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Abstract. This paper is a sequel to our paper [SaShUr7]. Let � and ! be locally �nite positive Borel
measures on Rn (possibly having common point masses), and let T� be a standard �-fractional Calderón-
Zygmund operator on Rn with 0 � � < n. Suppose that 
 : Rn ! Rn is a globally biLipschitz map, and
refer to the images 
Q of cubes Q as quasicubes. Furthermore, assume as side conditions the A�2 conditions,
punctured A�2 conditions, and certain �-energy conditions taken over quasicubes. Then we show that T�

is bounded from L2 (�) to L2 (!) if the quasicube testing conditions hold for T� and its dual, and if the
quasiweak boundedness property holds for T�.

Conversely, if T� is bounded from L2 (�) to L2 (!), then the quasitesting conditions hold, and the
quasiweak boundedness condition holds. If the vector of �-fractional Riesz transforms R�

� (or more generally
a strongly elliptic vector of transforms) is bounded from L2 (�) to L2 (!), then both the A�2 conditions and
the punctured A�2 conditions hold.

Our quasienergy conditions are not in general necessary for elliptic operators, but are known to hold for
certain situations in which one of the measures is one-dimensional [LaSaShUrWi], [SaShUr8], and for certain
side conditions placed on the measures such as doubling and k-energy dispersed, which when k = n � 1 is
similar to the condition of uniformly full dimension in [LaWi, versions 2 and 3].
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1. Introduction

The boundedness of the Hilbert transform Hf (x) =
R
R
f(y)
y�xdy on the real line R in the Hilbert space

L2 (R) has been known for at least a century (perhaps dating back to A & E1):

(1) kHfkL2(R) . kfkL2(R) ; f 2 L2 (R) :

This inequality has been the subject of much generalization, to which we now turn.

1.1. A brief history of the T1 theorem. The celebrated T1 theorem of David and Journé [DaJo] extends
(1) to more general kernels by characterizing those singular integral operators T on Rn that are bounded on
L2 (Rn), and does so in terms of a weak boundedness property, and the membership of the two functions T1
and T �1 in the space of bounded mean oscillation,

kT1kBMO(Rn) . k1kL1(Rn) = 1;
kT �1kBMO(Rn) . k1kL1(Rn) = 1:

These latter conditions are actually the following testing conditions in disguise,

kT1QkL2(Rn) . k1QkL2(Rn) =
p
jQj ;

kT �1QkL2(Rn) . k1QkL2(Rn) =
p
jQj ;

tested uniformly over all indicators of cubes Q in Rn for both T and its dual operator T �. This theorem was
the culmination of decades of investigation into the nature of cancellation conditions required for boundedness
of singular integrals2.
A parallel thread of investigation had begun even earlier with the equally celebrated theorem of Hunt,

Muckenhoupt and Wheeden [HuMuWh] that extended (1) to measures more general than Lebesgue�s by
characterizing boundedness of the Hilbert transform on weighted spaces L2 (R;w). This thread culminated
in the theorem of Coifman and Fe¤erman3 [CoFe] that characterizes those nonnegative weights w on Rn for
which all of the �nicest�of the L2 (Rn) bounded singular integrals T above are bounded on weighted spaces
L2 (Rn;w), and does so in terms of the A2 condition of Muckenhoupt,�

1

jQj

Z
Q

w (x) dx

��
1

jQj

Z
Q

1

w (x)
dx

�
. 1 ;

1Peter Jones used A&E to stand for Adam and Eve.
2See e.g. chapter VII of Stein [Ste] and the references given there for a historical background.
3See e.g. chapter V of [Ste] and the references given there for the long history of this investigation.
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taken uniformly over all cubes Q in Rn. This condition is also a testing condition in disguise, in particular
it follows from T �sQ 1w

�
L2(Rn;w)

.
sQ 1w


L2(Rn;w)

;

tested over all �indicators with tails�sQ (x) =
`(Q)

`(Q)+jx�cQj of cubes Q in Rn.
A natural synthesis of these two threads leads to the �two weight�question of characterizing those pairs of

weights (�; !) having the property that nice singular integrals are bounded from L2 (Rn;�) to L2 (Rn;!). Re-
turning to the simplest (nontrivial) singular integral of all, namely the Hilbert transform Hf (x) =

R
R
f(y)
y�xdy

on the real line, Cotlar and Sadosky gave a beautiful function theoretic characterization of the weight pairs
(�; !) for which H is bounded from L2 (R;�) to L2 (R;!), namely a two-weight extension of the Helson-Szegö
theorem. This characterization illuminated a deep connection between two quite di¤erent function theoretic
conditions, but failed to shed much light on when either of them held. On the other hand, the two weight
inequality for positive fractional integrals, Poisson integrals and maximal functions were characterized using
testing conditions by one of us in [Saw] (see also [Hyt2]) and [Saw1], but relying in a very strong way on
the positivity of the kernel, something the Hilbert kernel lacks. In light of these considerations, Nazarov,
Treil and Volberg formulated the two weight question for the Hilbert transform [Vol], that in turn led to the
following NTV conjecture:

Conjecture 1. [Vol] The Hilbert transform is bounded from L2 (Rn;�) to L2 (Rn;!), i.e.

(2) kH (f�)kL2(Rn;!) . kfkL2(Rn;�) ; f 2 L2 (Rn;�) ;
if and only if the two weight A2 condition with two tails holds,�

1

jQj

Z
Q

s2Qd! (x)

��
1

jQj

Z
Q

s2Qd� (x)

�
. 1 ;

uniformly over all cubes Q, and the two testing conditions hold,

kH1Q�kL2(Rn;!) . k1QkL2(Rn;�) =
q
jQj� ;

kH�1Q!kL2(Rn;�) . k1QkL2(Rn;!) =
q
jQj! ;

uniformly over all cubes Q.

In a groundbreaking series of papers including [NTV1],[NTV2] and [NTV4], Nazarov, Treil and Volberg
used weighted Haar decompositions with random grids, introduced their �pivotal�condition, and proved the
above conjecture under the side assumption that the pivotal condition held. Subsequently, in joint work of
two of us, Sawyer and Uriarte-Tuero, with Lacey [LaSaUr2], it was shown that the pivotal condition was not
necessary in general, a necessary �energy�condition was introduced as a substitute, and a hybrid merging of
these two conditions was shown to be su¢ cient for use as a side condition. Eventually, these three authors
with Shen established the NTV conjecture in a two part paper; Lacey, Sawyer, Shen and Uriarte-Tuero
[LaSaShUr3] and Lacey [Lac]. A key ingredient in the proof was an �energy reversal�phenomenon enabled
by the Hilbert transform kernel equality

1

y � x �
1

y � x0 =
x� x0

(y � x) (y � x0) ;

having the remarkable property that the denominator on the right hand side remains positive for all y outside
the smallest interval containing both x and x0. This proof of the NTV conjecture was given in the special
case that the weights � and ! had no point masses in common, largely to avoid what were then thought
to be technical issues. However, these issues turned out to be considerably more interesting, and this �nal
assumption of no common point masses was removed shortly after by Hytönen [Hyt2], who also simpli�ed
some aspects of the proof.
At this juncture, attention naturally turned to the analogous two weight inequalities for higher dimensional

singular integrals, as well as �-fractional singular integrals such as the Cauchy transform in the plane. In a
long paper begun in [SaShUr5] on the arXiv in 2013, and subsequently appearing in [SaShUr7], the authors
introduced the appropriate notions of Poisson kernel to deal with the A�2 condition on the one hand, and the
�-energy condition on the other hand (unlike for the Hilbert transform, these two Poisson kernels di¤er in
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general). The main result of that paper established the T1 theorem for �elliptic�vectors of singular integrals
under the side assumption that an energy condition and its dual held, thus identifying the culprit in higher
dimensions as the energy conditions. A general T1 conjecture is this (see below for de�nitions).

Conjecture 2. Let T�;n denote an elliptic vector of standard �-fractional singular integrals in Rn. Then
T�;n is bounded from L2 (Rn;�) to L2 (Rn;!), i.e.
(3) kT�;n (f�)kL2(Rn;!) . kfkL2(Rn;�) ; f 2 L2 (Rn;�) ;

if and only if the two one-tailed A�2 conditions with holes hold, the punctured A
�;punct
2 conditions hold, and

the two testing conditions hold,

kT�;n1Q�kL2(Rn;!) . k1QkL2(Rn;�) =
q
jQj� ;T�;n;dual1Q!L2(Rn;�) . k1QkL2(Rn;!) =

q
jQj! ;

for all cubes Q in Rn (whose sides need not be parallel to the coordinate axes).

In [SaShUr9], the authors have recently shown that the energy conditions are not necessary for bound-
edness of elliptic vectors of singular integrals in general, but have left open the following conjecture, which
in view of the aforementioned main result in [SaShUr7], would yield the T1 theorem for gradient elliptic
operators. An elliptic �-fractional singular integral vector T�;n in Rn is said to be gradient elliptic if both
jrxK� (x; y)j & jx� yj��n�1 and jryK� (x; y)j & jx� yj��n�1.
Conjecture 3. Let T�;n denote a gradient elliptic vector of standard �-fractional singular integrals in Rn.
If T�;n is bounded from L2 (Rn;�) to L2 (Rn;!), then the energy conditions hold as de�ned in De�nition 5
below.

While the energy conditions are not necessary for elliptic operators in general [SaShUr9], there are some
cases in which they have been proved to hold. Of course, they hold for the Hilbert transform on the line
[LaSaUr2], and in recent joint work with M. Lacey and B. Wick, the �ve of us have established that the
energy conditions hold for the Cauchy transform in the plane in the special case where one of the measures
is supported on either a straight line or a circle, thus proving the T1 theorem in this case. The key to
this result was an extension of the energy reversal phenomenon for the Hilbert transform to the setting of
the Cauchy transform, and here the one-dimensional nature of the line and circle played a critical role. In
particular, a special decomposition of a 2-dimensional measure into �end�and �side�pieces played a crucial
role, and was in fact discovered independently in both [SaShUr3] and [LaWi1]. A further instance of energy
reversal occurs in our T1 theorem [SaShUr8] when one measure is compactly supported on a C1;� curve in
Rn.
The paper [LaWi, v3] by Lacey and Wick overlaps both our paper [SaShUr7] and this paper to some

extent, and we refer the reader to [SaShUr7] for a more detailed discussion.
Finally, we mention an entirely di¤erent approach to investigating the two weight problem that has

attracted even more attention than the T1 approach we just described. Nazarov has shown that the two-tailed
A�2 condition of Muckenhoupt (see below) is insu¢ cient for (3), and this begs the question of strengthening
the Muckenhoupt condition enough to make it su¢ cient for (3). The great advantage of this approach is
that strengthened Muckenhoupt conditions are generally �easy�to check as compared to the highly unstable
testing conditions. The disadvantage of course is that such conditions have never been shown to characterize
(3). The literature devoted to these issues, beginning with that of Pérez [Per], and continuing more recently
with work of many groups involving, among others, D. Cruz-Uribe, M. Lacey, A. K. Lerner, J. M. Martell, F.
Nazarov, C. Pérez, A. Reznikov and A. Volberg, is both too vast and too tangential to this paper to record
here, and we encourage the reader to search the web for more on �bumped-up�Muckenhoupt conditions4.
This paper is concerned with the T1 approach and is a sequel to our �rst paper [SaShUr7]. We prove

here a two weight inequality for standard �-fractional Calderón-Zygmund operators T� in Euclidean space
Rn, where we assume n-dimensional A�2 conditions (with holes), punctured A

�: punct
2 conditions, and certain

�-energy conditions as side conditions on the weights (in higher dimensions the Poisson kernels used in
these two conditions di¤er). The two main di¤erences in this theorem here are that we state and prove5

4starting e.g. with the recent articles [And] and [Lac3]
5Very detailed proofs of all of the results here can be found on the arXiv [SaShUr6].
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our theorem in the more general setting of quasicubes (as in [SaShUr5]), and more notably, we now permit
the weights, or measures, to have common point masses, something not permitted in [SaShUr7] (and only
obtained for a partial range of � in [LaWi, version 3]). As a consequence, we use A�2 conditions with holes
as in the one-dimensional setting of Hytönen [Hyt2], together with punctured A�;punct2 conditions, as the
usual A�2 �without punctures� fails whenever the measures have a common point mass. The extension to
permitting common point masses uses the two weight Poisson inequality in [Saw] to derive functional energy,
together with a delicate adaptation of arguments in [SaShUr5]. The key point here is the use of the (typically
necessary) �punctured�Muckenhoupt A�;punct2 conditions below. They turn out to be crucial in estimating
the backward Poisson testing condition later in the paper. We remark that Hytönen�s bilinear dyadic Poisson
operator and shifted dyadic grids [Hyt2] in dimension n = 1 can be extended to derive functional energy in
higher dimensions, but at a signi�cant cost of increased complexity. See the previous version of this paper
on the arXiv for this approach6, and also [LaWi] where Lacey and Wick use this approach. Finally, we
point out that our use of punctured Muckenhoupt conditions provides a simpler alternative to Hytönen�s
method of extending to common point masses the NTV conjecture for the Hilbert transform [Hyt2]. The
Muckenhoupt A�2 conditions (with holes) are also typically necessary for the norm inequality, but the proofs
require extensive modi�cation when quasicubes and common point masses are included.
On the other hand, the extension to quasicubes in the setting of no common point masses turns out to

be, after checking all the details, mostly a cosmetic modi�cation of the proof in [SaShUr7], as demonstrated
in [SaShUr5]. The use of quasicubes is however crucial in our T1 theorem when one of the measures is
compactly supported on a C1;� curve [SaShUr8], and this accounts for their inclusion here.
We also introduce a new side condition on a measure, that we call k-energy dispersed, which captures the

notion that a measure is not supported too near a k-dimensional plane at any scale. When 0 � � < n is
appropriately related to k, we are able to obtain the necessity of the energy conditions for k-energy dispersed
measures, and hence a T1 theorem for strongly elliptic operators T�. The case k = n � 1 is similar to the
condition of uniformly full dimension introduced in [LaWi, versions 2 and 3].
We begin by recalling the notion of quasicube used in [SaShUr5] - a special case of the classical notion

used in quasiconformal theory.

De�nition 1. We say that a homeomorphism 
 : Rn ! Rn is a globally biLipschitz map if

(4) k
kLip � sup
x;y2Rn

k
 (x)� 
 (y)k
kx� yk <1;

and

�1

Lip
<1.

Note that a globally biLipschitz map 
 is di¤erentiable almost everywhere, and that there are constants
c; C > 0 such that

c � J
 (x) � jdetD
 (x)j � C; x 2 Rn:

Example 1. Quasicubes can be wildly shaped, as illustrated by the standard example of a logarithmic spiral
in the plane f" (z) = z jzj2"i = zei" ln(zz). Indeed, f" : C! C is a globally biLipschitz map with Lipschitz
constant 1 + C" since f�1" (w) = w jwj�2"i and

rf" =
�
@f"
@z

;
@f"
@z

�
=
�
jzj2"i + i" jzj2"i ; i"z

z
jzj2"i

�
:

On the other hand, f" behaves wildly at the origin since the image of the closed unit interval on the real line
under f" is an in�nite logarithmic spiral.

Notation 1. We de�ne Pn to be the collection of half open, half closed cubes in Rn with sides parallel to

the coordinate axes. A half open, half closed cube Q in Rn has the form Q = Q (c; `) �
nY
k=1

�
ck � `

2 ; ck +
`
2

�
for some ` > 0 and c = (c1; :::; cn) 2 Rn. The cube Q (c; `) is described as having center c and sidelength `.

We repeat the natural quasi de�nitions from [SaShUr5].

6Additional small arguments are needed to complete the shifted dyadic proof given there, but we omit them in favour of the
simpler approach here resting on punctured Muckenhoupt conditions instead of holes. The authors can be contacted regarding
completion of the shifted dyadic proof.
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De�nition 2. Suppose that 
 : Rn ! Rn is a globally biLipschitz map.
(1) If E is a measurable subset of Rn, we de�ne 
E � f
 (x) : x 2 Eg to be the image of E under the

homeomorphism 
.
(a) In the special case that E = Q is a cube in Rn, we will refer to 
Q as a quasicube (or 
-quasicube

if 
 is not clear from the context).
(b) We de�ne the center c
Q = c (
Q) of the quasicube 
Q to be the point 
cQ where cQ = c (Q)

is the center of Q.
(c) We de�ne the side length ` (
Q) of the quasicube 
Q to be the sidelength ` (Q) of the cube Q.
(d) For r > 0 we de�ne the �dilation� r
Q of a quasicube 
Q to be 
rQ where rQ is the usual

�dilation�of a cube in Rn that is concentric with Q and having side length r` (Q).
(2) If K is a collection of cubes in Rn, we de�ne 
K � f
Q : Q 2 Kg to be the collection of quasicubes


Q as Q ranges over K.
(3) If F is a grid of cubes in Rn, we de�ne the inherited quasigrid structure on 
F by declaring that


Q is a child of 
Q0 in 
F if Q is a child of Q0 in the grid F .

Note that if 
Q is a quasicube, then j
Qj
1
n � jQj

1
n = ` (Q) = ` (
Q). For a quasicube J = 
Q, we will

generally use the expression jJ j
1
n in the various estimates arising in the proofs below, but will often use ` (J)

when de�ning collections of quasicubes. Moreover, there are constants Rbig and Rsmall such that we have
the comparability containments

Q+
xQ � Rbig
Q and Rsmall
Q � Q+
xQ :

Given a �xed globally biLipschitz map 
 on Rn, we will de�ne below the n-dimensional A�2 conditions
(with holes), punctured Muckenhoupt conditions A�;punct2 , testing conditions, and energy conditions using

-quasicubes in place of cubes, and we will refer to these new conditions as quasiA�2 , quasitesting and
quasienergy conditions. We will then prove a T1 theorem with quasitesting and with quasiA�2 and quasienergy
side conditions on the weights. Since quasiA�2 \ quasiA

�;punct
2 = A�2 \A

�;punct
2 (see [SaShUr8]), we usually

drop the pre�x quasi from the various Muckenhoupt conditions (warning: quasiA�2 6= A�2 ).
Since the A�2 and punctured Muckenhoupt conditions typically hold, this identi�es the culprit in higher

dimensions as the pair of quasienergy conditions. We point out that these quasienergy conditions are implied
by higher dimensional analogues of essentially all the other side conditions used previously in two weight
theory, in particular doubling conditions and the Energy Hypothesis (1.16) in [LaSaUr2], as well as the
condition of k-energy dispersed measures that is introduced below. This leads to our second theorem, which
establishes the T1 theorem for strongly elliptic operators T� when both measures are k-energy dispered with
k and � appropriately related.
It turns out that in higher dimensions, there are two natural �Poisson integrals�P� and P� that arise,

the usual Poisson integral P� that emerges in connection with energy considerations, and a di¤erent Poisson
integral P� that emerges in connection with size considerations. The standard Poisson integral P� appears
in the energy conditions, and the reproducing Poisson integral P� appears in the A�2 condition. These two
kernels coincide in dimension n = 1 for the case � = 0 corresponding to the Hilbert transform.

2. Statements of results

Now we turn to a precise description of our main two weight theorem.

Assumption: We �x once and for all a globally biLipschitz map 
 : Rn ! Rn for use in all of our
quasi-notions.

We will prove a two weight inequality for standard �-fractional Calderón-Zygmund operators T� in Euclid-
ean space Rn, where we assume the n-dimensional A�2 conditions, new punctured A�2 conditions, and certain
�-quasienergy conditions as side conditions on the weights. In particular, we show that for positive locally
�nite Borel measures � and ! in Rn, and assuming that both the quasienergy condition and its dual hold,
a strongly elliptic vector of standard �-fractional Calderón-Zygmund operators T� is bounded from L2 (�)
to L2 (!) if and only if the A�2 condition and its dual hold (we assume a mild additional condition on the
quasicubes for this), the punctured Muckenhoupt condition A�;punct2 and its dual hold, the quasicube testing
condition for T� and its dual hold, and the quasiweak boundedness property holds. In order to state our
theorem precisely, we de�ne these terms in the following subsections.
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Remark 1. It is possible to collect our various Muckenhoupt and quasienergy assumptions on the weight
pair (�; !) into just two compact side conditions of Muckenhoupt and quasienergy type. We prefer however,
to keep the individual conditions separate so that the interested reader can track their use below.

2.1. Standard fractional singular integrals and the norm inequality. Let 0 � � < n. We de�ne
a standard �-fractional CZ kernel K�(x; y) to be a function de�ned on Rn � Rn satisfying the following
fractional size and smoothness conditions of order 1 + � for some � > 0,

jK� (x; y)j � CCZ jx� yj��n and jrK� (x; y)j � CCZ jx� yj��n�1 ;(5)

jrK� (x; y)�rK� (x0; y)j � CCZ

�
jx� x0j
jx� yj

��
jx� yj��n�1 ; jx� x0j

jx� yj �
1

2
;

and the last inequality also holds for the adjoint kernel in which x and y are interchanged. We note that
a more general de�nition of kernel has only order of smoothness � > 0, rather than 1 + �, but the use of
the Monotonicity and Energy Lemmas below, which involve �rst order Taylor approximations to the kernel
functions K� (�; y), requires order of smoothness more than 1.

2.1.1. De�ning the norm inequality. We now turn to a precise de�nition of the weighted norm inequality

(6) kT�� fkL2(!) � NT�� kfkL2(�) ; f 2 L2 (�) :

For this we introduce a family
n
���;R

o
0<�<R<1

of nonnegative functions on [0;1) so that the truncated
kernels K�

�;R (x; y) = ���;R (jx� yj)K� (x; y) are bounded with compact support for �xed x or y. Then the
truncated operators

T��;�;Rf (x) �
Z
Rn
K�
�;R (x; y) f (y) d� (y) ; x 2 Rn;

are pointwise well-de�ned, and we will refer to the pair
�
K�;

n
���;R

o
0<�<R<1

�
as an �-fractional singular

integral operator, which we typically denote by T�, suppressing the dependence on the truncations.

De�nition 3. We say that an �-fractional singular integral operator T� =
�
K�;

n
���;R

o
0<�<R<1

�
satis�es

the norm inequality (6) providedT��;�;RfL2(!) � NT�� kfkL2(�) ; f 2 L2 (�) ; 0 < � < R <1:

It turns out that, in the presence of Muckenhoupt conditions, the norm inequality (6) is essentially
independent of the choice of truncations used, and we now explain this in some detail. A smooth truncation
of T� has kernel ��;R (jx� yj)K� (x; y) for a smooth function ��;R compactly supported in (�;R), 0 <
� < R < 1, and satisfying standard CZ estimates. A typical example of an �-fractional transform is the
�-fractional Riesz vector of operators

R�;n = fR�;n` : 1 � ` � ng ; 0 � � < n:

The Riesz transforms Rn;�` are convolution fractional singular integrals Rn;�` f � Kn;�
` � f with odd kernel

de�ned by

K�;n
` (w) � w`

jwjn+1��
� 
` (w)

jwjn��
; w =

�
w1; :::; wn

�
:

However, in dealing with energy considerations, and in particular in the Monotonicity Lemma below
where �rst order Taylor approximations are made on the truncated kernels, it is necessary to use the tangent
line truncation of the Riesz transform R�;n` whose kernel is de�ned to be 
` (w) 

�
�;R (jwj) where  ��;R is

continuously di¤erentiable on an interval (0; S) with 0 < � < R < S, and where  ��;R (r) = r��n if � � r � R,
and has constant derivative on both (0; �) and (R;S) where  ��;R (S) = 0. Here S is uniquely determined by
R and �. Finally we set  ��;R (0) = 0 as well, so that the kernel vanishes on the diagonal and common point
masses do not �see�each other. Note also that the tangent line extension of a C1;� function on the line is
again C1;� with no increase in the C1;� norm.
It was shown in the one dimensional case with no common point masses in [LaSaShUr3], that boundedness

of the Hilbert transform H with one set of appropriate truncations together with the A�2 condition without
holes, is equivalent to boundedness of H with any other set of appropriate truncations. We need to extend
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this to R�;n and more general operators in higher dimensions and to permit common point masses, so that
we are free to use the tangent line truncations throughout the proof of our theorem. For this purpose, we
note that the di¤erence between the tangent line truncated kernel 
` (w) 

�
�;R (jwj) and the corresponding

cuto¤ kernel 
` (w)1[�;R] (jwj) jwj��n satis�es (since both kernels vanish at the origin)���
` (w) ��;R (jwj)� 
` (w)1[�;R] (jwj) jwj��n���
.

1X
k=0

2�k(n��)
n�
2�k�

���n
1[2�k�1�;2�k�] (jwj)

o
+

1X
k=1

2�k(n��)
n�
2kR

���n
1[2k�1R;2kR] (jwj)

o
�

1X
k=0

2�k(n��)K2�k� (w) +
1X
k=1

2�k(n��)K2kR (w) ;

where the kernels K� (w) � 1
�n��1[�;2�] (jwj) are easily seen to satisfy, uniformly in �, the norm inequality

(12) with constant controlled by the o¤set A�2 condition (7) below. The equivalence of the norm inequality
for these two families of truncations now follows from the summability of the series

P1
k=0 2

�k(n��) for
0 � � < n. The case of more general families of truncations and operators is similar.

2.2. Quasicube testing conditions. The following �dual�quasicube testing conditions are necessary for
the boundedness of T� from L2 (�) to L2 (!),

T2T� � sup
Q2
Pn

1

jQj�

Z
Q

jT� (1Q�)j2 ! <1;

(T�T�)
2 � sup

Q2
Pn

1

jQj!

Z
Q

��(T�)� (1Q!)��2 � <1;
and where we interpret the right sides as holding uniformly over all tangent line truncations of T�.

Remark 2. We alert the reader that the symbols Q; I; J;K will all be used to denote either cubes or quasi-
cubes, and the context will make clear which is the case. Throughout most of the proof of the main theorem
only quasicubes are considered.

2.3. Quasiweak boundedness property. The quasiweak boundedness property for T� with constant C
is given by ����Z

Q

T� (1Q0�) d!

���� � WBPT�qjQj! jQ0j�;
for all quasicubes Q;Q0 with

1

C
� jQj

1
n

jQ0j
1
n

� C;

and either Q � 3Q0 nQ0 or Q0 � 3Q nQ;

and where we interpret the left side above as holding uniformly over all tangent line trucations of T�. Note
that the quasiweak boundedness property is implied by either the tripled quasicube testing condition,

k13QT� (1Q�)kL2(!) � T
triple
T� k1QkL2(�) ; for all quasicubes Q in Rn;

or its dual de�ned with � and ! interchanged and the dual operator T�;� in place of T�. In turn, the tripled
quasicube testing condition can be obtained from the quasicube testing condition for the truncated weight
pairs (!;1Q�).

2.4. Poisson integrals and A�2 . Let � be a locally �nite positive Borel measure on Rn, and suppose Q is

an 
-quasicube in Rn. Recall that jQj
1
n � ` (Q) for a quasicube Q. The two �-fractional Poisson integrals
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of � on a quasicube Q are given by:

P� (Q;�) �
Z
Rn

jQj
1
n�

jQj
1
n + jx� xQj

�n+1�� d� (x) ;

P� (Q;�) �
Z
Rn

0B@ jQj
1
n�

jQj
1
n + jx� xQj

�2
1CA
n��

d� (x) ;

where we emphasize that jx� xQj denotes Euclidean distance between x and xQ and jQj denotes the Lebesgue
measure of the quasicube Q. We refer to P� as the standard Poisson integral and to P� as the reproducing
Poisson integral.
We say that the pair K;K 0 in Pn are neighbours if K and K 0 live in a common dyadic grid and both

K � 3K 0 n K 0 and K 0 � 3K n K, and we denote by Nn the set of pairs (K;K 0) in Pn � Pn that are
neighbours. Let


Nn = f(
K;
K 0) : (K;K 0) 2 Nng
be the corresponding collection of quasineighbour pairs of quasicubes. Let � and ! be locally �nite positive
Borel measures on Rn, possibly having common point masses, and suppose 0 � � < n. Then we de�ne the
classical o¤set A�2 constants by

(7) A�2 (�; !) � sup
(Q;Q0)2
Nn

jQj�
jQj1�

�
n

jQ0j!
jQ0j1�

�
n
:

Since the cubes in Pn are products of half open, half closed intervals [a; b), the neighbouring quasicubes
(Q;Q0) 2 
Nn are disjoint, and the common point masses of � and ! do not simultaneously appear in each
factor.
We now de�ne the one-tailed A�2 constant using P�. The energy constants Estrong� introduced in the next

subsection will use the standard Poisson integral P�.

De�nition 4. The one-tailed constants A�2 and A
�;�
2 for the weight pair (�; !) are given by

A�2 � sup
Q2
Pn

P� (Q;1Qc�)
jQj!
jQj1�

�
n
<1;

A�;�2 � sup
Q2
Pn

P� (Q;1Qc!)
jQj�
jQj1�

�
n
<1:

Note that these de�nitions are the analogues of the corresponding conditions with �holes�introduced by
Hytönen [Hyt] in dimension n = 1 - the supports of the measures 1Qc� and 1Q! in the de�nition of A�2 are
disjoint, and so the common point masses of � and ! do not appear simultaneously in each factor. Note
also that, unlike in [SaShUr5], where common point masses were not permitted, we can no longer assert the
equivalence of A�2 with holes taken over quasicubes with A�2 with holes taken over cubes.

2.4.1. Punctured A�2 conditions. As mentioned earlier, the classical A
�
2 characteristic supQ2
Qn

jQj!
jQj1�

�
n

jQj�
jQj1�

�
n

fails to be �nite when the measures � and ! have a common point mass - simply let Q in the sup above
shrink to a common mass point. But there is a substitute that is quite similar in character that is motivated
by the fact that for large quasicubes Q, the sup above is problematic only if just one of the measures is
mostly a point mass when restricted to Q. The one-dimensional version of the condition we are about to
describe arose in Conjecture 1.12 of Lacey [Lac2], and it was pointed out in [Hyt2] that its necessity on
the line follows from the proof of Proposition 2.1 in [LaSaUr2]. We now extend this condition to higher
dimensions, where its necessity is more subtle.
Given an at most countable set P = fpkg1k=1 in Rn, a quasicube Q 2 
Pn, and a positive locally �nite

Borel measure �, de�ne
� (Q;P) � jQj� � sup f� (pk) : pk 2 Q \Pg ;

where the supremum is actually achieved since
P

pk2Q\P � (pk) < 1 as � is locally �nite. The quantity
� (Q;P) is simply the e� measure of Q where e� is the measure � with its largest point mass from P in Q
removed. Given a locally �nite measure pair (�; !), let P(�;!) = fpkg1k=1 be the at most countable set of
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common point masses of � and !. Then the weighted norm inequality (6) typically implies �niteness of the
following punctured Muckenhoupt conditions:

A�;punct2 (�; !) � sup
Q2
Pn

!
�
Q;P(�;!)

�
jQj1�

�
n

jQj�
jQj1�

�
n
;

A�;�;punct2 (�; !) � sup
Q2
Pn

jQj!
jQj1�

�
n

�
�
Q;P(�;!)

�
jQj1�

�
n

:

Lemma 1. Let T� be an �-fractional singular integral operator as above, and suppose that there is a positive
constant C0 such that

A�2 (�; !) � C0N
2
T� (�; !) ;

for all pairs (�; !) of positive locally �nite measures having no common point masses. Now let � and !
be positive locally �nite Borel measures on Rn and let P(�;!) be the possibly nonempty set of common point
masses. Then we have

A�;punct2 (�; !) +A�;�;punct2 (�; !) � 4C0N2T� (�; !) :

Proof. Fix a quasicube Q 2 
Pn. Suppose �rst that P(�;!) \Q = fpkg2Nk=1 is �nite with an even number of
points. Choose k1 2 N2N = f1; 2; :::; 2Ng so that

� (pk1) = max
k2N2N

� (pk) :

Then choose k2 2 N2N n fk1g such that

! (pk2) = max
k2N2Nnfk1g

! (pk) :

Repeat this procedure so that

�
�
pk2m+1

�
= max

k2N2Nnfk1;:::k2mg
� (pk) ; k2m+1 2 N2N n fk1; :::k2mg ;

!
�
pk2m+2

�
= max

k2N2Nnfk1;:::k2m+1g
! (pk) ; k2m+2 2 N2N n fk1; :::k2m+1g ;

for each m � N � 1. It is now clear that both
N�1X
i=0

�
�
pk2i+1

�
� 1

2
�
�
Q \P(�;!)

�
and

N�1X
i=0

!
�
pk2i+2

�
� 1

2

�
!
�
Q \P(�;!)

�
� ! (p1)

�
:

In the case of an odd number 2N�1 of common point masses, the second inequality will have N�1 replaced
with N � 2.
Now, returning to the case of 2N common point masses , de�ne new measures e� and e! by

e� � 1Q� � N�1X
i=0

�
�
pk2i+2

�
�pk2i+2 and e! = 1Q! � N�1X

i=0

!
�
pk2i+1

�
�pk2i+1

so that

jQje� � 1

2
jQj� and jQje! � 1

2
!
�
Q;P(�;!)

�
Now e� and e! have no common point masses and NT� (�; !) is monotone in each measure separately, so we
have

!
�
Q;P(�;!)

�
jQj1�

�
n

jQj�
jQj1�

�
n
� 4A�2 (e�; e!) � 4C0N2T� (e�; e!) � 4C0N2T� (�; !) :

Thus A�;punct2 (�; !) � 4C0N
2
T� (�; !) if the number of common point masses in Q is �nite. A limiting

argument proves the general case. The dual inequality A�;�;punct2 (�; !) � 4C0N2T� (�; !) now follows upon
interchanging the measures � and !. �

Now we turn to the de�nition of a quasiHaar basis of L2 (�).
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2.5. A weighted quasiHaar basis. We will use a construction of a quasiHaar basis in Rn that is adapted
to a measure � (c.f. [NTV2] for the nonquasi case and [KaLiPeWa] for the geometrically doubling quasi-
metric space case). Given a dyadic quasicube Q 2 
D, where D is a dyadic grid of cubes from Pn, let 4�

Q

denote orthogonal projection onto the �nite dimensional subspace L2Q (�) of L
2 (�) that consists of linear

combinations of the indicators of the children C (Q) of Q that have �-mean zero over Q:

L2Q (�) �

8<:f = X
Q02C(Q)

aQ01Q0 : aQ0 2 R;
Z
Q

fd� = 0

9=; :

Then we have the important telescoping property for dyadic quasicubes Q1 � Q2 (where [Q1; Q2) �
fQ dyadic : Q1 � Q $ Q2g):

(8) 1Q0 (x)

0@ X
Q2[Q1;Q2)

4�
Qf (x)

1A = 1Q0 (x)
�
E�Q0

f � E�Q2
f
�
; Q0 2 C (Q1) ; f 2 L2 (�) :

We will at times �nd it convenient to use a �xed orthonormal basis
n
h�;aQ

o
a2�n

of L2Q (�) where �n �

f0; 1gn n f1g is a convenient index set with 1 = (1; 1; :::; 1). Then
n
h�;aQ

o
a2�n and Q2
D

is an orthonormal

basis for L2 (�), with the understanding that we add the constant function 1 if � is a �nite measure. In
particular we have

kfk2L2(�) =
X
Q2
D

4�
Qf
2
L2(�)

=
X
Q2
D

��� bf (Q)���2 ; ��� bf (Q)���2 � X
a2�n

����Df; h�;aQ E
�

����2 ;
where the measure is suppressed in the notation bf . Indeed, this follows from (8) and Lebesgue�s di¤erentiation
theorem for quasicubes. We also record the following useful estimate. If I 0 is any of the 2n 
D-children of
I, and a 2 �n, then

(9) jE�I0h
�;a
I j �

q
E�I0 (h

�;a
I )

2 � 1q
jI 0j�

:

2.6. The strong quasienergy conditions. Given a dyadic quasicube K 2 
D and a positive measure �
we de�ne the quasiHaar projection P�K �

P
J2
D: J�K

4�
J on K by

P�Kf =
X

J2
D: J�K

X
a2�n

hf; h�;aJ i� h
�;a
J and kP�Kfk

2

L2(�) =
X

J2
D: J�K

X
a2�n

���hf; h�;aJ i�
���2 ;

and where a quasiHaar basis fh�;aJ ga2�n and J2
D
 adapted to the measure � was de�ned in the subsubsection
on a weighted quasiHaar basis above.
Now we de�ne various notions for quasicubes which are inherited from the same notions for cubes. The

main objective here is to use the familiar notation that one uses for cubes, but now extended to 
-quasicubes.
We have already introduced the notions of quasigrids 
D, and center, sidelength and dyadic associated to
quasicubes Q 2 
D, as well as quasiHaar functions, and we will continue to extend to quasicubes the
additional familiar notions related to cubes as we come across them. We begin with the notion of deeply
embedded. Fix a quasigrid 
D. We say that a dyadic quasicube J is (r; ")-deeply embedded in a (not
necessarily dyadic) quasicube K, which we write as J br;" K, when J � K and both

` (J) � 2�r` (K) ;(10)

qdist (J; @K) � 1

2
` (J)

"
` (K)

1�"
;

where we de�ne the quasidistance qdist (E;F ) between two sets E and F to be the Euclidean distance
dist

�

�1E;
�1F

�
between the preimages 
�1E and 
�1F of E and F under the map 
, and where we

recall that ` (J) � jJ j
1
n . For the most part we will consider J br;" K when J and K belong to a common

quasigrid 
D, but an exception is made when de�ning the strong energy constants below.
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Recall that in dimension n = 1, and for � = 0, the energy condition constant was de�ned by

E2 � sup
I= _[Ir

1

jIj�

1X
r=1

�
P� (Ir;1I�)

jIrj

�2 P!Irx2L2(!) ;
where I and Ir are intervals in the real line, and _[ denotes a pairwise disjoint union. The extension to
higher dimensions we use here is that of �strong quasienergy condition�below. Later on, in the proof of the
theorem, we will break down this strong quasienergy condition into various smaller quasienergy conditions,
which are then used in di¤erent ways in the proof.
We de�ne a quasicube K (not necessarily in 
D) to be an alternate 
D-quasicube if it is a union of 2n


D-quasicubes K 0 with side length ` (K 0) = 1
2` (K) (such quasicubes were called shifted in [SaShUr5], but

that terminology con�icts with the more familiar notion of shifted quasigrid). Thus for any 
D-quasicube
L there are exactly 2n alternate 
D-quasicubes of twice the side length that contain L, and one of them is
of course the 
D-parent of L. We denote the collection of alternate 
D-quasicubes by A
D.
The extension of the energy conditions to higher dimensions in [SaShUr5] used the collection

Mr;"�deep (K) � fmaximal J br;" Kg

of maximal (r; ")-deeply embedded dyadic subquasicubes of a quasicube K (a subquasicube J of K is a
dyadic subquasicube of K if J 2 
D when 
D is a dyadic quasigrid containing K). This collection of dyadic
subquasicubes of K is of course a pairwise disjoint decomposition of K.We also de�ned there a re�nement
and extension of the collection M(r;")�deep (K) for certain K and each ` � 1. For an alternate quasicube
K 2 A
D, de�neM(r;")�deep;
D (K) to consist of themaximal r-deeply embedded 
D-dyadic subquasicubes
J of K. (In the special case that K itself belongs to 
D, thenM(r;")�deep;
D (K) =M(r;")�deep (K).) Then
in [SaShUr5] for ` � 1 we de�ned the re�nement (where �`K 0 denotes the `th ancestor of K 0 in the grid):

M`
(r;")�deep;
D (K) �

�
J 2M(r;")�deep;
D

�
�`K 0� for some K 0 2 C
D (K) :
J � L for some L 2M(r;")�deep (K)

	
;

where C
D (K) is the obvious extension to alternate quasicubes of the set of 
D-dyadic children. Thus
M`

(r;")�deep;
D (K) is the union, over all quasichildren K
0 of K, of those quasicubes inM(r;")�deep

�
�`K 0�

that happen to be contained in some L 2 M(r;")�deep;
D (K). We then de�ne the strong quasienergy
condition as follows.

De�nition 5. Let 0 � � < n and �x parameters (r; "). Suppose � and ! are positive Borel measures on Rn
possibly with common point masses. Then the strong quasienergy constant Estrong� is de�ned by7

�
Estrong�

�2 � sup

D

sup
I= _[Ir
I;Ir2
D

1

jIj�

1X
r=1

X
J2Mr;"�deep(Ir)

 
P� (J;1I�)

jJ j
1
n

!2
kP!Jxk

2
L2(!)

+sup

D

sup
I2A
D

sup
`�0

1

jIj�

X
J2M`

(r;")�deep;
D(I)

 
P� (J;1I�)

jJ j
1
n

!2
kP!Jxk

2
L2(!) :

Similarly we have a dual version of Estrong� denoted Estrong;�� , and both depend on r and " as well as on n
and �. An important point in this de�nition is that the quasicube I in the second line is permitted to lie
outside the quasigrid 
D, but only as an alternate dyadic quasicube I 2 A
D. In the setting of quasicubes
we continue to use the linear function x in the �nal factor kP!Jxk

2
L2(!) of each line, and not the pushforward

of x by 
. The reason of course is that this condition is used to capture the �rst order information in the
Taylor expansion of a singular kernel. There is a logically weaker form of the quasienergy conditions that
we discuss after stating our main theorem, but these re�ned quasienergy conditions are more complicated
to state, and have as yet found no application - the strong energy conditions above su¢ ce for use when one
measure is compactly supported on a C1;� curve as in [SaShUr8].

7The �rst line in the display in De�nition 5 in [SaShUr6] is missing notation that is corrected here.
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2.7. Statement of the Theorems. We can now state our main quasicube two weight theorem for general
measures allowing common point masses, as well as our application to energy dispersed measures. Recall
that 
 : Rn ! Rn is a globally biLipschitz map, and that 
Pn denotes the collection of all quasicubes in Rn
whose preimages under 
 are usual cubes with sides parallel to the coordinate axes. Denote by 
D � 
Pn
a dyadic quasigrid in Rn. For the purpose of obtaining necessity of A�2 for n

2 � � < n, we adapt the notion
of strong ellipticity from [SaShUr7].

De�nition 6. Fix a globally biLipschitz map 
. Let T� =
�
T�j
	J
j=1

be a vector of singular integral operators

with standard kernels
�
K�
j

	J
j=1
. We say that T� is strongly elliptic with respect to 
 if for each m 2

f1;�1gn, there is a sequence of coe¢ cients
�
�mj
	J
j=1

such that

(11)

������
JX
j=1

�mj K
�
j (x; x+ tu)

������ � ct��n; t 2 R;

holds for all unit vectors u in the quasi-n-ant 
Vm (i.e. an n-dimensional quasi-quadrant) where

Vm = fx 2 Rn : mixi > 0 for 1 � i � ng ; m 2 f1;�1gn :

Theorem 1. Suppose that T� is a standard �-fractional singular integral operator on Rn, and that ! and
� are positive Borel measures on Rn (possibly having common point masses). Set T�� f = T� (f�) for any
smooth truncation of T�� . Let 
 : Rn ! Rn be a globally biLipschitz map.

(1) Suppose 0 � � < n. Then the operator T�� is bounded from L2 (�) to L2 (!), i.e.

(12) kT�� fkL2(!) � NT�� kfkL2(�) ;
uniformly in smooth truncations of T�, and moreover

NT�� � C�

�q
A�2 +A

�;�
2 +A�;punct2 +A�;�;punct2 + TT� + T

�
T� + Estrong� + Estrong;�� +WBPT�

�
;

provided that the two dual A�2 conditions and the two dual punctured Muckenhoupt conditions all
hold, and the two dual quasitesting conditions for T� hold, the quasiweak boundedness property for
T� holds for a su¢ ciently large constant C depending on the goodness parameter r, and provided
that the two dual strong quasienergy conditions hold uniformly over all dyadic quasigrids 
D � 
Pn,
i.e. Estrong� + Estrong;�� < 1, and where the goodness parameters r and " in the de�nition of the
collections M(r;")�deep (K) and M`

(r;")�deep;
D (K) appearing in the strong energy conditions, are
�xed su¢ ciently large and small respectively depending only on n and �.

(2) Conversely, suppose 0 � � < n and that T� =
�
T�j
	J
j=1

is a vector of Calderón-Zygmund operators

with standard kernels
�
K�
j

	J
j=1
. In the range 0 � � < n

2 , we assume the ellipticity condition from

([SaShUr7]): there is c > 0 such that for each unit vector u there is j satisfying

(13)
��K�

j (x; x+ tu)
�� � ct��n; t 2 R:

For the range n
2 � � < n, we assume the strong ellipticity condition in De�nition 6 above. Further-

more, assume that each operator T�j is bounded from L2 (�) to L2 (!),�T�j �� fL2(!) � NT�j kfkL2(�) :
Then the fractional A�2 conditions (with �holes�) hold as well as the punctured Muckenhoupt condi-
tions, and moreover, q

A�2 +A
�;�
2 +A�;punct2 +A�;�;punct2 � CNT� :

Problem 1. Given any strongly elliptic vector T� of classical �-fractional Calderón-Zygmund operators, it
is an open question whether or not the usual (quasi or not) energy conditions are necessary for boundedness
of T�. See [SaShUr4] for a failure of energy reversal in higher dimensions - such an energy reversal was
used in dimension n = 1 to prove the necessity of the energy condition for the Hilbert transform, and also in
[SaShUr3] and [LaSaShUrWi] for the Riesz transforms and Cauchy transforms respectively when one of the
measures is supported on a line, and in [SaShUr8] when one of the measures is supported on a C1;� curve.



14 E.T. SAWYER, C.-Y. SHEN, AND I. URIARTE-TUERO

Remark 3. If De�nition 6 holds for some T� and 
, then 
 must be fairly tame, in particular the logarithmic
spirals in Example 1 are ruled out! On the other hand, the vector of Riesz transforms R�;n is easily seen to be
strongly elliptic with respect to 
 if 
 satis�es the following sector separation property. Given a hyperplane
H and a perpendicular line L intersecting at point P , there exist spherical cones SH and SL intersecting
only at the point P 0 = 
(P ), such that H 0 � 
H � SH and L0 � 
L � SL and

dist (x; @SH) � jxj ; x 2 H and dist (x; @SL) � jxj ; x 2 L :

Examples of globally biLipshcitz maps 
 that satisfy the sector separation property include �nite compositions
of maps of the form


 (x1; x
0) = (x1; x

0 +  (x1)) ; (x1; x
0) 2 Rn;

where  : R! Rn�1 is a Lipschitz map with su¢ ciently small Lipschitz constant.

In order to state our application to energy dispersed measures, we introduce some notation and a de�nition.
Fix a globally biLipschitz map 
 : Rn ! Rn. For 0 � k � n � 1, denote by Lnk the collection of all
k-dimensional planes in Rn. If in addition J is an 
-quasicube in Rn, denote by Mn

k (J; �) the �moments�

Mn
k (J; �)

2 � inf
L2Lnk

Z
J

dist (x; L)
2
d� (x) ;

and note that Mn
0 (J; �) is related to the energy E (J; �) �

s
E�J

����x�E�JxjJj
1
n

����2; E�Jx = 1
jJj�

R
J
xd� (x):

Mn
0 (J; �)

2
=

Z
J

jx� E�Jxj
2
d� (x) = jJ j� jJ j

2
n E (J; �)2 :

Clearly the moments decrease in k and we now give a name to various reversals of this decrease.

De�nition 7. Suppose � is a locally �nite Borel measure on Rn, and let k be an integer satisfying 0 �
k � n � 1. We say that � is k-energy dispersed if there is a positive constant C = Ck;n such that for all

-quasicubes J ,

Mn
0 (J; �) � CMn

k (J; �) :

If both � and ! are appropriately energy dispersed relative to the order 0 � � < n, then the T1 theorem
holds for the �-fractional Riesz vector transform R�;n.

Theorem 2. Let 0 � � < n and 0 � k � n� 1 sastisfy�
n� k < � < n; � 6= n� 1 if 1 � k � n� 2
0 � � < n; � 6= 1; n� 1 if k = n� 1 :

Suppose that R�;n is the �-fractional Riesz vector transform on Rn, and that ! and � are k-energy dispersed
locally �nite positive Borel measures on Rn (possibly having common point masses). Set R�;n

� f = R�;n (f�)
for any smooth truncation of R�;n. Let 
 : Rn ! Rn be a globally biLipschitz map. Then the operator R�;n

�

is bounded from L2 (�) to L2 (!), i.e.

kR�
�fkL2(!) � NR�

�
kfkL2(�) ;

uniformly in smooth truncations of R�;n, if and only if the Muckenhoupt conditions hold, the testing condi-
tions hold and the weak boundedness property holds. Moreover, we have the equivalence

NR�;n
�

�
q
A�2 +A

�;�
2 +A�;punct2 +A�;�;punct2 + TR�;n + T�R�;n +WBPR�;n :

The case k = n� 1 of k-energy dispersed is similar to the notion of uniformly full dimension introduced
by Lacey and Wick in [LaWi, versions 2 and 3]. The proof of Theorem 2 shows that we can also take ! and
� to be k1 and k2 energy dispersed respectively, provided � satis�es the hypotheses with respect to both k1
and k2.

3. Proof of Theorem 1

We now give the proof of Theorem 1 in the following sections. Sections 5, 7 and 10 are largely taken
verbatim from the corresponding sections of [SaShUr5], but are included here since their omission here would
hinder the readability of an already complicated argument.
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3.1. Good quasicubes and energy Muckenhoupt conditions. First we extend the notion of goodness
to quasicubes.

De�nition 8. Let r 2 N and 0 < " < 1. Fix a quasigrid 
D. A dyadic quasicube J is (r; ")-good, or simply
good, if for every dyadic superquasicube I, it is the case that either J has side length greater than 2�r times
that of I, or J br;" I is (r; ")-deeply embedded in I.

Note that this de�nition simply asserts that a dyadic quasicube J = 
J 0 is (r; ")-good if and only if the
cube J 0 is (r; ")-good in the usual sense. Finally, we say that J is r-nearby in K when J � K and

` (J) > 2�r` (K) :

The parameters r; " will be �xed su¢ ciently large and small respectively later in the proof, and we denote
the set of such good dyadic quasicubes by 
D(r;")�good, or simply 
Dgood when the goodness parameters
(r; ") are understood. Note that if J 0 2 
D(r;")�good and if J 0 � K 2 
D, then either J 0 is r-nearby in K
or J 0 � J br;" K.
Throughout the proof, it will be convenient to also consider pairs of quasicubes J;K where J is (�; ")-

deeply embedded in K, written J b�;" K and meaning (10) holds with the same " > 0 but with � in place
of r; as well as pairs of quasicubes J;K where J is �-nearby in K, ` (J) > 2��` (K), for a parameter �� r
that will be �xed later.

Notation 2. We will typically use the side length ` (J) of a 
-quasicube when we are describing collections
of quasicubes, and when we want ` (J) to be a dyadic or related number; while we will typically use jJ j

1
n in

estimates, and when we want to compare powers of volumes of quasicubes. We will continue to use the pre�x
�quasi�when discussing quasicubes, quasiHaar, quasienergy and quasidistance in the text, but will not use the
pre�x �quasi�when discussing other notions. In particular, since quasiA�2 + quasiA

�;punct
2 � A�2 +A�;punct2

(see e.g. [SaShUr8] for a proof) we do not use quasi as a pre�x for the Muckenhoupt conditions, even though
quasiA�2 alone is not comparable to A�2 . Finally, we will not modify any mathematical symbols to re�ect
quasinotions, except for using 
D to denote a quasigrid, and qdist (E;F ) � dist

�

�1E;
�1F

�
to denote

quasidistance between sets E and F , and using jx� yjqdist �
��
�1x� 
�1y�� to denote quasidistance between

points x and y. This limited use of quasi in the text serves mainly to remind the reader we are working
entirely in the �quasiworld�.

3.1.1. Energy Muckenhoupt conditions. We now show that the punctured Muckenhoupt conditions A�;punct2

and A�;�;punct2 control respectively the �energy A�2 conditions�, denoted A
�;energy
2 and A�;�;energy2 where

A�;energy2 (�; !) � sup
Q2
Pn

P!Q x
`(Q)

2
L2(!)

jQj1�
�
n

jQj�
jQj1�

�
n
;(14)

A�;�;energy2 (�; !) � sup
Q2
Pn

jQj!
jQj1�

�
n

P�Q x
`(Q)

2
L2(�)

jQj1�
�
n

:

These energy A�2 conditions play a critical role in controlling local parts of functional energy later in the
paper, and it is a crucial requirement that they are necessary conditions, as shown by the next lemma.

Lemma 2. For any positive locally �nite Borel measures �; ! we have

A�;energy2 (�; !) � max fn; 3gA�;punct2 (�; !) ;

A�;�;energy2 (�; !) � max fn; 3gA�;�;punct2 (�; !) :

Proof. Fix a quasicube Q 2 
D. If !
�
Q;P(�;!)

�
� 1

2 jQj!, then we trivially haveP!Q x
`(Q)

2
L2(!)

jQj1�
�
n

jQj�
jQj1�

�
n

� n
jQj!
jQj1�

�
n

jQj�
jQj1�

�
n

� 2n
!
�
Q;P(�;!)

�
jQj1�

�
n

jQj�
jQj1�

�
n
� 2nA�;punct2 (�; !) :
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On the other hand, if !
�
Q;P(�;!)

�
< 1

2 jQj! then there is a point p 2 Q \P(�;!) such that

! (fpg) > 1

2
jQj! ;

and consequently, p is the largest !-point mass in Q. Thus if we de�ne e! = ! � ! (fpg) �p, then we have

!
�
Q;P(�;!)

�
= jQje! :

Now we observe from the construction of Haar projections that

4e!
J = 4!

J ; for all J 2 
D with p =2 J:

So for each s � 0 there is a unique quasicube Js 2 
D with ` (Js) = 2�s` (Q) that contains the point p. For
this quasicube we have, if fh!;aJ gJ2
D; a2�n is a basis for L

2 (!),4!
Jsx
2
L2(!)

=
X
a2�n

���
h!;aJs ; x�!���2 = X
a2�n

���
h!;aJs ; x� p�!���2
=

X
a2�n

����Z
Js

h!;aJs (x) (x� p) d! (x)
����2 = X

a2�n

����Z
Js

h!;aJs (x) (x� p) de! (x)����2
�

X
a2�n

h!;aJs 2L2(e!) k1Js (x) (x� p)k2L2(e!) � X
a2�n

h!;aJs 2L2(!) k1Js (x) (x� p)k2L2(e!)
� n2n` (Js)

2 jJsje! � 2�2s` (Q)2 jQje! :
Thus we can estimateP!Q x

` (Q)

2
L2(!)

=
1

` (Q)
2

X
J2
D: J�Q

k4!
Jxk

2
L2(!)

=
1

` (Q)
2

0@ X
J2
D: p=2J�Q

4e!
Jx
2
L2(e!) +

1X
s=0

4!
Jsx
2
L2(!)

1A
� 1

` (Q)
2

 Pe!Qx2
L2(e!) +

1X
s=0

2�2s` (Q)
2 jQje!

!

� 1

` (Q)
2

 
` (Q)

2 jQje! +
1X
s=0

2�2s` (Q)
2 jQje!

!
� 3 jQje! � 3! �Q;P(�;!)� ;

and so P!Q x
`(Q)

2
L2(!)

jQj1�
�
n

jQj�
jQj1�

�
n
�
3!
�
Q;P(�;!)

�
jQj1�

�
n

jQj�
jQj1�

�
n
� 3A�;punct2 (�; !) :

Now take the supremum over Q 2 
D to obtain A�;energy2 (�; !) � max fn; 3gA�;punct2 (�; !). The dual
inequality follows upon interchanging the measures � and !. �

3.1.2. Plugged A�;energy plug2 conditions. Using Lemma 2 we can control the �plugged�energy A�2 conditions:

A�;energy plug2 (�; !) � sup
Q2
Pn

P!Q x
`(Q)

2
L2(!)

jQj1�
�
n

P� (Q; �) ;

A�;�;energy plug2 (�; !) � sup
Q2
Pn

P� (Q;!)

P�Q x
`(Q)

2
L2(�)

jQj1�
�
n

:

Lemma 3. We have
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A�;energy plug2 (�; !) . A�2 (�; !) +A
�;energy
2 (�; !) ;

A�;�;energy plug2 (�; !) . A�;�2 (�; !) +A�;�;energy2 (�; !) :

Proof. We haveP!Q x
`(Q)

2
L2(!)

jQj1�
�
n

P� (Q; �) =

P!Q x
`(Q)

2
L2(!)

jQj1�
�
n

P� (Q;1Qc�) +

P!Q x
`(Q)

2
L2(!)

jQj1�
�
n

P� (Q;1Q�)

. jQj!
jQj1�

�
n
P� (Q;1Qc�) +

P!Q x
`(Q)

2
L2(!)

jQj1�
�
n

jQj�
jQj1�

�
n

. A�2 (�; !) +A
�;energy
2 (�; !) :

�

3.2. Random grids and shifted grids. Using the analogue for dyadic quasigrids of the good random
grids of Nazarov, Treil and Volberg, a standard argument of NTV, see e.g. [Vol], reduces the two weight
inequality (12) for T� to proving boundedness of a bilinear form T � (f; g) with uniform constants over dyadic
quasigrids, and where the quasiHaar supports supp bf and supp bg of the functions f and g are contained in
the collection 
Dgood of good quasicubes, whose children are all good as well, with goodness parameters
r <1 and " > 0 chosen su¢ ciently large and small respectively depending only on n and �. Here the
quasiHaar support of f is supp bf � fI 2 
D : 4�

I f 6= 0g, and similarly for g. In fact we can assume even
more, namely that the quasiHaar supports supp bf and supp bg of f and g are contained in the collection of
� -good quasicubes

(15) 
D�(r;")�good �
�
K 2 
D : CK � 
D(r;")�good and �`
DK 2 
D(r;")�good for all 0 � ` � �

	
;

that are (r; ")-good and whose children are also (r; ")-good, and whose `-parents up to level � are also
(r; ")-good. Here � > r is a parameter to be �xed later. We may assume this restriction on the quasiHaar
supports of f and g by the following lemma. See [SaShUr6] for a proof8.

Lemma 4. Given r � 3, � � 1 and 1
r < " < 1� 1

r , we have


D(r�1;�)�good � 
D�(r;")�good ;
provided

(16) 0 < � � r"� 1
r+ �

:

For convenience in notation we will sometimes suppress the dependence on � in our nonlinear forms,
but will retain it in the operators, Poisson integrals and constants. More precisely, let 
D� = 
D! be an
(r; ")-good quasigrid on Rn, and let fh�;aI gI2
D�; a2�n and

n
h!;bJ

o
J2
D!; b2�n

be corresponding quasiHaar

bases as described above, so that

f =
X

I2
D�

4�
I f =

X
I2
D�; a2�n

hf; h�;aI i h�;aI =
X

I2
D�; a2�n

bf (I; a) h�;aI ;

g =
X

J2
D!

4!
Jg =

X
J2
D!; b2�n

D
g; h!;bJ

E
h!;bJ =

X
J2
D!; b2�n

bg (J ; b) h!;bJ ;

where the appropriate measure is understood in the notation bf (I; a) and bg (J ; b), and where these quasiHaar
coe¢ cients bf (I; a) and bg (J ; b) vanish if the quasicubes I and J are not good. Inequality (12) is equivalent
to boundedness of the bilinear form

T � (f; g) � hT�� (f) ; gi! =
X

I2
D� and J2
D!

hT�� (4�
I f) ;4!

Jgi!

8This lemma is misstated in [SaShUr7].
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on L2 (�)� L2 (!), i.e.

(17) jT � (f; g)j � NT� kfkL2(�) kgkL2(!) ;

uniformly over all quasigrids and appropriate truncations. We may assume the two quasigrids 
D� and

D! are equal here, and this we will do throughout the paper, although we sometimes continue to use the
measure as a superscript on 
D for clarity of exposition. Roughly speaking, we analyze the form T � (f; g)
by splitting it in a nonlinear way into three main pieces, following in part the approach in [LaSaShUr2] and
[LaSaShUr3]. The �rst piece consists of quasicubes I and J that are either disjoint or of comparable side
length, and this piece is handled using the section on preliminaries of NTV type. The second piece consists
of quasicubes I and J that overlap, but are �far apart�in a nonlinear way, and this piece is handled using
the sections on the Intertwining Proposition and the control of the functional quasienergy condition by the
quasienergy condition. Finally, the remaining local piece where the overlapping quasicubes are �close� is
handled by generalizing methods of NTV as in [LaSaShUr], and then splitting the stopping form into two
sublinear stopping forms, one of which is handled using techniques of [LaSaUr2], and the other using the
stopping time and recursion of M. Lacey [Lac]. See the schematic diagram in Subsection 7.4 below.
We summarize our assumptions on the Haar supports of f and g, and on the dyadic quasigrids 
D.

Condition 1 (on Haar supports and quasigrids). We suppose the quasiHaar supports of the functions f
and g satisfy supp bf; supp bg � 
D�(r;")�good. We also assume that j@Qj�+! = 0 for all dyadic quasicubes Q
in the grids 
D (since this property holds with probability 1 for random grids 
D).

4. Necessity of the A�2 conditions

Here we consider in particular the necessity of the fractional A�2 condition (with holes) when 0 � � < n, for
the boundedness from L2 (�) to L2 (!) (where � and ! may have common point masses) of the �-fractional
Riesz vector transform R� de�ned by

R� (f�) (x) =

Z
Rn
K�
j (x; y)f (y) d� (y) ; K�

j (x; y) =
xj � yj

jx� yjn+1��
;

whose kernel K�
j (x; y) satis�es (5) for 0 � � < n. More generally, necessity holds for elliptic operators as in

the next lemma. See [SaShUr7] for the easier proof in the case without holes.

Lemma 5. Suppose 0 � � < n. Let T� be any collection of operators with �-standard fractional kernel
satisfying the ellipticity condition (13), and in the case n

2 � � < n, we also assume the more restrictive
condition (11). Then for 0 � � < n we havep

A�2 . N� (T�) :

Proof. First we give the proof for the case when T� is the �-fractional Riesz transform R�, whose kernel is
K� (x; y) = x�y

jx�yjn+1�� . De�ne the 2
n generalized n-ants Qm for m 2 f�1; 1gn, and their translates Qm (w)

for w 2 Rn by

Qm = f(x1; :::; xn) : mkxk > 0g ; Qm (w) = fz : z � w 2 Qmg ; w 2 Rn:

Fix m 2 f�1; 1gn and a quasicube I. For a 2 Rn and r > 0 let

sI (x) =
` (I)

` (I) + jx� �I j
; fa;r (y) = 1Q�m(a)\B(0;r) (y) sI (y)

n��
;

where �I is the center of the cube I. Now

` (I) jx� yj � ` (I) jx� �I j+ ` (I) j�I � yj � [` (I) + jx� �I j] [` (I) + j�I � yj]

implies
1

jx� yj �
1

` (I)
sI (x) sI (y) ; x; y 2 Rn:

Now the key observation is that with L� � m � �, we have

L (x� y) = m � (x� y) � jx� yj ; x 2 Qm (y) ;
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which yields

(18) L (K� (x; y)) =
L (x� y)

jx� yjn+1��
� 1

jx� yjn��
� ` (I)

��n
sI (x)

n��
sI (y)

n��
;

provided x 2 Qm (y). Now we note that x 2 Qm (y) when x 2 Qm (a) and y 2 Q�m (a) to obtain that for
x 2 Qm (a),

L (T� (fa;r�) (x)) =

Z
Q�m(a)\B(0;r)

L (x� y)
jx� yjn+1��

sI (y) d� (y)

� ` (I)
��n

sI (x)
n��

Z
Q�m(a)\B(0;r)

sI (y)
2n�2�

d� (y) :

Applying jL�j �
p
n j�j and our assumed two weight inequality for the fractional Riesz transform, we see

that for r > 0 large,

` (I)
2��2n

Z
Qm(a)

sI (x)
2n�2�

 Z
Q�m(a)\B(0;r)

sI (y)
2n�2�

d� (y)

!2
d! (x)

� kLT (�fa;r)k2L2(!) . N� (R
�)
2 kfa;rk2L2(�) = N� (R

�)
2
Z
Q�m(a)\B(0;r)

sI (y)
2n�2�

d� (y) :

Rearranging the last inequality, and upon letting r !1, we obtainZ
Qm(a)

` (I)
n��

(` (I) + jx� �I j)
2n�2� d! (x)

Z
Q�m(a)

` (I)
n��

(` (I) + jy � �I j)
2n�2� d� (y) . N� (R

�)
2
:

Note that the ranges of integration above are pairs of opposing n-ants.
Fix a quasicube Q, which without loss of generality can be taken to be centered at the origin, �Q = 0.

Then choose a = (2` (Q) ; 2` (Q)) and I = Q so that we have Z
Qm(a)

` (Q)
n��

(` (Q) + jxj)2n�2�
d! (x)

!�
` (Q)

��n
Z
Q

d�

�

� C�

Z
Qm(a)

` (Q)
n��

(` (Q) + jxj)2n�2�
d! (x)

Z
Q�m(a)

` (Q)
n��

(` (Q) + jyj)2n�2�
d� (y) . N� (R�)

2
:

Now �x m = (1; 1; :::; 1) and note that there is a �xed N (independent of ` (Q)) and a �xed collection of
rotations f�kg

N
k=1, such that the rotates �kQm (a), 1 � k � N , of the n-ant Qm (a) cover the complement of

the ball B (0; 4
p
n` (Q)):

B
�
0; 4
p
n` (Q)

�c � N[
k=1

�kQm (a) :

Then we obtain, upon applying the same argument to these rotated pairs of n-ants,

(19)

 Z
B(0;4

p
n`(Q))

c

` (Q)
n��

(` (Q) + jxj)2n�2�
d! (x)

!�
` (Q)

��n
Z
Q

d�

�
. N� (R�)

2
:

Now we assume for the moment the o¤set A�2 condition

` (Q)
2(��n)

�Z
Q0
d!

��Z
Q

d�

�
� A�2 ;

where Q0 and Q are neighbouring quasicubes, i.e. (Q0; Q) 2 
Nn. If we use this o¤set inequality with Q0

ranging over 3Q nQ, and then use the separation of B (0; 4
p
n` (Q)) n 3Q and Q to obtain the inequality

` (Q)
2(��n)

 Z
B(0;4

p
n`(Q))n3Q

d!

!�Z
Q

d�

�
. A�2 ;

together with (19), we obtain Z
RnnQ

` (Q)
n��

(` (Q) + jxj)2n�2�
d! (x)

! 1
2 �

` (Q)
��n

Z
Q

d�

� 1
2

. N� (R�) +
p
A�2 :
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Clearly we can reverse the roles of the measures ! and � and obtainq
A�;�2 . N� (R�) +

p
A�2

for the kernels K�, 0 � � < n.
More generally, to obtain the case when T� is elliptic and the o¤set A�2 condition holds, we note that the

key estimate (18) above extends to the kernel
PJ

j=1 �
m
j K

�
j of

PJ
j=1 �

m
j T

�
j in (11) if the n-ants above are

replaced by thin cones of su¢ cently small aperture, and there is in addition su¢ cient separation between
opposing cones, which in turn may require a larger constant than 4

p
n in the choice of Q0 above.

Finally, we turn to showing that the o¤set A�2 condition is implied by the norm inequality, i.e.p
A�2 � sup

(Q0;Q)2
Nn

` (Q)
�

�
1

jQ0j

Z
Q0
d!

� 1
2
�
1

jQj

Z
Q

d�

� 1
2

. N� (R�) ;

i.e.
�Z

Q0
d!

��Z
Q

d�

�
. N� (R�)

2 jQj2�
2�
n ; (Q0; Q) 2 
Nn:

In the range 0 � � < n
2 where we only assume (13), we adapt a corresponding argument from [LaSaUr1].

The �one weight�argument on page 211 of Stein [Ste] yields the asymmetric two weight A�2 condition

(20) jQ0j! jQj� � CN� (R
�) jQj2(1�

�
n ) ;

where Q and Q0 are quasicubes of equal side length r and distance C0r apart for some (�xed large) positive
constant C0 (for this argument we choose the unit vector u in (13) to point in the direction from Q to Q0).
In the one weight case treated in [Ste] it is easy to obtain from this (even for a single direction u) the usual
(symmetric) A2 condition. Here we will have to employ a di¤erent approach.
Now recall (see Sec 2 of [Saw] for the case of usual cubes, and the case of half open, half closed quasicubes

here is no di¤erent) that given an open subset � of Rn, we can choose R � 3 su¢ ciently large, depending
only on the dimension, such that if

�
Qkj
	
j
are the dyadic quasicubes maximal among those dyadic quasicubes

Q satisfying RQ � �, then the following properties hold:

(21)

8<:
(disjoint cover) � =

S
j Qj and Qj \Qi = ; if i 6= j

(Whitney condition) RQj � � and 3RQj \ �c 6= ; for all j
(�nite overlap)

P
j �3Qj

� C��

:

So �x a pair of neighbouring quasicubes (Q00; Q0) 2 
Nn, and let fQigi be a Whitney decomposition into
quasicubes of the set � � (Q00 �Q0) n D relative to the diagonal D in Rn � Rn. Of course, there are no
common point masses of ! in Q00 and � in Q0 since the quasicubes Q

0
0 and Q0 are disjoint. Note that if

Qi = Q0i �Qi, then (20) can be written

(22) jQij!�� � CN� (R
�) jQij1�

�
n ;

where ! � � denotes product measure on Rn � Rn. We choose R su¢ ciently large in the Whitney de-
composition (21), depending on C0, such that (22) holds for all the Whitney quasicubes Qi. We haveP

i jQij = jQ0 �Qj = jQj
2.

Moreover, if R = Q0 �Q is a rectangle in Rn �Rn (i.e. Q0; Q are quasicubes in Rn), and if R =
�
[iRi is a

�nite disjoint union of rectangles R�, then by additivity of the product measure ! � �,

jRj!�� =
X
i

jRij!�� :

Let Q0 = Q00 �Q0 and set
� �

�
Q = Q0 �Q : Q � Q0; ` (Q) = ` (Q0) � C�10 qdist (Q;Q0) and (20) holds

	
:

Divide Q0 into 2n � 2n = 4n2 congruent subquasicubes Q10; :::;Q
4n

0 of side length 1
2 , and set aside those

Qj0 2 � (those for which (20) holds) into a collection of stopping cubes �. Continue to divide the remaining
Qj0 2 � of side length 1

4 , and again, set aside those Q
j;i
0 2 � into �, and continue subdividing those that

remain. We continue with such subdivisions for N generations so that all the cubes not set aside into � have
side length 2�N . The important property these latter cubes have is that they all lie within distance r2�N

of the diagonal D = f(x; x) : (x; x) 2 Q00 �Q0g in Q0 = Q00 � Q0 since (20) holds for all pairs of cubes Q0
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and Q of equal side length r having distance at least C0r apart. Enumerate the cubes in � as fQigi and
those remaining that are not in � as fPjgj . Thus we have the pairwise disjoint decomposition

Q0 =

 [
i

Qi

![0@[
j

Pj

1A :

The countable additivity of the product measure ! � � shows that

jQ0j!�� =
X
i

jQij!�� +
X
j

jPj j!�� :

Now we have X
i

jQij!�� .
X
i

N� (R
�)
2 jQij1�

�
n ;

andX
i

jQij1�
�
n =

X
k2Z: 2k�`(Q0)

X
i: `(Qi)=2k

�
22nk

�1��
n �

X
k2Z: 2k�`(Q0)

�
2k

` (Q0)

��n �
22nk

�1��
n (Whitney)

= ` (Q0)
n

X
k2Z: 2k�`(Q0)

2nk(�1+2�
2�
n ) � C�` (Q0)

n
` (Q0)

n(1� 2�
n ) = C� jQ0 �Q0j2�

2�
n = C� jQ0j1�

�
n ;

provided 0 � � < n
2 . Using that the side length of Pj = Pj � P 0j is 2�N and dist (Pj ;D) � Cr2

�N , we have
the following limit, X

j

jPj j!�� =

������
[
j

Pj

������
!��

! 0 as N !1;

since
[
j

Pj shrinks to the empty set as N !1, and since locally �nite measures such as ! � � are regular

in Euclidean space. This completes the proof that
p
A�2 . N� (R�) for the range 0 � � < n

2 .
Now we turn to proving

p
A�2 . N� (R

�) for the range n
2 � � < n, where we assume the stronger

ellipticity condition (11). So �x a pair of neighbouring quasicubes (K 0;K) 2 
Nn, and assume that � + !
doesn�t charge the intersection K 0 \K of the closures of K 0 and K. It will be convenient to replace n by
n+ 1, i.e to introduce an additional dimension, and work with the preimages Q0 = 
�1K 0 and Q = 
�1K
that are usual cubes, and with the corresponding pullbacks e! = m1�
�! and e� = m1�
�� of the measures
! and � where m1 is Lebesgue measure on the line. We may also assume that

Q0 = [�1; 0)�
nY
i=1

Qi; Q = [0; 1)�
nY
i=1

Qi:

where Qi = [ai; bi] for 1 � i � n (since the other cases are handled in similar fashion). It is important to note
that we are considering the intervals Qi here to be closed, and we will track this di¤erence as we proceed.
Choose �1 2 [a1; b1] so that both�����[�1; 0)� [a1; �1]�

nY
i=2

Qi

�����e! ;
�����[�1; 0)� [�1; b1]�

nY
i=2

Qi

�����e! �
1

2
jQ0je! :

Now denote the two intervals [a1; �1] and [�1; b1] by [a�1; b
�
1] and [a

��
1 ; b

��
1 ] where the order is chosen so that�����[0; 1)� [a�1; b�1]�

nY
i=2

Qi

�����e� �
�����[0; 1)� [a��1 ; b��1 ]�

nY
i=2

Qi

�����e� :
Then we have both�����[�1; 0)� [a�1; b�1]�

nY
i=2

Qi

�����e! �
1

2
jQje! and

�����[0; 1)� [a��1 ; b��1 ]�
nY
i=2

Qi

�����e� �
1

2
jQje� :
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Now choose �2 2 [a2; b2] so that both�����[�1; 0)� [a�1; b�1]� [a2; �2]�
nY
i=3

Qi

�����e! ;
�����[�1; 0)� [a�1; b�1]� [�2; b2]�

nY
i=3

Qi

�����e! �
1

4
jQje! ;

and denote the two intervals [a2; �2] and [�2; b2] by [a�2; b
�
2] and [a

��
2 ; b

��
2 ] where the order is chosen so that

[0; 1)�
�����[a��1 ; b��1 ]� [a�2; b�2]�

nY
i=2

Qi

�����e� �
�����[0; 1)� [a��1 ; b��1 ]� [a��2 ; b��2 ]�

nY
i=2

Qi

�����e� :
Then we have both �����[�1; 0)� [a�1; b�1]� [a�2; b�2]�

nY
i=3

Qi

�����e! � 1

4
jQje! ;�����[0; 1)� [a��1 ; b��1 ]� [a��2 ; b��2 ]�

nY
i=3

Qi

�����e� � 1

4
jQje� ;

and continuing in this way we end up with two rectangles,

G � [�1; 0)� [a�1; b�1]� [a�2; b�2]� :::� [a�n; b�n] ;
H � [0; 1)� [a��1 ; b��1 ]� [a��2 ; b��2 ]� :::� [a��n ; b��n ] ;

that satisfy

jGje! = j[�1; 0)� [a�1; b�1]� [a�2; b�2]� ::: [a�n; b�n]je! � 1

2n
jQje! ;

jHje� = j[0; 1)� [a��1 ; b��1 ]� [a��2 ; b��2 ]� ::: [a��n ; b��n ]je� � 1

2n
jQje� :

However, the quasirectangles 
G and 
H lie in opposing quasi-n-ants at the vertex 
� = 
(�1; �2; :::; �n),
and so we can apply (11) to obtain that for x 2 
G,������

JX
j=1

�mj T
�
j (1
H�) (x)

������ =
������
Z

H

JX
j=1

�mj K
�
j (x; y) d� (y)

������ &
Z

H

jx� yj��n d� (y) & j
Qj
�
n�1 j
Hj� :

For the inequality above, we need to know that the distinguished point 
� is not a common point mass of �
and !, but this follows from our assumption that �+! doesn�t charge the intersection K 0\K of the closures
of K 0 and K. Then from the norm inequality we get

j
Gj!
�
j
Qj

�
n�1 j
Hj�

�2
.

Z
G

������
JX
j=1

�mj T
�
j (1
H�)

������
2

d!

. N2PJ
j=1 �

m
j T

�
j

Z
12
Hd� = N

2PJ
j=1 �

m
j T

�
j
j
Hj� ;

from which we deduce that

j
Qj2(
�
n�1) j
Q0j! j
Qj� . 22n j
Qj2(

�
n�1) j
Gj! j
Hj� . 22nN2PJ

j=1 �
m
j T

�
j
;

jKj2(
�
n�1) jK 0j! jKj� . 22nN2PJ

j=1 �
m
j T

�
j
;

and hence

A�2 . 22nN2PJ
j=1 �

m
j T

�
j
:

Thus we have obtained the o¤set A�2 condition for pairs (K
0;K) 2 
Nn such that � + ! doesn�t charge

the intersection K 0 \K of the closures of K 0 and K. From this and the argument at the beginning of this
proof, we obtain the one-tailed A�2 conditions. Indeed, we note that j@ (rQ)j�+! > 0 for only a countable
number of dilates r > 1, and so a limiting argument applies. This completes the proof of Lemma 5. �
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5. Monotonicity Lemma and Energy lemma

The Monotonicity Lemma below will be used to prove the Energy Lemma, which is then used in several
places in the proof of Theorem 1. The formulation of the Monotonicity Lemma with m = 2 for cubes is due
to M. Lacey and B. Wick [LaWi], and corrects that used in early versions of our paper [SaShUr5].

5.1. The Monotonicity Lemma. For 0 � � < n and m 2 R+, we recall the m-weighted fractional Poisson
integral

P�m (J; �) �
Z
Rn

jJ j
m
n�

jJ j
1
n + jy � cJ j

�n+m�� d� (y) ;
where P�1 (J; �) = P� (J; �) is the standard Poisson integral. The next lemma holds for quasicubes and
common point masses with the same proof as in [SaShUr7].

Lemma 6 (Monotonicity). Suppose that I and J are quasicubes in Rn such that J � 2J � I, and that �
is a signed measure on Rn supported outside I. Finally suppose that T� is a standard �-fractional singular
integral on Rn with 0 < � < n. Then we have the estimate

(23) k4!
JT

��kL2(!) . �� (J; j�j) ;
where for a positive measure �,

�� (J; �)
2 �

 
P� (J; �)

jJ j
1
n

!2
k4!

Jxk
2
L2(!) +

 
P�1+� (J; �)

jJ j
1
n

!2
kx�mJk2L2(1J!) ;

mJ � E!Jx =
1

jJ j!

Z
J

xd!:

5.2. The Energy Lemma. Suppose now we are given a subset H of the dyadic quasigrid 
D!. Let
P!H =

P
J2H4!

J be the corresponding !-quasiHaar projection. We de�ne H� �
[
J2H

fJ 0 2 
D! : J 0 � Jg.

The next lemma also holds for quasicubes and common point masses with the same proof as in [SaShUr7].

Lemma 7 (Energy Lemma). Let J be a quasicube in 
D!. Let 	J be an L2 (!) function supported in
J and with !-integral zero, and denote its quasiHaar support by H = supp c	J � nK 2 
D! : c	J (K) 6= 0o.
Let � be a positive measure supported in Rn n J with  � 2, and for each J 0 2 H, let �J0 = 'J0� with
j'J0 j � 1. Let T� be a standard �-fractional singular integral operator with 0 � � < n. Then with �0 = �

2
we have ����� X

J02H
hT� (�J0) ;4!

J0	Ji!

����� . k	JkL2(!)

 
P� (J; �)

jJ j
1
n

!
kP!HxkL2(!)

+ k	JkL2(!)
1

�
0

 
P�1+�0 (J; �)

jJ j
1
n

!
kP!H�xkL2(!)

. k	JkL2(!)

 
P� (J; �)

jJ j
1
n

!
kP!H�xkL2(!) ;

and in particular the �pivotal�bound

jhT� (�) ;	Ji!j � C k	JkL2(!) P
� (J; j�j)

q
jJ j! :

Remark 4. The �rst term on the right side of the energy inequality above is the �big�Poisson integral P�

times the �small� energy term kP!Hxk
2
L2(!) that is additive in H, while the second term on the right is the

�small�Poisson integral P�1+�0 times the �big�energy term kP!H�xkL2(!) that is no longer additive in H. The
�rst term presents no problems in subsequent analysis due solely to the additivity of the �small�energy term.
It is the second term that must be handled by special methods. For example, in the Intertwining Proposition
below, the interaction of the singular integral occurs with a pair of quasicubes J � I at highly separated
levels, where the goodness of J can exploit the decay �0 in the kernel of the �small�Poisson integral P�1+�0
relative to the �big�Poisson integral P�, and results in a bound directly by the quasienergy condition. On the
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other hand, in the local recursion of M. Lacey at the end of the paper, the separation of levels in the pairs
J � I can be as little as a �xed parameter �, and here we must �rst separate the stopping form into two
sublinear forms that involve the two estimates respectively. The form corresponding to the smaller Poisson
integral P�1+�0 is again handled using goodness and the decay �

0 in the kernel, while the form corresponding
to the larger Poisson integral P� requires the stopping time and recursion argument of M. Lacey.

6. Preliminaries of NTV type

An important reduction of our theorem is delivered by the following two lemmas, the �rst of which is
due to Nazarov, Treil and Volberg in the case of one dimension (see [NTV4] and [Vol]), and the second of
which is a bilinear Carleson embedding. The proofs given there do not extend in standard ways to higher
dimensions with common point masses, and we use the quasiweak boundedness property to handle the case
of touching quasicubes, and an application of Schur�s Lemma to handle the case of separated quasicubes.
The �rst lemma below is Lemmas 8.1 and 8.7 in [LaWi] but with the larger constant A�2 there in place of
the smaller constant A�2 here. We emphasize that only the o¤set A

�
2 condition is needed with testing and

weak boundedness in these preliminary estimates.

Lemma 8. Suppose T� is a standard fractional singular integral with 0 � � < n, and that all of the
quasicubes I 2 
D�; J 2 
D! below are good with goodness parameters " and r. Fix a positive integer � > r.
For f 2 L2 (�) and g 2 L2 (!) we have

(24)
X

(I;J)2
D��
D!

2��`(I)�`(J)�2�`(I)

jhT�� (4�
I f) ;4!

Jgi!j .
�
T� + T

�
� +WBPT� +

p
A�2

�
kfkL2(�) kgkL2(!)

and

(25)
X

(I;J)2
D��
D!

I\J=; and `(J)
`(I)

=2[2��;2�]

jhT�� (4�
I f) ;4!

Jgi!j .
p
A�2 kfkL2(�) kgkL2(!) ;

where the implied constants depend only on n, � and T�.

Lemma 9. Suppose T� is a standard fractional singular integral with 0 � � < n, that all of the quasicubes
I 2 
D�; J 2 
D! below are good, that � > r, that f 2 L2 (�) and g 2 L2 (!), that F � 
D� and G � 
D!
are �-Carleson and !-Carleson collections respectively, i.e.,X

F 02F : F 0�F
jF 0j� . jF j� ; F 2 F ; and

X
G02G: G0�G

jG0j! . jGj! ; G 2 G;

that there are numerical sequences f�F (F )gF2F and
�
�G (G)

	
G2G such that

(26)
X
F2F

�F (F )
2 jF j� � kfk

2
L2(�) and

X
G2G

�G (G)
2 jGj� � kgk

2
L2(�) ;

and �nally that for each pair of quasicubes (I; J) 2 
D� � 
D!, there are bounded functions �I;J and I;J
supported in I n 2J and J n 2I respectively, satisfying�I;J1 ;

I;J1 � 1:
Then X

(F;J)2F�
D!

F\J=; and `(J)�2��`(F )

���
T�� ��F;J1F�F (F )� ;4!
Jg
�
!

���+ X
(I;G)2
D��G

I\G=; and `(I)�2��`(G)

���
T�� (4�
I f) ; I;G1G�G (G)

�
!

���(27)

.
p
A�2 kfkL2(�) kgkL2(!) :

See [SaShUr6] for complete details of the proofs when common point masses are permitted.

Remark 5. If F and G are �-Carleson and !-Carleson collections respectively, and if �F (F ) = E�F jf j and
�G (G) = E!G jgj, then the �quasi� orthogonality condition (26) holds (here �quasi� has a di¤erent meaning
than quasi), and this special case of Lemma 9 serves as a basic example.
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Remark 6. Lemmas 8 and 9 di¤er mainly in that an orthogonal collection of quasiHaar projections is
replaced by a �quasi�orthogonal collection of indicators f1F�F (F )gF2F . More precisely, the main di¤erence
between (25) and (27) is that a quasiHaar projection 4�

I f or 4!
Jg has been replaced with a constant multiple

of an indicator 1F�F (F ) or 1G�G (G), and in addition, a bounded function is permitted to multiply the
indicator of the quasicube having larger sidelength.

7. Corona Decompositions and splittings

We will use two di¤erent corona constructions, namely a Calderón-Zygmund decomposition and an energy
decomposition of NTV type, to reduce matters to the stopping form, the main part of which is handled by
Lacey�s recursion argument. We will then iterate these coronas into a double corona. We �rst recall our
basic setup. For convenience in notation we will sometimes suppress the dependence on � in our nonlinear
forms, but will retain it in the operators, Poisson integrals and constants. We will assume that the good/bad
quasicube machinery of Nazarov, Treil and Volberg [Vol] is in force here as in [SaShUr7]. Let 
D� = 
D!

be an (r; ")-good quasigrid on Rn, and let fh�;aI gI2
D�; a2�n and
n
h!;bJ

o
J2
D!; b2�n

be corresponding

quasiHaar bases as described above, so that

f =
X

I2
D�

4�
I f and g =

X
J2
D!

4!
Jg ;

where the quasiHaar projections 4�
I f and 4!

Jg vanish if the quasicubes I and J are not good. Recall that
we must show the bilinear inequality (17), i.e. jT � (f; g)j � NT� kfkL2(�) kgkL2(!).
We now proceed for the remainder of this section to follow the development in [SaShUr7], pointing out

just the highlights, and referring to [SaShUr7] for proofs, when no changes are required by the inclusion of
quasicubes and common point masses.

7.1. The Calderón-Zygmund corona. We now introduce a stopping tree F for the function f 2 L2 (�).
Let F be a collection of Calderón-Zygmund stopping quasicubes for f , and let 
D� =

[
F2F

CF be the

associated corona decomposition of the dyadic quasigrid 
D�. See below and also [SaShUr7] for the standard
de�nitions of corona, etc.
For a quasicube I 2 
D� let �
D�I be the 
D�-parent of I in the quasigrid 
D�, and let �FI be the

smallest member of F that contains I. For F; F 0 2 F , we say that F 0 is an F-child of F if �F (�
D�F 0) = F
(it could be that F = �
D�F 0), and we denote by CF (F ) the set of F-children of F . For F 2 F , de�ne the
projection P�CF onto the linear span of the quasiHaar functions fh

�;a
I gI2CF ; a2�n by

P�CF f =
X
I2CF

4�
I f =

X
I2CF ; a2�n

hf; h�;aI i� h
�;a
I :

The standard properties of these projections are

f =
X
F2F

P�CF f;

Z �
P�CF f

�
� = 0; kfk2L2(�) =

X
F2F

P�CF f2L2(�) :
7.2. The energy corona. We also impose a quasienergy corona decomposition as in [NTV4] and [LaSaUr2].

De�nition 9. Given a quasicube S0, de�ne S (S0) to be the maximal subquasicubes I � S0 such that

(28)
X

J2M��deep(I)

 
P�
�
J;1S0nJ�

�
jJ j

1
n

!2 Psubgood;!J x
2
L2(!)

� Cenergy

h�
Estrong�

�2
+A�2 +A

�;punct
2

i
jIj� ;

where Estrong� is the constant in the strong quasienergy condition de�ned in De�nition 5, and Cenergy is a
su¢ ciently large positive constant depending only on � � r; n and �. Then de�ne the �-energy stopping
quasicubes of S0 to be the collection

S = fS0g [
1[
n=0

Sn

where S0 = S (S0) and Sn+1 =
[
S2Sn

S (S) for n � 0.
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From the quasienergy condition in De�nition 5 we obtain the �-Carleson estimate

(29)
X

S2S: S�I
jSj� � 2 jIj� ; I 2 
D�:

Finally, we record the reason for introducing quasienergy stopping times. If

(30) X� (CS)2 � sup
I2CS

1

jIj�

X
J2M��deep(I)

 
P�
�
J;1SnJ�

�
jJ j

1
n

!2 Psubgood;!J x
2
L2(!)

is (the square of) the �-stopping quasienergy of the weight pair (�; !) with respect to the corona CS , then
we have the stopping quasienergy bounds

(31) X� (CS) �
p
Cenergy

q�
Estrong�

�2
+A�2 +A

�;punct
2 ; S 2 S;

where A�2 +A
�;punct
2 and the the strong quasienergy constant Estrong� are controlled by assumption.

7.3. General stopping data. It is useful to extend our notion of corona decomposition to more general
stopping data. Our general de�nition of stopping data will use a positive constant C0 � 4.

De�nition 10. Suppose we are given a positive constant C0 � 4, a subset F of the dyadic quasigrid

D� (called the stopping times), and a corresponding sequence �F � f�F (F )gF2F of nonnegative numbers
�F (F ) � 0 (called the stopping data). Let (F ;�; �F ) be the tree structure on F inherited from 
D�, and
for each F 2 F denote by CF = fI 2 
D� : �FI = Fg the corona associated with F :

CF = fI 2 
D� : I � F and I 6� F 0 for any F 0 � Fg :
We say the triple (C0;F ; �F ) constitutes stopping data for a function f 2 L1loc (�) if

(1) E�I jf j � �F (F ) for all I 2 CF and F 2 F ,
(2)

P
F 0�F jF 0j� � C0 jF j� for all F 2 F ,

(3)
P

F2F �F (F )
2 jF j� �C20 kfk

2
L2(�),

(4) �F (F ) � �F (F
0) whenever F 0; F 2 F with F 0 � F .

De�nition 11. If (C0;F ; �F ) constitutes (general) stopping data for a function f 2 L1loc (�), we refer to
the orthogonal decomposition

f =
X
F2F

P�CF f ; P�CF f �
X
I2CF

4�
I f;

as the (general) corona decomposition of f associated with the stopping times F .

Property (1) says that �F (F ) bounds the quasiaverages of f in the corona CF , and property (2) says that
the quasicubes at the tops of the coronas satisfy a Carleson condition relative to the weight �. Note that a
standard �maximal quasicube�argument extends the Carleson condition in property (2) to the inequality

(32)
X

F 02F : F 0�A
jF 0j� � C0 jAj� for all open sets A � R

n:

Property (3) is the �quasi�orthogonality condition that says the sequence of functions f�F (F )1F gF2F is in
the vector-valued space L2

�
`2;�

�
, and property (4) says that the control on stopping data is nondecreasing

on the stopping tree F . We emphasize that we are not assuming in this de�nition the stronger property that
there is C > 1 such that �F (F 0) > C�F (F ) whenever F 0; F 2 F with F 0 $ F . Instead, the properties (2)
and (3) substitute for this lack. Of course the stronger property does hold for the familiar Calderón-Zygmund
stopping data determined by the following requirements for C > 1,

E�F 0 jf j > CE�F jf j whenever F 0; F 2 F with F 0 $ F; E�I jf j � CE�F jf j for I 2 CF ;
which are themselves su¢ ciently strong to automatically force properties (2) and (3) with �F (F ) = E�F jf j.
We have the following useful consequence of (2) and (3) that says the sequence f�F (F )1F gF2F has a

�quasi�orthogonal property relative to f with a constant C 00 depending only on C0:

(33)

X
F2F

�F (F )1F


2

L2(�)

� C 00 kfk
2
L2(�) :
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We will use a construction that permits iteration of general corona decompositions.

Lemma 10. Suppose that (C0;F ; �F ) constitutes stopping data for a function f 2 L1loc (�), and that for
each F 2 F ,

�
C0;K (F ) ; �K(F )

�
constitutes stopping data for the corona projection P�CF f , where in addition

F 2 K (F ). There is a positive constant C1, depending only on C0, such that if

K� (F ) �
�
K 2 K (F ) \ CF : �K(F ) (K) � �F (F )

	
K �

[
F2F

K� (F ) [ fFg ;

�K (K) � �K(F ) (K) for K 2 K� (F ) n fFg
max

�
�F (F ) ; �K(F ) (F )

	
for K = F

; for F 2 F ;

the triple (C1;K; �K) constitutes stopping data for f . We refer to the collection of quasicubes K as the
iterated stopping times, and to the orthogonal decomposition f =

P
K2K PCKKf as the iterated corona de-

composition of f , where

CKK � fI 2 
D : I � K and I 6� K 0 for K 0 �K Kg :

Note that in our de�nition of (C1;K; �K) we have �discarded�from K (F ) all of those K 2 K (F ) that are
not in the corona CF , and also all of those K 2 K (F ) for which �K(F ) (K) is strictly less than �F (F ). Then
the union over F of what remains is our new collection of stopping times. We then de�ne stopping data
�K (K) according to whether or not K 2 F : if K =2 F but K 2 CF then �K (K) equals �K(F ) (K), while if
K 2 F , then �K (K) is the larger of �K(F ) (F ) and �F (K). See [SaShUr7] for a proof.

7.4. Doubly iterated coronas and the NTV quasicube size splitting. Let

NT V� �
q
A�2 +A

�;�
2 +A�;punct2 +A�;�;punct2 + TT� + T

�
T� :

Here is a brief schematic diagram of the decompositions, with bounds in :

hT�� f; gi!
#

Bb� (f; g) + B�c (f; g) + B\ (f; g) + B� (f; g)

# dual NT V� NT V�
#

Tdiagonal (f; g) + Tfar below (f; g) + Tfar above (f; g) + Tdisjoint (f; g)

# # ; ;
# #

BAb�
(f; g) T1far below (f; g) + T2far below (f; g)

# NT V� + Estrong� NT V�
#

BAstop (f; g) + BAparaproduct (f; g) + BAneighbour (f; g)

Estrong� +
p
A�2 TT�

p
A�2

We begin with the NTV quasicube size splitting of the inner product hT�� f; gi! - and later apply the
iterated corona construction to the Calderón�Zygmund corona and the energy corona in order to bound the
below form Bb� (f; g) - that splits the pairs of quasicubes (I; J) in a simultaneous quasiHaar decomposition
of f and g into four groups, namely those pairs that:

(1) are below the size diagonal and �-deeply embedded,
(2) are above the size diagonal and �-deeply embedded,
(3) are disjoint, and
(4) are of �-comparable size.
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More precisely we have

hT�� f; gi! =
X

I2
D�; J2
D!

hT�� (4�
I f) ; (4!

I g)i!

=
X

I2
D�; J2
D!

Jb�I

hT�� (4�
I f) ; (4!

Jg)i! +
X

I2
D�; J2
D!

J�cI

hT�� (4�
I f) ; (4!

Jg)i!

+
X

I2
D�; J2
D!

J\I=;

hT�� (4�
I f) ; (4!

Jg)i! +
X

I2
D�; J2
D!

2���`(J)�`(I)�2�

hT�� (4�
I f) ; (4!

Jg)i!

= Bb� (f; g) + B�c (f; g) + B\ (f; g) + B� (f; g) :

Lemma 8 in the section on NTV preliminaries show that the disjoint and comparable forms B\ (f; g) and
B� (f; g) are both bounded by the A�2 + A�;punct2 , quasitesting and quasiweak boundedness property con-
stants. The below and above forms are clearly symmetric, so we need only consider the form Bb� (f; g), to
which we turn for the remainder of the proof. For this we need functional energy.

De�nition 12. Let F� be the smallest constant in the �functional quasienergy�inequality below, holding for
all h 2 L2 (�) and all �-Carleson collections F with Carleson norm CF bounded by a �xed constant C:

(34)
X
F2F

X
J2M(r;")�deep(F )

 
P� (J; h�)

jJ j
1
n

!2 P!Cgood;��shiftF ;J
x
2
L2(!)

� F�khkL2(�) :

Several ingredients now come into play in order to reduce control of the below form Bb� (f; g) to the
functional energy constant F� and the stopping form BAstop (f; g);

(1) starting with the doubly iterated corona of Calderón-Zygmund and energy in Lemma 10 in order to
obtain the decomposition into Tdiagonal , Tfar below, Tfar above and Tdisjoint,

(2) continuing with an adaptation of the Intertwining Proposition from [SaShUr7] to include quasicubes
and common point masses so as to bound the forms T1far below and T

2
far below (f; g) using the functional

energy constant F�,
(3) and followed by the NTV decomposition into paraproduct, neighbour and stopping forms.
The adaptation of the Intertwining Proposition to include quasicubes and common point masses is easy

because the measures ! and � only �see each other�in the proof through the energy Muckenhoupt conditions
A�;energy2 and A�;�;energy2 , and the straightforward details can be found in [SaShUr6]. Thus we now turn
to the di¢ cult task of controlling the functional energy constant F� by the Muckenhoupt and energy side
conditions.

8. Control of functional energy by energy modulo A�2 and A�;punct2

Now we arrive at one of our main propositions in the proof of our theorem. We show that the functional
quasienergy constants F� as in (34) are controlled by A�2 , A

�;punct
2 and both the strong quasienergy constant

Estrong� de�ned in De�nition 5. The proof of this fact is further complicated when common point masses are
permitted, accounting for the inclusion of the punctured Muckenhoupt condition A�;punct2 . But apart from
this di¤erence, the proof here is essentially the same as that in [SaShUr7], where common point masses were
prohibited. As a consequence we will refer to [SaShUr7] in many of the places where the arguments are
unchanged. A complete and detailed proof can of course be found in [SaShUr6].

Proposition 1. We have

F� . Estrong� +
p
A�2 +

q
A�;�2 +

q
A�;punct2 and F�� . Estrong;�� +

p
A�2 +

q
A�;�2 +

q
A�;�;punct2 :

To prove this proposition, we �x F as in (34), and set

(35) � �
X
F2F

X
J2M(r;")�deep(F )

P!F;Jx2L2(!) � �(cJ ;`(J)) and d� (x; t) � 1

t2
d� (x; t) ;

whereM(r;")�deep (F ) consists of the maximal r-deeply embedded subquasicubes of F , and where �(cJ ;`(J))
denotes the Dirac unit mass at the point (cJ ; ` (J)) in the upper half-space Rn+1+ . Here J is a dyadic quasicube
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with center cJ and side length ` (J). For convenience in notation, we denote for any dyadic quasicube J the
localized projection P!Cgood;��shiftF ;J

given by

P!F;J � P!Cgood;��shiftF ;J
=

X
J0�J: J02Cgood;��shiftF

4!
J0 :

We emphasize that the quasicubes J 2M(r;")�deep (F ) are not necessarily good, but that the subquasicubes
J 0 � J arising in the projection P!F;J are good. We can replace x by x � c inside the projection for any
choice of c we wish; the projection is unchanged. More generally, �q denotes a Dirac unit mass at a point q
in the upper half-space Rn+1+ .
We prove the two-weight inequality

(36) kP� (f�)kL2(Rn+1+ ;�) .
�
Estrong� +

p
A�2 +

q
A�;�2 +

q
A�;punct2

�
kfkL2(�) ;

for all nonnegative f in L2 (�), noting that F and f are not related here. Above, P�(�) denotes the �-
fractional Poisson extension to the upper half-space Rn+1+ ,

P�� (x; t) �
Z
Rn

t�
t2 + jx� yj2

�n+1��
2

d� (y) ;

so that in particular

kP�(f�)k2L2(Rn+1+ ;�) =
X
F2F

X
J2Mr�deep(F )

P� (f�) (c(J); ` (J))2
P!F;J x

jJ j
1
n


2

L2(!)

;

and so (36) proves the �rst line in Proposition 1 upon inspecting (34). Note also that we can equivalently

write kP� (f�)kL2(Rn+1+ ;�) =
eP� (f�)

L2(Rn+1+ ;�)
where eP�� (x; t) � 1

tP
�� (x; t) is the renormalized Poisson

operator. Here we have simply shifted the factor 1
t2 in � to

���eP� (f�)���2 instead, and we will do this shifting
often throughout the proof when it is convenient to do so.
The characterization of the two-weight inequality for fractional and Poisson integrals in [Saw] was stated

in terms of the collection Pn of cubes in Rn with sides parallel to the coordinate axes. It is a routine matter
to pullback the Poisson inequality under a globally biLipschitz map 
 : Rn ! Rn, then apply the theorem
in [Saw] (as a black box), and then to pushforward the conclusions of the theorems so as to extend these
characterizations of fractional and Poisson integral inequalities to the setting of quasicubes Q 2 
Pn and
quasitents Q � [0; ` (Q)] � Rn+1+ with Q 2 
Pn. Using this extended theorem for the two-weight Poisson
inequality, we see that inequality (36) requires checking these two inequalities for dyadic quasicubes I 2 
D
and quasiboxes bI = I � [0; ` (I)) in the upper half-space Rn+1+ :

(37)
Z
Rn+1+

P� (1I�) (x; t)2 d� (x; t) � kP� (1I�)k2L2(bI;�) .
��
Estrong�

�2
+A�2 +A

�;�
2 +A�;punct2

�
�(I) ;

(38)
Z
Rn
[Q�(t1bI�)]2d�(x) .

��
Estrong�

�2
+A�2 +A

�;�
2 +A�;punct2

�Z
bI t
2d�(x; t);

for all dyadic quasicubes I 2 
D, and where the dual Poisson operator Q� is given by

Q�(t1bI�) (x) =
Z
bI

t2

(t2 + jx� yj2)
n+1��

2

d� (y; t) :

It is important to note that we can choose for 
D any �xed dyadic quasigrid, the compensating point
being that the integrations on the left sides of (37) and (38) are taken over the entire spaces Rn+1+ and Rn
respectively.

Remark 7. There is a gap in the proof of the Poisson inequality at the top of page 542 in [Saw]. However,
this gap can be �xed as in [SaWh, p. 861].
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8.1. Poisson testing. We now turn to proving the Poisson testing conditions (37) and (38). The same
testing conditions have been considered in [SaShUr5] but in the setting of no common point masses, and
the proofs there carry over to the situation here, but careful attention must now be paid to the possibility
of common point masses. In [Hyt2] Hytönen circumvented this di¢ culty by introducing a Poisson operator
�with holes�, which was then analyzed using shifted dyadic grids, but part of his argument was heavily
dependent on the dimension being n = 1, and the extension of this argument to higher dimensions is feasible
(see earlier versions of this paper on the arXiv), but technically very involved. We circumvent the di¢ culty
of permitting common point masses here instead by using the energy Muckenhoupt constants A�;energy2 and
A�;�;energy2 , which require control by the punctured Muckenhoupt constants A�;punct2 and A�;�;punct2 . The
following elementary Poisson inequalities (see e.g. [Vol]) will be used extensively.

Lemma 11. Suppose that J;K; I are quasicubes in Rn, and that � is a positive measure supported in Rn n I.
If J � K � 2K � I, then

P� (J; �)

jJ j
1
n

. P� (K;�)

jKj
1
n

. P� (J; �)

jJ j
1
n

;

while if 2J � K � I, then

P� (K;�)

jKj
1
n

. P� (J; �)

jJ j
1
n

:

Now we record the bounded overlap of the projections P!F;J .

Lemma 12. Suppose P!F;J is as above and �x any I0 2 
D, so that I0, F and J all lie in a common
quasigrid. If J 2M(r;")�deep (F ) for some F 2 F with F % I0 � J and P!F;J 6= 0, then

F = �
(`)
F I0 for some 0 � ` � � :

As a consequence we have the bounded overlap,

#
�
F 2 F : J � I0 $ F for some J 2M(r;")�deep (F ) with P

!
F;J 6= 0

	
� � :

Finally we record the only places in the proof where the re�ned quasienergy conditions are used. This
lemma will be used in bounding both of the local Poisson testing conditions. Recall that A
D consists of
all alternate 
D-dyadic quasicubes where K is alternate dyadic if it is a union of 2n 
D-dyadic quasicubes
K 0 with ` (K 0) = 1

2` (K). See [SaShUr7] for a proof when common point masses are prohibited, and the
presence of common point masses here requires no change.

Remark 8. The following lemma is another of the key results on the way to the proof of our theorem, and
is an analogue of the corresponding lemma from [SaShUr5], but with the right hand side involving only the
plugged energy constants and the energy Muckenhoupt constants.

Lemma 13. Let 
D;F �
D be quasigrids and
�
P!F;J

	
F2F

J2M(r;")�deep(F )
be as above with J; F in the dyadic

quasigrid 
D. For any alternate quasicube I 2 A
D de�ne

(39) B (I) �
X

F2F : F%I0 for some I02C(I)

X
J2M(r;")�deep(F ): J�I

 
P� (J;1I�)

jJ j
1
n

!2 P!F;Jx2L2(!) :
Then

(40) B (I) . �
��
Estrong�

�2
+A�;energy2

�
jIj� :

8.2. The forward Poisson testing inequality. Fix I 2 
D. We split the integration on the left side of
(37) into a local and global piece:Z

Rn+1+

P� (1I�)2 d� =
Z
bI P

� (1I�)
2
d�+

Z
Rn+1+ nbI P

� (1I�)
2
d� � Local (I) +Global (I) ;
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where more explicitly,

Local (I) �
Z
bI [P

� (1I�) (x; t)]
2
d� (x; t) ; � � 1

t2
�;(41)

i.e. � �
X
J2
D

1

` (J)
2

X
F2F

X
J2M(r;")�deep(F )

P!F;Jx2L2(!) � �(cJ ;`(J)):
Here is a brief schematic diagram of the decompositions, with bounds in , used in this subsection:

Local (I)
#

Localplug (I) + Localhole (I)

# (Estrong� )
2

#
A + B

(Estrong� )
2

(Estrong� )
2
+A�;energy2

and
Global (I)

#
A + B + C + D

A�2 A�2 +A
�;energy
2 A�;�2 A�;�2 +A�;energy2 +A�;punct2

:

An important consequence of the fact that I and J lie in the same quasigrid 
D = 
D!, is that
(42) (c (J) ; ` (J)) 2 bI if and only if J � I:

We thus have

Local (I) =

Z
bI P

� (1I�) (x; t)
2
d� (x; t)

=
X
F2F

X
J2Mr�deep(F ): J�I

P� (1I�)
�
cJ ; jJ j

1
n

�2 P!F;J x

jJ j
1
n


2

L2(!)

�
X
F2F

X
J2Mr�deep(F ): J�I

P� (J;1I�)
2 kP!F;J

x

jJ j
1
n

k2L2(!)

. Localplug (I) + Localhole (I) ;

where the �plugged�local sum Localplug (I) is given by

Localplug (I) �
X
F2F

X
J2Mr�deep(F ): J�I

 
P� (J;1F\I�)

jJ j
1
n

!2 P!F;Jx2L2(!)
=

8<: X
F2F : F�I

+
X

F2F : F%I

9=; X
J2Mr�deep(F ): J�I

 
P� (J;1F\I�)

jJ j
1
n

!2 P!F;Jx2L2(!)
= A+B:

Then a trivial application of the deep quasienergy condition (where �trivial�means that the outer decompo-
sition is just a single quasicube) gives

A �
X

F2F : F�I

X
J2Mr�deep(F )

 
P� (J;1F�)

jJ j
1
n

!2 P!F;Jx2L2(!)
�

X
F2F : F�I

�
Estrong�

�2 jF j� . �Estrong�

�2 jIj� ;
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since
P!F;Jx2L2(!) � Pgood;!J x

2
L2(!)

, where we recall that the quasienergy constant Estrong� is de�ned in

De�nition 5. We also used that the stopping quasicubes F satisfy a �-Carleson measure estimate,X
F2F : F�F0

jF j� . jF0j� :

Lemma 13 applies to the remaining term B to obtain the bound

B . �
��
Estrong�

�2
+A�;energy2

�
jIj� :

It remains then to show the inequality with �holes�, where the support of � is restricted to the complement
of the quasicube F . Thus for J 2M(r;")�deep (F ) we may use I nF in the argument of the Poisson integral.
We consider

Localhole (I) =
X
F2F

X
J2M(r;")�deep(F ): J�I

 
P�
�
J;1InF�

�
jJ j

1
n

!2 P!F;Jx2L2(!) :
Lemma 14. We have

(43) Localhole (I) .
�
Estrong�

�2 jIj� :
Details are left to the reader,or see [SaShUr7] or [SaShUr6] for a proof. This completes the proof of

(44)

Local (L) �
X
F2F

X
J2M(r;")�deep(F ): J�L

 
P� (J;1L�)

jJ j
1
n

!2 P!F;Jx2L2(!)
.

��
Estrong�

�2
+A�;energy2

�
jLj� ; L 2 
D:

8.2.1. The alternate local estimate. For future use, we prove a strengthening of the local estimate Local (L)
to alternate quasicubes M 2 A
D.

Lemma 15. With notation as above and M 2 A
D an alternate quasicube, we have

(45)

Local (M) �
X
F2F

X
J2M(r;")�deep(F ): J�M

 
P� (J;1M�)

jJ j
1
n

!2 P!F;Jx2L2(!)
.

��
Estrong�

�2
+A�;energy2

�
jM j� ; M 2 A
D:

Again details are left to the reader, or see [SaShUr7] or [SaShUr6] for a proof.

8.2.2. The global estimate. Now we turn to proving the following estimate for the global part of the �rst
testing condition (37):

Global (I) =

Z
Rn+1+ nbI P

� (1I�)
2
d� . A�;�2 jIj� :

We begin by decomposing the integral on the right into four pieces. As a particular consequence of Lemma
12, we note that given J , there are at most a �xed number � of F 2 F such that J 2 Mr�deep (F ). We
have: Z

Rn+1+ nbI P
� (1I�)

2
d� �

X
J: (cJ ;`(J))2Rn+1+ nbI

P� (1I�) (cJ ; ` (J))2
X
F2F

J2M(r;")�deep(F )

P!F;J x

jJ j
1
n


2

L2(!)

=

8>><>>:
X

J\3I=;
`(J)�`(I)

+
X

J�3InI

+
X
J\I=;
`(J)>`(I)

+
X
J%I

9>>=>>;P� (1I�) (cJ ; ` (J))2
X
F2F :

J2M(r;")�deep(F )

P!F;J x

jJ j
1
n


2

L2(!)

= A+B + C +D:
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Terms A, B and C are handled almost the same as in [SaShUr7], and we leave them for the reader. As
always complete details are in [SaShUr6].
Finally, we turn to term D which is signi�cantly di¤erent due to the presence of common point masses,

more precisely a new �preparation to puncture� argument arises which is explained in detail below. The
quasicubes J occurring here are included in the set of ancestors Ak � �

(k)

DI of I, 1 � k <1.

D =
1X
k=1

P� (1I�)
�
c (Ak) ; jAkj

1
n

�2 X
F2F :

Ak2M(r;")�deep(F )

P!F;Ak

x

jAkj
1
n

2
L2(!)

=
1X
k=1

P� (1I�)
�
c (Ak) ; jAkj

1
n

�2 X
F2F :

Ak2M(r;")�deep(F )

X
J02Cgood;��shiftF : J0�AknI

4!
J0

x

jAkj
1
n

2
L2(!)

+
1X
k=1

P� (1I�)
�
c (Ak) ; jAkj

1
n

�2 X
F2F :

Ak2M(r;")�deep(F )

X
J02Cgood;��shiftF : J0�I

4!
J0

x

jAkj
1
n

2
L2(!)

+
1X
k=1

P� (1I�)
�
c (Ak) ; jAkj

1
n

�2 X
F2F :

Ak2M(r;")�deep(F )

X
J02Cgood;��shiftF : I$J0�Ak

4!
J0

x

jAkj
1
n

2
L2(!)

� Ddisjoint +Ddescendent +Dancestor :

We thus have from Lemma 12 again,

Ddisjoint =
1X
k=1

P� (1I�)
�
c (Ak) ; jAkj

1
n

�2
�

X
F2F :

Ak2M(r;")�deep(F )

X
J02Cgood;��shiftF : J0�AknI

4!
J0

x

jAkj
1
n

2
L2(!)

.
1X
k=1

 
jIj� jAkj

1
n

jAkj1+
1��
n

!2
� jAk n Ij! = �

(
jIj�
jIj1�

�
n

1X
k=1

jIj1�
�
n

jAkj2(1�
�
n )
jAk n Ij!

)
jIj�

. �

(
jIj�
jIj1�

�
n
P� (I;1Ic!)

)
jIj� . �A

�;�
2 jIj� ;

since

1X
k=1

jIj1�
�
n

jAkj2(1�
�
n )
jAk n Ij! =

Z 1X
k=1

jIj1�
�
n

jAkj2(1�
�
n )
1AknI (x) d! (x)

=

Z 1X
k=1

1

22(1�
�
n )k

jIj1�
�
n

jIj2(1�
�
n )
1AknI (x) d! (x)

.
Z
Ic

0B@ jIj
1
nh

jIj
1
n + quasidist (x; I)

i2
1CA
n��

d! (x) = P� (I;1Ic!) :
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The next term Ddescendent satis�es

Ddescendent .
1X
k=1

 
jIj� jAkj

1
n

jAkj1+
1��
n

!2
�

Pgood;!I

x

2kjIj 1n

2
L2(!)

= �
1X
k=1

2�2k(n��+1)

 
jIj�
jIj1�

�
n

!2 Pgood;!I

x

jIj 1n

2
L2(!)

. �

8>>>><>>>>:
jIj�

Pgood;!I
x

jIj
1
n

2
L2(!)

jIj2(1�
�
n )

9>>>>=>>>>; jIj� . �A
�;energy
2 jIj� :

Finally for Dancestor we note that each J 0 is of the form J 0 = A` � �
(`)

DI for some ` � 1, and that there

are at most C� pairs (F;Ak) with k � ` such that Ak 2 M(r;")�deep (F ) and J 0 = A` 2 Cgood;��shiftF . Now
we write

Dancestor =

1X
k=1

P� (1I�)
�
c (Ak) ; jAkj

1
n

�2 X
F2F :

Ak2M(r;")�deep(F )

X
J02Cgood;��shiftF : I$J0�Ak

4!
J0

x

jAkj
1
n

2
L2(!)

. �

1X
k=1

 
jIj� jAkj

1
n

jAkj1+
1��
n

!2 kX
`=1

4!
A`

x

jAkj
1
n

2
L2(!)

� �
1X
k=1

 
jIj� jAkj

1
n

jAkj1+
1��
n

!2 Pgood;!Ak

x

jAkj
1
n

2
L2(!)

:

It is at this point that we must invoke a new �prepare to puncture�argument. Now de�ne e! = !�! (fpg) �p
where p is an atomic point in I for which

! (fpg) = sup
q2P(�;!): q2I

! (fqg) :

(If ! has no atomic point in common with � in I set e! = !.) Then we have jIje! = !
�
I;P(�;!)

�
and

jIje!
jIj(1�

�
n )

jIj�
jIj(1�

�
n )
=
!
�
I;P(�;!)

�
jIj(1�

�
n )

jIj�
jIj(1�

�
n )
� A�;punct2 :

A key observation, already noted in the proof of Lemma 2 above, is that

(46) k4!
Kxk

2
L2(!) =

(
k4!

K (x� p)k
2
L2(!) if p 2 K

k4!
Kxk

2
L2(e!) if p =2 K � ` (K)

2 jKje! ; for all K 2 
D ;

and so, as in the proof of Lemma 2,

Pgood;!Ak

x

jAkj
1
n


2

L2(!)

� 3 jAkje! :
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Then we continue with

�
1X
k=1

 
jIj� jAkj

1
n

jAkj1+
1��
n

!2 Pgood;!Ak

x

jAkj
1
n

2
L2(!)

. �
1X
k=1

 
jIj� jAkj

1
n

jAkj1+
1��
n

!2
jAkje!

= �
1X
k=1

 
jIj�

jAkj1�
�
n

!2
jAk n Ij! + �

1X
k=1

 
jIj�

2k(n��) jIj1�
�
n

!2
jIje!

. �
�
A�;�2 +A�;punct2

�
jIj� ;

where the inequality
P1

k=1

�
jIj�

jAkj1�
�
n

�2
jAk n Ij! . A�;�2 jIj� is already proved above in the estimate for

Ddisjoint.

8.3. The backward Poisson testing inequality. Fix I 2 
D. It su¢ ces to prove

(47) Back
�bI� � Z

Rn

�
Q�
�
t1bI�� (y)�2 d�(y) . �A�2 + �Eplug� +

q
A�;energy2

�q
A�;punct2

�Z
bI t
2d�(x; t):

Note that in dimension n = 1, Hytönen obtained in [Hyt2] the simpler bound A�2 for the term analogous to
(47). Here is a brief schematic diagram of the decompositions, with bounds in , used in this subsection:

Back
�bI�
#
Us
#

T proximals + V remotes

A�2+�
Eplug� +

p
A�;energy2

�q
A�;punct2

#

#
T di�erences + T intersections

A�2+�
Eplug� +

p
A�;energy2

�q
A�;punct2

�
Eplug� +

p
A�;energy2

�q
A�;punct2

:

Using (42) we see that the integral on the right hand side of (47) is

(48)
Z
bI t
2d� =

X
F2F

X
J2M(r;")�deep(F ): J�I

kP!F;Jxk2L2(!) :

where P!F;J was de�ned earlier.
We now compute using (42) again that

Q�
�
t1bI�� (y) =

Z
bI

t2�
t2 + jx� yj2

�n+1��
2

d� (x; t)(49)

�
X
F2F

X
J2M(r;")�deep(F )

J�I

P!F;Jx2L2(!)�
jJ j

1
n + jy � cJ j

�n+1�� ;
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and then expand the square and integrate to obtain that the term Back
�bI� is

X
F2F

J2M(r;")�deep(F )
J�I

X
F 02F :

J02M(r;")�deep(F 0)
J0�I

Z
Rn

P!F;Jx2L2(!)�
jJ j

1
n + jy � cJ j

�n+1��
P!F 0;J 0x

2
L2(!)�

jJ 0j
1
n + jy � cJ0 j

�n+1�� d� (y) :

By symmetry we may assume that ` (J 0) � ` (J). We �x an integer s, and consider those quasicubes J
and J 0 with ` (J 0) = 2�s` (J). For �xed s we will control the expression

Us �
X

F;F 02F

X
J2M(r;")�deep(F ); J

02M(r;")�deep(F 0)
J;J0�I; `(J0)=2�s`(J)

�
Z
Rn

P!F;Jx2L2(!)�
jJ j

1
n + jy � cJ j

�n+1��
P!F 0;J 0x

2
L2(!)�

jJ 0j
1
n + jy � cJ0 j

�n+1�� d� (y) ;
by proving that

(50) Us . 2��s
�
A�2 +

�
Estrong� +

q
A�;energy2

�q
A�;punct2

�Z
bI t
2d�; where � =

1

2n
:

With this accomplished, we can sum in s � 0 to control the term Back
�bI�. The remaining details of

the proof are very similar to the corresponding arguments in [SaShUr7], with the only exception being the
repeated use of the �prepare to puncture� argument above whenever the measures � and ! can �see each
other�in an estimate. We refer the reader to [SaShUr6] for complete details9.

9. The stopping form

This section is virtually unchanged from the corresponding section in [SaShUr7], so we content ourselves
with a brief recollection. In the one-dimensional setting of the Hilbert transform, Hytönen [Hyt2] observed
that "...the innovative veri�cation of the local estimate by Lacey [Lac] is already set up in such a way that
it is ready for us to borrow as a black box." The same observation carried over in spirit regarding the
adaptation of Lacey�s recursion and stopping time to proving the local estimate in [SaShUr7]. However,
that adaptation involved the splitting of the stopping form into two sublinear forms, the �rst handled by
methods in [LaSaUr2], and the second by the methods in [Lac]. The arguments are little changed when
including common point masses, and we leave them for the reader (or see [SaShUr6] for the proofs written
out in detail).

10. Energy dispersed measures

In this �nal section we prove that the energy side conditions in our main theorem hold if both measures
are appropriately energy dispersed. We begin with the de�nitions of energy dispersed and reversal of energy.

10.1. Energy dispersed measures and reversal of energy. Let � be a locally �nite positive Borel
measure on Rn. Recall that for 0 � k � n, we denote by Lnk the collection of all k-dimensional planes in Rn,
and for a quasicube J , we de�ne the k-dimensional second moment Mn

k (J; �) of � on J by

Mn
k (J; �)

2 � inf
L2Lnk

Z
J

dist (x; L)
2
d� (x) :

Finally we de�ned � to be k-energy dispersed if there is c > 0 such that

Mn
k (J; �) � cMn

0 (J; �) ; for all quasicubes J in Rn:

9In [SaShUr5] and [SaShUr7] the bound for term B in the global estimate was mistakenly claimed without proof to be simply

A�2 instead of the correct bound A�2 +
�
Eplug� +

q
A�;energy2

�q
A�;punct2 given in [SaShUr6].
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In order to introduce a useful reformulation of the k-dimensional second moment, we will use the obser-
vation that minimizing k-planes L pass through the center of mass. More precisely, for any k-plane L 2 Lnk
such that

R
A
dist (x; L)

2
d� (x) is minimized, where A is a set of positive �-measure, we claim that

E�Ax 2 L :

Indeed, if we rotate coordinates so that L =
��
x1; :::; xk; ak+1; :::; an

�
:
�
x1; :::; xk

�
2 Rk

	
, thenZ

A

dist (x; L)
2
d� (x) =

Z
A

nX
j=k+1

�
xj � aj

�2
d� (x)

=
nX

j=k+1

�Z
A

�
xj
�2
d� (x)� 2aj

Z
A

xjd� (x) +
�
aj
�2 Z

A

d� (x)

�

=
nX

j=k+1

�Z
A

�
xj
�2
d� (x) +

�Z
A

d� (x)

���
aj
�2 � 2RA xjd� (x)R

A
d� (x)

aj
��

is minimized over ak+1; :::; an when

aj =

R
A
xjd� (x)R
A
d� (x)

= (E�Ax)
j
; k + 1 � j � n:

This shows that the point E�Ax belongs to the k-plane L.
Now we can obtain our reformulation of the k-dimensional second moment. Let Snk denote the collection

of k-dimenional subspaces in Rn. If PS denotes orthogonal projection onto the subspace S 2 Snn�k where
S = L?0 and L0 2 Snk is the subspace parallel to L, then we have the variance identity,

Mn
k (J; �)

2
= inf

L2Lnk

Z
J

dist (x; L)
2
d� (x) = inf

S2Snn�k

Z
J

jPSx� PS (E�Jx)j
2
d� (x)(51)

=
1

2
inf

S2Snn�k

1

jJ j�

Z
J

Z
J

jPSx� PSyj2 d� (x) d� (y)

=
1

2
inf

L02Snk

1

jJ j�

Z
J

Z
J

dist (x; L0 + y)
2
d� (x) d� (y) ;

since PS (E�Jx) = E
�
J (PSx). Here we have used in the �rst line the fact that the minimizing k-planes L pass

through the center of mass E�Jx of x in J .
Note that if � is supported on a k-dimensional plane L in Rn, then Mn

k (J; �) vanishes for all quasicubes J .
On the other hand, Mn

0 (J; �) is positive for any quasicube J on which the restriction of � is not a point mass,
and we conclude that measures � supported on a k-plane. and whose restriction to J is not a point mass, are
not k-energy dispersed. Thus Mn

k (J; �) measures the extent to which a certain �energy�of � is not localized
to a k-plane. In this �nal section we will prove the necessity of the energy conditions for boundedness of the
vector Riesz transform R�;n when the locally �nite Borel measures � and ! on Rn are k-energy dispersed
with

(52)
�
n� k < � < n; � 6= n� 1 if 1 � k � n� 2
0 � � < n; � 6= 1; n� 1 if k = n� 1 :

Now we recall the de�nition of strong energy reversal from [SaShUr2]. We say that a vector T� = fT�` g
2
`=1

of �-fractional transforms in the plane has strong reversal of !-energy on a cube J if there is a positive
constant C0 such that for all 2 �  � 2r(1�") and for all positive measures � supported outside J , we have
the inequality

(53) E!J
h
(x� E!Jx)

2
i P� (J; �)

jJ j
1
n

!2
= E (J; !)2 P� (J; �)2 � C0 E!J

��T��� Ed!J T����2 ;
Now note that if ! is k-energy dispersed, then we have

E (J; !)2 =
1

jJ j! jJ j
2
n

Mn
0 (J; !)

2 . 1

jJ j! jJ j
2
n

Mn
k (J; !)

2 � Ek (J; !)2 ;
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and where we have de�ned on the right hand side the analogous notion of energy Ek (J; !) in terms of
Mk (J; !), and which is smaller than E (J; !). We now state the main result of this �rst subsection.

Lemma 16. Let 0 � � < n. Suppose that ! is k-energy dispersed and that k and � satisfy (52). Then the
�-fractional Riesz transform R�;n = fRn;�` gn

`=1
has strong reversal (53) of !-energy on all cubes J provided

 is chosen large enough depending only on n and �.

In [SaShUr4] we showed that energy reversal can fail spectacularly for measures in general, but left open
the possibility of reversing at least one direction in the energy for R�;n when � 6= 1 in the plane n = 2, and
we will show in the next subsection that this is indeed possible, with even more directions included in higher
dimensions.

10.2. Fractional Riesz transforms and semi-harmonicity. Now we �x 1 � ` � n and write x = (x0; x00)
with x0 = (x1; :::; x`) 2 R` and x00 = (x`+1; :::; xn) 2 Rn�` (when ` = n we have x = x0). Then we compute
for � real that

4x0 jxj� = 4x0

�
jx0j2 + jx00j2

� �
2

= rx0 � rx0
�
jx0j2 + jx00j2

� �
2

= rx0 �
�
�

2

�
jx0j2 + jx00j2

� �
2�1

2x0
�
= �rx0 �

�
x0
�
jx0j2 + jx00j2

� �
2�1
�

= �

�
(rx0 � x0)

�
jx0j2 + jx00j2

� ��2
2

+ x0 � rx0
�
jx0j2 + jx00j2

� ��2
2

�
= �

�
`
�
jx0j2 + jx00j2

� ��2
2

+ x0 � � � 2
2

�
jx0j2 + jx00j2

� ��2
2 �1

2x0
�

= �

�
`
�
jx0j2 + jx00j2

� ��2
2

+ (� � 2) jx0j2
�
jx0j2 + jx00j2

� ��4
2

�
= �

�
`
�
jx0j2 + jx00j2

��
jx0j2 + jx00j2

� ��4
2

+ (� � 2) jx0j2
�
jx0j2 + jx00j2

� ��4
2

�
= �

n
(`+ � � 2) jx0j2 + ` jx00j2

o�
jx0j2 + jx00j2

� ��4
2

:

The case of interest for us is when � = �� n+ 1, since then

(54) 4x0 jxj� = rx0 � rx0 jxj��n+1 = rx0 � r jxj��n+1 = c�;nrx0 �K�;n (x) ;

where K�;n is the vector convolution kernel of the �-fractional Riesz transform R�;n. Now if ` = 1 in this
case, then the factor

F`;� (x) � (`+ � � 2) jx0j2 + ` jx00j2

is (� � 1) jx0j2 + jx00j2, and thus in dimension n � 2, the factor F1;� (x) will be of one sign for all x if and
only if � � n+ 1 = � > 1, i.e. � > n, which is of no use since the Riesz transform R�;n is de�ned only for
0 � � < n.
Thus we must assume ` � 2 and � = �� n+ 1 when n � 2. Under these assumptions, we then note that

F`;� (x) will be of one sign for all x if `+ � � 2 > 0, i.e. � > n+ 1� `, in which case we conclude that���4x0 jxj��n+1
��� = j�� n+ 1j

n
(`+ �� n� 1) jx0j2 + ` jx00j2

o�
jx0j2 + jx00j2

���n�3
2

(55)

�
�
jx0j2 + jx00j2

���n�1
2

= jxj��n�1 ; for � 6= n� 1:

When ` = n, this shows that
���4x jxj��n+1

��� � jxj��n�1 for � > 1 with � 6= n� 1. But in the case ` = n we

can obtain more. Indeed, since x00 is no longer present, we have for 0 � � < 1 that

4x jxj��n+1 � jxj��n�1 :

(This includes dimension n = 1 but only for 0 < � < 1).
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We summarize these results as follows. For dimension n � 2 and x = (x0; x00) with x0 2 R` and x00 2 Rn�`,
we have ���4x0 jxj��n+1

��� � jxj��n�1 ;
provided

either 2 � ` � n� 1 and n+ 1� ` < � < n with � 6= n� 1;(56)

or ` = n and 0 � � < n with � 6= 1; n� 1:

Thus the two cases not included are � = 1 and � = n� 1. The case � = 1 is not included since jxj��n+1 =
jxj2�n is the fundamental solution of the Laplacian for n > 2 and constant for n = 2. The case � = n� 1 is
not included since jxj��n+1 = 1 is constant.
So we now suppose that � and ` are as in (56), and we consider `-planes L intersecting the cube J . Recall

that the trace of a matrix is invariant under rotations. Thus for each such `-plane L, and for z 2 J \ L,
we have from (54) and (55), and with I�+1;n� (z) �

R
Rn jz � yj

�+1�n
d� (y) denoting the convolution of

jxj�+1�n with �, that

(57) jrLR�;n� (z)j & jtracerLR�;n� (z)j =
��4LI

�+1;n� (z)
�� � Z jy � zj��n�1 d� (y) � P� (J; �)

jJ j
1
n

;

where rL denotes the gradient in the `-plane L, i.e. rL = PSr where S is the subspace parallel to L and
PS is orthogonal projection onto S, and where we assume that the positive measure � is supported outside
the expanded cube J .
We now claim that for every z 2 J \ L, the full matrix gradient rR�;n� (z) is �missing�at most ` � 1

�large�directions, i.e. has at least n � ` + 1 eigenvalues each of size at least cP
�(J;�)

jJj
1
n
. Indeed, to see this,

suppose instead that the matrix rR�;n� (z) has at most n � ` eigenvalues of size at least cP
�(J;�)

jJj
1
n
. Then

there is an `-dimensional subspace S such that

jrSR�;n� (z)j = j(PSr)R�;n� (z)j = jPS (rR�;n� (z))j � c
P� (J; �)

jJ j
1
n

;

which contradicts (57) if c is chosen small enough. This proves our claim, and moreover, it satis�es the
quantitative quadratic estimate

j� � rR�;n� (z) �j � c
P� (J; �)

jJ j
1
n

j�j2 ;

for all vectors � in some (n� `+ 1)-dimensional subspace

Sn�`+1z � Span
�
v1z; :::;v

n�`+1
z

	
2 Snn�`+1;

with vjz 2 Sn�1 for 1 � j � n� `+ 1.
It is convenient at this point to let

k = `� 1;

so that 1 � k � n� 1 and the assumptions (56) become

either 1 � k � n� 2 and n� k < � < n with � 6= n� 1;(58)

or k = n� 1 and 0 � � < n with � 6= 1; n� 1;

and our conclusion becomes

(59) j� � rR�;n� (z) �j � c
P� (J; �)

jJ j
1
n

j�j2 ; � 2 Sn�kz ; z 2 J:
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10.2.1. Proof of strong reversal of energy. We are now in a position to prove the strong reversal of energy
for Riesz transforms in Lemma 16.

Proof. (of Lemma 16) Recall that Ek (J; !)
2
= infL2Lnk

1
jJj!

R
J

�
dist(x;L)

jJj
1
n

�2
d! (x) and

(60)
1

jJ j!

Z
J

 
dist (x; L)

jJ j
1
n

!2
d! (x) =

1

2

1

jJ j!

Z
J

1

jJ j!

Z
J

 
dist (x; z + L0)

jJ j
1
n

!2
d! (x) d! (z) ;

where we recall that L0 2 Snk is parallel to L. The real matrix
(61) M (x) � rR�;n� (x) ; x 2 J;

is a scalar multiple of the Hessian of jxj�+1, hence is symmetric, and so we can rotate coordinates to
diagonalize the matrix,

M (x) =

266664
�1 (x) 0 � � � 0

0 �2 (x)
...

...
. . . 0

0 � � � 0 �n (x)

377775 ;
where j�1 (x)j � j�2 (x)j � ::: � j�n (x)j. We now �x x = cJ to be the center of J in the matrix M (cJ) and
�x the eigenvalues corresponding to M (cJ):

j�1j � j�2j � ::: � j�nj ; �j � �j (cJ) ;

and de�ne also the subspaces Sn�i to be Sn�icJ for 1 � i � k. Note that we then have Sn�i = Span fei+1; :::; eng.
Let Liz be the i-plane

(62) Liz � z +
�
Sn�i

�?
=
��
u1; :::; ui; zi+1; :::; zn

�
:
�
u1; :::; ui

�
2 Ri

	
:

By (59) we have

j�k+1j � c
P� (J; �)

jJ j
1
n

:

For convenience de�ne j�0j � 0 and then de�ne 0 � m � k be the unique integer such that

(63) j�mj < c
P� (J; �)

jJ j
1
n

� j�m+1j :

Now consider the largest 0 � ` � m that satis�es

(64) j�`j � �
1
2n j�`+1j :

Note that this use of ` is quite di¤erent than that used in (56).
So suppose �rst that ` satis�es 1 � ` � m and is the largest index satisfying (64). Then if ` < m we have

j�ij > �
1
2n j�i+1j for `+ 1 � i � m, and so both

j�`+1j > �
1
2n j�`+2j > ::: > �

m�`
2n j�m+1j � �

m�`
2n c

P� (J; �)

jJ j
1
n

;(65)

j�1j � ::: � j�`j � �
1
2n j�`+1j :

Both inequalities in the display above also hold for ` = m by (63) and (64). Roughly speaking, in this case
where 1 � ` � m, the gradient of R�;n� has modulus at least j�`+1j in the directions of e`+1; :::; en, while
the gradient of R�;n� has modulus at most �

1
2n j�`+1j in the directions of e1; :::; e`.

Recall that Sn�` = Sn�`cJ is the subspace on which the symmetric matrix M (cJ) = r (R�;n�) (cJ) has
energy �trM (cJ) � bounded below by j�`+1j. Now we proceed to show that

(66) j�`+1j2 jJ j
2
n E (J; !)2 . 1

jJ j2!

Z
J

Z
J

jR�;n� (x)�R�;n� (z)j2 d! (x) d! (z) :

We will use our hypothesis that ! is k-energy dispersed to obtain

E (J; !) � Ek (J; !) � Em (J; !) � E` (J; !)
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since ` � m � k. To prove (66), we take Lz � L`z as in (62) and begin with

dist (x; Lz)
2
= dist

�
x; z +

�
Sn�`

�?�2
(67)

= (x`+1 � z`+1)2 + :::+ (xn � zn)2 = jx00 � z00j2 ;

where x = (x0; x00) with x0 2 R` and x00 2 Rn�`, and Lz =
�
(u0; z00) : u0 2 R`

	
. Now for x; z 2 J we take

� �
�
0; x

00�z00
jx00�z00j

�
2 Sn�` (where 0

0 = 0). We use the estimate

(68) jJ j
1
n
r2R�;n�


L1(J)

. jJ j
1
n

Z
RnnJ

d� (y)

jy � cJ jn��+2
. 1



Z
RnnJ

d� (y)

jy � cJ jn��+1
� 1



P� (J; �)

jJ j
1
n

;

to obtain
1

jJ j2!

Z
J

Z
J

�r2R�;n�

L1(J)

jx� zj jJ j
1
n

�2
d! (x) d! (z)(69)

. 1

2
P� (J; �)

2 1

jJ j2!

Z
J

Z
J

 
jx� zj
jJ j

1
n

!2
d! (x) d! (z) =

1

2
P� (J; �)

2 E (J; !)2 :

We then start with a decomposition into big B and small S pieces,

1

jJ j2!

Z
J

Z
J

jR�;n� (x)�R�;n� (z)j2 d! (x) d! (z)

& 1

jJ j2!

Z
J

Z
J

jR�;n� (z0; x00)�R�;n� (z0; z00)j2 d! (x) d! (z)

� 1

jJ j2!

Z
J

Z
J

jR�;n� (x0; x00)�R�;n� (z0; x00)j2 d! (x) d! (z)

� B � S:

For w 2 J we have

jrR�;n� (w)�M (cJ)j = jrR�;n� (w)�rR�;n� (cJ)j(70)

. jw � cJ j
r2R�;n�


L1(J)

. 1



P� (J; �)

jJ j
1
n

;

from (68), and this inequality will allow us to replace x or z by cJ at appropriate places in the estimates
below, introducing a harmless error. We now use the second inequality in (65) with the diagonal form of
M (cJ) = rR�;n� (cJ), along with the error estimates (69) and (70), to control S by

S � 1

jJ j2!

Z
J

Z
J

��(x0 � z0) � r0R�;n� (x)
��2 d! (x) d! (z)

+
1

jJ j2!

Z
J

Z
J

nr2R�;n�

L1(J)

jx0 � z0j2
o2
d! (x) d! (z)

. 1

jJ j2!

Z
J

Z
J

��(x0 � z0) � r0R�;n� (cJ)
��2 d! (x) d! (z)

+
1

jJ j2!

Z
J

Z
J

nr2R�;n�

L1(J)

jx0 � z0j jJ j
1
n

o2
d! (x) d! (z) ;

and then continuing with

S . 1

jJ j2!

Z
J

Z
J

fjx0 � z0j j�`jg2 d! (x) d! (z) +
1

2
P� (J; �)

2 E (J; !)2

. 1


j�`+1j2

1

jJ j2!

Z
J

Z
J

jx� zj2 d! (x) d! (z) + 1

2
P� (J; �)

2 E (J; !)2

=
1


jJ j

2
n j�`+1j2 E (J; !)2 +

1

2
P� (J; �)

2 E (J; !)2 ;
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which is small enough to be absorbed later on in the proof. To bound term B from below we use (70) in

R�;n� (z0; x00)�R�;n� (z0; z00) = (x00 � z00) � r00R�;n� (z) +O
�r2R�;n�


L1(J)

jx� zj2
�

= (x00 � z00) � r00R�;n� (cJ) +O
�r2R�;n�


L1(J)

jx� zj jJ j
1
n

�
;

and then (59) with the choice � �
�
0; x

00�z00
jx00�z00j

�
2 Sn�`, to obtain

jx00 � z00j j�`+1j � jx00 � z00j
���� � r00�R�;n� (cJ) � �

��
=

��(x00 � z00) � r00R�;n� (cJ) � �
��

�
��(x00 � z00) � r00R�;n� (cJ)

��
� jR�;n� (z0; x00)�R�;n� (z0; z00)j+O

�r2R�;n�

L1(J)

jx� zj jJ j
1
n

�
:

Then using (69) and (70) we continue with

1

jJ j2!

Z
J

Z
J

jR�;n� (z0; x00)�R�;n� (z0; z00)j2 d! (x) d! (z)

& j�`+1j2
1

jJ j2!

Z
J

Z
J

jx00 � z00j2 d! (x) d! (z)� 1

2
P� (J; �)

2 E (J; !)2 ;

and then

j�`+1j2 jJ j
2
n E (J; !)2 � C j�`+1j2 jJ j

2
n E` (J; !)

2(71)

= j�`+1j2
1

jJ j2!

Z
J

Z
J

dist (x; Lz)
2
d! (x) d! (z) = j�`+1j2

1

jJ j2!

Z
J

Z
J

jx00 � z00j2 d! (x) d! (z)

. 1

jJ j2!

Z
J

Z
J

jR�;n� (z0; x00)�R�;n� (z0; z00)j2 d! (x) d! (z) + 1

2
P� (J; �)

2 E (J; !)2

. 1

jJ j2!

Z
J

Z
J

jR�;n� (x)�R�;n� (z)j2 d! (x) d! (z) + S + 1

2
P� (J; �)

2 E (J; !)2

. 1

jJ j2!

Z
J

Z
J

jR�;n� (x)�R�;n� (z)j2 d! (x) d! (z) + 1


j�`+1j2 jJ j

2
n E (J; !)2 ;

since 1
2P

� (J; �)
2 E (J; !)2 � 1

 jJ j
2
n j�`+1j2 E (J; !)2 for  large enough depending only on n and �. Finally

then, for  large enough depending only on n and � we can absorb the last term on the right hand side of
(71) into the left hand side to obtain (66):

j�`+1j2 jJ j
2
n E (J; !)2 . 1

jJ j2!

Z
J

Z
J

jR�;n� (x)�R�;n� (z)j2 d! (x) d! (z) :

But since �
m�`
2n cP

�(J;�)

jJj
1
n

� j�`+1j by (65), we have obtained

P� (J; �)
2 E (J; !)2 � 1

c2
 j�`+1j2 jJ j

2
n E (J; !)2

. 1

jJ j2!

Z
J

Z
J

jR�;n� (x)�R�;n� (z)j2 d! (x) d! (z) ;

which is the strong reverse energy inequality for J since

1

2 jJ j2!

Z
J

Z
J

jR�;n� (x)�R�;n� (z)j2 d! (x) d! (z) = E!J
��R�;n�� Ed!J R�;n�

��2 :
This completes the proof of strong reversal of energy under the assumption that 1 � ` � m.
If instead ` = 0, then j�ij > �

1
2n j�i+1j for all 1 � i � m, and so the smallest eigenvalue satis�es

j�1j > �
1
2n j�2j > �

2
2n j�3j > ::: > �

k
2n j�m+1j > �

1
2 c
P� (J; �)

jJ j
1
n

:
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In this case the arguments above show that 
�

1
2 c
P� (J; �)

jJ j
1
n

!2
E (J; !)2 . 1

jJ j2!

Z
J

Z
J

jR�;n� (x)�R�;n� (z)j2 d! (x) d! (z)

+
1

2
P� (J; �)

2 E (J; !)2 ;

which again yields the strong reverse energy inequality for J since the second term on the right hand side
can then be absorbed into the left hand side for  su¢ ciently large depending only on n and �. �

10.3. Necessity of the energy conditions. Now we demonstrate in a standard way the necessity of the
energy conditions for the vector Riesz transform R�;n when the measures � and ! are appropriately energy
dispersed. Indeed, we can then establish the inequality

Estrong� .
p
A�2 + TR�;n :

So assume that (58) holds. We use Lemma 16 to obtain that the �-fractional Riesz transform R�;n has
strong reversal of !-energy on all quasicubes J . Then we use the next lemma to obtain the energy condition
Estrong� . TRn;� +

p
A�2 .

Lemma 17. Let 0 � � < n and suppose that R�;n has strong reversal of !-energy on all quasicubes J .
Then we have the energy condition inequality,

Estrong� . TTn;� +

q
A�;punct2 :

Proof. Fix  � 2 large enough depending only on n and �, and �x goodness parameters r and " so that
 � 2r(1�"). Then Lemma 16 holds. From the strong reversal of !-energy with d� � 1IrnJd�, we have

E (J; !)2 P�
�
J;1IrnJd�

�2
� C E!J

��T� �1IrnJd��� Ed!J T� �1IrnJd����2
. E!J

��T� �1IrnJd����2 . E!J jT� (1Ird�)j2 + E!J jT� (1Jd�)j2 ;
and soX
J2M(r;")�deep(Ir)

jJ j! E (J; !)
2
P� (J; �)

2 .
X
J

Z
J

jT� (1Ird�) (x)j
2
d! (x) +

X
J

Z
J

jT� (1Jd�) (x)j2 d! (x)

.
Z
Ir

jT� (1Ird�) (x)j
2
d! (x) +

X
J

Z
J

jT� (1Jd�) (x)j2 d! (x)

. TTn;� jIrj� +
X
J

TTn;� jJ j� . TTn;� jIrj�

since J � Ir for  � 2r(1�"), and since the quasicubes J have bounded overlap (see [SaShUr6, Lemma 2
in v3]). We also haveX

J2M(r;")�deep(Ir)

jJ j! E (J; !)
2
P� (J;1Jd�)

2 .
X

J2M(r;")�deep(Ir)

A�;energy2 jJ j� . A�;energy2 jIrj�

by the bounded overlap of the quasicubes J in Ir once more. We can now easily complete the proof of

Estrong� . TTn;� +
q
A�;punct2 . �
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