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A PRODUCT OF TENSOR PRODUCT L-FUNCTIONS
OF QUASI-SPLIT CLASSICAL GROUPS
OF HERMITIAN TYPE

DiHuA JIANG AND LEI ZHANG

Abstract. A family of global zeta integrals representing a product of tensor prod-
uct (partial) L-functions:

L(s,m x 1)L (8,7 X 13) - - - L¥(s,m X 7.

is established in this paper, where 7 is an irreducible cuspidal automorphic represen-
tation of a quasi-split classical group of Hermitian type and 7, . .., 7, are irreducible
unitary cuspidal automorphic representations of GLq, , ..., GL,,., respectively. When
r = 1 and the classical group is an orthogonal group, this family was studied by
Ginzburg et al. (Mem Am Math Soc 128: viii4218, 1997). When = is generic and
T1,..., T, are not isomorphic to each other, such a product of tensor product (partial)
L-functions is considered by Ginzburg etal. (The descent map from automorphic
representations of GL(n) to classical groups, World Scientific, Singapore, 2011) in
with different kind of global zeta integrals. In this paper, we prove that the global
integrals are eulerian and finish the explicit calculation of unramified local zeta
integrals in a certain case (see Section 4 for detail), which is enough to represent
the product of unramified tensor product local L-functions. The remaining local
and global theory for this family of global integrals will be considered in our future
work.

1 Introduction

We study a finite product of tensor product (partial) automorphic L-functions for
quasi-split unitary or orthogonal groups and general linear groups via global zeta
integral method.

Let G}, be a quasi-split group, which is either U, ,,, Upt1,n, SO2,41, or SOgy,,
defined over a number field F'. Let E be a quadratic extension of ' when we discuss
unitary groups and E be equal to ' when we discuss orthogonal groups. Let A be
the ring of adeles of E and A be the ring of adeles of F'. Take 7 to be an irreducible
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generic automorphic representation of Resg/r(GLa)(A) = GL4(Ag) of isobaric type,
ie.
T:TIEHTQEE"'EHTT (11)

where a = ) _;_, a; is a partition of a and 7; is an irreducible unitary cuspidal auto-
morphic representation of GL,, (Ag). Let m be an irreducible cuspidal automorphic
representation of G,,(A). We consider a family of global zeta integrals (see Section 3
for definition), which represents a finite product of the tensor product (partial)
automorphic L-functions:

LS(s,m x 1) = L%(s,m x 1) L°(s,m x 13) - -- L° (5,7 X 7). (1.2)

It is often interesting and important in number theory and arithmetic to con-
sider simultaneous behavior at a particularly given point s = sg of the L-functions

LS(S,ﬂ' x 7;) with ¢ = 1,2,...,r. For instance, one may consider the nonvanishing
at s = %, the center of the symmetry of the L-functions L (s, 7 x 1), L% (s, T x 72),
.-, L5(s,m x 7,), or particularly, take 71 = 75 = --- = 7, and consider the r-th

power L° (s,m x 11)" at a given value s = s for all positive integers r. As remarked
at the end of this paper, the arguments and the methods still work if one replaces
the single variable s by multi-variable (s1,...,s,). However, we focus on the case of
single variable s in this paper.

We use a family of the Bessel periods (discussed in Section 2) to define the
family of global zeta integrals, following closely the formulation of Ginzburg et al. in
[GPRI7], where the case when r = 1 and G, is an orthogonal group was considered.
When 7 is generic, i.e. has a nonzero Whittaker-Fourier coefficient, and 7, ..., 7, are
not isomorphic to each other, this family of tensor product L-functions was studied
by Ginzburg et al. in their recent book [GRS11]|. However, the global zeta integrals
studied in [GRS11] are formulated in a different way and can not cover the general
situation considered in this paper. It is worthwhile to remark that the global zeta
integrals here are the most general version of this kind, the origin of which goes back
to the pioneering work of Piatetski-Shapiro and Rallis and of Gelbart and Piatetski-
Shapiro [GPR87]. Other special cases of this kind were studied earlier by various
authors, and we refer to the relevant discussions in [GPR97] and [GRS11].

In addition to the potential application towards the simultaneous nonvanishing
of the central values of the tensor product L-functions, the basic relation between
the product of the tensor product (partial) L-functions and the family of global
zeta integrals is also an important ingredient in the proof of the nonvanishing of the
certain explicit constructions of endoscopy correspondences as indicated for some
special cases in the work of Ginzburg in [Gin08], and as generally formulated in the
work of the first named author [Jiall] and [Jial3]. We will come back to this topic
in our future work [JZ13].

In general, the meromorphic continuation to the whole complex plane of the prod-
uct of the tensor product (partial) L-functions is known from the work of R. Lang-
lands on the explicit calculation of the constant terms of Eisenstein series [Lan71].
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However, when 7 is not generic, i.e. has no nonzero Whittaker-Fourier coefficients,
the Langlands conjecture on the standard functional equation and the finite number
of poles for R(s) > 3 is still not known [Shal0].

According to the work of Arthur [Art13] and also of C.-P. Mok [Mok13], any
irreducible cuspidal automorphic representation 7w of G,(A) has a global Arthur
parameter 1, which determines an irreducible automorphic representation 7, of the
corresponding general linear group GLy(Afg), where the integer N depends on the
type of G,. The mapping from 7 to my is called the Arthur-Langlands transfer,
which is the weak Langlands functorial transfer from G,, to GLy. This means that
the global transfer from 7 to my, is compatible with the corresponding local Langlands
functorial transfers at all unramified local places of 7. Hence we have an identity for
partial L-functions

Lo(s,m x 1) = L¥(s,my X 7).

The partial L-function on the right hand side is the Rankin-Selberg convolution
L-function for general linear groups studied by Jacquet et al. [JPS83]. When
has a generic global Arthur parameter, the Arthur—Langlands transfer from G,, to
general linear groups is compatible with the corresponding local Langlands functorial
transfer at all local places. Hence one may define the complete tensor product L-
function by

L(s,m x 7) = L(s,my X T),

just as in [Art13] and [Mok13].

However, when the global Arthur parameter ¢ is not generic, there exists irre-
ducible cuspidal automorphic representation 7 with Arthur parameter v, whose
local component 7, at some ramified local place v may not be transferred to the
corresponding ramified local component (7y), under the local Langlands functorial
transfer at v. Hence it is impossible to define the local tensor product L-factors
(and also ~-factors and e-factors) of the pair (m,,7,) in terms of those of the pair
((my)v, ) at such ramified local places v. Therefore, it is still an open problem
to define the local ramified L-factors (and also y-factors and e-factors) for an irre-
ducible cuspidal automorphic representation 7 of G, (A) when 7 has a non-generic
global Arthur parameter. At this point, it seems that the integral representation of
Rankin-Selberg type for automorphic L-functions is the only available method to
attack this open problem.

For quasi-split classical groups of skew-Hermitian type, some preliminary work
has been done in [GJRS11], using Fourier-Jacobi periods. Further work is in progress,
including the work of X. Shen in his PhD thesis in University of Minnesota, 2013,
which has produced two preprints [Shel2a,Shel2b]. A parallel theory for this case
will also be considered in future.

In Section 2, we introduce a family of Eisenstein series, whose Bessel periods are
needed to formulate the family of global zeta integrals as mentioned above. A basic
analytic property of such global zeta integrals is stated in Proposition 2.1. We note
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that the construction of the global zeta integrals has two integers j and ¢ involved,
depending on the cuspidal data of the Eisenstein series and the structure of the
Bessel periods.

Section 3 finishes the first step in the global theory for the family of global
zeta integrals, which proves that they are eulerian, i.e. they are expressed as an
eulerian product of the corresponding local zeta integrals at all local places of F
(Theorem 3.8). The argument is standard, although it is technically quite involved.
Based on an explicit calculation of generalized Bruhat decomposition in [GRS11,
Section 4.2], we calculate in Section 3.1 the Bessel-Fourier coefficients of the Eisen-
stein series used in the global zeta integrals. Then we use [GRS11, Section 4.4] to
carry out a long calculation in Section 3.2, which proves Theorem 3.8. We note that
Sections. 2 and 3 are for both unitary groups and orthogonal groups. Following the
general understanding of the Rankin-Selberg method, after expressing the local zeta
integrals in terms of the expected local L-functions, which is the key part of the
local theory for global zeta integrals, the global analytic properties of the global
zeta integrals will be transferred to the expected complete (or partial) L-functions.
Although for any pair (j,£) of integers, the global zeta integrals are eulerian (The-
orem 3.8), it seems that only in the case where j = £ + 1 the local zeta integral is
better understood and is enough to reach the local L-factors of the tensor product
type as we expected. The remaining cases will be considered in future.

The local theory starts in Section 4. In Section 4.1, we reformulate the local zeta
integrals from the eulerian product in Theorem 3.8 in terms of the uniqueness of local
Bessel functionals and related them to the corresponding twisted Jacquet modules.
We show that the local zeta integrals converges absolutely when the real part of the
complex parameter s is sufficiently large (Lemma 4.1). The twisted Jacquet modules
are explicitly calculated following closely [GRS11, Chapter 5]. This is necessary for
the development of the local theory at all finite local places. In Sections. 4.2, 4.3, 4.4,
and 4.5, we only consider the unramified case. In Section 4.2, we write down explicitly
the unramified local L-factors of tensor product type for unitary groups in terms of
the corresponding Satake parameters of the unramified representations. Section 4.3
shows that the unramified local zeta integrals are rational functions in ¢,* following
the Bernstein rationality theorem. Starting with Section 4.4, we assume that j = (41
and are concentrated on the proof of Theorem 3.9, i.e. the explicit calculation of the
unramified local zeta integrals in terms of the expected local L-factors. The main
arguments used here can be viewed as natural extension of those used in [GPR97]
for orthogonal group case to unitary group case. Hence we only discuss the unitary
group case, since the orthogonal groups case was treated in [GPR97]. Sections 4.4
and 4.5 are quite technical and are devoted to the understanding of the denominator
and numerator of the rational function from Section 4.3. The result is stated in
Theorem 4.12, which is the main local result of the paper.

The main global result in this paper is Theorem 4.13, which is stated at the end
of Section 4. In order to carry out the complete understanding of the family of global
zeta integrals, one has to develop the complete theory for the local zeta integrals at
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all local places, which is in fact our main concern and is considered in our work in
progress.

Finally, we would like to thank the referee for careful reading of the previous
version of the paper and for many instructive and helpful comments.

2 Certain Eisenstein series and Bessel periods

We introduce a family of Eisenstein series which will be used in the definition of a
family of global zeta integrals, representing the family of the product of the tensor
product L-functions as discussed in the introduction. The global zeta integrals are
basically a family of Bessel periods of those Eisenstein series. We recall first the
general notion of the Bessel periods of automorphic forms from [GPR97], [GJR09],
[BS09] and [GRS11].

Let I be a number field. Define £ = F or E = F(,/p), a quadratic extension
of F', depending on that the classical group we considered is orthogonal or unitary,
accordingly. It follows that the Galois group of E/F is either trivial or generated by
a non-trivial automorphism x +— Z. The ring of adeles of F' is denoted by A, while
the ring of adeles of E is denoted by Ag.

Let V be an E-vector space of dimension m with a non-degenerate quadratic
form ¢, if E = F or a non-degenerate Hermitian form (also denoted by ¢, ) if
E = F(\/p). Let U(q,) be the connected component of isometry group of (V,q,)
defined over F. It follows that U(g,, ) is a special orthogonal group or a unitary group.
Let m = Witt(V) be the Witt index of V. Let V' be a maximal totally isotropic
subspace of V and V™ be its dual, so that V' has the following polar decomposition

V=vVvteVWeV,

where Vp = (VT @ V7)* denotes the anisotropic kernel of V. We choose a basis
{e1,€2,...,e5} of VT and a basis {e_1,e_2,...,e_5} of V™ such that g, (e;,e_;) =
51',]' for all 1 < i,j < m.

We assume in this paper that the algebraic F-group U(g,, ) is F-quasi-split. Then
the anisotropic kernel Vj is at most two dimensional. More precisely, when E = F, if
dimg V = m is even, then dimg Vj is either 0 or 2, and if dimg V' = m is odd, then
dimg Vp is 1; and when E = F(,/p), dimg Vp is 0 or 1 according to that dimg V' =m
is even or odd.

When dimVp = 2, we choose an orthogonal basis {e(()l), e(()Q)} of Vo with the
property that

2) (2

1) (1)) -1, a, (e, ey = —,

4y, (eg s €p

where ¢ € F* is not a square and ¢y, = qV|VO. When dim Vy = 1, we choose an
anisotropic basis vector ey for V5. We put the basis in the following order

1 (2
€1,€2, .1 €, €0 5 €0 s Ephy -y €2, € ] (2.1)
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if dimp Vy = 2;
€1,€2,...,6m,€0,€_m,...,€_2,€_1 (2.2)

if dimg Vp = 1; and

€1,€9y vy Ciny € gy e, €2, €E_1 (2.3)

if dimg Vp = 0.

With the choice of the ordering of the basis vectors, the F-rational points
U(q, )(F') of the algebraic group U(g, ) are realized as an algebraic subgroup of
GL,,,(E). Define n = [%] and put G, = U(q, ). This agrees with the definition of
G, which was given in the introduction. From now on, for any F-algebraic subgroup
H of G, the F-rational points H(F) of H are regarded as a subgroup of GL,,(E).
Similarly, the A-rational points H(A) of H are regarded as a subgroup of GL,,(Ag).

The corresponding standard flag of V' (with respect to the given ordering of the
basis vectors) defines an F-Borel subgroup B. We may write B = TN with T a
maximal F-torus, whose elements are diagonal matrices, and with N the unipotent
radical of B, whose elements are upper-triangular matrices. Let Ty be the maximal
F-split torus of G,, contained in T. We define the root system ®(7y,G,) with the
set of positive roots ®1(Tp, G;,) corresponding to the Borel subgroup given above.

Take ¢ an integer between 1 and m. Let VejE be the totally isotropic subspace
generated by {et1,eso,...,ex¢} and Py = MUy be a standard maximal parabolic
subgroup of G,, which stabilizes VZ“. The Levi subgroup M, is isomorphic to
GL(V,") x Gy—¢. Here GL(V;") = Resp/p(GLy) and G,—¢ = U(q,,,) with q,,, = ¢, |,
and Wy = (V," @ V,7)+.

Let £ := [(1{5...¢},] be a partition of ¢. Then P, = M,Uy is a standard parabolic
subgroup of G, whose Levi subgroup

Mg = ReSE/FGrLg1 X RGSE/FGrLg2 X - X ReSE/FGLgp X Gn,g.

2.1 Bessel periods. Define Ny to be the unipotent subgroup of GG,, consisting
of elements of following type,

z Y T
Ny=<{n= I—o0 y’ € G, | zZ2€E€Zyy, (2.4)
2%

where Z; is the standard maximal (upper-triangular) unipotent subgroup of
Resp/pGLy. It is clear that Ny = U« where [1¢] is the partition of £ with 1 repeated
£ times.
Fix a nontrivial character ¢y of F'\Ar and define a character ¢ of E\Apg by
P(x) = %%) . #E_R (2.5)
Yolatreyr(5) o E=F(p).
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Then take wg to be an anisotropic vector in W, and define a character vy ,,, of Ny
by

-1

Voo (n) =1 <Z Zii1 Ty, (ye,w0)> ; (2.6)
i=1

where yy is the last row of y in n € Ny as defined in (2.4), which is regarded as a

vector in Wy.

If £ = m, Yy, is a generic character on the maximal unipotent group N = Npy,.
We will not consider this case here and hence we always assume that ¢ < m from
now on.

For k € F*, we choose

K
W = Y = Em + (—1)m+1§€_fn, (27)

which implies that q(y.,v«) = (—1)™"!x and that the corresponding character is

-1
Ve,s(n) = Yo, (n) = ¢ <Z Zii+1 + Yom—t + (—Umﬂgye,mmeH) . (2:8)

i=1
The Levi subgroup M« = (ResE/FGLl)M X Gjn_p normalizes the unipotent sub-
group Ny, and acts on the set of the characters of Ny(A). Each orbit for this action
contains a character of the form 1 ., with & € F*. The M}, (F)-orbits are classified
by the Witt Theorem and give all F-generic characters of Ny(A). The stabilizer of
Yo, in the Levi subgroup M(j¢) is the subgroup

I
LZ,wO = v € Gy | 'YJm—%wO = Jm—20wo p = Hy,_y, (29)
I

where H,,_, is defined to be U(qu ) with Dyt = qv|W£ ., and Jy, is the k x k
wy ﬂwo ﬁwo

matrix defined inductively by Jj = ( Joos 1) and J; = 1. Define

Ry, = Hyp¢Ny = Ulq Ny. (2.10)

Wﬂﬁw&)

Note that dimg V and dimg WyNwy- have the different parity. If £ = 0, the unipotent
subgroup Ny is trivial and we have that

RO,’LUU = U(q

L)
VNwg

When taking wg = y., we will use the notation vy, = v¥s., Ly, = L, and
Ry, = Ry, respectively.

Let ¢ be an automorphic form on G,,(A). Define the Bessel-Fourier coefficient
(or Gelfand-Graev coefficient) of ¢ by

Brn @)= [ ot ) do (2.11)
Ne(F)\Ne(A)
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This defines an automorphic function on the stabilizer Ly, (A) = Hy,—¢(A). Take a
cuspidal automorphic form ¢ on H,,_4(A) and define the (¢, , p)-Bessel period
or simply Bessel period of ¢ by

Prog)i= [ B beh)dh (2.12)
Hy o (F)\Hp—e(A)

We will apply this Bessel period to a family of Eisenstein series next.

2.2 [Eisenstein series.  We follow the notation of [MW95] to define a family of
Eisenstein series.

For some j with 1 < j < m, let P; = M;U; be a standard maximal parabolic
F-subgroup of G, with the Levi subgroup

Mj = ResE/F(GLj) X Gn—j-

When j = m, the group G,,_5 is trivial and can be omitted, if dimgVy = 0,
or dimgVp = 1 and E = F. Following [MW95, Page 5], the space Xy, of all
continuous homomorphisms from M;(A) to C*, which is trivial on the subgroup
M;(A)! (defined in Chapter 1 [MW95]), can be identified with C by the mapping
As < s, which is normalized as in [Shal0].

Let 7 be an irreducible unitary generic automorphic representation of GL;(Ag)
of the following isobaric type:

rT=m A B, (2.13)

where j = [j1j2---jr] is a partition of j and 7; is an irreducible unitary cuspidal
automorphic representation of GL;, (AE). Let o be an irreducible automorphic repre-
sentation of G,—;(A) (we do not assume that o is cuspidal). Note that o is irrelevant
if j = m and the group G,_s disappears. Following the definition of automorphic
forms in [MWO95, 1.2.17], take an automorphic form

¢ = ¢reo € A(Uj(A)Mj<F)\Gn(A))T®U‘ (2.14)
For A\ € Xyy,, the Eisenstein series associated to ¢(g) is defined by
E(6,5)(9) = E(¢rea, A)(9) = D> Ad(dg). (2.15)
SEP;(F)\G,(F)

It is absolutely convergent for $(s) large and uniformly converges for g over any
compact subset of G, (A), has meromorphic continuation to s € C and satisfies the
standard functional equation.

Recall that H,,_; is defined to be U(qweﬂwol) and that dimg V and dimg W, N woL
have the different parity. Let 7 be an irreducible cuspidal automorphic representation
of H,_¢(A) and take a cuspidal automorphic form

w0 € Ao(Hp—¢(F)\Hp—¢(A))x. (2.16)



560 D. JJANG AND L. ZHANG GAFA

The global zeta integral Z(s, rgq, Pr, Yew,) is defined to be the following Bessel
period

Z(Sa ¢T®o’7 Oy wé,wo) = ,Pwé’wﬂ (E((Z)T@U? 8)7 9077) (217)

Because ¢ is cuspidal, following a standard argument as in [CP04] and [BS09] for
instance, one can easily prove the following.

PROPOSITION 2.1. The global zeta integral Z(s, dro0, Pxs Yew,) converges absol-
utely and uniformly in vertical strips in C, away from the possible poles of the
Eisenstein series E(¢rgeq, s), and hence is meromorphic in s € C with possible poles
at the locations where the Fisenstein series has poles.

We remark that after the Eisenstein series E(¢rgeq,s) is properly normalized, the
functional equation for Z(s, g, r, Yrw, ) relating s to —s follows from that for the
Eisenstein series F(¢rgqs,S). Of course, it is an interesting problem to understand
the poles of Z(s, ¢rge, Prs Vew,) in terms of the structure of the global Arthur
parameter ¢ of 7w [Art13] and [Mok13] and/or in terms of the explicit construction
of the endoscopy transfer in [Jial3]. This is in fact a long term project outlined in
[Jial3].

3 The eulerian property of the global integrals
We prove here that the global zeta integral Z(s, ¢rgqs, Pr: Yew,) Will be expressed

as an eulerian product of local zeta integrals. When j = n = [§], such global zeta
integrals with generic 7 have been studied in [GRS11, Chapter 10]. Hence we assume
from now on that j < n and also £ < m < n.

We first calculate the Bessel-Fourier coefficients of the Eisenstein series and state
the result in Proposition 3.3. Then, by using cuspidality, we prove that after the
Eisenstein series is fully unfolded, the global zeta integral ends up with one possible
non-zero term (Proposition 3.6). Then by considering certain Fourier developments
to the integrands, we show that the global zeta integral is eulerian (Theorem 3.8).

Recall from (2.17) that Z(s, ¢ree, O, Yew,) is the (g, ¢ )-Bessel period of
the Eisenstein series F(drgq, As)(g), which is given by

BY0 (E(¢rgo, 5)) (h)ex(h) dh, (3.1)
Hy o (F)\Hn—2(A)
where the Bessel-Fourier coefficient BY%w0 (E(¢,g4,5))(h) is given, as in (2.11), by
BB i= [ Eloreo b)), () dn.  (32)
Ne(F)\Ne(A)

We first calculate the Bessel-Fourier coefficient BY%w0 (E(¢,gq, 5)).



GAFA L-FUNCTIONS OF CLASSICAL GROUPS OF HERMITIAN TYPE 561

3.1 Calculation of Bessel-Fourier coefficients. In order to calculate the
Bessel-Fourier coefficient BYwo (E($r9q,5)), i.e. the integral in (3.2), we assume
that R(s) is large, and unfold the Eisenstein series. This leads to consider the double
cosets decomposition P;\G,,/P;, whose set of representatives e, g is explicitly given
in [GRS11, Section 4.2]. In our situation, we put it into three cases for discussion.

Case (1): G, is not the F-split even special orthogonal group. In this case, the
set of representatives €, g of the double coset decomposition P;\G,,/F; is in bijection
with the set of pairs of nonnegative integers

{(a,8)|0<a<f<jandj<l+f—a<m}. (3.3)

Recall that m is the Witt index of (V, g, ) defining G,,.

In the next two cases, the set of pairs (o, (3) is also given in (3.3).

Case (2-1): G,, is the F-split even special orthogonal group and ¢+ f — o <
m = n. In this case, the set of representatives €, g of the double coset decomposition
P;\Gy, /Py is in bijection with the set of pairs of nonnegative integers

{(a,p)|[0<a<pf<jand j< L+ B —a<n—1}. (3.4)

Case (2-2): G, is the F-split even special orthogonal group and £+ § — a = n.
In this case, there are two double cosets corresponding to each pair (a, 3), and hence
we may choose representatives €, 3 and €, 3 = wgy€q gw,y of the two double cosets
corresponding to such pairs («, (3).

In all cases, we denote by P; “f = 6;’16%6aﬂ N P, the stabilizer in P, whose
elements have the following form as matrices in GL,,(E):

a T T2 Y1 Y2 Y3 =z 22 =3

0 b x3 0 wy ys 0 24 2

0 0 ¢ 0 0 wyw 0 0 2

@8) dovov % ¥
9 0 e o 0 wyy v (3.5)

0 0 d 0 0

o

0 b

0 0 a*

where the block sizes are determined by a,a” € GLq4, 0,0 € GLy_q—jy3, ¢, c* €
GL;j_p, d,d" € GLg_q, and e € GL,,_3(443-q)- In the case i = 0, GL; disappears.

The stabilizer in P; consists of elements of the following form, which are the
indicated matrices conjugated by wf] where t = j — (:
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~

a Y1 21 X1 Y2 22 X2 Y3 z3\ °
0 d yy 0 wu yt 0 v v
00 ¢ 0 0 a, 0 0
b ys 2z T3 Ys

g§a,ﬁ>:€aﬁge;}ﬁ: 0 e y, 0 u 49 (3.6)

0 0 b 0 0 2
¢y 2
0 d°
0O 0 a*

with the block sizes as before and wé being the t-th power of the element w,. Also,
when (V, ¢,) is Hermitian, wy = I),; when E = F' and (V, ¢, ) is of odd dimension,
wq = —Ipp; when E' = F and the anisotropic kernel (Vp, g,, ) is of dimension two, take
wy = diag([m,wg,lm), where wg = diag{1, —1}; and finally, when E = F' and the
anisotropic kernel (Vo,q,, ) is a zero space, take w, = diag(/m-1, wg,Im_l), where

q
of V.

In Case (2-2), i.e. G, is the F-split even special orthogonal group and /+[—a =
m, we have two double cosets corresponding to each pair (a,3). For the double
coset Pjey 3Py, we get exactly the same form for the stabilizer as above. For the
other double coset Pjé, gF, the stabilizer in Py consists of all elements of the form

(a,3) Wy
(9@ )©s.

To continue the calculation, we consider further double cosets decomposition
P;n’ﬁ\Pg/Rg’wo. Recall that H,_, = U(qwmw&), dimg V and dimg W, N wy have
different parity, and Ry, = Hyp—¢N; with Hy,_¢ = Ly,,,. By [GRS11, Section 5.1],
we may choose a set of representatives of form:

wd = <1 1). Note that £,j < n =[], where m = dimg V' and m is the Witt index

€
Nery 1= ~y (3.7)

6*

where € is a representative in the quotient of Weyl groups
WaL. xaL,_ .. xcL, \WaL,
and v is a representative P, \G,,_y/H,_;, where
P =G, N eg}ﬁpjeawg.

We are going to show that P, is the maximal parabolic subgroup of G,,_, as follows.
In Case (1) or Case (2-1), i.e. when G, is not the F-split even special orthogo-
nal group or when G,, is the F-split even special orthogonal group with /43 —a < n,



GAFA L-FUNCTIONS OF CLASSICAL GROUPS OF HERMITIAN TYPE 563

then P, is the parabolic subgroup of G,,_y, which preserves the standard § — «
dimensional totally isotropic subspace Vjﬁ_ ., of Wy, where

Véj,; = Spang {ei(€+1)a cees ei(£+f)} ) (3.8)

for 1 < f<m—V~.

In Case (2-2), i.e. when G,, is the F-split even special orthogonal group with
{+ 3 —a=n (with j,¢ < n), then, when w = €, g, P, is the parabolic subgroup of
G,—¢, which preserves Vejrm_ s and when w = &, 3, P, is the parabolic subgroup of
Gy—_p, which preserves quZFm_ ‘-

Denote the stabilizer in H,,_; of the double coset P, ~vH,,_; with 1, as defined
in (3.7) by

H)'y=H) ;= Hy Ny Py = Low, N7 Py (3.9)

With the above preparation, we are ready to calculate the Bessel-Fourier coef-
ficient BY*wo (E(¢rg0,A))(h) by assuming that R(s) is large so that we are able to
unfold the Eisenstein series.

BY%w (E(¢, ) (h)

_ / (6, s)(nh)y ), (n)dn
No(F)\Ny(A)

-/ S Aleapdnh)upl (n)dn,
€as€ELeN, (F)\N,(A) 0P, (F)\Pu(F)

where &, is the set of representatives of P;(F)\Gp(F)/Py(F). Set Nagew, to be
the set of representatives of P;** (F)\Py(F)/Rgw,(F) and deduce that the above is
equal to

>y / 3 A (ea,gndnh)iy L (n) dn,

€a,B neNa,ﬁ,é,woNl(F)\Ne(A) 5€R2w0 (F)\Rif,wo (F)

where RZwo = Ry, N nfng‘*"’n. Since Ry, = Hp—¢Ny, by re-arranging the sum-
mation in ¢ and the integration of dn, we obtain that the above is equal to

Z Z Z / )\cb(eoéﬂn&nh)i/)[ﬂ}m (n)dn,

€a,3 M 66HZ’Z(F)\H"7Z(F)N;(F)\Nz(A)

where N = Ny N n‘le”’”n. By factoring the integration of dn, we obtain that the
Bessel-Fourier coefficient BY4o (E(¢rg0,s))(h), when R(s) is large, is equal to

Z / / A(f)(ea,ﬁnéunh)zp[fjjo (un) dudn. (3.10)
€ TONT (A)\Ne(A) N7 (F)\N (4)
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In order to determine the vanishing of the summands in (3.10), we need the following
two lemmas, which are the global version of Propositions 5.1 and 5.2 in [GRS11,
Chapter 5].

LEMMA 3.1. If @ > 0, then the inner integral in the summands of (3.10) has the
following property:

Ad)(eaﬁnunh)wgio (un)du =0
NJ (F)\N/'(A)

for all choices of data.

Proof. Fix o,  and fix an € € War, xcL,_._,xGL, \WaL,. If there exists a simple
root subgroup U of Z; such that eUe™ ! lies inside Uat—a—tt, then the subgroup
€a3MerU(€a,Me) "t lies inside U; for every 4. Since the automorphic function ¢
is invariant on U;j(A) and 1)y, is not trivial on U(A),

/ )\qb(ea’gnzunh)we_’io(z) dz = Ap(eq,gnunh) - / Y (z) dz

U(F)\U(A) E\Ag

is identically zero.

If for each simple root subgroup U of GL,, eUe™! does not lie inside Uaj—a—tpt,
then according to [GRS11, Lemma 5.1], € is uniquely determined modulo Wy, , ., .,
and we can take

Iy
€= Y . (3.11)
I

Since o # 0 (and ¢ < m), we choose a nontrivial subgroup S of N, consisting of
elements of form

Iéfa
1, y *
Im—% y/
Lo

where y = (0 (3—a) ¥2 yg)(wg'y)*l, and y9 and ys are of size a x (m —2({+ [ — «))
and a x (8 — «), respectively; and when G, is split, even orthogonal, /+ 3 —a =n
and the representative w in the double coset of P;\Gy, /Py is ei“ﬂ, we have that ' = 1,
otherwise, we always have that ¢ = 0. Since wy is anisotropic, wq is not orthogonal to
VoV, 5, and 1, is not trivial on S(A). By (3.6), we have (€av.5Mey) S (€agery)
lies inside U; and then
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/ Aqﬁ(ea,gnmunh)@b[’io () dx = Ap(eq,pnunh) - / wzjjo (z)dx

S(F)\S(A) S(F\S(A)
is identically zero. This proves the lemma. O

By Lemma 3.1 and (3.10), when R(s) is large, the Bessel-Fourier coefficient
BY:wo (E(¢rao, A)(h) is equal to

2 / / A€o gndunh)iy , (un) dudn. (3.12)

€0.BMONT (AV\ N, (A) NI (F)\NJ (A)

In particular, we may choose the € in (3.11), which is part of the representation 7. ,
Iy

I

of War,_,xar, \War,. The following lemma will help us to eliminate more terms in

(3.12).

in (3.7), to be of the form: € = t) . Note that € is one of the representatives

LEMMA 3.2. If § > max{j —¥¢,0} and ywy is not orthogonal to Vig for v €
P/\G,_¢/H,_y, then the inner integral in the summands of (3.12) has the property:

/ )\d)(eg,ﬁnwunh)wz}uo (un)du =0
NJ(F)\N/ (A)
for all choices of data.

Proof. Consider the subgroup S, (depending on w = €y gne~) of Ny consisting of
elements of form

Iy
Iy Yy *
Im—2€ y, )
Iy

I3

where y = (0(y—¢)x (m—20—g) y5)(w5’y)*1 with ¢’ as defined before, and y5 is of size
(l—t)yxB.Byl—t=0—3j+ 03 >0and > 0, y5 is not trivial. Since ywy is
not orthogonal to Vj 5, ¥y, is not trivial on Sy,(Ar). By (3.6), ¢ is invariant on
(€0.8Me.~)Sw(A)(€0,87me~) L. Tt follows that the integral

)‘¢(60,ﬁneﬁmunh)¢2io (z) dz = A¢(€o,aMeyunh) - / wz_,io (z) dx
Suw (F)\Sw(A) S (F)\Sw(A)

is identically zero. Since the previous integral factors through this one, this finishes
the proof. O
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To summarize the above calculation, we recall that £; s is the set of representatives
of all double cosets in P;(F)\G,(F)/Py(F) and N3 ., is the set of representatives
of P;*(F)\Py(F)/Rw,(F) as defined before.

PROPOSITION 3.3. For R(s) large, the Bessel-Fourier coefficient of the Eisenstein
series as in (3.2), BY4 v (E(¢rg0,\))(h), is equal to

Z Z Z / / Aqﬁ(e@ndunh)@bgﬁjo (un) dudn,

€ M0 NI(ANN(A) NI (F)\NJ(A)
where

®c3=¢pg € gy o which is the subset of £; consisting of elements with o = 0;
e 1) = diag(e, v, €*) belongs to Nﬁ€w07 which is the subset of N ., consisting of

elements with o = 0, € = <I Ie_t), andt = j—(3, and has the property that if § >
t
max {j — £,0}, then ywy is orthogonal to V, 5 for 7y € P, (F)\Gn—¢(F)/Hp—o(F);
e § belongs to H! ,(F)\H,_¢(F).

We will apply the formula in Proposition 3.3 to the calculation of the global zeta
integral Z(s, prgo, ©r, Vew,) and use the cuspidality of ¢, to prove that the global
zeta integral Z(s, ¢req, Pr, Vow,) is eulerian.

3.2 Global zeta integrals. By applying Proposition 3.3 to the global zeta
integral in (3.1), we get

Z(S, ¢T®0’7 Py ¢€,wo) (3.13)
= [ BB )W

Hp—o(F)\Hn—e(A)
- Z / or(h) / / )\qﬁ(e/gnéunh)wzfuo (un) dudndh
GO, ) N (8)\Ne(8) [N
where [H,,_g| := Hy,_¢(F)\H,—¢(A) and [N,] := N/(F)\N/(A); and the summa-
tions com;s and other conditions for the representatives are given in Proposition

3.3.
We combine the summation on § and the integration dh and obtain that

3(37 Greos P W,wo) is equal to
Z / %r(h)/ / )\gb(egnunh)d)[’io(un) dudndh, (3.14)
613;"7Hn J(FON\H,_o(A) n [N}

where the integration [ is over N;/(A)\Ny(A). The following lemma is to make use
of the cuspidality of .
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LEMMA 3.4. Let « = 0 and v be a representative in P,\G,,_¢/H,_. For a repre-
sentative 1 = 1, if the stabilizer H' ¢ 1s a proper maximal parabolic subgroup of
H, 4, then the corresponding summand in (3.14) has the property:

/ / / Ap(egnequnh)py , (un) dudndh = 0

H)l_((F)\Hp—¢(A) n [N/
for all choices of data.

Proof. Let H! , = M'U’, where U’ is the unipotent radical of the parabolic subgroup
H' ,of H,_y. Since ¢ is P;(F)-invariant, ¢ is left-invariant with respect to the image
under the adjoint action by €y gne , of the unipotent radical U’(A) of H ,(A). Then
we deduce that

/ / / A(egne yunh)iy . ro, (un) dudn dh

H_,(F)\H,_( n [Ny
//(p7T (u'h) du’ / / Ao e[mmunh)@bgw (un) dudndh
h U]

where [, is over M'(F)U'(A)\H,—¢(A). By the cuspidality of 7, we have that

or(u'h)du’ =0,
U(F)\U'(A)

and hence the whole integral is zero. This proves the lemma. O

To proceed with our calculation from (3.14) with Lemma 3.4, we discuss more
explicitly each double coset.

By Proposition 3.3, the representatives eg have the restrictions that either 3 =
max{0,j — ¢} or 8 > max{0,j — ¢} with ywo being orthogonal to V, ; for v €
P! (F)\Gn—¢(F)/Hyp—¢(F). In order to understand the double cosets decomposition
v € Pl (F)\Gpn—¢(F)/H,—¢(F), we recall the following descriptions.

LEMMA 3.5. (Proposition 4.4, [GRS11]) Let X be a non-trivial totally isotropic
subspace of Wy and P be the maximal parabolic subgroup of G,,_,; preserving X.
Then

(1) If dimp X < Witt(W,), then the set P\G,,—¢/H,_¢ consists of two elements.
(2) Assume that Witt(wg) = dimg X = Witt(1W,).
(a) If G,,—¢ is unitary, then P\G,,_¢/H,_y consists of two elements.
(b) If Gy, is orthogonal and dim Wy > 2 dim X +2, then P\G,,_¢/ H,,—¢ consists
of two elements.
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(¢) If Gy,—y is orthogonal and dim Wy = 2dim X +1, then P\G,,—¢/ H,,—¢ consists
of three elements.

(3) Ifdimp X = Witt(W;) and Witt(wg ) = dimpg X —1, then P\G,,_/H,,_; consists
of one element.

(4) If dimp W, = 2dimg X, then Witt(wol) = dimX — 1, and, in particular,
P\G,,_¢/H,_; consists of one element.

We consider the case when G,,_; is not the F-split even orthogonal group or the
case when G,,_y is the F-split even orthogonal group with £+ 3 < n. In these cases,
we must have that dim X = 3.

If ¢+ 3 < m, then P, \G,,_¢/H, _; consists of two elements. It remains to consider
that £+ 8 = m. If £+ 3 < n, we must have that £+ 3 = m < n and hence G,_; can
not be the F-split even special orthogonal group.

In this case £+ 3 = m < n, if G,,_y is an F-quasisplit even unitary group, then
Witt (W, Nyr) = Witt(Wy) — 1 and P.\G,,_¢/H,_¢ has only one element; if G,,_;
is an odd special orthogonal group, then

3, if Witt(wg N W) = m — ¢,

FP NG/ Hpy =
w\Cn—e/Hn—t {1, if Witt(wg N W) = 1 — € — 1

and if G,y is an F-quasisplit even special orthogonal group (with dim V) = 2) or
an F-quasisplit odd unitary group, then

2, if Witt(wg N W) =m — ¢,

# P \Gp—y/Hpy =
w\Gn—t/ Hn—t {1, if Witt(wg N W) = m — € — 1.

It remains to consider the case when G,_y is an F-split even special orthogonal
group with ¢ 4+ 3 = n. In this case, P, \G,_¢/H,_; consists of two elements.
Now we continue the calculation from Equation (3.14) and write

2y = / / / A(eo gmunh)yt, (un) dudndh

Hyl_o(F)\Hn—c(A) n N/

for each summand in (3.14). Then, we apply Lemmas 3.4 and 3.5 to find the nonva-
nishing summand in the summation in (3.14).

For max{0,j — ¢} < 8 <m — ¥, P,\Gp—_¢/H, s consists of two elements ~; and
7o such that yjwq is orthogonal to VK—B and yowq is not orthogonal to Vf—ﬁ If ywy is
orthogonal to V[ﬁ, the stabilizer H 7 o =H, " _, is a maximal parabolic subgroup of

H,,_;, which preserves the isotropic subspace w Ve BN wo

In this case, by Lemmas 3.2 and 3.4, there may be left with nonzero summands
in the summation (3.14), which are with the representative eg for § = max{0,j — ¢}
and with the representative n = 7., having the property that ywg is not orthogonal
to Vf—ﬁ
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For 8 = m — £, there are six different cases. Also, we have that § = m — ¢ >
max{0,j — (}.

If Gy, is the F-split even special orthogonal group, then there are two (P;, Py)-
double cosets corresponding to the pair (0, 3) and the chosen representatives are ¢ g
and € g. For these two cases, their stabilizer preserves two maximal isotropic sub-
space of W, with different orientations, and P/ \G,,_¢/H,_, consists of one element
in both cases with its stabilizer H g_g =H Z_ , being a maximal parabolic subgroup.
Hence by Lemma 3.4, the corresponding summands are all zero.

If G, is not the F-split even special orthogonal group and

Witt (W, Nyt) = Witt(W,) — 1,

there is only one double coset whose stabilizer is a maximal parabolic subgroup of
H,,_y. Hence by Lemma 3.4, the corresponding summand is zero.

If Witt(W, Nyt) = Witt(W,) and G, is the odd unitary group or F-quasi-split
even special orthogonal group, the stabilizers are similar to the case 8 < m — /£ as
discussed above. Hence by Lemmas 3.2 and 3.4, the corresponding summands are
all zero.

If G,, is the odd special orthogonal group and

Witt (W, Nyt) = Witt(W,) — 1,

then P/ \G,,—_¢/H,_; consists of three elements and the representatives are chosen
in [GRS11, (4.33)]. Two stabilizers are maximal parabolic subgroups of H,,_,, and
the third representative ~ satisfies the property that ywg is not orthogonal to V[ﬁ
Hence by Lemmas 3.2 and 3.4, the corresponding summands are all zero.

By the discussions above, we deduce that the corresponding summands are all
zero, because of Lemmas 3.2 and 3.4.

In conclusion, we are left with the case where § = max{0,7 — ¢} and v with
the property that the corresponding stabilizer is not a proper maximal parabolic
subgroup of H > 1.6. ywop is not orthogonal to V'[ﬁ

In this case, the representative ) = 1 5 is uniquely determined by § = max{0, j—
¢}. In fact, if j < ¢, then 5 = 0. It follows that 1, = 7., with v = I,,,_9, and

and if j > ¢, then 3 = j — £. It implies that ns = 7., with e = I, and

Ij,g
Iﬁl_j
Y= IVO . (316)
Iy
Therefore, we are left with only one summand in the summation in (3.14) with the
above representative, accordingly.
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Next we are going to write the only integral more explicitly (Proposition 3.6)
and get ready to prove that it is eulerian in the next subsection.

If j < ¢, then 8 = 0. In this case we have that P/ = G,_, and HZ—K =H,_y
with € and 7 given above. Then the global zeta integral in (3.14) has the following
expression:

Z(S, ¢T®07 Ors wé,wo) = ZO,m = / Sow(h)

[H,, ] N/ (A)\Ne(A)
/ Ap(€0,0m unh)@b[’jjo (un) dudndh. (3.17)
(V7]

where [H,,_¢] := H,—¢(F)\H,—¢(A) and [N,] := N](F)\N,(A). Recall that Ry, =
H,_¢N; and R wo = H. 7_,N]. The stabilizers are, respectively, given by

c 0 0 0 O

b y4 z4 O
R, = e y, O (3.18)
b 0

C*

where ¢, ¢* is of size j x j, b, b* of size ({—j) x ({—j), and e of size (m —20) x (m—2{);
and

c 0 0 0 O
b ys 2z O
(60,0776,’)/)R2w0(60,0776,"/)71 = e yy O (3.19)
b* 0
C

with ¢ € Z; and b € Z,_;. (Here Z; is the maximal upper-triangular unipotent
subgroup of GLy.)

If j > ¢, then = j — £. In this case, ¢ = I; and ~ is given in (3.16). The double
coset decomposition P/ \G,_y/H,_y produces two representatives which, as given
in [GRS11, Section 4.4], are v = I,,,_9; and the v as given in (3.16).

For the representative v = I,,,_op, the corresponding stabilizer H, Z_é is a proper
maximal parabolic subgroup. Then, the corresponding integral in (3.14) is zero by
Lemma 3.4.

Now for the v as given in (3.16), we have that the global zeta integral is expressed
as

Z(Sv ¢T®U7 Py w@,wo) = Zj—ﬁ,n2 = / @W(h) /
Hyl_((F)\H - (A) NJ(A)\N¢(A)

/ Agzb(egnzunh)wz&m (un) dudndh, (3.20)

[N/]
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where [N/] = N)(F)\N/(A). The stabilizers are given, respectively,

c 0 0 y5 O
d u v oy

77e,7RZw0775_,71 = e u 0 (3.21)
a0
C*

where ¢, c* is of size £ x £ and ¢ € Z;, d,d* of size (j — ¢) x (j — {), and e of size
(m —27) x (m — 2j); and

d y u 0 w
¢ 0 0 0
(eoﬂnm)RZwO(eoﬂneﬁ)—l: e 0 u|. (3.22)
c  Ys
d*

We conclude this subsection with the following proposition which summarizes
the calculations discussed up to this point.

ProprosSITION 3.6. Take notation as above. If j < ¢, then 8 = 0 and the global zeta
integral has the following expression:

2(ssbrompn i) = [ well) [

[Hy—e) NJ(A)\Ne(A)

/ Ap(eo onunh)iy , (un) dudn dh,
V7]

where [H,_¢] := H,_¢(F)\H,—¢(A) and [N]] := N](F)\N/(A); and with n =
given explicitly above. If j > ¢, then § = j — { and the global zeta integral has the
following expression:

Z(S, ¢T®O’) 'z ¢Z,wo) = / @w(h) /
Hyl_j(F)\Hn—((A) NJ(A)\N(A)

/ Ap(eo grunh)y, (un) dudndh,
V7]

where [N/] = NJ(F)\N/(A); and with = 1, given explicitly above.

We are going to show that the global zeta integrals are eulerian based on Propo-
sition 3.6. This is done for the two cases, separately.
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3.3 Eulerian products: 0 < £ < j case. We must have that § = j — ¢. By
Proposition 3.6, the global integral Z(s, ¢rgq, ©r: Yew,) is equal to the following
integral

/ on(h) / / Ab(eo,gmunh)yL (un) dudn dh, (3.23)

h N (A)\Ne(A) [N7]

where h € H)! (F)\Hn—¢(A); [N/] = N/J(F)\N/(A); and n = 7., is as given
explicitly above.

In order to show that the integral in (3.23) is an eulerian product of local zeta
integrals, we first show that the integral in (3.23) can be expressed as an adelic
integration of certain Bessel periods, which is stated in Proposition 3.7, and then
we show the resulting integral in Proposition 3.7 factorizes as an eulerian product
by means of the uniqueness of Bessel functionals, which is Theorem 3.8.

First, we want to understand the Fourier coefficient of \¢:

| Asteomunyuih, (w)du (3.24)
[N/]
We identify g € Resg/p(GL;) with its embedding g of (g, I;n—25,g") into the Levi

subgroup Respp(GL;) X Gnj of Gy. Then, (eggn)N, (o,3m)~" is the group Zj,
consisting of elements 2’ of the form

z

with z € Zy. By conjugating the element €g gn across the variable u and changing
the variable by

v

(eo.pmuleopm) " — 2,
the Fourier coefficient in (3.24) reduces to
[ Aoty (Geom ™2 o gm) a2 (3.20)
2]

It follows from the choice of the representatives €y g and 7 that the character has
following expression:

_ 12 mal kK
?/)e,fuo((eo,ﬂn) Y2(e0gn) = ¥(z12+ -+ ze-10+ (—1) +1§yﬁ,1)7 (3.27)

where z = (z¢, f)ox¢. If we write elements 2’ of Z) as 2’ = (z;f)jxj, then this character
can be written as

K
Vg u(2) = ¢((—1)m+1§zﬁﬂ+1 + 2341842 + -+ zj—15)- (3.28)
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In this way, the Fourier coefficient in (3.26) can be written as

<z>fzé*“(h) = / AG(Z W)z (7)) d2'. (3.29)
A

Hence the global zeta integral Z(s, ¢rgo, @, Vew, ), Which is expressed as in (3.23),
is equal to the following integral

/ on(h) / 67" (eo prmh )y, (n) dndh, (3.30)

H! (F)\H,_¢(A) N (AN (A)

n—=~e
with 1 = 7 4 given explicitly above.

Next, we want to understand the structure of the subgroup HZJ' By (3.9),
H' ,=H, 4N Y~ LPLy with = 7, and P, = Gp—¢ N P;O"’ is the parabolic
subgroup of G,,_y, preserving the totally isotropic subspace Vﬁ, as in (3.8). Denote
by

P =P, N nHy ' = P, NyH, ¢y "

Then the elements of P, are of form:

Iy
d di u vy w
1 0 v
e 0 W (3.31)
1 dy
d*

I,

with dq + (—l)m“gvl = 0, where d; and v; are column vectors of size 3 — 1; d, d*
are of size (3 — 1) x (8 — 1); and e belongs to G,,_;. Note that P, is the stabilizer
of vy, in P, . Hence we have

P = (GL(V,_y) x Gnj) x U"(V}Y_)), (3.32)

where U 77(V;%_1) is the subgroup of U <Ve+ﬁ—1> consisting elements which fix the vec-
tor vyy,. Here U (Vfﬂ_l) is the unipotent radical of the parabolic subgroup P(Vfﬁ_l)

of G,,_y preserving the totally isotropic subspace Vfi_@’—l'

In order to precede our calculation, we need to know the structure of stabilizer
in H, 4. Let Q3_1, be the parabolic subgroup of H,,_,, which preserves the totally
isotropic subspace (n_IVZﬂ) Ny~ of Wy Ny~ and has the Levi decomposition

Qﬁ_1777 = Lﬂ_lvnvﬁ_17n'
Recall that the space W, N y,% has the polar decomposition
1 —
Weny, = Véjrmfefl SWod V5 p 15
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where Wg is a non-degenerate subspace of W, Ny with the same anisotropic kernel
as Wy N yﬁ and with dimg Wy = dimg Vy + 1 < 3. By taking as before that wy =
Y = eq + (=1)mH Se_m, we obtain that Wy = Span {y_.} ® Vi. Then it is easy to
check that

(77_1‘/2%) Nyx = Span{eq—jiet1, ... em-1} = Vﬁi_—,@,,@—l’
and

Lg-1y=GL(Vi_55 1) X Huji1,

where H,,_jy1:=U(q,, ) with

Wi—1Nvg
W1 Ny, = Vi @Wod Vo,

It follows that

GL(VE_;5_1) = GL((y 'Vl ny) =0 'GL(V,5,_)m c H]_,
and

Va—1 = n_lU”(V&Ll)n CH),
It is easy to check that
n W =V,"

i @Vo e Vi =yt N (Wi Nyy).

lim—j

Hence we have
U(g, 1) =0 "Ulaw,)n=n""Gnyn C H}l_,
Putting together all these subgroups, we obtain the structure of H ‘
H' , = (GL(V+ pp1) ¥ U(qnfle)) X Va_1,. (3.33)

Finally, we are ready to consider the partial Fourier expansion of cuspidal auto-
morphic forms ¢, on H,_¢(A). Let Z/ 51 be the maximal unipotent subgroup of

GL(V%_ 5 [3—1) consisting of elements of following type:

I

I,

with d € Zg_1. Then N B gﬁ 1V3-1,, is a unipotent subgroup of H,,_; of the
type as defined in (2. 4) w1th the corresponding character defined as in (2.6) with
y_r. Then, it is easy to check that the corresponding stabilizer H'~ ~%4+1 1s equal to
U(q ), which is isomorphic to G,,—;.

n*IWJ
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Define Cg_1, := V3_1,, N V3, which is also equal to
{fueVa1y|lu-eqn=en}
and is a normal subgroup of HZ_ ;- It follows that

~ 1 —k
Cp-1,\H, , = P5 X HgfjJrl?

where Pﬁ1 is the mirabolic subgroup of Resg,r(GLg) given by

d d
P} = {(0 11> € ResE/F(GLﬁ)}.

Going back to the expression (3.30) of Z(s, ¢rge, ©r, Ve, ), the inner integral

B(h) = / B (co o)k (n) dn

N (A)\Ne(A)

575

(3.34)

as function in h, is left Cz_y,(A)-invariant. We recall that N, consists of elements

of the form

Then n(Ng\Ng)n_l is isomorphic to a complementary subgroup consisting of ele-

ments of the form

Ig xT1 i) 0 T3

I 0

R /
no(z1, T2, 23) := L2 x|,

/

Ii—¢ 3
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and g (0 'no(z1, 22, 23)n) is not trivial on z;. In detail,

Yok 0 Ity -1 (no (w1, T2, 73)) = Y((71)e,j0)-

The stabilizer (€ygn)N, (€m)~" in P; consists of elements of the form

c Ye
I,

The image of the domain of integration N\ N; under the adjoint action of € g7 is a
subgroup U in of U ; (the unipotent radical of the parabolic subgroup opposite P;),
consisting of elements of the form

Iy
I
.flz Im_Qj . (335)
e T3 xTo [g
x’l Ij,g

Denote by 9(y,_jie;—¢ the character over (eo,ﬁn)Ng\Ng(eoﬁn)_l, given by

Gm—jre,j—0) () = P(m—jye;-0) Where mm_jpo0 = (€1)e5-¢-
Recall that 17_105_177777 consists of elements of the form

Iy
Iﬁ_l 0 u 0 0
1 0 0 0
Im,Qj 0 u’
1 0
I

I,

It follows that Ng7ﬁ71 = ZZﬁflvﬁ—lm = Z3Cg_1,. As asubgroup of P}, the stabilizer
(607577)N27B71(60,517)*1 consists of elements of the form

d d 0 uw 0 v w
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where d € Z3_1. Note that (€9 3n)Zs(€o 5m) " consists of elements of the above form
with all matrices being zero except d and di and (€g 3m)Cp_1,,(€0,3m) " is equal to
the subgroup where d = Ig_; and d; = 0.

It follows that the expression in (3.30) of the global zeta integral

Z(S7 (Z)T(X)O'? Py T/}Z,wg) is equal to

o(h) / or(ch) dedh, (3.36)
Hyl_y(F)Cp1,n(A)\Hn—(A) [Cp-1,n]
where [Cg_1,] = Cg_1,(F)\Cs-1,(A), as before. Note that ® is Cg_1,(A)-

invariant.
We denote the inner integration [ by

oCrin(h) = / on(ch) de.
[Cﬁflyn}

The integral in (3.36) becomes

®(h)Ce-1(h) dh. (3.37)

Hyl (F)Cp1,n(A)\Hp—(A)

Now we are in the standard step in the global unfolding process using par-

tial Fourier expansion along the mirabolic subgroup Pé. Both functions ®(h) and
©%-11(h) are automorphic on Pﬁ1 (A) and gogﬁ‘l’" (h) is cuspidal because of the cus-
pidality of ¢, (h). Following the standard Fourier expansion of cuspidal automorphic
forms on general linear group [Sha74] and [Pia79], see also [JL12], we have

I, A

Pl (h) = BY s (o) | d nh (3.38)
y 1

with d € Zg_1(F)\Resg/pGLg_1(F), which converges absolutely and uniformly in
g varying in compact subsets. Note that the choice of the character ¢5_1, , is given
by the previous integration. Recall that the Bessel-Fourier coefficient with respect
to ¢g_1, . is defined as in (2.11) by

B et = [ eaohopy () dn.
N g1 (F)\N{ g1 (A)
By using (3.38), the expression (3.37) of Z(s, ¢rg0s, ¢r, Yew,) is equal to

/ O(h)BY7 10~ () (h) dh. (3.39)

ZB(F)H:JL:;+1(F)Cﬁflm(A)\anl(A)
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By pulling out the integration on Zz(F')\Zz(A) and using the fact that Bt (or)
(h) is left (Z3(A), wgil ,_.)-equivariant, the integral in (3.39) is equal to

/ BY s (o) (B) / (zhy5t,, (2)dzdh (3.40)
h [Z5s]
where h € HY " 1 (F)N) 5 (AN\Hp—o(A), N/, = Z5Cs-1, defined as before and

(Z5) = Z5(F)\Zs(A).
The inner integration

/ B(hyyly, ()ds

[Zs]
can be calculated more explicitly. By (3.34), it is equal to
/ / Zé’ (€0 577nzh)1/}ew (n )dmﬁ/gil’y_n(z) dz. (3.41)
[Z5] Ny (A)\N,(A

The element (60,[317)2*(607@7)_1 is given as above. Combining this subgroup with
N/, one obtains a subgroup (o) N, Zs(eo gn) " of P; consisting of elements of
form

d di o (Ye)x
1 (yG),B,*
c*
Im—2j ’ (342)
¢ (We)es  (Y6)es
1 d}
d

where (y6),3 consists of the first column of yg, and (y6)+« is the rest, so that ys =
((yG)*,ﬁ; (y6)>|<’*) Deﬁne

¢Z"(h) = / 6) " (eognzh)ty,  de
[Z5]
Then,
7 () = / Or(zh)bz, 2,
[Z;]

where vz, .(2) is given by

K
Y=z — = zpt (D)™ Szssn 2 bt 2o) (343)
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with 3 = j — £. Hence,

/ D(zg)dz = / p7" (60,,677719)1/’2; (n)dn
[Z5] N (A)\N.(A)

= / 7" (neo g9V (m—j+0,j—0) (n) dn.
U (A)

J.m

Denote the last integral by

Ton(6%)(g) = / 6P (g )yt () .

U]i"] ( A )

Recall that the group U, consists of elements of form (3.35).
Therefore, we obtain, from (3.36) and (3.37), that the global zeta integral

Z(S, Oreos P> Viw,) equals

BV (o) (wh) Tow (6% ) (€0,gmh) da dh,
R} 5 1 (A\H,_o(A) [H,]_,]

where [H}_ | := H)_ ,(F)\H,_,(A).

PRrROPOSITION 3.7. (Case (j > ¢)) Let E(¢rns,S) be the Eisenstein series on G, (A)
as in (2.15) and 7 be an irreducible cuspidal automorphic representation of H,,_;(A).
The global zeta integral Z(s, ¢roo, P, Vew,) as in (3.1) is equal to

/ BY5 0 (o) (2h) Tin (67 (€0, gmrh) dae B
R} 5 1 (A\H,—.(A) [H) _,]

with [Hy_ ] == H,|_(F)\H,_,(A).

In order to show that the integral expression for the global zeta integral
Z(S, Preo, P, Yew,) as in Proposition 3.7 is eulerian, it is enough to show that
the inner integral

BY5 s (o) (@h) Toe( 677 ) (co,gmah) da (344)
[Hy ]

is an eulerian product. In fact, for a fixed h, as a function of x, Jy . (R(eo gnh) -
%) (€0, gnz(€0,5m) ") belongs to the space of the automorphic representation o
of Gj—;(A), where R denote the right translation. Hence, for a fixed h, this above

inner integral is the Bessel period for the pair (r,0%) as defined in (2.12). By the



580 D. JJANG AND L. ZHANG GAFA

local uniqueness of the Bessel models [AGRS10], [SZ12], [JBZ11] and also [GGP12],
integral (3.44) can be written as an eulerian product:

H/ < Tl T®m,)(eo7g77h ), By Vit “(orw)(hw) >a,_, dhy. (3.45)
Here the domaln of the integration | n, 18 R} 51 (Fv)\Hp—¢(Fy), the linear functional
Bf[;—l’y*” is an element in

Homp, ,(r,)(m Indp; ) (51, @ 5"9)),

and (-, ")q. _, is an invariant pairing of 0% and 5%. The local uniqueness of the
Bessel models [AGRS10], [SZ12], [JBZ11] and also [GGP12] asserts that the above
Hom-space is at most one-dimensional. One can normalize the local pairing suitably
at unramified local places with explicit normalization given in Section 4, so that the
eulerian product makes sense. Hence we obtain the following theorem.

Theorem 3.8. Let E(¢rgs,S) be the Eisenstein series on G, (A) as in (2.15) and

let ™ be an irreducible cuspidal automorphic representation of H,_4(A). Assume

that the following hold:

(1) the real part of s, R(s), is large;

(2) the automorphic form ¢, is factorizable, and ¢,g, and @, are compatibly fac-
torizable;

(3) m and o have a non-zero Bessel period, i.e. Yot (¢r, o) is nonzero for a
some choice of data; and

(4) the relevant local Bessel vectors are suitably normalized at all unramified local
places, so that the eulerian product below makes sense (the detail of the nor-
malization will be given in Sections. 4.3, 4.4, and 4.5).

Then the global zeta integral Z(s, ¢rgo, Pr, Yew,) is eulerian. More precisely, it is

equal to

H/ < k7f,"€ T®o’y)(60,@nh ) B B ly N( WyV)(hV) >anj dhl”

where the integration is taken over R} 5-1(FV)\Hn—¢(Fy), and the product is taken
over all local places.

The main local result of this paper is to calculate the unramified local integral
explicitly in terms of the local L-functions. For the purpose of our investigation of
the global tensor product L-functions L(s,7 X 7), it is enough to consider the case
when j = ¢ + 1. We define the local zeta integral Z,(s, ¢rgo, ©r, Yew,) to be the
integral in the Euler product in Theorem 3.8, which is

. Yali, .
[ < Tl oo B (n) ) e, b (340
h
where the integration is taken over Ry 5 | (F,))\Hy—o(F)).
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Theorem 3.9 (L-function for case j = ¢+1). With all data being unramified, the
local unramified zeta integral Z,(s, dreq, Pr: Yew,) is equal to the following product

ﬁ L(s+ %, Tiy ® Ty)
palet L(s+ 1,7, x 0,)L(2s; + 1,75, Asai @ {™)
1
X (frs fo)a, (k) (3.47)
1<z];£<r L(2S + 17’7'1',1/ X Tj,u) ™01 G (F)

where (fx, fU)Gn,j(F,,) is independent with s.

This theorem will be proved in Section 4. It is also of interest to understand the
local zeta integrals when j7 > ¢ 4 1. We will come back to this issue in our future
considerations.

3.4 Eulerian product: 7 < £ case. In this section, we consider the case
Jj < ¢ < m. By Proposition 3.6, we only need to consider the representative €p o and
Ne,I,. -, Where € is defined in (3.15). For simplicity, we denote by n =71, .,

Recall that N, is the stabilizer in N;. By (3.18) and (3.19), it is easy to see that
(€0,0m)N/ (€0,0m)~* = N/. In more detail, by (3.18) we have

c 0 0 0 O
b Y4 z4 0
NZ = Im—ZZ yzll 0 )
b* 0
C*

and decompose N, as Z;N;,; (which is different with the case j > ), where Z; is
identified as a subgroup of G,,, which is the maximal unipotent subgroup of GL(V]*),
and

I;
b Y4 24
Nje—j = Im—20 ) lbe Zj
b*

I;

Note that N;,_; is the unipotent subgroup of G,_; as defined in (2.4) and the
character 1)y, restricted on Nj,_; is the character vy_; . of the subgroup Ny_; (of
Gn—j) as defined in (2.6), which is denoted by ¥y,—j —j.s.

Z(8, brao, rs Vo) = / w(h) / />\</5(6o,077unh)1/1z_,i0(“”)d“d”dh'
[H ] NJ(A\Ne(A) [N]]
(3.48)
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where [H,_¢] := Hy,—¢(F)\Hp—¢(A) and [N/] :== N/(F)\N,/(A). The inner integral

/ Ap(eo onunh)iy , (u) du (3.49)
(N7

can be written as the following integral

/ )\gb(eo’oncunh)q/)[,; (cu) dedu.

[Nj.e—5] 2]
Since 7 is generic, we have a nonzero Whittaker function

U (1) = / AG(h)z, (=) dz,

(5]

where 9z, . is the restriction of 1)y, to Z;. Hence the inner integral (3.49) can be
written as

/ )\<Z5(60,077unh)%—7;0 (u) du = Bwiwfm(¢i\sz“)(eo7gnnh), (3.50)
(V]

where BY i~ is the Bessel period on the group G,_;(A) with respect to the
subgroup NN;,_; and the character ¢, _;s_; ..
Therefore, the global zeta integral has the expression:

-1 ¢'Zh _
Z(5, $reos 0y o) = / o(h) / BYn smse (655 (eqommh) gy, (n) dndh.
[H, /] NJ(A)\N(A)

ProprosITION 3.10. (Case (j < ¢)) Let E(¢rgs,S) be the Eisenstein series on G, (A)
as in (2.15) and 7 be an irreducible cuspidal automorphic representation of H,,_;(A).
The global zeta integral Z(s, ¢roo, O, Yow,) as in (3.1) is equal to

o(h) / B i (827 V(e ommh )i, (n) dn dh.
[Hy o] N7 (A)\N(A)

It remains to show that the global zeta integral in Proposition 3.10 is eulerian.
To this end, we need to reverse the order of the integration in

-1 Yz, n _
o(h) / BYT i (625 Yo gL, () dn .
[Hp—e NJ(A)\Ne(A)

This can be deduced from the following lemma.
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LEMMA 3.11. The automorphic function
—1 . @Z’Zj,»c —
W= [ B @) o) o, () dn
N (A)\Ne(A)
is uniformly moderate growth on H,,_4(A).
Proof. The proof is similar to the orthogonal case in Appendix 2 to §5 [GPR97]. O

Since ¢ is of rapid decay, after replacing n by hnh ™!, the global zeta integral is
equal to

=1 V2. . _
p(h)BYn=i1=3n () (heo onn) iy s, (n) dh dn. (3.51)
N/ (A)\N¢(A) [Hy—(]

By the local uniqueness of the Bessel models and a suitable normalization at unram-
ified local places, we can factorize (3.51) as follows

Vnlie—jn Pz, m _
I [ (B o) 657), o7k uan,
Y NP (F)\Ne(F.,)
s is an element in

G (F, .
Homp, ,(r,)(0; Inde‘engn),,e(FV)W—J?Z—J?“ @),

Here the linear functional B:,/)

and (-, )y , is an invariant pairing of 7 and 7.
Note that in this case, Ng \ V¢ is isomorphic to a subgroup of Ny consisting of
elements of the form

I; T T T3 T4
Ig_j l‘g
Im—% SLJQ

Ig_j CL‘ll

I

The restriction of ¢y, on N/\Ng is ¢((z1);1). Under the adjoint action of € o,
the image of the domain of integration N,/\Ny is also denoted by U i which is a

subgroup of the unipotent radical U, of the parabolic subgroup opposite to Pj,
consisting of elements of the form

I

xy Iy

:LJQ Im—?(

:L‘ll Ig_j

T4 T T9 T3 I;

Moreover, the induced character on U, is VD (1)
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As remarked in the introduction of this paper, for a general pair (j, ) of integers,
the global zeta integrals considered here are eulerian and have potential applications
to the explicit constructions of endoscopy correspondences discussed in [Jial3]. How-
ever, for the moment, the unramified calculation of the local zeta integrals is better
understood only for the case where j = ¢ 4 1. Fortunately, this case is enough to
catch the product of local tensor product L-factors as expected, which is carried out
in Sections. 4.4 and 4.5. The general case remains to be fully developed.

4 Unramified calculation and local L-functions

We start here to develop the local theory for the family of global zeta integrals
discussed in previous sections. The quasi-split orthogonal group cases were done in
[GPRI7]. In the following, we extend the idea and the method in [GPRI7] to the
quasi-split unitary group cases. It turns out that the argument in this case is much
more technically involved, when the place v splits in the quadratic extension F.

To achieve the goal of this section, we reformulate the local zeta integrals through
the pairing of Bessel models in Section 4.1, including some general statements on
twisted Jacquet modules, which we recall from [GRS11, Chapter 5]. In Section 4.2,
we discuss unramified representations considered in the local zeta integrals and their
Satake parameters, with which, we define the unramified local L-functions we need.
In Section 4.3, we specify the local zeta integrals for unramified data by considering
the cases when the unramified local place v of F' is split or not in F. By the Bernstein
rationality, the unramified local zeta integrals are expressed as a rational function
with respect to the parameters coming from the relevant representations. This ratio-
nal function is explicitly calculated in Sections. 4.4 and 4.5, and identified with the
expected local L-functions. Hence we carry out the complete proof of Theorem 3.9.
Note that the condition 5 = ¢ + 1 is used only from Sections. 4.4 and 4.5.

Throughout this section, denote by v the local place of F'. If v is inert, then E,
is the unramified quadratic extension of F,,. If v splits in E, then E, = F,, X F,,.

Let o be the ring of integers of F,,, and fix a prime element w of 0. Let gr, be
the cardinality of the residue fields of F),. If v is non-split, let g5, be the cardinality
of the residue field of E,. When v is inert, one has that qg, = q%ﬂ; and when v is
ramified, one have that gz, = ¢p,. We fix the normalized absolute values |z|r, = |z|,
for x € F,, |z|g, = |zZ|F, for z € E, if v is inert, and |z|g, = ]aca’c\;/f for x € E, if
v is ramified.

When v splits in E, we need to write down the structure of the unitary group
Gn(F,) more explicitly, which are needed for the unramified calculation of the local
integrals. In this case, F, = F, ®r E and one may take that p = d? or Ve =4d
for some d € F)*, and hence has that F, = F,, @ F),. This isomorphism is explicitly
given by the following mapping: for xz,y € F,,,

r®1+y®.p— (z+yd x—yd).
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Here we consider elements of @M‘VEW as elements of F, ®r E. When z € F, is taken
to (z1,z2) € F, x F,, the corresponding absolute values are normalized so that
|z|g, = |x122|F,. It follows that

GLnw(E,) = GL,,(F,)) x GL,,(F,)
given by
g1 @1+ g2®@+/p+ (g1 +dge, g1 — dga).

Then the unitary group G, (F),) consists of all elements
g=91®@1+g2®\/p € GLy(Ey)
satisfying
(91 +dg2) T (91 — dg2) = Jom.

The restriction of the above isomorphism to G, (F,) gives the isomorphism:
Gn(F,) = GL,,(F,), given explicitly by

g1 @1+ g2®/pr (g1 +dg2, g1 — dg2) — g1 + dgo. (4.1)

Next, we explain the data in the local integral as needed for Theorem 3.8. We
take a normalized parabolically induced representation

II(7,0,s) = IndIGD:'((F]j”))(] det|p 7 ® o),

where 7 and o are irreducible admissible representations of GL;(E,) and G,—;(F,),
respectively. Assume that 7 is generic. Let 7 be an irreducible admissible represen-
tation of H,_¢(F,). Recall that the unitary group H,,_, is defined in (2.9).

When v splits in E, the induced representation II(7, o, s) can be made more spe-
cific. In this case, the representation 7 can be expressed as 71 ® T2, where 7; are
irreducible representations of GL;(F, ). The representation o is an irreducible repre-
sentation of GL;,—2;(F},). The representation II(7, o, s) can be realized as the repre-
sentation of GLy,(F),), induced from the standard parabolic subgroup P;jm,—2;;(F))
with the following representation

S

71(g1) @ o(h) © 72(92),

e H\det(gn
det(g2)

where g1, g2 € GL;(F),) and g5 = thg_ljj_l. For the simplicity of notation, most of
the time, we will omit the subscript v from the corresponding notation. For instance,
we may use F' for the local field F} and use 7 for m, and so on, when no confusion
will result.
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4.1 Local zeta integrals and twisted Jacquet modules. We reformulate
the local zeta integrals at any finite local place in terms of the uniqueness of local
Bessel functionals, and relate them to the corresponding twisted Jacquet modules.
This general formulation is better for the development of the complete local theory,
although only unramified case will contribute to the proof of Theorem 3.9.

Let W, be a nonzero member in the space

GL; (E<

Homgrp,, (7 (7, Ind; Yz, k)

This can be canonically extended to a partial Whittaker function

W;(f) e Indz ((E))><G vy () (V2,5 @ 0)

for f € TI(7, 0, s). As suggested by the global calculation in Section 3, we can formally
define the following function

TN = [ Wl du

N (F)\U(F)

Following the same argument in Appendix 2 to §5 [GPRI7|, the integral defining
J(f) is convergent for R(s) sufficiently large and is analytic in s. In addition, as a
function on H,,_4(F), J(f) belongs to the space

H, _(F) -1 J4
Indpy "y (V5o ®0™),

B—1

where 0% := g o Int(wf;) is a representation of G,,_;(F") conjugate by wg. In fact, in
the unitary group case, wg is the identity.
Let Bg_1 be a non-trivial member in the Hom-space

Homgy, ,(r)(m IndR,,—e( o (51y., ®F vi)),

where ¢ is the dual of o. Let (-,-), be an invariant pairing of ¢ and &. By the
uniqueness of local Bessel models [AGRS10], [GGP12], [SZ12] and [JBZ11], Bs_; is
unique up to a constant. We may define a pairing

(T(f),Bs-1(v)) = / (T (f)(h), Bs—1(v)(h)), dh.
Rl 1w (F)\H_o(F)

LEMMA 4.1. For any 7 and o as above, the pairing (J(f),Bs—1(v)) is absolutely
convergent for R(s) sufficiently large.

Proof. The proof is similar to Theorem A of Appendix (I) to §5 in [GPRI7]. O
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It is easy to check that this pairing, where it exists, defines a linear functional of
Gross-Prasad type in the Hom-space

Homy, , o (IL(7,0,5) @ 7, ¢)- (4.2)

Again, by the uniqueness of local Bessel functionals, the dimension of this Hom-
space is at most one, when II(7, 0, s) is irreducible. Therefore, the local zeta integral
is defined by

Z(S, fv v, w@,m) = <u7(f)73ﬁ71(v)> ; (4'3)

for f € II(7,0,s) and v € 7, which is proportional to the local zeta integral defined
as an eulerian factor of the global zeta integral in Section 3. For the unramified data,
we may normalize the pairing, so that this proportional constant is one.

In order to proceed with the explicit calculation of the local integrals, we have
to understand those Bessel models involved in the local zeta integrals from the
representation-theoretic point of view. This means to see more precisely the struc-
tures of those twisted Jacquet models. We recall relevant results from [GRS11, Chap-
ter 5.

Let (IL, Vi1) be a smooth representation of G, (F). Let Jy, (II) be the twisted
Jacquet module of IT with respect to Ny(F') and its character ¢, the space of which
is defined by

Vir/Span {II(n)v — 1y . (n)v | n € No(F),v € Vii}. (4.4)

Note that Jy,  (II) is a smooth representation of H,,_o(F'). Twisted Jacquet modules
for other unipotent groups will be considered throughout the section. They are
defined analogously.

Next, we study the twisted Jacquet module Jy, (II) for the induced represen-
tation II = II(7, 0,s). To do so, we consider the structure of the restriction of the
induced representation II to the standard parabolic subgroup Py, which is denoted
by Resp,(II). This can be described in terms of the generalized Bruhat decom-
position P;j\G, /P, which was discussed in Section 3. Hence, as a representation
of Py, Resp,(II) can be expressed (up to semi-simplification) as a finite direct sum
®a,plle, , parameterized by the set of representatives {¢, g} as discussed in Sect. 3.1
and [GRS11, §5.1].

Let 7® denote the ¢t-th Bernstein-Zelevinsky derivative of 7 along the subgroup
7y defined in (3.25) with the character

I _
U (63 'Z) = (212 4+ 203+ 2_14)

We embed GLg into GL; through the map g € GLg — diag(g,l;) € GL;. The
image, which is still denoted by GLg, normalizes the character ;. Hence 7® is the
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representation of GLg via the twisted Jacquet module Jy/ (7). We also define the
following character of Z;,

1 _

¢ (g g) = ¢ 2 + 23+ o+ 2-10 Y1),
which is conjugate to the character ¢z, . as defined in (3.28) for any nonzero &, by
an element in the subgroup GLg. Denote the corresponding Jacquet module Jy (7)
by 7(), which is a representation of the mirabolic subgroup of GLg.

Recall that Py = HZE_‘;’”*“ is as defined in (3.9). By the discussion in Page 26,
when ¢ + 8 < m, P[g is a maximal parabolic subgroup of H,_,. For the proof of
Theorem 3.9, which only concerns the case of j = £+ 1, we may assume that ¢ < j
in the following discussion. Put PJ’LE = HZT@ for v as defined in (3.16). Note that
P/ ~vH,_y is the open double coset discussed in Page 569, and PJ{L , is not a proper

maximal parabolic subgroup. Although we only need in this paper the case when
¢ < j, we recall from [GRS11] the following general result.

PROPOSITION 4.2. ([GRS11, Theorem 5.1]) Assume that 0 < ¢ <m and 1 < j < m.
If v is inert, then, up to semi-simplification, the following isomorphism holds

Jw,n(IDdIGJ; (T ® U)) =T Y28 T3

where

. H,_ 121: .
T1 = @) e<pcn-eindp (| det| 7 70 @ Jy , (1)),
0=5<)

v indj; (| det | ;2 ) @ 0¥4), £ < j,
2= it
0, (4]

and Y3 is the remaining representation in the above semi-simplification of
me(lndgj” (T ® o)), whose detail can be found in [GRS11, Theorem 5.1].

We note that the detailed description of T3 is not needed in the following explicit
unramified calculation, and hence we omit it here.

If v is split, let £ = [¢1, {2, (3] be a partition of a positive integer N and consider
the twisted Jacquet module J i(Ind%L,%_ ;T1X72) in [GRS11, Section 3.6]. In order to
simplify our calculation, up to a suitable conjugation, we will use the Gelfand-Graev
character defined in [GRS11, Section 3.6]. Let N, consist of elements of form

L 0

n= Im—or y@ | € L, (F),
»(2)
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where 2(1), 2(2) € Z,(F). We will take the character ¢, to be the following character
" 2
90n) = V(e + 2(7h) + v + i),

The stabilizer of the character ¢(n) inside Gy,_¢(E,) 2 GLy,_0¢(F) is

i _ 1
f— {dlag{fz,%fz} € GLn(F) | 7 = ( g) Lge GLm_%_mF)}.

Define

*

7= [(73) 7T and () = ()]

which are representations of GLg, g1« (F') and the mirabolic subgroup of GLy_;_¢,
(F), respectively, where the inner * denotes composition with the map

g — Jél t —lJ/

£1 —Q?

where Jél_ o = diag(Jy, —a, Jr,—g+a), and the outer * denotes composition with the
map

g-—aJ@_5+a IJ& B+a

More information about 7'2£1_04 and (72)[,) can be found in [GRS11, Pages 113 and
115].

PROPOSITION 4.3. ([GRS11, Theorem 5.7]) Up to semi-simplification, the following
isomorphism holds

GLN (F)

J(Id T1><T2) L1DLyDL3D LY D L5

where L1 is given by the following direct sum

GLgy 1 (|- ‘71_”_”3“3‘“ Tl(j—ﬁ))

i=B8
@jffs<ﬁ<lendpﬁl27ﬁfl ® ‘ : ’ 2 J1/1(21,£27g,z37j+g) (T2);

0<B<y
Lo is given by the following direct sum

GL£271 r—4£1

Jeg—r—1-t2tl3—i+r

L3—r—1 [Zl—r]‘
S 0<r<j—Ls Ind Jw(r,j—ig—'r,[?))(Tl)) ® | ’ | 2 Ty
J—La—L3<r<t,

L3 is given by the following representation

GL¢y—1 4 -1 [0y . .
L (N G IR 0 <ty < b,
7D @ |det |~ o, if 05 = j,

O, otherwise;
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L4 is given by the following representation

GLgy 1 14 2} . .
{Indpj—ﬁs,b+£3—j—1(| : ‘ 2 (7-1)(23)) ® ’ : | 2 T2[£1]’ Ifo < '] - 63 < 62’

0, otherwise;

and Ls is given by the following representation
. GL 1 _ b . .
{lndPlz 1122+@3;1(|'| 2( ) )®| |27—2[Z} if0 <j—4€3 <ty
0,

otherwise.

The other notation in this proposition is referred to [GRS11, Section 5.2]. We are
going to apply the case of £ = [¢,m — 27, (] to the unramified calculation.

4.2 Unramified representations and local L-functions of unitary groups.
Let By = Ty Ny be a Borel subgroup of H,,_, with the maximal F-torus Ty and the
unipotent radical Ng. Let Kg = Gy (oF) (resp. Ky = H,—¢(0F)) be the standard
maximal open compact subgroup of G, (resp. H,_;). Denote by W(G,) = N(T)/T
the Weyl group of G,. When v is inert over E, W(G),) is the Weyl group associated
to a root system of type B. When v is split over E, W(G),) is the Weyl group
associated to a root system of type A.

From now on, we assume that the representations 7, o, and 7 are unramified.
Let xr and x, be the unramified characters corresponding to the spherical represen-
tations 7 and o. Then x, = ®_,x; and x, = ®f’;j+1xi. Define x5 := |- X+ ® Xo-
Let Il := II(xs) and 7 := m(p) be the unramified constituents of the normalized
induced representations

In d " F)(|det|s7'®0) and IndB” (}()F)(u),
respectively.

If v is inert over E, x; and j; are unramified characters of E* = F'(,/p)*.

If v is split over E, H,,_¢(F) = GLy,—2—1(F) and p; splits into a product 6;1;
of two unramified characters of F*. Moreover, if m — 2¢ — 1 is odd, u splits as
®§Zl_ 26-2)/ 20, 29; ® 1o- Here g is also an unramified character of F'*. In particular,
m(p) is the unramified constituent of the following induced representation

Hy—o(F mpyg H
Indpg" ( )((®i:191) ® (® Zri ﬁm}q—i—l i)

if m is odd, and of the following induced representation

ndpy" " (@716,) @ po © (71971 | )

if m is even, where my is the Witt index of the hermitian vector subspace (W, N
Wy qw,nwy )» Which defines H,, . Since £ = F' x F', we must have

GL;(E) = GL;(F) x GL;(F)
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and y, splits as a product =0, of unramified characters with

—_

= _ o) =

‘—‘T_®1;:1‘—‘Zv
o

0, =®;_,0;.

The representation 7 = 7 ® 79 is the unramified constituent of the induced repre-
sentation

Indj ) (2-) @ Ind§ 7). (©,),

; (F) GL; (F)
where 71 is induced from Z; and 72 is induced from ©,. Also, if we set y; = |-|°©; and
Xm41—i = |-|7°E; for 1 < i < j, then the representation TI(xs) of G, (F) is regarded

as the representation of GL,,(F") as defined in Page 585, via the isomorphism G,,(F)
= GL(F). Tt follows that Resg/p(GL;)(F) = GL;(F) x GL;(F'), in particular.

In the following, we write down the Satake parameters for the unramified rep-
resentations discussed above and write the relevant unramified local L-functions,
following the arguments in [BS09] or [KK11] for instance.

The Langlands dual group “U,, of U,, is GL,,(C) x I'(E/F), where T'(E/F)
is the Galois group on E and the nontrivial element ¢ acts on GL,,(C) via «(g) =
Jmtg1J 1. A 2m-dimensional complex representation po,, of the Langlands dual
group “U,, is given by

: g 0 : 0 In
@ (5 0) o (),

for any ¢ € GL,,(C). The Langlands dual group LResE/FGLj of Resp/ rGL;
is (GL;(C) x GL;(C)) x I'(E/F). The element ¢ acts on GL;(C) x GL;(C) by
(91,92) = (g2,91). We consider a j? dimensional representation of “Resp /rGLj,
which is realized in the space of all j x j matrices by

(91,92 1) -z = g1-x-"g,
(Ij, L) o= tx
where x € M, and is called the Asai representation of LResp /FGL;.
In addition, the Langlands dual group (U,, x Resg /rGLy) is
(GL(C) x GL;(C) x GL;(C)) x I'(E/F).

The element ¢ acts on it by ¢(g,91,92) = (9%,92,91). A 2mj-dimensional complex
representation po,; of L(U,, x Resg /rGL;) is given by

9® g1 0
1
(ga917927 )'_> < 0 g* ®g2>7

0 L
(Ima-[jw[jaL)'_) <Im] O]> )

where g ® g; is the Kronecker product.



592 D. JJANG AND L. ZHANG GAFA

We first consider the irreducible unramified representation m(u) of H,_,(F').
When v is inert over E, the Satake parameter of 7(u) is the semi-simple conjugacy
class in “H,,_, of type

c(m(p)) = (diag(p(wp), pe(w@p), - - iy, (@E), 1, 1)50),

where wg is the v-uniformizer of £. To simplify the notation, we may use u; for
wi(wg) in the following, if it does not cause any confusion.

When v is split over E, the Satake parameter of 7(u) is the semi-simple conjugacy
class in “H,,_, of type

c(m(p)) = (diag(f1(w), ..., 04, (@), ﬁfl(w), .. 197%2 (w)); 1)

if m is odd, and of type

c(n(p)) = (diag(01(@), . .., O, (@), po(@), 07 (@), ... 5, (w)); 1)

if m is even, where w is the v-uniformizer of F.

Next, we consider the irreducible unramified representation 7 of Resg,p(GL;) (F).
When v is inert over E, the Satake parameter of 7 is the semi-simple conjugacy class
in LResE/F(GLj) of type

co(r) = (diag(x1(@g), x2(@E), - - -, Xj(@E)), Lj; 1)

Again, we use x; for y;(wg) if it does not cause any confusion.
When v is split over E, the Satake parameter of 7 is the semi-simple conjugacy
class in LResE/F(GLj) of type

C(T) = (diag(@l, ceey @j), diag(El, . 75]'); 1),

where ©; is used for ©;(w) and E; is used for Z;(w), to simplify the notation (we
use similar notation for y;(w) and p;(w)).

Therefore, if v is inert over F and FE is the unramified quadratic field extension
of F', the unramified tensor product local L-function L(s,n x 7) is defined to be

I = xmeae®) '@ = xam ay™) ™ [T 0= xeaz™) (4.5)
1<i<j 1<k<n
1<V <tu

if m is even; and to be

I = ameqe®) (0= am ™) (4.6)
1<i<j
1<i' <rn
if m is odd. When v is split over F, the unramified tensor product local L-function
L(s,7m x 1) is defined to be

L(s,mx 1) = L(s,m x 11)L(s,7 X T2), (4.7)
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where 71 and 72 are defined according to ©1,...,0; and =y, ..., E;, respectively.
Moreover, the unramified local Asai L-function of 7 is defined as, when v is inert,
L(s,1,Asai) = H (1-— X’leiQQEQS)il H (1 —xig5") Y (4.8)
1<iy <12 <y 1<i<y

and when v is split

L(s,7,Asai) = L(s,71 X T2) = H (1 - ©;Ekg°) " (4.9)
1<i,k<j

The unramified tensor product local L-function L(s,o x 7) can be defined in the
same way.

4.3 Unramified local zeta integrals. Let f, and f, be the spherical vectors
in II(xs) and 7(p), normalized by fy(eq) = fu(em) = 1. Denote by f; and f, the
unramified function in 7 and ¢ accordingly. We are going to calculate explicitly the
unramified local zeta integral Z, (s, fy., fu, Vo)

By the Bernstein rationality theorem ([GPR87] and see also [Ban98)),
Z,(8, fx.s fuste,) is a rational function of the parameters x, and p. Thus, we can

write p( )
ZV(Svfo:f,uawé,n) - ﬁ (410)

where P(xs, i) and Q(xs, () are polynomials of variables in x;, p; and ¢°. Although
the polynomials P(xs,p) and Q(xs, ) may not be unique, in the next two sub-
sections, we try to produce explicitly a pair of polynomials P(xs, ) and Q(xs, i)
satisfying (4.10).

4.4 Polynomial Q(xs,p). For a technical reason, which will be mentioned
in the argument below, we assume that j = £ + 1. This is enough to produce the
unramified local L-functions as needed. The method used here is an extension of that
in [GPRI7] to the unitary group case. In order to define a polynomial (s, 1) which
serves a candidate for (4.10), we first introduce a proper Hecke algebra element ®g
in the extended spherical Hecke algebra of H,,_, as defined below, so that for any
section f,, in the unramified induced representation

Indgy" () (| det |'r @ o),
the convolution J(fy, * ®o) is supported in the Zariski open orbit Pjeg,1m R, and

ZV(Sa sz * (I)Ov f/ww&n) € (C[XSMU:H] : Zl/(s7 fxsafuawﬁ,/i)-

Since J(fy. * ®o) is supported in the Zariski open orbit, the local zeta integral
Z,(8, fr. *®o, fu, o) is in Clxs, ], which is taken to be a candidate for P(xs, 1)
in (4.10). Then take Q(xs, ) to be an element in C[x,, u*!] satisfying

ZV(SmeS * (I)O,fuawé,n) = Q(XS?,U’) : ZV(87 fnguawg,ﬁ)‘
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This makes our choice of a pair of polynomials P(xs, ) and Q(xs,u) for the
expression in (4.10). The polynomial Q(xs,p) is calculated here and the polyno-
mial P(xs, ) will be done in the next section.

Let H(H,—¢, Kir) be the spherical Hecke algebra with convolution o of all K p-bi-
invariant (smooth) functions with compact support on H,,_,. We choose generators
X; for all 1 < i < mpy of the Hecke algebra H(H,,_¢, Kf7) such that the following
isomorphism holds. By the Satake isomorphism, if v is inert over E and E is the
unramified quadratic field extension of F', the Hecke algebra can be realized as
follows:

9

- 1 1W(H,-
H(Hoot, i) = € [X0, X7 Xy, X0 ]V,

and if v is split over E, the Hecke algebra can be realized as follows:

Sm—2 —1
H(Hy—¢, Ky) ~C [Xlile§d> o ’sz‘r:zlf%fl] o

Here S,,_9¢—1 is the symmetric group on the sets {Xi,...,X;_2,-1} and
{Xl_l, e X;ll_%_l}. We will specify the action of the generators X; later.
Define an extended Hecke algebra as in [GPR97, §2]:

An, , =C[X, X' @ H(H,—¢, Knp).

Let II(xs) be the unramified representation of G, (F') as defined in §4.2. We consider
the subspace of all Ky-invariant vectors

T () = (T, (X)) ™"

of the twisted Jacquet module Jy, , (xs) := Jy, . (II(xs)). Although it is naturally a
module of the Hecke algebra H(H,,—¢, Kf7), we may extend it to be a module of the
extended Hecke algebra Ap, , as follows: for ¢ € Jj  (x;s) and X ® ¢ € Ap, _,,

¢x (X @) =qp°(¢o®),

where ¢ o ® is the left action on ¢ via convolution. Define, as in [GPR97, § 2], the
support ideal as follows:

Top(xs) = {® € An._ | T}, (x:) + @ C A

where A is the smooth representation of H,_,(F') consisting of functions in II(xs)
supported in the open double coset Pjeg1m12,,. More precisely, by Proposition 4.2
and 4.3, the smooth representation A can be realized via the following isomorphisms:
~ s Hu o(F —L+s ¢
A= 1ndP1,7£(}(ﬂ) )(] det|p> "7 @ ")
if v is inert over F; and

~ - GLy—2j41(F
A deLm_zj;Fg (o)

if v is split over E. Here we use the assumption that 7 = ¢+ 1.
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First, consider the case when ¢ = 0, which implies that j = £+ 1 = 1. In the
case, the twisted Jacquet functor is just the restriction to the subgroup H,(F') of
G, (F). By restricting to the subgroup H,(F), the induced representation

I = Ind§ (| - [ix @ 0)

decomposes via an exact sequence of H,,(F')-modules, according to Proposition 4.2.
If v is inert over F, the case is similar to [GPR97, §2] and we have

0 — Indf" () — Jy,, (T) — Indpr ([t "X @ Jyy (0)) — 0.
If v is split over E, more explanation is needed. The double coset decomposition
P1y—21\GLp/Hy,

has 6 representatives for m > 2, which are denoted by ~; for 1 < i < 6. Let
P —2171H, be the open orbit, and Py ,,—217;H, for ¢ = 2 or ¢ = 3 be the orbits
with the greatest dimension in those orbits except the open orbit. Using Proposi-
tion 4.3 repeatedly, we have

0— inngﬂZ:; (0) = Q— %X —0,
where
Q= {f € I | supp(f) C U}y PLm—217iHn}, (4.11)

and

Si=Indf" (|- [0 ® o) @ Indfr

1

LEMMA 4.4. Assume that £ = 0 and j = ¢ + 1 = 1. The support ideal Zgyp,(Xs)
contains

@0 = (1 - a5 x(=)XX)(1 - a5 x(=) XX
i
if v is inert over E/, and
oo = [[(1 - a5 O=) X X)(1 - 4* E(=) XX
i
if v is split over E.

Proof. The proof follows the same argument used in [GPR97, § 2, Lemma 2.1], which
uses the Satake Isomorphism for F-quasisplit classical groups and the definition of
the support ideal Zgypp(xs). We omit the details here. O
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Next, we deal with the general case with j = £+ 1 for the relation between H,,_,
and G,,_y.
If v is inert over E, by Proposition 4.2, we have the exact sequence of H,,_¢(F)
modules for j = ¢+ 1,
0— indg{"/_l . ’sEiéT(g) ®o%e — 11 -y -0

€0,17e, 1.y, 20
where

7e+8

Y= indg{"*é g 0 J%Yﬁ(awg),

and 1'[60)1776)1m

_,, is the smooth representation of H, 4 consisting of functions in
m(xs) which are supported in Pjep17er

NG,y Recall that 79 is the (-th
Bernstein-Zelevinsky derivative of 7, which is a representation of GLi(E). Up to
semi-simplification,

A ¢
0 = S xi ® |-z

1
and then ) = EB] 1md ") det |§+5Xi ® J%‘K(awg).
If v is split, we apply Proposition 4.3 repeatedly and obtain the exact sequence

0— indglﬁ’"_”_la(o) —-Q—-U—0,

m—2j

where U is defined to be the following representation
GLyn 201 m—20—1 *
Indyy 2 (| det | = 73(m) D @ 0) @ Ind3 2 (0@ | det| = ~*(r3)1")

and Q is defined in (4.11) consisting of functions supported in the first greatest
orbits. In this case, we have, up to semi-simplification,
4 £ l
i =@l 00| |} and ()M =& =" @]
Note that ® € Zgupp(xs) if and only if ® annihilates all the boundary components
of Jy, . (II), that is, all the summands in Proposition 4.2 and Proposition 4.3 except

m—2£—1

the space 1nd o "7(\ det \]_5 T(g) ® o) and the space mdGL
is sufficient to annihilate the quotients in Il , and 2.
In order to annihilate K g-fixed vectors in the space

o, respectively. It

;. H, _ iy ¢
@ indp (| det 2" xi ® Jyy, (0))
if v is inert, and in the space

@l Indgm 2 (|- e @ |- [T ) @0

1,m—2j 7
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(up to isomorphism) if v is split, as in Lemma 4.4, we may take the following specific
element in Ay

n—=~27

g:l HT§1 (1 - qggxiXXZv) (1 — qEEXiXXifl) , if v is inert,

T <1 - qI;E@Z-XXZ-/> (1 ~ q;E,»XXZ:l) , if v is split,
(4.12)

which is an element of the support ideal Zg,;,(X). In addition, all the other boundary
components of the Jacquet module Jy,  (xs) are of form

Py =

1—t
indg[,:""' <\ det | BREEON 0'>
if v is inert, and of form

« 1GL o0 1=t g
ind et (|det| B +‘(”:T@)a’)

Pg im—20—1-5

or

il (o @ldet |50,
if v is split, where ¢’ is a suitable representation independent of s, more details of
which can be found in Proposition 4.2 and Proposition 4.3. It is easy to check that
®( also annihilates K y-fixed vectors in those boundary components. In addition, we
specify the action of the generators X; such that the adjoint operator ®( across in
the zeta integral Z,(s, fy * ®o, fu, ) acts on f, with the property that

f,u * (I)E; = Q(Xsalu)f;u

where
J My 1 1
Qo) =TTTI (1= a5 "ximer) (1= 0" "xatii")
i=1i'=1
if v is inert; and
7 m—20—1 N N
—1_s —=—5— _
Qs =11 11 (1 —qg° eiﬂi’> (1 —qp° :iﬂill)
i=1 i'=1

if v is split.
PROPOSITION 4.5. With ®( € Zg,(Xxs) as chosen above, the following identity

holds:
Zl/(sv fX * (I>07 f,uawf,lﬁ) = Q(Xsau) : Zl/($7 fX7 f,uvwf,lﬁ)' (413)

Moreover, Z,(s, fy, * ®o, fu, %) Is a polynomial function in q,° of parameters x,
and .
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Proof. The proof is similar to the proof of Theorem 5.1 in [GPRI7]. In fact, J(fy. *
®g)(h), as defined in Section 4.1, belongs to the space A, which is independent of the
choice of 0. Also J (fy,*®o)(h) is analytic in s because of the support of J( fy. *®o).
The local zeta integral is equal to the pairing the function J(fy, * ®¢)(h) with a
Bessel function as in (4.3), and is absolutely convergent for all s. Hence the zeta
function Z, (s, fy, * o, fu, Ye,x) is a polynomial function of ¢f and ¢° for all choice
of m and all s. O

We remark that the proof of this proposition only uses the genericity of 7, which
is true because 7 is the unramified local component of the corresponding irreducible
automorphic representation of GL;(Ag) as given in (2.13). Hence it holds for all
choices x, and pu, and therefore, for all irreducible unramified representations ¢ and
.

By the definition of the unramified local tensor product L-functions as in (4.5)
and (4.6), and Proposition 4.5, one must have the following identity:

L—l(% + s, 7 x m)d(xr,s) if v is inert,
L—l(% + 5,7 X ) if v is split,

Q(XSa :u) = {

where

_j . *%*S N—1 . . .. .
d(xr, ) = {Hil(l 5> Xi) if m is even and v is inert;
1

otherwise.

Note that d(x-,s) = L(s+ 3, 7). Let d(x;,s) = (1 — qga_sxz')*l. Thus, based on the
calculation of Q(xs, i), the numerator @ - 2, is determined and we have a unique
choice of P(xs, 1).

4.5 Calculation of P(xs, ). In this section, we will first calculate the numer-
ator P(xs,p) when IT and 7 are spherical and generic, and then extend the results
to general case by Density Principle in Appendix IV to [GPR97, Section 5].

We define a linear functional in the Hom space (4.2),

T(fdi= [ [ Felcormm)fulm)n.(n) dndm.
H,_¢(F) Ne(F)
Note that properties of T' are studied in [KhoO8] when v is inert.
LEMMA 4.6.

Zl/(s> fxsafyawﬁ,ﬁ) = T(sz7 fu)

Proof. For all unramified places, the proof is similar to the orthogonal case as The-
orem (A) in Appendix I to [GPR97, Chapter 5]. 0
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Case ¢ = 0: First of all, we consider the case £ = 0, and hence j = 1. The Bessel
period is also studied by Gan et al. in [GGP12]. Referring to [Harl2, Proposition
2.5], for any quasi-character i, we have the following inductive formula.

LEMMA 4.7. If v is inert, then

L(%?Xl X 7'(') .
T(frr@xos fu) = L(1, 1 % U)L(l,fg/F ®X1)T(fu»fxg)a
and if v is split, then
L(L, 01 xm)L(},2; x 7)
T(le@Xaafu) = 2 : T(fu)fxa)'

L(l, @1 X 5‘)L(1, El X O')L(l, @151)
Note that T'(fu, fy,) is a bilinear form on m(u) and o. Correspondingly, one has

[L (5, x1 x m)d(x1 )] if v is inert,

Q(X1®Xm#):{[L(2’ O x m)L(5,Ey x 7)1 if v is split.

which is the same as the result of Proposition 4.5. Hence one has

d(x1)
L(LXI X O)L(17X1 ® é-TEn/F)

P(x1 ® Xo, 1) = T (1 X ), (4.14)

where T'(f,, fy.) is simply denoted by T'(u, xo). Note that P(x1 ® Xo, @) is a poly-
nomial function of the parameter xi, and

L(1,x1® gEn/F) =L(1,0; ® Zy).

A comment on the notation yy is in order. The above discussion holds for all quasi-
characters y; and hence the variable s is carried by this character y; here.

General Case ¢ > 0: In the discussion below, for technical reasons we also
assume that x is a general quasi-character, i.e. we take x to be x; here, since the
proof works for any quasi-character y. Hence in the discussion, there will be no
variable s. However, the variable s will be put back into the final formula.

Let w be an element of Weyl group W (H,,_y) and I, be the intertwining operator
mapping II(x) to II(wy). By the uniqueness of Bessel model, we have a local gamma
factor v, (x,y) defined by

T(Iw(fx)> fu) = (X ,U)T(fxa fu)

In order to calculate T'(fy, f,) in the general case £ > 0, we need to calculate the
local gamma factor ~,,.

When v is inert, let {; | 1 <1i < m} be a set of simple roots of G,,. Then the sets
{Bi |1 <i</t}and {f; | £+2 < i <m} are also sets of simple roots of GLy;1(F)
and H(Wy41) respectively.

When v is split, let {8; | 1 < i < m — 1} be a set of simple roots of GL,,
Recall that Ppi1 m—20—2¢+1 is a standard parabolic subgroup of GL,,, with the Levi



600 D. JJANG AND L. ZHANG GAFA

subgroup GLyi1 X GLy,—2¢-2 X GLgy1. Then the set {5; | 1 < ¢ < ¢} and {f; |
m — ¢ <i<m— 1} are sets of simple roots of the general linear groups of the Levi
subgroup, and {f; | £ +2 < i < m —{— 2} is the set of simple roots of the subgroup
GL,,,_2¢_o of the Levi subgroup. Let w; be the simple reflection corresponding to the
simple root f;.
LEMMA 4.8. If v is inert, then

71_?””‘{11@1 if1<i</4,

Yoo (X 1) = X , L
Yoo (Xe41 @ Xoy p) i L+1 <0 <

If v is split, then the gamma factor ~y,, (X, i) is equal to

{1‘X+X‘1E ifl<i<form—{<i<m,
1=XiXit1
Vo (X041 @ Xo @ Xn—eypt) L +1<i<m—L—1
Proof. Khoury proved the inert case in [Kho08, Proposition 11.1]. For the split case,
the proof is given in [Zhal2]. 0
Now, let

CO6 DT (s Xo)
P(x,p)

Note that 7" is a bilinear form on 7(x) and o, which means that

P*(x, 1) =

T e Homgf_j(F) (m(p) ® o, C).

Following [CS80] and [Shal0, Section 3.5], the functions ((x,t) can be defined as
follows. Write ¢ = qg to simplify the notation. When v is inert, if m is even, ((x,t)
is defined by

I G—xixi'eH@=xixia ™ [] @ xige));
1< <i2 < 1<i<m
and if m is odd, ((x,t) is defined by
IT G—xxi'eH0=xixia ™ [] @+ xae) (1 —xia™).

1<i; << 1<i<m

When v is split, ((x,t) = H1<i1<i2<m(1_Xi1Xi_21q7t)' In addition, if m = 1, {(x, t) =
1 for all cases. We remark that ((x,t) is the zeta polynomial function associated to
Gy, as in [GPRI7, Page 157].

For the case ¢ = 0, according to (4.14), we have

C(XUv 1)
d(x1) ’

where ((x, 1) is the zeta polynomial function associated to H,, as in [GPR97, Page
157].

P* (X1 ® Xos 1) = (4.15)
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COROLLARY 4.9. If 1 <i</{,orm — ¢ <1i<m—1 when v is split, then

P (wix, p) = P*(x; 1)
Ifi = ¢+ 1 when v is inert, or it = £+ 1 or m — { — 1 when v is split, then

P*(x,1)  ((Xo, 1)d(xi)

Pr(wix;s 1) C(xors D(xi+1)
where Xo = Xp11 ® X3 @ -+ @ X When i = {1 and v is inert, and Xo = Y11 @
Xe+3® @ Xm—¢—1 when i = £ and v is split, and Xor = X¢42 @+ @ Xm—t—2 @ Xm—¢-
Iff4+1<i<m whenvisinert or { +2 <i<m—/¥{—2 when v is split, then

Proon) _ (Xer 1)
Prwix, 1) ¢((wx)o,1)
Proof. The proof is a straightforward calculation by Lemma 4.8. O

By Corollary 4.9,

P*(x, 1)d(x~)
C(Xm 1)

is invariant under the action of the Weyl group W (G,,) on x. In the rest of this
section, we will show that the quotient above is equal to one, i.e.

P(un) = £, (4.16)

Let TO(X?ILL) = T(f)(gaf,u)a with

2g) = / Lntormn. 500y (bg)X~"55(b) dib,
B

where wg, is the longest Weyl element in G, and 1w, B(o) 1S the characteristic
function of B(o)wg, B(0) and also is an Iwahori-fixed function. Denote by x|m, ,
the restriction character of y into the torus of H,,_,.

LEMMA 4.10.

To(x; 1) = To(x

Proof. The proof is similar to Proposition 8.1 in [GPR97]. O

Hn—l’/"”)'

As in the Appendix to §6 in [GPR97], we have the following expansion,

Yoo (w™ X, 1) _ ~
T(X?:U'): ucj(wi,l)cwgn(w IX)TO(W 1X7:u)a
weW(G,) ¢ X



602 D. JJANG AND L. ZHANG GAFA

where ¢, (w™ty) is the Harish-Chandra c-function of the intertwining operator asso-
ciated to the Weyl group element w. In this formula, by replacing ~,(w™tx, i) by
the following expression:

T (X 1) cw(w™X)

-1
Yolw™ X, 1) = - :
of T(w=x, 1)
canceling the factor T'(x, i) from both sides, and replacing T'(w~'x, ut) by
_ P 'y, p)
T(w X p) = =%,
( ) Qw=lx; 1)

we obtain the following expression:

Z Q WX “)cwcn (W) To(w™ X, 1)

e P(w=tx, 1)

_ M )P (b ) W)
_MEWZ(GH) 1) Qw™  x, ) P*(w X’#)T(,u,(w_lx)g)'

Define

7n+ 1_

Alx) = sz =0,

where ¢ is the half of the sum of all positive roots. Then it follows that A(wy) =
sgn(w)A(x). Note that co, (x) = C(x,1)¢("(x,0). It follows that A(x) can be
expressed as follows:

-1 o % o T u)_l s
S sl Q) P ) R (1.17)
weW(G,,) o X)a

P o) g T (). 1)
= D) 2 e Qg O o)

weW (Gr)

In order to prove Equation (4.16), it is sufficient to show the following Lemma,
which is similar to the orthogonal case ([GPR97, Lemma 6.3]).

LEMMA 4.11.

A) = Y sen(w)g@VQ(wx, p)=

weW (G)

To ((WX)’HW N:U)C((WX)U? ) (4 18)
( -

T (p; (Wx)o)d((wx)r)

Proof. We only give a proof for the inert case. For the split case, the proof is similar
and we omit details here.
First, by Equation (4.15), this identity holds for ¢ = 0.
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Next, we consider the general cases ¢ > 0. Since the terms ((xo,1), Q(x, 1),
d(x-), To(xlm,_,, 1) and T'(pu, (wx)e) are invariant under the action of the Weyl
group W(GLy41), we have the right hand side of (4.18),

RHS = > B (@) - By (@) - ¢ {20 X)sgn(w).
WEW (GL)XW (G,—e)\W(Gy)
where
ZUJI (W) = Z Sgn(wl)q<9GLe ,wlwx> ,
w1 EW(GLy)
and
Vaaw) = Y sgn(w2)g (e 2X) Q(uwy, )
WZEW(anz)
To((wowx)| 1

H,_ zaM)C((waX)le)
T(p, (wowx)o)d((wawx)s)

Decompose as Q(x, 1) = Q1(x, )Q(Xe+1 © Xo, 1), Where

E fnL
Q106w =TT = a 2xama) (1 = g 2 ")
i=114=1
and
L
QUxent ®Xor i) = [[(1 = a2 xerapm) (1 = g 2 xeq1 ).
/=1

Thus, Q(w2x, 1) = Q1(x, 1) Q(w2(Xe+1 @ Xo), ) for wy € W(Gr—p).
Define wy = xM @ @ with x") = wy|ar, and x® = wy|q,_,. Note that

{om, , wawx) = <QH,L,UW2X(2)> :
C((WQWX)W 1) = C((WQX@))U? 1)’

and

¢
d((wawx)r) =d((wax®)e) [J(1 = ¢ "xi(wp))
i=1

=d((w2x®)er1)d((@X)r)d " ((@X)e41).
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Consider the summation

) =Qulwr ) T 2
Y sgn(wa)glee ) Qunx®, )
wa EW(Gr—)
To(wax®, )¢ (wax®) g, 1)
T (s, wax@)d((w2x?)e41)
~Quern) G A0,

The last identity holds by the case £ = 0. Note that x® = wx|a,_,
Now, after replacing 3, (w) by the expression above, the right hand side of (4.18)
reduces to

RHS - Z Zwl (Ld)
WEW (CL)XW (G )\W(G,)

By using the definition of ¥,, (w) and the definition of Ay _,(x?), and then by
collapsing the three summations ), >, and ) , we obtain that

d
RHS = > sgn(w)q@’le(wx,u)W-
weW (G.)
Recall that
QI(X> X+1 HH 1—q 2X1/Lz (1_q ZXz,Uz )
1=14¢=1
Then
RHS = Z sgn(w)q{e«x)
weW (G.,)
¢
+3 e sgn(w)q @ T ",
i weW(Gy) =1
where @ = (n1,n2,...,n¢) with n; € {0,1,2} such that at least one n; is nonzero,

and cj is the coefficient depending only on p. Also note that

=1
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where n; = 0 if ¢ > ¢. Thus, it is sufficient to show that

J4
Z sgn(w QwXHan’—O
=1

weW (G.,)

Since Zle n; 70, ¢ >0and m — £ —1 > 1, there exist at least two distinct
integers i and i’ with ¢ < ¢/ such that
m+1 m+1 y
— —i—n;=——— — 1 —ny.
2 2
Let ip be the maximal integer such that ig +n;, = ig+n;,. Consider the Weyl group
W(G,,) as the subgroup of the permutation group on x; and X;l for 1 < i< m.

Then, define a Weyl element w’ by the following rules: w’ permutes x;, and x;;, and
'm+1

fixes x; for the rest i. It follows that sgn(w’) = —1 and &’ fixes HZ X
Let W (G,,)5 be the stabilizer of W (G,,) acting on ¢{@“X) Hi:l X;*. By the fact that
sgn(w’) = —1 and W’ € W(Gy,)7, we have the restriction of sgn on W(G,,)7 is not
trivial. Therefore, we obtain

l
Z sgn(w (9 wX) H

weW(Gr) v
¢
= Z {owx) H Z sgn(ww’)
weW (G,) i weW(Gy)a
=0. O

Comparing (4.17) and (4.18), we can get the identity (4.16). Hence, after replac-
ing back xs for x, we obtain the following formulas

d((xs)7)C((Xs)r> 1)

P =
(X$7:u’> L(S+177— X U)L(28+177'7A3ai®§7En/F)

T(p, Xo) (4.19)

if v is inert, and

C((Xs)na 1)C((Xs)7’2a 1) (4'20)

P =
(XS?:U‘) L(S"— 177—1 X &)L(S—{— ]_,7'2 X O')L(2S+ 177'1 X ’7'2)

if v is split. Note that (xs), denotes the quasi-character which is the restriction of
the quasi-character x; to the torus of Resp,rGL;.

It is important to point out that from the beginning of this section up to this
point, we assume that II(xs) and m(u) are generic and spherical. The following
theorem extends the above results to general spherical II(xs) and 7 (u).
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Theorem 4.12.  For all choices of x and u, the following identity holds:

ZV(Safxvfu)wf,n) (421)

L(s+ 4,7 x)

- L(s+ 1,7 x0)L(2s + 1,7, Asai ® @/F) i fU>J e D),

where (f,, f5), and {(xr,1) are independent of s. Moreover, if we normalize W; so
that W;(fy)(e) =1, then

L(s+ 3,7 x)
L(s+1,7x0)L(2s+ 1,7, Asai ® {g/F)

ZV(Safxafua@Z}E,n) = <f,u7f0>ga (4'22)

Proof. This proof is similar to Theorem 5.2 in [GPR97]. By Proposition 4.5, it is
sufficient to show that

ZV(Sy fx * (I)(), fuvwﬁ,/@) = P(X,,U,)

holds for all choices of x and p.
Define

g 1
fr h | ueoannk | = fr(g)|det g|x6p fo(h),

*

g

where g € Resg/p(GLj), h € Gnj, u € Uj, n € Uy(o) and k € Kp. Recall that
fr and f, are the unramified spherical vectors in 7 and ¢. In addition, we assume
that supp(f*) = Pjeo,inRe(0). Then f* is in A and supp(f*) C G,—;jKpy. Since
j(f*)(e) = Wj(f*)(eo,ln) - C(X’F: 1)f0a we obtain

Z(Saf*7f,u7¢€,li) = C(XTa ]-) <fu7f0'>o- .
Define

d(x+)
L(s+ 1,7, x 0,)L(2s + 1,7, Asai @ {3 )

fﬁ:fx*(I)O_ f*

By (4.19) and (4.20), if x and p are in general position and s is in a dense open set,
then

ZV(S7 fﬁv f,unwf,n) =0.

By the same argument, one can extend the Density Principle in Appendix IV to
[GPRY7, Section 5] to the unitary group case, which implies that J(f*)(g) = 0 for
all choices of y, u and s. Therefore, we obtain the following identity

ZV(S;fX * (I)O7f,u7¢€,/i) = ZV(S,f*,fWW,n) = P(Xa,u)v

for all choices of x, u and s. O
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This completes the proof of Theorem 3.9, which is the key result for unramified
local zeta integrals. With Theorems 3.8 and 4.12, we have the following main global
result of this paper for j = ¢+ 1. In this case, (H,—;+1,Gn—;) is a spherical pair,

and the Bessel period Plo-tu_s (¢r, po) reduces to a spherical Bessel period.

Theorem 4.13 (Main). Assume that j = {+ 1. Let E(¢rgs,S) be the Eisenstein
series on Gy, (A) as in (2.15) and let m be an irreducible cuspidal automorphic rep-
resentation of H,_;(A). Assume that the real part of s, R(s), is large, and that
m and o have a non-zero spherical Bessel period. Then the global zeta integral
Z(8, Oreo, P, Yow,) 1s eulerian, and is equal to

LS(s+3,m%x7T)
LS(s+ 1,0 x 7)L5(2s + 1,7, Asai ® fgb/F)’

CW,JZS(‘S? Gr@0, Prs wf,wo)

where cr , is a constant depending on the Bessel period of m and o and on other
normalization constants, but independent of s, and

ZS(Sv ¢T®0’) Py ¢Z,’wo) - H ZU(Su ¢T®O’7 Py ’(zbﬂ,’wo)
vES

is the finite product of ramified local zeta integrals.

It is clear that Theorem 4.13 extends the main result of [GPR97] to the general-
ity considered in this paper. Note that when 7 is an irreducible cuspidal automor-
phic representation of SOy, )41 (A), one has to replace the complex representation
Asai ® §g/ by the corresponding exterior square representation A?; and when 7
is an irreducible cuspidal automorphic representation of SOy,_¢(A), one has to
replace the complex representation Asai ® 5}1}/ 7 by the corresponding symmetric

square representation Symz.

There is a standard method to prove from this global identity that the partial
L-functions L° (s + %,71’ x 7) has meromorphic continuation to the whole complex
plane. It is more important to develop the local theory which extends the partial L-
function to the complete L-function in this setting and hence to prove the functional
equation and other analytic properties of the complete L-functions of this type. This
is our on-going project and will be reported in our future work.

5 Final Remark

We expect that Theorem 4.13 holds if one replaces the single variable s by a multi-
variable (s1,s2,...,s,). This means that one replaces the representation 7 by an
isobaric sum of generic representations. Hence the resulting global zeta integral
represents the following product of tensor product L-functions

LS(Sl,ﬂ' X Tl)LS(SQ,W X Tg) - '-LS(ST,W X Tp).

We will come back to this in our future work.
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