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Abstract. The Cauchy problem for the barotropic compressible Navier--Stokes equations on
the whole two-dimensional space with vacuum as far field density is considered. When the shear
viscosity is a positive constant and the bulk one is a power function of density with the power bigger
than four-thirds, the global existence and uniqueness of strong and classical solutions is established.
It should be remarked that there are no restrictions on the size of the data.
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1. Introduction and main results. We are concerned with the two-dimensional
barotropic compressible Navier--Stokes equations which read as follows:

(1.1)

\Biggl\{ 
\rho t + div(\rho u) = 0,

(\rho u)t + div(\rho u\otimes u) +\nabla P = \mu \bigtriangleup u+\nabla ((\mu + \lambda )divu),

where t \geq 0, x = (x1, x2) \in \Omega \subset \BbbR 2, \rho = \rho (x, t) and u = (u1(x, t), u2(x, t)) represent,
respectively, the density and velocity, and the pressure P is given by

(1.2) P (\rho ) = R\rho \gamma , \gamma > 1.

The shear viscosity \mu and the bulk one \lambda satisfy the following hypothesis:

(1.3) 0 < \mu = const, \lambda (\rho ) = b\rho \beta , b > 0, \beta > 0.

In what follows, we set R = b = 1 without loss of any generality. Let \Omega = \BbbR 2, and we
consider the Cauchy problem with (\rho , u) vanishing at infinity (in some weak sense).
For given initial data \rho 0 and u0, we require that

(1.4) \rho (x, 0) = \rho 0(x), \rho u(x, 0) = \rho 0u0(x), x \in \Omega = \BbbR 2.
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2D COMPRESSIBLE NAVIER--STOKES EQUATION 3193

When both the shear and bulk viscosities are positive constants, there is a huge
literature on the global existence and large-time behavior of solutions to (1.1). The
one-dimensional problem has been studied extensively by many people; see [14, 21, 30,
31] and the references therein. For the multidimensional case, when the initial data \rho 0
and m0 are sufficiently regular and the initial density \rho 0 has a positive lower bound,
the local existence and uniqueness of classical solutions are known in [26, 32]. Recently,
for the case that the initial density need not be positive and may vanish in open sets,
the existence and uniqueness of local strong and classical solutions were obtained
by [3, 4, 29]. More recently, for the two-dimensional case and \Omega = \BbbR 2, Li and Liang [22]
obtained the existence and uniqueness of the local strong and classical solutions to
(1.1)--(1.4) with a vacuum as far field density. The global classical solutions were
first obtained by Matsumura and Nishida [25] for initial data close to a nonvacuum
equilibrium in some Sobolev space Hs. Such a theory was later generalized to weak
solutions by Hoff [15] and solutions in Besov spaces by Danchin [7]. For the existence
of solutions for large data, the major breakthrough is due to Lions [24] (see also Feireisl
[12, 13]), where he obtained global existence of weak solutions when the exponent \gamma is
suitably large. The main restriction on initial data is that the initial energy is finite
so that the density is allowed to vanish initially. Recently, Huang, Li, and Xin [18]
established the global existence and uniqueness of classical solutions to the Cauchy
problem for the isentropic compressible Navier--Stokes equations in three-dimensional
space with smooth initial data which are of small energy but possibly large oscillations;
in particular, the initial density is allowed to vanish and even has compact support.

However, there are few results regarding global strong solvability for equations of
multidimensional motions of viscous gas with no restrictions on the size of initial data.
One of the first ever ones is due to Vaigant and Kazhikhov [34] who obtained that the
two-dimensional system (1.1)--(1.4) admits a unique global strong solution for large
initial data away from vacuum provided \beta > 3 and the domain \Omega is bounded. Recently,
under some additional compatibility conditions on the periodic initial data, Jiu, Wang,
and Xin [19] considered periodic classical solutions and removed the condition that
the initial density should be away from vacuum in Vaigant and Kazhikhov [34] but
still under the same condition \beta > 3 as that in [34]. More recently, for periodic initial
data with initial density allowed to vanish, we [16] not only relax the crucial condition
\beta > 3 of [34] to the one that \beta > 4/3 but also obtain both the time-independent upper
bound of the density and the large-time behavior of the strong and weak solutions.
It should be noted that [16, 19, 34] only consider the periodic case or the case of
bounded domains, and the global existence of strong and classical solutions to the
Cauchy problem (1.1)--(1.4) in the whole space \BbbR 2 remains open. In fact, this is the
aim of this paper.

Before stating the main results, we explain the notations and conventions used
throughout this paper. We denote \int 

fdx =

\int 
\BbbR 2

fdx,

D

Dt
f = \.f = ft + u \cdot \nabla f.

For 1 \leq r \leq \infty , we also denote the standard Lebesgue and Sobolev spaces as follows:

Lr = Lr(\BbbR 2), W s,r =W s,r(\BbbR 2), Hs =W s,2.

Then, we give the definition of strong solutions to (1.1).
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3194 XIANGDI HUANG AND JING LI

Definition 1.1. If all derivatives involved in (1.1) for (\rho , u) are regular distribu-
tions and (1.1) holds almost everywhere in \BbbR 2 \times (0, T ), then (\rho , u) is called a strong
solution to (1.1).

Thus, the first main result concerning the global existence of strong solutions can
be stated as follows.

Theorem 1.1. Assume that

(1.5) \beta > 4/3, \gamma > 1

and that the initial data (0 \leq \rho 0, u0) satisfy that for some q > 2 and a \in (1, 2)

(1.6) \=xa\rho 0 \in L1 \cap H1 \cap W 1,q, \nabla u0 \in L2, \rho 
1/2
0 u0 \in L2,

with

(1.7) \=x \triangleq (e+ | x| 2)1/2 log1+\eta 0(e+ | x| 2), \eta 0 =
3

8
 - 1

2\beta 
> 0.

Then the problem (1.1)--(1.4) has a unique global strong solution (\rho , u) satisfying that,
for any 0 < T <\infty ,

(1.8)

\left\{                   

\rho \in C([0, T ];L1 \cap H1 \cap W 1,q),

\=xa\rho \in L\infty (0, T ;L1 \cap H1 \cap W 1,q),
\surd 
\rho u, \nabla u, \=x - 1u,

\surd 
t
\surd 
\rho ut \in L\infty (0, T ;L2),

\nabla u \in L2(0, T ;H1) \cap L(q+1)/q(0, T ;W 1,q),\surd 
t\nabla u \in L2(0, T ;W 1,q),

\surd 
\rho ut,

\surd 
t\nabla ut,

\surd 
t\=x - 1ut \in L2(\BbbR 2 \times (0, T ))

and that

(1.9) inf
0\leq t\leq T

\int 
BN

\rho (x, t)dx \geq 1

4

\int 
\BbbR 2

\rho 0(x)dx

for some constant N > 0 and BN \triangleq 
\bigl\{ 
x \in \BbbR 2

\bigm| \bigm| | x| < N
\bigr\} 
.

If the initial data (\rho 0,m0) satisfy some additional regularity and compatibility
conditions, the global strong solutions become classical as stated by the following.

Theorem 1.2. Suppose that (1.5) holds. In addition to (1.6), assume that (\rho 0, u0)
satisfies

(1.10)

\Biggl\{ 
\nabla 2\rho 0, \nabla 2\lambda (\rho 0), \nabla 2P (\rho 0) \in L2 \cap Lq,

\=x\delta 0\nabla 2\rho 0, \=x
\delta 0\nabla 2\lambda (\rho 0), \=x

\delta 0\nabla 2P (\rho 0) \in L2, \nabla 2u0 \in L2

for some constant \delta 0 \in (0, 1) and the following compatibility condition:

(1.11)  - \mu \bigtriangleup u0  - \nabla ((\mu + \lambda (\rho 0))divu0) +\nabla P (\rho 0) = \rho 
1/2
0 g,

with some g \in L2. Then, in addition to (1.8) and (1.9), the strong solution (\rho , u)
obtained by Theorem 1.1 satisfies for any 0 < T <\infty ,

(1.12)

\left\{                   

\nabla 2\rho , \nabla 2\lambda (\rho ), \nabla 2P (\rho ) \in C([0, T ];L2 \cap Lq),

\=x\delta 0\nabla 2\rho , \=x\delta 0\nabla 2\lambda (\rho ), \=x\delta 0\nabla 2P (\rho ) \in L\infty (0, T ;L2),

\nabla 2u,
\surd 
\rho ut,

\surd 
t\nabla ut,

\surd 
t\=x - 1ut, t

\surd 
\rho utt, t\nabla 2ut \in L\infty (0, T ;L2),

t\nabla 3u \in L\infty (0, T ;L2 \cap Lq),

\nabla ut, \=x - 1ut, t\nabla utt, t\=x - 1utt \in L2(0, T ;L2),

t\nabla 2(\rho u) \in L\infty (0, T ;L(q+2)/2).
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2D COMPRESSIBLE NAVIER--STOKES EQUATION 3195

A few remarks are in order.

Remark 1.1. As shown by [22, Remark 1.1], the solution (\rho , u) obtained in The-
orem 1.2 is in fact a classical one to the Cauchy problem (1.1)--(1.4) in \BbbR 2 \times (0,\infty ).

Remark 1.2. Theorems 1.1 and 1.2 generalize and improve the earlier results due
to Vaigant and Kazhikhov [34], where they required that \beta > 3 and that the domain
is bounded. Moreover, Theorems 1.1 and 1.2 also extend our previous result [16],
where we consider the periodic case to the Cauchy problem in the whole space \BbbR 2.

Remark 1.3. It is worth noting here that Zhang and Fang [35, Theorem 1.8]
showed that if (\rho , u) \in C1([0, T ];Hk), k > 3, is a spherically symmetric solution
to the Cauchy problem (1.1)--(1.4) with the compact supported initial density \rho 0 \not \equiv 0,
T must be finite provided 1 < \beta \leq \gamma . However, in our Theorem 1.2, for \rho , we have
\rho \in C([0, T ];H2) but for u, only \nabla u \in Hk. Note that the function u \in \{ \nabla u \in Hk\} 
has no decay or decays much slower for large values of the spatial variable x than
the one u \in Hk+1. Therefore, it seems that it is the slow decay of the velocity field
for large values of the spatial variable x that leads to the global existence of smooth
solutions.

Remark 1.4. It should be mentioned here that it seems that \beta > 1 is the extremal
case for the system (1.1)--(1.3) (see [34]). Therefore, it would be interesting to study
the problem (1.1)--(1.4) when 1 < \beta \leq 4/3. This is left for the future.

We now comment on the analysis of this paper. Note that, for initial data sat-
isfying the conditions of Theorems 1.1 and 1.2, the local existence and uniqueness
of strong and classical solutions to the Cauchy problem (1.1)--(1.4) have been estab-
lished in [22]. Thus, to extend the strong and classical solutions globally in time, one
needs global a priori estimates on smooth solutions to (1.1)--(1.4) in suitable higher
norms. To do so, motivated by [16, 17], it turns out that the key issue in this paper
is to derive the upper bound for the density. We then try to modify the analysis
in [16, 34]. However, the methods in [16, 34] cannot be applied directly to our case
since their arguments rely heavily on the fact that the domain is bounded. The key
steps of this paper are as follows: We first obtain the spatial weighted mean esti-
mate of the density (see (3.6)). Then, rewriting (1.1)2 as (3.13) in terms of a sum
of commutators of Riesz transforms and the operators of multiplication by ui (see
(3.12)) as in [16, 23, 28], we succeed in deriving the estimate of L\infty (0, T ;Lp)-norm
of the density (see (3.9)) after using the spatial weighted mean estimate of the den-
sity we have just derived, the Hardy-type inequality (see (2.3)), and the Lp-estimate
of the commutators due to Coifman, Rochberg, and Weiss [5](see (2.8)). Next, by
energy-type estimates and the compensated compactness analysis [8, Theorem II.1],

we show that log(1 + \| \nabla u\| L2) does not exceed \| \rho \| 4/3L\infty (see (3.25)). Then, after we
establish a key estimate of \| \rho u\| Lr in terms of \| \rho \| L\infty , \| \rho 1/2u\| L2 , and \| \nabla u\| L2 with
the explicit expression of r (see (2.6) for details), we can use the W 1,p-estimate of the
commutator due to Coifman and Meyer [6] (see (2.9)) to obtain an estimate on the
L1(0, T ;L\infty )-norm of the commutators in terms of \| \rho \| L\infty (see (3.41)), which together
with the Brezis--Wainger inequality (see (2.10)) leads to the key a priori estimate on
\| \rho \| L\infty provided \beta > 4/3. See Proposition 3.1 and its proof.

The next main step is to bound the gradients of the density. We first obtain
the temporal weighted mean estimates on the material derivatives of the velocity
by modifying the basic estimates on the material derivatives of the velocity due to
Hoff [15]. Then, following [17], the Lp-bound of the gradient of the density can be
obtained by solving a logarithm Gronwall inequality based on a Beale--Kato--Majda-
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3196 XIANGDI HUANG AND JING LI

type inequality (see Lemma 2.7), the a priori estimates we have just derived, and some
careful initial layer analysis; and moreover, such a derivation also yields simultaneously
the bound for the L1(0, T ;L\infty (\BbbR 2))-norm of the gradient of the velocity; see Lemma
4.2 and its proof.

The rest of the paper is organized as follows: In section 2, we collect some el-
ementary facts and inequalities which will be needed in later analysis. Section 3 is
devoted to the derivation of the upper bound on the density which is the key to extend
the local solution to all time. Based on the previous estimates, higher order ones are
established in sections 4 and 5. Then finally, the main results, Theorems 1.1 and 1.2,
are proved in section 6.

2. Preliminaries. The following local existence of strong and classical solutions
can be found in [22].

Lemma 2.1. Let \beta \geq 1 and \gamma > 1. Assume that (\rho 0, u0) satisfies (1.6). Then
there exist a small time T > 0 and a unique strong solution (\rho , u) to the problem
(1.1)--(1.4) in \BbbR 2 \times (0, T ) satisfying (1.8) and (1.9). Moreover, if (\rho 0, u0) satisfies
(1.10) and (1.11) besides (1.6), (\rho , u) satisfies (1.12) also.

The following Sobolev inequality will be used frequently.

Lemma 2.2 (see [27, 33]). There exists a universal positive constant C such that
the following estimates hold for any p \in (2,\infty ):

(2.1) \| u\| Lp \leq Cp1/2\| \nabla u\| L2p/(p+2) , \| v\| Lp \leq Cp1/2\| v\| 2/pL2 \| \nabla v\| 1 - 2/p
L2

for any function u \in 
\bigl\{ 
u \in Lp

\bigm| \bigm| \nabla u \in L2p/(p+2)
\bigr\} 
and v \in H1.

The following weighted Lp-bounds for elements of the Hilbert space \~D1,2(\BbbR 2) \triangleq 
\{ u \in H1

loc(\BbbR 2)| \nabla u \in L2(\BbbR 2)\} can be found in [23, Theorem B.1].

Lemma 2.3. For m \in [2,\infty ) and \theta \in (1+m/2,\infty ), there exists a positive constant
C such that we have, for all v \in \~D1,2(\BbbR 2),

(2.2)

\biggl( \int 
\BbbR 2

| v| m

e+ | x| 2
(log(e+ | x| 2)) - \theta dx

\biggr) 1/m

\leq C\| v\| L2(B1) + C\| \nabla v\| L2(\BbbR 2),

while BN denote a ball with radius N in \BbbR 2, i.e, BN \triangleq \{ x \in \BbbR 2| | x| < N\} for N > 0.
Here we just simply take N = 1. Moreover, for general BN , the constant C will
depend on N as well.

The combination of Lemma 2.2 with Lemma 2.3 yields the following.

Lemma 2.4. For \=x and \eta 0 as in (1.7), there exists a positive constant C depending
only on \eta 0 such that every function v \in \~D1,2(\BbbR 2) satisfies for all \delta \in (0, 2)

(2.3) \| v\=x - \delta \| L4/\delta (\BbbR 2) \leq C\delta  - \eta 0 - 1/2
\bigl( 
\| v\| L2(B1) + \| \nabla v\| L2(\BbbR 2)

\bigr) 
.

Proof. Noticing that

| \partial i\=x| \leq 6 log1+\eta 0(e+ | x| 2), i = 1, 2,

we obtain by direct calculations

(2.4)

\| \nabla (v\=x - \delta )\| L4/(2+\delta )

= \| \=x - \delta \nabla v  - \delta v\=x - \delta  - 1\nabla \=x\| L4/(2+\delta )

\leq \| \nabla v\| L2\| \=x - \delta \| L4/\delta + 6\delta \| v\=x - 1\| L2\| \=x - \delta log1+\eta 0(e+ | x| 2)\| L4/\delta 

\leq C
\bigl( 
\| \nabla v\| L2 + \delta  - \eta 0\| v\=x - 1\| L2

\bigr) 
,
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2D COMPRESSIBLE NAVIER--STOKES EQUATION 3197

where in the last inequality we have used the simple fact that

\| \=x - \delta log1+\eta 0(e+ | x| 2)\| L4/\delta 

\leq \| \=x - \delta /2\| L4/\delta \| (e+ | x| 2) - \delta /(4(1+\eta 0)) log(e+ | x| 2)\| 1+\eta 0

L\infty 

\leq C\delta  - 1 - \eta 0 ,

due to (e + y) - \alpha log(e + y) \leq \alpha  - 1 for \alpha > 0 and any y \geq 0. The desired estimate
(2.3) thus directly follows from (2.1), (2.4), and (2.2). The proof of Lemma 2.4 is
completed.

A useful consequence of Lemma 2.4 is the following weighted bounds for elements
of \~D1,2(\BbbR 2) which are important for our analysis.

Lemma 2.5. Let \=x and \eta 0 be as in (1.7). For \gamma > 1, assume that \rho \in L1(\BbbR 2) \cap 
L\infty (\BbbR 2) is a nonnegative function such that

(2.5)

\int 
BN1

\rho dx \geq M1,

\int 
\rho \gamma dx \leq M2,

\int 
\rho \=x\alpha dx \leq M3

for positive constants Mi(i = 1, . . . , 3), \alpha \in (1, 2), and N1 \geq 1. Then there is a
positive constant C depending only on Mi(i = 1, . . . , 3), N1, \alpha , \gamma , and \eta 0 such that
every v \in \~D1,2(\BbbR 2) satisfies

(2.6) \| \rho v\| Lr \leq Cr\eta 0+1/2(1 + \| \rho \| L\infty )
\Bigl( 
\| \rho 1/2v\| L2(BN1

) + \| \nabla v\| L2

\Bigr) 
for any r \in (1,\infty ).

Proof. It follows from (2.5) and the Poincar\'e-type inequality [12, Lemma 3.2] that
there exists a positive constant C depending only on M1,M2, N1, and \gamma such that

(2.7) \| v\| 2H1(BN1
) \leq C

\int 
BN1

\rho v2dx+ C\| \nabla v\| 2L2(BN1
).

This combined with Holder's inequality, (2.3), and (2.5), also for r \in (1,\infty ) and
\sigma = 4/(r(4 + \alpha )), noting that \alpha \in (1, 2) and \alpha \sigma \in (0, 2), we obtain

\| \rho v\| Lr \leq \| (\rho \=x\alpha )\sigma \| L1/\sigma \| v\=x - \alpha \sigma \| L4/(\alpha \sigma )\| \rho \| 1 - \sigma 
L\infty 

\leq Cr\eta 0+1/2
\Bigl( 
\| \rho 1/2v\| L2(BN1

) + \| \nabla v\| L2

\Bigr) 
(1 + \| \rho \| L\infty ),

which shows (2.6) and finishes the proof of Lemma 2.5.

Next, let \scrH 1(\BbbR 2) and BMO(\BbbR 2) stand for the usual Hardy and BMO space.
Given a function b, define the linear operator

[b, RiRj ](f) \triangleq bRi \circ Rj(f) - Ri \circ Rj(bf), i, j = 1, 2,

where Ri is the usual Riesz transform on \BbbR 2 : Ri = ( - \bigtriangleup ) - 1/2\partial i. The following
properties of the commutator [b, RiRj ](f) will be useful for our analysis.

Lemma 2.6. Let b, f \in C\infty 
0 (\BbbR 2). Then for p \in (1,\infty ), there is C(p) such that

(2.8) \| [b, RiRj ](f)\| Lp \leq C(p)\| b\| BMO\| f\| Lp .

Moreover, for qi \in (1,\infty )(i = 1, 2, 3) with q - 1
1 = q - 1

2 + q - 1
3 , there is a C depending

only on qi(i = 1, 2, 3) such that

(2.9) \| \nabla [b, RiRj ](f)\| Lq1 \leq C\| \nabla b\| Lq2 \| f\| Lq3 .
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3198 XIANGDI HUANG AND JING LI

Remark 2.1. Properties (2.8) and (2.9) are due to Coifman, Rochberg, and Weiss
[5] and Coifman and Meyer [6], respectively.

Next, we state the following Beale--Kato--Majda-type inequality which was proved
in [1, 20] when divu \equiv 0 and will be used later to estimate \| \nabla u\| L\infty and \| \nabla \rho \| Lp .

Lemma 2.7 (see [1, 20]). For 2 < q <\infty , there is a constant C(q) such that the
following estimate holds for all \nabla u \in L2(\BbbR 2) \cap W 1,q(\BbbR 2):

\| \nabla u\| L\infty (\BbbR 2) \leq C
\bigl( 
\| divu\| L\infty (\BbbR 2) + \| rotu\| L\infty (\BbbR 2)

\bigr) 
log(e+ \| \nabla 2u\| Lq(\BbbR 2))

+ C\| \nabla u\| L2(\BbbR 2) + C.

Finally, the following Brezis--Wainger inequality will also be used.

Lemma 2.8 (see [2, 10]). For q > 2, there exists some positive constant C de-
pending only on q such that every function v \in \{ v \in W 1,q(\BbbR 2)| \nabla v \in L2(\BbbR 2)\} satisfies

(2.10) \| v\| L\infty (\BbbR 2) \leq C(\| v\| Lq(\BbbR 2) + \| \nabla v\| L2(\BbbR 2)) ln
1/2(e+ \| v\| W 1,q(\BbbR 2)) + C.

3. A priori estimates (I): Upper bound of the density. In this section and
the next, in addition to the conditions of Theorem 1.1, we will always assume that
smooth (\rho 0, u0) satisfies

(3.1) \rho 0(x) > 0,
1

2
\leq 

\int 
BN0

\rho 0(x)dx \leq 
\int 
\BbbR 2

\rho 0(x)dx \leq 2

for some positive constant N0. Moreover, suppose that (\rho , u) is the strong solution to
(1.1)--(1.4) on \BbbR 2 \times (0, T ] obtained by Lemma 2.1.

The following Proposition 3.1 will give an upper bound of the density which is
the key to obtain higher order estimates.

Proposition 3.1. Under the conditions of Theorem 1.1, for

E0 \triangleq \| \rho 0\=xa\| L1 + \| \rho 0\| L\infty + \| \rho 1/20 u0\| L2 + \| \nabla u0\| L2 ,

there is a positive constant C depending only on \mu , \beta , \gamma , T,N0, a, and E0 such that

(3.2) sup
0\leq t\leq T

(\| \rho \| L\infty + \| \nabla u\| L2) +

\int T

0

\int 
\rho | ut + u \cdot \nabla u| 2dxdt \leq C.

In the following, we will establish some a priori estimates and postpone the proof
of Proposition 3.1 to the end of this section.

Lemma 3.2. There exist positive constants C and N1 both depending only on

a, \gamma , T,N0, \| \rho 0\=xa\| L1 , \| \rho 0\| L\gamma , and \| \rho 1/20 u0\| L2 such that

(3.3) sup
0\leq t\leq T

\int \bigl( 
\rho | u| 2 + \rho \gamma + \rho \=xa

\bigr) 
dx+

\int T

0

\int \bigl( 
\mu | \nabla u| 2 + \lambda (\rho )(divu)2

\bigr) 
dxdt \leq C

and

(3.4) inf
0\leq t\leq T

\int 
BN1

\rho dx \geq 1/4.
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Proof. First, the standard energy inequality reads

(3.5) sup
0\leq t\leq T

\int \bigl( 
\rho | u| 2 + \rho \gamma 

\bigr) 
dx+

\int T

0

\int \bigl( 
\mu | \nabla u| 2 + (\mu + \lambda (\rho ))(divu)2

\bigr) 
dxdt \leq \~C.

Next, multiplying (1.1)1 by \=xa and integrating the resulting equality over \BbbR 2, we
obtain after integration by parts and using (3.5) that

d

dt

\int 
\rho \=xadx \leq C

\int 
\rho | u| \=xa - 1 log1+\eta 0(e+ | x| 2)dx

\leq C

\biggl( \int 
\rho \=x2a - 2 log2(1+\eta 0)(e+ | x| 2)dx

\biggr) 1/2 \biggl( \int 
\rho u2dx

\biggr) 1/2

\leq C

\biggl( \int 
\rho \=xadx

\biggr) 1/2

,

which together with Gronwall's inequality gives

(3.6) sup
0\leq t\leq T

\int 
\rho \=xadx \leq C.

This, along with (3.5), gives (3.3).
Finally, the mass conservation equation (1.1)1 yields

(3.7)

\int 
\rho dx =

\int 
\rho 0dx.

For N > 1, let \varphi N be a smooth function such that

(3.8) 0 \leq \varphi N (x) \leq 1, \varphi N =

\Biggl\{ 
1 if | x| \leq N,

0 if | x| \geq 2N,
| \nabla \varphi N | \leq 2N - 1.

It follows from (1.1)1, (3.7), and (3.5) that

d

dt

\int 
\rho \varphi Ndx =

\int 
\rho u \cdot \nabla \varphi Ndx

\geq  - 2N - 1

\biggl( \int 
\rho dx

\biggr) 1/2 \biggl( \int 
\rho | u| 2dx

\biggr) 1/2

\geq  - 2 \~C1/2N - 1,

which gives

inf
0\leq t\leq T

\int 
\rho \varphi Ndx \geq 

\int 
\rho 0\varphi Ndx - 2 \~C1/2N - 1T.

This combined with (3.1) yields that, for N1 \triangleq 2(2 +N0 + 8 \~C1/2T ),

inf
0\leq t\leq T

\int 
BN1

\rho dx \geq 
\int 
\rho \varphi N1/2dx \geq 1/4,

which shows (3.4). The proof of Lemma 3.2 is completed.

Lemma 3.3. Assume that (1.5) holds. Then there is a positive constant C de-
pending only on \mu , \beta , \gamma , T,N0, a, and E0 such that

(3.9) sup
0\leq t\leq T

\int \bigl( 
\rho + \rho 2\beta \gamma +1

\bigr) 
dx \leq C.
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Proof. First, we denote

\nabla \bot \triangleq (\partial 2, - \partial 1),
D

Dt
f \triangleq \.f \triangleq ft + u \cdot \nabla f,

where \.f is the material derivative of f. Let G and \omega denote the effective viscous flux
and the vorticity, respectively, as follows:

G \triangleq (2\mu + \lambda (\rho ))divu - P, \omega \triangleq \nabla \bot \cdot u = \partial 2u1  - \partial 1u2.

We thus rewrite the momentum equations (1.1)2 as

(3.10) \rho \.u = \nabla G+ \mu \nabla \bot \omega ,

which shows that G solves

\bigtriangleup G = div(\rho \.u) = \partial t(div(\rho u)) + divdiv(\rho u\otimes u).

This implies

(3.11) G+
D

Dt

\bigl( 
( - \bigtriangleup ) - 1div(\rho u)

\bigr) 
= F,

with the commutator F defined by

(3.12) F \triangleq 
2\sum 

i,j=1

[ui, RiRj ](\rho uj) =

2\sum 
i,j=1

(uiRi \circ Rj(\rho uj) - Ri \circ Rj(\rho uiuj)) .

Then, since \rho > 0 due to (3.1), the mass equation (1.1)1 leads to

 - divu =
1

\rho 
Dt\rho ,

which combined with (3.11) gives that

(3.13)
D

Dt
\theta (\rho ) + P =

D

Dt
\psi  - F,

with

(3.14) \theta (\rho ) \triangleq 2\mu log \rho + \beta  - 1\rho \beta , \psi \triangleq ( - \bigtriangleup ) - 1div(\rho u).

Next, denoting f \triangleq max\{ \theta (\rho ) - \psi , 0\} , multiplying (3.13) by \rho f2\gamma  - 1, and integrat-
ing the resulting equality over \BbbR 2 lead to

(3.15)

d

dt

\int 
\rho f2\gamma dx \leq C

\int 
\rho f2\gamma  - 1| F | dx

\leq C\| \rho 1/(2\gamma )f\| 2\gamma  - 1
L2\gamma \| \rho \| 1/(2\gamma )

L2\beta \gamma +1\| F\| L(2\beta \gamma +1)/\beta 

\leq C\| \rho 1/(2\gamma )f\| 2\gamma  - 1
L2\gamma \| \rho \| 1/(2\gamma )

L2\beta \gamma +1\| \nabla u\| L2\| \rho u\| L(2\beta \gamma +1)/\beta ,

where in the last inequality we have used the following simple fact that, for any
p \in (1,\infty ),

(3.16) \| F\| Lp \leq C(p)\| u\| \scrB \scrM \scrO \| \rho u\| Lp \leq C(p)\| \nabla u\| L2\| \rho u\| Lp
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due to (2.8). It follows from the Holder inequality, (3.3), (2.3), (3.4), and (2.7) that

(3.17)
\| \rho u\| L(2\beta \gamma +1)/\beta \leq \| (\rho \=xa)\sigma \| L1/\sigma \| u\=x - a\sigma \| L4/(a\sigma )\| \rho 1 - \sigma \| L(2\beta \gamma +1)/(1 - \sigma )

\leq C(1 + \| \nabla u\| L2) (1 + \| \rho \| L2\beta \gamma +1) ,

where \sigma = 4(\beta  - 1)/((4 + a)(2\beta \gamma + 1) - 4). Substituting (3.17) into (3.15) gives

(3.18)
d

dt

\int 
\rho f2\gamma dx \leq C

\biggl( 
1 +

\int 
\rho f2\gamma dx+

\int 
\rho 2\beta \gamma +1dx

\biggr) 
(1 + \| \nabla u\| 2L2)

due to \beta > 1.
Next, we claim

(3.19)

\int 
\rho 2\gamma \beta +1dx \leq C + C

\int 
\rho f2\gamma dx,

which together with (3.18), (3.3), and Gronwall's inequality yields

sup
0\leq t\leq T

\int 
\rho f2\gamma dx \leq C.

This combined with (3.19) and (3.7) directly gives (3.9).
Finally, it only remains to prove (3.19). In fact, for any p \in (1,\infty ), we have

(3.20) \| \nabla \psi \| Lp \leq C(p)\| \rho u\| Lp ,

which, along with (2.1) and (3.3), gives that, for any r \in (2,\infty ),

(3.21)
\| \psi \| Lr \leq C(r)\| \nabla \psi \| L2r/(r+2)

\leq C(r)\| \rho 1/2\| Lr\| \rho 1/2u\| L2 \leq C(r)\| \rho \| 1/2
Lr/2 .

It thus follows from (3.21), (3.7), and the fact that \beta > 1 that\int 
\rho 2\gamma \beta +1dx =

\int 
(\rho \leq 2)

\rho 2\gamma \beta +1dx+

\int 
(\rho >2)

\rho 2\gamma \beta +1dx

\leq C

\int 
(\rho \leq 2)

\rho dx+ C

\int 
(\rho >2)

\rho f2\gamma dx+ C

\int 
\rho | \psi | 2\gamma dx

\leq C + C

\int 
\rho f2\gamma dx+ C\| \rho \| L(2\beta \gamma +1)/(2\beta \gamma +1 - \gamma )\| \psi \| 2\gamma 

L2(2\beta \gamma +1)

\leq C + C

\int 
\rho f2\gamma dx+ C(1 + \| \rho \| L2\beta \gamma +1)\| \rho \| \gamma 

L2\beta \gamma +1

\leq C(\varepsilon ) + C

\int 
\rho f2\gamma dx+ \varepsilon 

\int 
\rho 2\gamma \beta +1dx.

The proof of Lemma 3.3 is finished.

The following Lp-estimate of the momentum will play an important role in the
estimate of the upper bound of the density.

Lemma 3.4. Assume that (1.5) holds. Then, for any p > 4, there is a positive
constant C(p) depending only on p, \mu , \beta , \gamma , T,N0, a, and E0 such that

(3.22) \| \rho u\| Lp \leq C(p)R
1+\beta /4+(\beta \eta 0)/2
T (1 + \| \nabla u\| L2)1 - 2/p,

with \eta 0 as in (1.7) and

RT \triangleq 1 + sup
0\leq t\leq T

\| \rho \| L\infty .
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Proof. First, take

\nu \triangleq 
\mu 1/2

2(\mu + 1)
R

 - \beta /2
T \in (0, 1/4]

due to RT > 1. Multiplying (1.1)2 by (2 + \nu )| u| \nu u and integrating the resulting
equation over \BbbR 2 lead to

d

dt

\int 
R2

\rho | u| 2+\nu dx+ (2 + \nu )

\int 
R2

| u| \nu 
\bigl( 
\mu | \nabla u| 2 + (\mu + \rho \beta )(divu)2

\bigr) 
dx

\leq (2 + \nu )\nu 

\int 
R2

(\mu + \rho \beta )| divu| | u| \nu | \nabla u| dx+ C

\int 
R2

\rho \gamma | u| \nu | \nabla u| dx

\leq 2 + \nu 

2

\int 
R2

(\mu + \rho \beta )(divu)2| u| \nu dx+
\nu 2(2 + \nu )

2

\int 
R2

(\mu + \rho \beta )| u| \nu | \nabla u| 2dx

+ C

\int 
R2

\rho \gamma | u| \nu | \nabla u| dx

\leq 2 + \nu 

2

\int 
R2

(\mu + \rho \beta )(divu)2| u| \nu dx+
(2 + \nu )\mu 

8(\mu + 1)

\int 
R2

| u| \nu | \nabla u| 2dx

+ \mu 

\int 
R2

| u| \nu | \nabla u| 2dx+ C

\int 
R2

\rho | u| 2+\nu dx+ C

\int 
R2

\rho (2+\nu )\gamma  - \nu /2dx,

where we have used the fact RT \geq 1 and

(3.23)
\nu 2(2 + \nu )

2
(\mu + \rho \beta ) \leq (2 + \nu )\mu 

8(\mu + 1)

which together with Gronwall's inequality and (3.9) thus gives

(3.24) sup
0\leq t\leq T

\int 
\rho | u| 2+\nu dx \leq C.

Then, it follows from Holder's inequality, (3.24), (3.3), (3.4), and (2.6) that, for
r = (p - 2)(2 + \nu )/\nu ,

\| \rho u\| Lp \leq \| \rho u\| 2/pL2+\nu \| \rho u\| 1 - 2/p
Lr

\leq CR
(1+\nu )/p
T \| \rho 1/(2+\nu )u\| 2/pL2+\nu 

\Bigl( 
r\eta 0+1/2RT (1 + \| \nabla u\| L2)

\Bigr) 1 - 2/p

\leq C(p)R
(1+\nu )/p
T

\Bigl( 
R

1+\beta /4+(\beta \eta 0)/2
T (1 + \| \nabla u\| L2)

\Bigr) 1 - 2/p

\leq C(p)R
1+\beta /4+(\beta \eta 0)/2
T (1 + \| \nabla u\| L2)1 - 2/p,

which shows (3.22) and finishes the proof of Lemma 3.4.

Lemma 3.5. Assume that (1.5) holds. Then there is a constant C depending only
on \mu , \beta , \gamma , T,N0, a, and E0 such that

(3.25) sup
0\leq t\leq T

log(e+A2(t)) +

\int T

0

B2(t)

e+A2(t)
dt \leq CR

4/3
T ,

where

(3.26) A2(t) \triangleq 
\int \biggl( 

\omega 2(t) +
G2(t)

2\mu + \lambda (\rho (t))

\biggr) 
dx, B2(t) \triangleq 

\int 
\rho (t)| \.u(t)| 2dx.
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Proof. First, direct calculations show that

(3.27) \nabla \bot \cdot \.u =
D

Dt
\omega  - (\partial 1u \cdot \nabla )u2 + (\partial 2u \cdot \nabla )u1 =

D

Dt
\omega + \omega divu

and that

(3.28)
div \.u =

D

Dt
divu+ (\partial 1u \cdot \nabla )u1 + (\partial 2u \cdot \nabla )u2

=
D

Dt

G

2\mu + \lambda 
+
D

Dt

P

2\mu + \lambda 
 - 2\nabla u1 \cdot \nabla \bot u2 + (divu)2.

Then, multiplying (3.10) by 2 \.u and integrating the resulting equality over \BbbR 2, we
obtain after using (3.27) and (3.28) that

(3.29)

d

dt
A2 + 2B2 =  - 

\int 
\omega 2divudx+ 4

\int 
G\nabla u1 \cdot \nabla \bot u2dx - 2

\int 
G(divu)2dx

 - 
\int 

(\beta  - 1)\lambda  - 2\mu 

(2\mu + \lambda )2
G2divudx+ 2\beta 

\int 
\lambda (\rho )P

(2\mu + \lambda )2
Gdivudx

 - 2\gamma 

\int 
P

2\mu + \lambda 
Gdivudx \triangleq 

6\sum 
i=1

Ii.

Each Ii can be estimated as follows:
First, it follows from (3.10) that

\bigtriangleup G = div(\rho \.u), \mu \bigtriangleup \omega = \nabla \bot \cdot (\rho \.u),

which together with the standard Lp-estimate of elliptic equations yield that, for
p \in (1,\infty ),

(3.30) \| \nabla G\| Lp + \| \nabla \omega \| Lp \leq C(p, \mu )\| \rho \.u\| Lp .

In particular, we have

(3.31) \| \nabla G\| L2 + \| \nabla \omega \| L2 \leq C(\mu )R
1/2
T B.

This combined with (2.1) gives

(3.32)
\| \omega \| L4 \leq C\| \omega \| 1/2L2 \| \nabla \omega \| 1/2L2

\leq CR
1/4
T A1/2B1/2,

which leads to

(3.33) | I1| \leq C\| \omega \| 2L4\| divu\| L2 \leq \varepsilon B2 + C(\varepsilon )RT \| \nabla u\| 2L2A2.

Next, we will use an idea due to [9, 28] to estimate I2. Noticing that

rot\nabla u1 = 0, div\nabla \bot u2 = 0,

one derives from [8, Theorem II.1] that

\| \nabla u1 \cdot \nabla \bot u2\| \scrH 1 \leq C\| \nabla u\| 2L2 .
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This combined with the fact that BMO(\BbbR 2) is the dual space of \scrH 1 (see [11]) gives

(3.34)

| I2| \leq C\| G\| BMO\| \nabla u1 \cdot \nabla \bot u2\| \scrH 1

\leq C\| \nabla G\| L2\| \nabla u\| 2L2

\leq CR
1/2
T B\| \nabla u\| L2(1 +A)

\leq \varepsilon B2 + C(\varepsilon )RT \| \nabla u\| 2L2(1 +A2),

where in the third inequality we have used (3.31) and the following simple fact that,
for t \in [0, T ],

(3.35) C - 1\| \nabla u(\cdot , t)\| 2L2  - C \leq A2(t) \leq CR\beta 
T \| \nabla u(\cdot , t)\| 

2
L2 + C

due to (3.9).
Next, Holder's inequality yields that, for \delta \in (0, 2(\beta  - 1)),

(3.36)

6\sum 
i=3

| Ii| \leq C

\int 
| divu| 

\biggl( 
| G| | G| + P

2\mu + \lambda 
+

G2

2\mu + \lambda 
+

P | G| 
2\mu + \lambda 

\biggr) 
dx

\leq C

\int 
G2| divu| 
2\mu + \lambda 

dx+ C

\int 
P | G| 
2\mu + \lambda 

| divu| dx

\leq C\| \nabla u\| L2

\bigm\| \bigm\| \bigm\| \bigm\| G2

2\mu + \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2

+ C\| \nabla u\| L2\| G\| L2(2+\delta )/\delta \| P\| L2+\delta 

\leq C\| \nabla u\| L2

\bigm\| \bigm\| \bigm\| \bigm\| G2

2\mu + \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2

+ C(\delta )\| \nabla u\| L2\| G\| \delta /(2+\delta )
L2 \| \nabla G\| 2/(2+\delta )

L2 ,

where in the last inequality we have used (3.9) and (2.1).
Then, noticing that (3.26) gives

(3.37) \| G\| L2 \leq CR
\beta /2
T A,

one deduces from the Holder inequality and (2.1) that for 0 < \delta < 1,

(3.38)

\bigm\| \bigm\| \bigm\| \bigm\| G2

\surd 
2\mu + \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2

\leq C

\bigm\| \bigm\| \bigm\| \bigm\| G\surd 
2\mu + \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| 1 - \delta 

L2

\| G\| 1+\delta 
L2(1+\delta )/\delta 

\leq C(\delta )A1 - \delta \| G\| \delta L2\| \nabla G\| L2

\leq C(\delta )R
(1+\delta \beta )/2
T AB,

where in the last inequality we have used (3.31). Putting (3.38), (3.37), and (3.31)
into (3.36) yields

(3.39)

6\sum 
i=3

| Ii| \leq C(\delta )R
(1+\delta \beta )/2
T \| \nabla u\| L2

\Bigl( 
AB +A\delta /(2+\delta )B2/(2+\delta )

\Bigr) 
\leq C(\delta )R

(1+\delta \beta )/2
T \| \nabla u\| L2(AB +B +A)

\leq \varepsilon B2 + C(\varepsilon , \delta )R1+\delta \beta 
T (1 + \| \nabla u\| 2L2)(1 +A2).

Finally, substituting (3.33), (3.34), and (3.39) into (3.29), we obtain after choosing
\varepsilon suitably small that for \delta \in (0,min\{ 1, 2(\beta  - 1)\} )

(3.40)
d

dt
A2 +B2 \leq C(\delta )R1+\delta \beta 

T (1 + \| \nabla u\| 2L2)(1 +A2).
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Dividing (3.40) by e+A2, choosing \delta = 1/(3\beta ), and using (3.3), we obtain (3.25) and
finish the proof of Lemma 3.5.

Next, the following lemma gives an estimate of the L1(0, T ;L\infty )-norm of the
commutator F defined by (3.12).

Lemma 3.6. Assume that (1.5) holds. Then there is a positive constant C de-
pending only on \mu , \beta , \gamma , T,N0, a, and E0 such that

(3.41)

\int T

0

\| F\| L\infty dt \leq CR
1+\beta /4+\beta \eta 0

T .

Proof. First, it follows from the Gagliardo--Nirenberg inequality, (3.16), and (2.9)
that for p \in (8,\infty ),

(3.42)

\| F\| L\infty \leq C(p)\| F\| (p - 4)/p
Lp \| \nabla F\| 4/p

L4p/(p+4)

\leq C(p) (\| \nabla u\| L2\| \rho u\| Lp)
(p - 4)/p

(\| \nabla u\| L4\| \rho u\| Lp)
4/p

\leq C(p)\| \nabla u\| (p - 4)/p
L2 \| \nabla u\| 4/pL4 \| \rho u\| Lp

\leq C(p)R
1+\beta /4+(\beta \eta 0)/2
T (1 + \| \nabla u\| L2)

2 - 6/p \| \nabla u\| 4/pL4 ,

where in the last inequality we have used (3.22).
Next, we obtain from (3.32), (3.38), (3.35), and (3.3) that

(3.43)

\| \nabla u\| L4 \leq C(\| divu\| 4 + \| \omega \| 4)

\leq C

\bigm\| \bigm\| \bigm\| \bigm\| G+ P

2\mu + \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| 
L4

+ CR
1/4
T A1/2B1/2

\leq C

\bigm\| \bigm\| \bigm\| \bigm\| G2

\surd 
2\mu + \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| 1/2
L2

+ C

\bigm\| \bigm\| \bigm\| \bigm\| P

2\mu + \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| 
L4

+ CR
1/4
T A1/2B1/2

\leq CRTA
1/2B1/2 + CR\gamma 

T

\leq CR2\beta \gamma 
T (e+ \| \nabla u\| L2)

\biggl( 
1 +

B2

e+A2

\biggr) 1/4

.

Substituting (3.43) into (3.42) yields that, for p > 8,

\| F\| L\infty \leq C(p)R
1+\beta /4+(\beta \eta 0)/2+8\beta \gamma /p
T (e+ \| \nabla u\| L2)

2 - 2/p

\biggl( 
1 +

B2

e+A2

\biggr) 1/p

\leq C(p)R
1+(\beta /4+(\beta \eta 0)/2)p/(p - 1)+9\beta \gamma /(p - 1)
T

\bigl( 
e+ \| \nabla u\| 2L2

\bigr) 
+

B2

e+A2
,

which together with (3.25) and (3.3) directly gives (3.41) after choosing p suitably
large since 1 + \beta /4 > 4/3 due to \beta > 4/3. The proof of Lemma 3.6 is completed.

Now we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1. For \psi as in (3.14), it follows from (3.21) and (3.3) that

\| \psi \| L2\gamma \leq C,
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3206 XIANGDI HUANG AND JING LI

which together with (2.10), (3.22), and (3.20) leads to

(3.44)

\| \psi \| L\infty \leq C (\| \psi \| L2\gamma + \| \nabla \psi \| L2) log1/2(e+ \| \psi \| W 1,2\gamma ) + C

\leq C (1 + \| \rho u\| L2) log1/2(e+ \| \rho u\| L2\gamma ) + C

\leq CR
1/2
T log1/2

\Bigl( 
R

1+\beta /4+(\beta \eta 0)/2
T (e+ \| \nabla u\| L2)

\Bigr) 
+ C

\leq CR
1/2
T log1/2(e+A2) + CRT

\leq CR
4/3
T ,

where in the last inequality we have used (3.25). One thus derives from (3.13), (3.44),
and (3.41) that

R\beta 
T \leq CR

1+\beta /4+\beta \eta 0

T .

Because of (1.5) and (1.7), this directly gives

sup
0\leq t\leq T

\| \rho \| L\infty \leq C,

which together with (3.40), (3.35), (3.3), and Gronwall's inequality yields (3.2). We
complete the proof of Proposition 3.1.

4. A priori estimates (II): Higher order estimates (I).

Lemma 4.1. Assume that (1.5) holds. Then there is a positive constant C de-
pending only on \mu , \beta , \gamma , T,N0, a, and E0 such that

(4.1) sup
0\leq t\leq T

t

\int 
\rho | \.u| 2dx+

\int T

0

t\| \nabla \.u\| 2L2dt \leq C.

Proof. We will adapt an idea due to [15] to prove (4.1). In fact, operating \partial /\partial t+
div(u\cdot ) to (1.1)j2 yields that

(4.2)

(\rho \.uj)t + div(\rho u \.uj) - \mu \bigtriangleup \.uj  - \partial j((\mu + \lambda )div \.u)

= \mu \partial i( - \partial iu \cdot \nabla uj + divu\partial iuj) - \mu div(\partial iu\partial iuj)

 - \partial j
\bigl[ 
(\mu + \lambda )\partial iu \cdot \nabla ui  - (\mu + (1 - \beta )\rho \beta )(divu)2

\bigr] 
 - div(\partial ju(\mu + \lambda )divu) + (\gamma  - 1)\partial j(Pdivu) + div(P\partial ju).

Then, multiplying (4.2) by \.u, we obtain after integration by parts that

(4.3)

1

2

d

dt

\int 
\rho | \.u| 2dx+ \mu 

\int 
| \nabla \.u| 2dx+

\int 
(\mu + \lambda )(div \.u)2dx

\leq \mu 

8

\int 
| \nabla \.u| 2dx+ C\| \nabla u\| 4L4 + C\| \nabla u\| 2L2

\leq \mu 

8

\int 
| \nabla \.u| 2dx+ C\| \rho 1/2 \.u\| 2L2 + C,

where in the second inequality we have used (3.43) and (3.2). Multiplying (4.3) by t
and integrating the resulting inequality over (0, T ), we obtain (4.1) after using (3.2).
We thus finish the proof of Lemma 4.1.

D
ow

nl
oa

de
d 

06
/1

5/
22

 to
 1

24
.1

6.
14

8.
20

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2D COMPRESSIBLE NAVIER--STOKES EQUATION 3207

Lemma 4.2. Assume that (1.5) holds, and let q > 2 be as in Theorem 1.1. Then
there is a constant C depending only on \mu , \beta , \gamma , T,N0, a, E0, q, and \| \rho 0\| H1\cap W 1,q such
that

(4.4)

sup
0\leq t\leq T

\bigl( 
\| \rho \| H1\cap W 1,q + \| \nabla u\| L2 + t\| \nabla 2u\| 2L2

\bigr) 
+

\int T

0

\Bigl( 
\| \nabla 2u\| 2L2 + \| \nabla 2u\| (q+1)/q

Lq + t\| \nabla 2u\| 2Lq

\Bigr) 
dt \leq C.

Proof. Following [17], we will prove (4.4). First, denoting \Phi \triangleq (2\mu + \lambda (\rho ))\nabla \rho ,
one deduces from (1.1)1 that \Phi satisfies

(4.5) \Phi t + (u \cdot \nabla )\Phi + (2\mu + \lambda (\rho ))\nabla u \cdot \nabla \rho + \rho \nabla G+ \rho \nabla P +\Phi divu = 0.

Multiplying (4.5) by | \Phi | q - 2\Phi and integrating the resulting equation over \BbbR 2, we obtain
after integration by parts that

(4.6)

d

dt
\| \Phi \| Lq \leq C(1 + \| \nabla u\| L\infty )\| \nabla \rho \| Lq + C\| \nabla G\| Lq

\leq C(1 + \| \nabla u\| L\infty )\| \nabla \rho \| Lq + C\| \rho \.u\| Lq ,

where in the second inequality we have used (3.30).
Next, noticing that the Gargliardo--Nirenberg inequality, (3.2), and (3.30) yield

that

(4.7)

\| divu\| L\infty + \| \omega \| L\infty \leq C\| G\| L\infty + C\| P\| L\infty + C\| \omega \| L\infty 

\leq C(q) + C(q)\| \nabla G\| q/(2(q - 1))
Lq + C(q)\| \nabla \omega \| q/(2(q - 1))

Lq

\leq C(q) + C(q)\| \rho \.u\| q/(2(q - 1))
Lq ,

we deduce from the standard Lp-estimate for the elliptic system that

(4.8)

\| \nabla 2u\| Lq \leq C\| \nabla divu\| Lq + C\| \nabla \omega \| Lq

\leq C\| \nabla ((2\mu + \lambda )divu)\| Lq + C\| divu\| L\infty \| \nabla \rho \| Lq + C\| \nabla \omega \| Lq

\leq C(\| divu\| L\infty + 1)\| \nabla \rho \| Lq + C\| \nabla G\| Lq + C\| \nabla \omega \| Lq

\leq C(\| \rho \.u\| q/(2(q - 1))
Lq + 1)\| \nabla \rho \| Lq + C\| \rho \.u\| Lq

\leq C\| \nabla \rho \| (2q - 2)/(q - 2)
Lq + C\| \rho \.u\| Lq + C,

where in the fourth inequality we have used (3.30). This together with Lemma 2.7
and (4.7) yields that

(4.9)

\| \nabla u\| L\infty \leq C (\| divu\| L\infty + \| \omega \| L\infty ) log(e+ \| \nabla 2u\| Lq ) + C\| \nabla u\| L2 + C

\leq C
\Bigl( 
1 + \| \rho \.u\| q/(2(q - 1))

Lq

\Bigr) 
log(e+ \| \rho \.u\| Lq + \| \nabla \rho \| Lq ) + C

\leq C (1 + \| \rho \.u\| Lq ) log(e+ \| \nabla \rho \| Lq ).

Next, it follows from the Holder inequality, (3.3), (3.4), (2.6), and (3.2) that

(4.10)

\| \rho \.u\| Lq \leq \| \rho \.u\| 2(q - 1)/(q2 - 2)
L2 \| \rho \.u\| q(q - 2)/(q2 - 2)

Lq2

\leq C\| \rho \.u\| 2(q - 1)/(q2 - 2)
L2

\Bigl( 
\| \rho 1/2 \.u\| L2 + \| \nabla \.u\| L2

\Bigr) q(q - 2)/(q2 - 2)

\leq C\| \rho 1/2 \.u\| L2 + C\| \rho 1/2 \.u\| 2(q - 1)/(q2 - 2)
L2 \| \nabla \.u\| q(q - 2)/(q2 - 2)

L2 ,
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which together with (3.2) and (4.1) implies that

(4.11)

\int T

0

\Bigl( 
\| \rho \.u\| 1+1/q

Lq + t\| \rho \.u\| 2Lq

\Bigr) 
dt

\leq C

\int T

0

\Bigl( 
\| \rho 1/2 \.u\| 2L2 + t\| \nabla \.u\| 2L2 + t - (q3 - q2 - 2q - 1)/(q3 - q2 - 2q)

\Bigr) 
dt

\leq C.

Then, substituting (4.9) into (4.6), we deduce from Gronwall's inequality and
(4.11) that

(4.12) sup
0\leq t\leq T

\| \nabla \rho \| Lq \leq C,

which, along with (4.8) and (4.11), shows

(4.13)

\int T

0

\Bigl( 
\| \nabla 2u\| (q+1)/q

Lq + t\| \nabla 2u\| 2Lq

\Bigr) 
dt \leq C.

Finally, it follows from (1.1)1 that \nabla \rho satisfies

(4.14)
(\| \nabla \rho \| L2)\prime \leq C(1 + \| \nabla u\| L\infty )\| \nabla \rho \| L2 + C\| \nabla 2u\| L2

\leq C(1 + \| \nabla 2u\| Lq )\| \nabla \rho \| L2 + C\| \nabla 2u\| L2 .

We obtain from (3.2), (3.30), and (4.12) that

(4.15)

\| \nabla 2u\| L2 \leq C\| \nabla \omega \| L2 + C\| \nabla divu\| L2

\leq C\| \nabla \omega \| L2 + C\| \nabla ((2\mu + \lambda )divu)\| L2 + C\| divu\| L2q/(q - 2)\| \nabla \rho \| Lq

\leq C\| \nabla \omega \| L2 + C\| \nabla G\| L2 + C\| \nabla P\| L2 + C\| \nabla u\| (q - 2)/q
L2 \| \nabla 2u\| 2/qL2

\leq C\| \rho \.u\| L2 + C\| \nabla \rho \| L2 +
1

2
\| \nabla 2u\| L2 + C,

which together with (4.14), (3.2), (4.13), and (4.1) gives

(4.16) sup
0\leq t\leq T

\bigl( 
\| \nabla \rho \| L2 + t\| \nabla 2u\| 2L2

\bigr) 
+

\int T

0

\| \nabla 2u\| 2L2dt \leq C.

The combination of (4.12), (4.13), and (4.16) thus directly gives (4.4). We thus finish
the proof of Lemma 4.2.

Lemma 4.3. Under the conditions of Theorem 1.1, there is a constant C depend-
ing only on \mu , \beta , \gamma , T,N0, a, E0, q, and \| \nabla (\=xa\rho 0)\| L2\cap Lq such that

(4.17) sup
0\leq t\leq T

\| \=xa\rho \| L1\cap H1\cap W 1,q \leq C.

Proof. First, it follows from (2.2), (3.2)--(3.4), and (2.7) that, for any \varepsilon \in (0, 1)
and any s > 2,

(4.18) \| u\=x - \varepsilon \| Ls/\varepsilon \leq C(\varepsilon , s).

Direct calculations show

\| \nabla (u\=x - \varepsilon )\| Lq \leq C\| \nabla u\| Lq + C(\varepsilon )\| u\=x - \varepsilon \| L\infty \| (e+ | x| 2) - 1/2\| Lq

\leq C(\varepsilon )\| \nabla u\| Lq +
1

2
\| \nabla (u\=x - \varepsilon )\| Lq + C(\varepsilon )\| u\=x - \varepsilon \| L4/\varepsilon ,
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which combined with (4.18) implies

(4.19) \| u\=x - \varepsilon \| L\infty \leq C(\varepsilon ) + C(\varepsilon )\| \nabla u\| Lq .

Then, one derives from (1.1)1 that v \triangleq \rho \=xa satisfies

vt + u \cdot \nabla v  - avu \cdot \nabla log \=x+ vdivu = 0,

which together with simple calculations gives that for any p \in [2, q]

(4.20)

(\| \nabla v\| Lp)t \leq C(1 + \| \nabla u\| L\infty + \| u \cdot \nabla log \=x\| L\infty )\| \nabla v\| Lp

+ C\| v\| L\infty 
\bigl( 
\| | \nabla u| | \nabla log \=x| \| Lp + \| | u| | \nabla 2 log \=x| \| Lp + \| \nabla 2u\| Lp

\bigr) 
\leq C(1 + \| \nabla u\| W 1,q )\| \nabla v\| Lp

+ C\| v\| L\infty 

\Bigl( 
\| \nabla u\| Lp + \| u\=x - 1/4\| L\infty \| \=x - 3/2\| Lp + \| \nabla 2u\| Lp

\Bigr) 
\leq C(1 + \| \nabla 2u\| Lp + \| \nabla u\| W 1,q )(1 + \| \nabla v\| Lp + \| \nabla v\| Lq ),

where, in the second and the last inequalities, we have used (4.19) and (3.3). Choosing
p = q in (4.20) together with (4.4) thus shows

(4.21) sup
0\leq t\leq T

\| \nabla (\rho \=xa)\| Lq \leq C.

Finally, setting p = 2 in (4.20), we deduce from (4.4) and (4.21) that

sup
0\leq t\leq T

\| \nabla (\rho \=xa)\| L2 \leq C,

which combined with (3.3) and (4.21) thus gives (4.17) and finishes the proof of
Lemma 4.3.

5. A priori estimates (III): Higher order estimates (II). In this section,
in addition to the conditions of Theorem 1.2, we will always assume that (3.1) holds
and that (\rho , u) is the classical solution to (1.1)--(1.4) on \BbbR 2\times (0, T ] obtained by Lemma
2.1.

From now on, in addition to \mu , \beta , \gamma , T,N0, a, E0, q, and \| \nabla (\=xa\rho 0)\| L2\cap Lq , the posi-
tive constant C may depend on \| \nabla 2u0\| L2 , \| \=x\delta 0\nabla 2\rho 0\| L2 , \| \=x\delta 0\nabla 2\lambda (\rho 0)\| L2 ,
\| \=x\delta 0\nabla 2P (\rho 0)\| L2 , and \| g\| L2 , with g as in (1.11).

Lemma 5.1. It holds that

(5.1) sup
0\leq t\leq T

\Bigl( 
\| \rho 1/2ut\| L2 + \| \nabla u\| H1

\Bigr) 
+

\int T

0

\| \nabla ut\| 2L2dt \leq C.

Proof. First, taking into account on the compatibility condition (1.11), we define

\surd 
\rho \.u(x, t = 0) = g.

Then we deduce from (4.3) and Gronwall's inequality that

sup
0\leq t\leq T

\| \rho 1/2 \.u\| L2 +

\int T

0

\| \nabla \.u\| 2L2dt \leq C,

which together with (4.15), (4.4), (3.2), (4.8), and (4.10) gives

(5.2) sup
0\leq t\leq T

\Bigl( 
\| \nabla u\| H1 + \| \rho 1/2 \.u\| L2

\Bigr) 
+

\int T

0

\bigl( 
\| \nabla \.u\| 2L2 + \| \nabla 2u\| 2Lq

\bigr) 
dt \leq C.
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Then, it follows from (2.2), (2.7), (3.4), and (4.17) that, for \varepsilon > 0 and \eta > 0,
every v \in \~D1,2(\BbbR 2) satisfies

(5.3) \| \rho \eta v\| L(2+\varepsilon )/\~\eta + \| v\=x - \eta \| L(2+\varepsilon )/\~\eta \leq C(\varepsilon , \eta )\| \rho 1/2v\| L2 + C(\varepsilon , \eta )\| \nabla v\| L2 ,

with \~\eta = min\{ 1, \eta \} . This combined with (4.19) and (5.2) yields that

(5.4) \| \rho \eta u\| L(2+\varepsilon )/\~\eta \cap L\infty + \| u\=x - \eta \| L(2+\varepsilon )/\~\eta \cap L\infty \leq C(\varepsilon , \eta )

and that

(5.5)
\| \rho 1/2ut\| L2 \leq C\| \rho 1/2 \.u\| L2 + C\| \rho 1/2u \cdot \nabla u\| L2

\leq C + C\| \rho 1/2u\| L\infty \| \nabla u\| L2 \leq C.

Next, differentiating (1.1)2 with respect to t gives

(5.6)
\rho utt + \rho u \cdot \nabla ut  - \nabla ((2\mu + \lambda )divut) - \mu \nabla \bot \omega t

=  - \rho t(ut + u \cdot \nabla u) - \rho ut \cdot \nabla u+\nabla (\lambda tdivu) - \nabla Pt.

Multiplying (5.6) by ut and integrating the resulting equation over \BbbR 2, we obtain after
using (1.1)1 that

(5.7)

1

2

d

dt

\int 
\rho | ut| 2dx+

\int \bigl( 
(2\mu + \lambda )(divut)

2 + \mu \omega 2
t

\bigr) 
dx

=  - 2

\int 
\rho u \cdot \nabla ut \cdot utdx - 

\int 
\rho u \cdot \nabla (u \cdot \nabla u \cdot ut)dx

 - 
\int 
\rho ut \cdot \nabla u \cdot utdx - 

\int 
\lambda tdivudivutdx+

\int 
Ptdivutdx

\leq C

\int 
\rho | u| | ut| 

\bigl( 
| \nabla ut| + | \nabla u| 2 + | u| | \nabla 2u| 

\bigr) 
dx+ C

\int 
\rho | u| 2| \nabla u| | \nabla ut| dx

+ C

\int 
\rho | ut| 2| \nabla u| dx+ C

\int 
| \lambda t| | divu| | divut| dx+ C

\int 
| Pt| | divut| dx.

We estimate each term on the right-hand side of (5.7) as follows:
First, the Holder inequality gives

(5.8)

\int 
\rho | u| | ut| 

\bigl( 
| \nabla ut| + | \nabla u| 2 + | u| | \nabla 2u| 

\bigr) 
dx+

\int 
\rho | u| 2| \nabla u| | \nabla ut| dx

\leq C\| \rho 1/2u\| L\infty \| \rho 1/2ut\| L2

\bigl( 
\| \nabla ut\| L2 + \| \nabla u\| 2L4

\bigr) 
+ C\| \rho 1/4u\| 2L\infty \| \rho 1/2ut\| L2\| \nabla 2u\| L2 + C\| \rho 1/2u\| 2L\infty \| \nabla u\| L2\| \nabla ut\| L2

\leq \varepsilon \| \nabla ut\| 2L2 + C(\varepsilon ),

where in the second inequality we have used (5.4) and (5.5).
Then, the Holder inequality, (5.3), and (5.2) lead to

(5.9)

\int 
\rho | ut| 2| \nabla u| dx \leq \| \nabla u\| L2\| \rho 1/2ut\| 3/2L6 \| \rho 1/2ut\| 1/2L2

\leq \varepsilon \| \nabla ut\| 2L2 + C(\varepsilon ).

Next, for p \geq 1, (1.1)1 yields that \rho p satisfies

(\rho p)t + u \cdot \nabla \rho p + p\rho pdivu = 0,

D
ow

nl
oa

de
d 

06
/1

5/
22

 to
 1

24
.1

6.
14

8.
20

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2D COMPRESSIBLE NAVIER--STOKES EQUATION 3211

which together with (5.4) and (4.17) shows

(5.10) \| \lambda t\| L2\cap Lq \leq C\| \=x - au\| L\infty \| \rho \| \beta  - 1
L\infty \| \=xa\nabla \rho \| L2\cap Lq + C\| \nabla u\| L2\cap Lq \leq C.

Similarly, we have
\| Pt\| L2\cap Lq \leq C,

which combined with (5.2) and (5.10) yields

(5.11)

\int 
| \lambda t| | divu| | divut| dx+

\int 
| Pt| | divut| dx

\leq C\| \lambda t\| Lq\| \nabla u\| L2q/(q - 2)\| \nabla ut\| L2 + C\| Pt\| L2\| \nabla ut\| L2

\leq \varepsilon \| \nabla ut\| 2L2 + C(\varepsilon ).

Finally, putting (5.8), (5.9), and (5.11) into (5.7) and choosing \varepsilon suitably small
give

d

dt

\int 
\rho | ut| 2dx+

\int \bigl( 
(2\mu + \lambda )(divut)

2 + \mu \omega 2
t

\bigr) 
dx \leq C,

which together with (5.5) and (5.2) gives (5.1) and finishes the proof of Lemma
5.1.

The following higher order estimates of the solutions which are needed to guaran-
tee the extension of the local classical solution to be a global one are similar to those
in [22], so we omit their proofs here.

Lemma 5.2. The following estimates hold:

(5.12) sup
0\leq t\leq T

\bigl( 
\| \=x\delta 0\nabla 2\rho \| L2 + \| \=x\delta 0\nabla 2\lambda \| L2 + \| \=x\delta 0\nabla 2P\| L2

\bigr) 
\leq C,

(5.13) sup
0\leq t\leq T

t\| \nabla ut\| 2L2 +

\int T

0

t
\Bigl( 
\| \rho 1/2utt\| 2L2 + \| \nabla 2ut\| 2L2

\Bigr) 
dt \leq C,

(5.14) sup
0\leq t\leq T

\bigl( 
\| \nabla 2\rho \| Lq + \| \nabla 2\lambda \| Lq + \| \nabla 2P\| Lq

\bigr) 
\leq C,

(5.15)

sup
0\leq t\leq T

t
\bigl( 
\| \nabla 3u\| L2\cap Lq + \| \nabla ut\| H1 + \| \nabla 2(\rho u)\| L(q+2)/2

\bigr) 
+

\int T

0

t2
\bigl( 
\| \nabla utt\| 2L2 + \| utt\=x - 1\| 2L2

\bigr) 
dt \leq C.

6. Proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Without loss of generality, assume that

(6.1)

\int 
\BbbR 2

\rho 0dx = 1,

which implies that there exists a positive constant N0 such that

(6.2)

\int 
BN0

\rho 0dx \geq 3

4

\int 
\BbbR 2

\rho 0dx =
3

4
.
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For \delta > 0, we construct \rho \delta 0 = \^\rho \delta 0 + \delta e - | x| 2 , where 0 \leq \^\rho \delta 0 \in C\infty 
0 (\BbbR 2) satisfies that

(6.3)
1

2
\leq 

\int 
BN0

\^\rho R0 dx \leq 
\int 
\BbbR 2

\^\rho R0 dx \leq 3

2

and that

(6.4) \=xa\^\rho \delta 0 \rightarrow \=xa\rho 0 in L1(\BbbR 2) \cap H1(\BbbR 2) \cap W 1,q(\BbbR 2) as \delta \rightarrow 0.

Then, we consider the unique smooth solution u\delta 0 of the following elliptic problem:\Biggl\{ 
 - \bigtriangleup u\delta 0 + \rho \delta 0u

\delta 
0 =

\sqrt{} 
\rho \delta 0((

\surd 
\rho 0u0) \ast j\delta ) - \bigtriangleup (u0 \ast j\delta ),

u\delta 0 \rightarrow 0 as | x| \rightarrow \infty ,

where j\delta is the standard mollifying kernel of width \delta . Standard arguments yield that

lim
\delta \rightarrow 0

\biggl( 
\| \nabla (u\delta 0  - u0)\| L2(\BbbR 2) + \| 

\sqrt{} 
\rho \delta 0u

\delta 
0  - 

\surd 
\rho 0u0\| L2(\BbbR 2)

\biggr) 
= 0

and that (\rho \delta 0, \rho 
\delta 
0u

\delta 
0) satisfy (1.6) and (3.1).

The local existence result, Lemma 2.1, applies to show that the problem (1.1)--
(1.4) with initial data (\rho \delta 0, \rho 

\delta 
0u

\delta 
0) has a unique local strong solution (\rho \delta , u\delta ) defined

up to a positive time T0. Lemmas 4.2 and 4.3 together with Lemma 2.1 thus yield
that (\rho \delta , u\delta ) exists on \BbbR 2 \times (0, T ] for any T > 0 and satisfies all those estimates
listed in Lemmas 4.2 and 4.3 with C independent of \delta . Then letting \delta \rightarrow 0, standard
arguments (see [3, 28, 34]) thus show that the problem (1.1)--(1.4) has a global strong
solution (\rho , u) satisfying the properties listed in Theorem 1.1. Since the proof of the
uniqueness of (\rho , u) satisfying (1.8) and (1.9) is similar to that of [22], we finish the
proof of Theorem 1.1.

Proof of Theorem 1.2. Without loss of generality, assume that \rho 0 satisfies (6.1)
and (6.2). We choose 0 \leq \^\rho \delta 0 \in C\infty 

0 (\BbbR 2) satisfying (6.3), (6.4), and\Biggl\{ \bigl( 
\nabla 2\^\rho \delta 0, \nabla 2\lambda (\^\rho \delta 0), \nabla 2P (\^\rho \delta 0)

\bigr) 
\rightarrow 

\bigl( 
\nabla 2\rho 0, \nabla 2\lambda (\rho 0), \nabla 2P (\rho 0)

\bigr) 
inLq(\BbbR 2),

\=x\delta 0
\bigl( 
\nabla 2\^\rho \delta 0,\nabla 2\lambda (\^\rho \delta 0),\nabla 2P (\^\rho \delta 0)

\bigr) 
\rightarrow \=x\delta 0

\bigl( 
\nabla 2\rho 0,\nabla 2\lambda (\rho 0),\nabla 2P (\rho 0)

\bigr) 
inL2(\BbbR 2)

as \delta \rightarrow 0. Setting \rho \delta 0 = \rho 0 \ast j\delta + \delta e - | x| 2 , we consider the unique smooth solution u\delta 0 of
the following elliptic problem:\Biggl\{ 

 - \mu \bigtriangleup u\delta 0  - \nabla 
\bigl( 
(\mu + \lambda (\rho \delta 0))divu

\delta 
0

\bigr) 
+\nabla P (\rho \delta 0) =  - \rho \delta 0u\delta 0 +

\sqrt{} 
\rho \delta 0h

\delta ,

u\delta 0 \rightarrow 0 as | x| \rightarrow \infty ,

where h\delta = (
\surd 
\rho 0u0 + g) \ast j\delta with j\delta being the standard mollifying kernel of width \delta .

It is easy to check that

lim
\delta \rightarrow 0

\biggl( 
\| \nabla (u\delta 0  - u0)\| H1(\BbbR 2) + \| 

\sqrt{} 
\rho \delta 0u

\delta 
0  - 

\surd 
\rho 0u0\| L2(\BbbR 2)

\biggr) 
= 0

and that (\rho \delta 0, \rho 
\delta 
0u

\delta 
0) satisfy (1.6), (1.10), (1.11), and (3.1).

Lemmas 2.1, 4.2, 4.3, 5.1, and 5.2 thus yield that the problem (1.1)--(1.4) with
initial data (\rho \delta 0, \rho 

\delta 
0u

\delta 
0) has a unique strong solution (\rho \delta , u\delta ) on \BbbR 2 \times (0, T ] for any

T > 0 satisfying all those estimates presented in Lemmas 4.2, 4.3, 5.1, and 5.2 with
C independent of \delta . Then letting \delta \rightarrow 0, standard arguments thus show that the limit
function (\rho , u) is the unique strong solution to the problem (1.1)--(1.4) satisfying (1.8),
(1.9), and (1.12). We finish the proof of Theorem 1.2.
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