 2
i = (q− 1)Ti + q, i = 0, 1, τ2 = 1, τ · T0 = T1 · τ.
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Table 2. The rigid cocenter/quotient table for PGL(2)

PGL(2) St− St+ i∅(1)
T1 −1 −1 q− 1
τ 1 −1 0
1 1 1 2

There are three conjugacy classes of finite order in W̃ : s1 (the finite reflection), τ ,
and 1. Accordingly, we have the three basis elements of H̄rigid: T1, τ , and 1.

There are four one-dimensional modules corresponding to τ ∈ {1,−1} and T1 ∈
{−1, q}. A basis of the elliptic space R̄0(H) is given by the classes of St± = (T1 =
−1, τ = ±1).

The third basis element of R̄(H)rigid is the (tempered) principal series i∅(1). The
resulting 3× 3 table is in Table 2.

The determinant of this matrix is 2(q+ 1), and therefore the matrix is invertible
for all q 6= −1.

Example 7.9 (Affine C2). Let H be the affine Hecke algebra attached to the affine
diagram of type C2 with three parameters

q0 q1
+3 q2
ks , (7.6)

It is generated by Ti, i = 0, 1, 2, subject to T 2
i = (qi − 1)Ti + qi and the braid

relations.
There are nine conjugacy classes of finite order in W̃ , including five elliptic

classes. Representatives for the five elliptic classes are: s1s2, (s1s2)2, s0s2, s0s1,
and (s0s1)2. The other four classes correspond to: s0, s1, s2, and 1.

A basis of the elliptic space R̄0(H) in the admissible case can be constructed by
lifting the five simple modules for the finite Hecke algebra Hf (C2, q1, q2) under the
algebra homomorphism T0 7→ −1, T1 7→ T1, T2 7→ T2. We label these five modules
by the bipartitions which parameterized the corresponding representations of the
finite Weyl group: 2 × 0, 11 × 0, 0 × 2, 0 × 11, and 1 × 1. For the character table
of the finite Hecke algebra of type C2, see [GP].

The remaining four modules needed for a basis of the rigid quotient R̄(H)rigid

can be chosen as the induced tempered modules: i{1}(St), i{2}(St), i{2}(π
+), and

i∅(1). Here π+ is the one dimensional elliptic module for the Hecke algebra of
SL(2) = Sp(2) as in Table 1.

For this calculation, we computed the restrictions of the 9 representations to the
maximal finite Hecke subalgebras, using the Mackey formula, and then used the
character table for the finite Hecke algebras of type C2 and A1. The resulting rigid
character table is given, because of page limitations, in (7.7) and (7.8).
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Caff
2 2× 0 11× 0 0× 2 0× 11 1× 1

T1T2 q1q2 −q2 −q1 1 0
(T1T2)2 (q1q2)2 q2

2 q2
1 1 −2q1q2

T0T2 −q2 −q2 1 1 1− q2

T0T1 −q1 1 −q1 1 1− q1

(T0T1)2 q2
1 1 q2

1 1 q2
1 + 1

T0 −1 −1 −1 −1 −2
T1 q1 −1 q1 −1 q1 − 1
T2 q2 q2 −1 −1 q2 − 1
1 1 1 1 1 2

(7.7)

Caff
2 i{1}(St) i{2}(St) i{2}(π

+) i∅(1)
T1T2 1− q2 1− q1 q2(q1 − 1) (q1 − 1)(q2 − 1)

(T1T2)2 q2
2 − 2q1q2 + 1 q2

1 − 2q1q2 + 1 q2
1q

2
2 + q2

2 − 2q1q2 q2
1q

2
2 + q2

2 + q2
1 + 1− 4q1q2

T0T2 (q0 − 1)(q2 − 1) 2− q0 − q2 q0q2 + 1− 2q2 2(q0 − 1)(q2 − 1)
T0T1 1− q0 1− q1 1− q1 (q0 − 1)(q1 − 1)

(T0T1)2 q2
0 − 2q0q1 + 1 q2

1 − 2q0q1 + 1 q2
1 − 2q0q1 + 1 q2

0q
2
1 + q2

1 + q2
0 + 1− 4q0q1

T0 2q0 − 2 q0 − 3 q0 − 3 4q0 − 4
T1 q1 − 3 2q1 − 2 2q1 − 2 4q1 − 4
T2 2q2 − 2 q2 − 3 3q2 − 1 4q2 − 4
1 4 4 4 8

(7.8)
The determinant of the 9× 9 rigid table equals

−(1 + q0)3(1 + q1)3(1 + q2)3(q0 + q1)(q1 + q2)(1 + q0q1)(1 + q1q2).

This implies that the determinant of the rigid table above is nonzero if and only if
all the finite Hecke algebras are semisimple2.

Example 7.10 (Extended affine C2). The Hecke algebra attached to the extended
affine diagram of type C2

q2 q1
+3 q2
ks ''ww

(7.9)

is isomorphic to the Hecke algebra attached to the affine diagram

1 q2
+3 q1
ks , (7.10)

so this is a particular case of the previous example with the appropriate special-
ization of the parameters. More precisely, let T0, T1, T2, τ be the generators of the
Hecke algebra attached to the diagram (7.9) with relations:

T 2
0 = (q2 − 1)T0 + q2, T 2

1 = (q1 − 1)T1 + q1, T 2
2 = (q2 − 1)T2 + q2,

τ2 = 1, τT0 = T2τ, τT1 = T1τ,

T0T1T0T1 = T1T0T1T0, T1T2T1T2 = T2T1T2T1, T0T2 = T2T0,

and let T ′0, T
′
1, T

′
2 be the generators of the Hecke algebra attached to the diagram

(7.10) with relations:

(T ′0)2 = (q1 − 1)T ′0 + q1, (T ′1)2 = (q2 − 1)T ′1 + q2, (T ′2)2 = 1,

T ′0T
′
1T
′
0T
′
1 = T ′1T

′
0T
′
1T
′
0, T ′1T

′
2T
′
1T
′
2 = T ′2T

′
1T
′
2T
′
1, T ′0T

′
2 = T ′2T

′
0.

2For the semisimplity criterion for the finite Hecke algebra of type Bn, see [DP, Theorem 5.5]
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The isomorphism is realized by

τ ←→ T ′0, T0 ←→ T ′0T
′
1T
′
0, T1 ←→ T ′2, T2 ←→ T ′1. (7.11)

The determinant of the rigid table equals (up to a scalar independent of q1, q2):

(1 + q1)3(1 + q2)5(q1 + q2)(1 + q1q2).

8. Some consequences

In this section, we prove the basis theorem, density theorem and trace Paley-
Wiener theorem. They will be proven inductively, using Theorem 7.6.

Theorem 8.1 (Basis Theorem for arbitrary parameters). H̄′ is a free Λ-module

with basis {TO}, where O ranges over all the conjugacy classes of W̃ ′.

Theorem 8.2 (Density Theorem for admissible parameters). When q is specialized
to an admissible parameter, the trace map tr : H̄′ → R∗(H′)good is bijective.

The results in the previous subsections regarding R̄δ(H)rigid and H̄rigid
δ were

proved under the assumption that the root datum is semisimple and the parameters
are admissible. In order to apply an inductive argument using parabolic subalge-
bras, we need to show that a proof in the semisimple case is sufficient to derive the
general case. First we need some elements of Clifford theory.

8.1. Suppose that A is an associative algebra and Γ a group acting on A. Set
A′ = AoC[Γ]. The map aγ 7→ γ, a ∈ A, γ ∈ Γ induces a surjective linear map

τ : Ā′ → C[Γ] =
⊕

[γ]∈cl(Γ)

Cγ. (8.1)

The fiber τ−1(γ) is by definition the image of Aγ in Ā′. Similar to section 3.2, we
have:

Lemma 8.3. The map aγ 7→ a induces an isomorphism τ−1(γ) ∼= Ā[γ], where
Ā[γ] = (A/[A,A]γ)ZΓ(γ), the space of ZΓ(γ)-coinvariants.

Proposition 8.4. If the statement of Theorem 8.1 holds when H′ is semisimple
with admissible parameters, then it holds in general.

Proof. Define the linear map

π :
⊕

O∈cl(W̃ ′)

Λ→ H̄′, (aO) 7→
∑

aOTO.

By Theorem 5.2, this map is surjective. We need to show also that kerπ = 0. For
this, it is sufficient to show that kerπ ⊗Λ Cq = 0 for generic parameters q. Fix
now an admissible q and specialize H′q = H′ ⊗Λ Cq. We will prove that the set

{TO;O ∈ cl(W̃ ′)} is C-linear independent in H̄′q.
Let πq :

⊕
O∈cl(W̃ ′) C→ H̄

′
q denote the map induced by π after specialization.

Rewrite W̃ ′ = W̃ oΓ as W̃ ′ = W ao Γ̃, where Γ̃ = ΩoΓ. For every O ∈ cl(W̃ ′),
there exists a unique [γ] ∈ cl(Γ̃) such that O ∩ W aγ 6= ∅. By Lemma 8.3, it is

sufficient to prove that for a fixed [γ] ∈ cl(Γ̃), the set

{TO;O ∈ cl(W̃ ′),O ∩W aγ 6= ∅}
is linearly independent.
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Denote Γ̃ the image of ZΓ(γ) in Aut(W a, Sa), and by γ the image of γ. Moreover,

set W̃
′

= W a o Γ̃ and H̃
′

= Ha o C[Γ̃]. Here Ha is the affine Hecke algebra

corresponding to W a. Notice that H̃
′

is an affine Hecke algebra attached to a
semisimple root datum and extended by a group of automorphisms, therefore the
hypothesis of the Proposition applies to it.

Let

πq :
⊕

O∈cl(W̃ ′)

C→ H̃
′
q, (aO) 7→

∑
aOTO,

be the cocenter map. By the assumption in the Proposition, πq is bijective. Con-
sider its restriction to the γ-fiber:

πq[γ] :
⊕

O∈cl(W̃ ′);O∩Waγ 6=∅

C→ Im(Ha,qγ → H̃
′
q)
∼= H

[γ]

a,q, (8.2)

where the last isomorphism is by Lemma 8.3. Since πq is injective, so is πq[γ].

There is a natural bijection:

κγ : {O;O ∈ cl(W̃ ′),O ∩W aγ 6= ∅} −→ {O;O ∈ cl(W̃
′
),O ∩W aγ 6= ∅}

[wγ] −→ [wγ], w ∈W a.
(8.3)

Similar to (8.2), define

πq[γ] :
⊕

O∈cl(W̃ ′);O∩Waγ 6=∅

C→ Im(Ha,qγ → H
′
q)
∼= H

[γ]

a,q. (8.4)

We wish to show that πq[γ] is also injective, and this would complete the proof. We

have the commutative diagram:⊕
O∈cl(W̃ ′);O∩Waγ 6=∅ C

πq
[γ]

��

κγ //⊕
O∈cl(W̃ ′);O∩Waγ 6=∅ C

πq
[γ]

��

H[γ]

a,q

∼= // H[γ]

a,q

(8.5)

Since πq[γ] is injective and κγ is bijective, it follows that πq[γ] is injective. �

8.2. Proofs of Theorems 8.1 and 8.2. In light of Proposition 8.4, it is sufficient
to prove the theorems under the assumption that the root datum is semisimple.
Assume that the indeterminate q is specialized to an admissible parameter q. By
induction, we may assume that both the basis and density theorems hold for all
proper parabolic subalgebras.

Suppose
∑
O aOTO ∈ ker tr. We claim that by induction,

∑
O aOTO ∈ H̄

rigid
δ .

Indeed, by the proof of Theorem 7.1 and the (PDT) assumption,
∑
JO=J aOTO = 0

for all J $ Π. By the inductive assumption on proper parabolic subalgebras, aO = 0
for all O with JO 6= J .

Thus
∑
O∈cl(W̃ ,δ)0

aOTO ∈ ker tr. Note that H̄rigid
δ is spanned by TO for O ∈

cl(W̃ , δ)0 and dim R̄δ0(H) = |cl(W̃ , δ)0|. By Theorem 7.6, TO for O ∈ cl(W̃ , δ)0

forms a basis of H̄rigid
δ . Hence aO = 0 for O ∈ cl(W̃ , δ). This concludes the proof

when q is admissible.
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Finally, since Theorem 8.1 holds for generic parameters, it holds for the indeter-
minate q as well. �

8.3. Since H̄δ is a Λ-module with basis TO, it is easy to see that the induction
and restriction maps īJ and r̄J depend algebraically on the parameters, therefore
Lemma 4.6 and hence Proposition 4.9 and Proposition 6.2 hold unconditionally.

Moreover, H̄ell
δ ⊂ H̄

rigid
δ and Proposition 7.5 holds without the (PDT) assumption.

We can now prove the trace Paley-Wiener theorem for arbitrary parameters.

Theorem 8.5. For arbitrary parameters, the image of the map tr : H̄′ → R(H′) is
R∗(H′)good. In other words, R∗δ(H)tr = R∗δ(H)good.

Proof. We first show that

tr : H̄ell
δ → R̄δ0(H)∗ is surjective. (8.6)

By Proposition 4.8, we may regard R̄δ0(H) as A(Rδ(H)) ⊂ Rδ(H). Under this
identification, R̄δ0(H) = {σ ◦ χt;σ ∈ R̄δ0(Hss), t ∈ T δΠ}. On the other hand, the

natural projection map H̄δ → (̄Hss)δ is surjective and each fiber is isomorphic
to ⊕λ∈(Π∨)⊥/〈δ〉Cθλh for some h ∈ H̄δ. Note that ⊕λ∈(Π∨)⊥/〈δ〉Cθλ is naturally

isomorphic to the set of regular functions on T δΠ. Thus (8.6) follows from Proposition
6.2 and the remark above for Hss.

The rest of the argument is as in [BDK, §4]. Let f ∈ R∗δ(H)good be given. By
(8.6), there exists h ∈ H̄ell

δ such that f ′h = f on R̄δ0(H), where f ′h = tr(h) ∈ R∗δ(H)tr.
Modifying f by f − f ′h, we may assume that f(R̄δ0(H)) = 0.

Consider the adjoint operator

A∗ = a+
∑

J=δ(J)(Π

c′J i
∗
J ◦ r∗J : R∗δ(H)→ R∗δ(H).

Then A∗(f)(Rδ(H)) = f(R̄δ0(H)) = 0. So f = −
∑
J=δ(J)(Π c

′
J/a i

∗
J ◦ r∗J(f). It is

immediate that i∗J(R∗δ(H)good) ⊂ R∗δ(HJ)good and r∗J(R∗δ(HJ)tr) ⊂ R∗δ(H)tr, thus
the claim follows by induction on J . �

8.4. We record one more finiteness result for arbitrary parameters.

Proposition 8.6. Suppose that Φ is a semisimple based root datum. Then

dim R̄δ0(H) ≤ rank H̄ell
δ = |cl(W̃ , δ)ell|.

Proof. By Proposition 6.2 and §8.3, dim R̄δ0(H) ≤ dim H̄ell
δ for arbitrary parameters.

Since (PDT) holds for admissible parameters, rank H̄ell
δ = rank H̄δ/ ker Ā is finite

for admissible parameters. Since H̄δ is a Λ-module with basis TO and the map
Ā depends algebraically on the parameters, rank H̄δ/ ker Ā is semi-continuous, i.e.,
the rank at any parameter is less than or equal to the rank at generic parameters.

By Theorem 7.6 (2) and Proposition 6.7 (2), rank H̄ell
δ ≤ |cl(W̃ , δ)ell|.

On the other hand, by Proposition 7.5,

rank H̄rigid
δ =

∑
J∈Iδ♠

rank (Hss
J )

0

δ/NJ .

For each J , the NJ action depends algebraically on the parameters, hence

rank (Hss
J )

0

δ/NJ ≤ |cl(W̃J , δ)ell/NJ |.
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By §6.3,

|cl(W̃ , δ)0| = rank H̄rigid
δ =

∑
J∈Iδ♠

rank (Hss
J )

0

δ/NJ ≤
∑
J∈Iδ♠

|cl(W̃J , δ)ell/NJ | = |cl(W̃ , δ)0|.

Thus rank (Hss
J )

0

δ/NJ = |cl(W̃J , δ)ell/NJ | for all J . In particular, rank H̄ell
δ =

|cl(W̃ , δ)ell|. �

Remark 8.7. If the root datum Φ is not semisimple, apply the constructions from

section 2.4 with J = Π. Set Z(Φ) = X/X∩QΠ and Ẑ(Φ) = TΠ = HomZ(Z(Φ),C×).

For every t ∈ Ẑ(Φ), let χt : H → Hss be the algebra homomorphism (2.12). These

homomorphisms define a right Ẑ(Φ)-action on IrrδH and on Θ(H), which preserves

the elliptic parts Irrδ0H and Θ(H)0. Then Proposition 8.6 implies that the sets

Θδ(H)0 and Irrδ0(H) are finite unions of Ẑ(Φ)-orbits.

9. Applications to smooth representations of reductive p-adic
groups

9.1. Let k be a p-adic field of characteristic 0 with ring of integers o and residue field
of cardinality q. Let G be a connected semisimple group over k, and set G = G(k).
Let G0 be the subgroup of G generated by all of the compact open subgroups. A
(one-dimensional) smooth character ofG is called unramified if χ|G0 = 1. LetXu(G)
denote the group of unramified characters of G. Let R(G) denote the Grothendieck
group of smooth C-representations of G. Let B(G) be the set of components of
the Bernstein center of G, as in [BK, §1]. Then we have a decomposition R(G) =∏

s∈B(G)R
s(G).

If P is a (k-rational) parabolic subgroup ofG, with Levi decomposition P = MN ,
let iM : R(M) → R(G) and rM : R(G) → R(M) denote the map of normalized
parabolic induction and the normalized Jacquet map, respectively, see for example
[Be, Chapter III] or [Ren, Chapter VI].

Analogous with the Hecke algebras definition 6.1, we define the rigid quotient of
R(G).

Definition 9.1. Set

R(G)diff−ind = span{iM (σ)− iM (σ ◦ χ); P = MN parabolic subgroup,

σ ∈ R(M), χ ∈ Xu(M)}
(9.1)

and define the rigid quotient of R(G) to be

R̄(G)rigid := R(G)/R(G)diff−ind. (9.2)

If s ∈ B(G), let R̄s(G)rigid be the image of the Bernstein component Rs(G) in
R̄(G)rigid.

9.2. We explain the role of the rigid cocenter in the correspondence of unitarizable
representations from the p-adic group to Iwahori-Hecke algebras. Let G satisfy the
same assumptions as in [Bo, §3].

Let I be an Iwahori subgroup of G. Let CI(G) be the category of smooth G-
representations generated by their I-fixed vectors. By a classical result of Cassel-
man,

CI(G) = R0(G),
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where R0(G) is the Bernstein component where the simple objects are subquotients
of unramified minimal principal series.

Let H = C∞c (I\G/I) be the Iwahori-Hecke algebra, i.e., the complex associative
unital algebra of compactly supported, smooth, I-biinvariant complex functions,
under the convolution with respect to a fixed Haar measure µ on G. Normalize the
Haar measure so that µ(I) = 1. Given a representation (π, V ) ∈ CI(G), the algebra
H acts on V I via

π(f)v =

∫
G

f(x)π(x)v dµ(x), f ∈ H, v ∈ V I .

Borel [Bo] showed that the functor

FI : CI(G)→ H-mod, V 7→ V I (9.3)

is an equivalence of categories.
A smooth admissible G-representation (π, V ) is called hermitian if V has a

non degenerate hermitian form 〈 , 〉G which is G-invariant, i.e., 〈π(g)v, w〉G =
〈v, π(g−1)w〉G, for all g ∈ G, v, w ∈ V . A hermitian representation is called
(pre)unitary if the hermitian form is positive definite.

In parallel, we have the similar definitions for H-modules. Let ∗ : H → H denote
the conjugate-linear anti-involution given by f∗(g) = f(g−1), f ∈ H, g ∈ G. Then
an H-invariant hermitian form on a H-module (π, V I) has the defining property
〈π(f)v, w〉H = 〈v, π(f∗)w〉H.

By restriction to I-fixed vectors, it is clear that if (π, V ) ∈ CI(G) is hermitian
(resp., unitary), then (π, V I) ∈ H-mod is hermitian (reps., unitary). It is also easy
to see that if (π, V I) is hermitian, then (π, V ) is hermitian, see [BM1, (2.10)]. The
difficult implication is the following:

Theorem 9.2. Let (π, V ) ∈ CI(G) be an irreducible hermitian G-representation.
If V I is a unitary H-module, then V is a unitary G-representation.

The above theorem was proven in [BM1] under the assumption that G is split of
adjoint type and that V has ”real infinitesimal character”. The latter assumption
was removed in [BM2] using a reduction to graded Hecke algebras and endoscopic
groups. The assumption that G be split adjoint was removed in [BC] (where the
theorem was generalized to other Bernstein components as well), but the argument
still involved the reduction to real infinitesimal character. In the next subsection,
we explain that the present result on the rigid cocenter, Theorem 7.6(1), allows for a
direct extension of the [BM1] argument to arbitrary representations V with Iwahori
fixed vectors for any semisimple connected k-group G in the sense of [Bo]. This
allows one to bypass the reduction to real infinitesimal character from [BM2, BC].

9.3. Fix a basis {V̄i}1≤i≤n of R̄(H)rigid consisting of genuine finite-dimensional H-
modules. Invoking Langlands classification or Corollary 6.9, it is clear that we may
choose V̄i so that they are all tempered H-modules. Under the functor (9.3), there
exist smooth admissible G-representation Vi such that V Ii = V̄i. It is well-known
that FI induces a bijection between tempered representations in the two categories,
thus Vi are tempered G-representations. 3

Since the functor (9.3) commutes with parabolic induction, see the discussion
around [BM1, Theorem 6.1], we immediately have that {Vi} are a basis of R̄0(G)rigid.

3In fact, FI induces a homeomorphism between the supports of the Plancherel measures in the

two categories, see [BHK, Theorem B], but we will not need this more precise statement.
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Let (π, V ) ∈ CI(G) be an irreducible, hermitian representation with G-invariant
hermitian form 〈 , 〉G. Let K ⊃ I be a maximal parahoric subgroup. Following [Vo],
one defines the K-signature of V as follows. Let (σ, Uσ) be a smooth irreducible
K-representation with an implicitly fixed positive definite K-invariant form. The
K-character of V is the formal sum

θK(V ) =
∑
σ∈K̂

mσσ, where mσ = dim HomK [Uσ, V ] <∞. (9.4)

Then the form 〈 , 〉G induces a form on the isotopic component HomK [Uσ, V ] of σ in
V (if this is nonzero), and this form has signature (pσ, qσ). Of course, pσ+qσ = mσ.
The K-signature character of V is the formal combination

ΣK(V ) = (
∑
σ∈K̂

pσσ,
∑
σ∈K̂

qσσ). (9.5)

Since {Vi} is a basis of R̄0(G)rigid, in particular, we have the following sharpening
of [BM1, Theorem 5.3].

Lemma 9.3. For every K ⊃ I, the K-character of any irreducible representation
in CI(G) is a linear combination of θK(Vi), i = 1, · · · , n.

The same Jantzen filtration arguments as in [BM1, section 5] lead then to a
sharpened version of [BM1, Theorem 5.3], which is the p-adic analogue of Vogan’s
signature theorem [Vo, Theorem 1.5].

Theorem 9.4 (cf. [BM1, Theorem 5.3]). Let {Vi}1≤i≤n be the fixed basis of
R̄0(G)rigid constructed above, consisting of tempered representations. Let (π, V ) be
an arbitrary irreducible Hermitian G-representation in CI(G). There exist integers
ai, bi such that, for every K ⊃ I, the K-signature character of V equals

ΣK(V ) = (

n∑
i=1

aiθK(Vi),

n∑
i=1

biθK(Vi)). (9.6)

We emphasize that in Theorem 9.4, the integers ai, bi do not depend on the
choice of K, but only on V .

9.4. The analogous definitions ofK-character andK-signature exist forH-modules.
Let HK = C∞(I\K/I) be the subalgebra of H consisting of functions whose sup-
port is in K. If (σ, Uσ) is a K-type, then (σ, U Iσ) is an HK-module. If V I is a
simple H-module, then the HK-character of V I is

θHK (V I) =
∑

σ∈K̂,UIσ 6=0

mσσ, (9.7)

and the HK-signature character is

ΣHK (V I) = (
∑

σ∈K̂,UIσ 6=0

pσσ,
∑

σ∈K̂,UIσ 6=0

qσσ). (9.8)

Theorem 9.4 implies that the HK-signature character of V I is

ΣHK (V I) = (

n∑
i=1

aiθHK (V Ii ),

n∑
i=1

biθHK (V Ii )), (9.9)

with the same integers ai, bi as in Theorem 9.4.
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Now we can complete the argument. Suppose that V I is unitary as anH-module.
This means that the negative part of the K-signature must be 0, for all K. From
(9.9), this means that

n∑
i=1

biθHK (V Ii ) = 0, (9.10)

for allK. If TO is a basis element of H̄rigid as in Theorem 8.1, there existsK ⊃ I such
that TO is the delta function supported at a double coset Iw̃I, w̃ ∈ K. Therefore

n∑
i=1

bi tr(TO, V
I
i ) = 0

for all basis elements TO of the rigid cocenter H̄rigid. Recall that {V Ii } form a basis
of R̄(H)rigid. But then Theorem 7.6 implies that they are linearly independent over
H̄rigid, and therefore bi = 0 for all i = 1, n.

Finally, this means that the negative part of the signature ΣK(V ) is 0 in Theorem
9.4, and so, V is unitary as a G-representation. This completes the implication:

if V I is a unitary H-module, then V is a unitary G-representation.
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