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The existence of the well-known Jacquet–Langlands correspondence was established by

Jacquet and Langlands via the trace formula method in 1970 [13]. An explicit construc-

tion of such a correspondence was obtained by Shimizu via theta series in 1972 [30]. In

this paper, we extend the automorphic descent method of Ginzburg–Rallis–Soudry [10]

to a new setting. As a consequence, we recover the classical Jacquet–Langlands corre-

spondence for PGL(2) via a new explicit construction.

1 Introduction

The classical Jacquet–Langlands correspondence between automorphic forms on GL(2)

and D×, with a quaternion division algebra D, is one of the first established instances of

Langlands functorial transfers. The existence of such a correspondence was established

by Jacquet and Langlands via the trace formula method in 1970 [13]. An explicit con-

struction of the Jacquet–Langlands correspondence was obtained by Shimizu via theta

series in 1972 [30]. Shimizu’s construction was extended in the general framework of
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theta correspondences for reductive dual pairs in the sense of Howe [12], and has been

important to many arithmetic applications, including the famous Waldspurger formula

for the central value of the standard L-function of GL(2) [33], and the work of Harris and

Kudla on Jacquet’s conjecture for the central value of the triple product L-function [11],

for instance.

The automorphic descent method developed by Ginzburg et al. in [10] constructs

a map which is backward to the Langlands functorial transfer from quasi-split classical

groups to the general linear group. The starting point of their method is the symmetry of

the irreducible cuspidal automorphic representation on GL(n). However, their theory is

not able to cover the classical groups which are not quasi-split. In this paper, we extend

their method by considering more invariance properties of irreducible cuspidal auto-

morphic representations of GL(n), so that this extended descent is able to reach certain

classical groups which are not quasi-split. Owing to the nature of the newly introduced

invariance property and the new setting of the construction, we call the method intro-

duced below twisted automorphic descent.

Let τ be an irreducible unitary cuspidal automorphic representation of GL2n(A),

where A is the ring of adeles of a number field F . Assume that the partial exterior square

L-function LS(s, τ,∧2) has a simple pole at s = 1. It is well known now that τ is the Lang-

lands functorial transfer from an irreducible generic cuspidal automorphic representa-

tion π0 of the F -split odd special orthogonal group G0(A)= SO2n+1(A). The automorphic

descent method of Ginzburg et al. [10] and the irreducibility of the descent [19] show that

this π0 is unique and can be explicitly constructed by means of a certain Bessel–Fourier

coefficient of the residual representation of SO4n(A) with cuspidal datum (GL2n, τ ).

The objective of this paper is to extend the descent method of [10] to construct

more general cuspidal representations and more general groups which are pure inner

forms of the F -split odd special orthogonal group G0(A). To this end, we take σ to

be an irreducible cuspidal automorphic representation of an F -anisotropic SOδ
2 asso-

ciated with a non-square class δ of F ×, and assume that the central value L( 1
2 , τ × σ) is

non-zero. The main idea is to make conditions such as L( 1
2 , τ × σ) �= 0 into play in the

construction of more general cuspidal automorphic representations of classical groups

using the irreducible unitary cuspidal automorphic representation τ of GL and the irre-

ducible cuspidal representation σ of SOδ
2. We refer the reader to [22] for a more general

framework of such constructions, which are technically much more involved than the

current case in this paper. Hence, we leave to [22] the detailed discussions for general

construction. We give below a more detailed description of the construction and the

main results of the paper.
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1.1 A residual representation of SOδ
4n+2(A)

Let V be a quadratic space of dimension 4n+ 2 defined over F with a non-degenerate

quadratic form 〈·, ·〉. We assume that the Witt index of V is 2nwith a polar decomposition

V = V+ ⊕ V0 ⊕ V−,

where V+ is a maximal isotropic subspace of V , and V0 is an anisotropic subspace of

dimension 2. We may take the quadratic form on V0 to be associated with Jδ = (
1 0
0 δ

)
,

where −δ /∈ F ×2, and the quadratic form of V is taken to be associated with⎛
⎜⎜⎝

w2n

Jδ

w2n

⎞
⎟⎟⎠ ,

where wr is the (r × r)-matrix with 1’s on its anti-diagonal and zero elsewhere. Denote

by H δ = SOδ
4n+2 the corresponding F -quasi-split special even orthogonal group. We fix a

maximal flag

F : 0 ⊂ V+
1 ⊂ V+

2 ⊂ · · · ⊂ V+
2n = V+

in V+, and choose a basis {e1, . . . , e2n} of V+ over F such that V+
i = Span{e1, . . . , ei}. We

also let {e−1, . . . , e−2n} be a basis for V−, which is dual to {e1, . . . , e2n} in the sense that

〈ei, e− j〉 = δi, j for 1 ≤ i, j ≤ 2n,

and let V−
� = Span{e−1, . . . , e−�}.

Let P be the parabolic subgroup fixing V+. Then P has a Levi decomposition

P = MU such that M � GL2n × SOδ
2, where SOδ

2 is the F -quasi-split special orthogonal

group of (V0, Jδ). Let τ be an irreducible unitary cuspidal automorphic representation of

GL2n(A), and σ be an irreducible unitary (cuspidal) representation of SOδ
2(A). Then τ ⊗ σ

is an irreducible unitary cuspidal representation of M(A). For s ∈ C and an automorphic

function

φτ⊗σ ∈A (M (F )U (A) \H δ (A)
)
τ⊗σ ,

following [26, Section II.1], one defines λsφτ⊗σ to be (λs ◦ mP )φτ⊗σ , where λs ∈ XH δ

M � C

(see [26, Section I.1] for the definition of XH δ

M and the map mP ), and defines the corre-

sponding Eisenstein series by

E (h, s, φτ⊗σ )=
∑

γ∈P (F )\H δ(F )

λsφτ⊗σ (γh) ,
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which converges absolutely for Re(s)� 0 and has meromorphic continuation to the

whole complex plane [26, Section IV]. We note here that under the normalization of

Shahidi, we can take λs = sα̃ (see [28]), where α is the unique reduced root of the maximal

F -split torus of H δ in U .

As in [18], define

β (s)= L (s + 1, τ × σ) · L
(
2s + 1, τ,∧2) ,

where the L-functions are defined through the Langlands–Shahidi method [29]. Then

define the normalized Eisenstein series

E∗ (h, s, φτ⊗σ )= β (s) E (h, s, φτ⊗σ ) ,

which has the following properties.

Proposition 1.1 ([18, Proposition 4.1]). Let τ and σ be as above. Then the normalized

Eisenstein series E∗(h, s, φτ⊗σ ) has a simple pole at s = 1
2 if and only if L(s, τ,∧2) has a

pole at s = 1 and L( 1
2 , τ × σ) �= 0. �

Let Eτ⊗σ denote the automorphic representation of H δ(A) generated by the

residues at s = 1
2 of E(h, s, φτ⊗σ ) for all φτ⊗σ ∈A(M(F )U (A)\H δ(A))τ⊗σ . From now on, we

assume that L(s, τ,∧2) has a pole at s = 1 and L( 1
2 , τ × σ) �= 0. In this case, τ has trivial

central character [15]. By Proposition 1.1, the residual representation Eτ⊗σ is non-zero.

By the L2-criterion in [26; 18, Theorem 6.1], the residual representation Eτ⊗σ is square-

integrable. Moreover, the residual representation Eτ⊗σ is irreducible, following Theorem

A of Moeglin in [24], for instance. Note that the global Arthur parameter (see [2]) for Eτ⊗σ
is (τ,2)� ψσ [18, Section 6].

1.2 Fourier coefficients attached to partition [(2� + 1)14n−2�+1]

Following [16], one defines Fourier coefficients of automorphic forms of classical groups

attached to nilpotent orbits and hence to a partition. For H δ = SOδ
4n+2, we consider here

the Fourier coefficients attached to the partition [(2�+ 1)14n−2�+1] of 4n+ 2 with 1 ≤ �≤
2n, which is also known as Bessel–Fourier coefficients. More precisely, for 1 ≤ �≤ 2n,

consider the following partial flag

F� : 0 ⊂ V+
1 ⊂ V+

2 ⊂ · · · ⊂ V+
� ,
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which defines the standard parabolic subgroup P� of H δ, with the Levi decomposition

P� = M� · N�. The Levi part M� � (GL1)
� × SO(W�), with

W� = (
V+
� ⊕ V−

�

)⊥
.

Following [35], the F -rational nilpotent orbits in the F -stable nilpotent orbits

in the Lie algebra of SOδ
4n+2 associated with the partition [(2�+ 1)14n−2�+1] are param-

eterized by F -rational orbits in the F -anisotropic vectors in W� under the action of

GL1(F )× SO(W�). The action of GL1(F )× SO(W�) on W� is induced naturally from the

adjoint action of M� on the unipotent radical N�.

Take an anisotropic vector w0 ∈ W� with 〈w0, w0〉 in a given square class of F ×,

and define a homomorphism χ�,w0 : N� −→ Ga by

χ�,w0 (u)=
�∑

i=2

〈u · ei, e−(i−1)〉 + 〈u · w0, e−�〉.

Recall that here 〈·, ·〉 denotes the quadratic form on V . Define also a character

ψ�,w0 =ψ ◦ χ�,w0 : N� (A)−→ C
×,

where ψ : F \A −→ C
× is a fixed non-trivial additive character. Hence, the character ψ�,w0

is trivial on N�(F ). Now the adjoint action of M� on N� induces an action of SO(W�) on the

set of all such characters ψ�,w0 . The stabilizer L�,w0 of χ�,w0 in SO(W�) equals SO(w⊥
0 ∩ W�).

Let Π be an automorphic representation of H δ(A) (see [3, Section 4.6]), occurring

in the discrete spectrum. For f ∈ VΠ and h∈ H δ(A), we define the ψ�,w0-Fourier coeffi-

cients of f by

fψ�,w0 (h)=
∫

[N�]
f (vh) ψ−1

�,w0
(v)dv; (1.1)

here [N�] denotes the quotient N�(F )\N�(A). This is one of the Fourier coefficients of f

associated with the partition [(2�+ 1)14n−2�+1]. It is clear that fψ�,w0 (h) is left L�,w0(F )-

invariant, with L�,w0 = SO(w⊥
0 ∩ W�). Following [10, Section 3.1], we define the space

σψ�,w0
(Π)= L�,w0 (A)− Span

{
fψ�,w0 |L�,w0 (A)

| f ∈ VΠ
}
,

which is a representation of L�,w0(A), with right translation action. The situation that is

the main concern of the paper is the case of the so-called first occurrence, as described in

Theorem 1.2. In such a situation, the function fψ�,w0 (h) will be cuspidal for all f ∈ VΠ , in

particular, square-integrable. Hence, we may identify the space σψ�,w0
(Π) as a subspace

of the discrete spectrum of the space of square-integrable automorphic functions
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on L�,w0(A), and σψ�,w0
(Π) becomes an automorphic L�,w0(A)-module in the sense of

[3, Section 4.6].

To make a precise choice of the anisotropic vector w0 for the cases 1 ≤ � < 2n,

we take

w0 = yα = e2n − α

2
e−2n

for α ∈ F ×, and hence we have 〈w0, w0〉 = −α. For such an α, we consider the three-

dimensional quadratic form given by Jδ,α =
(

1
δ
α

)
, which can be split or non-split over

F , depending on the Hilbert symbol (δ, α). For the cases �= 2n, we take any non-zero

w0 ∈ V0. Hence, for 1 ≤ � < 2n and w0 = yα, we have L�,α = SOδ,α
4n−2�+1, which is a special

odd orthogonal group defined by the form

J =

⎛
⎜⎜⎝

w2n−�−1

Jδ,α

w2n−�−1

⎞
⎟⎟⎠ .

We denote ψ�,yα by ψ�,α, and σψ�,yα (Π) by σψ�,α (Π).

1.3 The twisted automorphic descent

Now, we apply the ψ�,w0 -Fourier coefficients to the residual representation Eτ⊗σ of

SOδ
4n+2(A) and investigate more carefully its properties depending on the integer �. One

of the main results in this paper is the following theorem.

Theorem 1.2. Assume that an irreducible unitary cuspidal automorphic representation

τ of GL2n(A) has the property that L(s, τ,∧2) has a pole at s = 1 and there exists an

irreducible unitary (cuspidal) representation σ of SOδ
2(A) such that L( 1

2 , τ × σ) �= 0. Then

the following hold.

(1) The representation σψ�,α (Eτ⊗σ ) of SOδ,α
4n−2�+1(A) is zero for all n< �≤ 2n.

(2) For any square class α in F ×, the representation σψn,α (Eτ⊗σ ) of SOδ,α
2n+1(A) is

cuspidal automorphic.

(3) There exists a square class α in F × such that the representation σψn,α (Eτ⊗σ ) of

SOδ,α
2n+1(A) is non-zero, and in this case

σψn,α (Eτ⊗σ )= π1 ⊕ π2 ⊕ · · · ⊕ πr ⊕ · · · ,
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where πi are irreducible cuspidal automorphic representations of SOδ,α
2n+1(A),

which are nearly equivalent, but are not globally equivalent, that is, the

decomposition is multiplicity-free.

(4) When σψn,α (Eτ⊗σ ) is non-zero, any direct summand πi of σψn,α (Eτ⊗σ ) has a weak

Langlands functorial transfer to τ in the sense that the Satake parameter of

the local unramified component τv of τ is the local functorial transfer of that

of the local unramified component πv of π for almost all unramified local

places v of F .

(5) When σψn,α (Eτ⊗σ ) is non-zero, every irreducible direct summand of σψn,α (Eτ⊗σ )
has a non-zero Fourier coefficient attached to the partition [(2n− 1)12].

(6) The residual representation Eτ⊗σ has a non-zero Fourier coefficient attached

to the partition [(2n+ 1)(2n− 1)12]. �

For these square classes α in F × such that σψn,α (Eτ⊗σ ) is non-zero, we call

σψn,α (Eτ⊗σ ) the twisted automorphic descent of τ to SOδ,α
2n+1(A). It is clear from the notation

and more importantly the explicit construction that the twisted automorphic descent

σψn,α (Eτ⊗σ ) depends on the data (τ ; δ, σ ;α). The GL1(F )× SO(W�)(F )-orbits of anisotropic

vectors in W� labeled by the pair (δ, α) determine more refined properties of the twisted

automorphic descent σψn,α (Eτ⊗σ ), which will be briefly discussed at the end of Section 3

in connection to Parts (5) and (6) of Theorem 1.2 and to the structure of the relevant

global Vogan packets. We refer to the reader [22] for more discussion on the general

framework of the twisted automorphic descent constructions for classical groups with

connections to explicit structures of global Arthur packets and global Vogan packets. In

order to show the potential of the theory of twisted automorphic descents, we provide

in Section 5 a complete description of the method and result for the case of n= 1, which

recovers the classical Jacquet–Langlands correspondence. Hence, the twisted automor-

phic descent discussed in this paper provides a new method to establish the Jacquet–

Langlands correspondence for PGL(2).

Parts (1) and (2) of the theorem are usually called the tower property and cuspi-

dality. They will be proved in Section 2 after establishing the vanishing property of the

corresponding local Jacquet module at one unramified local place, following the idea

of [10]. In order to establish the first occurrence at �= n, which is the first assertion in

Part (3) of the theorem, we have to understand the structure of the Fourier coefficients

of the residual representation Eτ⊗σ following the general framework of [16]. We first

prove that the residual representation Eτ⊗σ has a non-zero Fourier coefficient attached

to the partition [(2n)212] in Section 3 (Proposition 3.1), which is based on the cuspidal
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support of Eτ⊗σ . After that, we use the argument similar to that in [6, Section 5], but

with full details, to prove that there exists at least one square class α in F × such that

the twisted automorphic descent σψn,α (Eτ⊗σ ) is non-zero (Proposition 3.3), which yields

the first assertion in Part (3) of the theorem. It is clear that the second assertion in Part

(3) of the theorem follows from Part (4) for the assertion of nearly equivalence, while

the multiplicity-free decomposition follows from the local uniqueness of Bessel mod-

els [1, 5, 20]. If we assume that the global Gan–Gross–Prasad conjecture holds for this

case, then we may deduce that σψn,α (Eτ⊗σ ) is irreducible. We will not discuss this issue

in such generality in this paper, but we will discuss the case of n= 1 in Section 5. Next,

we continue in Section 3 to obtain Part (5) of the theorem by showing that the irre-

ducible summands in the twisted automorphic descent σψn,α (Eτ⊗σ ) have non-zero Fourier

coefficients attached to the partition [(2n− 1)12]. Note that if n= 1, this partition is triv-

ial, and the corresponding Fourier coefficient is the identity map. It is clear that if the

group SOδ,α
3 is F -anisotropic, then its only nilpotent orbit is the trivial one, correspond-

ing to the trivial partition. However, if the group SOδ,α
3 is F -split, because of Part (4), we

expect that the twisted automorphic descent has a non-zero Whittaker–Fourier coeffi-

cient. There will be a more detailed discussion for this case in Section 5. In Section 4, we

are going to prove that the Satake parameter of the unramified local component of any

of the direct summand πi of σψn,α (Eτ⊗σ ) transfers canonically to the Satake parameter of

the unramified local component of τ , and hence the direct summands of σψn,α (Eτ⊗σ ) are

nearly equivalent. This proves Parts (3) and (4) of the theorem. The last part (Part (6)

of the theorem) follows from Part (5) as a consequence of the Fourier coefficients asso-

ciated with a composite of two partitions as discussed in [9, 17], which will be briefly

discussed before the end of Section 3.

2 On Vanishing and Cuspidality

We are going to show that the ψ�,w0-Fourier coefficients of the residual representation

Eτ⊗σ of SOδ
4n+2(A) vanishes for all n< �≤ 2n. Following the tower property proved in [10],

the twisted automorphic descent σψn,α (Eτ⊗σ ) is cuspidal, which might also vanish. Such

vanishing property of the family of the Fourier coefficients Eψ�,w0
τ⊗σ should be determined

by the global Arthur parameter of the square-integrable residual representation Eτ⊗σ
and the structure of its Fourier coefficients as conjectured in [16]. Through the local–

global relation, one may take the local approach to prove such vanishing property as

shown in [10]. However, a purely global argument should be interesting and expected [8].

We will come back to this issue in future.
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In the following, we follow [10] to take the local approach, which is a calcula-

tion of twisted Jacquet module at one unramified local place. This proves Part (1) of

Theorem 1.2. Following the argument of the tower property in [10], we deduce in the

second section the cuspidality of the twisted automorphic descent, which is Part (2) of

Theorem 1.2.

2.1 Calculation of certain Jacquet modules

Most of the results are deduced from the general results of [10, Chapter 5].

Let k be a non-Archimedean local field and V be a non-degenerate quadratic

space of dimension 4n+ 2 over k. We have a polar decomposition

V = V+ ⊕ V0 ⊕ V−,

where V+ is a maximal isotropic subspace of V and V0 is anisotropic. There are two

cases to be considered

(1) dim V0 = 0, if SO(V) is split;

(2) dim V0 = 2, if SO(V) is quasi-split.

We denote the Witt index of V by m̃, which can equal to 2n+ 1 or 2n in case (1) or (2),

respectively.

Let H = SO(V) be the special orthogonal group on V over k. Fix a basis {e1, . . . , e2n}
of V+, and if V0 �= 0, we take a basis {e(1)0 , e(2)0 } for V0 such that 〈e(1)0 , e(1)0 〉= 1 and

〈e(2)0 , e(2)0 〉= δ for some δ ∈ k×. Otherwise we fix a basis {e1, . . . , e2n+1} for V+. As in the

global case (Section 2.2), for 0< �≤ 2n, let P� be the parabolic subgroup of H preserving

the partial flag

F� : 0 ⊂ V+
1 ⊂ V+

2 ⊂ · · · ⊂ V+
� .

Then P� = M� · N� with M� � G
�
m × SO(W�), where W� is the same as in Section 1.2. For

α ∈ k×, we take an anisotropic vector w0 ∈ V as follows:

w0 =

⎧⎪⎨
⎪⎩

yα = e2n − α

2
e−2n if � < 2n,

αe(1)0 or αe(2)0 in V0 if �= 2n and V0 �= 0.
(2.1)

Remark 2.1. By a change of basis if necessary, we see that each anisotropic vector in V

is of the form αei + βe−i or αe( j)
0 (this occurs only if V0 �= 0) for some α, β ∈ k×. Then the

above choices of w0 essentially represent any anisotropic vector in V . �
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Similar to the global case (Section 2.2), one defines a character ψ� on N�(k) by

ψ� =ψ ◦ χ�,w0 , where ψ is a non-trivial additive character on k. Let L�,w0 = SO(W� ∩ w⊥
0 )

be the stabilizer of χ�,w0 in SO(W�).

For any smooth representation (Π,VΠ) of H(k), we define the (twisted)

Jacquet module

Jψ�,w0
(VΠ)= VΠ/Span

{
Π (u) ξ − ψ�,w0 (u) ξ | u∈ N� (k) , ξ ∈ VΠ

}
,

which is an L�,w0-module. To simplify the notation, we will use χ�,α, L�,α and Jψ�,α if

w0 = yα. Note that with the notation of the previous section, for 0 ≤ � < 2n, the form of

the odd orthogonal group L�,α is

J =

⎛
⎜⎜⎝

w2n−�−1

Jδ,α

w2n−�−1

⎞
⎟⎟⎠ ,

and hence we have the following cases:

(i) if Jδ,α is non-split over k, then L�,α is non-split, and Witt(k · y−α + V0)= 0;

(ii) otherwise, the group L�,α is k-split. In this case, Witt(k · y−α + V0)= 1 if V0 �= 0

(i.e. −δ /∈ k×2), and Witt(k · y−α + V0)= 0 if V0 = 0.

Moreover, if �= 2n, this will be a degenerate case, and L2n,w0 is a trivial group.

For any 0< j ≤ 2n, let V+
j = Span{e1, . . . , ej}, and let Qj be the standard parabolic

subgroup of H which preserves V+
j . The group Qj has a Levi decomposition Qj = Dj · U j

with Dj � GL j(k)× SO(Wj). For 0 ≤ t< j, let τ (t) be the tth Bernstein–Zelevinsky deriva-

tive of τ along the subgroup

Z ′
t =

{(
Is y

0 z

)
∈ GL j (k) | z∈ Zt (k)

}

and corresponding to the character

ψ ′
t

((
Is y

0 z

))
=ψ−1 (z1,2 + · · · + zt−1,t

)
.

Then τ (t) is the representation of GLs(k) with s = j − t, acting on the Jacquet module

JZ ′
t,ψ

′
t
(Vτ ) via the embedding

d �−→ diag (d, It) ∈ GL j (k) .
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For a∈ k×, we also consider the character ψ
′′
t,a on Z ′

t defined by

ψ
′′
t,a

((
Is y

0 z

))
=ψ−1 (z1,2 + · · · + zt−1,t + ays,1

)
.

Denote the corresponding Jacquet module JZ ′
t,ψ

′′
t,a
(Vτ ) by τ(t),a, which is a representation

of the mirabolic subgroup P 1
s−1 of GLs(k). Since τ(t),a � τ(t),a′ for any a,a′ ∈ k×, according

to [10, Lemma 5.2], we sometimes denote by τ(t) any of such representations τ(t),a.

Let τ and σ be smooth representations of GL j(k) and SO(Wj), respectively.

The Jacquet module Jψ�,α (IndH
Qj
τ ⊗ σ) has been studied in [10]. We state it here for

completeness.

Proposition 2.2 ([10, Theorem 5.1]). Set | · | := | det(·)|. The following hold.

(1) Assume that 0 ≤ � < m̃ and 1 ≤ j < m̃; then

Jψ�,α
(
IndH

Qj
τ ⊗ σ

)

≡
⊕

�+ j−m̃<t≤�, 0≤t≤ j

indL�,α
Q′

j−t
| · | 1−t

2 τ (t) ⊗ Jψ ′
�−t,α

(
σω

t
b

)

⊕
⎧⎨
⎩

indL�,α
Q′

j−�,�
| · |− �

2 τ(�) ⊗ σω
�
b if � < j,

0 otherwise;

⊕ δα ·
⎧⎨
⎩

indL�,α
Q′
α

| · | 1+2n−�− j
2 τ (�+ j−m̃) ⊗ Jψ ′

m̃− j,vα

(
σω

�+ j−2n
b

)
if 0< 2n− �≤ j,

0 otherwise.

(2) Assume that 0 ≤ �≤ m̃ and j = m̃; then

Jψ�,α
(
IndH

Qj
τ ⊗ σ

)
≡ indL�,α

Q′
m̃−�

| · |− �
2 τ(�) ⊗ σω

�
b ⊕ δα · indL�,α

Q′
α

| · | 1−�
2 τ (�) ⊗ Jψ ′

0,vα

(
σω

�
b

)
.

(3) Assume that �= m̃ and w0 ∈ V0; then

Jψ�,w0

(
IndH

Qj
τ ⊗ σ

)
≡ dτ · Jψ ′

�− j,w0

(
σω

j
b

)
,

here dτ = dim τ ( j).
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Here, Q′
s = L�,α ∩ η−1

t Q(w)
�, j ηt with w being the representative of Qj\H/Q� corresponding to

the pair (0, s) as in [10, Chapter 4], and with t = j − s,

Q(w)
�, j = Q� ∩ w−1 Qjw, ηt =

⎛
⎜⎜⎝
ε

I4n+2−2�

ε∗

⎞
⎟⎟⎠ , and ε =

(
I�−t

It

)
.

Also Q′
s,t = L�,α ∩ η−1

s,t Q(w)
�, j ηs,t with t being the same as above, and

ηs,t =

⎛
⎜⎜⎝
ε

γs

ε∗

⎞
⎟⎟⎠ , γs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 Is

I2n−�−s 0

IV0

0 I2n−�−s

Is 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Set ωb = diag(Im̃, ω
0
b, Im̃), where ω0

b = (
1 0
0 −1

)
if m̃ = 2n, and ω0

b = (
1 0
0 −1

)
if m̃ = 2n+ 1.

Moreover, δα = 0 unless Witt(k · y−α + V0)= 1, and in such cases, set vα ∈ V0 such that

〈vα, vα〉 = −α,

γα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I2n−�−1

1

−vα IV0

α

2
v′
α 1

I2n−�−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

γ = diag(Is−1, γα, Is−1), and ηγα,t is of the same form as ηs,t where γs is replaced by γα.

Finally, Q′
α = L�,α ∩ η−1

γα,tQ
(w)
�, j ηγα,t, and ψ ′

l,α (or ψ ′
l.vα ) denotes the corresponding character

like ψ�,α but on the groups of smaller rank. Note that “ind” denotes the compact induc-

tion, and “≡” denotes isomorphism of representations, up to semi-simplification. �

Remark 2.3. Define

V±
�,s = Spank

{
e±(�+1), . . . , e±(�+s)

}⊂ W�.

When w0 ∈ W�+s or H(k) is split, Q′
s is the maximal parabolic subgroup of L�,w0 which

preserves the isotropic subspace ωt
bV+

�,s ∩ w⊥
0 . Otherwise, it is a proper subgroup of the

parabolic subgroup. Moreover, Q′
s,t is a subgroup of the maximal parabolic subgroup of

L�,α, which preserves the isotropic subspace η−1
s,t V+

�,s ∩ y⊥
α . �

With the above preparation, we turn to the calculation of the twisted Jacquet

module for any unramified local component of the residual representation Eτ⊗σ .
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Let τ be an irreducible unramified representation of GL2n(k) with central char-

acter ωτ = 1. Since τ is generic and self-dual, we may write τ as the full induced repre-

sentation from the Borel subgroup as follows:

τ =μ1 × · · · × μn × μ−1
n × · · · × μ−1

1 ,

where μi’s are unramified characters on k×. Also, let σ be an irreducible unramified

representation of SO(W2n). When H = SO(V) is k-split, the representation σ is given by a

unramified character μ0 of k×; and when H is k-quasisplit, SO(W2n) is a compact torus,

and hence σ is the trivial representation.

Let πτ⊗σ be the unramified constituent of IndH
Q2n
τ · | det | 1

2 ⊗ σ . In the following

proposition, we will consider the vanishing of Jψ�,α (πτ⊗σ ) by explicitly calculating this

Jacquet module using Proposition 2.2.

Proposition 2.4. Let τ be an irreducible unramified representation of GL2n(k) with cen-

tral character ωτ = 1, and σ an irreducible unramified representation of SO(W2n). The

following hold.

(i) Assume that Jδ is non-split over k.

(1) If w0 = yα for α ∈ k× such that Jδ,α is split, then Jψ�,α (πτ⊗σ )= 0 for

�≥ n+ 1.

(2) If w0 ∈ V0, then Jψ2n,w0
(πτ⊗σ )= 0.

(ii) Assume that Jδ splits over k. For any choice of α ∈ k×, Jψ�,α (πτ⊗σ )= 0

for �≥ n+ 1. �

Proof. We suppose first that H is non-split, that is, Jδ is non-split over k.

In this case, πτ⊗σ is the unramified constituent of the representation of H

induced from the character (here σ = 1)

μ1| · | 1
2 ⊗ · · · ⊗ μn| · | 1

2 ⊗ μ−1
n | · | 1

2 ⊗ · · · ⊗ μ−1
1 | · | 1

2 ⊗ 1. (2.2)

Moreover, one can find a Weyl element of SO(V) which conjugates above character to

μ1| · | 1
2 ⊗ μ1| · |− 1

2 ⊗ · · · ⊗ μn| · | 1
2 ⊗ μn| · |− 1

2 ⊗ 1.

Then, on induction by stages, one sees that πτ⊗σ is the unramified constituent of

IndH
Q2n
τ ′ ⊗ σ , where

τ ′ = IndGL2n(k)
P2,...,2

μ1
(
detGL2

)⊗ · · · ⊗ μn
(
detGL2

)
.
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Then since the twisted Jacquet functor corresponding to the descent is exact, we get (i)

(1) by Proposition 2.2(2) if we take w0 = yα as in (2.1) (here j = m̃ = 2n, and δα = 1 by our

assumption on α ∈ k×). Note that we have used the fact that τ ′
(n) = 0.

If w0 ∈ V0, then by the arguments above we see that we also need to consider the

Jacquet module Jψ2n,w0
(IndH

Q2n
τ ′ ⊗ σ). By Proposition 2.2(3), we have (see the notation in

Proposition 2.2)

Jψ2n,w0

(
IndH

Q2n
τ ′ ⊗ σ

)
≡ dτ ′ · Jψ ′

0,w0

(
σω

2n
b

)
.

Note that dτ ′ is the dimension of the space of ψ-Whittaker functionals on τ ′, hence is

zero by the construction of τ ′. Then the above Jacquet module is zero, and this finishes

part (i) of the proposition.

We turn to consider the case where H is split with Witt index 2n+ 1 over k. By

our assumption, πτ⊗σ is the unramified constituent of a representation induced from the

character

μ1| · | 1
2 ⊗ · · · ⊗ μn| · | 1

2 ⊗ μ−1
n | · | 1

2 ⊗ · · · ⊗ μ−1
1 | · | 1

2 ⊗ μ0.

If n is even, πτ⊗σ is the unramified constituent of IndH
Q2n
τ ′ ⊗ σ , where

τ ′ = IndGL2n(k)
P2,...,2

μ1
(
detGL2

)⊗ · · · ⊗ μn
(
detGL2

)
.

And if n is odd, πτ⊗σ is the unramified constituent of IndH
Q2n
τ ′ ⊗ σω

0
b with ω0

b = (
0 1
1 0

)
. Thus,

applying Proposition 2.2(1) with m̃ = 2n+ 1 and j = 2n, one sees that Jψ�,α (πτ⊗σ )= 0 for

�≥ n+ 1. Note that in this case we have that δα = 0 for any choice of α ∈ k×. Note that we

also use the fact τ ′(�) = 0 for � >n and τ ′
(�) = 0 for � >n− 1. �

For later use, we write out the Jacquet module Jψ�,α (πτ⊗σ ) for the above unrami-

fied τ and σ , in the case that �= n and the form Jδ,α is split. Note that the last condition

means that the quadratic form δ1x2 + δ2y2 + αz2 represents 0 over k.

Proposition 2.5. Assume that τ and σ are unramified representations as above, and the

form Jδ,α is split. Then the Jacquet module can be realized as follows:

Jψn,α (πτ⊗σ )≺ IndSO(2n+1)
BSO(2n+1)

μ1 ⊗ · · · ⊗ μn.

Here, “π1 ≺ π2” denotes that π1 is a subquotient of π2. �

Proof. Suppose first that Jδ is non-split. We have that Witt(V)= 2n, Witt(k · y−α +
V0)= 1 (Jδ,α is split), and σ = 1. Conjugating by a Weyl element as in the proof of
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Proposition 2.4, one sees that πτ⊗σ is the unramified constituent of IndH
Q2n−2

τ ′ ⊗ σ , where

τ ′ = IndGL2n(k)
P2,...,2

μ1
(
detGL2

)⊗ · · · ⊗ μn
(
detGL2

)
.

Now applying Proposition 2.2(2) for �= n, j = 2n= m̃, and using the fact that τ ′
(n) = 0,

we have

Jψn,α (πτ⊗σ )≺ indLn,α

Q′
α

| det (·) | 1−n
2 τ ′(n) ⊗ Jψ ′

0,vα

(
σω

n
b
)
.

For the case that Jδ splits, we note that m̃ = Witt(V)= 2n+ 1, and Witt(k · y−α +
V0)= 0. Applying Proposition 2.2(1) for j = 2n and �= n, we see that

Jψn,α (πτ⊗σ )≺ indLn,α

Q′
n

| det (·) | 1−n
2 τ ′(n) ⊗ Jψ ′

0,α

(
σω

n
b
)
.

Note that | det(·)| 1−n
2 τ ′(n) = IndGLn

BGLn
μ1 ⊗ · · · ⊗ μn, and the two Jacquet modules Jψ ′

0,vα
(σω

n
b)

and Jψ ′
0,α
(σω

n
b) are just the restriction of σω

n
b of SOδ

2(k) to the trivial group. Therefore, the

result follows. �

2.2 Cuspidality of the twisted automorphic descent

Now we go back to the global case and show that the twisted automorphic descent

σψn,α (Eτ⊗σ ) is cuspidal (but it may be zero). This result is a combination of the tower

property of descent [10, Chapter 5] and the local result of the previous subsection.

Proposition 2.6. For all � >n, the ψ�,w0 -Fourier coefficients of the residual representa-

tion Eτ⊗σ are zero for all anisotropic vectors w0 ∈ W�. In particular, the twisted automor-

phic descent σψn,α (Eτ⊗σ ) is cuspidal. �

Proof. We will show this proposition using the vanishing properties of the correspond-

ing twisted Jacquet modules we have studied in the previous section. By Remark 2.1, we

see that up to conjugation, we only need to consider the ψ�,w0-coefficients for w0 = yα

(α ∈ F ×) or w0 ∈ V0. Let v be a finite local place of the number field F at which all

data involved in the ψ�,w0-Fourier coefficients of Eτ⊗σ are unramified. The unrami-

fied local component at v of the residual representation Eτ⊗σ is denoted by Iτv⊗σv . For

any integer � >n, if Eτ⊗σ has non-zero ψ�,w0 -Fourier coefficients, then the correspond-

ing local Jacquet module Jψ�,w0
(Iτv⊗σv ) is non-zero. But the latter is zero according to

Proposition 2.4.

Now, we use the tower property as in [10] to prove the cuspidality of the twisted

automorphic descent σψn,α (Eτ⊗σ ) (here �= n, and w0 = yα by our choice). The idea is to

calculate all constant terms along the unipotent radical of maximal parabolic subgroups
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of SOδ,α
2n+1. Since the argument is inductive, we consider a more general situation as the

book [10] did for the tower property.

We denote the Witt index of the space W� ∩ y⊥
α by m̃�,α. For 1 ≤ p≤ m̃�,α, let Q∗

p be

the standard maximal parabolic subgroup of L�,α, which preserves the totally isotropic

subspace V+
�,p = Span{e�+1, . . . , e�+p} ∩ y⊥

α . Denote by U ∗
p the unipotent radical of Q∗

p. For

the ψ�,α-Fourier coefficients fψ�,α for f ∈ Eτ⊗σ , we denote by

cp
(

fψ�,α
)=

∫
U ∗

p(F )\U ∗
p(A)

fψ�,α (u)du

its constant term along U ∗
p. By [10, Theorem 7.3], the constant term cp( fψn,α ) is expressed

as a sum of integrals of fψn+p,α if we have

(
fUp−i

)ψn+i,α = 0; (0 ≤ i ≤ p− 1) (2.3)

Recall that U j is the unipotent subgroup of the parabolic subgroup Qj of H , which

preserves the isomorphic subspace V+
j = Span{e1, . . . , ej} (see Section 2.1).

We claim that the condition (2.3) holds. In fact, by the cuspidal support of the

Eisenstein series E(h, s, φτ⊗σ ), which produces the residual representation Eτ⊗σ , the con-

stant term EU j (h, s, φπ) is always zero for any 1 ≤ j ≤ p and 1 ≤ p≤ n. This implies the

condition (2.3).

It follows that the constant term cp( fψn,α ) is a sum of integrals of fψn+p,α , which

are always zero by the discussion at the beginning of this proof. Therefore, all the

constant terms cp( fψn,α ) are zero, which implies that the twisted automorphic descent

σψn,α (Eτ⊗σ ) is cuspidal. �

3 Certain Fourier Coefficients of the Residual Representation

We prove Parts (3), (5), and (6) of Theorem 1.2 in this section. Before that, we need to

establish certain properties of the Fourier coefficients of the residual representation

Eτ⊗σ . We are going to adapt the notation and the arguments used in [17] in the proofs

given in this section. In particular, [17, Lemma 2.5] (see also [10, Corollary 7.1]) is a

technical key, which will be used many times in the proofs.

In this section, we will let Ei, j be the unipotent subgroup of SOδ
4n+2 consisting of

elements u with 1’s on the diagonal, and for k �= �, uk,� = 0 unless (k, �)= (i, j) or (k, �)=
(4n+ 3 − j,4n+ 3 − i). For x ∈ F , let Ei, j(x) be the element u∈ Ei, j with ui, j = x.
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3.1 Fourier coefficients associated with the partition [(2n)212]

We first show that the residual representation Eτ⊗σ has a non-zero Fourier coefficient

associated with the partition [(2n)212], based on the cuspidal support of Eτ⊗σ , which

serves as a base for Parts (3), (5), and (6) of Theorem 1.2.

Proposition 3.1. The residual representation Eτ⊗σ has a non-zero Fourier coefficient

attached to the partition [(2n)212]. �

Proof. By [35, I.6], there is only one F -rational nilpotent orbit in each F -stable nilpo-

tent orbit in the Lie algebra of SOδ
4n+2(F ) attached to the partition [(2n)212]. Moreover, a

nilpotent element in the only F -rational nilpotent orbit can be chosen as follows.

Let X[(2n)212] =
∑n−1

i=1 Ei+1,i(
1
2 ). Then X[(2n)212] is a representative of the F -rational

orbit corresponding to the partition [(2n)212]. To define the Fourier coefficients attached

to the partition [(2n)212], we introduce a one-dimensional toric subgroup H[(2n)212] as

follows: for t ∈ F ×,

H[(2n)212] (t) := diag
(
t2n−1, t2n−3, . . . , t1−2n,1,1, t2n−1, t2n−3, . . . , t1−2n) . (3.1)

It is easy to see that under the adjoint action,

Ad
(H[(2n)212] (t)

) (
X[(2n)212]

)= t−2 X[(2n)212] ∀t ∈ F ×.

Let g be the Lie algebra of SOδ
4n+2(F ). Under the adjoint action of H[(2n)212], g has

the following direct sum decomposition into H[(2n)212]-eigenspaces:

g = g−m ⊕ · · · ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm, (3.2)

for some positive integer m, where gl := {X ∈ g | Ad(H[(2n)212](t))(X)= tl X}. Let V[(2n)212], j

( j = 1, . . . ,m) be the unipotent subgroup of SOδ
4n+2(F )with Lie algebra ⊕m

l= jgl . Let L [(2n)212]

be the algebraic subgroup of SOδ
4n+2(F ) with Lie algebra g0. Then we define a character

of V[(2n)212],2 as follows: for v ∈ V[(2n)212],2(A) and for a non-trivial character ψ of F \A,

ψ[(2n)212] (v) :=ψ
(
tr
(
X[(2n)212] log (v)

))
=ψ

(
v1,2 + v2,3 + · · · + v2n−1,2n

)
. (3.3)

For an arbitrary automorphic form ϕ on SOδ
4n+2(A), the ψ[(2n)212]-Fourier coefficient

of ϕ is defined by

ϕψ[(2n)212] (g) :=
∫

[V[(2n)212],2]
ϕ (vg) ψ−1

[(2n)212]
(v)dv, (3.4)
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where, for a group G, we denote the quotient G(F )\G(A) simply by [G]. When an irre-

ducible automorphic representation π of SOδ
4n+2(A) is generated by automorphic forms

ϕ, we say that π has a non-zero ψ[(2n)212]-Fourier coefficient or a non-zero Fourier coeffi-

cient attached to [(2n)212] if there exists an automorphic form ϕ in the space of π with a

non-zero ψ[(2n)212]-Fourier coefficient ϕψ[(2n)212](g).

Note that by [25, Section 1.7], V[(2n)212],1/kerV[(2n)212],2
(ψ[(2n)212]) is a Heisenberg group

V[(2n)212],1/V[(2n)212],2 ⊕ Z , with center

Z = V[(2n)212],2/kerV[(2n)212],2

(
ψ[(2n)212]

)
.

And, one can see that (E2n+1,n+1 En,2n+2)⊕ (En,2n+1 E2n+2,n+1) is a complete polarization of

V[(2n)212],1/V[(2n)212],2.

Let Y = E2n+1,n+1 En,2n+2.

To show that the residual representation Eτ⊗σ has a non-zero Fourier coefficient

attached to the partition [(2n)212], we need to show that there is a ϕ ∈ Eτ⊗σ , such that

ϕψ[(2n)212] is non-vanishing. By a similar argument as in [9, Lemma 1.1], ϕψ[(2n)212] is non-

vanishing if and only if the following integral is non-vanishing:

∫
[V[(2n)212],2Y]

ϕ (vyg) ψ−1
[(2n)212]

(v) dvdy. (3.5)

First, one can see that the following quadruple satisfies all the conditions for [10,

Corollary 7.1] (which is still true for the case of SOδ
4n+2(A)):

(
V[(2n)212],2 XEn,2n+2, ψ[(2n)212], E2n+1,n+1, En,2n+1

)
. (3.6)

Applying [10, Corollary 7.1], the integral in (3.5) is non-vanishing if and only the follow-

ing integral is non-vanishing

∫
[V[(2n)212],2Y′]

ϕ (vyg) ψ−1
[(2n)212]

(v)dv dy, (3.7)

with Y′ = En,2n+1 En,2n+2.

Let W = V[(2n)212],2Y′, in which the elements have the following form:

w=

⎛
⎜⎜⎝

z q1 q2

0 I2 q∗
1

0 0 z∗

⎞
⎟⎟⎠
⎛
⎜⎜⎝

I2n 0 0

p1 I2 0

p2 p∗
1 I2n

⎞
⎟⎟⎠ ∈ SOδ

4n+2, (3.8)
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where z∈ Z2n, the standard maximal unipotent subgroup of GL2n; q1 ∈ Mat2n×2, with

q1(i, j)= 0, for n+ 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2; q2 ∈ Mat2n×2n, with q2(i, j)= 0, for i ≥ j;

p1 ∈ Mat2×2n, with p1(i, j)= 0 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ n+ 1; p2 ∈ Mat2n×2n (with certain

additional property we do not specify here), with p2(i, j)= 0, for i ≥ j; all entries

marked with a * are determined by the other entries and symmetry. Let ψW(w) :=
ψ[(2n)212](v), for w= vy∈ W, where v ∈ V[(2n)212],2 and y∈ Y′. For w ∈ W of form in (3.8),

ψW(w)=ψ(
∑2n−1

i=1 zi,i+1).

The idea of proving the non-vanishing property of the integral in (3.7) is to

express the Fourier coefficient in (3.7) in terms of the coefficient in (3.20) (which is

non-vanishing) and the coefficients in Lemma 3.2 (which are identically zero) using

exchange of unipotent subgroups and Fourier expansion. More explicitly, we use the

lower triangular part of elements w in (3.8) to fill the zeros in the upper triangular

part. We proceed one row/column at a time, from top to bottom in the upper tri-

angular part, and from left to right in the lower triangular part. For the first n− 1

rows, the number of zeros in the upper triangular part is exactly equal to the num-

ber of non-zero entries in the corresponding column in the lower triangular part. These

rows will be treated via exchange of unipotent subgroups, using [10, Corollary 7.1].

For the i = n, . . . ,2n− 1 rows, the number of zeros in the ith row in the upper trian-

gular part exceeds the number of non-zero entries in the corresponding column in the

lower triangular part by one. For the nth row, we first add the constant integral over

the one-dimensional subgroup En,3n+2, then do exchange of unipotent subgroups. For

the row i = n+ 1, . . . ,2n− 1, we treat each row/column by a two-step process, that is,

before exchanging unipotent subgroups for each row/column, one needs to take Fourier

expansion along a one-dimensional subgroup Ei,4n+2−i, producing Fourier coefficients in

Lemma 3.2.

To continue, we define a sequence of unipotent subgroups as

follows.

For 1 ≤ i ≤ n− 1, 1 ≤ j ≤ i, let Xi
j = Ei,2n+3+i− j and Yi

j = E2n+3+i− j,i+1. For n≤ i ≤
2n− 2, 1 ≤ j ≤ 2n− i − 1, let Xi

j = Ei,4n+2−i− j and Yi
j = E4n+2−i− j,i+1. For n+ 1 ≤ i ≤ 2n− 1,

let Xi = Ei,2n+1 Ei,2n+2 and Yi = E2n+1,i+1 E2n+2,i+1.

Let W̃ be the subgroup of W with elements of the form as in (3.8), but with

the p1 and p2 parts zero. Let ψW̃ =ψW|W̃. For any subgroup of W containing W̃, we

automatically extend ψW̃ trivially to this subgroup and still denote the character

by ψW̃.

Next, we apply [10, Corollary 7.1] (exchanging unipotent subgroups) to a

sequence of quadruples. For i going from 1 to n− 1, the following sequence of
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quadruples satisfies all the conditions for [10, Corollary 7.1]:

⎛
⎝W̃i

i∏
j=2

Yi
j , ψW̃, Xi

1,Y
i
1

⎞
⎠ ,

⎛
⎝Xi

1W̃i

i∏
j=3

Yi
j , ψW̃, Xi

2,Y
i
2

⎞
⎠ ,

· · · ,⎛
⎝k−1∏

j=1

Xi
jW̃i

i∏
j=k+1

Yi
j , ψW̃, Xi

k,Y
i
k

⎞
⎠ ,

· · · ,⎛
⎝i−1∏

j=1

Xi
jW̃i, ψW̃, Xi

i ,Y
i
i

⎞
⎠ ,

(3.9)

where

W̃i =
i−1∏
s=1

s∏
j=1

Xs
jW̃

2n−1∏
t=n+1

Yt

2n−t−1∏
j=1

Yt
j

n∏
k=i+1

k∏
j=1

Yk
j .

Applying [10, Corollary 7.1] repeatedly to the above sequence of quadruples, one obtains

that the integral in (3.7) is non-vanishing if and only if the following integral is non-

vanishing: ∫
[W̃′

i ]
ϕ (wg) ψ−1

W̃′
i
(w)dw, (3.10)

where

W̃′
i =

i∏
s=1

s∏
j=1

Xs
jW̃

2n−1∏
t=n+1

Yt

2n−t−1∏
j=1

Yt
j

n∏
k=i+1

k∏
j=1

Yk
j , (3.11)

and ψW̃′
i

is extended from ψW̃ trivially.

To show that the integral over W̃′
n−1 in (3.10) is non-vanishing, it suffices to show

that the following integral is non-vanishing:

∫
[En,3n+2]

∫
[W̃′

n−1]
ϕ (wng) ψ−1

W̃′
n−1
(w) dwdn, (3.12)
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since it factors though the integral over W̃′
n−1 in (3.10). One can see that the following

sequence of quadruples satisfies all the conditions for [10, Corollary 7.1]:

⎛
⎝En,3n+2W̃n

n−1∏
j=2

Yn
j , ψW̃, Xn

1,Y
n
1

⎞
⎠ ,

⎛
⎝Xn

1 En,3n+2W̃n

n−1∏
j=3

Yn
j , ψW̃, Xn

2,Y
n
2

⎞
⎠ ,

· · · ,⎛
⎝k−1∏

j=1

Xn
j En,3n+2W̃n

n−1∏
j=k+1

Yn
j , ψW̃, Xn

k,Y
n
k

⎞
⎠ ,

· · · ,⎛
⎝n−2∏

j=1

Xn
j En,3n+2W̃n, ψW̃, Xn

n−1,Y
n
n−1

⎞
⎠ ,

(3.13)

where

W̃n =
n−1∏
t=1

t∏
j=1

Xt
jW̃

2n−1∏
k=n+1

Yk

2n−k−1∏
j=1

Yk
j .

Applying [10, Corollary 7.1] repeatedly to the above sequence of quadruples, the integral

in (3.12) is non-vanishing if and only if the following integral is non-vanishing:

∫
[W̃′

n]
ϕ (wg) ψ−1

W̃′
n
(w)dw, (3.14)

where

W̃′
n = En,3n+2

n−1∏
j=1

Xn
j

n−1∏
t=1

t∏
j=1

Xt
jW̃

2n−1∏
k=n+1

Yk

2n−k−1∏
j=1

Yk
j , (3.15)

and ψW̃′
n

is extended from ψW̃ trivially.

For i going from n+ 1 to 2n− 1, define

W̃′
i =

i∏
s=n+1

Xs

2n−s−1∏
j=1

Xs
j

i∏
�=n

E�,4n+3−�
n−1∏
t=1

t∏
j=1

Xt
jW̃

2n−1∏
k=i+1

Yk

2n−k−1∏
j=1

Yk
j , (3.16)
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and ψW̃′
i

is extended from ψW̃ trivially. We claim that the following integral is non-

vanishing: ∫
[W̃′

i−1]
ϕ (wg) ψ−1

W̃′
i−1
(w)dw, (3.17)

if and only if the following integral is non-vanishing:

∫
[W̃′

i ]
ϕ (wg) ψ−1

W̃′
i
(w)dw, (3.18)

Indeed, first, we take the Fourier expansion of the integral in (3.17) along

Ei,4n+2−i. Under the action of GL1, we get two kinds of Fourier coefficients correspond-

ing to the two orbits of the dual of [Ei,4n+2−i]: the trivial one and the non-trivial one. By

Lemma 3.2, which will be stated and proved right after the proof of the theorem, all the

Fourier coefficients corresponding to the non-trivial orbit are identically zero. There-

fore, only the Fourier coefficient attached to the trivial orbit survives. When i = 2n− 1,

the Fourier coefficient attached to the trivial orbit is exactly the integral in (3.18), that

is, the claim is proved. When n+ 1 ≤ i ≤ 2n− 2, one can see that the following sequence

of quadruples satisfies all the conditions for [10, Corollary 7.1]:

⎛
⎝Ei,4n+2−iW̃iYi

2n−i−1∏
j=2

Yi
j , ψW̃, Xi

1,Y
i
1

⎞
⎠ ,

⎛
⎝Xi

1 Ei,4n+2−iW̃iYi

2n−i−1∏
j=3

Yi
j , ψW̃, Xi

2,Y
i
2

⎞
⎠ ,

· · · ,⎛
⎝k−1∏

j=1

Xi
j Ei,4n+2−iW̃iYi

2n−i−1∏
j=k+1

Yi
j , ψW̃, Xi

k,Y
i
k

⎞
⎠ ,

· · · ,⎛
⎝2n−i−2∏

j=1

Xi
j Ei,4n+2−iW̃iYi, ψW̃, Xi

2n−i−1,Y
i
2n−i−1

⎞
⎠ ,

⎛
⎝2n−i−1∏

j=1

Xi
j Ei,4n+2−iW̃i, ψW̃, Xi,Yi

⎞
⎠ ,
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where

W̃i =
i−1∏

s=n+1

Xs

2n−s−1∏
j=1

Xs
j

i−1∏
�=n

E�,4n+2−�
n−1∏
t=1

t∏
j=1

Xt
jW̃

2n−1∏
k=i+1

Yk

2n−k−1∏
j=1

Yk
j .

Applying [10, Corollary 7.1] repeatedly to the above sequence of quadruples, we deduce

that the Fourier coefficient attached to the trivial orbit above is non-vanishing if and

only if the integral in (3.18) is non-vanishing. This proves the claim.

It is easy to see that elements of W̃′
2n−1 have the following form:

w=

⎛
⎜⎜⎝

z q1 q2

0 I2 q∗
1

0 0 z∗

⎞
⎟⎟⎠ , (3.19)

where z∈ Z2n, the standard maximal unipotent subgroup of GL2n; q1 ∈ Mat2n×2, with

q1(2n, j)= 0, for 1 ≤ j ≤ 2; q2 ∈ Mat2n×2n, with certain symmetry property we do not spec-

ify here; all entries marked with a ∗ are determined by the other entries and symmetry.

For w ∈ W̃′
2n−1 of form in (3.19), ψW̃′

2n−1
(w)=ψ(

∑2n−1
i=1 zi,i+1).

Now, we need to take the Fourier expansion of the integral over W̃′
2n−1 in (3.18)

along

E2n,2n+1 E2n,2n+2,

which can be identified with a certain quadratic extension E of F , and a torus which can

be identified with F × × (E×)1 acting on it. Here, (E×)1 ⊂ E× is the kernel of the norm map

to F ×. This Fourier expansion gives us two kinds of Fourier coefficients corresponding

to the two orbits of characters: the trivial one and the non-trivial one, and the Fourier

coefficients corresponding to the non-trivial orbit are generic Fourier coefficients. Since

Eτ⊗σ is not generic, only the Fourier coefficient corresponding to the trivial orbit sur-

vives. Therefore, the integral over W̃′
2n−1 in (3.18) becomes

∫
[E2n,2n+1 E2n,2n+2]

∫
[W̃′

2n−1]
ϕ (wxg) ψ−1

W̃′
2n−1

(w) dwdx

=
∫

N2n

ϕ (ng) ψ−1
N2n
(n)dn, (3.20)

where N2n is the unipotent radical of the parabolic subgroup with Levi isomorphic to

GL2n
1 × SOδ

2, and ψN2n(n)=ψ(
∑2n−1

i=1 ni,i+1).

Let U be the unipotent radical of the parabolic subgroup P = MU with Levi

M ∼= GL2n × SOδ
2. Write N2n = U N ′

2n with N ′
2n = M ∩ N2n. Then the integral in (3.20)
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becomes ∫
[N ′

2n]
ϕU (ng) ψ−1

N ′
2n
(n)dn, (3.21)

where ϕU is the constant term of ϕ along U , and ψN ′
2n

=ψN2n|N ′
2n

. By a similar calculation

as in [18], one can see that ϕU ∈ A(U (A)M(F )\SOδ
4n+2(A))|·|− 1

2 τ⊗σ . Since τ is generic, it fol-

lows that the integral in (3.21) is non-vanishing. Therefore, the integral in (3.5), hence

the Fourier coefficient attached to [(2n)212] in (3.4) is non-vanishing.

This completes the proof of the proposition. �

Now, we prove the lemma used in the above proof.

Lemma 3.2. For any ϕ ∈ Eτ⊗σ , the following integral is identically zero:
∫

[Ei+1,4n+1−i ]

∫
[W̃′

i ]
ϕ (wxg) ψ−1

W̃′
i
(w)ψ−1 (ax)dwdx, (3.22)

where n≤ i ≤ 2n− 2, a∈ F ×, W̃′
n is as in (3.15) with i = n there, and W̃′

i is as in (3.16) for

n+ 1 ≤ i ≤ 2n− 2. �

Proof. We continue to use notation introduced in Proposition 3.1. First note that ele-

ments in W̃′
i have the following form:

w=

⎛
⎜⎜⎝

z q1 q2

0 I2 q∗
1

0 0 z∗

⎞
⎟⎟⎠
⎛
⎜⎜⎝

I2n 0 0

p1 I2 0

p2 p∗
1 I2n

⎞
⎟⎟⎠ ∈ SOδ

4n+2, (3.23)

where z∈ Z2n, the standard maximal unipotent subgroup of GL2n; q1 ∈ Mat2n×2, with

q1(k, j)= 0, for i + 1 ≤ k≤ 2n and 1 ≤ j ≤ 2; q2 ∈ Mat2n×2n, with q2(k, j)= 0, for i + 1 ≤ k≤
2n and 1 ≤ j ≤ 2n− i − 1; p1 ∈ Mat2×2n, with p1(k, j)= 0 for 1 ≤ k≤ 2 and 1 ≤ j ≤ i + 1;

p2 ∈ Mat2n×2n, with p2(k, j)= 0, for 2n− i ≤ k≤ 2nor 1 ≤ j ≤ i + 1; all entries marked with

a ∗ are determined by the other entries and symmetry. For w ∈ W̃′
i of form in (3.23),

ψW̃′
i
(w)=ψ(

∑2n−1
i=1 zi,i+1).

In the rest of this proof, we set W̃(1)
i := W̃′

i , and denote by W̃(2)
i the subgroup of

W̃(1)
i consisting of the elements of the following form:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ii+1 0 0 0 0

0 z 0 0 0

0 0 I2 0 0

0 0 0 z∗ 0

0 0 0 0 Ii+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,
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where z∈ Z2n−i−1, the standard maximal unipotent subgroup of GL2n−i−1. Write

W̃(1)
i = W̃(2)

i W̃(3)
i ,

where W̃(3)
i is a subgroup of W̃(1)

i consisting of elements with W̃(2)
i -part being trivial. Let

ψW̃(2)
i

=ψW̃(1)
i

|W̃(2)
i

and ψW̃(3)
i

=ψW̃(1)
i

|W̃(3)
i

. Then the integral in (3.22) can be written as

∫
[W̃(2)

i ]

∫
[Ei+1,4n+1−i ]

∫
[W̃(3)

i ]
ϕ (w1xw2g) ψ−1

W̃(2)
i

(w2) ψ
−1 (ax) ψ−1

W̃(3)
i

(w1)dw1 dx dw2. (3.24)

Therefore, to show that the integral in (3.22) is identically zero, it is suffices to show that

the following integral is identically zero
∫

[Ei+1,4n+1−i ]

∫
[W̃(3)

i ]
ϕ (wxg) ψ−1 (ax) ψ−1

W̃(3)
i

(w)dw dx. (3.25)

To continue, we define a sequence of unipotent subgroups as follows. For 1 ≤ j ≤
2n− i − 2, let Xi+1

j = Ei+1,4n+1−i− j and Yi+1
j = E4n+1−i− j,i+1. Let Xi+1 = Ei+1,2n+1 Ei+1,2n+2 and

Yi+1 = E2n+1,i+2 E2n+2,i+2. Write W̃(3)
i = W̃(4)

i

∏2n−i−2
j=1 Yi+1

j Yi+1, where W̃(4)
i is a subgroup of

W̃(3)
i consisting of elements with

∏2n−i−2
j=1 Yi+1

j Yi+1-part being trivial. Let ψW̃(4)
i

=ψW̃(3)
i

|W̃(4)
i

.

Then, one can see that the following sequence of quadruples satisfies the conditions

in [10, Corollary 7.1]:⎛
⎝Ei+1,4n+1−iW̃

(4)
i Yi+1

2n−i−2∏
j=2

Yi+1
j , ψW̃(4) , Xi+1

1 ,Yi+1
1

⎞
⎠ ,

⎛
⎝Xi+1

1 Ei+1,4n+1−iW̃
(4)
i Yi+1

2n−i−2∏
j=3

Yi+1
j , ψW̃(4) , Xi+1

2 ,Yi+1
2

⎞
⎠ ,

· · · ,⎛
⎝k−1∏

j=1

Xi+1
j Ei+1,4n+1−iW̃

(4)
i Yi+1

2n−i−2∏
j=k+1

Yi+1
j , ψW̃(4) , Xi+1

k ,Yi+1
k

⎞
⎠ ,

· · · ,⎛
⎝2n−i−3∏

j=1

Xi+1
j Ei+1,4n+1−iW̃

(4)
i Yi+1, ψW̃(4) , Xi+1

2n−i−2,Y
i+1
2n−i−2

⎞
⎠ ,

⎛
⎝2n−i−2∏

j=1

Xi+1
j Ei+1,4n+1−iW̃

(4)
i , ψW̃(4) , Xi+1,Yi+1

⎞
⎠ .
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After applying [10, Corollary 7.1] to the above sequence of quadruples, one can see that

the integral in (3.25) is identically zero if and only if the following integral is identi-

cally zero: ∫
[
∏2n−i−2

j=1 Xi+1
j Ei+1,4n+1−i ]

∫
[W̃(4)

i ]
ϕ (wxg) ψ−1 (ax) ψ−1

W̃(4)
i

(w)dw dx. (3.26)

Finally, the integral in (3.26) contains an inner integral which is exactly a Fourier coef-

ficient attached to the partition [(2i + 3)14n−2i−1]. Since n≤ i ≤ 2n− 2, by Proposition 2.6,

any Fourier coefficient attached to the partition [(2i + 3)14n−2i−1] will be identically zero.

Therefore, the integral in (3.26) is identically zero, and hence the integral in (3.22) is

identically zero. This completes the proof of the lemma. �

3.2 Parts (3), (5), and (6) of Theorem 1.2

We are ready to prove Parts (3), (5), and (6) of Theorem 1.2 based on the preparation in

Section 3.1.

Proposition 3.3 (Part (3) of Theorem 1.2). The residual representation Eτ⊗σ has a non-

zero Fourier coefficient attached to the partition [(2n+ 1)12n+1]. �

Proof. We prove this theorem by contradiction. Assume that the residual representa-

tion Eτ⊗σ has no non-zero Fourier coefficients attached to the partition [(2n+ 1)12n+1]. In

the following, we will continue to use the notation introduced in Proposition 3.1.

In Proposition 3.1, we have proved that the integral in (3.5) is non-vanishing. We

name this integral as follows:

f (g) :=
∫

[V[(2n)212],2Y]
ϕ (vyg) ψ−1

[(2n)212]
(v)dv dy, g ∈ SOδ

4n+2 (A) , ϕ ∈ Eτ⊗σ . (3.27)

Let

ω=

⎛
⎜⎜⎝

0 0 I2n

0 I2 0

I2n 0 0

⎞
⎟⎟⎠ . (3.28)

Then it is easy to see that f(g)= f(ωg).

Applying the equality in [10, Lemma 7.1] to the quadruple in (3.6), one can

see that

f (g)=
∫

E2n+1,n+1(A)

∫
[V[(2n)212],2Y′]

ϕ (vyxg) ψ−1
[(2n)212]

(v)dv dydx. (3.29)
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Applying the equality in [10, Lemma 7.1] repeatedly to the sequence of quadru-

ples in (3.9) for i going from 1 to n− 1, we obtain that

f (g)=
∫
∏n−1

s=1

∏s
j=1 Ys

j E2n+1,n+1(A)

∫
[W̃′

n−1]
ϕ (wxg) ψ−1

W̃′
n−1
(w)dw dx. (3.30)

Next, take the Fourier expansion of f along En,3n+2. Under the action of GL1,

we get two kinds of Fourier coefficients corresponding to the two orbits of the dual of

[En,3n+2]: the trivial one and the non-trivial one. Since we have assumed that Eτ⊗σ has

no non-zero Fourier coefficients attached to the partition [(2n+ 1)12n+1], by a similar

argument to that in the proof of Lemma 3.2, all the Fourier coefficients corresponding to

the non-trivial orbit are identically zero. Hence, we obtain that

f (g)=
∫
∏n−1

s=1

∏s
j=1 Ys

j E2n+1,n+1(A)

∫
[En,3n+2]

∫
[W̃′

n−1]
ϕ (wxyg) ψ−1

W̃′
n−1
(w)dw dx dy. (3.31)

Then, applying the equality in [10, Lemma 7.1] repeatedly to the sequence of quadruples

in (3.13), one can see that

f (g)=
∫
∏n−1

j=1 Yn
j

∏n−1
s=1

∏s
j=1 Ys

j E2n+1,n+1(A)

∫
[W̃′

n]
ϕ (wxg) ψ−1

W̃′
n
(w)dw dx. (3.32)

Carrying out the steps from (3.17) to (3.21), applying the equality in [10, Lemma

7.1] instead of [10, Corollary 7.1], we obtain that

f (g)=
∫
∏2n−1

s=n+1 Ys
∏2n−s−1

j=1 Ys
j

∏n−1
k=1

∏k
�=1 Yk

� E2n+1,n+1(A)

∫
[N ′

2n]
ϕU (nxg) ψ−1

N ′
2n
(n)dndx, (3.33)

where N ′
2n,U, ψ

−1
N ′

2n
are defined to that in the proof of Proposition 3.1, ϕU is the constant

term of ϕ along U . Note that in (3.33),
∏2n−1

s=n+1 Ys
∏2n−s−1

j=1 Ys
j

∏n−1
k=1

∏k
�=1 Yk

� E2n+1,n+1 is equal

to V[(2n)212,2]Y ∩ U−, where U− is the unipotent radical of the parabolic subgroup opposite

to P = MU . By a similar calculation to that in [18], we deduce that

ϕU ∈A (U (A)M (F ) \SOδ
4n+2 (A)

)
|·|− 1

2 τ⊗σ .

For t ∈ A
×, let D(t)=

⎛
⎜⎜⎝

tI2n 0 0

0 I2 0

0 0 t−1 I2n

⎞
⎟⎟⎠. Then it is easy to see that ωD(t)ω−1 =

D(t−1), where ω is the Weyl element defined in (3.28). Consider f(D(t)g). Note that f(g)
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has the form in (3.33). Conjugating D(t) to the left, by changing of variables on

2n−1∏
s=n+1

Ys

2n−s−1∏
j=1

Ys
j

n−1∏
k=1

k∏
�=1

Yk
� E2n+1,n+1 (A) ,

we get a factor |t|−2n2+1
A

. Since ϕU ∈A(U (A)M(F )\SOδ
4n+2(A))|·|− 1

2 τ⊗σ , we have

ϕU (D (t)nxg)= δP (D (t))
1
2 |D (t)|− 1

2 ϕU (nxg)= |t|2n2

A
ϕU (nxg) .

Note that P = MU is the parabolic subgroup with Levi M ∼= GL2n × SOδ
2. Therefore, one

can get f(D(t)g)= |t|A f(g). On the other hand,

f (D (t) g)= f (ωD (t) g)= f
(
D
(
t−1)ωg

)= |t−1|A f (ωg)= |t|−1
A

f (g) .

Hence, |t|A f(g)= |t|−1
A

f(g). Since t ∈ A
×, we get f(g)≡ 0, which is a contradiction.

Therefore, the residual representation Eτ⊗σ has a non-zero Fourier coefficient

attached to the partition [(2n+ 1)12n+1]. This completes the proof of the proposition. �

We remark that the above fleshes out a sketch given in [6, Section 5], with full

details for each step and precise references as needed.

Proposition 3.4 (Part (5) of Theorem 1.2). Every irreducible component of the twisted

automorphic descent σψn,α (Eτ⊗σ ) has a non-zero Fourier coefficient attached to the parti-

tion [(2n− 1)12]. �

Proof. Recall that σψn,α (Eτ⊗σ ) is the completion space spanned by the cuspidal automor-

phic functions produced by the twisted descent, by Part (2) of Theorem 1.2. This twisted

descent σψn,α (Eτ⊗σ ) projects onto the decomposition of the cuspidal spectrum of SOδ,α
2n+1.

Let π be any irreducible constituent in this decomposition. Consider the following

integral:

〈ϕπ, ξψn,α 〉 =
∫

[SOδ,α
2n+1]

ϕπ (h) ξψn,α (h)dh, (3.34)

which is non-zero for some data ϕπ ∈ π , ξ ∈ Eτ⊗σ , since π is an irreducible component

of σψn,α (Eτ⊗σ ).
Assume that ξ = Ress= 1

2
E(·, s, φτ⊗σ ); then from (3.34) we know that the following

integral is also non-zero for some choice of data:

〈ϕπ, E (·, s, φτ⊗σ )ψn,α 〉 =
∫

[SOδ,α
2n+1]

ϕπ (h) E (h, s, φτ⊗σ )ψn,α dh. (3.35)
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Then, by the unfolding in [21, Proposition 3.7] (take j = 2n, �= n and β = j − �= n there),

the non-vanishing of the integral in (3.35) implies the non-vanishing of ϕπψn−1,α′ for some

α′ ∈ F ×. Therefore, π has a non-vanishing Fourier coefficient attached to the partition

[(2n− 1)12]. This completes the proof of the proposition. �

Finally, Propositions 3.3 and 3.4 imply that the residual representation Eτ⊗σ has

a non-zero Fourier coefficient attached to the partition [(2n+ 1)(2n− 1)12] by a similar

argument as in the proofs of [9, Lemma 2.6; 17, Lemma 3.1 and Proposition 3.3]. This

proves Part (6) of Theorem 1.2. The analogues for orthogonal groups of [17, Lemma 3.1

and Proposition 3.3] will be discussed in [23].

It is natural to ask about the relation of Part (6) of Theorem 1.2 with Conjec-

ture 4.2 in [16]. More precisely, one may note that, for suitable pairs (α, δ), the group

SOδ,α
2n+1 is split, and one may then ask for which such pairs the twisted automorphic

descent σψn,α (Eτ⊗σ ) has no generic irreducible summands. As we remarked in the Intro-

duction, this is one of the technical key points to connect the construction of twisted

automorphic descents to the structure of more general global packets. In Section 5,

we will provide the complete theory for the case of n= 1, which recovers the Jacquet–

Langlands correspondence for PGL2.

4 Relations with the Langlands Functorial Transfers

We first give a proof for Part (4) of Theorem 1.2 and then discuss the relation between the

construction of the twisted automorphic descent given in this paper and the automor-

phic descent given by Ginzburg et al. in [10], which is the relation with the corresponding

Langlands functorial transfer.

4.1 Part (4) of Theorem 1.2

Assume that the twisted automorphic descent σψn,α (Eτ⊗σ ) is non-zero. By Part (2) of

Theorem 1.2, σψn,α (Eτ⊗σ ) is cuspidal on SOδ,α
2n+1(A). We write

σψn,α (Eτ⊗σ )= ⊕iπi,

where πi are irreducible cuspidal automorphic representations of SOδ,α
2n+1(A). We have to

show that

(1) the irreducible summands are nearly equivalent; that is, their local compo-

nents at almost all unramified local places are equivalent; and
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(2) the weak Langlands functorial transfer from SOδ,α
2n+1 to GL2n takes πi to the

given τ .

It is clear that (2) implies (1). As discussed in [5], when α varies in the square classes

of F ×, the family SOδ,α
2n+1 are pure inner F -rational forms of each other, and hence they

share the Langlands dual group, which is Sp2n(C). The Langlands functorial transfer

considered here is the one determined by the natural embedding of Sp2n(C) into GL2n(C).

Let π be one of the irreducible summands in the decomposition of σψn,α (Eτ⊗σ ).
Write π = ⊗vπv. Take v to be a finite local place of F where πv, τv, σv, and the other rele-

vant data in the construction of the descent are unramified. Hence, πv is an irreducible

unramified representation of the Fv-split SO2n+1(Fv), occurring as the unramified con-

stituent in the Jacquet module Jψn,α (IndLn,α(Fv)
Q2n(Fv)

τv| det(·)|
1
2
v ⊗ σv) by the local–global relation

of the construction of the descent.

On the other hand, since τv is unramified, generic, and self-dual, it follows that

τv is the fully induced representation

μ1 × · · · × μn × μ−1
n × · · · × μ−1

1 ,

where μis are unramified characters. Also, σv is an unramified character μ0 on F ×
v or a

trivial representation on SOδ
2(Fv), depending on whether Jδ is split or not. Now using

Proposition 2.5, we obtain that the Satake parameter of πv is transferred to the Satake

parameter of τv. This completes the proof of Part (4) of Theorem 1.2.

4.2 On functorial relations

When an irreducible unitary cuspidal representation τ of GL2n(A) has the property

that the exterior square L-function L(s, τ,∧2) has a pole at s = 1, the automorphic

descent of Ginzburg et al. in [10] constructs an irreducible generic cuspidal automor-

phic representation π0 of F -split SO2n+1(A). The irreducibility of their descent was

proved in [19].

On the other hand, when τ has the additional property that the central value

L( 1
2 , τ ⊗ σ) is non-zero, the theory of the twisted automorphic descents produces addi-

tional irreducible cuspidal automorphic representations π of the split form of SO2n+1.

These representations arise at values of α where SOδ,α happens to be split, and are nearly

equivalent to π0 by Part (4) of Theorem 1.2. Also, they belong to the same global L-packet

with the global Arthur parameter (τ,1) [2].

Moreover, for the α’s, which make SOδ,α
2n+1 non-split over F , the twisted

automorphic descents σψn,α (Eτ⊗σ ) produce irreducible cuspidal automorphic
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representations π of SOδ,α
2n+1(A), which are still nearly equivalent to π0 and hence

are expected to be in the same global Vogan packet as π0. By a careful investigation

one ought to be able to verify the expectation regarding global Vogan packets, and we

refer to the reader [22] for more detailed discussion on the general theory related to this

issue. A complete story is discussed in Section 5 for the special case of n= 1.

5 Explicit Theory of Twisted Automorphic Descents for the Case of n= 1

In this section, we will give an explicit description on the twisted automorphic descent

σψn,α (Eτ⊗σ ) in the case n= 1, which recovers the global Jacquet–Langlands correspon-

dence between GL2 and its inner forms.

In this case, we have that H δ = SOδ
6 and we take �= 1. The quadratic subspace

W1, as defined in Section 1.2, has a basis {e2, e
(1)
0 , e(2)0 , e−2}. Recall that P1 = M1N1 is the

standard parabolic subgroup with the Levi M1 = GL1 × SO(W1), and

N1 =

⎧⎪⎪⎨
⎪⎪⎩n1 (x)=

⎛
⎜⎜⎝

1 x − 1
2q (x, x)

I4 x′

1

⎞
⎟⎟⎠ | x ∈ W1

⎫⎪⎪⎬
⎪⎪⎭ ,

where q(·, ·) is the quadratic form of W1. Since the Witt index of W1 is greater than

zero, SO(W1) acts transitively on the set of vectors of the same length. Thus, for every

anisotropic vector w0 in W1, we may choose yα = e2 − α
2 e−2 as a standard anisotropic

vector for some α ∈ F ×. Then we focus on the character ψ1,α of N1(F )\N1(A) and the

stabilizer L1,α = SO(Jδ,α). If Jδ,α is non-split, then L1,α is isomorphic to PD×
δ,α, where Dδ,α

is the quaternion algebra (−δ,−α
F ). Note that Dδ,α is uniquely determined by the coset of α

in F ×/Nm(F (
√−δ)×).

Recall that σ is a character of SOδ
2(A) and τ is an irreducible unitary cuspidal

automorphic representation of GL2(A). By Proposition 1.1, the residual representation

Eτ⊗σ is non-zero if and only if L(s, τ,∧2) has a pole at s = 1 and L( 1
2 , τ × σ) �= 0. Note that

L(s, τ,∧2) has a pole at s = 1 if and only if τ has a trivial central character. Throughout

this section, we assume that τ has a trivial central character and hence τ can be regarded

as a representation of PGL2(A).

Let π be an irreducible cuspidal automorphic representation of L1,α(A) and ϕ be

an automorphic form in π . Define the global zeta integral by

Z (s, φτ⊗σ , ϕ, ψ1,α
)=

∫
[L1,α ]

ϕ (h) Eψ1,α (h, s, φτ⊗σ ) dh, (5.1)
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where Eψ1,α (·) is the ψ1,α-Fourier coefficient of the Eisenstein series E(h, s, φτ⊗σ ) defined

in (1.1). This global zeta integral is a special case of those considered in [7] and [21].

We recall some notation in [21] before evaluating this global zeta integral. Let ε

be the minimal representative in the Weyl group of SOδ
6 corresponding to the open cell

in P2\SOδ
6/P1, that is,

ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 0 1

1 0

0 −1

1 0 0 0

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ SOδ
6;

then the complement of Nε
1 = N1 ∩ ε−1 P2ε in N1 is

N̄ε
1 := {n1 ((x, y, z,0)) | (x, y, z,0) ∈ W1} .

Define

J (
s, φW

α

)
(h)=

∫
Nε

1 (A)\N1(A)

λsφ
W
α (εnh) ψ−1

1,α (n) dn,

with

φW
α (h)=

∫
[N1,2]

φτ⊗σ
(
u1,2 (x)h

)
ψ−1

(α
2

x
)

dx.

where N1,2 =
⎧⎨
⎩u1,2(x)=

⎛
⎝ 1 x

0 1
1

1
1 −x

1

⎞
⎠
⎫⎬
⎭. Since the adjoint action of ε on the subgroup SOδ

2

of the Levi subgroup of P2 is the inverse on SOδ
2, we obtain that

J (
s, φW

α

)
(xh)= σ−1 (x)J (

s, φW
α

)
(h) ,

where x ∈ SOδ
2 is embedded into SOδ

6 via the Levi subgroup.

Following the unfolding of the global zeta integral for the general case consid-

ered in [7] and [21], we obtain

Z (s, φτ⊗σ , ϕ, ψ1,α
)=

∫
SOδ

2(A)\SOδ,α
3 (A)

J (
s, φW

α

)
(εh)Pσ−1 (ϕ) (h) dh, (5.2)

which has an eulerian product decomposition, where

Pσ−1 (ϕ) (h) :=
∫

[SOδ
2]
ϕ (xh) σ−1 (x) dx.
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We denote by JL the Jacquet-Langlands correspondence [13] between the set

Acusp(L1,α) and the set Acusp(PGL2), where Acusp(L1,α) is the set of irreducible automor-

phic representations of L1,α(A) of infinite dimension and Acusp(PGL2) is the set of irre-

ducible cuspidal automorphic representations of PGL2(A). Referring to Theorem 2 [33],

the period integral Pσ−1(ϕ) is non-zero on π if and only if

L
(

1

2
,JL (π)× σ−1

)
�= 0 and HomSOδ

2(Fv)
(πv, σv) �= 0 for all v.

Note that the dimension of the Hom space is at most one. In addition, by the theorem of

Tunnell–Saito in [27, 32], an equivalent statement (see [34, Section V]) for the local period

condition is that

SOδ,α
3 is ramified at a place v of F if and only if ε

(
1

2
,JL (π)v × σ−1

v , ψv

)
ηE,v (−1)= −1,

where ηE is a quadratic character of F ×\A
× associated with the quadratic extension

E := F (
√−δ) via the class field theory. Note that SOδ,α

3
∼= PD×

δ,α is ramified at a local place

v, meaning that SOδ,α
3 is not split at v. Therefore, for a pure tensor product vector ϕ = ⊗vϕv

in π = ⊗vπv

Pσ−1 (ϕ) (h)= C0

∏
v

�v (πv (hv) ϕv) , (5.3)

where �v is a non-zero element in HomSOδ
2(Fv)

(πv, σv), and C0 is 1 if L( 1
2 ,JL(π)× σ−1) �= 0

and it is zero otherwise.

Let S be a finite set of places containing all archimedean places, such that all

data are unramified over places outside S. Then,

Z (s, φτ⊗σ , ϕπ , ψ1,α
)= C0

LS
(
s + 1

2 , π × τ
)

LS (s + 1, τ × σ) LS
(
2s + 1, τ,∧2

) ∏
v∈S

Zv
(
s, φv, ϕv, ψ1,α

)
, (5.4)

where the local zeta integrals at the ramified local places are given by

Zv
(
s, φv, ϕv, ψ1,α

)=
∫

N̄ε
1 (Fv)

Jv
(
s, φW

α,v

)
(h) �v (πv (h) ϕv) dh.

The first main result in the case n= 1 of the general theory of twisted automorphic

descents (as displayed in the previous sections and also in [22]) can be formulated

as follows.

Theorem 5.1. With notation as above, assume that τ is of trivial central character.

Given δ and σ , if the residual representation Eτ⊗σ is not identically zero, then the

following hold.
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(1) The set of α ∈ F × such that the ψ1,α-Fourier coefficient Eψ1,α
τ⊗σ is not identically

zero is a single coset α0 · Nm(E×).

(2) The twisted automorphic descent σψ1,α (Eτ⊗σ ) is irreducible and has the prop-

erty that

JL
(
σψ1,α (Eτ⊗σ )

)∼= τ.

(3) The norm class α0 is determined by the property that Dδ,α0 is ramified at a

place v of F if and only if ε( 1
2 , τv × σv, ψv)ηE,v(−1)= −1. �

Proof. By the definition of the ψ1,α-Fourier coefficients and Proposition 2.5 and 2.6, the

ψ1,α-Fourier coefficient Eψ1,α
τ⊗σ (φ)(h) on L1,α(A) is in L2

cusp(L1,α(F )\L1,α(A)). Applying the

spectral decomposition on L2
cusp(L1,α(F )\L1,α(A)), we have

Eψ1,α
τ⊗σ (φ)=

∑
π∈Acusp(L1,α)

∑
ϕπ∈B(π)

〈Eψ1,α
τ⊗σ (φ) , ϕπ 〉ϕπ, (5.5)

where 〈·, ·〉 is the inner product in L2
cusp(L1,α(F )\L1,α(A)) and B(π) is an orthonormal

basis of the space π .

Let us compute the spectral coefficient 〈Eψ1,α
τ⊗σ (φ), ϕπ 〉. It is clear that the integra-

tion domain N1(F )\N1(A) is compact and ϕπ is rapidly decreasing, so, we can switch the

order of taking the residue and taking the integration, and obtain

Ress= 1
2
Z (s, φτ⊗σ , ϕ̄π , ψ1,α

)= Ress= 1
2

∫
[L1,α ]

Eψ1,α (φτ⊗σ , s) (h) ϕ̄π (h) dh

=
∫

[L1,α ]
Eψ1,α
τ⊗σ (φ) (h) ϕ̄π (h) dh

= 〈Eψ1,α
τ⊗σ (φ) , ϕπ 〉.

It follows that the Fourier coefficient Eψ1,α
τ⊗σ (φ) is not identically zero if and only if the

residue Ress= 1
2
Z(s, ·) is not zero for some choice of π and some choice of ϕπ ∈ π .

By Part (3) of Theorem 1.2, Ress= 1
2
Z(s, ·) is zero unless taking π such that

JL(π)∼= τ . Let us consider π with JL(π)∼= τ . Recall that the infinite eulerian products

for LS(s, τ × σ) and LS(s, τ,∧2) converge absolutely for Re(s) > 1 following by Jacquet

and Shalika in [14, 15], and then are non-vanishing at Re(s) > 1. Since Z(s, ·) has at

most a simple pole at s = 1
2 and LS(s + 1

2 , π × τ) has a pole at s = 1
2 , by Equation 5.4,

Zv(s, φτv⊗σv , ϕ̄v, ψ1,α) for s ∈ S is holomorphic at s = 1
2 . If HomSOδ

2(Fv)
(πv, σ

−1
v ) �= 0, then there

exists a choice of data φτv⊗σv and ϕv such that the local zeta integral Z(s, )̇ is not zero

at Re(s)= 1
2 . The argument is similar to the one in [31, Sections 6 and 7]. We omit the
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details here. Also a more general situation of the same nature has been discussed in [22,

Appendix A].

Hence, according to Equation (5.4), Ress= 1
2
Z(s, ·) is non-zero if and only if

(i) LS(s + 1
2 , π × τ) has a pole at s = 1

2 ;

(ii) L( 1
2 ,JL(π)× σ) �= 0;

(iii) L1,α is ramified at v if and only if ε( 1
2 ,JL(π)v × σv, ψv)ηE,v(−1)= −1.

By the equality of L-functions:

LS (s, π × τ)= LS (s,JL (π)× τ) ,

it is clear that LS(s + 1
2 ,JL(π)× τ) has a pole at s = 1

2 if and only if JL(π)= τ . Hence

Condition (i) holds if and only if JL(π)= τ .

Further, by Proposition 1.1, Eτ⊗σ �= 0 implies L( 1
2 , τ × σ) �= 0. Hence when

JL(π)= τ , Condition (ii) holds if Eτ⊗σ �= 0. Finally, the twisted automorphic descent

σψ1,α (Eτ⊗σ ) is zero unless the group L1,α is determined by Condition (iii). In such a case,

by the uniqueness of the local Bessel model, if σψ1,α (Eτ⊗σ ) is non-zero, there is a unique

cuspidal automorphic representation π such that Ress= 1
2
Z(s, ·) is non-zero and then

σψ1,α (Eτ⊗σ ) is irreducible. By Proposition 3.3, the twisted automorphic descent σψ1,α (Eτ⊗σ )
is non-zero for some α. On the other hand, if α0 are congruent to α modulo Nm(E×),

then L1,α0 is isomorphic to L1,α and σψ1,α (Eτ⊗σ ) is also an automorphic representation

of L1,α0(A), which satisfies Conditions (i)–(iii). Thus the twisted descent σψ1,α0
(Eτ⊗σ ) is

non-zero. Therefore, there is a unique α0 modulo Nm(E×) such that σψ1,α (Eτ⊗σ ) is not

identically zero and JL(σψ1,α (Eτ⊗σ ))= τ by the spectral decomposition (5.5). �

Remark 5.2. It is clear from the above theorem that the projective quaternion group

SOδ,α
3 is unique modulo Nm(E×). However, the F -rational orbits of the characters ψ1,α

with the stabilizer PD×
δ,α are in one-to-one correspondence with the square classes

Nm
(
E×) /F ×2. �

The following theorem asserts that by choosing suitable δ and σ involved in the

construction of the twisted automorphic descents, we are able to obtain all infinite-

dimensional cuspidal automorphic representations of PD×(A), which is the second main

result for this special case. We refer to the reader [22] for a treatment of the general

situation.

Theorem 5.3. Let D be a quaternion algebra containing a quadratic extension F (
√−δ) of

F . For any given infinite-dimensional irreducible cuspidal automorphic representation
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π of PD×(A), there exists a character σ of SOδ
2(A) such that the residual representa-

tion EJL(π)⊗σ is non-zero and an element α ∈ F × such that Dδ,α
∼= D and σψ1,α (EJL(π)⊗σ )∼= π .

Moreover, any such σ satisfies the period condition that Pσ (π) �= 0 or equivalently the

L-function condition and the local period condition that

L
(

1

2
,JL (π)× σ

)
�= 0 and HomSOδ

2(Fv)

(
πv, σ

−1
v

) �= 0 for all v. (5.6)

�

Proof. Consider SOδ
2(A) as a subgroup of PD×(A). Since SOδ

2(F )\SOδ
2(A) is compact and

the space π is an L2-space, the restriction of π onto the subgroup SOδ
2(F )\SOδ

2(A) is

semi-simple and non-zero. By the spectral decomposition, we can choose a charac-

ter σ of SOδ
2(A) such that Pσ (π) �= 0. By [33], it is equivalent that L( 1

2 , π × σ) �= 0 and

HomSOδ
2(Fv)

(πv, σ
−1
v ) �= 0 for all places v.

Since L( 1
2 ,JL(π)× σ)= L( 1

2 , π × σ) �= 0 and JL(π) is of trivial central character,

the residual representation EJL(π)⊗σ is not identically zero. By Theorem 5.1, there exists

a unique SOδ,α
3 such that JL(σψ1,α (EJL(π)⊗σ ))= JL(π).

It is enough to show that SOδ,α
3 is isomorphic to PD×. By the proof of Theorem 5.1,

Pσ (σψ1,α (EJL(π)⊗σ )) �= 0. Referring to Condition (iii) in the proof of Theorem 5.1, both SOδ,α
3

and PD× are ramified at v if and only if ε( 1
2 ,JL(π)v × σv, ψv)ηE,v(−1)= −1. Then SOδ,α

3
∼=

PD× and σψ1,α (EJL(π)⊗σ )= π . �

Remark 5.4. By the uniqueness of this model, the restriction of π onto SOδ
2(F )\SOδ

2(A)

is multiplicity-free. Since π is of infinite dimension and σ is of dimension 1, by the

spectral decomposition as in the proof of Theorem 5.3, there are infinitely many choices

of σ satisfying (5.6). �
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