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ARTHUR PARAMETERS AND FOURIER
COEFFICIENTS FOR AUTOMORPHIC FORMS ON

SYMPLECTIC GROUPS

by Dihua JIANG & Baiying LIU (*)

Abstract. — We study the structures of Fourier coefficients of automorphic
forms on symplectic groups based on their local and global structures related to
Arthur parameters. This is a first step towards the general conjecture on the rela-
tion between the structure of Fourier coefficients and Arthur parameters for auto-
morphic forms occurring in the discrete spectrum, given by the first named author.
Résumé. — Nous étudions la structures des coefficients de Fourier des formes

automorphes sur des groupes symplectiques à partir de leurs structures locale et
globale liée aux paramètres d’Arthur. Ceci est la première étape pour prouver une
conjecture du premier auteur concernant le lien entre la structure des coefficients
de Fourier et les paramètres d’Arthur pour les formes automorphes dans le spectre
discret.

1. Introduction

In the classical theory of automorphic forms, Fourier coefficients encode
abundant arithmetic information of automorphic forms on one hand. On
the other hand, Fourier coefficients bridges the connection from harmonic
analysis to number theory via automorphic forms. In the modern theory
of automorphic forms, i.e. the theory of automorphic representations of
reductive algebraic groups defined over a number field F (or a global field),
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Fourier coefficients continue to play the indispensable role in the last half
century.
In the theory of automorphic forms on GLn, the Whittaker-Fourier coef-

ficients played a fundamental role due to the fact that every cuspidal auto-
morphic representation of GLn(A), where A is the ring of adeles of F , has
a non-zero Whittaker-Fourier coefficient, a classical theorem of Piatetski-
Shapiro and Shalika ([27] and [28]). This result has been extended to the
discrete spectrum of GLn(A) in [15]. In general, due to the nature of the
discrete spectrum of square-integrable automorphic forms on reductive al-
gebraic groups G, one has to consider more general version of Fourier co-
efficients, i.e. Fourier coefficients of automorphic forms attached to unipo-
tent orbits on G. Such general Fourier coefficients of automorphic forms,
including Bessel-Fourier coefficients and Fourier-Jacobi coefficients have
been widely used in theory of automorphic L-functions via integral repre-
sentation method (see [9] and [18], for instance), in automorphic descent
method of Ginzburg, Rallis and Soudry to produce special cases of explicit
Langlands functorial transfers ([12]), and in the Gan-Gross-Prasad conjec-
ture on vanishing of the central value of certain automorphic L-functions
of symplectic type ([8] and [6]). More recent applications of such general
Fourier coefficients to explicit constructions of endoscopy transfers for clas-
sical groups can be found in [13] (and also in [7] for split classical groups).
We recall from [16] the definition of Fourier coefficients of automorphic

forms attached to unipotent orbits. Take Gn = Sp2n to be the symplectic
group with a Borel subgroup B = TU , where the maximal torus T consists
of all diagonal matrices of form:

diag(t1, · · · , tn; t−1
n , · · · , t−1

1 )

and the unipotent radical of B consists of all upper unipotent matrices in
Sp2n. This choice fixes a root datum of Sp2n.
Let F be the algebraic closure of the number field F . The set of all

unipotent adjoint orbits of Gn(F ) is parameterized by the set of partitions
of 2n whose odd parts occur with even multiplicity (see [5], [25] and [29],
for instance). We may call them symplectic partitions of 2n. When we
consider Gn over F , the symplectic partitions of 2n parameterize the F -
stable unipotent orbits of Gn(F ).
As in [16, Section 2], for each symplectic partition p of 2n, or equiva-

lently each F -stable unipotent orbit Op, via the standard sl2(F )-triple, one
may construct an F -unipotent subgroup Vp,2. In this case, the F -rational
unipotent orbits in the F -stable unipotent orbit Op are parameterized by
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a datum a (see [16, Section 2] for detail). This datum defines a character
ψp,a of Vp,2(A), which is trivial on Vp,2(F ).
For an arbitrary automorphic form ϕ on Gn(A), the ψp,a-Fourier coeffi-

cient of ϕ is defined by

(1.1) ϕ
ψp,a(g) :=

∫
Vp,2(F )\Vp,2(A)

ϕ(vg)ψ−1
p,a(v)dv.

When an irreducible automorphic representation π ofGn(A) is generated by
automorphic forms ϕ, we say that π has a nonzero ψp,a-Fourier coefficient
or a nonzero Fourier coefficient attached to a (symplectic) partition p if
there exists an automorphic form ϕ in the space of π with a nonzero ψp,a-
Fourier coefficient ϕψp,a(g), for some choice of a.

For any irreducible automorphic representation π of Gn(A), as in [13],
we define pm(π) (which corresponds to nm(π) in the notation of [13]) to
be the set of all symplectic partitions p which have the properties that
π has a nonzero ψp,a-Fourier coefficient for some choice of a, and for any
p′ > p (with the natural ordering of partitions), π has no nonzero Fourier
coefficients attached to p′.
It is an interesting problem to determine the structure of the set pm(π)

for any given irreducible automorphic representation π of Gn(A). When π
occurs in the discrete spectrum of square integrable automorphic functions
on Gn(A), the global Arthur parameter attached to π ([2]) is clearly a
fundamental invariant for π. We are going to recall a conjecture made
in [13] which relates the structure of the global Arthur parameter of π to
the structure of the set pm(π). To do so, we briefly recall the endoscopic
classification of the discrete spectrum for Gn(A) from [2].

The set of global Arthur parameters for the discrete spectrum of Gn =
Sp2n is denoted, as in [2], by Ψ̃2(Sp2n), the elements of which are of the
form

(1.2) ψ := ψ1 � ψ2 � · · ·� ψr,

where ψi are pairwise different simple global Arthur parameters of orthog-
onal type and have the form ψi = (τi, bi). Here τi ∈ Acusp(GLai), (the
set of equivalence classes of irreducible cuspidal automorphic representa-
tions of GLai(A)), 2n + 1 =

∑r
i=1 aibi (since the dual group of Sp2n is

SO2n+1(C)), and
∏
i ω

bi
τi = 1 (the condition on the central characters of the

parameter ψ), following [2, Section 1.4]. More precisely, for each 1 6 i 6 r,
ψi = (τi, bi) satisfies the following conditions: if τi is of symplectic type
(i.e., L(s, τi,∧2) has a pole at s = 1), then bi is even; if τi is of orthogonal
type (i.e., L(s, τi,Sym2) has a pole at s = 1), then bi is odd. Given a global
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Arthur parameter ψ as above, recall from [13] that p(ψ) = [(b1)a1 · · · (br)ar ]
is the partition attached to (ψ,G∨(C)).

Theorem 1.1 (Theorem 1.5.2, [2]). — For each global Arthur param-
eter ψ ∈ Ψ̃2(Sp2n) a global Arthur packet Π̃ψ is defined. The discrete
spectrum of Sp2n(A) has the following decomposition

L2
disc(Sp2n(F )\Sp2n(A)) ∼= ⊕

ψ∈Ψ̃2(Sp2n) ⊕π∈Π̃ψ(εψ) π,

where Π̃ψ(εψ) denotes the subset of Π̃ψ consisting of members which occur
in the discrete spectrum.

As in [13], one may call Π̃ψ(εψ) the automorphic L2-packet attached
to ψ. For π ∈ Π̃ψ(εψ), the structure of the global Arthur parameter ψ de-
duces constraints on the structure of pm(π), which is given by the following
conjecture.

Conjecture 1.2 (Conjecture 4.2, [13]). — For any ψ ∈ Ψ̃2(Sp2n), let
Π̃ψ(εψ) be the automorphic L2-packet attached to ψ. Assume that p(ψ) is
the partition attached to (ψ,G∨(C)). Then the following hold.

(1) Any symplectic partition p of 2n, if p > ηg∨,g(p(ψ)), does not belong
to pm(π) for any π ∈ Π̃ψ(εψ).

(2) For a π ∈ Π̃ψ(εψ), any partition p ∈ pm(π) has the property that
p 6 ηg∨,g(p(ψ)).

(3) There exists at least one member π ∈ Π̃ψ(εψ) having the property
that ηg∨,g(p(ψ)) ∈ pm(π).

Here ηg∨,g denotes the Barbasch-Vogan duality map from the partitions for
the dual group G∨(C) to the partitions for G.

We refer to [13, Section 4] for more discussion on this conjecture and
related topics. We note that the natural ordering of partitions is a partial
ordering, and Part (2) of Conjecture 1.2 is to rule out partitions which
are not related to the partition ηg∨,g(p(ψ)). One may combine Parts (1)
and (2) of Conjecture 1.2 into one statement. However, due to the technical
reasons, it may be better to separate Part (1) from Part (2).
This paper is part of our on-going project to confirm Conjecture 1.2 and

is to prove

Theorem 1.3. — Part (1) of Conjecture 1.2 holds for any ψ ∈ Ψ̃2(Sp2n).

The proof of Theorem 1.3 takes steps which combine local and global
arguments. Some discussions on Part (2) of Conjecture 1.2 will be given
in Section 6.3. We expect that the refinement of these arguments will be
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able to prove Part (2) of Conjecture 1.2 in general. This will be considered
in our forthcoming work. Of course, Part (3) of Conjecture 1.2 is global in
nature and will be considered by extending the arguments in [16].
In [21], based on the results in [17] on construction of residual repre-

sentations, the second named author confirmed Part (3) of Conjecture 1.2
for the following family of special non-generic global Arthur parameters for
Sp4mn: ψ = (τ, 2m) � (1GL1(A), 1), where τ is an irreducible cuspidal au-
tomorphic representation of GL2n(A), with the properties that L(s, τ,∧2)
has a simple pole at s = 1, and L( 1

2 , τ) 6= 0. Note that by Theorem 1.3,
Proposition 6.4 and Remark 6.5, the first two parts of Conjecture 1.2 hold
for these global Arthur parameters. Therefore, Conjecture 1.2 is confirmed
for this family of global Arthur parameters. Of course, as discussed in [13,
Section 4], when the global Arthur parameter ψ is generic, Conjecture 1.2
can be viewed as the global version of the Shahidi conjecture, which is
now a consequence of [2] and [12]. We refer to [14, Section 3] for detailed
discussion of this issue and related problems.
In order to prove Theorem 1.3, we first consider the unramified local

component πv of an irreducible unitary automorphic representation π of
Sp2n(A) at one finite local place v of F . The structure of unramified uni-
tary dual of Sp2n(Fv) was determined by D. Barbasch in [3] and by G. Muic
and M. Tadic in [24] with different approaches. We recall from [24] the re-
sults on unramified unitary dual and determine, for any given global Arthur
parameter ψ ∈ Ψ̃2(Sp2n), the unramified components πv of any π ∈ Π̃ψ(εψ)
in terms of the classification data in [24]. The Fourier coefficients for π pro-
duce the corresponding twisted Jacquet modules for πv. In Section 3, we
show in Lemmas 3.1 and 3.2 the vanishing of certain twisted Jacquet mod-
ules for the unramified unitary representations πv, which builds up first
local constraints for the vanishing of Fourier coefficients of π. In Section 4,
based on the local results in Sections 2 and 3, we come back to the global
situation and prove vanishing of certain Fourier coefficients of π. Here we
use global techniques developed through the work of [10], [12], and [16], in
particular, the results on Fourier coefficients associated to composites of
partitions. The main results in Section 4 are Theorems 4.4 and 4.5, which
establish the vanishing of Fourier coefficients of π whose unramified local
component πv is strongly negative. The general case is done in Section
5 (Theorems 5.1 and 5.4). In the last section (Section 6), we first prove
Propositions 6.1 and 6.3. They imply that for a given global Arthur pa-
rameter ψ, there are infinitely many unramified, finite local places v of F ,
where the unramified local components τi,v have trivial central characters.
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With such refined results on the central characters of τi,v, we are able to
finish the proof of Theorem 1.3 in Section 6.2, by combining all the results
established in the previous sections.

2. Unramified Unitary Dual and Arthur Parameters

In this section, we recall the classification of the unramified unitary dual
of p-adic symplectic groups, which was obtained by Barbasch in [3] and by
Muic and Tadic in [24]. In terms of the structure of the unramified unitary
dual of p-adic Sp2n, we try to understand the structure of the unramified
local component πv of an irreducible automorphic representation π = ⊗vπv
of Sp2n(A) belonging to an automorphic L2-packet Π̃ψ(εψ) for an arbitrary
global Arthur parameter ψ ∈ Ψ̃2(Sp2n).

2.1. Unramified Unitary Dual of Symplectic Groups

The unramified unitary dual of split classical groups was classified by
Barbasch in [3] (both real and p-adic cases), and by Muic and Tadic in [24]
(p-adic case), using different methods. We follow the approach in [24] for
p-adic symplectic groups.
Let v be a finite local place of the given number field F . The classification

in [24] starts from classifying two special families of irreducible unramified
representations of Sp2n(Fv) that are called strongly negative and nega-
tive, respectively. We refer to [22] for definitions of strongly negative and
negative representations, respectively, and for more related discussion on
those two families of unramified representations. In the following, we recall
from [24] the classification of these two families in terms of Jordan blocks,
which also provide explicit construction of the two families of unramified
representations.
A pair (χ,m), where χ is an unramified unitary character of F ∗v and

m ∈ Z>0, is called a Jordan block. Define Jordsn(n) to be the collection of
all sets Jord of the following form:

(2.1) {(λ0, 2n1 +1), . . . , (λ0, 2nk+1), (1GL1 , 2m1 +1), . . . , (1GL1 , 2ml+1)}

where λ0 is the unique non-trivial unramified unitary character of F ∗v of
order 2, given by the local Hilbert symbol (δ, ·)F∗v , with δ being a non-square
unit in OFv ; k is even,

0 6 n1 < n2 < · · · < nk, 0 6 m1 < m2 < · · · < ml;

ANNALES DE L’INSTITUT FOURIER
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and
k∑
i=1

(2ni + 1) +
l∑

j=1
(2mj + 1) = 2n+ 1.

It is easy to see that l is automatically odd.
For each Jord ∈ Jordsn(n), we can associate a representation σ(Jord),

which is the unique irreducible unramified subquotient of the following
induced representation

ν
nk−1−nk

2 λ0(detnk−1+nk+1)× ν
nk−3−nk−2

2 λ0(detnk−3+nk−2+1)

× · · · × ν
n1−n2

2 λ0(detn1+n2+1)

× ν
ml−1−ml

2 1detml−1+ml+1 × ν
ml−3−ml−2

2 1detml−3+ml−2+1

× · · · × ν
m2−m3

2 1detm2+m3+1 o 1Sp2m1
.

(2.2)

Theorem 2.1 (Theorem 5-8, [24]). — Assume that n > 0. The map
Jord 7→ σ(Jord) defines a one-to-one correspondence between the set
Jordsn(n) to the set of all irreducible strongly negative unramified rep-
resentations of Sp2n(Fv).

Note that 1Sp0 is considered to be strongly negative. The inverse of the
map in Theorem 2.1 is denoted by σ 7→ Jord(σ).
Irreducible negative unramified representations can be constructed from

irreducible strongly negative unramified representations of smaller rank
groups as follows.

Theorem 2.2 (Thereom 5-10, [24]). — For any sequence of pairs
(χ1, n1), . . . , (χt, nt) with χi being unramified unitary characters of F ∗v
and ni ∈ Z>1, for 1 6 i 6 t, and for a strongly negative representation
σsn of Sp2n′(Fv) with

∑t
i=1 ni + n′ = n, the unique irreducible unramified

subquotient of the following induced representation

(2.3) χ1(detn1)× · · · × χt(detnt) o σsn

is negative and it is a subrepresentation.
Conversely, any irreducible negative unramified representation σneg of

Sp2n(Fv) can be obtained from the above construction. The data
(χ1, n1), . . . , (χt, nt) and σsn are unique, up to permutations and taking
inverses of χi’s.

For any irreducible negative unramified representation σneg with data in
Theorem 2.2, we define

Jord(σneg) = Jord(σsn) ∪ {(χi,ni), (χ−1
i ,ni)|1 6 i 6 t}.

TOME 66 (2016), FASCICULE 2
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By Corollary 3.8 of [23], any irreducible negative representation is unitary.
In particular, we have the following

Corollary 2.3. — Any irreducible negative unramified representation
of Sp2n(Fv) is unitary.

To describe the general unramified unitary dual, we need to recall the
following definition.

Definition 2.4 (Definition 5-13, [24]). — Let Munr(n) be the set of
pairs (e, σneg), where e is a multiset of triples (χ,m,α) with χ being an
unramified unitary character of F ∗v , m ∈ Z>0 and α ∈ R>0, and σneg is
an irreducible negative unramified representation of Sp2n′′(Fv), having the
property that

∑
(χ,m)m ·#e(χ,m)+n′′ = n with e(χ,m) = {α|(χ,m,α) ∈

e}. Note that α ∈ e(χ,m) is counted with multiplicity.
Let Mu,unr(n) be the subset of Munr(n) consisting of pairs (e, σneg),

which satisfy the following conditions:
(1) If χ2 6= 1GL1 , then e(χ,m) = e(χ−1,m), and 0 < α < 1

2 , for all
α ∈ e(χ,m).

(2) If χ2 = 1GL1 , and m is even, then 0 < α < 1
2 , for all α ∈ e(χ,m).

(3) If χ2 = 1GL1 , and m is odd, then 0 < α < 1, for all α ∈ e(χ,m).
Write elements in e(χ,m) as follows:

0 < α1 6 · · · 6 αk 6
1
2 < β1 6 · · · 6 βl < 1,

with k, l ∈ Z>0. They satisfy the following conditions:
(a) If (χ,m) /∈ Jord(σneg), then k + l is even.
(b) If k > 2, αk−1 6= 1

2 .
(c) If l > 2, then β1 < β2 < · · · < βl.
(d) αi + βj 6= 1, for any 1 6 i 6 k, 1 6 j 6 l.
(e) If l > 1, then #{i|1− β1 < αi 6 1

2} is even.
(f) If l > 2, then #{i|1−βj+1 < αi < βj} is odd, for any 1 6 j 6 l−1.

Theorem 2.5 (Theorem 5-14, [24]). — The map

(e, σneg) 7→ ×(χ,m,α)∈ev
αχ(detm) o σneg

defines a one-to-one correspondence between the setMu,unr(n) and the set
of equivalence classes of all irreducible unramified unitary representations
of Sp2n(Fv).

In Section 4, we will mainly consider the following two types of strongly
negative unramified unitary representations:

ANNALES DE L’INSTITUT FOURIER
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Type I. — An irreducible strongly negative unramified unitary repre-
sentations of Sp2n(Fv) is called of Type I if it is of the following form:

ν
ml−1−ml

2 1detml−1+ml+1 × ν
ml−3−ml−2

2 1detml−3+ml−2+1

× · · · × ν
m2−m3

2 1detm2+m3+1 o 1Sp2m1
.

(2.4)

Type II. — An irreducible strongly negative unramified unitary repre-
sentations of Sp2n(Fv) is called of Type II if it is of the following form:

ν
nk−1−nk

2 λ0(detnk−1+nk+1)× ν
nk−3−nk−2

2 λ0(detnk−3+nk−2+1)

× · · · × ν
n1−n2

2 λ0(detn1+n2+1) o 1Sp0 .
(2.5)

In Section 5, we will mainly consider the following two types of unramified
unitary representations:

Type III. — An irreducible unramified unitary representations of
Sp2n(Fv) is called of Type III if it is of the following form:

(2.6) σ = ×(χ,m,α)∈ev
αχ(detm) o σneg ↔ (e, σneg),

where σneg is the unique irreducible negative unramified subrepresentation
of the following induced representation

χ1(detn1)× · · · × χt(detnt) o σsn,

with σsn being the unique strongly negative unramified constituent of
the following induced representation corresponding to Jord(σsn) of the
form (2.1):

ν
ml−1−ml

2 1detml−1+ml+1 × ν
ml−3−ml−2

2 1detml−3+ml−2+1

× · · · × ν
m2−m3

2 1detm2+m3+1 o 1Sp2m1
.

Type IV. — An irreducible unramified unitary representations of
Sp2n(Fv) is called of Type IV if it is of the following form:

(2.7) σ = ×(χ,m,α)∈ev
αχ(detm) o σneg ↔ (e, σneg),

where σneg is the unique irreducible negative unramified subrepresentation
of the following induced representation

χ1(detn1)× · · · × χt(detnt) o σsn,

TOME 66 (2016), FASCICULE 2
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with σsn being the unique strongly negative unramified constituent of
the following induced representation corresponding to Jord(σsn) of the
form (2.1):

ν
nk−1−nk

2 λ0(detnk−1+nk+1)× ν
nk−3−nk−2

2 λ0(detnk−3+nk−2+1)

× · · · × ν
n1−n2

2 λ0(detn1+n2+1) o 1Sp0 .

2.2. Arthur Parameters and Unramified Local Components

For a given global Arthur parameter ψ ∈ Ψ̃2(Sp2n), Π̃ψ(εψ) is the corre-
sponding automorphic L2-packet. It is clear that the irreducible unramified
representations determined by the local Arthur parameter ψv at almost all
unramified local places v of F determine the unramified local components
of π for all members π ∈ Π̃ψ(εψ). We fix one of the members, π ∈ Π̃ψ(εψ),
and are going to describe the unramified local component πv, where v is a
finite place of F such that the local Arthur parameter

ψv = ψ1,v � ψ2,v � · · ·� ψr,v

is unramified, i.e. τi,v for i = 1, 2, · · · , r are all unramified.
Rewrite the global Arthur parameter ψ as follows:

(2.8) ψ = [�ki=1(τi, 2bi)]� [�k+l
j=k+1(τj , 2bj + 1)]� [�k+l+2t+1

s=k+l+1 (τs, 2bs + 1)],

where τi ∈ Acusp(GL2ai) is of symplectic type for 1 6 i 6 k, τj ∈
Acusp(GL2aj ) and τs ∈ Acusp(GL2as+1) are of orthogonal type for k + 1 6
j 6 k + l and k + l + 1 6 s 6 k + l + 2t + 1. Let I = {1, 2, . . . , k},
J = {k+1, k+2, . . . , k+ l}, and S = {k+ l+1, k+ l+2, . . . , k+ l+2t+1}.
Let J1 be the subset of J such that ωτj,v = 1, and J2 = J\J1, that is, for
j ∈ J2, ωτj,v = λ0. Let S1 be the subset of S such that ωτs,v = 1, and
S2 = S\S1, that is, for s ∈ S2, ωτs,v = λ0. From the definition of Arthur
parameters, we can easily see that #{J2} ∪#{S2} is even, which implies
that #{J2}∪#{S1} is odd. The local unramified Arthur parameter ψv has
the following structures:

• For i ∈ I,

τi,v = ×aiq=1ν
βiqχiq ×

ai
q=1 ν

−βiqχi,−1
q ,

where 0 6 βiq <
1
2 , for 1 6 q 6 ai, and χiq’s are unramified unitary

characters of F ∗v .
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• For j ∈ J1,

τj,v = ×ajq=1ν
βjqχjq ×

aj
q=1 ν

−βjqχj,−1
q ,

where 0 6 βjq <
1
2 , for 1 6 q 6 aj , and χjq’s are unramified unitary

characters of F ∗v .
• For j ∈ J2,

τj,v = ×aj−1
q=1 νβ

j
qχjq × λ0 × 1GL1 ×

aj−1
q=1 ν−β

j
qχj,−1

q ,

where 0 6 βjq <
1
2 , for 1 6 q 6 aj , and χjq’s are unramified unitary

characters of F ∗v .
• For s ∈ S1,

τs,v = ×asq=1ν
βsqχsq × 1GL1 ×

as
q=1 ν

−βsqχs,−1
q ,

where 0 6 βsq <
1
2 , for 1 6 q 6 as, and χsq’s are unramified unitary

characters of F ∗v .
• For s ∈ S2,

τs,v = ×asq=1ν
βsqχsq × λ0 ×asq=1 ν

−βsqχs,−1
q ,

where 0 6 βsq <
1
2 , for 1 6 q 6 as, and χsq’s are unramified unitary

characters of F ∗v .
We define

Jord1 = {(λ0, 2bj + 1), j ∈ J2; (λ0, 2bs + 1), s ∈ S2;
(1GL1 , 2bj + 1), j ∈ J2; (1GL1 , 2bs + 1), s ∈ S1}.

Note that Jord1 is a multi-set. Let Jord2 be set consists of different Jordan
blocks with odd multiplicities in Jord1. Then Jord2 has the form of (2.1),
and by Theorem 2.1, there is a corresponding irreducible strongly negative
unramified representation σsn.

Then we define the following Jordan blocks:

JordI = {(χiq, 2bi), (χi,−1
q , 2bi), i ∈ I, 1 6 q 6 ai, βiq = 0},

JordJ1 = {(χjq, 2bj + 1), (χj,−1
q , 2bj + 1), j ∈ J1, 1 6 q 6 aj , βjq = 0},

JordJ2 = {(χjq, 2bj + 1), (χj,−1
q , 2bj + 1), j ∈ J2, 1 6 q 6 aj − 1, βjq = 0},

JordS1 = {(χsq, 2bs + 1), (χs,−1
q , 2bs + 1), s ∈ S1, 1 6 q 6 as, βsq = 0},

JordS2 = {(χsq, 2bs + 1), (χs,−1
q , 2bs + 1), s ∈ S2, 1 6 q 6 as, βsq = 0}.

Finally, we define

Jord3 = (Jord1\Jord2) ∪ JordI ∪ JordJ1 ∪ JordJ2 ∪ JordS1 ∪ JordS2 .

By Theorem 2.2, corresponding to data Jord3 and σsn, there is an irre-
ducible negative unramified presentation σneg.
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Let

eI = {(χiq, 2bi, βiq), i ∈ I, 1 6 q 6 ai, βiq > 0},

eJ1 = {(χjq, 2bj + 1, βjq), j ∈ J1, 1 6 q 6 aj , βjq > 0},

eJ2 = {(χjq, 2bj + 1, βjq), j ∈ J2, 1 6 q 6 aj − 1, βjq > 0},
eS1 = {(χsq, 2bs + 1, βsq), s ∈ S1, 1 6 q 6 as, βsq > 0},
eS2 = {(χsq, 2bs + 1, βsq), s ∈ S2, 1 6 q 6 as, βsq > 0}.

Then we define

(2.9) e = eI ∪ eJ1 ∪ eJ2 ∪ eS1 ∪ eS2 .

Since the unramified component πv is unitary, we must have that
(e, σneg) ∈Mu,unr(n), and πv is exactly the irreducible unramified unitary
representation σ of Sp2n(Fv) which corresponds to (e, σneg) as in Theo-
rem 2.5.

Remarks 2.6.
(1) If σ is an irreducible unramified unitary representation of Sp2n(Fv)

corresponding to the pair (e, σneg) ∈ Mu,unr(n), then the orbit Ǒ
corresponding to σ in [3] is given by the following partition:

[(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
k∏
i=1

(2ni + 1))(
l∏
i=1

(2mi + 1))].

(2) In Section 6.2, we will show that given an Arthur parameter ψ, there
are infinitely many finite local places v such that ψv are unramified
and the central characters of τi,v are trivial. It follows that for any
π ∈ Π̃ψ(εψ), there is such a finite local place v, such that πv is an
irreducible unramified unitary representation of Type III as in 2.6.
This is a key step in the proof of Theorem 1.3.
For such πv as in 2.6, the orbit Ǒ corresponding to σ in [3] is given

by the following partition:

[(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=1

(2mi + 1))],

which actually turns out to be p(ψ). Then, we will show that π has
no non-zero Fourier coefficients attached to any symplectic partition p
which is bigger than the Barbasch-Vogan duality partition ηg∨,g(p(ψ)).
This proves Theorem 1.3.
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3. Vanishing of Certain Twisted Jacquet Modules

For an irreducible automorphic representation π of Sp2n(A), we write π =
⊗vπv, the restricted tensor product decomposition. The (global) Fourier
coefficients on π induce the corresponding (local) twisted Jacquet modules
of πv for each local place v of F . It is clear that if πv has no nonzero
such twisted Jacquet modules at one local place v, then π has no nonzero
corresponding (global) Fourier coefficients. We consider the local twisted
Jacquet modules at an unramified local place of π, the structure of which
implies the vanishing property of the corresponding Fourier coefficients.
To simplify notation, we denote, in this section, by π for an irreducible

admissible representation of Gn(Fv), where v is a finite place of F .
Recall from [16] that given any symplectic partition p of 2n and a datum

a, there is a unipotent subgroup Vp,2 and a character ψp,a. Given any
irreducible admisslbe representation π of Gn(Fv), let JVp,2,ψp,a(π) be the
twisted Jacquet module of π with respect to the unipotent subgroup Vp,2
and the character ψp,a.
In principle, we are mainly interested in irreducible unramified unitary

representations which are described in Section 2.1. However, in this section,
we consider the following more general induced representations of Gn(Fv):

(3.1) π = IndGn(Fv)
Pm1,...,mk (Fv)µ1(detm1)⊗ · · · ⊗ µk(detmk)⊗ 1Gm0

,

where m0 = n−
∑k
i=1mi > 0, Pm1,...,mk is a standard parabolic subgroup

of Gn with Levi subgroup isomorphic to GLm1 × · · ·GLmk ×Gm0 and µi’s
are quasi-characters of F ∗v .

We prove the following vanishing properties of certain twisted Jacquet
modules of π.

Lemma 3.1. — For π as in (3.1), the following statements hold.
(1) Jψα

r−1
(π) := JV[(2r)12n−2r ],2,ψ[(2r)12n−2r ],α

(π) ≡ 0, for any square class
α ∈ F ∗v /(F ∗v )2 and any r > k + 1.

(2) Jψ(2r+1)2 (π) := JV[(2r+1)212n−4r−2],2,ψ[(2r+1)212n−4r−2]
(π) ≡ 0,

• for any r > k if m0 = 0, or, if m0 > 0 and mi = 1 for some
1 6 i 6 k, assuming that 2(2k + 1) 6 2n;

• for any r > k + 1 if m0 > 0 and mi > 1 for any 1 6 i 6 k,
assuming that 2(2k + 3) 6 2n.

Proof. — The idea of the proof of Part (1) is similar to that of Key
Lemma 3.3 of [11].

By the adjoint relation between parabolic induction and the twisted
Jacquet module, we consider Pm1,...,mk\Gn/V[(2r)12n−2r],2, the double coset

TOME 66 (2016), FASCICULE 2



490 Dihua JIANG & Baiying LIU

decomposition of Gn. Using the generalized Bruhat decomposition, the
representatives of these double cosets can be chosen to be elements of
the following form: γ = ωuω, with ω ∈ W (Pm1,...,mk)\W (Gn), where
W (Gn) is the Weyl group of Gn and W (Pm1,...,mk) is the Weyl group of
Pm1,...,mk , and with uω being in the standard maximal unipotent subgroup
of Sp2n−2r+2, which is embedded in Gn as Ir−1 × Sp2n−2r+2 in the Levi
subgroup GLr−1 × Sp2n−2r+2. We identify uω with its embedding image.
We show that there is no admissible double coset, i.e., for any representa-

tive γ = ωuω, there exists v ∈ V[(2r)12n−2r],2, such that γvγ−1 ∈ Pm1,...,mk ,
but ψ[(2r)12n−2r],α(v) 6= 1.

Let αi = ei−ei+1, for i = 1, 2, . . . , r−1, and αr = er+er be some positive
roots. By definition, ψ[(2r)12n−2r],α is non-trivial on the corresponding one-
dimensional root subgroup Xαi for i = 1, 2, . . . , r, but is trivial on the root
subgroup corresponding to any other positive root. Hence it is enough to
show that for any representative γ, there is at least one 1 6 i 6 r, such
that γXαi(x)γ−1 ∈ Pm1,...,mk .
Note that ωuωXαi(x)(ωuω)−1 = ω(uωXαi(x)u−1

ω )ω−1 = ωXαi(x)ω−1

for any i 6= r − 1. For i = r − 1, u = u−1
ω Xαr (x)uω ∈ V[(2r)12n−2r],2, and

ωuωu(ωuω)−1 = ω(uωuu−1
ω )ω−1 = ωXαr (x)ω−1. Therefore, it remains to

show that for any Weyl element ω ∈ W (Pm1,...,mk)\W (Gn), there is at
least one 1 6 i 6 r, such that ωXαi(x)ω−1 ∈ Pm1,...,mk .

Let Nm1,...,mk be the unipotent radical of Pm1,...,mk , and Nm1,...,mk be
its opposite. Assume that there is an ω ∈ W (Pm1,...,mk)\W (Gn), such
that for any 1 6 i 6 r, ωXαi(x)ω−1 ∈ Nm1,...,mk . This will lead us to a
contradiction.
We separate the numbers {1, . . . ,

∑k
i=1mi} into the following chunks of

indices: Ij = {
∑j−1
i=1 mi + 1,

∑j−1
i=1 mi + 2, . . . ,

∑j
i=1mi}, for 1 6 j 6 k.

By assumption, ωXαi(x)ω−1 ∈ Nm1,...,mk for any 1 6 i 6 r, where αi =
ei−ei+1 if i = 1, 2, . . . , r−1, and αr = er+er. There must exist a sequence
of numbers 1 6 i1 < i2 < · · · < ir−1 < ir 6 n, such that ω(es) = −eis , for
s = 1, 2, . . . , r.

We assume that is ∈ Ijs for s = 1, 2, . . . , r. We claim that j1 < j2 <

· · · < jr. Indeed, we have j1 6 j2 6 · · · 6 jr. If js = js+1 for some
s ∈ {1, 2, . . . , r − 1}, then

ωXαsω
−1 = ωXes−es+1ω

−1 = Xeis+1−eis ⊂ Pm1,...,mk ,

which is a contradiction. This justifies the claim. On the other hand, the
condition that j1 < j2 < · · · < jr will lead to a contradiction, since we just
have k different chunks of indices, and r > k + 1.

This completes the proof of Part (1).
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Next, we prove Part (2). For the partition [(2r + 1)212n−4r−2], the cor-
responding one-dimensional toric subgroup H[(2r+1)212n−4r−2] consists of
elements as follows

(3.2) diag(t2r1 , t2r−2
1 , . . . , t−2r

1 ; I2n−4r−2, t
2r
2 , t

2r−2
2 , . . . , t−2r

2 ).

Note that here actually t1 = t2 = t, we just label them to distinguish their
positions.
Let ω1 be a Weyl element sending the one-dimensional toric subgroup

H[(2r+1)212n−4r−2] to the following one-dimensional toric subgroup

(3.3) {diag(T ; In−2r−1; t01, t02; In−2r−1, T
∗)},

where T = diag(t2r1 , t2r2 ; t2r−2
1 , t2r−2

2 ; . . . , t21, t22). Then it is easy to see that
Jψ(2r+1)2 (π) 6= 0 if and only if π has a non-zero twisted Jacquet module
with respect to U := ω1V[(2r+1)212n−4r−2],2ω1 and ψU , which is defined by

ψU (u) := ψ[(2r+1)212n−4r−2](ω−1
1 uω1).

Hence we have to show that JU,ψU (π) = 0. Note that U is actually the
unipotent radical of the parabolic subgroup with Levi M isomorphic to
GL2 × · · · ×GL2 ×Gn−2r (with r-copies of GL2).

As in the proof of Part (1), we consider the double coset decomposition
Pm1,...,mk\Gn/U . By Bruhat decomposition, the representatives of these
double cosets can be chosen to be elements of the following form: γ = ωuω,
with ω ∈W (Pm1,...,mk)\W (Gn) and uω in the standard maximal unipotent
subgroup of M . We will show that there is no admissible double coset, i.e.,
for any representative γ = ωuω, there exists u ∈ U , such that γuγ−1 ∈
Pm1,...,mk , but ψU (u) 6= 1.

Define for now that αi = ω1(ei − ei+1) for 1 6 i 6 2r. We show
that for any representative γ, there is at least one 1 6 i 6 2r such that
γXαi(x)γ−1 ∈ Pm1,...,mk .
Note that for any uω ∈ M and any 1 6 i 6 2r, u = u−1

ω Xαi(x)uω ∈ U
since M normalizes U . Then ωuωu(ωuω)−1 = ωXαi(x)ω−1. Hence we just
have to show that for an ω ∈ W (Pm1,...,mk)\W (Gn), there is at least one
1 6 i 6 2r, such that ωXαi(x)ω−1 ∈ Pm1,...,mk . As in Part (1), we prove
this by contradiction, assuming that there is an ω ∈W (Pm1,...,mk)\W (Gn),
such that for any 1 6 i 6 2r, ωXαi(x)ω−1 ∈ Nm1,...,mk .

If m0 = 0, we separate the numbers {1, . . . , n,−n,−n + 1, . . . ,−1} into
the following 2k chunks of indices: Ij = {

∑j−1
i=1 mi + 1,

∑j−1
i=1 mi + 2,

. . . ,
∑j
i=1mi}, if 1 6 j 6 k; and Ij = {−

∑2k−j+1
i=1 mi,−

∑2k−j+1
i=1 mi + 1,

. . . ,−
∑2k−j
i=1 mi − 1}, if k + 1 6 j 6 2k.
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If m0 > 0, we separate the numbers {1, . . . , n,−n,−n + 1, . . . ,−1} into
the following 2k + 1 chunks of indices: Ij = {

∑j−1
i=1 mi + 1,

∑j−1
i=1 mi + 2,

. . . ,
∑j
i=1mi}, if 1 6 j 6 k;

Ik+1 = {
k∑
i=1

mi + 1,
k∑
i=1

mi + 2, . . . , n,−n,−n+ 1, . . . ,−
k∑
i=1

mi − 1};

and Ij+1 = {−
∑2k−j+1
i=1 mi,−

∑2k−j+1
i=1 mi + 1, . . . ,−

∑2k−j
i=1 mi − 1}, if

k + 1 6 j 6 2k.
By assumption, ωXαi(x)ω−1 ∈ Nm1,...,mk for any 1 6 i 6 2r, where

αi = ω1(ei − ei+1) with i = 1, 2, . . . , 2r. There must exist a sequence of
numbers {i1, i2, . . . , i2r+1} with is ∈ Ijs and j1 6 j2 6 · · · 6 j2r+1, such
that ω(ω1(es)) = fi2r+2−s for s = 1, 2, . . . , 2r + 1, where ft := et, if t > 0,
and ft := −e−t, if t < 0. Using similar augments as in the proof of Part (1),
we have that j1 < j2 < · · · < j2r+1.
Assuming that 2(2k + 1) 6 2n. If m0 = 0 and r > k, then the condition

that j1 < j2 < · · · < j2r+1 will lead to a contradiction, since we just have
2k different chunks of indices. If m0 > 0 and mi = 1 for some 1 6 i 6 k,
and r > k + 1, then the condition that j1 < j2 < · · · < j2r+1 will also lead
to a contradiction, since we just have 2k + 1 different chunks of indices.
If m0 > 0 and mi = 1 for some 1 6 i 6 k, and r = k, then js = s,
that is is ∈ Is, 1 6 s 6 2k + 1. This easily implies that #(Is) > 2 for
any 1 6 s 6 2k + 1, that is, ms > 2 for any 1 6 s 6 2k + 1. This is a
contradiction since mi = 1 for some 1 6 i 6 k.
Assuming that 2(2k + 3) 6 2n. If m0 > 0 and mi > 1 for any 1 6 i 6 k,

and r > k + 1, then the condition that j1 < j2 < · · · < j2r+1 will also lead
to a contradiction, since we just have 2k + 1 different chunks of indices.
This completes the proof of Part (2) and hence the proof the lemma. �
Lemma 3.1 is also true for the double cover of Sp2n(Fv), with exactly

the same proof. We state the result as follows with proof omitted.
Let

(3.4) π̃ = IndS̃p2n(Fv)
P̃m1,...,mk (Fv)

µψµ1(detm1)⊗ · · · ⊗ µk(detmk)⊗ 1S̃p2m0 (Fv),

where m0 = n−
∑k
i=1mi > 0, P̃m1,...,mk(Fv) is the pre-image of the para-

bolic Pm1,...,mk(Fv) in S̃p2n(Fv), µi’s are quasi-characters of F ∗v , and µψ is
defined as in (6.1) of [12].

Lemma 3.2. — For π̃ as in (3.4), the followings hold.
(1) Jψα

r−1
(π̃) := JV[(2r)12n−2r ],2,ψ[(2r)12n−2r ],α

(π̃) ≡ 0, for any square class
α ∈ F ∗v /(F ∗v )2 and any r > k + 1.
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(2) Jψ(2r+1)2 (π̃) := JV[(2r+1)212n−4r−2],2,ψ[(2r+1)212n−4r−2]
(π̃) ≡ 0,

• for any r > k if m0 = 0, or, if m0 > 0 and mi = 1 for some
1 6 i 6 k, assuming that 2(2k + 1) 6 2n;
• for any r > k + 1 if m0 > 0 and mi > 1 for any 1 6 i 6 k,
assuming that 2(2k + 3) 6 2n.

Remark 3.3. — When α = 1 and m0 = 0, Part (1) of Lemmas 3.1
and 3.2 have already been proved in Theorem 6.3 of [12].

4. Vanishing of Certain Fourier Coefficients: Strongly
Negative Case

In this and next sections, we characterize the vanishing property of
Fourier coefficients for certain irreducible automorphic representations π,
based on the information of πv, where v is any finite place of F such that
πv is unramified.
First, we recall some definitions and results from [5]. A symplectic par-

tition is called special if it has an even number of even parts between any
two consecutive odd ones and an even number of even parts greater than
the largest odd part. By Theorem 2.1 of [10] and Corollary 4.2 of [16], for
an irreducible automorphic representation π of Sp2n(A), pm(π) consists of
special symplectic partitions of 2n.
Given a partition p of 2n, which is not necessarily symplectic, the unique

largest symplectic partition which is smaller than p is called the G-collapse
of p, and is denoted by p

G
(note that G = Sp). In general, p

G
may not

be special. Given a symplectic partition p of 2n, which is not necessarily
special, the smallest special symplectic partition which is greater than p is
called the G-expansion of p, and is denoted by pG.
Theorem 6.3.8 of [5] gives a recipe for passing from a partition p to

its G-collapse. Explicitly, given a partition p of 2n, then is automatically
has an even number of odd parts, but each odd part may not have an even
multiplicity, that is, pmay not be symplectic. Assume that its odd parts are
p1 > · · · > p2r, with multiplicities. Enumerate the indices i with p2i−1 > p2i
as i1 < · · · < it. Then, the G-collapse of p can be obtained by replacing
each pair of parts (p2ij−1, p2ij ) by (p2ij−1 − 1, p2ij + 1), respectively, for
1 6 j 6 t, and leaving the other parts alone. For example, for the partition
p = [534232213], then its odd parts are 5 > 5 > 5 > 3 > 3 > 1 > 1 > 1,
and 5 > 3, 3 > 1 are two pairs in the series of its odd parts which are not
equal. Then, p

G
= [52442312], which is exactly obtained by replacing the

pair (5, 3) by (4, 4), (3, 1) by (2, 2), and leaving the other parts alone.
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Theorem 6.3.9 of [5] gives a recipe for passing from a symplectic par-
tition p to its G-expansion. Explicitly, given a symplectic partition p of
2n, then by definition, each of its odd parts occurs with even multiplicity.
Assume that p = [p1p2 · · · pr], with p1 > p2 > · · · > pr > 0. Enumerate
the indices i such that p2i = p2i+1 is odd and p2i−1 6= p2i as i1 < · · · < it.
Then the G-expansion of p can be obtained by replacing each pair of parts
(p2ij , p2ij+1) by (p2ij+1, p2ij−1), respectively, and leaving the other parts
alone. For example, for the symplectic partition p = [652432212], which is
not special, we have p1 6= p2 = p3 = 5, and p7 6= p8 = p9 = 1. Then
pG = [62423222], which is exactly obtained by replacing the pair (5, 5) by
(6, 4), (1, 1) by (2, 0), and leaving the other parts alone.

Following from the definition of Fourier coefficients attached to compos-
ite partitions for the global case in Section 1 of [10], and also the def-
inition of Fourier-Jacobi module FJ in Section 3.8 of [12], we can sim-
ilarly define the Fourier-Jacobi modules with respect to the composite
partitions like [(2n1)12n−2n1 ] ◦ [(2n2)12n−2n1−2n2 ]. Explicitly, given an ir-
reducible admissible representation π of Gn(Fv), we say that π has a
nonzero Fourier-Jacobi module with respect to the composite partition
[(2n1)12n−2n1 ] ◦ [(2n2)12n−2n1−2n2 ] if the following is nonzero: first tak-
ing the Fourier-Jacobi module FJψα

n1−1
(π) which is a representation of

G̃n−n1(Fv), denoted by π′, followed by taking twisted Jacquet module
Jψβ

n2−1
(π′), with α, β ∈ F ∗v /(F ∗v )2.

The following proposition generalizes Theorem 6.3 of [12].

Proposition 4.1. — The following hold.

(1) Let χi, 1 6 i 6 r, be characters of F ∗v , and a ∈ F ∗v . Then

FJψa
k−1

(IndSp2n
Pm1,...,mk

να1χ1(detm1)⊗ · · · ⊗ ναkχk(detmk))

∼= IndS̃p2n−2k
Pm1−1,...,mk−1

µψ−aν
α1χ1(detm1−1)⊗ · · · ⊗ ναkχk(detmk−1).

(4.1)

(2) Let χi, 1 6 i 6 r, be characters of F ∗v , and a, b ∈ F ∗v . Then

FJψb
k−1

(IndS̃p2n
Pm1,...,mk

µψaν
α1χ1(detm1)⊗ · · · ⊗ ναkχk(detmk))

∼= IndSp2n−2k
Pm1−1,...,mk−1

χ b
a
να1χ1(detm1−1)⊗ · · · ⊗ ναkχk(detmk−1),

(4.2)

where χ b
a

is a quadratic character of F ∗v defined by the Hilbert
symbol: χ b

a
(x) = ( ba , x).
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Proof. — The proof is the same as Theorem 6.3 of [12]. The key cal-
culation is reduced to that in Proposition 6.6 of [12]. Explicitly, by [19,
page 17],

γψaγψ−b = γψaγψ−aχ b
a

= χ b
a
.

�

The following proposition can be easily read out from the Theorem 6.1,
Proposition 6.7 and Theorem 6.3 of [12].

Proposition 4.2. — Let χi, 1 6 i 6 r, be characters of F ∗v , and a ∈ F ∗v .
Then

(4.3)

FJψa
k−1

(IndSp2n
Pm1,...,mk

να1χ1(detm1)⊗ · · · ⊗ ναkχk(detmk)⊗ 1Sp2m)

∼= IndS̃p2n−2k
Pm1−1,...,mk−1

µψ−aν
α1χ1(detm1−1)⊗ · · · ⊗ ναkχk(detmk−1)

⊗ (1Sp2m ⊗ ωψ−a),

where the term ναiχi(detmi−1) will be omitted if mi = 1, for 1 6 i 6 k.

Before we state the main result of this section, we need to recall the
following definition.

Definition 4.3. — Given any patition q = [q1q2 · · · qr] for so2n+1(C)
with q1 > q2 > · · · > qr > 0, whose even parts occurring with even
multiplicity. Let q− = [q1q2 · · · qr−1(qr − 1)]. Then the Barbasch-Vogan
duality ηso2n+1(C),sp2n(C), following [4, Definition A1] and [1, Section 3.5],
is defined by

ηso2n+1(C),sp2n(C)(q) := ((q−)Sp2n)t,

where (q−)Sp2n is the Sp2n-collapse of q−.

In this section, we prove the following theorem.

Theorem 4.4. — Let π be an irreducible unitary automorphic repre-
sentation of Sp2n(A), having, at one unramified local place v, a strongly
negative unramified component σsn,v which is of Type I as in 2.4. Then,
for any symplectic partition p of 2n with

p > ηso2n+1(C),sp2n(C)([
l∏
i=1

(2mi + 1)]),

π has no non-vanishing Fourier coefficients attached to p, in particular,
p /∈ pm(π).
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Proof. — By Definition 4.3,

ηso2n+1(C),sp2n(C)([
l∏
i=1

(2mi + 1)]) = [(
l∏
i=2

(2mi + 1))Sp(2m1)]t.

We prove by induction on l. When l = 1, it is easy to see that σsn,v is
the trivial representation, which implies that for any symplectic partition

p > ηso2n+1(C),sp2n(C)([(2m1 + 1)]) = [(2m1)]t = [12m1 ],

and a datum a, the twisted Jacquet module JVp,2,ψp,a(σsn,v) vanishes iden-
tically. Therefore, π has no non-vanishing Fourier coefficients attached to
such p. We assume that the theorem is true for any l′ < l.

By assumption, σsn,v is the unique strongly negative unramified con-
stituent of the following induced representation

(4.4)
ρ := ν

ml−1−ml
2 1detml−1+ml+1 × ν

ml−3−ml−2
2 1detml−3+ml−2+1

× · · · × ν
m2−m3

2 1detm2+m3+1 o 1Sp2m1
.

And

Jord(σsn,v) = {(1GL1 , 2m1 + 1), (1GL1 , 2m2 + 1), . . . , (1GL1 , 2ml + 1)},

with 2m1 + 1 < 2m2 + 1 < · · · < 2ml + 1. Since l is odd, write l = 2s+ 1.
By Proposition 4.2,

(4.5)

ρ1 := FJψ1
s−1

(ρ)

= µψ−1ν
m2s−m2s+1

2 1detm2s+m2s+1
× ν

m2s−2−m2s−1
2 1detm2s−2+m2s−1

× · · · × ν
m2−m3

2 1detm2+m3
o (1S̃p2m1

⊗ ωψ−1).

Note thatm2s+m2s+1 +1 > m2s−2 +m2s−1 +1 > · · · > m2 +m3 +1 > 3.
By Lemma 3.1, Jψα

r−1
(ρ) ≡ 0 for any r > s + 1 and any α ∈ F ∗/(F ∗)2;

and Jψ(2r+1)2 (ρ) ≡ 0 for any r > s if m1 = 0, and for any r > s + 1 if
m1 > 0. From Theorem 6.3 of [12], we can see that Jψα

r−1
(ρ) ≡ 0 if and

only if FJψα
r−1

(ρ) ≡ 0. Therefore, [(2s)12n−2s] is the maximal partition of
the type [(2r)12n−2r] with respect to which ρ can have a nonzero Fourier-
Jacobi module, in this single step.
By [19, Example 5.4, page 52], the unique unramified component of ρ1

in (4.5) is the same as the unique unramified component of the following
induced representation:

(4.6)
ρ′1 := µψ−1ν

m2s−m2s+1
2 1detm2s+m2s+1

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1

× · · · × ν
m2−m3

2 1detm2+m3
× ν

−m1
2 1detm1

o 1S̃p0
.
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By Part (2) of Proposition 4.1,

(4.7)

ρ2 := FJψ−1
s

(ρ′1)

= ν
m2s−m2s+1

2 1detm2s+m2s+1−1 × ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−1

× · · · × ν
m2−m3

2 1detm2+m3−1 × ν
−m1

2 1detm1−1 o 1Sp0 ,

whose irreducible unramified constituent is the same as that of the following
induced representation:

(4.8)
ρ′2 := ν

m2s−m2s+1
2 1detm2s+m2s+1−1 × ν

m2s−2−m2s−1
2 1detm2s−2+m2s−1−1

× · · · × ν
m2−m3

2 1detm2+m3−1 o 1Sp2m1−2 .

Note that m2s+m2s+1 > m2s−2 +m2s−1 > · · · > m2 +m3 > 2. Similarly
as above, by Lemma 3.2, Jψα

r−1
(ρ′1) ≡ 0 for any r > s + 2 and any α ∈

F ∗/(F ∗)2; and Jψ(2r+1)2 (ρ′1) ≡ 0 for any r > s if m1 = 1, and for any
r > s + 1 if m1 > 1. Therefore, [(2s + 2)12n−2s−2s−2] is also the maximal
partition of the type [(2r)12n−2s−2r] with respect to which ρ′1 can have
a nonzero Fourier-Jacobi module, in this single step. We need to do this
routine checking about the “maximality” using Lemma 3.1 or Lemma 3.2,
every time we apply Proposition 4.1 or Proposition 4.2. We will omit this
part in the following steps.
It is easy to see that we can repeat the above 2-step-procedure m1 − 1

more times, then we get the following induced representation:

(4.9)

ρ2m1 := µψ−1ν
m2s−m2s+1

2 1detm2s+m2s+1−2m1+1

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−2m1+1

× · · · × ν
m2−m3

2 1detm2+m3−2m1+1 o 1Sp0 .

Then, we continue with ρ2m1 . By Part (1) of Proposition 4.1,

(4.10)

ρ2m1+1 := FJψ1
s−1

(ρ2m1)

= µψ−1ν
m2s−m2s+1

2 1detm2s+m2s+1−2m1

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−2m1

× · · · × ν
m2−m3

2 1detm2+m3−2m1
o 1S̃p0

.
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By Part (2) of Proposition 4.1,

(4.11)

ρ2m1+2 := FJψ−1
s−1

(ρ2m1+1)

= ν
m2s−m2s+1

2 1detm2s+m2s+1−2m1−1

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−2m1−1

× · · · × ν
m2−m3

2 1detm2+m3−2m1−1 o 1Sp0 .

It is easy to see that we can repeat the 2-step-procedure m2 −m1 more
times, then we get the following induced representation

(4.12)

ρ2m2+2 := ν
m2s−m2s+1

2 1detm2s+m2s+1−1−2m2

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−1−2m2

× · · · × ν
m2−m3

2 1detm3−m2−1 o 1Sp0 ,

whose unramified component is the same as that of the following induced
representation

(4.13)

ρ′ := ν
m2s−m2s+1

2 1detm2s+m2s+1−1−2m2

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−1−2m2

× · · · × ν
m4−m5

2 1detm4+m5−1−2m2
o 1Sp2m3−2m2−2 .

By Theorem 2.1, ρ′ has a unique strongly negative unramified constituent
σ′sn, and

Jord(σ′sn,v) = {(1GL1 , 2m3 − 2m2 − 1), (1GL1 , 2m4 − 2m2 − 1),
. . . , (1GL1 , 2m2s+1 − 2m2 − 1)},

with 2s− 1 Jordan blocks.
Note that in general, the unique unramified component of ρ2i, 1 6 i 6

m2, may not be strongly negative.
By induction assumption, for any irreducible unitary automorphic repre-

sentation π′ of Sp2m(A) which has the unique strongly negative unramified
constituent of σ′sn,v as a local component, and for any symplectic partition
p of 2m with

p > [(
2s+1∏
i=4

(2mi − 2m2 − 1))Sp(2m3 − 2m2 − 2)]t,

π′ has no non-vanishing Fourier coefficients attached to p.
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From the above discussion, we have the following composite partition

(4.14)

[(2s)12n−2s] ◦ [(2s+ 2)12n−2(2s+1)] ◦ · · ·

◦ [(2s)12n−2m1(2s+1)+2s+2] ◦ [(2s+ 2)12n−2m1(2s+1)]

◦ [(2s)12n−2m1(2s+1)−2s] ◦ · · · ◦ [(2s)12n−(2m2+2)2s−2m1 ]

◦ [(
2s+1∏
i=4

(2mi − 2m2 − 1))Sp(2m3 − 2m2 − 2)]t,

which may provide non-vanishing Fourier coefficients for π, where there are
total m1 copies of the pair (2s, 2s+ 2) in the first two rows, and there are
2m2 + 2− 2m1 copies of (2s) in the third row.

By Proposition 3.2 of [16], the composite partition in (4.14) provides non-
vanishing Fourier coefficients for π if and only if the following composite
partition provides non-vanishing Fourier coefficients for π

(4.15)

[(2s+ 1)212n−2(2s+1)] ◦ · · · ◦ [(2s+ 1)212n−2m1(2s+1)]

◦ [(2s)12n−2m1(2s+1)−2s] ◦ · · · ◦ [(2s)12n−(2m2+2)2s−2m1 ]

◦ [(
2s+1∏
i=4

(2mi − 2m2 − 1))Sp(2m3 − 2m2 − 2)]t.

By the recipe in Theorem 6.3.8 of [5] (see the beginning of the current
section), it is easy to see that

[(
2s+1∏
i=4

(2mi − 2m2 − 1))Sp(2m3 − 2m2 − 2)]t

= [(2m2s+1 − 2m2 − 2)(2m2s − 2m2) · · · (2m5 − 2m2 − 2)
· (2m4 − 2m2)(2m3 − 2m2 − 2)]t

= 12m2s+1−2m2−2 + 12m2s−2m2 + · · ·+ 12m5−2m2−2 + 12m4−2m2

+ 12m3−2m2−2

= [(2s− 1)2m3−2m2−2(2s− 2)2m4+2−2m3(2s− 3)2m5−2m4−2 · · ·

(2)2m2s+2−2m2s−112m2s+1−2m2s−2].

(4.16)

Therefore, by [16, Lemma 3.1] or [10, Lemma 2.6], and [16, Proposition 3.3],
if the composite partition in (4.15) provides non-vanishing Fourier coeffi-
cients for π, then so is the following partition
(4.17)

[(2s+ 1)2m1(2s)2m2+2−2m1((
2s+1∏
i=4

(2mi − 2m2 − 1))Sp(2m3 − 2m2 − 2))t].
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Given a symplectic partition p = [pe1
1 p

e2
2 · · · perr ] of 2n, that is, ei = 1 if

pi is even, ei = 2 if pi is odd. Assume that p is bigger than the partition
in (4.17). Write the symplectic partition in (4.17) as q = [qe1

1 q
e2
2 · · · q

et
t ].

Assume that 1 6 i0 6 r is the unique index such that pi = qi for 1 6 i < i0,
and pi0 > qi0 . If i0 = 1, then by Lemma 3.1, ρ in (4.4) has no nonzero
twisted Jacquet module attached to the partition [pe1

1 12n−p1e1 ]. Therefore,
π has no nonzero Fourier coefficients attached to the partition [pe1

1 12n−p1e1 ].
By Lemma 3.1 of [16] or Lemma 2.6 of [10], and Proposition 3.3 of [16], π
has no nonzero Fourier coefficients attached to the partition p.

Next, we may assume that i0 > 1. For p1 = q1 = 2s, which means
that m1 = 0, then we take the Fourier-Jacobi module FJψ1

s−1
as in (4.5)

for ρ in (4.4). If p1 = q1 = 2s + 1, which implies that m1 > 0, then by
Proposition 3.2 of [16], to consider the Fourier coefficients attached to the
partition [(2s+ 1)212n−2(2s+1)], it suffices to consider the composite parti-
tion [(2s)12n−2s] ◦ [(2s + 2)12n−2(2s+1)]. Take the Fourier-Jacobi modules
FJψ1

s−1
and FJψ−1

s
consequently as in (4.5) and (4.7) for ρ in (4.4). Af-

ter repeating the above procedure for pi = qi, 2 6 i < i0, we come to a
similar situation as in the case of i0 = 1. Using a similar argument as in
the case of i0 = 1, applying first Lemma 3.1 if having taken even times of
Fourier-Jacobi modules or Lemma 3.2 otherwise, then Lemma 3.1 of [16]
or Lemma 2.6 of [10], and Proposition 3.3 of [16] we can conclude that π
also has no nonzero Fourier coefficients attached to the partition p.
Hence, for any symplectic partition p which is bigger than the partition

in (4.17), π has no nonzero Fourier coefficients attached to the partition p.
Therefore, it remains to show that the partition in (4.17) is exactly equal
to ηso2n+1(C),sp2n(C)([

∏l
i=1(2mi + 1)]).

By a similar calculation as in (4.16), [(
∏l
i=2(2mi + 1))Sp(2m1)]t equals

[(2s+ 1)2m1(2s)2m2+2−2m1(2s− 1)2m3−2m2−2(2s− 2)2m4+2−2m3

(2s− 3)2m5−2m4−2 · · · (2)2m2s+2−2m2s−112m2s+1−2m2s−2].

Therefore, the partition

[(2s+ 1)2m1(2s)2m2+2−2m1((
2s+1∏
i=4

(2mi − 2m2 − 1))Sp(2m3 − 2m2 − 2))t]

is equal to

[(
l∏
i=2

(2mi + 1))Sp(2m1)]t = ηso2n+1(C),sp2n(C)([
l∏
i=1

(2mi + 1)]).
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Hence, for any symplectic partition p of 2n with

p > ηso2n+1(C),sp2n(C)([
l∏
i=1

(2mi + 1)]),

π has no non-vanishing Fourier coefficients attached to p, in particular,
p /∈ pm(π). This completes the proof of the theorem. �

Applying Theorem 4.4, we can easily obtain the following analogue result.

Theorem 4.5. — Let π be an irreducible unitary automorphic repre-
sentation of Sp2n(A), having, at one unramified local place v, a strongly
negative unramified component σsn,v which is of Type II as in 2.5. Then,
for any symplectic partition p of 2n with

p > ηso2n+1(C),sp2n(C)([
k∏
i=1

(2ni + 1)(1)]),

π has no non-vanishing Fourier coefficients attached to p, in particular,
p /∈ pm(π).

Proof. — By assumption, σsn,v is the unique strongly negative unrami-
fied constituent of the following induced representation

ρ := ν
nk−1−nk

2 λ0(detnk−1+nk+1)× ν
nk−3−nk−2

2 λ0(detnk−3+nk−2+1)

× · · · × ν
n1−n2

2 λ0(detn1+n2+1) o 1Sp0 .
(4.18)

And

Jord(σsn,v) = {(λ0, 2n1 + 1), (λ0, 2n2 + 1), . . . , (λ0, 2nk + 1), (1GL1 , 1)},

with 2n1 + 1 < 2n2 + 1 < · · · < 2nk + 1 and k being even.
It is easy to see that ρ can be written as λ0ρ

′, where:

ρ′ := ν
nk−1−nk

2 1detnk−1+nk+1 × ν
nk−3−nk−2

2 1detnk−3+nk−2+1

× · · · × ν
n1−n2

2 1detn1+n2+1 o 1Sp0 .
(4.19)

By Theorem 2.1, ρ′ also has a unique strongly negative unramified com-
ponent σ′sn,v with

Jord(σ′sn,v) = {(1, 2n1 + 1), (1, 2n2 + 1), . . . , (1, 2nk + 1), (1GL1 , 1)}.

Applying the argument in the proof of Theorem 4.4 to ρ′, we can easily
see that for any symplectic partition p of 2n with

p > ηso2n+1(C),sp2n(C)([
k∏
i=1

(2ni + 1)(1)]),
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π has no non-vanishing Fourier coefficients attached to p, in particular,
p /∈ pm(π). This proves the theorem. �

Remark 4.6. — If an irreducible unitary automorphic representation
π of Sp2n(A) has as a unramified local component a strongly negative
unramified component σsn that is neither of Type I nor Type II, that is,
two characters λ0 and 1GL1 are mixed, then the above computation will
get more complicated. We omit the detail here.

5. Vanishing of Certain Fourier Coefficients: General Case

In this section, we continue to characterize the vanishing property of
Fourier coefficients for certain irreducible automorphic representations,
based on local unramified information. We prove the following theorem,
which is a generalization of Theorem 4.4.

Theorem 5.1. — Let π be an irreducible unitary automorphic represen-
tation of Sp2n(A) which has, at one unramified local place v an unramified
component σv of Type III as in 2.6. Then the following hold.

(1) For any symplectic partition p of 2n with

p > p1 := ([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=2

(2mi + 1))Sp(2m1)]t)Sp,

π has no non-vanishing Fourier coefficients attached to p, in partic-
ular, p /∈ pm(π).

(2) The partition p1 has the property that

p1 = ηso2n+1(C),sp2n(C)([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=1

(2mi + 1))]).

Proof of Part (1). — We prove by induction on n. When n = 1, then
k = 0, and either m1 = 0 or m1 = 1. If m1 = 0, then by Part (1) of
Proposition 4.1, p1 = [12]t = [2]. Ifm0 = 1, then p1 = [2]t = [12]. Therefore,
Part (1) is true for n = 1. We assume that the result is true for any n′ < n.

Since l is odd, we assume that l = 2s + 1. By the assumption of the
theorem, σv is the unique unramified constituent of the following induced
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representation:

ρ := ×(χ,m,α)∈e v
αχ(detm)××tj=1χj(detnj )

× ν
m2s−m2s+1

2 1detm2s+m2s+1+1 × ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1+1

× · · · × ν
m2−m3

2 1detm2+m3+1 o 1Sp2m1
.

We assume that

[(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)]t = [(2q1)(2q2) · · · (2qr)],

where 2q1 > 2q2 > · · · > 2qr. If r < 2m2 + 2, then we let qr+1 =
· · · q2m2+2 = 0. By Proposition 4.2,

ρ1 := FJψ1
q1+s−1

(ρ)

= µψ−1 ×(χ,m,α)∈e v
αχ(detm−1)××tj=1χj(detnj−1)

× ν
m2s−m2s+1

2 1detm2s+m2s+1
× ν

m2s−2−m2s−1
2 1detm2s−2+m2s−1

× · · · × ν
m2−m3

2 1detm2+m3
o (1Sp2m1

⊗ ωψ−1),

where we make a convention that a term vaχ(detb−1) will be omitted from
the induced representation if b − 1 6 0. From now on, we will follow this
convention.
Similarly as in the proof of Theorem 4.4, by Lemma 3.2, Jψα

r−1
(ρ) ≡ 0,

for any r > q1 + s + 1 and any α ∈ F ∗/(F ∗)2, and Jψ(2r+1)2 (ρ) ≡ 0, for
any r > q1 + s if m1 = 0, or, if m1 > 0 and some m or nj is 1; for any
r > q1+s+1 ifm1 > 0 and allm,nj ’s are bigger than 1. Note that allm,nj ’s
are bigger than 1 if and only if 2q1 = 2q2. Therefore, Jψ(2r+1)2 (ρ) ≡ 0, for
any r > q1 + s if m1 = 0, or, if 2q1 > 2q2 + 2; for any r > q1 + s + 1 if
m1 > 0 and 2q1 = 2q2.
Therefore, [(2q1 + 2s)12n−2q1−2s] is the maximal partition of the type

[(2r)12n−2r] with respect to which ρ can have a nonzero Fourier-Jacobi
module, in this single step. We need to do this routine by checking about
the “maximality” using Lemma 3.1 or Lemma 3.2, every time we apply
Proposition 4.1 or Proposition 4.2. We will omit this part in the follow-
ing steps.
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By [19], the unique unramified component of ρ1 is the same as the unique
unramified component of the following induced representation:

ρ′1 := µψ−1 ×(χ,m,α)∈e v
αχ(detm−1)××tj=1χj(detnj−1)

× ν
m2s−m2s+1

2 1detm2s+m2s+1
× ν

m2s−2−m2s−1
2 1detm2s−2+m2s−1

× · · · × ν
m2−m3

2 1detm2+m3
× ν

−m1
2 1detm1

o 1S̃p0
.

By Part (2) of Proposition 4.2,

ρ2 := FJψ−1
q2+s

(ρ′1)

= ×(χ,m,α)∈e v
αχ(detm−2)××tj=1χj(detnj−2)

× ν
m2s−m2s+1

2 1detm2s+m2s+1−1 × ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−1

× · · · × ν
m2−m3

2 1detm2+m3−1 × ν
−m1

2 1detm1−1 o 1Sp0 .

It is easy to see that we can repeat the above 2-step-procedure m1−1 more
times, then we get the following induced representation:

ρ2m1 := FJψ−1
q2m1 +s

(ρ′2m1−1)

=×(χ,m,α)∈e v
αχ(detm−2m1)××tj=1χj(detnj−2m1)

× ν
m2s−m2s+1

2 1detm2s+m2s+1−2m1+1

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−2m1+1

× · · · × ν
m2−m3

2 1detm2+m3−2m1+1 o 1Sp0 .

Then, we continue with ρ2m1 . By Part (1) of Proposition 4.1,

ρ2m1+1 := FJψ1
q2m1+1+s−1

(ρ2m1)

= µψ−1 ×(χ,m,α)∈e v
αχ(detm−2m1−1)××tj=1χj(detnj−2m1−1)

× ν
m2s−m2s+1

2 1detm2s+m2s+1−2m1

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−2m1

× · · · × ν
m2−m3

2 1detm2+m3−2m1
o 1S̃p0

.
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By Part (2) of Proposition 4.1,

ρ2m1+2 := FJψ−1
q2m1+2+s−1

(ρ2m1+1)

=×(χ,m,α)∈e v
αχ(detm−2m1−2)××tj=1χj(detnj−2m1−2)

× ν
m2s−m2s+1

2 1detm2s+m2s+1−2m1−1

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−2m1−1

× · · · × ν
m2−m3

2 1detm2+m3−2m1−1 o 1Sp0 .

It is easy to see that after repeating the above 2-step-procedure m2 −
m1 + 1 more times, we get the following induced representation:

ρ2m2+2 := FJψ−1
q2m2+2+s−1

(ρ2m2+1)

=×(χ,m,α)∈e v
αχ(detm−2m2−2)××tj=1χj(detnj−2m2−2)

× ν
m2s−m2s+1

2 1detm2s+m2s+1−2m2−1

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−2m2−1

× · · · × ν
m2−m3

2 1detm2+m3−2m2−1 o 1Sp0 ,

whose unramified component is the same as that of the following induced
representation

ρ′ :=×(χ,m,α)∈e v
αχ(detm−2m2−2)××tj=1χj(detnj−2m2−2)

× ν
m2s−m2s+1

2 1detm2s+m2s+1−2m2−1

× ν
m2s−2−m2s−1

2 1detm2s−2+m2s−1−2m2−1

× · · · × ν
m4−m5

2 1detm4+m5−1−2m2
o 1Sp2m3−2m2−2 .

By Theorem 2.5, ρ′ has a unique unitary unramified representation σ′ which
corresponds to the following set of data:

{(χ,m− 2m2 − 2, α) : (χ,m,α) ∈ e}
∪ {(χj , nj − 2m2 − 2) : 1 6 j 6 t}
∪ {(1GL1 , 2m3 − 2m2 − 1), (1GL1 , 2m4 − 2m2 − 1),

. . . , (1GL1 , 2m2s+1 − 2m2 − 1)},

where terms (χ,m − 2m2 − 2, α) or (χj , nj − 2m2 − 2) will be omitted if
m− 2m2 − 2 6 0 or nj − 2m2 − 2 6 0.
Note that in general, it is not easy to figure out the exact corresponding

data for the unique unramified component of ρ2i, 1 6 i 6 m2.
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By induction assumption, for any irreducible unitary automorphic repre-
sentation π′ of Sp2m(A) which has the unique strongly negative unramified
constituent of σ′v as a local component, and for any symplectic partition p
of 2m with

p > ([(
t∏

j=1
(nj − 2m2 − 2)2)(

∏
(χ,m,α)∈e

(m− 2m2 − 2)2)

· (
l∏
i=4

(2mi − 2m2 − 1))Sp(2m3 − 2m2 − 2)]t)Sp,

π′ has no non-vanishing Fourier coefficients attached to p.
From the above discussion, we have the following composite partition

[(2q1 + 2s)12n−2q1−2s] ◦ [(2q2 + 2s+ 2)12n−
∑2

i=1
2qi−2(2s+1)] ◦ · · ·

◦ [(2q2m1−1 + 2s)12n−
∑2m1−1

i=1
2qi−2m1(2s+1)+2s+2]

◦ [(2q2m1 + 2s+ 2)12n−
∑2m1

i=1
2qi−2m1(2s+1)]

◦ [(2q2m1+1 + 2s)12n−
∑2m1+1

i=1
2qi−2m1(2s+1)−2s] ◦ · · ·

◦ [(2q2m2+2 + 2s)12n−
∑2m2+1

i=1
2qi−(2m2+2)2s−2m1 ]

◦ ([(
t∏

j=1
(nj − 2m2 − 2)2)(

∏
(χ,m,α)∈e

(m− 2m2 − 2)2)

· (
l∏
i=4

(2mi − 2m2 − 1))Sp(2m3 − 2m2 − 2)]t)Sp,

(5.1)

which may provide non-vanishing Fourier coefficients for π.
For the partition

p1 := ([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=2

(2mi + 1))Sp(2m1)]t)Sp,

since 2m1 + 1 < 2m2 + 1 < · · · < 2m2s+1 + 1,

(
l∏
i=2

(2mi + 1))Sp

= [(2m2s+1)(2m2s + 2) · · · (2m5)(2m4 + 2)(2m3)(2m2 + 2)].
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Therefore

p2 := [(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=2

(2mi + 1))Sp(2m1)]t

= [(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)]t

+ [(2m2s+1)(2m2s + 2) · · · (2m5)(2m4 + 2)(2m3)(2m2 + 2)(2m1)]t.

By calculating the transpose and the addition, we obtain

p2 = [(2q1)(2q2) · · · (2qr)] + [12m2s+1 ] + [12m2s+2]

+ · · ·+ [12m5 ] + [12m4+2] + [12m3 ] + [12m2+2][12m1 ]
= [(2q1 + 2s+ 1) · · · (2q2m1 + 2s+ 1)
· (2q2m1+1 + 2s) · · · (2q2m2+2 + 2s)(p3)],

where

p3 = [(2q2m2+3)(2q2m2+4) · · · (2qr)] + [12m2s+1−2m2−2] + [12m2s−2m2 ]

+ · · ·+ [12m5−2m2−2] + [12m4−2m2 ] + [12m3−2m2−2]

= [(
t∏

j=1
(nj − 2m2 − 2)2)(

∏
(χ,m,α)∈e

(m− 2m2 − 2)2)

· (
l∏
i=4

(2mi − 2m2 − 1))Sp(2m3 − 2m2 − 2)]t.

By the recipe for symplectic collapse (see Theorem 6.3.8 of [5], also the
beginning of Section 4)

p1 = (p2)Sp = [(2q1 + 2s+ 1) · · · (2q2m1 + 2s+ 1)
· (2q2m1+1 + 2s) · · · (2q2m2+2 + 2s)(p3)]Sp

= [((2q1 + 2s+ 1) · · · (2q2m1 + 2s+ 1)
· (2q2m1+1 + 2s) · · · (2q2m2+2 + 2s))Sp(p3)Sp]

= [((2q1 + 2s+ 1) · · · (2q2m1 + 2s+ 1))Sp

· (2q2m1+1 + 2s) · · · (2q2m2+2 + 2s)(p3)Sp].

(5.2)

Now, let us come back to the composition partition in (5.1). By
Lemma 3.1 of [16] or Lemma 2.6 of [10], if the composite partition in (5.1)
provides non-vanishing Fourier coefficients for π, then so is the following
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composite partition

[(2q1 + 2s)12n−2q1−2s] ◦ [(2q2 + 2s+ 2)12n−
∑2

i=1
2qi−2(2s+1)] ◦ · · ·

◦ [(2q2m1−1 + 2s)12n−
∑2m1−1

i=1
2qi−2m1(2s+1)+2s+2]

◦ [(2q2m1 + 2s+ 2)12n−
∑2m1

i=1
2qi−2m1(2s+1)]

◦ [(2q2m1+1 + 2s) · · · (2q2m2+2 + 2s)

· (((
t∏

j=1
(nj − 2m2 − 2)2)(

∏
(χ,m,α)∈e

(m− 2m2 − 2)2)

· (
l∏
i=4

(2mi − 2m2 − 1))Sp(2m3 − 2m2 − 2))t)Sp],

(5.3)

which can be expressed as the following partition

[(2q1 + 2s)12n−2q1−2s] ◦ [(2q2 + 2s+ 2)12n−
∑2

i=1
2qi−2(2s+1)] ◦ · · ·

◦ [(2q2m1−1 + 2s)12n−
∑2m1−1

i=1
2qi−2m1(2s+1)+2s+2]

◦ [(2q2m1 + 2s+ 2)12n−
∑2m1

i=1
2qi−2m1(2s+1)]

◦ [(2q2m1+1 + 2s) · · · (2q2m2+2 + 2s)(p3)Sp)].

(5.4)

Comparing the partitions in (5.2) and (5.3), and applying Lemma 3.1 and
Proposition 3.3 of [16] repeatedly, we want to show that if the following
composite partition

[(2q1 + 2s)12n−2q1−2s] ◦ [(2q2 + 2s+ 2)12n−
∑2

i=1
2qi−2(2s+1)] ◦ · · ·

◦ [(2q2m1−1 + 2s)12n−
∑2m1−1

i=1
2qi−2m1(2s+1)+2s+2]

◦ [(2q2m1 + 2s+ 2)12n−
∑2m1

i=1
2qi−2m1(2s+1)]

provides non-vanishing Fourier coefficients for π, then so is the partition
[(2q1 + 2s+ 1) · · · (2q2m1 + 2s+ 1)12n−

∑2m1
i=1

2qi−2m1(2s+1)]Sp.
We consider each pair (2q2i−1 + 2s, 2q2i + 2s + 2), for 1 6 i 6 m1.

When 2q2i−1 = 2q2i, by Proposition 3.2 of [16], the composite partition
[(2q2i + 2s)12di−2q2i−2s] ◦ [(2q2i + 2s + 2)12di−2q2i−2(2s+1)] provides non-
vanishing Fourier coefficients for an irreducible automorphic representation
τi of Sp2di(A), where 2di = 2n−

∑2i−2
j=1 2qj − (2i− 2)(2s+ 1), if and only

if the partition [(2q2i + 2s + 1)212di−2(2q2i+2s+1)] provides non-vanishing
Fourier coefficients for τi. When 2q2i−1 > 2q2i + 2, by Lemma 3.1 of [16], if

[(2q2i−1 + 2s)12di−2q2i−1−2s] ◦ [(2q2i + 2s+ 2)12di−q2i−1−q2i−2(2s+1)]
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provides non-vanishing Fourier coefficients for τi, then so is

[(2q2i−1 + 2s)(2q2i + 2s+ 2)12di−q2i−1−q2i−2(2s+1)].

By the recipe for symplectic collapse (see Theorem 6.3.8 of [5], also the
beginning of Section 4), after considering all the pairs (2q2i−1 + 2s, 2q2i +
2s + 2), 1 6 i 6 m1, replacing [(2q2i−1 + 2s)12di−2q2i−1−2s] ◦ [(2q2i + 2s +
2)12di−q2i−1−q2i−2(2s+1)] by [(2q2i + 2s + 1)212di−2(2q2i+2s+1)] if 2q2i−1 =
2q2i, by [(2q2i−1+2s)(2q2i+2s+2)12di−q2i−1−q2i−2(2s+1)] if 2q2i−1 > 2q2i+2,
and applying Lemma 3.1 and Proposition 3.3 of [16] repeatedly, we will get
a partition which is exactly

[(2q1 + 2s+ 1) · · · (2q2m1 + 2s+ 1)12n−
∑2m1

i=1
2qi−2m1(2s+1)]Sp,

providing non-vanishing Fourier coefficients for π. Therefore, from the par-
tition in (5.3), we get exactly the partition p1.
Using a similar argument as in the proof of Theorem 4.4, we can con-

clude that for any symplectic partition p > p1, π has no nonzero Fourier
coefficients attached to the partition p, in particular, p /∈ pm(π). �

Proof of Part (2). — By Definition 4.3,

ηso2n+1(C),sp2n(C)([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=1

(2mi + 1))])

= (([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=1

(2mi + 1))]−)Sp)t.

(5.5)

On the other hand, from the proof of Theorem 6.3.11 of [5], it is easy to
see that

([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=2

(2mi + 1))Sp(2m1)]t)Sp

= ([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=2

(2mi + 1))Sp(2m1)]Sp)t.

(5.6)

Comparing the right hand sides of (5.5) and (5.6), we only need to show
that

([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=1

(2mi + 1))]−)Sp

= [(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=2

(2mi + 1))Sp(2m1)]Sp.

(5.7)
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Let J = {1, 2, . . . , t}. We rewrite the partition

[(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=1

(2mi + 1))]

as follows:

[(
∏
j∈J0

n2
j )(

∏
(χ,m,α)∈e0

m2)(
l∏
i=1

(2mi + 1)fi(
∏
j∈Ji

n2
j )(

∏
(χ,m,α)∈ei

m2))],

such that nj ,m > 2ml+1, for j ∈ J0, (χ,m,α) ∈ e0; and 2mi−1 < nj ,m <

2mi + 1, for j ∈ Ji, (χ,m,α) ∈ ei, where we let m0 = −1; and fi > 1 odd,
for 1 6 i 6 l.
As in the proof of Part (1), we still let l = 2s + 1. Since 2m1 + 1 <

2m2 + 1 < · · · < 2m2s+1 + 1, by the recipe for symplectic collapse (see
Theorem 6.3.8 of [5], also the beginning of Section 4),

(
l∏
i=2

(2mi + 1))Sp

= [(2m2s+1)(2m2s + 2) · · · (2m5)(2m4 + 2)(2m3)(2m2 + 2)].

Then

[(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=2

(2mi + 1))Sp(2m1)]Sp

= [(
∏
j∈J0

n2
j )(

∏
(χ,m,α)∈e0

m2)

· (
s∏
i=1

((2m2i+1 + 1)f2i+1−1(2m2i+1)(
∏

j∈J2i+1

n2
j )(

∏
(χ,m,α)∈e2i+1

m2)

· (2m2i + 2)(2m2i + 1)f2i−1(
∏
j∈J2i

n2
j )(

∏
(χ,m,α)∈e2i

m2)))

· (2m1 + 1)f1−1(2m1)(
∏
j∈Ji

n2
j )(

∏
(χ,m,α)∈ei

m2)]Sp.

(5.8)
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It is easy to see that during the operations of [ ]−, Sp-collapse and Sp-
expansion, the part of [(

∏
j∈J0

n2
j )(

∏
(χ,m,α)∈e0

m2)] will not change. There-
fore, we only need to show that

([
2s+1∏
i=1

(2mi + 1)fi(
∏
j∈Ji

n2
j )(

∏
(χ,m,α)∈ei

m2)]−)Sp

= [(
s∏
i=1

((2m2i+1 + 1)f2i+1−1(2m2i+1)(
∏

j∈J2i+1

n2
j )(

∏
(χ,m,α)∈e2i+1

m2)

· (2m2i + 2)(2m2i + 1)f2i−1(
∏
j∈J2i

n2
j )(

∏
(χ,m,α)∈e2i

m2)))

· (2m1 + 1)f1−1(2m1)(
∏
j∈Ji

n2
j )(

∏
(χ,m,α)∈ei

m2)]Sp.

(5.9)

For 1 6 i 6 2s+ 1, write the partition

[(2mi + 1)fi(
∏
j∈Ji

n2
j )(

∏
(χ,m,α)∈ei

m2)]

as [(2mi + 1)fip2gi,1
i,1 · · · p2gi,ri

i,ri
], with 2mi + 1 > 2mi > pi,1 > · · · > pi,ri .

We need to consider two cases: Case (1), p1,r1 = 2q1,r1 + 1, odd; and
Case (2), p1,r1 = 2q1,r1 , even.
For Case (1).

([
2s+1∏
i=1

(2mi + 1)fi(
∏
j∈Ji

n2
j )(

∏
(χ,m,α)∈ei

m2)]−)Sp

= [
2s+1∏
i=2

(2mi + 1)fip2gi,1
i,1 · · · p2gi,ri

i,ri

· (2m1 + 1)f1p
2g1,1
1,1 · · · p2g1,r1−1

1,r1−1 (2q1,r1 + 1)2g1,r1−1(2q1,r1)]Sp.

(5.10)

For 2 6 i 6 2s + 1, assume that all the odd parts in {pi,1, . . . , pi,ri} are
{(2qi,1+1), . . . , (2qi,ti+1)}, with 2qi,1+1 > · · · > 2qi,ti+1. And assume that
all the odd parts in {p1,1, . . . , p1,r1−1} are {(2q1,1+1), . . . , (2q1,t1 +1)}, with
2q1,1 + 1 > · · · > 2q1,t1 + 1. For 1 6 i 6 2s+ 1, and 1 6 j 6 ti, we assume
that the exponent of 2qi,j + 1 is hi,j . Then by the recipe in Theorem 6.3.8
of [5] (see the beginning of Section 4), to get the Sp-collapse in the right
hand side of (5.10), we just have to do the following:

• for 0 6 i 6 s, replace (2m2i+1 + 1)f2i+1(2m2i + 1)f2i by (2m2i+1 +
1)f2i+1−1(2m2i+1)(2m2i + 2)(2m2i + 1)f2i−1, and for 1 6 j 6 t2i+1,
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replace (2q2i+1,j + 1)h2i+1,j by

(2q2i+1,j + 2))(2q2i+1,j + 1)h2i+1,j−2(2q2i+1,j);

• replace (2m1 + 1)f1 by (2m1 + 1)f1−1(2m1), and replace (2q1,r1 +
1)2g1,r1−1 by (2q1,r1 + 2)(2q1,r1 + 1)2g1,r1−2.

On the other hand, by the recipe in Theorem 6.3.9 of [5] (see the beginning
of Section 4), to get the Sp-expansion in the right hand side of (5.9), we
just have to do the following:

• for 0 6 i 6 s, 1 6 j 6 t2i+1, replace (2q2i+1,j + 1)h2i+1,j by

(2q2i+1,j + 2))(2q2i+1,j + 1)h2i+1,j−2(2q2i+1,j);

• replace (2q1,r1 + 1)2g1,r1 by (2q1,r1 + 2)(2q1,r1 + 1)2g1,r1−2(2q1,r1).
Therefore, we have proved the equality in (5.9) for Case (1).
For Case (2).

([
2s+1∏
i=1

(2mi + 1)fi(
∏
j∈Ji

n2
j )(

∏
(χ,m,α)∈ei

m2)]−)Sp

= [
2s+1∏
i=2

(2mi + 1)fip2gi,1
i,1 · · · p2gi,ri

i,ri

· (2m1 + 1)f1p
2g1,1
1,1 · · · p2g1,r1−1

1,r1−1 (2q1,r1)2g1,r1−1(2q1,r1 − 1)]Sp.

(5.11)

As in Case (1), for 2 6 i 6 2s + 1, assume that all the odd parts in
{pi,1, . . . , pi,ri} are {(2qi,1 + 1), . . . , (2qi,ti + 1)}, with 2qi,1 + 1 > · · · >
2qi,ti + 1. And assume that all the odd parts in {p1,1, . . . , p1,r1−1} are
{(2q1,1 + 1), . . . , (2q1,t1 + 1)}, with 2q1,1 + 1 > · · · > 2q1,t1 + 1. For 1 6 i 6
2s + 1, and 1 6 j 6 ti, we assume that the exponent of 2qi,j + 1 is hi,j .
Then by the recipe in Theorem 6.3.8 of [5] (see the beginning of Section
4), to get the Sp-collapse in the right hand side of (5.11), we just have to
do the following:

• for 0 6 i 6 s, replace (2m2i+1 + 1)f2i+1(2m2i + 1)f2i by (2m2i+1 +
1)f2i+1−1(2m2i+1)(2m2i + 2)(2m2i + 1)f2i−1, and for 1 6 j 6 t2i+1,
replace (2q2i+1,j + 1)h2i+1,j by

(2q2i+1,j + 2))(2q2i+1,j + 1)h2i+1,j−2(2q2i+1,j);

• replace (2m1 +1)f1 by (2m1 +1)f1−1(2m1), and replace (2q1,r1 −1)
by (2q1,r1).

On the other hand, by the recipe in Theorem 6.3.9 of [5] (also see the
beginning of Section 4), to get the Sp-expansion in the right hand side
of (5.9), we just have to do the following:
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• for 0 6 i 6 s, and 1 6 j 6 t2i+1, replace (2q2i+1,j + 1)h2i+1,j by

(2q2i+1,j + 2))(2q2i+1,j + 1)h2i+1,j−2(2q2i+1,j).

Therefore, we also have proved the equality in (5.9) for Case (2). Hence,
we have proved that

p1 = ηso2n+1(C),sp2n(C)([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
l∏
i=1

(2mi + 1))]).

This finishes the proof of Part (2), and completes the proof of the theorem.
�

The proof of Theorem 5.1 easily implies the following corollary.

Corollary 5.2. — Let π be an irreducible unitary automorphic repre-
sentation of Sp2n(A) which has an unramified component σ of Type III as
in 2.6. Then, for any symplectic partition p of 2n which is bigger than the
partition p1 in Theorem 5.1 under the lexicographical ordering, π has no
non-vanishing Fourier coefficients attached to p, in particular, p /∈ pm(π).

Remark 5.3. — Theorems 4.4, 4.5 and 5.4 also have similar corollaries,
if we replace the dominance ordering of partitions by the lexicographical
ordering.

Applying Theorem 5.1, we have the following analogue result, which is
a generalization of Theorem 4.5.

Theorem 5.4. — Let π be an irreducible unitary automorphic represen-
tation of Sp2n(A) which has, at one unramified local place v an unramified
component σv of Type IV as in 2.7. Then the following hold.

(1) For any symplectic partition p of 2n with

p > p1 := ([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
k∏
i=1

(2ni + 1))Sp]t)Sp,

π has no non-vanishing Fourier coefficients attached to p, in partic-
ular, p /∈ pm(π).

(2) The partition p1 has the property that

p1 = ηso2n+1(C),sp2n(C)([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
k∏
i=1

(2ni + 1))(1)]).
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Proof. — By assumption, σv corresponds to the following set of data:

{(χ,m,α) : (χ,m,α) ∈ e} ∪ {(χ, ni) : 1 6 i 6 t}
∪ {(λ0, 2n1 + 1), . . . , (λ0, 2nk + 1), (1GL1 , 1)}.

Rewrite σv as λ0σ
′
v, then it is easy to see that σ′v is an irreducible unramified

unitary representation corresponds to the following set of data:

{(λ0χ,m,α) : (χ,m,α) ∈ e} ∪ {(λ0χ, ni) : 1 6 i 6 t}
∪ {(1GL1 , 2n1 + 1), . . . , (1GL1 , 2nk + 1), (1GL1 , 1)}.

Applying a similar argument in the proof of Theorem 5.1 to σ′v, we can see
that for any symplectic partition p of 2n with

p > p1 := ([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
k∏
i=1

(2ni + 1))Sp]t)Sp,

π has no non-vanishing Fourier coefficients attached to p, in particular,
p /∈ pm(π), and

p1 = ηso2n+1(C),sp2n(C)([(
t∏

j=1
n2
j )(

∏
(χ,m,α)∈e

m2)(
k∏
i=1

(2ni + 1))(1)]).

This completes the proof of the theorem. �

6. Proofs of the main results

In this section, we first establish in Section 6.1 a refined structure about
the irreducible unramified representation corresponding to the unramified
local Arthur parameter ψv for infinitely many local places where ψv are
unramified. This result is crucial in the proof of the main result of the
paper (Theorem 1.3) given in Section 6.2. In Section 6.3, we prove a result
which is in fact related to Part (2) of Conjecture 1.2.

6.1. On square classes

Proposition 6.1. — For any finitely many non-square elements αi /∈
F ∗/(F ∗)2, 1 6 i 6 t, there are infinitely many finite places v such that
αi ∈ (F ∗v )2, for any 1 6 i 6 t.

ANNALES DE L’INSTITUT FOURIER



ARTHUR PARAMETERS AND FOURIER COEFFICIENTS 515

Proof. — First, it is easy to find a sufficiently large set of finitely many
places S which contains all the archimedean places, and s := #(S) > t,
such that αi’s are all non-square S-units. Let

uS = {x ∈ F ∗ : |x|v = 1,∀v /∈ S}

be the set of S-units. Then, by the Dirichlet Unit Theorem (page 105
of [20]), uS is a direct product of the roots of unity UF of F with a free
abelian group of rank s− 1. Since −1 ∈ UF , UF /(UF )2 ∼= Z/2Z. Therefore,
uS/u

2
S
∼= (Z/2Z)s, which can be viewed as an s-dimensional vector space

over Z/2Z.
Assume that {ε1, . . . , εq} is a maximal multiplicatively independent sub-

set of {α1, . . . , αt}. Extend {ε1, . . . , εq} to a set of generators of uS/u
2
S :

{ε1, . . . , εs}. Note that q 6 t < s, and any product of distinct εi’s is also
not a square. Let K = F (√ε1, . . . ,

√
εs−1). Then it is clear that εs is not a

square in K. By the Global Square Theorem (Theorem 65:15 of [26]) which
is a special case of the result on page 194 of [20], there are infinitely many
places ω ∈ S′ of K, such that εs /∈ (K∗ω)2. These places induce infinitely
many places which are not in S.

For any ω ∈ S′, such that ω|v and v /∈ S, then εs /∈ (K∗ω)2, which implies
that εs /∈ (F ∗v )2. For any 1 6 i 6 s − 1, since εi ∈ (K∗ω)2, εsεi /∈ (K∗ω)2,
and hence εsεi /∈ (F ∗v )2. For any 1 6 i 6 s − 1, since both εs and εsεi are
non-square units in Ov, it is easy to see that they are in the same square
class, which implies that εi ∈ F 2

v . Therefore, there are infinitely many finite
places v which are not in S, such that εi ∈ F 2

v , for any 1 6 i 6 s− 1. Since
αi’s are generated by {ε1, . . . , εq}, they are all squares in Fv for these v.

This completes the proof of the proposition. �

Remark 6.2. — Applying Dirichlet’s theorem on primes in arithmetic
progressions, the law of quadratic reciprocity, and the Chinese remain-
der theorem, it is easy to see that for any M > 0, there are infinitely
many primes p such that the numbers 1, 2, . . . ,M are all residues modulo
p. Proposition 6.1 generalizes this result to arbitrary number fields.

The following proposition gives more structure on the global non-square
classes occurring in any global Arthur parameter, which is of interest for
future applications.

Proposition 6.3. — Given any ψ = �ri=1(τi, bi) ∈ Ψ̃2(Sp2n). Assume
that {τi1 , . . . , τiq} is a multi-set of all the τ ’s with non-trivial central char-
acters, and ωτij = χαij , where αij ∈ F

∗/(F ∗)2. Let S be any set of finitely
many places which contains all the archimedean places, s := #(S), such
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that αij ’s are in uS-the set of all S-units. Also assume that {ε1, . . . , εs} is
any set of generators of uS/u2

S , and αij = ε
v1,j
1 · · · εvs,js δ2, where vl,j = 0 or

1, δ ∈ uS . Then
∑q
j=1 vl,j must be even, for any 1 6 l 6 s.

Proof. — Assume on the contrary that there is an 1 6 l 6 s, such that∑q
j=1 vl,j is odd. By a similar argument as in the proof of Proposition 6.1,

there are infinitely many places v which are not in S, such that εl /∈ F 2
v ,

εk ∈ F 2
v , for any 1 6 k 6= l 6 s. Then, it is easy to see that

∏r
i=1 ω

bi
τi,v 6= 1

for these v, as central characters of GL2n+1(Fv), applying the multiplica-
tivity of local Hilbert symbol. Therefore,

∏r
i=1 ω

bi
τi 6= 1, as central charac-

ters of GL2n+1(A), which contradicts the definition of Arthur parameters.
Therefore,

∑q
j=1 vl,j must be even, for any 1 6 l 6 s. �

6.2. The completion of the proof of Theorem 1.3

Given any ψ = �ri=1(τi, bi) ∈ Ψ̃2(Sp2n). Assume that {τi1 , . . . , τiq} is a
multi-set of all the τ ’s with non-trivial central characters. Since all τij ’s are
self-dual, the central characters ωτij ’s are all quadratic characters, which
are parametrized by global non-square elements. Assume that ωτij = χαij ,
where αij ∈ F ∗/(F ∗)2, and χαij is the quadratic character given by the
global Hilbert symbol (·, αij ). Note that {αi1 , . . . , αiq} is a multi-set.
By Proposition 6.1, there are infinitely many finite places v, such that

αij ’s are all squares in Fv, that is, ωτij ,v ’s are all trivial. Therefore, for
the given ψ, there are infinitely many finite places v such that all τi,v’s
have trivial central characters. From the discussion in Section 2.2, for any
π ∈ Π̃ψ(εψ), there is a finite local place v with such a property that πv is
an irreducible unramified unitary representation of Type III as in 2.6.
Indeed, the difference between irreducible unramified unitary representa-

tions of Type III as in 2.6 and general irreducible unramified unitary rep-
resentations is the strongly negative part σsn. In general, via classification,
σsn involves two kinds of Jordan blocks (1GL1 , 2mi + 1) and (λ0, 2ni + 1).
For a general irreducible unramified unitary representation, in order to be
of Type III, σsn should only involve Jordan blocks (1GL1 , 2mi + 1). From
the discussion in Section 2.2, for a finite place v such that all πi,v’s have
trivial central characters, all Jordan blocks involved in πv either have even
multiplicities which will not occur in the strongly negative part, or are only
(1GL1 , 2mi + 1)’s with odd multiplicities which will occur in the strongly
negative part, hence πv is of Type III.
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By Theorem 5.1, for any symplectic partition p of 2n with p>ηg∨,g(p(ψ)),
π has no non-vanishing Fourier coefficients attached to p, in particular,
p /∈ pm(π). This completes the proof of Theorem 1.3.

6.3. About Part (2) of Conjecture 1.2

Part (2) of Conjecture 1.2 can be rephrased as follows: given any ψ ∈
Ψ̃2(Sp2n) and any π ∈ Π̃ψ(εψ), for any symplectic partition p which is not
related to ηg∨,g(p(ψ)) under the usual ordering of partitions, that is, the
dominance ordering, π has no non-vanishing Fourier coefficients attached
to p, in particular, p /∈ pm(π).

Assume that p is a symplectic partition which is not related to ηg∨,g(p(ψ))
under the dominance ordering. If we consider the lexicographical ordering
of partitions, which is a total ordering, then in general there are two cases:

(2-1) p is bigger than ηg∨,g(p(ψ)) under the lexicographical ordering;
(2-2) p is smaller than ηg∨,g(p(ψ)) under the lexicographical ordering.

Replacing Theorem 5.1 by Corollary 5.2 in the proof of Theorem 1.3, we
can easily get the following result towards confirming Part (2) of Conjec-
ture 1.2.

Proposition 6.4. — Given any ψ ∈ Ψ̃2(Sp2n) and any π ∈ Π̃ψ(εψ).
Assume that p is a symplectic partition which is not related to ηg∨,g(p(ψ))
under the dominance ordering. If p is bigger than ηg∨,g(p(ψ)) under the
lexicographical ordering, then π has no non-vanishing Fourier coefficients
attached to p, in particular, p /∈ pm(π).

Remark 6.5. — For certain global Arthur parameters of symplectic
groups, if p is a symplectic partition which is not related to ηg∨,g(p(ψ)) un-
der the dominance ordering, then p is automatically bigger than ηg∨,g(p(ψ))
under the lexicographical ordering. For example, the global Arthur param-
eters for Sp4mn considered in [21]: ψ = (τ, 2m) � (1GL1(A), 1), where τ is
an irreducible cuspidal automorphic representation of GL2n(A), with the
properties that L(s, τ,∧2) has a simple pole at s = 1, and L( 1

2 , τ) 6= 0.
By definition, p(ψ) = [(2m)2n1]. By Definition 4.3, ηg∨,g(p(ψ)) = [(2n)2m].
Then it is easy to see that if a symplectic partition p is not related to
[(2n)2m] under the dominance ordering, then it is automatically bigger
than [(2n)2m] under the lexicographical ordering.
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