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in 3-dimensional CR geometry by Cheng, Malchiodi and
Yang [5].
© 2015 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Motivation from CR geometry

The study described in this paper was motivated by that on a positive mass theorem
in 3-dimensional CR geometry by Cheng, Malchiodi and Yang [5], where one needs to
find some special functions in the kernel of the Kohn Laplacian that grow at a specific
rate at a given point on an asymptotically flat pseudohermitian 3-manifold. We begin
by giving a brief description of the relevance of our result with their work below.

Consider a compact orientable 3-dimensional strongly pseudoconvex CR manifold
(X, T"9X) with CR structure 719X . We assume throughout that it is CR embeddable
in some C". By choosing a contact form 6o on X that is compatible with its CR structure,
one can make (X , THOX , éo) a pseudohermitian 3-manifold; in particular, one can define
a Hermitian inner product on TYOX, by

1 . _
(Z1|Z2)4, = 56590(217@22)-

Now fix p € X. By conformally changing the contact form, we may find another con-
tact form 0 (which is a multiple of 6o by a positive smooth function), so that near p,
there exists CR normal coordinates (z,t). In other words, the contact form 6 and the
coordinates (z,t) are chosen, so that

(i) the point p corresponds to (z,t) = (0,0);
(ii) one can find a local section Z; of T"°X near p, with (Zl|21>é = 1, such that Z;
admits an expansion near p as described in (1.31) below; and
(iii) the Reeb vector field 7' with respect to 0 admits an expansion as described in (1.32).

Then (X,T%°X,8) is another pseudohermitian 3-manifold. Assume that this pseudo-
hermitian 3-manifold is of positive Tanaka—Webster class: this means that the lowest
eigenvalue of the conformal sublaplacian

Ly:=—4Ay + R

is strictly positive. Here R = Rj; is the Tanaka-Webster curvature of X , and Ay is
the sublaplacian on X. (The above assumption on L; will hold when e.g. R; is strictly
positive on X .) Then L, is invertible, so one can write down the Green’s function G, of
Ly with pole at p. We normalize G, so that

LyG, = 166,,.
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Then near p, G, admits the following expansion

1, A«
GP:%IO 2+A+f7 feé‘(pl)’ (11)
where A is some real constant, p*(z,t) = |2|* + 2, and for m € R, £(p™) denotes,

roughly speaking, the set of all smooth functions g € C>(X \ {p}) such that |g(z,t)| <
p(z,t)™m~P=472" pear p, along with some suitable control of the growth of derivatives
near p (see (1.34) for the precise meaning of the Fréchet space £(p™)).

Let now

X=X\{p} and 0=G20

and let 720X be the restriction of 7%°X to X. Then (X, T"°X, ) is a new non-compact
pseudohermitian manifold, which we think of as the blow-up of our original (X ,T1OX, é)
at p. We say that this pseudohermitian manifold is asymptotically flat, since under an
inversion of coordinates, X has asymptotically the geometry of the Heisenberg group
at infinity. We note that the Tanaka—Webster scalar curvature Ry of X is identically
zero, since the conformal factor G, we used is the Green’s function for the conformal
sublaplacian on X. Let 0y and O denote the associated tangential Cauchy-Riemann
operator and Kohn Laplacian respectively. In [5], Cheng, Malchiodi and Yang introduced
the pseudohermitian p-mass for (X, T*%X,0), given by

m(@)::/lxiHmOi / wi A,

{(p=A}

where wi stands for the connection form of the given pseudohermitian structure. Then
they proved that there is a specific 8 € £(p~1), with 0,8 = £(p*), such that

3 ~12 ~ 3 = ~
m(9):—§/‘Dbﬂ’ 9/\d9+3/|ﬁ’ﬁ|29/\d9+Z/B-Pﬁe/\dﬁ, (1.2)
X X X

where B’ii is some derivative of the function E , and P is the CR Paneitz operator of
(X, T*°X,0). (Note Ry = 0 in our current set-up, so the term involving Ry in the
corresponding identity of mass in [5] is not present above.) Moreover, it was shown that
(1.2) holds for any S in place of 3, as long as 8 — 8 € £(p'19), and 0,8 = E(p*F7)
for some § > 0. Thus, if we could find such a § in the kernel of Op, then under the
assumption that the CR Paneitz operator P is non-negative, one can conclude that the
mass m(#) is non-negative. The construction of such f is the motivation of the current
paper. (See Corollary 1.2 in the next subsection.)

Classically, if one wants to solve O, on say a compact CR manifold, one proceeds by
showing first that O, extends to a closed linear operator on L2, and that this extended
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Op has closed range on L2?. Then one solves O, in a weak sense, and shows that the

solution is classical if the right hand side of the equation is smooth. This strategy does

not directly apply in our situation, since our CR manifold X is non-compact. In fact,

the natural volume form on X is given by 6 A df, and even if we extend O, so that it

becomes a closed linear operator on L?(f A df), this operator may not have closed range

in L2(0 A df), as is seen in some simple examples (e.g. when X is the unit sphere in C?).
To overcome this difficulty, we introduce in this paper a weighted volume form

my = G;ZG A db,
as well as a weighted Kohn Laplacian, namely
Op1 = GiDb-
We will show that Op 1 extends as a densely defined closed linear operator
Op,1: Dom Oy 3 C Lz(ml) — Lg(ml),

and this extended operator has closed range in L?(my). (See Theorem 1.3 below.) Here
L?(my) is the space of L? functions with respect to the volume form m;. As a result, we
have the following L? decomposition:

Op 1N+ =1 on L*(my)

Here N : L%*(m;) — Dom0,; is the partial inverse of Op; and II : L%(my) —
(Ran O, 1)t is the orthogonal projection onto the orthogonal complement of the range
of Op1 in L?(my). We will show that for every 0 < § < 2, N and II can be extended
continuously to

(see Theorem 1.4 below). Hence
Op 1N +I1=1 on E(p~2+°), (1.4)
for every 0 < 6 < 2. Now, let 3 be as in (1.2). Put
fi=0p18= G,?,Dbg

Then by the expansion of G, and the assumption on Db§7 we have f € £(p~11?), for
every 0 < § < 1. From (1.3), we know that IIf is well-defined and Nf € £(p*1?), for
every 0 < 0 < 1. Moreover, we will show, in Theorem 1.5 below, that

If = 0.
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Thus from (1.4), we have

Op 1 (Nf) = f = Db,15-

If we put
Bi=p~-Nf,
then
DB=0 and B—pe&(p'),

for every 0 < § < 1. With this we have achieved our goal.

It turns out that a large part of our analysis does not depend on the fact that G, is
the Green’s function of a conformal sublaplacian. All that we need is that G, admits an
expansion as in (1.1), that it is smooth on X, and that it is positive everywhere on X.
We will formulate our result in this framework in the next subsection.

We expect that it is possible to approach the same problem by proceeding via L”
spaces rather than weighted L? spaces. In [13], we solved the 0O, equation in some L?
spaces in a special case.

The operator 0,1 can be seen as the Kohn Laplacian on the non-compact CR manifold
X=X \ {p} defined with respect to the natural CR structure T'0X and the “singular”
volume form m;. The coefficients of O ; are smooth on X but singular at p. This work
can be seen as a first study of this kind of “singular Kohn Laplacians”. It will be quite
interesting to develop some kind of “singular” functional calculus for pseudodifferential
operators and Fourier integral operators and establish a completely microlocal analysis
for 0,1 along the lines of Beals and Greiner [1], Boutet de Monvel and Sjostrand [3]
and [12]. We hope that the “singular Kohn Laplacians” will be interesting for analysts.

1.2. Our main result

Let us now formulate our main results in their full generality. Consider a compact
orientable 3-dimensional strongly pseudoconvex pseudohermitian manifold X , with CR
structure T1°X and contact form 6y. We assume throughout that it is CR embeddable
in some CV. By conformally changing the contact form 6y, we may find another contact
form 6, so that near p, one can find CR normal coordinates (z,t) as described in the
previous subsection. We will write

plzt) = (=" + )%,

and for every m € R, we can define a Fréchet function space £(p™) as in (1.34).
Now fix a point p € X, and let

X =X\{p}
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We fix from now on an everywhere positive function G, € C*°(X), such that G, admits
an expansion

Gp=—p 2+ A+f, feE(p), (15)

T on

where A is some real constant. (Again G, need not be the Green’s function of the
conformal sublaplacian any more.) Define now

0 =G20.

Then (X, TWOX ,0) is a non-compact pseudohermitian 3-manifold, which we think of as
the blow-up of the original X. The 6 defines for us a pointwise Hermitian inner product
on T X, given by

1 =
<Z1|ZQ>9 = §d9(Zl,ZZQ);
we denote the dual pointwise inner product on the space (0,1) forms on X by the same
notation (-|-)g. Let 9y be the tangential Cauchy-Riemann operator on X. This is defined

depending only on the CR structure on X. Now there is a natural volume form on X,
given by

m =0 A db.

This induces an inner product on functions on X, given by
(b = [ f3m,
X

and an inner product on (0,1) forms on X, given by

(a|B)m,o = /<a|ﬁ>9 m.

X

We write EZ’f for the formal adjoint of 9, under these two inner products. In other words,
5Z’f satisfies

(Byu|0)m.o = (u|F; 7T 0)m

for all functions v and (0, 1) forms v on X that are smooth with compact support. We
can now define the Kohn Laplacian on X, namely

Op := 5:’}061,,



740 C.-Y. Hsiao, P.-L. Yung / Advances in Mathematics 281 (2015) 734—822

at least on smooth functions with compact support on X; then

(@t | flm = (u|Tof)m

for all functions u, f on X that are smooth with compact support, so we can extend 0
to distributions on X by duality.

Our goal is then to solve a specific equation involving Op. First, let x(z,t) be a
smooth function with compact support on X , so that its support is contained in the local
coordinate chart given by the CR normal coordinates (z,t), and that it is identically 1
in a neighborhood of p. Let

1z
22 — it

Bo = x(z,1) e,

Then O, € £(p?). Furthermore, as was shown in [5], there exists 8, € £(p'), such that
if

B = Bo + B,
then
F:= DbB S g(ﬁ4)

Actually, in what follows, all we will use is that F' € £(p3+9) for all 0 < § < 1. Our main
theorem can now be stated as follows:

Theorem 1.1. Let F' be as defined above. Then there exists a smooth function u on X,
such that u € E(p*+°) for any 0 < 6 < 1, and

Oyu = F.
By taking g := B — u, we then have:

Corollary 1.2. There exists B € E(p~1) with B — Be E(PMO) for any 0 < § < 1, such
that

0p8 = 0.

This provides a key tool in the proof of a positive mass theorem in 3-dimensional CR
geometry in the work of Cheng, Malchiodi and Yang [5], as was explained in the last
subsection.

Some remarks are in order. The first is about numerology. Considerations of homo-
geneity shows that Oy takes a function in £(p*) to £(p**+2). Thus the homogeneity above
works out right; the only small surprise is that while £y is in £(p™1), Opf0 is in E(p?),
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which is 2 orders better than expected. But that is a reflection of the fact that our 5y
has been chosen such that 9,3, is almost annihilated by 5Z’f .

Next, 31 above is an explicit correction in £(p') such that 0,81 € £(p?) cancels out
the main contribution of 0By € £(p®). This ensures that F € £(p*+°) for all 0 < § < 1,
which in turn guarantees that the 5 we construct in Corollary 1.2 is determined explicitly
up to £(p*1?) for all (in particular, for some) 0 < § < 1. The latter is important in the
proof of the positive mass theorem in [5], since any term in the expansion of § that
is in £(p') would enter into the calculation of mass in (1.2). But for the purpose of
solving 0O in the current paper, the correction term S; is not essential; in particular,
if Fy := OpB0 € E(p?), then our proof below carries over, and shows that there exists
up € E(p') such that Opug = Fy.

Finally, in Corollary 1.2, note that we do not claim 0,3 = 0. It is only 0,3 that
vanishes, as can be shown by say the example when X is the standard CR sphere in C2.

1.8. Our strategy

As we mentioned earlier, the difficulty in establishing the above theorem is that the
CR manifold we are working on, namely X, is non-compact; also, the natural measure
on X, namely m = 6 A df, has infinite volume on X. Let L?(m) be the space of L?
functions on X with respect to m. Even if we extend O to be a closed linear operator
on L?*(m) — L*(m), in general the extended O, may not have closed range in L?(m).
Thus the classical methods of solving 0O fail in our situation.

We thus proceed by introducing a weighted L? space, and a weighted Kohn Laplacian.
Let

my =G, %0 A db.

We define L?(m1) to be the space of L? functions on X with respect to the inner product

(F19)my = / fgm,
X

and define L%O,l) (m1,0) to be the space of L2 (0,1) forms on X with respect to the inner
product

(@B, 4= /(alb’}é my.

X

We extend the tangential Cauchy—Riemann operator so that

Domdy 1 := {u € L?(m1): the distributional 9}, of u on X is in L?0,1)(m17 9)},
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and define
5b71u := the distributional 9, of v on X
ifue Dom(_)b,l. Then
E)b,lz Dom 51;,1 C L2(m1) — L%O’l)(ml,é),
is a densely defined closed linear operator. Let
951:Dom 8, C L?O,l)(mh 0) — L*(my)

be its adjoint. Let Op; denote the Gaffney extension of the singular Kohn Laplacian
given by

DomOp; = {s € L2(m1): s € Domgb’l, 5;,’15 e Domgz‘)l} ,

and Op,15 = 5;1151)715 for s € DomOp,1. By a result of Gaffney, Op,; is a non-negative
self-adjoint operator (see [19, Prop. 3.1.2]). We extend 01 to distributions on X by
Op1: 2'(X) = 2'(X),
(@t | flmy = W] Op1 flm, uve 2'(X), felC5(X).

This is well-defined, since if f is a test function on X, then so is Oy 1 f. One can show
Opau = GiDbm Vu € 7'(X).

In fact, by duality, it suffices to check this for a test function u € C§°(X). If u is as such,
then for any test function v € C§°(X),

and the desired equality follows.

Thus solving O is essentially the same as solving for Oy 1, and it is the latter that
forms the heart of our paper.

The key here is then three-fold, as is represented by the next three theorems. First
we will show that
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Theorem 1.3. Oy 1: Dom 0Oy 1 C L?(my) — L?(m4) has closed range in L*(my).
Once this is shown, we have the following L? decomposition:
Opa N+ =1 on L*(my).

Here N : L*(m1) — Dom O 1 is the partial inverse of Op; and II : L?(my) —
(Ran 0, 1)* is the orthogonal projection onto (Ran 0 1)*. We now need:

Theorem 1.4. For every 0 < § < 2, IT and N can be extended continuously to

I: £(572) = £(p2),
N E(E) = £(7).

It then follows that
Op1N +II=1 on E(p~2+°),
for every 0 < ¢ < 2. Now, let F' be as in Theorem 1.1. Put
f= G?BF.

Then f € E(p~'1?), for every 0 < § < 1. From Theorem 1.4, we know that IIf is
well-defined; we will show that

Theorem 1.5.
Inf =o0.
It then follows that u := N f satisfies
we P, Dpiu=f= Gf,F.
From the relation between O, 1 and O, we obtain the desired conclusion in Theorem 1.1.

1.4. Outline of proofs

To prove the theorems in the previous subsection, we need to introduce two other
Kohn Laplacians, which we denote by £, and O, as follows.

First, O, is the natural Kohn Laplacian on (X , TWOX , é) There we have the natural
measure

>
I
>
>
U
D>
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One can then define L2(7) to be the space of L? functions on X with respect to the
inner product

(Flg)m = / fam,
b'e

and define L%071)(m, 0) to be the space of L? (0,1) forms on X with respect to the inner
product

(alB) g = / (alB)g .

We extend the tangential Cauchy—Riemann operator so that
Domél7 := {u € L?(1h): the distributional d, of u on X is in L%O’l)(m, 0)},
and define
5bu := the distributional 8, of u on X

ifue Domg_)b. Then

Op: Dom 9y, C L*(in) — L%, (11, 0)
is a densely defined closed linear operator. Let

Oy: Domd, C LY 1) (i, B) — L (1)
be its adjoint. Let 01, denote the Gaffney extension of the Kohn Laplacian given by

Dom (1, = {s € L?(1h): s € Dom 0y, Ops € Dom 9y},

Cps = 0,0ps  for s € Dom [,

It is then a non-negative self-adjoint operator on L?(h) (see e.g. [19, Prop. 3.1.2]).
The analysis of this 00, is very well-understood; see work of Kohn [16,17], Boas—Shaw
[2], Christ [6,7] and Fefferman—Kohn [9] in the CR embeddable case, and work of Kohn—
Rossi [18], Folland—Stein [10], Rothschild—Stein [26], Greiner—Stein [11], Nagel-Stein [22],
Fefferman [8], Boutet de Monvel-Sjostrand [3], Nagel-Stein—-Wainger (23], Nagel-Rosay—
Stein-Wainger [24,25] and Machedon [20,21] for some earlier work or related results.
On the other hand, it is not very straightforward to reduce the analysis of O 1 to the
analysis of this [J; we go through an intermediate Kohn Laplacian, which we denote
by If|b.
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To introduce Oy, first we need to construct a special CR function v on X , such that
oy =0o0n X, 1 # 0 on X, and near p, we have

Y(z,t) = 27(|z|* + it) + error,

where the error vanishes like p* near p. (The precise construction is given in Section 4.)
One can then define the following volume form on X:

m:= Gf,\w|29 A de.
Note that X has finite volume with respect to this volume form, since G2|¢|? is bounded
near p. However, this volume form does not have a smooth density against m; this is
one of the biggest sources of difficulties in what we do below. The key turns out to be
the following: the asymptotics (1.5) we assumed of G, allows us to obtain some crucial
asymptotics of the density of m against 1 near p. This in turn implies a crucial relation

between the 0j we will introduce, and the (3, we defined above (see (1.9) below).
Now let L?(m) be the space of L? functions on X with respect to the inner product

(f19)m /fgm

and define L(o 1(m i, 0) to be the space of L2 (0,1) forms on X with respect to the inner
product

(@) = / (alB)y
X

We extend the tangential Cauchy—Riemann operator so that
Dom@l7 = {u € L*(m): the distributional d;, of v on X is in L(o 1 (m, 0)},
and define
gbu := the distributional 9, of u on X
ifue Domgb. Then
81, Dom@b c L*(m) — L(o 1(m, 0)
is a densely defined closed linear operator. Let

Jy: Domdy C L3 (i, 8) — L*(m)
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be its adjoint. Let 0, denote the Gaffney extension of the Kohn Laplacian given by

Dom 0, = {s € L*(m):s € Dom(%)b7 E:)bs € Domé:)Z},

k= _
Ops = 0,0ps  for s € Dom [p.

It is then a non-negative self-adjoint operator on L?(1m). The analysis of Db is not as

well-understood, since this Kohn Laplacian (in particular, the operator 8b) is defined
with respect to a non-smooth measure m. Nonetheless, it is this Kohn Laplacian that
can be related to our operator of interest, namely O, in a simple manner. We will
prove that since m = [¢|?*my,

u € Dom Op,; if and only if 3; € Dom Op, (1.6)

Op,1u = YOy(y " u), Yu € Dom Op,1- (1.7)

Thus we can understand the solutions of O 1, once we understand the solutions of 0.
In order to carry out the latter, we relate 0 to fp: we will show that

Dom 1, = Dom [y, (1.8)

and there exists some g € £(p*, T X) (possibly non-smooth at p) such that
Opu = Oyt + gOpu, Yu € Dom 0y, (1.9)

(Here gébu is the pointwise pairing of the (0,1) vector g with the (0,1) form éi)bu; see
the discussion in Section 1.5 for the precise meaning of £(p*, T%'X).)

We can now outline the proofs of Theorems 1.3, 1.4 and 1.5.

First, from (1.6) and (1.7), it is clear that 0,1 has closed range in L?(mq), if
and only if O has closed range in L?(). On the other hand, one can check that
81, Domd, C L*(m) — L(071)(m,9) is the identical as an operator to 8b Dom 81,
L?(m) — L(OJ)(m,H). The latter is known to have closed range in L?(m) by the CR
embeddability of X; see [17] (also [4]). Hence the same holds for the former, and it follows
that 03, has closed range in L?(1). This proves Theorem 1.3.

Now from the above argument, we see that not only I, has closed range in L?(1),
but also [J, has closed range in L?(r). Thus there exist partial inverses

N: L*(1) — Dom(ch,) C L%(i),

and

N:L?(m) — Dom(03,) € L%(1)
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to O, and [, respectively, so that if
II: L*(m) — L?(1n)
is the orthogonal projection onto the kernel of £, in L?(/), and
IT: L* (i) — L (1)
is the orthogonal projection onto the kernel of (1, in L?(1), then
N +I1=1 on L*(m),

and

From the relation

and (1.7), it is easy to see that
II=¢ly ' and N =Ny *, (1.10)

at least when apphed to functions in L?(m;); thus to prove Theorem 1.4, it suffices to
prove instead that IT and N extend as continuous operators

ILE(p0) — E(p~*T9) (1.11)
N:E(p~*%) = £(p2+9) (1.12)

for every 0 < 6 < 2. In order to do so, we relate II to 11, and N to N, since II and N are
much better understood. We will show, on L?(m), that

(I +R) =TI (1.13)

N(I+R)=(I-1DN, (1.14)
where
R := g0y N: L* () — L*(i)

is a continuous linear operator; in fact, these identities are almost immediate from (1.8)
and (1.9). Furthermore, one can show that N and II extend as continuous operators
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I E(p~4H0) = £(p~1+9) (1.15)
N:E(p~40) = £(p~29) (1.16)

for every 0 < § < 2; thus if one can show that (I + R) is invertible on L2(7), and that
the inverse extends to a continuous operator £(p~49) — £(p~*1?), then from (1.13),
at least one can conclude the assertion about II in Theorem 1.4. It turns out that it is
unclear whether or not the latter can be done; so we choose to proceed differently, by
some bootstrap argument. It is this argument that we explain below.

First, so far I and N are defined only on L2(). Since £(p~419) is not a subset of
L2(m) when 0 < § < 2, we need to first extend IT and N to £(p~4+%), 0 < § < 2. This
is done by rewriting (1.13) and (1.14) as

II

A

II-IR, N=(-I)N-NR. (1.17)

Note that R extends to a continuous operator
R £(57%) = £(5720) € L2 ()

for every 0 < § < 2, since R= gébJ\Af , and N satisfies the analogous property. Thus the
second term on the right hand sides of the equations in (1.17) map &€(p~*+°) continuously
to L*(m). It follows that the domains of definition of II and N can be extended to
E(p~9),0< 6 < 2.

To proceed further, let’s write f[*’m7 N*™ and R*™ for the adjoints of f[, N and R
with respect to the inner product of L?(m). Since IT and N are self-adjoint operators on
L?(m), we have, by (1.13) and (1.14), that

(I + R>™)II = 1™ (1.18)
(I+ R*™N = N*™(I —1I) (1.19)

on L?(m). Now we need to understand some mapping properties of ﬂ*’ﬁ, N*™ and
R*’m; to do so, we note that

e = Mg m
m-m’
Fpe e
mm’

e (PSS )

R = =Ny (9" —),
m m
where m /i := GZ|ib|* is the density of m with respect to 7, and similarly m/m :=

—20,—2 s e N A0
G,?[v|7%. Here g* is the (0,1) form dual to g. Note that m/m, m/m € £(p”). Hence
one can show that
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™. £(p~ ) = £(p~4H9) (1.20)
N5 E(p~40) 5 g(p~HH9) (1.21)
Rm™ g(p=t0) = £(p7217) (1.22)

for every 0 < § < 2; these are easy consequences of the analogous properties of I,
N and R. It then follows that (1.18) and (1.19) continue to hold on &(p~**9) for all
0<d<2.

Now we return to (1.18) and (1.19). The problem facing us there is that we do not
know whether I+ R*™ is invertible on E(p~419); if it is, then we can conclude, say from
(1.18), that at least II satisfies the conclusion of Theorem 1.4. In order to get around this
problem, we have to proceed differently; the trick here is to introduce a suitable cut-off
function, as follows.

Let x be a smooth function on X, such that X is identically 1 in a neighborhood of p,
and vanishes outside a small neighborhood of p. Then by (1.18) and (1.19), we have

(I 4+ R*™y)II = IT"™ — R*™(1 — y)II, (1.23)
(I+R“")N = N*™(I —1II) — R*™(1 — )N (1.24)

on E(p~4*9) for all 0 < § < 2. The upshot here is the following: if the support of y is
sufficiently small, then (I 4+ R*ﬁx) is invertible on L?(m), and extends to a linear map

(I+ R HEP ) = £(p~*°) (1.25)
for every 0 < § < 4. Roughly speaking, this is possible, because
al M A~ o* m
I+ R"x =1+ =N0,(xg9" =),
m m
and because
xg" € E(p, AP T X)

has compact support in a sufficiently small neighborhood of p. (In particular, yg* is
small.) Furthermore, for any 0 < § < 2, one can show that

(1= I E(~ ) = C3°(X) (1.26)

(1= X)N:E(p~"*°) = C5°(X) (1.27)

where C§°(X) is the space of all smooth functions on X that has compact support
in X. These can be used to control the last term on the right hand side of (1.23) and
(1.24). By (1.20) and (1.22), one then concludes that the right hand side of (1.23) maps
E(p~*19) into itself for 0 < § < 2; thus (1.25) shows that (1.11) holds as desired. This
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in turn controls the first term of (1.24); by (1.21), (1.22) and (1.27), one concludes that
the right hand side of (1.24) maps £(p~*+°) into £(p~2%%) for 0 < § < 2. Finally,
another application of (1.25) shows that N satisfies (1.12) as desired. Thus Theorem 1.4
is established, modulo (1.25), (1.26) and (1.27).

It may help to reiterate here the reason for the introduction of the cut-off x: that
was introduced so that one can invert I + R*™y. In fact, since the coefficient of
g* € E(pY, A1+ X)), xg* has sufficiently small L> norm, if the support of y is chosen
sufficiently small. As a result, one could make ||R*’mX||L2(m)—>L2(m) < 1/2, by control-
ling the support of x. This allows one to invert I + f{**mx on L?(m) via a Neumann
series. We note in passing that it is only because we have taken the adjoint of R that the
product xg* appears in the expression for I 4 R*’?ﬁx; that is essentially why we want to
take the adjoints of (1.13) and (1.14). One can then proceed to extend (I + R*™y)~!
so that it satisfies (1.25); the precise detail is rather involved, and we leave this until
Section 3.

It then remains to prove (1.26) and (1.27). To do so, we need yet to introduce yet
another Kohn Laplacian, namely 01, .. Let € C§°(R?) be a non-negative function such
that n(z,t) = 1 if p(z,t) < 1/2, and n(z,t) = 0 if p(z,t) > 1. For 0 < e < 1, let

ne(z,t) = n(e~tz,e72t), and let
me :=nem+ (1 —ne)m.

This volume form has a smooth density against 172, and the volume of X with respect to
this volume form is finite. So if we extend the Cauchy—Riemann operator such that

Doméb@ := {u € L*(/.): the distributional 9, of u is in L%O’l)(m87 0)},
and define
5b78u := the distributional 9, of u
ifue Dom?}b,s, then
Ope: Dom Dye C L2(ih) — L3 (1, )

is a densely defined closed linear operator. Let

Opo:Domd,, C L3 (e, 0) — L2 ()

AX A

be its adjoint. Let (1, . be the Gaffney extension of the Kohn Laplacian éb,séb,s. Then
C1p.c is almost as well-behaved as (. In particular, &1y .: Dom 8, . C L%(1h.) — L2(1h.)
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has closed range in L?(1.), and if I1. denotes the orthogonal projection of L?(r.) onto
the kernel of 0, ., and N.: L2 (te) — L?(1.) is the partial inverse of (1, then

A

By N. + I, = 1.

)

Furthermore,
Dom 03, = Dom (7, .,

and there will exist some g. € £(p', T*' X) (possibly non-smooth near p) such that

Opu = Opcu + g=0pu, Yu € Dom (. (1.28)

The upshot here is that g. will be compactly supported in the support of 7., whereas our
previous g may not be compactly supported near p. One can repeat the proof of (1.18)
and (1.19), and show that

(I+Ry™)I=1I0m
(I + RS™)N = N5™(I —1I)

on L?(m), where

It follows that

Now

%,m T o5« m
(1 - X)]%e7 - ﬁs(l - X)N€8b,ege m_’

€

and if ¢ is chosen sufficiently small (so that the support of g. is disjoint from that of

1 —x), then (1 — X)]\A/}éb,sg: is an infinitely smoothing pseudodifferential operator, by
pseudolocality of N.. Hence the last term of (1.29), and also the last term of (1.30), map
E(p~419) into C§°(X). Since for every 0 < & < 1 and every 0 < § < 2,

L2 £(p=7) = E(p~*7),
and

NZmE(p™0) = E(p7*7),
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it follows that (1 — y)II and (1 — )N satisfy (1.26) and (1.27), and we are done with
the proof of Theorem 1.4.

Finally, to prove Theorem 1.5, the key is the following fact, which we prove in
Lemma 9.1: if a is a (0,1) form with coefficients in £(p°), then (Z)Z,la € E(p71) sat-
isfies 110 ;o = 0. To compute I1f = IO, 3 = Hé;"l(éb}lg), we will then decompose

5;,,15 into a sum
517,15 =ao+ F,

where the main term g has coefficients in £(p~2), and the error E has coefficients in
E(p%). Then by Lemma 9.1, Hézle = 0. Furthermore, we will construct by hand an
explicit family of (0, 1) forms a., with coefficients in £(p°), such that

Op10e = Oy 00 InE(p~') ase — 0.

Thus by continuity of II on £(p~ 1), we have Héz’lao = lim._,q Hé;laa = 0 as well, the
last equality following from Lemma 9.1. Together we get IIf = 0, as desired.

1.5. Definitions and notations

‘We shall now recall some basic definitions, and introduce some basic notations.

A 3-dimensional smooth manifold X is said to be a CR manifold, if there exists a
1-dimensional subbundle L of the complexified tangent bundle CTX such that LN L =
{0}; such subbundle L is then denoted as T1°X, and L denoted as T%'X. The dual
bundles to T1°X and T°'X will be denoted by AVT*X and A%'T*X respectively.
A typical example is a 3-dimensional smooth submanifold X of C"; there one has a
natural CR structure induced from C¥, given by the bundle of all (1,0) vectors in C
that are tangent to X.

A 3-dimensional CR manifold X is said to be strongly pseudoconvex, if at every
point on X there exists a local section Z of T1°X such that [Z, Z] is transverse to
THOX@T% X . It is said to be CR embeddable in CV, if there exists a smooth embedding
®: X — ®(X) C CV, such that d®(THYX) agrees with the natural CR structure of ®(X)
induced from CV.

We shall write C°°(X) for the space of smooth functions on X, and Q%*(X) for the
space of smooth sections of A%!T*X. We shall also write C§°(X) and QS’I(X) for the
subspaces of C*°(X) and Q%! (X) which consist of elements that have compact support
in X.

Suppose X is a 3-dimensional CR manifold. If there exists a real contact form @ (i.e.
a global real 1-form 6 with 6 A df # 0 everywhere) such that T5°X @ T%1 X is given by
the kernel of 0, then (X, T*°X, ) is called a pseudohermitian 3-manifold. In that case,
X is strongly pseudoconvex, and one can define a Hermitian inner product on T*°X, by

1 =
<Zl|ZQ>9 = idg(Zl’ ZZQ).
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This allows one to define various geometric quantities on X, like the connection form wi,
and the Tanaka—Webster scalar curvature R. One can also define the sublaplacian Ay,
the conformal sublaplacian Ly := —4A, + R, and the CR Paneitz operator P. We refer
the reader to say [5] for the precise definitions of such.

We note that the above Hermitian inner product on T%°X induces naturally a Her-
mitian inner product on A%'T* X, which we still denote by (-|-)g. For a € Q%1 X, we
write |a|2 = (a|a)e.

In what follows, we will need the Reeb vector field T' on a contact manifold (X, 8),
which is the unique vector field such that

O(T)=1, do(T,-)=0.

If p is a non-negative smooth function defined near a point p, then we write £(p*) for
the set of smooth functions f € C*(X) such that |f| < Cp* near p for some C > 0.

Suppose now (X' , TYOX , éo) is a pseudohermitian 3-manifold, and we fix p € X. Then
as is known, there exists another contact form 6 on X , which is a multiple of 90 by a
positive smooth function, so that near p, there exist CR normal coordinates (z,t). In
other words, the contact form 6 and the coordinates (z,t) are chosen, so that

(i) the point p corresponds to (z,t) = (0,0);
(ii) one can find a local section Z; of T%°X near p, with <Zl|21>é = 1, such that Z,
admits the following expansion near p:
. 7]

o 0 ._8 puil A4 9 A5 a.

(iii) the Reeb vector field T with respect to 6 admits an expansion

) N B
T = o +e(p®) 5 +(0) 55 +2(0")

0

ot (1.32)

Here
plz,t) = (|2|* +17)7

for (z,t) in a neighborhood of (0,0). For later convenience, from now on we will fix a

positive smooth extension of p to the whole manifold X. We will also write Zi = 2_1 .
Note that in CR normal coordinates we have

0 = dt — i(zdz — zdz) + £(p°)dz + e(p°)dz + (p*)dt. (1.33)

Next, for m € R, we will introduce a Fréchet space £(p™), with which our results
are formulated. We pause and introduce some notations first. Let £ € N. We denote by
V¥ any differential operator of the form Ly ... Ly, where L; € C°(X,T"0X @ TO'X),
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(Li|Lj)g < 1,7 =1,...,k Let O(p™) = 0O (p™), m € R, denote the set of all
f € C*®(X) such that |f| < Cp™ near p, for some C > 0. Let O (p™) denote the set
of all functions f € O(p™) such that V,f € O(p™1). Similarly, for k € N, k > 2, let
O®) (™) denote the set of all functions f € O(p™) such that V,f € O*=1(5m=1). Put

Epm =[] oW(@m). (1.34)
keNJ{0}

Let © € X be an open set. For f € C>(Q), define
1l e = sup £ (@)
€N
E(p™) is a Fréchet space with the semi-norms:

u— H@’g(ﬁ—mMu)HLw(X)  ue &M, (1.35)
for k € Ny. These semi-norms then define the topology of £(p™).

There is a version of this space for smooth vector bundles over X. Let E be a smooth
vector bundle over X of rank 7. Let fi,..., f. be any local frame in some small neigh-
borhood U of p. For m € R, let £(p™, E) be the set of all u € C*°(X, E) such that
u=1uyfi+--+u,fronU, and yu; € E(p™) for every x € Cg°(U) and every j =1,...,r.

Note that £(p™) c £(p™') if m/ < m. We also notice that for every m € R, Cg°(X)
is dense in £(p™) for the topology of E(p™), for every m/ < m. Similarly for £(p™, E)
for any smooth vector bundle F.

Distributions on X will be denoted by D' (X).

Finally, suppose T:Dom(T) C H; — Hs is a densely defined closed linear operator
between two Hilbert spaces H; and Hs, and suppose the range of T is closed in Ho.
Then the partial inverse of T' is the unique linear operator S: Ho — Hj, such that if
II;: Hy — H; and Ily: Hy — Hs are the orthogonal projections onto the kernels of T and
T* respectively, then

TS+H2:I, SHQZO, and HlS:O

(Here T*:Dom(T™*) C Ho — H; is the adjoint of T, which is also densely defined and
closed; and I is the identity operator.) It follows that S: Hy — H; is bounded, and

ST +1I; =1 on the domain of T.
As we saw in Section 1.4, the operators
9p: Domdy, C L*(1n) — L, 4 (),

Clp: DomCl, C L (1) — L2 (1),
0y: Dom, C L*(m) — L*(m),
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and

Op,1: Dome,l C L2(m1) — L2(m1)

all have closed ranges. (See Section 7 for more details.) Their partial inverses will be
denoted by K, N, N and N respectively.

A piece of convention here: recall that K is an operator that takes (0,1) forms to
functions. By identifying the space of (0, 1) forms locally with functions, we would some-
times like to think of K as a map from functions to functions. To do so rigorously,
we proceed as follows. At every point z € X , there exists a non-isotropic ball B(x,r,)
such that 79! X has a non-zero section on B(z,7,). The set {B(x,r,/2):x € X} covers
X : one can thus take a finite subcover that covers X. Denote this finite subcover by
{Bi,..., By}, and the dual of a non-zero local section of T%'X on 2B; by &;; here 2B;
is the non-isotropic ball that has the same center as B;, but twice the radius. We further
normalize &; so that (©;|@;)y = 1 on 2B;. One then has the following property: there is
some rg > 0 such that if B is a non-isotropic ball of radius < rg on X that intersects
some of the B; above, then @; is defined and of norm 1 on B. By taking a partition of
unity S 7; = 1 subordinate to the open cover {By,..., By}, we can define maps K;,
1 < i < N, that map from functions to functions, by the following formula:

Kip := K (nipl;)- (1.36)

Then since K = > Kn;, and n;¢p = ni(P|@;) y@; for all (0,1) forms ¢, we have
K¢ = Zki[<¢‘@i>é]'
i

It will be slightly more convenient to consider properties of K instead of K at a number
of places below. The result will always be independent (up to constants) of the choices
of the cut-offs 7;, and of the choice of frames @;.

The plan of the paper is as follows. In Section 2, we gather together some properties of
the Szegd projection f[, as well as the partial inverse N of the smooth Kohn Laplacian Jp.
In Section 3, we develop tools to establish the key mapping property (1.25), that involves
the weighted space £(p~47?). In Section 4, we construct the CR function v that is
crucial for us. Sections 5 and 6 clarify the relations between the various Kohn Laplacians.
Sections 7 to 9 contain the proofs of Theorems 1.3 to 1.5, which implies Theorem 1.1
and Corollary 1.2 as we have explained above. Finally, in Appendix A, we establish
some properties of the Green’s function of the conformal Laplacian L, which allows us
to apply our results towards the study of the CR positive mass theorem as was laid out
in [5]. In Appendix B, we prove a subelliptic estimate for (1, which should be known to
the experts, but which has not appeared explicitly in literature.
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2. Some properties of the smooth Kohn Laplacian [,

We collect in this section some results from subelliptic analysis and several complex
variables. The key is to introduce a class of non-isotropic smoothing operators on our
pseudohermitian manifold X, and show that the Szegd projection I1, as well as the partial
inverse N of [, are examples of such; we will deduce, as a result, mapping properties of
Il and N with respect to the weighted spaces £(5°). Many of these are known; we refer
the reader to Nagel, Stein and Wainger [23], Kohn [16], Christ [6,7], Nagel, Rosay, Stein
and Wainger [25], Koenig [15] and the references therein for further details.

First, we recall the Carnot—Caratheodory metric on our CR manifold X. For 6 >0,
let C(6) be the class of all absolutely continuous mappings ¢:[0,1] — X such that for
a.e. t,

() = ar(t) X1 (p(t) + as() Xa(p(®),  la;()] <8, j=1,2.

Here X; and X5 are the real and imaginary parts of Z respectively. The Carnot—
Caratheodory metric on X is then defined by

FHx,y) = inf{d > 0: there exists ¢ € C(J) such that ¢(0) =z, ¢(1) = y}

for 2,y € X. From Theorem 4 of [23], coupled with the representations (1.31) and (1.32)
of Zy and T in CR normal coordinates, it is easy to show that for points x sufficiently
close to p, we have

(a,p) ~ p(a).

(See also Theorem 3.5 and Remark 3.3 of Jean [14].) We write B(z,r) for the non-
isotropic ball {y € X:9(x,y) < r} of radius r centered at .
Next, we proceed to define on X a class of (non-isotropic) smoothing operators of
order j. For our purposes, it suffices to restrict our attention to the case when 0 < j < 4.
Recall that a function ¢ on X is said to be a normalized bump function on a ball
B(x,r), if it is smooth with compact support on B(z,r), and satisfies

H@]gd)HL”(B(:r,r)) < Gt (2.1)
for all k£ > 0; here Cf > 0 are absolute constants independent of r.

Usually we only require the above derivative estimate to be satisfied for all 0 < k < N
for some large integer N. In that case, we say that ¢ is a normalized bump function of
order N in B(z,r).

Suppose now T is a continuous linear operator T: C®(X) — C>(X), and its adjoint
T* (with respect to the inner product of L2()) is also a continuous map T*: C=(X) —

A

C>(X). We say that T is a smoothing operator of order j, 0 < j < 4, if
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(a) there exists a kernel T'(x, ), defined and smooth away from the diagonal in X x X,
such that

Tf(z) = / T(x, )1 (y)rily) (2.2)

X

for any f € C“(X), and every x not in the support of f;
(b) the kernel T'(z,y) satisfies the following differential inequalities when x # y:

(Vo) (Vo)g* T (@, y)| Sa 9@, y) 71 o] = Jaa| + |as|;

(c) the operators T and T* satisfy the following cancellation conditions: if ¢ is a nor-
malized bump function in some ball B(z,r), then

IVETH|| oo (Blary) Sa 70719,
and
IVET* || oo (Bary) Sa 712

It is then clear that T is smoothing of order j, if and only if 7% is smoothing of order j.
We also have the following proposition:

Proposition 2.1. If T is a smoothing operator of order 0, then T is bounded on LP (i)
for1 <p<oo.

Proof. The boundedness of T on L?(r) follows from a version of T'(1) theorem. In fact,
suppose f is a normalized bump function on a ball B(xg,r). If T' is a smoothing operator
of order 0, then by the cancellation condition on 7',

||Tf||L2(B(x0,2r)) S 7“2,

and by the kernel representation of T', when = ¢ B(xg, 2r),

ITf @) = (y) S 9, 20) "Mt

yEB(xo,T)

Hence

~

T (o) Prn(z) < / O, z0)Pr¥rin(z) < .

¢ B(xzo,2T) z¢ B(xo,27)
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Altogether,
ITfll ey S 7%

similarly for |7 f|| ;2 - Hence both T" and T™ are restrictedly bounded, and by the T'(1)
theorem (see e.g. Chapter 7 of [27]), T is bounded on L?(772). By the Calderon-Zygmund
theory of singular integrals, it then follows that such operators are bounded on LP(7h),
1 < p < 0. (See e.g. Chapter 1 of [27].) DO

Next we have the following theorem:

Theorem 2.2. The Szegé projection f[, and the partial inverse N of Oy, are smoothing
operators of orders 0 and 2 respectively. Furthermore, K is smoothing of order 1, in the
sense that the local representations K; defined by (1.36) are smoothing of order 1.

We defer its proof until the end of this section.
We will need two further key facts about this class of smoothing operators:

Theorem 2.3. If T1 and Ty are smoothing operators of orders j1 and jo respectively, with
1,72 > 0 and j1 + jo < 4, then Ty o Ty is a smoothing operator of order ji + ja.

Theorem 2.4. If T is a smoothing operator of order j, 0 < j < 4, then T extends to a
continuous linear map

T:E(p~7) — E(p7H),
as long as 3 <~y < 4.

In particular, in proving Theorem 2.2, it suffices to prove the statements for Il and K ,
since the statement for N follows from Theorem 2.3 and the well-known fact that

N =KK*.
Also, combining Theorems 2.2 and 2.4, II and N extend to continuous linear maps

E(PT) S E(pHY), 0< <4,
= E(p7), 0<di<2,

2> =
tn
>
L
+
\j’

and (1.15), (1.16) follow.

Proof of Theorem 2.3. We will only need the case when 77 is smoothing of order 1, and
T5 is smoothing of order 0 or 1. Thus we will focus on these cases.

Suppose first both 77 and T3 are smoothing of order 1. Then T := T3 oT5 is continuous
on C*°(X), and so is T*. Furthermore, when f € C°°(X), we have
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T;f(x) = / Ty(e, ) f)ily), j=1,2

X

for all = not in the support of f. Using the cancellation conditions, one can show that this
integral representation actually holds for all x € X (not just for all z outside the support
of f; cf. Chapter 1.7 of Stein [27]). This is typical of operators that are smoothing of
positive orders.

As a result, by Fubini’s theorem, when f € C>(X), (2.2) holds for all z € X, where

T(w.9) = [ Ti(w ATl 0)in(a) (2.3)

X
Fix now z,y € X, and let » = ¥(z,y)/4. We pick normalized bump functions x1, x2 in
B(z,r) and B(y, r) respectively, such that x; = 1 on B(x,r/2), and x2 = 1 on B(y,r/2).

Then inserting 1 = x1(2) + x2(2) + (1 — x1 — x2)(2) into the integral defining T'(z,y),
we have

T(z,y) = T (z,y) + TP (z,y) + T (2,y),

and we estimate these one by one.
First,

T0(w.y) = [ Tile, 20 ey ).

We can differentiate under the integral, and obtain
(V)22 TW (2,y) = (TLf{*))(2)
where
F2(2) = xa(2)(Vo)y* Ta (2, 9)

is r=3~lo2l times a normalized bump function in B(z,r). Thus by the cancellation con-
dition for T}, we obtain

(V)5 (V)T )| S 27 loelythond = g2l

This proves the desired differential inequalities for T(}) (x,5). A similar argument, using
the cancellation conditions for 7% instead, shows that

(¥)2 (F0)52 T (2, y)| S 7210,
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Finally, the integral defining T®)(z,y) is supported for z outside the balls B(z,7/2)
and B(y,r/2). As a result, ¥(z, z) ~ 9¥(y, z) for z in the support of the integral defining
76 (z, y). One can now differentiate under the integral, and obtain

[(Vo)st (Va)y? T (2, )| < / I, z) =21l (a, 2) 7310l dz g 2l

I (x,z)>r/2

This proves the desired differential inequalities for T'(x,y).

Next, to prove the cancellation conditions for 7', suppose ¢ is a normalized bump
function in a ball B(xg, 7). Then we let x be a normalized bump function supported in
B(z0,4r), that is identically 1 on B(zo,3r), and write

To=Ti(xT2¢) + T1((1 — x)T29).

Now by cancellation conditions for T, one sees that r—'x7Th¢ is a normalized bump
function on B(xg,4r). Hence T1 (xT2¢) obeys the desired bound, namely

VST (XTo8) | o (5w S 72171,

Furthermore, for x € B(xq, 1),

ﬁ?Tl[(l — X)T2¢(x)
_ / (V3)2T3 (2, 2)(1 — x)(2) Tad(2)h(2)

z¢B(x,3r)

/ (Vo)aTi(a, 2)(1 = x)(2) T2 (=, y)(y)in(y)m(z).
B(e,

r) yEB(x,2r)

Putting absolute values,

IVET1[(1 = X)Tad)(x)]

< / / 9w, 2) 7319 (2, y) () 2)

z¢ B(x,3r) yeB(x,2r)

s [ [ vt )

z¢ B(x,3r) yeB(x,2r)

< p2lel,

the second to last line following since ¥(x, z) ~ ¥(z,y) on the support of the integrals.
This provides the desired bound for || (@b)aT(bHLOQ(B(r,T))- A similar argument establishes
the bound for || (@b)O‘T*¢||Lw(3(z’T)). This completes our proof when both T7 and T5 are
smoothing of order 1.
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Finally, suppose T; is smoothing of order 0, and T is smoothing of order 1. Then
T := Ty o T, maps C°°(X) continuously into itself, and so does T* = T4 o T%; one
can repeat the above argument to show that both T and T™ satisfy the cancellation
conditions for an operator of order 1. Thus it remains to compute the kernel of T, and
to establish differential inequalities for the kernel of T', to which we now turn.

For z,y € X with 2 # y, let r := 9(z,y)/4, and

T(z,y) := (Thky)(z) where ky(2) = Ta(z,y).

We first show that T'(z,y) is smooth away from the diagonal, and that it satisfies the
differential inequalities

(V)23 (V)22 T (2, y)| S 71,

To do so, fix  # y, and let x1, x2 be normalized bump functions in B(z,r) and B(y, )
respectively, such that x;1 =1 on B(x,r/2), x2 =1 on B(y,r/2). Then

T(x,y) = T1(x1ky)(x) + T1(x2ky) () + /Tl(l‘, 2)(1 = x1 — x2)(2)T2(z, y)r(2).
X
The last term can be differentiated in both z and y under the integral, and the desired

estimates follow. Thus it remains to consider the first two terms. But in the first term,
by continuity of 7" on C°°(X), one can differentiate with respect to y, and obtain

(Vo)g2[Ta(xaky) (2)] = Tilxa (Vo)y2ky ) (@);

the latter is T} acting on 73712l times a normalized bump function in B(x,r). Thus
by cancellation condition on 77,

(V)2 (V)52 [T (k) ()] S 721,

Similarly,
Ti(xahy) () = [ Ti 2 nale) Ta(e i)

=T5[Ti(x,)x2()](v).

By continuity of T% on C*°(X), one can differentiate with respect to 2, and obtain

(Vo) [T1(x2ky) (2)] = T5[(Vo)3 Ta (2, )x2())(%)-
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The latter is T% acting on an 7~*~1%1l times a normalized bump function in B(y,r), so
by cancellation condition on T3, we have

(703 (V)52 [T (k) @)] S 78710,

This proves our desired estimates.

It remains to show that T'(x,y) is the kernel of the operator T, in the sense that (2.2)
holds for all f € C* (X) and all z not in the support of f. In fact, fix such an f, and
a closed set K disjoint from the support of f. Let x € COO(X) such that x = 1 on a
neighborhood of K, and xy = 0 on the support of f. Then for z € K,

Tf(x)=T1(xT2f)(@) + T1((1 — x)T2f)(x).

The second term is equal to

/ Ti(2, 2)(1 = X)(2) o f (=) (2)

X

_ / / Ty (2, 2)(1 — ) ()T (2 w)il2) | Fwyin(y),

X \X

the last equality following from Fubini’s theorem. We claim that for almost every = € X,
the first term is equal to

/ Ty (xky) (2) F (9)(y), (2.4)

X

where ky(2) := T(z,y); if this were true, then (2.2) holds for almost every « € K. Since
K is an arbitrary compact set disjoint from the support of f, (2.2) holds for almost every
x not in the support of f. But then by continuity of T'(z,y), and bounded convergence
theorem, (2.2) holds for every x not in the support of f. Our theorem then follows.

To prove our claim, we approximate

VA Tf () = / X Taz,9) f (9)n(y)

X

by Riemann sums; since T'(z,y) is smooth away from the diagonal, and f is smooth, by
uniform continuity, the Riemann sums converge uniformly to x7%f. By continuity of 7" in
L?(m), we have T} of the Riemann sums converging in L? to T} (xTsf). Thus by passing
to a subsequence, T; of the Riemann sums converge almost everywhere to T7(x72f). On
the other hand, T} of the Riemann sums is the Riemann sums of (2.4); by continuity of
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T1(xky)(z) for (z,y) € K x supp f, the Riemann sums of (2.4) converges uniformly to
(2.4). This establishes our claim. O

Proof of Theorem 2.4. Suppose T is a smoothing operator of order j, 0 < j < 4, and
g€ &P, j <y <4 Fix k € Ny and fix a point zy # p sufficiently close to p. Let
r = 19(xo,p), and 1) be a normalized bump function supported in B(zo,r), with n = 1
on B(xg,r/2). Then,

IVETg(z0)| < [VET(ng)(z0)| + [VET((1 - 1)g)(x0)]

and r7(ng)(z) is a normalized bump function on B(xg,r). So by the cancellation condi-
tion for T', we see that

IVET (19)(z0)| < Cir? 7 7F,

where C; > 0 is a constant independent of zg and r. By using the kernel estimates,
VET((1 = n)g)(xo) can be estimated by writing out the integrals directly:

TET((1 - 1)g) (o) = / (FET) (0, 9)(1 — 1) ()9 (y)ri(y),

which can be split into two pieces. The first is over where ¥(y,p) < r; this piece is
dominated by

Dy, / T_4+j_k19(y’p)_’ym(y) < Dyri=7 R

I(y,p)<r

where D > 0 is a constant independent of zg and r. The second piece is over where
Yy, p) > r; note since we have cut off those y near zg with 1 — 7 already, we can assume
that 9(y,xo) > r/2 on this piece of integral as well. As a result, ¥(zo,y) ~ ¥(y,p); it
follows that this piece is bounded by

[ 0w o) i) < B
I(y,p)>r
where Ey, > 0 is a constant independent of g and r. Altogether,

IVETg(x0)| < Cror? 77"

as desired, where ék > 0 is a constant independent of xy and r. This completes our
proof. O

We now turn to the proof of Theorem 2.2. The key is the following L? estimate, which
can be proved by microlocalization and integration by parts (see e.g. Kohn [16]). Suppose
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Z is a local section of T%! X with <§|§>0 =1 on some ball B(z,2r) C X, and Z be its
formal adjoint under L?(7).

Proposition 2.5. If Zv=uon B(z,2r), where u,v € C‘”(X), then for every k € No,
there is a constant Cy, > 0 independent of r and x such that

IVEull 22 (B

T—(k-ﬁ-l)

< Ce(IVE Zull L2 (Ba2ry + 7 Ul L2 (B2 + lvllL2(B(z,2r)))-  (2.5)

Proposition 2.6. If Zv = u on B(z,2r), where u,v € COO(X), then for every k € Ny,
there is a constant Cy, > 0 independent of r and x such that

IVEull L2 (B2
< CR(IVETZ ullp2(ary + 1 ull iz B2m) + 7 F V0l 2 (B2m))- (2:6)

Here the L? norms are taken using the norms of L?(1h). Various variants and refine-
ments of these estimates are very well-known; however, we have not been able to locate a
precise reference for these estimates. For completeness and the convenience of the reader,
we present the proofs of these estimates in Appendices A and B.

Using these L? estimates, one can prove that IIand K (more precisely, the local repre-
sentations K;’s defined by (1.36)) map C°°(X) continuously into C°°(X), and that their
kernels satisfy differential inequalities of the correct order; cf. Christ [6,7]. In particular,
if II(z,y) and K;(z,y) denote the Schwartz kernels of II and K; respectively, then they
are smooth away from the diagonal, and

|($b);1 (@b)g"’ﬁ(x, Y)| o Iz, y)*4*\a|’
(73)3 (Vo) K, )] S 9, ) 1.

It thus remains to prove cancellation conditions for II and K;. The proofs will be based
on strategies similar to those used in the proofs of the above kernel estimates.
Let ¢ be a normalized bump function in B(z,r). We claim that

”@IgﬁQS”L‘”(B(ac,r)) < Cypr . (2.7)

This will follow from the continuity of II on C>(X ) if r is sufficiently large. Therefore,
without loss of generality, we assume that r < r¢/2, where ry is some small absolute
constant, so that one can find a section Z of T'OX that does not vanish on B(z,2r)
(cf. discussion before (1.36)). We further normalize Z so that <§\§>9 =1 on B(x,2r).
Now (2.7) is the same as showing ||V¥(I — H)ngHLoc(B(w ) < Crr~*. Let v be such that

abv = (I — )¢, with v orthogonal to the kernel of 3b Then by (2.5), we have
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IVEI — )| 2By

< Ch(IVET Zo|| L2 (Beory + 7RI = D@ 2B 2m) + 1~ FT N 0IE) 41|22 (B2 ,20)))s

where @ is the dual (0,1) form to Z on B(x,2r). The first term on the right hand side
is bounded by

Ckr7k|B(x, 27")|1/2 = Cpr?F.

C|B(x,r)|"? = Cr? (recall ¢ is normalized in B(x,r)), so that the second term is
bounded by Cyr2~* as well. In the last term, we estimate using Poincaré-type inequality
(see Corollary 11.5% of Christ [6]):

In the second term, we estimate |(I — f[)¢||L2(B(z,2r)) trivially by [|¢]/ 2 %) <

101&) gl ate.2ry < Crll( = )]l ) < O] 2 ) < Orr.
Thus altogether,
IVE(I - ﬁ)d’HL?(B(w,r)) < Cpr*h,
and since this holds for all k£, by Sobolev embedding,
IVEI = D)@ o< By < Car™*

as desired. (2.7) follows, and since II is self-adjoint on L2(r), this completes the proof
that 11 is smoothing of order 0.

Let now f[lzL%O 1)(m,é) — L%O 1)(m,é) be the Szegd projection on (0,1) forms, i.e.
the orthogonal projection onto the kernel of 517 in L%O 1)(7?1, é) Using the partition of

unity given just before (1.36), we can define local representations of II;, by letting

A A~

(I1)ij0 = (milly (njw;)|@s) -

Then (ﬁl)ij sends functions to functions for all 1 <¢,j5 < N, and
Mo = 3 (M)l @
,J

for any (0,1) form ¢ on X. A proof similar to the above shows that I, is a smoothing
operator of order 0, in the sense that the local representations (f[l)ij are all smoothing
of order 0; for instance, to prove that (ﬁl)ij satisfies the desired cancellation conditions,
if  is a normalized bump function on a sufficiently small ball B(x,2r) that intersects
the support of 7;, one would apply Proposition 2.6 with ? being the (0,1) vector field
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dual to @;, u = 1;p(@;|@i) s — (IL1(n;90;)|@i) 4, and v being a function that solves 5;,1) =
(I - f[l)(njgoc?)j). In fact then Zv = u on B(z,2r). We omit the details.

Now, let ¢ be a normalized bump function in a ball B(z, r) that intersects the support
of n;, with r < r¢/4 as before. We prove cancellation properties for K; and K;‘, namely

|W§f(i<ﬂ||Lw(B(x,r)) < Cypr'h, (2.8)
and

”@,I)CIA(;(@”L‘”(B(I,T)) < Cpr' R (2.9)
To prove the former, let

u=(I— ﬁ)(zbfw),

where ¥ = 1 on B(x,2r), and ¢ is a normalized bump function on B(x,4r). We apply
estimate (2.5) for this u. On B(z,2r), dyu = (I — II})(n;0@;), since ¢ is identically 1

there. In other words, writing Z for the dual of &;, we have

A

Zu = ((I- ﬁl)(mw@i)\@ﬁé =i — Z[(ﬁl)jiw]@j@i)é

on B(z,2r). So the first term on the right hand side of (2.5) is bounded by
Cr'=*|B(z,2r)|"/2 = Cr'=*2, by the cancellation property of IT; we just proved above.
On the other hand, by Proposition B of Christ [7], since u is orthogonal to the kernel
of gb,

lull2(B2r)) < C’””&“HL?O,MX)’

which implies

ol 2o 2y < Cr (I = ) mo@0) s, sty + T30 Kipll o ) -

(0,1)

But the first term in the bracket is bounded by ||mg0||L2 xX) < C|B(z,r)|*/? = Cr?, and

the second term is bounded by Cr2 by the kernel estimates on K; (note ¢ is supported on
B(x,r), while Vi) is supported in an annulus B(z, 4r) \ B(z, 2r)). This in turn implies

||u||L2(B(:r,2r)) < 07”’2’

and the second term on the rlght hand side of (2.5) is bounded by Cr!'=*r2. Finally, let
v be such that abv = u, so that Z [(v]@)g] = u on B(x,2r). Then

[{v[@i)gll2(B(z,2r)) < CTllullp2x) < CTHT/JKWHB(X) < 07"2||<P||L2(;2) < Crir®.
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(The first and the fourth inequality are both applications of Proposition B of Christ [7]
again.) Thus altogether, H@EUHL?(B(LT)) < Cpr'=Fr2 for all k, and by Sobolev embed-
ding, this implies

IVEU| oo (B(2r)) < Crrt ™"

for all k.

Remember we want the same estimate for K'Z-ga in place of u, so as to prove (2.8).
But K;p —u can be computed on B(z,r) fairly easily. In fact, since K;p = K (n;9&;) is
orthogonal to the kernel of 8y, we have K;p = (I — II)K;¢. So

f{iﬁp —u= (- ﬂ)(l - @/))f{z‘%
Since ¢ = 1 on B(x,2r), we have
Kip—u=—-I(1—-v¢)K;p on B(z,r).
It follows that for y € B(x,r),

e - w)) = -3 / (9T, 2)(1 - ) (2) Kipl2)rin(2),

Y r<d(z,x)<2it1lr

SO
> .
”V]lj(Ki‘P - u)HLOO(B(z,r)) < Ck Z(QJT)_Q_kHKi(P||L2(B($72j+1r))
j=1
Z 2k (23018 Kl o -

(The last inequality is Proposition B of Christ [7].) By estimating the term Hébf(i(pHLQ(X)
by [[(T = T00) (i) | 12 %) < 12l a5y < Cr2, we get

|W’§(f(i<ﬁ —u)|| Lo (B(a,r)) < Crr 2 *pp? = Cpr' =+
By combining with the previous estimate on @’gu, we get
IVEKill Lo (B < Cor' ™,

as desired. (2 8) follows then. A similar argument proves (2.9), since K* is the partial

inverse of 8b This shows that K and K* are smoothing of order 1, and it follows now
that N = KK* (more precisely, N = Zi’j K; (@il@5) 6 A]*) is smoothing of order 2. This
completes the proof of Theorem 2.2.
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We conclude this section by making the following useful observation: as was demon-
strated in Folland and Stein [10] (see Theorem 15.15 there), on X one can construct
some smoothing operators Ty, 77 of orders 1, such that schematically,

I=T,V,+Tp.

Thus if A is a smoothing operator of order 1, then for any positive integers j, one can
then find smoothing operators Ag, A1, ..., A; of orders 1 such that

i
VIA=Y" AV (2.10)
=0

in fact, e.g. when j = 1, one just needs to observe
VA = Vo ATV + Tp),

and the desired equality follows by letting A; = VyAT;, i = 0,1. (4; is smoothing of
order 1 by Theorem 2.3 above.) The general case for (2.10) follows by induction on j.
(2.10) can be thought of as a way of commuting derivatives past smoothing operators.
In particular, if NL*P denotes the non-isotropic Sobolev space, given by the set of all
functions whose @{, isin LP(r) for j = 0,1,2,...,k, then (2.10) implies the first part of
the following proposition:

Proposition 2.7.

(a) Any smoothing operator of order 1 maps NL*P continuously into NL*+VP for all
k>0andalll <p < oo.
(b) Any smoothing operator of order 1 maps L (1) continuously into L™ (m).

The last part of this proposition then follows from the case k = 0 of the first part
by noting that L (1) embeds into LP(m) for any p > 4, and that NL'? embeds into
L*°(m) by Sobolev embedding.

3. A key mapping property
3.1. The main theorem

In this section, we prove the following theorem, which allows one to establish the

important mapping property (1.25) of (I + R*™x)~!. We use the notion of smoothing

operators of order j we introduced in the last section.

Theorem 3.1. Suppose A is a smoothing operator of order 1 on X, and h is a function in
E(pY) supported in a sufficiently small neighborhood of p. We write h also for the operator
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that is multiplication by h. Then the bounded linear operator I — Ah: L?() — L?() is

invertible, and its inverse extends to a continuous linear map
(I = AR~ (™) = E(p~*F)
for every 0 < § < 4.
The key of the proof is the following:

Lemma 3.2. Suppose A and h are as in the above theorem. Then for any non-negative
integer k, and any function u € C*°(X) N L®(X), we have

197V (AR ul| oo iy Sk Ml Loe (i)
Assuming the lemma, we first prove Theorem 3.1.

Proof of Theorem 3.1. First, if A is smoothing of order 1, then since X is compact, the
kernel of A satisfies

sup/|A(m,y)\m + sup/\A x,y)|m(x
meXX y€X

It follows that A is bounded on L2(772). If the support of h is a sufficiently small neigh-
borhood of p, then since h € £(p'), one can make ||h| = sufficiently small. Thus the
norm of Ah, as a bounded linear operator on L?(772), can be made smaller than 1/2. This
in turn allows one to invert I — Ah by a Neumann series: for u € L?(), one has

+ (AR)u + (Ah)*u + (Ah)3u +

converging to a limit v in L?(1h), and (I — Ah)v = u. Thus (I — Ah) is invertible on
L?(m), and its inverse is given by the Neumann series

(I — Ah)™' =T+ Ah + (AR)? + (AR)® +

Now we extend (I — Ah)™! to £(p~4+%), 0 < § < 4. In order to do so, we need to
further assume that the norm of Ah, as a bounded linear operator on L (), is smaller
than 1/2. That can be achieved if the support of h is sufficiently small.

Suppose now u € E(p~419), 0 < § < 4. Let v = [I + (Ah) + (Ah)? + .. Ju. We want
to show that v € £(p~**?). To do so, suppose k is a non-negative integer. To show that

pEHE=IVEy € L°(m), (3.1)
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we split the sum defining v into two parts: let v; = [I + (Ah) + --- + (Ah)*+2]u, and
= [(AR)%+3 4 (AR)**4 + . Ju. Then pFtE=9Vky, € L>=(1) by Theorem 2.4, since
each term of vy is in £(p~ 4+5) Furthermore, note that

A:E(pIH0) — L®(m) forall0 <6 < 1. (3.2)

This holds because £(p~+9) C LP(1n) for some p > 4, and A: LP(1h) — L (1) whenever
p > 4. Thus from u € £(p _4+5) 0 < § < 4, we conclude, from Theorem 2.4 and (3.2),
that (Ah)%u € C°(X) N L>®°(X). As a result, by Lemma 3.2, and our bound of Ah on
L (1), we have

165V Ev2ll Lo iy < Cr Y (ALY ul| oo ()
£=0

< Ck Z 2_e||(Ah)2u||Loo(m) < C.
£=0

Combining this with the bound for vy, (3.1) follows, and this shows v € £(p~*1%) as
desired. O

3.2. An auxiliary family of operators

Now we need to detour into a discussion of a two-parameter family of operators, that
will be indexed by two non-negative integers j and £. Suppose A is a smoothing operator
of order 1. Suppose also that g(z,y) is a function in C=(X x X) that vanishes to
non-isotropic order £ along the diagonal, i.e.

lqe(z, )| S 9(x,y)"

for some non-negative integer £. We will write ¢7 (y) := g¢(x, y); by abuse of notation, we
will also denote by ¢j the multiplication operator v(y) — ¢7 (y)v(y). Given a non-negative
integer j, for v € C°(X) and z € X, we define

To(z) = (V)| [Adfo](2). (3.3)

This is well defined, since gjv is a C'*° function on X for each fixed z, and A maps C*(X)
into C*°(X ) We will see below that this assignment v — T'v defines a continuous map
from C*(X) to C>°(X ) Since the properties of this map depend mainly only on the
integers j and ¢, we will denote any operator of this form by 7},. In other words, if
v € C®°(X) and = € X, then Tjv(x) is given by the right hand side of (3.3) for
some smoothing operator A of order 1, and some g, € COO(X x X ) that vanishes to
non-isotropic order ¢ along the diagonal.
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Lemma 3.3. Suppose v € CW(X), and for all z € X, we have

Tjeo(z) = (Vo)

[Agiv](2) (3-4)

Z=T

for some A and q; as above. Then T v is a C* function on X. Furthermore, for any
r >0, one has the following Leibniz rule:

A(V)2di0)(2) (3.5)

(V)i Ty ev(x) = i (r) (¥7,)7+r

s=0

where (Vy)5q¢ denotes the multiplication operator v(y) — (V)Sqe(z, y)v(y). In addition,
the adjoint T, of Tj,, with respect to L2(1n) maps C=(X) into itself, and is given by

T;w(z) = A*((V5) (qe,-w)](2) (3.6)
where qe () == q(z, 2).

Proof. Suppose v € C* (X), and z € X. First we show that T}.¢ is differentiable at x,
and that (3.5) holds when r = 1. In fact, for any smooth curve v: (—1,1) — X with
~¥(0) =z, 4/(0) =Y, we have

é [Tj,00(7(e)) — Tj,ev(7(0))]

(), ~(0)
= (V)] A(M— xq?> ] (2)
z=~(g) £
i1 ((W ()] ) [Aggu)(2)
€ “lz=~(e) “lz=~(0)
+ (Vo) o [A(Yzq7 )v](2). (3.7)

(We wrote Y, to emphasize that the derivative is with respect to z.) Now the first term
on the right hand side of (3.7) is bounded by

~(¢) ~(0)
N . v —
H(Vb)% (u - zq$> v(z)

Le=(m(z2))

e

which tends to zero as € — 0 since

q'v(s)v _ q'Y(O) .
% —Y.q; | v(z) = 0 in C*(X) as a function of z,

and A: C>°(X) — C°°(X) is continuous. Next, the second term on the right hand side
of (3.7) converges to
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Y. (Vo)l[Agiv](2)

Z=T

as € — 0, since Ag¥v(z) is C™ as a function of z € X. Finally, the last term on the right
hand side of (3.7) converges to

(Vo)L

[A(Yzqi)v](2)

Z=T
as € — 0, since (V3)I[A(Y,q¥)v](2) is a continuous function of z € X. This proves Tj v

is differentiable at x, and that

[Agf0)(2) + (Vo)l|  [A(Yag§)0)(2). (3.8)

Z=T Z=T

[YTj0)(2) = (Ya(Vo))

In particular, (3.5) holds when r = 1.

By successive differentiation of (3.8), using the case r = 1 of (3.5), then shows that
Tj.v € C=(X), and that (3.5) holds for all 7 > 1.

Now we prove that TJT’: ¢ s given by the expression (3.6). The case when j = 0 is easy;
in fact then

Too(a) = [ Al e, p)el)ding),
X
so integrating this against w(xz)drm(z), and applying Fubini’s theorem, we see that
T jw(y) = A*[Gewl(y), as desired.
The case j > 0 is more tricky, because while formally

Ty0(0) = [ (VoA plaste powdinty),
b'e
the integral on the right hand side simply does not converge, due to the singularity of
(V)L Az, y). Hence we have to proceed differently, as follows.

We assume that (3.6) holds for all T,j, , with 0 < k < j—1. Take » = 1 and replace j
to j —11in (3.5), we have

T = @ij—u —T5_1,005 (3.9)

where ¢y = min {¢ — 1,0} and

A

Ti—1ev(z) == (V)i [A(Vy)aqiv](2).

Z=T

By taking adjoint of (3.9) in the sense of distribution with respect to L?(m), we deduce

A

T5e=T5 1 o(Vo)" =151 4, (3.10)
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From (3.10) and the induction assumptions, we can check that

Tj qw(z) = A (Vi) (@0, Viw)](2) = A (V) (Veae.: )w)](2)
= A[(V}) (@e,-w)](2).

(3.6) follows. As a result, by repeating the proof of (3.5), T/, maps C*° (X) into C=(X),
with

[AV) (VY (@ew)](y). O

y==2

(Vo)L T5 w(z) = ; (Z) (Vo)™

Lemma 3.4. For any j,¢ > 0, the linear operators
Tje: C*(X) — C(X)
and
* 0% (X) = C(X)
considered in the previous lemma are both continuous.
Proof. Suppose v, converges to v in C'* (X) as m — 0o. Then for any k,s > 0,
I(VR)EL(Ve)2dE () (vm — 0) ()]l 2(m(y) — O uniformly in @ € X,
and by continuity of A on NL*2 (see Proposition 2.7(a)), we see that for any k,s > 0,
(Vo) E[A(V)507 (0m — 0)](2)l| L2n(z)) — O uniformly in z € X.

By Sobolev embedding, it follows that the same is true for all k,s > 0 if the L? norm is
replaced by L in the above equation. Hence by (3.5), we conclude that

170 Ty e0m = 0)ll e (1) = 0
for all » > 0. Since this is true for all r, we proved T} ,v,, — Tj,v in C‘X’(X') as
m — oo. A similar argument, based on (3.6) instead, proves that T ,: C'* (X) = C®(X)
is continuous. O

Lemma 3.5. For any £ > 0, the operator Ty11, is smoothing of order 0.

Proof. By the previous lemma, both Ty11, and its adjoint 777 ; , map COO(X) into
C°°(X) continuously.
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Given v € C"’O(X), and z € X not in the support of v, if z is in a sufficiently small
neighborhood of z, we have z not in the support of ¢fv. Hence if A(x,y) is the kernel
of A, then for all such z, we have

(Agl2) = [ At 0)ow)in)
X
It follows that one can differentiate under the integral, and obtain
Ty0(a) = [1(Va) A1)l p)o(w)indy).
X

Hence the kernel of Tj , is given by

Ty o(x,y) = (Vo)L Az, y)]ae(, y).

When j = £ + 1, this kernel satisfies the differential inequalities

(903 (V)52 Ty, y)| S 9, ) 7710,

since A is a smoothing operator of order 1, and ¢, vanishes to order ¢ along the diagonal.
It follows that the kernel of T, satisfies the differential inequalities of a smoothing
operator of order 0.

Finally, we verify the cancellation property of Ty ¢. To do so, suppose ¢ is a normal-
ized bump function in some ball B(zg,ro) C X. Then for any = € B(xg,70) and s > 0,
we have (V3)5q¢¢ being 75~* times a normalized bump function in B(xg, 7). Thus by
cancellation property of A, we have

(VY [A(VD)30 Bl = (Bmryy S0 0T

for all j, r and s with j > 0, » > s. In particular, evaluating at x € B(zg, o), we have

[A(V)3aE6)(2)| S rg V0.

Z=T

‘ (ﬁb);'+r—s

Hence by (3.5), we see that
[(Vo)s o) S =770,
Since this is true for all z € B(xg,70), we obtain

LN 1—(j+r—2¢
1(Ve)s T Lo (Blooroyy ST 0 Y.
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When j = ¢+1, this gives the desired cancellation property of order 0 for Ty . Similarly,
one can prove the desired cancellation property of Tty - Hence Tyqq 0 is a smoothing
operator of order 0. O

A

Lemma 3.6. Suppose v € C°(X)NL>®(X). Then forx € X, one can still define T; yv(z)
by (3.4), and formula (3.5) continues to hold for all x € X.
Proof. Suppose v € C®(X) N L>®°(X), and = € X. Let n € C3°(X) be such that n = 1
in a neighborhood of , and write w; = nv, wy = (1 — n)v. Then w; € C®(X), and
T; pwr () is given by (3.4) with v replaced by w. Furthermore, ws is identically zero
near z. Thus by pseudolocality of A, we have [Agfws](z) being C* for z near x, and
one can define T} ywo(x) by (3.4) with v replaced by ws. Since T} v = Tj swi + Tj ws,
it follows that one can define T} yv(x) by (3.4).

In order to differentiate T sv at x, it suffices to differentiate T} pw; and T} pws at .
One can differentiate T} pwq using (3.5). To differentiate T} swo at x, note that since z
is not in the support of ws, for any z in a small neighborhood of x, we have

Ty ua(z) = [V A )lar(z.0)us)in(y)
b'e
Differentiating under the integral using the dominated convergence theorem, one sees
that the derivatives of T} ywo at x satisfies

[A(Vy)347 2] (2).

Z=T

(G Ty ewa() = 3 (1) (e

S
s=0

Together, one concludes that the derivatives of T} sv(x) is given by (3.5) in our current
case as well. O

3.3. Proof of Lemma 3.2

We now move on to the proof of Lemma 3.2. To do so, we fix a neighborhood U of p,
and fix a frame Z, Zi, T of the complexified tangent bundle in U as in Section 1.5.
Write X7 and X5 for the real and imaginary parts of Z1. One can now define normal
coordinates centered at any point « € U: for y sufficiently close to x, there exists a unique
w € R3 such that if y(t) is the integral curve of wy X1 +we Xa +w3T with v(0) = z, then
~v(1) = y. In that case we write y = x exp(w), or equivalently w = ©(x,y). Note in this
case,

Wz, y) = |wi| + [wa| + |ws|"/2.

Also, in this normal coordinate system, X; and X5 then takes the form
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_ 0 9 1 0 1 2 0
X1 = owq +2w28w3 +0 8w +0 6w +0 8w3
0 0 ;0 1 5 0
X2 = Owsg 2un Ows +0 Ow, +0 Bw +0 8w3

where OF are functions that vanish to non-isotropic order > k at w = 0. It follows that
if @ is the multi-index (a1, a9, a3) and j < ||| (here ||| := |ai| + |az2| + 2|as]| is the
non-isotropic length of ), then (V;)0(z,y)® vanishes to non-isotropic order ||| — j
along the diagonal y = x, i.e.

(V)20(z, )| < I, )l =7,

Now fix h € £(pt). For x € U, let h* be the function of w defined by h*(w) =
h(zx exp(w)). Let P? be the Taylor polynomial of A at w = 0 up to non-isotropic
order k. We sometimes think of P as a function of y. Then

PEw) = Y L @3h)0) [ y)]"

lloell <k
One can show, by reduction to the ordinary Taylor’s theorem, that
o N1— : 1.
h(y) = Py ()] < Cpla) 0 (x,y)* i (z,y) < 1P(@)- (3.11)
We will make crucial use of this in the proof of the following lemma:

Lemma 3.7. Suppose A is a smoothing operator of order 1, and h € £(p'). Ifv € C>®(X)N
LOO(X'), then for any k > 1, we have

pF(x) (V)"

A(h— PF H < lol| oo
A =P S ol

Z=T

where PY_|(y) is defined as above.
Proof. Fix x € X, and write r := p(z)/8. Let ¢ € (0,r), and write

L= (1—¢)+ (or — pe) + e

where ¢, and . are normalized bump functions on B(z,2r) and B(z,2¢) respectively,
with ¢-(y) =1 on B(z,r), p.(y) =1 on B(z,e). Then

h— P =(h—=P_)1—¢)+ (h=PF_1)(or — )+ (h— P_1)epe,
and we estimate the contribution of each of these three terms to

PH(x) (Vo)k|  [A(h — PEy)ol(2).

zZ=x
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Let’s call the above contributions I, IT and III. We will show that I and II are bounded
by C||v|| e () uniformly in 2 and e, while IIT tends to 0 as ¢ — 0. These obviously
imply the desired conclusion in our lemma.

Now note I and II can be computed using the kernel of A: we have

A

I=p") /(1 — or@N(Ve)hA(z,y)][h(y) — Py~ (y)]o(y)m(y)

and

A

zhw%qﬂw@—%@mwwm%mwm—ﬁﬂwwwmw
X

I can then be estimated by breaking up h — P_; into h and the individual terms in
Py ,: the term involving h only is bounded by

(@) /IW%MWWW@W@

ﬁ(y,I)ZT
<@ [ 9w ol
d(y,x)>r
< 7"||1)||L<x>(m) ifk>1
~ rlogr||vllpeny ifk=1
N ||U||L°°(m)~

Also, the term involving P’ ; can be bounded by

() /|W%memmwmmw

I(y,x)=>r

S mm(/ﬂmw+%HWmmmewwmw.
e||<k—1 I(y,z)>r

The terms when ||a| = £ — 1 can be bounded by

() /1mw%mmwmmsﬂmwmmmawmm.

I(y,z)>r

The terms when |a|| < k£ — 1 can be bounded by
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syl / 9, y) 1= ED g ) 0] Lo 1y

I(z,y)>r
< ﬁ(x)kﬂfl\allrl\a\lf(kfl)||U‘|Lx(m)
S TQHU”LOO(m) S HU”Loo(m)-

This shows that [I| S ||[v]| Lo (%) uniformly in z, as desired.
Next, IT can be bounded using (3.11), uniformly in z and e:

Pt (@) / [(Vo)s Az, y)](h = P_y) (y)o(y)li(y)
Yy,z)<r

< M) / B, y) >R, ) i) [0l e )
I(y,x)<r

Sl poe oy S 10l oo i -

Thus it remains to show that I tends to 0 as € — 0.

To do so, note that there is some constant C,, (possibly depending on many derivatives
of v) such that C; ek r*p (h — P2 |)v is a normalized bump function in B(z,2¢). In
fact, the L>° () norm of e~ *r*p.(h — P¥ ) is bounded by

Cekpkpl=kck < .

Also, each V), derivative of this function gains at worst !

, and the function v is C'*°
on this ball B(x,2¢). Hence C, te ™k r*p (h — PE | )v is a normalized bump function in
B(x,2¢), as claimed. Since A is smoothing of order 1, by the cancellation conditions

of A, we have

11| < o (V) A (h = Pl < G,

which tends to 0 as ¢ — 0. This completes the proof of the current lemma. O

We are now ready to prove Lemma 3.2. In fact we will prove the following slight
generalization:

Lemma 3.8. For any non-negative integer k, if A1, Aa, ..., A1 are smoothing operators
of order 1, and h € £(p') is supported in a sufficiently small neighborhood of p, then for

A

any function v € C*°(X) N L>®(X), we have
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For simplicity, we will write below Sy for the operator Agh ... A;h. We then need to
bound [|p*VESy 14| oo ¢y for u € C®(X) N L®(X).

Proof. We proceed by induction on k. When k£ = 0, one just need to notice that
|Arhul|poe ¢y S |1l Lo m), which holds since A; and h both preserve L*(r). Sup-

pose now the proposition has been proved up to k — 1 for some positive integer k. In
other words, we assume

17" VS aull oo (my S llull oo () (3.12)
for all 0 <i <k — 1. Let u € C®(X) N L>(X), and write
PPVESL 1 u(z) = pPVEAR 1 hSpu(z) = Vi(z) + Va(z)
where

Viz) = p"(@) (Vo)t|  [Aesr(h — P Skul(2)

Z=T

and

Va(z) = pF(x) (V)"

Ak P Sk (2).
We want to show that both Vi(x) and Va(x) are bounded by C'|ul| e ().
First Vi (z) is like an error term, that can be estimated by Lemma 3.7. In fact, applying

A

it to v = Sgu, which is in C*°(X) N L*(X), we have

() (Vo)

[Aea(h = PE)(S)(2)| < CllSwull i,

2= L (r(x))

and the latter is bounded trivially by C||u| 1o (s,). Thus it remains to estimate the main
term Va(x).
Now write ©,(y) = ©(x,y). Then

[Ar1105 Skul(2).

Z=T

)= 3 L0 (V)

lell<k—1

Y Z=T
Ty eSku if £ = |||, where Ty, is defined as in (3.4), with A = Ayq and g(z,y) =
O(z,y)®. Thus

Note that on the right hand side of this sum, (@b)k‘ [Ar1+10%Sku](z) is of the form

El
I
—

Va(@)| S 55 (@) | Th,e(Sku) ()]
0

~
I
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We will prove, by induction, that when 1 < j < %k, and 0 < ¢ < j — 1, if T}, is any
operator of the form (3.4), we have

}pj - 1 )Tj,@(sku)(x)HLoo(m(x)) S ||UHL°°(m)7 (3'13)

and that the bound is uniform in the choice of A and ¢y, as long as A is normalized
as a smoothing operator of order 1 (so that all constants arising in the definition of a
smoothing operator of order 1 are uniformly bounded), and ¢, is normalized as a smooth
function vanishing to non-isotropic order ¢ along the diagonal (so that all constants
arising in the definition of such functions are uniformly bounded). Assume this for the
moment. Then applying it to the case j = k, with T} , defined using A = Aj,41 and
q(z,y) = ©(z,y)*, we have

k—1

Va(@)] S Y @)l Loy S lull o -
£=0

This will complete the proof of the current lemma.
It remains to prove (3.13). To do so, we proceed by induction on j. First, when j = 1
(hence ¢ = 0), note that T} is a smoothing operator of order 0 by Lemma 3.5. Hence

Ty oSku = (Ty 0 AR)hSk_1u = AhSy_1 = S1Sk_ 14,

where A := T3 ,0Ay is smoothing of order 1 by Theorem 2.3, and S, = Ah. Since S; and
Sk—1 both preserve L>°(m) (which can be see, e.g. by our induction hypothesis (3.12)
with ¢ = 0, and its iteration), we see that

IT1,08ku(@)]| oo () = 11 [Sk—1) (@) || oo () S 1Sk—1tll oo (i) S 12l oo (1) -

Hence (3.13) holds when j = 1.
Next, fix positive integer jo with 2 < jo < k, and assume that (3.13) has been proved
for all j < jo — 1. In other words, we assume that we have verified already

|| po—b- 1 ab(Sku )HLOO(m(z)) Sz ||UHL°°(m) (3'14)

for all @ and b with 1 < a < jog—1and 0 < b < a — 1. We want to prove the same

statement when a = jo. So we fix £ with 0 < £ < jo — 1. First, Spu € C°(X) N L®(X)

since u is as such. Thus we can apply Lemma 3.6 and (3.5) to v = Spu: in fact, if
Tj, ¢ is defined so that T}, yv(z) = (V)0

[Agjv](%), then by (3.5), one can compute
x

V?JO = " Ty41.0(Sku)](x) as a sum over s from 0 to jo — £ — 1. In this sum, the term with
s =0 is exactly T}, ¢(Sku)(x). Hence by rearranging, we have
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Ty 0(Sku) () = Vi Ty 0(Sku)] ()

jo—¢-1 ,.
——1\ o
-y () e

s=1

The first term on the right hand side can then be written as
Vi T ARSyul(@) = VT [ARSjo— 1) (Sk—jo-eu) (2)

where A := Tyy1.0Ay is smoothing of order 1 by Lemma 3.5 and Theorem 2.3. Hence
by our induction hypothesis (3.12), with i = jo — ¢ — 1 (note 0 < i < k — 1 under our
assumptions so (3.12) applies), we have

|50~ N @)V T Ty, (Siw)) ()] S 1Sk jorettll oy S Ml oy (3.16)

To bound the rest of the sum on the right hand side of (3.15), note that (V)% X

[A(V)2q¢ Sgul(2) is of the form T, — s max{t—s,0} Sku(z). This is because (@b);qg(x,_y) is
smooth on X x X, and vanishes on the diagonal to order max{¢ — s,0}. Hence

Jo—t=1 , .
PN @) Y (JO . 1) (V)L ™| _ [A(Ve)ia7 Skul(2)

=1 S Z=x
jo—£€—1
5 Z ﬁmax{s_e’o}(m>ﬁjo_5_max{z_570}_l(l‘)|Tjofs,max{[75,0}sku(x)|
s=1
jo—£€—1
S Y0 O @) ) oo gy S Nl o (. (3.17)
s=1

the second inequality following from our induction hypothesis (3.14) with a = jg — s,
b = max{{ — s,0} (note that then 1 <a < jo—1and 0 <b < jo—s—1 in the above
sum over s, so (3.14) applies for this a¢ and b). Combining (3.15), (3.16) and (3.17), we
see that

P70 (@) Ty 0 Sku(@)] S Jull oo ()

uniformly in z, as desired. This completes our proof of (3.13), and hence the proof of
the current lemma. O

4. Construction of the CR function )

The goal in this section is to show that there exists a function 1 € COO(X' ) such that
9y = 0 and near p, we have 1 = |z|> + it + R, R = e(p*) (see Theorem 4.4). It is via



782 C.-Y. Hsiao, P.-L. Yung / Advances in Mathematics 281 (2015) 734—822

this ¢ that we reduce our problem from the non-compact manifold X to the compact
manifold X, as was explained in the introduction.
Until further notice, we work in some small neighborhood of p. Put

9 9
7%= — tiz—.
1= 9: Ty

We say that ¢ is a quasi-homogeneous polynomial of degree d € Ny := N|J{0} if g is
the finite sum

9= Z Ca,ﬁ»“/zazﬁﬂ’ Ca,p,y € C.
a+p+2y=d,a,B,7€Ng

First, we need

Lemma 4.1. For any monomial aZ°2°t", a € C, a, 8,7 € Ny, with o + B+ 2y > 3, we
can find a polynomial f, that is quasi-homogeneous of degree o + 5+ 2v + 1, such that
Z9f = az®Z°17 and

Re f(z,1)] < ¢|z)” (|2] + |t]) in a neighborhood of p,

where ¢ > 0 is a constant. (4.1)
Proof. We proceed by induction over 7. First we assume that v = 0. Given a monomial
az*z%, a € C, a, B € Ny, with o + 8 > 3. Put f = QLHZO“HzB. It is easy to see that
Z9f = az®z” and (4.1) hold. Let v > 1. Given a monomial az*z°t7, a € C, «, 3,7 € No,

with o + 8 + 2y > 3. First, we assume that o = 5 = 0. By the induction assumption,
we can find a quasi-homogeneous polynomial f;, of degree 2y + 1, such that

Z?fl = —iay |,z\2 A id'yz2t7_1
and (4.1) hold. Put
f=azt" —azt" + f1.

It is not difficult to check that Z{f = at” and (4.1) hold. Now, we assume that a+3 > 1.
By the induction assumption, we can find a quasi-homogeneous polynomial f1, of degree
a+ B+ 2vy+1, such that

= . A7 a1 _BH1y—1
720 = —i—L_zotl Atlyy
11 a1

and (4.1) hold. Put

a
f= g2 A

It is not difficult to check that Z9f = az*2°t" and (4.1) hold.
The lemma follows. O
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Proposition 4.2. There exists a function ¢ € C’OO(X) such that Rey > 0 on X, Opp
vanishes to infinite order at p and near p, we have

Pz t) = 2m) (2P +it) + 5, S =<(5°).

Proof. We assume that the local coordinates (z,t) defined on a small open set W C X
of p. From Lemma 4.1 and (1.31), it is not difficult to see that we can find f;(z,¢),

Jj =6,7,..., where for each j, f; is a quasi-homogeneous polynomial of degree j, such
that
Zy(@m)(|2 +it) + ) fi(z.1) € (™), m=6,7,..., (4.2)
j=6

and for each j =6,7,...,
Re fj(z,t)] < ¢ 12|* (|2] + |t]) on W; C W, ¢; > 0 is a constant, (4.3)

where W; is an open set, for each j = 6,7,.... Take ¢(2,t) € C5°(C x R,Ry) so that
¢(z,t) = 1if |22| + |t| < § and ¢(2,t) = 0 if [2?| + |¢| > 1. For each j = 6,7,..., take
€; > 0 be a small constant (¢; ~ 277 will do) so that Supp qﬁ(fj, L) cwj,

z <277 |z (4.4)
€j

‘m 3)Re fj(2,1)

and for all o, 8,7 € Ng, a + 8 + 2v < j, we have

020007 (42, (=) <27, (4.5)
6-7 ] oo
On W, we put
er(ent) = @) 4 i)+ 300 S )
j=6 7

From (4.5), we can check that ¢;(z,t) is well-defined as a smooth function on W and
for all o, 8,7 € Ny, a + 3+ 2v =d, d > 6, we have

8?5533901 |(0,o) = 8?858;/fd|(0,0)-

Combining this with (4.2), we conclude that dy¢; vanishes to infinite order at p. More-
over, from (4.4), we have

oo
Re¢1(z,1) > |27 (2#—22‘” >
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Thus, Reyp1 > 0 on W. Take x € C5°(W), x > 0 and x = 1 near p and put ¢ = x¢1 €
C°(X). Then, ¢ satisfies the claim of this proposition. The proposition follows. O

Let W be a small neighborhood of p such that |¢(z,t)| > p(z,t)? on W, where ¢ is
as in Proposition 4.2. Take xy € C§°(W,Ry) so that y = 1 in some small neighborhood
of p. Put

_ X
T ==
¥

It is easy to check that 7 is Awell—deﬁned as an element in 2'(X). Since 3‘1,90 vanishes to
infinite order at p, we have 9,7 € C°°(X). Thus,
Oy € C®(X).
Now
I =T+ N, onD'(X), (4.6)

since I = II 4+ 0, N on L2(1n), and since the operators involved are self-adjoint and
pseudolocal. Hence we obtain

r=1r+ Ntyr =1IIr — F, (4.7)

where F € C*(X). Thus,

A

(T +F)=0 in 2'(X). (4.8)

Take Cy > 0 be a large constant so that ReF + Cy > 0 on X. Since Reyp > 0, we
conclude that

Re (174 F +C) >0 on X. (4.9)
Put
1
Z/)_T+F+CO'

From (4.9), we know that 7+ F 4+ Cy # 0 on X. Since 7+ F 4+ Cy € C*°(X), we conclude
that ¢ € C*°(X). Now, we study the behavior of ¢ near p. Let W’ &€ W be a small
neighborhood of p such that x =1 on W’ and |p(F 4+ Cp)| < 1 on W’. Then, on W',

1 1 ©
T+F+Co L4+ F+C,  1+¢(F+Co)

Y= e Co(W"). (4.10)
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Thus,
Y e C™(X). (4.11)
Moreover, from (4.10), we can check that near p,
¢ = (2n)(|2|* +it) + R, R ee(ph). (4.12)
Lemma 4.3. We have
3b¢ =0 onX.

Proof. Put h := 7+ F + Cy, so that ¢ = h~!, and take any g € Qg’l(X). We have
@v¥ | 9)n 9= —(Obh | h72g); 5 =0 (4.13)

since 5bh = 0 in the sense of distribution. Thus, 51,1/) =0 on X. Since ¢p € C (X'), we
conclude that 9y = 0 on X. The lemma follows. O

From (4.9), (4.11), (4.12) and Lemma 4.3, we obtain the main result of this section.

Theorem 4.4. There is a smooth function 1 € C’OO(X') such that 51;1/1 =0on X, ¥#0
on X, Rey >0 on X and near p, we have

U(z,t) = 2m)(|2[° +it) + R, R=¢e(p"). (4.14)
In the study of the positive p-mass theorem (see [5]), one needs to find a special CR

function of specific growth rate on X. More precisely, in [5], one needs to find a CR
function g € C°°(X) with

z

g=—5——1T3g
2% + it

near p, where g; € £(p°). By using the proof of Theorem 4.4, we can construct a such
CR function:

Theorem 4.5. There is a function g € C°(X)(2'(X) such that 5bg =0 and
1
=—(z+r),
g9=E+7)

where v is as in Theorem 4.4 and r € C®(X), r = e(p?).
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Proof. We can repeat the proof of Proposition 4.2 with minor change and conclude that

[

there is a function 7 € C*°(X) with 7 = £(p°) such that dy(z + 7) vanishes to infinite
order at p. Put

5= %(z +7).
Since 51)(2 + 7) vanishes to infinite order at p and 3;;1/1 =0, we have
3y5 € C=(R). (4.15)
Thus,
(g € C°(X).
By (4.6), we obtain
g=T1g+Noyg =13 - f,
where f € C°°(X). Thus,
E_Pb(ﬁ—&- f)=0 on Z'(X).

Put ¢ = g+ f. Then 3bg = 0 and we can check that g = %(2 +r4+Yf) = %(z + ),
where 7 = 7+ ¢ f € C°°(X), r = £(p?). The theorem follows. O

5. The relation between O ; and Os

Having constructed our CR function ¢, we can proceed as in Section 1.4, and construct
the intermediate Kohn Laplacian 0;. We refer the reader to that section for the details of
this construction. The goal of the current section is to reduce the study of our operator
of interest, namely Oy 1, to the study of O,. This is done by establishing (1.6) and (1.7)
in Section 1.4.

First, we recall that m; = W)|72 m. Thus,

u € L*(my) if and only if ¢~ tu € L?(m),
u € L%O’l)(ml, 0) if and only if ¢ 'u € L?O’l)(’l%,é), (5.1)
and
[ullyy, = [ ulli s N0l 6= 107 0l g5 Va € L2 (ma), 0 € L 5 (ma, 0),

(ur | u2)m, = (W~ un | ¥~ us)m, Vur,us € L*(ma),

(Ul | Ug)ml)é = (’(/)_11}1 | lb_lvz)m’é, V’Ul,vg S L?OJ)(ml,é). (52)
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Let
9y QX)) = C(X)

T Let also

be the formal adjoint of 9 with respect to (- |- )m,, (-]-)

AR
9, QV(X)— C®(X)
be the formal adjoint of d;, with respect to (-|- )z, (-] )76+ Then

Lemma 5.1. For v € Q' (X), we have

Proof. Let h € C3°(X), g € QY (X). We have

(O0h]9) 1y 0= Ouh g [0] )5 = Do~ D) [ 9)5 4
= @18, W) = (68, W)
Hence (5.5) follows. O
The next lemma clarifies the relation between 5;)71 and 51,:
Lemma 5.2. We have
u € Dom 51771 if and only if v lu € Domgb.
Moreover,
éb,lu = wgb(wflu), Yu € Domé;),l.
Proof. Let u € Dom 51,,1. Then, there is an h € L%O’l)(ml, é) such that

(h] @)y, 5= (u|fa)m, Yae)'(X).

Note that 9y 1u := h. From (5.5) and (5.8), it is easy to see that
W )i = (0] $9), 5= (| T ($9))m,
= @t | w0 (V)

B 1 ~x,f B 0.1
=@ u |0y, 9m, Vg€ Qy (X).

787

(5.6)

(5.8)

(5.9)
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Since ¢ ~1h in L%O,l)(ﬁ’b, 0), from (5.9), we conclude that ¢ ~1u € Dom 517 and

() = Th =y, .

We have proved that if u € Dom 55’1 then ¢ ~'u € Dom (‘:91, and

YOy (p " u) = Op 1 u.

We can repeat the procedure above and conclude that 1f v € Dom 81, then Yv €

Dom 81,,1 and ¥~ 18b,1(wv) Opv. In fact, suppose v € Dom 61, It suffices to show that
if g € QY (X), then

W05 g, = 330 | 9),, 51

and that ¢0yv € L%(my, é) These are easy verifications, which we leave to the reader.
The lemma follows. O

- =*
We have a corresponding lemma about the relation between J; ; and 9:

Lemma 5.3. We have
u € Dom 9y, if and only if Y~ 'u € Dom d,. (5.10)
Moreover,

ngU = 1/15;,(@/)7111), Yu € Doméal. (5.11)

~% ~ %

Proof. Let u € Dom d; ;. We claim that ¢~ 'u € Dom 9, and 9, (¢~ 'u) = ¢~ '9; ;u. Put
5271u = h € L?(m;). By definition, we have

(Ov19 | u)m1 0= (9| h)m,, VgeDom Op.1- (5.12)

From (5.2), Lemma 5.2 and (5.12), we have

Dof | 6™ ) 5 = DS | 1), 5= @oa () | W), 5
= (0f | h)my = (f | ¥~ h)m, ¥f € Dom . (5.13)

Thus, 1 ~'u € Dom 9, and 9, (¢~ u) = ~'h = 1/)*1[_);1“.

We can repeat the procedure above and conclude that if v € Domd, then v €
Dom 5271 and 5371(1#1)) = 90, v. In fact, suppose v € Dom J,. It suffices to show that if
f € Dom 91, then



C.-Y. Hsiao, P.-L. Yung / Advances in Mathematics 281 (2015) 734—822 789

(0] By ), 5 = (68,0 | s

and d,v € L?(m;). The verifications are easy and left to the reader. The lemma fol-
lows. O

Combining the above, we obtain (1.6) and (1.7):

Theorem 5.4. We have
u € Dom Oy1 if and only zf% € Dom {,
and
~ U
Op,1u = ¢Db(a), Yu € Dom Oy ;.

Thus Op,; will have closed range in L?(m1), if and only if 3, has closed range in L? ().
We will prove the latter in the next two sections, and that will establish Theorem 1.3.

6. The relation between Op and [l

In the last section, we saw how the solution of O ; is reduced to the solution of the
intermediate operator Op. In this section, we see how the latter could be further reduced
to solving Oy, which we introduced in Section 1.4. In particular, we will prove (1.8) and
(1.9) there.

First, note that

LQ(%) = L2(m), L%O,l)(mv é) = L%0,1)(77A% é)
In fact, from the expansions (1.5) of G, and (4.14) of 9, we see that near p,

D Gl = 1+ a(et), alzt) € EGP). (6.1)

m
Let

Ak,

UNPNRY
9, QX)) — C®(X)
be the formal adjoint of d;, with respect to (- |- ), (-] *)yn.6- Then

~*,f
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so from the above, we see that

~f  axf N
0, =0, +g, forsomegec&(p,T"X). (6.2)

(Here we think of the (0,1) vector g as an element on the dual space of A®'T*X ) We

then have the following lemma about the relation between 0, and 0y
Lemma 6.1. We have 51, = 317. That is,

Dom 5;, = Dom éb, and a,u = ébu
for all w in the common domain of definition.

Proof. Let © € Dom 51,. We claim that u© € Dom 3;3 and 5bu = 5bu. By definition, there
isan h € L%O 1(m, 0) such that

~*f
(h|a)mg=(uldp  a)m YaeQ'(X). (6.3)

Note that h = 5bu. From (6.2) and (6.3), we have

m =f m m a*f
(B Ve = (0| =Nms= (] 0y (=g = (]l =00 Mg
2 f 0,1
= |0 Vo YvEQ (X) (6.4)
Take o € Q%1 (X). Let

D, = {x = (21,72, 73) € R?; |2|* = |21|” + |a2]® + |23)° < r}, r >0,

be a small ball. We identify D, with a neighborhood of p. Take x € C§°(D,,R,), x = 1
on D := {x eR3; |z)? < %} Take € > 0, € small and put o = (1 — x(%))a € Q0 (X).
Then,

2 2 LN A
lae —ally0 = |a|§’X(E)’ m<C m—0 ase—0,

o/ <er

2 . ,
() it [lal;

m

2

~

m

2
</
m

< = / m—0 ase—0,

ax*, f
8b (6]

ax, f

5 (o ) Sz

|z|<er
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where C' > 0, C; > 0 are constants independent of e. We conclude that there exist

€ QN(X),j=1,2,..., such that

— 00

ax, f
lim [jaj — o, =0, lim ‘ 0, (oj—a)]| =0.
j—o0 ’ J—00 m
Combining this with (6.4), we have
. ax*, f ax*, f
m (h | aj)m,é = jhm (u] 0y j)m="(u|0y )p.

(h] )y, = lim

Thus, u € Dom (‘3b and 8bu = 8bu =
We have proved that if u € Dom 8b then u € Dom 81, and 8bu = 3bu

We can repeat the procedure above and conclude that if v € Dom 8b then v € Dom 81,
and 81,11 = 81,1) In fact, suppose v € Dom 31, It suffices to show that if v € QO 1( ), then

ax, f ~
(W[0y Vm = (v [0

which is easy to verify. The lemma follows. O

~%

Next, we want to understand the relation between 9, and 9,. To do so, we need the

following lemma;:

Lemma 6.2. Let v € Dom 0y. Then, %v € Dom 9, and

2 m ma m
Op(—v) = —0pv — —g*v
m m m

where g* is the (0,1) form dual to the (0,1) vector g with respect to the Hermitian inner

product (-|-)5 on T X.

Proof. For all a € Q"' (X), we have

m =, f
— g)a)s here we used (6.2)

(51,11 )~ 5 — (g"v | @) 5 here we used Lemma 6.1

A

m m
= (—0pv — %g*v | @), 6

A
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We can now repeat the procedure in the proof of Lemma 6.1 and conclude that

m ot ma m N
—v |8 h)pm=(=0w——g*v|h)., VheQ"(X).
(o1 8, W = (Mo — Zgw | By, 50 ¥he QO4(K)
The lemma follows. 0O

We can now prove:

Lemma 6.3. We have Dom 517 = Dom 9, and

~%

Opu = ?)bu +gu, Yue€ Doméb = Doméb. (6.5)

Proof. Let u € Dom 9,. We claim that u € Dom 9, and 0,u = 9, u+gu. From Lemma 6.1
and Lemma 6.2, we can check that for every v € Dom 0y,

ok m axk
(v 1 (0 + g)u)m = (v | Gyu)im + (v | gu)m

2 m

— a —_— " A * —
( b(mv) | u)m,O + (g v | u)mO
msa m m

(=) ok o o x .
(b= 2g" [ 0,5+ Cog'o |0
= (O | )y = Oy | w), 0

Thus, u € Dom 9, and 5bu = 51;“ + gu.
Slmllarly, for u € Dom 8b, we can repeat the procedure above and conclude that

u € Dom 8b In fact, suppose u € Dom 8b It suffices to show that for every v € Dom 8b,
& =k
(u] Opv)5, 5 = (Opu — gu|v)m,

and that d,u — gu € L?(1). This can be proved in exactly the same manner as above.
The lemma follows. O

It follows from the above that (1.8) and (1.9) hold:
Theorem 6.4.
Dom £, = Dom {,
and
Opu = Opu + g(%)bu, Yu € Dom Clp.

This allows one to understand solutions to O via solutions to [, as we will see below.
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7. Proof of Theorem 1.3
In this section, we will see that 0, and 0O ; have closed ranges in L?(m) and L?(m)
respectively. The analogous property for [, is well-known by the CR embeddability of
X into CV.
Theorem 7.1. The operator
O Dom@l7 c L*(m) — L(o 1(m, 0)

has closed range.

Proof One Simply notes that since X is CR embeddable in some CV, by the result of
[17] 31) Domab C L%(m) — L?O 1 (17, 0) has closed range in L(o 1 (77, 6). By the identity

of 81, with 81, as in Lemma 6.1, it follows that 31, has closed range in L(o (M, f). O
It is now a standard matter to prove:
Theorem 7.2. The operator
0y : Dom O, € L%*(m) — L?(m)
has closed range.

Proof. By Theorem 7.1, there is a constant ¢ > 0 such that

HabuH >cflul?, VulKerd, (7.1)

Let f € Dom 0, ((Ker &,)*. It is not difficult to see that Ker 3, = Ker ;. Thus,
f € Dom 0, (Ker d)*. From this observation and (7.1), we have

186 s 11 > Bf | D = @uf | Do)z > ell 1%
where ¢ > 0 is the constant as in (7.1). Thus,
185 fll7 = ¢llfllz ¥.f € Dom Ty [ )(Ker 55)*, (7.2)

where ¢ > 0 is the constant as in (7.1). From (7.2), it is easy to see that 0, has closed
range. The theorem follows. O

Now we use the closed range property of d; to prove the same for 51,,1.
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Theorem 7.3. The operator
5(171 : Dom 5{,,1 C L2(m1) — L%071)(m1,é)
has closed range.

Proof. Let fj S DOInng7 g =12.., 5b,1fj =g; € L%O’l)(ml,é), J=12,.... We
assume that there is a function g_e L%071)(m1, 0) such that lim;_, [|g; — gl,,,, g = 0. We
are going to show that g € Ran 0y 1. From (5.6), (5.7) and (5.2), we see that

¢Y~'f; € Domdy, j=1,2,...,

gb(w_lfj) = w_lgj € L%O,l)(ﬁlaé)a j = 1723 LR
lim ||y~ g; =y gl 5 =0. (7.3)

Jj—o0
Since 51, has closed range, we can find h € Dom 56 such that 51,% =Y~ lg. Put h =

Wh € L?(my). From (5.6) and (5.7), we see that h € Domdp1 and dy1h = g. Thus,
g € Ran 5;;71. The theorem follows. O

From Theorem 7.3, we can repeat the proof of Theorem 7.2 and conclude the proof
of Theorem 1.3.

8. Proof of Theorem 1.4

In the last section, we have seen that Op; and 0, have closed ranges in L?. Thus one
can define the partial inverses N and N of Op1 and O, respectively (cf. Section 1.5).
Furthermore, we write IT and II for the Szegd projections, which are orthogonal projec-
tions onto Ker O, and Ker Oy respectively, as in Sections 1.3 and 1.4. Our goal is to
understand N and II, as in Theorem 1.4. But from (5.1), (5.2) and Theorem 5.4, we
obtain

D(le)ﬁi + wﬁ% =1 on LQ(ml).

Thus we obtain (1.10), namely
N =¢N L d I =yl L
= — an = ll—.
(G G

The analysis of N and II then reduces to the analysis of N and ﬁ; in fact, to prove
Theorem 1.4, it suffices to prove instead (1.11) and (1.12):
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Theorem 8.1. Il and N extend as continuous operators

ﬁ:g(ﬁ—4+5) N g(ﬁ—4+6)

N:E(p™H7) = E(p7**7)
for every 0 < 0 < 2.

We will achieve this by reducing to the analogous properties of N and fI, which we
proved in Section 2.

The starting point is the following lemma:

Lemma 8.2. On L?(m), we have

(I +R) =11, (8.1)
N(I +R)=(I-T)N, (8.2)

where R = géb]v.

Proof. First, we know that N : L2() — Dom (1, = Dom ;. From Theorem 6.4, we
can check that

BN+ =0,N+1I+R=1+R.

From this, we have

On the other hand, we have
Il = (N, + I)IT = II1L. (8.4)

From (8.3) and (8.4), we get (8.1).
Now, from Theorem 6.4 again, we have

in the last line we used that fact that NTI = 0. (8.2) then follows, and we are done. O
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We now extend the definitions of I and N to E(p~**9), 0 < § < 2. The problem is
that one does not have a good inverse for (I + R) in (8.1) and (8.2). The key then is to
rewrite (8.1) and (8.2) as

Il =1—1IIR, (8.5)
N =(I-I)N - NR. (8.6)

Note that R extends to a continuous operator
RE(p*°) — E(p2F0) C L*(m)

for every 0 < § < 2, since R = gg_)bN , and N satisfies the analogous property. Thus
IR maps E(p~4+%) continuously to L2(7). Since II maps E(p~4+9) continuously to
E(p~*9), by (8.5), we have extended the domain of definition of II to £(p~4+?). Further-
more, NR maps £(p~*+%) continuously to L2(7), and N maps £(p~*+°) continuously
to £(p~2T9) C L2(). Thus together with the continuity of II on L2(m), from (8.6), we
see that N extends as a continuous map &(p~4+%) — L2(m).

To proceed further, let’s write ﬁ*’%, N*™ and R*™ for the adjoints of ﬁ, N and R

with respect to the inner product of L?(m). We note that

where m/rm = G%|w|2 is the density of m with respect to /m, and similarly /m/m =
G, %[¢|72. Here g* is the (0,1) form dual to g. Since m/m, m/m € ("), one can show
that

™ E(p~4H0) = E(p 1+ 8.7
N* m (p—4+6) S & p—2+6) (8 8)
R*,ﬁ 5( 74+6) & p72+6) (8 9)

for every 0 < § < 2; these are easy consequences of the analogous properties of f[, N
and R. The problem is that it is not clear that (I + R*™) is invertible on £(p~*+%); if
it is, then we can invoke (1.18) and (1.19) and our proof of Theorem 1.4 would be much
easier. In order to get around this problem, we introduce a cut-off y, as was explained
in Section 1.4; we will prove
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Theorem 8.3. Let y € C* (X) with x =1 near p. Then
(1= )N, (1= )T E(p~**°) = C5°(X)
are continuous for 0 < § < 2.

Theorem 8.4. If the support of x € C°°(X) is a sufficiently small neighborhood of p, then
(I + R*™x) is invertible on L?(m), and extends to a linear map

(I + R) T EPTH0) = (™)
for every 0 < § < 4.
Assuming these for the moment. Then one can finish the proof of Theorem 8.1 using
(1.23) and (1.24) as explained in Section 1.4 shortly after these identities. Theorem 1.4
then follows from (1.10) and Theorem 8.1. We omit the details.

We now turn to the proofs of the theorems above.

Proof of Theorem 8.4. First, observe that

)

SgIRt

nL m ~ DK
I+R"™x = %(I_FNang*)

and m/m, m/m € £(p°). Thus it suffices to prove that I + Nd,xg* is invertible on
L?(m), and extends to a linear map

(I+ N9, xg") " 8(pH9) = £(p~1+)

for every 0 < ¢ < 4. But this follows from Theorem 3.1, since xg* € £(p, Ao’lT*X') has
compact support in a sufficiently small neighborhood of p. Thus we are done. O
Proof of Theorem 8.3. We need to recall the Kohn Laplacian O, . := 517,53!7,6 with respect
to the volume form m. := n.m + (1 — n.)m as described in Section 1.4. First

m

ﬁs = nsG;;2|¢|_2 + (1 _776) = ns(l +a) + (1 _775) =1+ n.a.

The upshot is that n.a € £(p?, TO’IX) has compact support near p. Thus if we follow the
construction in Section 6, there will exist some g. € £(p', T X) (possibly non-smooth
near p) such that

Opu = Oy et + g-0pu, Yu € Dom Cly; (8.10)
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in addition g. will be compactly supported in the support of 7.. It is known that 0 .
has closed range in L?(772.). Thus one can define the partial inverse N. of Op.e, as well
as the Szegd projection I1. onto the kernel of Op,e, such that

A~

By N. + 1. = I.

s

One can then repeat the proof of Lemma 8.2, and show that

(I + R.) =11,
N(I+R.)= (I -T)N.

—~

8.11)

—

8.12)

on L?(m), where

Ra = gf:‘ab,&NE'

Now we write IT*™, N*™ and R*™ for the adjoints of II., N. and R. with respect to
L?(m). By taking adjoints of (8.11) and (8.12), and multiplying by (1 — x), it follows
that

~ A~

(1 — )L = (1 — )™ — (1 — x)R>™I, (8.13)

g

~ ~

(1= )N = (1 = )NZ7(1 ) — (1 - ) RN (8.14)
But
D*,1m m o aF *
(L=X)R2"™ = —(1 = X)Ne0y .92 ==,

and if ¢ is chosen sufficiently small (so that the support of g. is disjoint from that of

1 —x), then (1 — X)]\Afsébjsg: is an infinitely smoothing pseudodifferential operator, by
pseudolocality of N.. Hence the last term of (8.13), and also the last term of (8.14), map
E(p~419) into C§°(X). Since for every 0 < & < 1 and every 0 < § < 2,

T, M e A— A—
™ = —ST,—: E(p~49) = E(pH0),

€

and

{
>

*,1M G m A A
o= e I (5 s £(p2),

3
3

it follows from (8.13) that (1 — x)II maps £(p~*+%) continuously into C§°(X) as desired.
This then implies the corresponding result for (1 — x)N by (8.14), and we are done. O
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9. Proof of Theorem 1.5

In this section, we will complete the proof of Theorem 1.5. To begin with, we have
the following lemma:

Lemma 9.1. If a € £(3°, A%'T*X), then 9} 10 € E(p~), and
110 o0 = 0.

Proof. Given o € £(p°, Ao’lT*X), and any 7 € (0, 1), there exists a sequence of smooth
and compactly supported «; € Qg’l(X ) such that

a; — o in E(p7, NS T X).
Then
5;10@ — 5}';71@ in S(ﬁflfw,AO’lT*)A(),

so by continuity of II on £(p~ 27, A% T* X)), we have

110}, = jl;nolo 1105 1 ;.
But the right hand side here is zero, since

Hézﬁl =0 on Dom 5;17
and a; € Dom 5271 for all j. Hence we are done. O

Now to prove of Theorem 1.5, suppose f = Gf,F and F' = Dbg as in Section 1.3, where

B=00+p1, Bo=x(zt) e&(p), BiLe&(pH).

iz
|2|? — it
Then f = Dmg. Our goal is to compute I1f = Hé;l(éb,lg). The problem is that 51,715
is not in £(p°, A%L7* X); otherwise we could simply apply the above lemma to conclude.
Nevertheless, we will write 51,,15 as the sum of a main term and an error, where the error
is in £(p°, AT+ X), and the ;1 of the main term can be approximated in £(p~") by
the 5;1 of some forms in £(p°, Ao’lT*X). Then we can conclude using the lemma, and
the continuity of IT on £(p~1).
To begin with, note that

= = = 1z = 12z =
0 =YOp1 —o—— 0 — 40
b,18 = XOb,1 FP it + (Op,1%) EE it + 0,151,
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and the last two terms are in £(p%, A%1T*X). Thus the key is to compute the first term.
Suppose we pick a local section Z; of 719X near p, with (21|Zl>é = 1, such that 2,
admits the expansion (1.31) in CR normal coordinates (z,t) near p. We also write 21 for
Zy, and Z! for the dual (0,1) form of Z;. Then by the expansion (1.31) of Z1, we have

- iz s iz S1 2P it
Xab,lm = X241 <m> Z = —ZXWZ + error,

where the error is in £(p°, A%'T*X). Thus

2 .
= N FA e o AN
81),16 = _ZX(|L’||27—’L$)2Z1 -+ error,

where the first term is in £(p~2, A%'T*X), and the error is in £(p°, A%1T*X).
To proceed further, we write

my = G20 A df = 2iv(z,t)dt A dZ A dz

for some function v(z,t) near p. Then by the expansion (1.5) of G, and the expansion
(1.33) of 6, we have

1 A . o
v(z,t) = pope + - + error in £(p71).

Now we define a (0, 1) form
aq = —QWixv_ltz_?’Zi
near p. Then using the expansion (4.14) of ¥, we get

2 i - A
_iX%Zl = ag + error in £(p°, A% T*X).

It follows that
51;,15 =ag+ L,

where g is the main term in £(p~2, A%1T*X), and E is an error term in £(p°, A% T*X).
Recall our goal was to compute I1f = I18; ; (95,1 3). But by Lemma 9.1,

110 | E = 0.

Thus it suffices to compute I19; ;. Now define, for & > 0,

— A~

e = =2mixv T2 (p + &)t 2N
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Then
ae € E(P°, AV T X) (9.1)

for all € > 0, since by Theorem 4.4, Re 1 > 0, which implies 1) 4+ # 0 on X. By (1.31),
there exists some s € £(p?) such that

a1 . Z
B2 (hZY) = (=21 = Z22 4 )i

for all h € C°°(X). But Z1¢ = 0 on X. Thus
5;1040 = —2misyv 3 + 2m‘(21)<)v*1@_[73 on X.

Similarly,

Op10e = —2misxyv "2 (p+e)7t + omi(Z ) ' 2 (p+e)"t on X.
It follows that
Op10e = Oy a0 n E(PH).
From (9.1) and Lemma 9.1, we then have
110} o = lim 110 ;. = 0.
? e—0 ’
This completes the proof of Theorem 1.5.
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Appendix A. The Green’s function of the conformal Laplacian

Assume, as in Section 1.1, that X is a compact pseudohermitian 3-manifold of positive
Tanaka—Webster class. In order to apply our results to the positive p-mass theorem
in [5], one needs to check that the Green function G, for the conformal sublaplacian
Ly := —4/A, + R at p satisfies (1.1) under the assumption that the Tanaka—Webster
curvature R is positive on X. This can be done by using an argument similar to the one
in Theorem 2.4.
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We recall that A, denotes the sublaplacian on X. It was shown in Section 5 of [5]
that G, has the form: G, = ﬁ + w, where w € C*(X) and w satisfies the equation

Lyw=g, gec&@). (A1)

It is obvious that G, satisfies (1.1) if w — w(p) € &(p). We are going to prove that
w - w(p) € E(7).
First we extend L to

Ly:Dom (L) C L2(1h) — L?(m)

in the standard way. Note that L, = —4/A;, + R is subelliptic, self-adjoint and —4A, + R
has L? closed range. Since the conformal sublaplacian is conformally invariant, and
the Tanaka—Webster curvature R can be made positive on X via a conformal change
of the contact form, it follows that Ly:Dom (Ly) C L?(h) — L%(1h) is injective. Let
H : L?(m) — Dom (L) be the inverse of L,. We have

LyH =1 on L*(m),
HL, =1 on Dom (L). (A.2)

We can repeat the L? estimates of Kohn and show that for every k € Ny, there is a
constant ¢, > 0 such that

H@’lfHHuHA SCkH@IIquA , Yue C®(X), (A.3)
m m
and the distribution kernel H(z,y) of H is C* away from the diagonal.

Now, we claim that H is a smoothing operator of order 2. Let B(x,r) be a small ball
and let (x1,x2,x3) be local coordinates on B(z,r). We first observe that for any smooth
function f with support in B(z,r), we have

I
8.1318.7328.133

()

1 @) o By < €0 /

B(x,2r)

<o [ [

B(z,2r)

m(x), (A4)

where ¢y > 0 and ¢; > 0 are constants independent of f and r. Let ¢ be a normalized
bump function in the ball B(x,r) and let k € Ny. From (A.3) and (A.4), we have
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|Vimo| ))<c1§4:rj‘4 / (Vi ) (@) ()
3=0

B(z,2r)

L>(B(z,r

4 4
<o | Vitagl| <@y ||V
=0 " =0 "
< ék’l"27k, (A5)
where ¢; > 0, co > 0, ¢ > 0 and ¢, > 0 are constants independent of r, ¢ and x. Thus,
H satisfies the cancellation property for a smoothing operator of order 2. From (A.5)

and (A.3), we can repeat the methods as in Christ [6,7] and Koenig [15] and conclude
that for all multi-indices aq, ag, we have,

(V5)a(Vo?)yH (2,9)] < Cad(w,y) > W(w,y) € X x X, w#y,  (A6)

where C, > 0 is a constant. This shows that H is a smoothing operator of order 2.
Now, we are ready to prove that w — w(p) € £(p). From (A.1) and (A.2), we have
w = Hyg. Fix k € Ny and fix a point z¢ # p, x¢ is in some small neighborhood W of p.

Let r = %ﬂ(xo,p), and 1 be a normalized bump function supported in B(zg,r), with
n =1 on B(xzg,r/2). Then,

Vs w(o)| = [V HG(xo)| < V5T H (ng)(wo)| + V5T H((1 —1)g) (z0)
and 7g(x) is a normalized bump function on B(xg,r). So by (A.5), we see that
Vit H (7) (o) < Cir' ™, (A7)

where Cy, > 0 is a constant independent of xg and r. By using (A.6), @’;“H((l—n)g)(zo)
can be estimated by writing out the integral directly:

Vi THH (1 = 1)g) (x0) = /(@’JHH)(moa y)(L =) ®)ay)m(y),

this integral is dominated by
—3—k5 —k —3.5 —k
Do [ ) i) < Bt [ 0w0) Yinly) < Bt (A)
I(y,x0)>5r e

where Dy > 0, E, > 0 and Fj > 0 are constants independent of the point xg and r.
From (A.7) and (A.8), we conclude that Vyw € £(°) and hence w — w(p) € E(p).
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Appendix B. Subelliptic estimates for O

In this appendix we present a proof of Propositions 2.5 and 2.6. As is well-known,
the crux of the matter is to prove a normalized subelliptic estimate on a unit cube, and
rescale to a ball of radius r. It is this normalized subelliptic estimate we will focus on
below.

Suppose on R3, T' = 8%37 and on the cube Qo := (—2,2)3, there is a (complex) vector
field Z such that [Z,Z] = —iT + bZ 4+ bZ and [Z,T] = ¢Z + dZ + eT. Fix a sequence
of positive numbers c¢;. The only assumptions we make on b, ¢,d and e are that they are
C> on @, and that their C* norms are bounded by ¢, for all k.

We also need to assume the following condition on Z: Write Z = 2?:1 Ai(m)a%i
on (2. Then the only assumption we make on the A;’s is that |A;(z)| < 1.

Note that Z and Z are only defined on Q5. They will never hit any function that is
not supported in Q», whereas T could hit a function that is defined on all of R3.

Suppose also that we have a smooth contact form 6 on Qs, so that 6(T) = 1, and
0(Z) = 0(Z) = 0 on Q2. One then has a measure 6 A df on Q2. We also assume that
the formal adjoint of Z with respect to L?(6 A df) on Qs is given by —Z + a for some
C® function a, where again the only assumption on a is that its C* norm is bounded
by ¢ for all k. Similarly for the adjoint of Z. We also assume that on Qs, 6 A df = p?dx
where dz = dz1dzodzs is the Lebesgue measure on R? and p is a positive smooth function
on Q2. The only assumptions on p are that c; 1 < p <1 and that its C* norm is bounded
by c¢;. There are no other assumptions on 6.

We shall also fix two functions 7, 7 such that they are C2° with support in Qa,
identically equal to 1 on @1 := (—1,1), and 7 = 1 on a neighborhood of the support
of n.

Write Vyu for (Zu, Zu). We claim the following proposition:

Proposition B.1. For all functions u € C*(Q2) and k > 1, we have
V5 ()|l < Cx (V5 Z(w)l| + [I7ull + (|70]))

where v is any solution to the equation Zv = u on Q2, all norms are L?(0 A df) norms,
and Cy depends only on the chosen sequence c and on n, 7 (but not otherwise on the
vector fields, the coefficients a,b,c,d,e, A; or ).

We remark that if we have Zv + av = wu instead of Zv = u, where « is a fixed
C* function on @2, then the above theorem still holds. See the end of this section for
a discussion about that. Propositions 2.5 and 2.6 now follow easily by a well-known
rescaling procedure. We omit the details.

To prove Proposition B.1, recall on R?® we have the Lebesgue measure dx = dx;dzydxs,
and there is the Fourier transform defined by u(¢) = [wu(z)e ?™*¢dz. Let UT be a
smooth function of £, such that it is (Euclidean) homogeneous of degree 0 outside the
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unit ball {|{| < 1}, equal to 1 on {& > 2e¢(|&1] + |&2|)} there, and equal to 0 on
both {& < eo(|&| + [&)} N {[¢] > 1} and {|¢] < 1}. Here g is a small positive
absolute constant to be chosen. Let U~ (&) = Ut (£1,&, —€3), and W =1 — ¥+ — ¥,
Let AT, A% A~ be the Fourier multipliers corresponding to ¥+, W% ¥~ respectively. For
instance, if U is a function on R3, then A/+TJ(§) = UH(E)U(). Then AT+ A® + A~ is
the identity operator on L?(dz).

We shall also fix a sequence of C'*° functions \Ilg, U Wl .. of ¢ with Ul = Ut such
that each ¥, is (Euclidean) homogeneous of degree 0 outside the unit ball {|¢| < 1},
equal to 1 on a neighborhood of the support of \Il;r_l, and equal to 0 on both {&3 <
(1/2)e0(|& |+ &)} N {[€] > 1} and {|¢] < 1}. We shall denote the corresponding Fourier
multipliers AZ‘. Note A;A$fl = A;@tl for all £ > 1.

In addition, we fix a Fourier multiplier operator A~, with symbol ¥~ that is supported
on {& < 0}, such that A=A~ = A~.

Finally, we fix a sequence of C2° functions ng, 11,72, . . ., with g = 7, such that each
7 has support in Qs, nk+1 = 1 on a neighborhood of the support of 7 for all k, and
77 =1 on the support of 7y for all k.

Now suppose we are given u € C*(Q2). We write u™ for n; A+ (nu), and similarly u°
and u~. Note that then nu = ut +u® +u~.

B.1. Estimate for u~

First we prove that for any k£ > 1,
IVbu Il < Cu (IV5 ™ Zu™ || + [lnull) - (B.1)
A useful lemma is the following;:

Lemma B.2. For every k > 1, there exist Fuclidean pseudodifferential operators S_1 and
S_k, smoothing of orders 1 and k respectively, so that

um =A"u" 4+ S_qu” + S_p(nu).

Here a Euclidean pseudodifferential operator is said to be smoothing of order k, if its
symbol is in the Hormander class Sy g.

Proof. To see this, write

u” =mA T nu
= mA A U+ m AT (1 — ) A" nu
= 1~\7771A777u + [n1, Af]ngAfnu + 771]\7(1 —n2)A"nu. (B.2)

The last term here is S_j(nu) for some (Euclidean) pseudodifferential operator that is
smoothing of order k, because one can pick some C2° function ¢ such that ( = 1 on
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the support of 7 and 71 = 1 on the support of (; this is possible because 173 = 1 on a
neighborhood of the support of 1. Then writing nu as (nu, and commuting the ¢ past
A~ to hit (1 — 72), the last term above is just

771]\_(1 - 772)[[[‘/\_7 da C]’ (RS C](UU) = ka(ﬁu)

With the same choice of ¢, the second term in (B.2) can be written as

(11, A" nam A nu 4 [n1, A e (1 — 1) A" nu = [, A Ju™ + [, A7 ]n2(1 — m) A" nu,

and by the same argument above, the last term here is a pseudodifferential operator of
order —k acting on nu. It follows that this second term in (B.2) is of the form S_ju~ +
S_j(nu). Finally, the first term in (B.2) is just A~w~. This completes our proof of this
lemma. 0O

Also, to prove (B.1), it suffices to prove that

k—1
IVhu™ || < Cr <Z IVeZu™ || + ||TIU||> ; (B.3)

=0

in view of the following interpolation inequality:
Lemma B.3. If k > 1, then
IViZul® < Cr (IIVy ™ Zul® + ||ull?)
for all0 <1< k—1, for any function u that is smooth and compactly supported in Qs.

Proof. One proves, by induction on [ beginning at [ = 0, that for any € > 0, there exists
C'k such that

k—1
IViZull?> <Y1V Zull* + Ccllull?
§=0
for all 0 <[ < k — 2. The key is that
(ViZu, Vi Zu) = (V" Zu, Vi Zu) + O(| V| Viul)
<e(IVyH Zul® + |V Zull?) + Cr IV Zul .

Once this is established, the lemma follows easily by summing over [. O

Now, to prove (B.3), we proceed by induction on k.
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When k = 1, it suffices to bound || Zu~||?. Denote (-, -) the inner product in L?(6 Ad#).
Then

1Zu™|? = —(ZZu™,u™) + O(u [[[|Veu|))
=—(Z2Zu”u") = (iTu™,u”) + O(|Ju”[[[|Vsu~]))
= 1Zu” | = ((Tu™,u”) + O([lu” | Vsu~))-

Now (iTu™,u~) = (piTu~, pu~), where (-,-) is the L? inner product with respect to the
Lebesgue measure dzx. Hence

(iTu™,u~) = (iTpu~, pu~) + O(|[u"||?).
Also, by the above lemma,

pu” = A" pu” +[p, A7Ju" + pS_yu” + pS_1(nu)
=Apu™ 4+ S_ju” +S_1(nu).

So
(iTu™,u™) = (iTA" pu™, A= pu™) + ((TA~ pu~,S_ju~)
+ (iTA™ pu™, S_1 () + O(||u”|*) + Ollrul|?)-

But the second and third terms are O(||u™[|?) + O(||nul|?) (one just needs to integrate
by parts in 7" and let T fall on S_1), and the first term is

(TR pu R pu) = [ 2meal (©F ou (©)dg
which is non-negative since &3 < 0 on the support of ¥~. Hence altogether
1Zu™|* < CllZu™ |I* + O(lu”|I*) + Ollnul®) + Ollu~ Vs~ 1)),
and using [|u~ [ Vyu~ || < 8] Fpu|2 + 6~ u~ |2 and u=|2 < Cllyull, we get
1Zu™|* < CUIZu | + llnul®)

as desired.
Next, suppose (B.3) has been proved for k — 1 for some k > 2. We prove the same
estimate for k. To do so, we first prove that for all 0 < m < LgJ and all € > 0, there

exists C, such that
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my7k—2m,_  —2
[

k—1
<e|ViuT|* + C: (IIV'zflzu_ll2 + Y IV P+ IInUI|2> : (B4)
=0

In fact the desired inequality (B.1) for k follows readily from the above inequality when
m = 0.

To prove (B.4), we proceed in two steps. First, we prove that for all 0 < m < L%J and
all € > 0, there exists C. such that

||TmZk_2mu_ HQ

k—1
< el ViuT|* + Ce <IIV’Z_1ZUII2 + > IViu | + ||TIU||2> - (B.5)
=0

Next, we prove by induction on m, beginning from m that is as large as possible, that
(B.4) holds.

In the first step, there are two cases: either &k — 2m = 0 (which occurs only when £ is
even), or k —2m > 1.

In the first case, we need to estimate |7 u~||%>. Now m > 1, and

17|
= (I"™u",i(ZZ = ZZ)T™ 'u™) + O(|T™u” |||V~ u ™)

k—1

= (T GZZT™ )+ (T i 2T Zu) + O(| T | Y [ Vhu )
=0
_ _ k—1
= —(T"u,iZZT™ 'u™) + O(|T™u™ ||V Zu™||) + O(IT™u || Y I Vhu~|))-

=0

But

(T™u™ i ZZT™ 'u™)
= ({T(ZT™ ™), ZT™ ™) + O(|T™u™ |||V~ ™ [) + O Ve |?)
= (iT(pZT™ 'u™), pZT™ ™) + O(|T™u™ [[[| V5~ u™ ) + O(|[ V5 u™||?).

Also by Lemma B.2,

pZT™ ™

A (pZT™ ™) + [pZT™ Y A u™ + pZT™ 1 S_1(u™) + pZT™ 1S (nu)
k—1

= A (pZT™ ')+ S, Z Viu™ +S_1(nu).

=0
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Hence
GT(pZT™ u™), pZT™ 1u™)

= (iTA~(pZT™ 'u™), A~ (pZT™ 'u™)) + (TA™ (pZT™'u™),S-1 Y Viu~)

+ (TN (pZT™ u™), S—1(nu)) + O( levbu 1) + Olnul®),
=0

where the first term is non-negative, and the second and third terms are
(Z ||V u”]|?) + O(||nu||?) after integrating by parts in 7. Altogether, we get

k—1
1T |* < e Viu~|* + Ce (HVIZIZH_H2 +> Vi |? + |’7u||2>
1=0
as desired.
Next, in the second case, we need to estimate ||7™Z*~2my~||2 when k —2m > 1. The

strategy is the same as the one when we dealt with the case when k£ = 1 and m = 0. One
observes that

HTmZk72mu7 ”2

k—1 k—1
—(@ZZFru, T2 )+ O IV IVEuT ) + O Ve |F)
=0 =0

(Tmzk 2mZ - Tmzk 2m—1 7)
— (k= 2m)(@T(T™mZF=2m =y =), Tm Zk=2m =1y ™)
’ k—
O IViu [IVEu 1)+ 0 Vi |*)

=0
_ ||TmZk—2m—IZu—”2_ [2(k—2m) ]< ( TmZk 2m—1 —) meZk—2m—1u—>

H

~

k—1
O IVyu~ V5w~ [) + O ZIIV u”[?)
=0

Now [2(k — 2m) — 1] > 0, and by Lemma B.2,

meZkfszluf _ ]\7 (meZ’“Qm*lu*) + [meZkrf%nfl’ Ai]ui

+ pT™ZE=2m=1S L (uw™) + pT™ 2872718 ()
) k—1

= AT ) 5 Y Vi 4 ().
1=0
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Hence

<,L'T(mezk—2m—1u—)7mezk—Zm—lu—>
= (TA (pT™Z* 2" ™), A~ (pT™ ZF 2™~
p p
~ k—1
+ (A (pT™ 252" ), S0 Y Viu™)
=0
k—1

+ (TA (pT™ 252" ™), S_a (nu) + O [ Vyu™ [1%) + Ollnull®),
=0

where the first term is non-negative, and the second and third terms are
O(Z;:Ol [Viu=|1?) + O(||nul|?) after integrating by parts in T. Altogether,

k—1
1T 2572 |12 < el ViuT || + Ce (IIV’J”ZuII2 +X IV |? + IIWI|2>
=0

as desired. This finishes our first step in proving (B.4).

Now to complete the proof of (B.4), we proceed by induction on m, beginning with
m that is as big as possible. In that case k — 2m is either 0 or 1. Both cases follow right
away by what we have proved above in the first step. Now we prove the inequality (B.4)
for m, assuming the inequality has been proved for all strictly bigger m’s. Then we need
to estimate |[T7VE~ 2"y~ 2. Consider TV, 2™y~ If all the V,’s are Z, then this
follows again from what we have proved above. If one of the V}’s is Z, then one only
needs to commute the Z all the way through the other V;’s to get T’"Vlgfzm*lZu_, up
to an error that either has fewer V;, derivatives, or an error of the form Tm‘HV]g*Qm*zu_.
For example,

”Tmzvlg—Zm—luf”Z
k—1
= |72 Zum |2+ O(| T VR R 1P + O Ve |1?).
=0

The first error term can then be estimated by our induction hypothesis on m. Hence
k-1

1T 2V~ |2 < e ViuT |* + O (V'Z_IZU_I2 + > Vi) + ||77u||2) :
1=0

This completes the proof of (B.4), and thus the proof of (B.1).
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B.2. Estimate for u°

Next we prove that for any £ > 1 and any € > 0,

k—1
IVEuC < V5~ Zu®? + el VE ()| + Cre Y IV ().
=0

We proceed by induction on k exactly as before.
When k = 1, we only need to estimate |(i7Tu’, u)|. But

(T’ u®)| < e Tu® || + e Hnul?,
and
ITu’(|*> < |TA°(pmu) |I* + Clnul|>.

Taking Fourier transform,

ITA (pu)|? < / (142621612 + [62]2))|AD (pryur) (€) e

2
) + [lmul®

<222 | 2 A%pnu) 2+ 2\ (o)
- 0 81'1 8x2

2 B
— mA°
+ H oz, (pnu)

0
< 2} (Ha—mm/\o(ﬂﬁu)

2
) + [lnul?.

811

The last line follows since pnu = 11 pnu and one can commute the 77 past A9 to obtain
( pnu = n1pn M P

a better error.)

Now the key observation is that on Qo, 8%1 and 0%2 can be written as linear combina-
tions of Z, Z and T with coefficients that are bounded by an absolute constant. In fact
we only need to bound the coefficients of the inverse of the matrix whose first column
is (A1, Aa, A3), the second column is the conjugate of the first, and the third column is
(0,0,1). From 0 AdO(Z,Z,T) = d0(Z,Z) = —0(Z,Z) = 0(iT) = i, 0 A df = p*dz, and
p < 1, we have |dx(Z,Z,T)| > 1, i.e. the determinant of the matrix to be inverted is
bounded below by 1. Together with the assumed bounds on the A;’s, we obtain our key

observation.
Hence, continuing from above,

ITA° (o) 2 < Coz ([ VoA (o) |* + |TA (o)) + 1w,

which implies
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2
ITA° (pru) || < C [|VoA° (i) ||~ + [|7ul®
2
< C(IVs(nu)||” + [lmul?)
if g9 was chosen to be sufficiently small. One then completes the proof of the case k = 1

as before.
Next, we prove by induction on m the following for any € > 0:

k—1
1TV 2l < C <||fo_17uoll2 +> IIVé(W)HQ) +ellVE(u)|*. (B.7)
=0

First, suppose k — 2m = 0. Then we need only estimate |(i7TZT™ *u®, ZT™ 1u")|.
One certainly has

k—1
T 2T, ZT™ )| < || TZT™ 0| + 271 |V (nu)]|.
=0

To estimate |TZT™ *u°||?, we write TZT™ '’ = TAZT™ Y(nu) + T[ZT™ 1n,
A°](nu). The second term is bounded by

k
> IVh ).
1=0

The first term satisfies

ITAZT™ () |* < IV~ ()| + Cogd VoA ZT™ ™ ()|
+ Cogg || TA°ZT™ = (nu) |1,

from which it follows that

ITA°ZT™ (pu)[|* < 1V~ () |* + CI[ VA ZT™ (5pu) |
< OV ) |? + ClIVE (w) 12

by our choice of ;. Hence

k—1
|GT 2T 0, 2T M0)| < € VE () |? + Ce Y IV ()|
=0

and one finishes the proof for the case k — 2m = 0 as before.
Next, when k — 2m = 1, we need to estimate |(iTT™u", T™u°)|. One certainly has

k—1
|GTT™u®, T™uO)| < el| Tl + 71 D V().
=0
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To estimate || 7™ 1u°||?, we write T u® = TAYT™ (nu)+T[T™n1, A°](nu). The second
term is bounded by

k
> IVh(mu)ll.
1=0
The first term satisfies
ITAT™ (nu) || < IV5 " (nu)|1* + Cogg | VA’ T™ (qu)[|* + Coeg | TAYT™ (nu)||?,
from which it follows that

ITAT™ (u)[|* < [V~ (nu)||* + ClI VoA T™ (nu) |2
< OV~ () |? + ClIVE ()12,

Hence

k—1
|GTT™u®, TO)| < | Vi (pu)|* + Co Y V() |®
=0

and one finishes the proof for the case k — 2m = 1 as before.

Now we prove (B.7) for m, assuming that the statement has been proved for all
larger m’s. We then estimate ||[7™VE~2™40||2. If one of the V, is Z, we proceed exactly
as before and commute the Z until it hits u°. This proves the desired estimate with the
induction hypothesis on m. If now all V;, are Z’s, then as before we only need to bound
|(iTT™ Zk=2m=190 Tm ZF=2m=140)|. One certainly has

k—1
|GTT™ 25721, T ZE 20| < el T 2R 02 ey [V ()|

=0

To estimate || T+ ZF=2m=140|12) we write T™+1Zk=2m=1y0 — TAOT™ Zk=2m=1(pq;) 4
T[T Z%=2m=1pn, A% (nu). The second term is bounded by

k
> IVhe)ll.
1=0

The first term satisfies

ITACT™ 252 ) 2
< I ) |2 + Cog3 [V AOT™ 2427 ()2 4 oI TACT™ 252 () 7,

from which it follows that
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ITAYT™ ZE2m = ) |2 < [V~ ()12 + CI VAT 2827 () |2
< CIVy )|* + CIVE ().

Hence

k—1
|GTT™ 252, T 2472 0)| < e | VEGr)l? + Ce Y 11V () |1
=0

and one finishes the proof for this case as before.
B.8. Estimate for u™

Now we turn to estimate u™. Recall we introduced a sequence of cut-offs 1y =
7,71, 72, .., and a sequence of Fourier multipliers Ag‘ = AT AT AT, ..., such that
NeMk+1 = Nk, and A;:A;H = A;: for all £ > 0. In fact the Fourier multiplier for AZ‘H
is identically equal to 1 on a neighborhood of the support of that of AZ‘. Also, the cut-
off function 7 dominates all the 7;’s, in the sense that 7;7 = 7; for all j. We wrote

uT = nATnu, and v is any solution to Zv = u on Q2. The estimate we shall prove is

k—1
IVEuT I < CrIVe " Zut | + Y IV () | + lnes10]]) (B-8)
=0

for all £ > 1.
To prove this, the first observation is the following;:

Lemma B.4. For all k > 1,
V5o < Cr (IV5~ 20| + ol
where v = n AT,

The proof of this inequality is the same as that of (B.1), except that one reverses the
role of Z and Z, and replaces u~ by vt. It does not make use of the fact that v solves
Zv = u. By the same token,

Lemma B.5. For all k> 1 and all j > 1,

V5 AT yni-10)| < Cj (IV5 ™ Z(0 Ay mjr0) || + [[m-10])) -
Another useful lemma, is the following:

Lemma B.6. For any k > 1 and any j > 1, there exist pseudodifferential operators Sy
and S_, smoothing of order 0 and k respectively, such that
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N —iu = Z (A 0 1v) + So(nj41A7 1;0) + S_(n;v).
In particular, when j =1,
ut = Zvt + So(neAmuv) + S_k(mv).
Proof. For all j > 1,
A=A n;a Zv
=N nj—1Z(n;v)

= A i Z (i AT nv) + AT 01 Z(na (1= A )n,v).
(B.9)
We shall argue that the second term on the last line is S_j(n;v) for any k& > 1.
Since the Fourier multiplier ¥ of A is identically 1 on a neighborhood of the support

of \I/;QI, there exists a Fourier multiplier \I/;:O such that \I/;' is identically 1 on the support

of \I/;O, and \I/IO is identically 1 on the support of ‘l/;r_l. Writing A;O for the Fourier
+

.00 we have
:

multiplier operator corresponding to ¥
(1-AD) = (1 - Af)(1— A));

indeed \p;r = 1 on the support of \I!;CO implies that A;fo(l — Aj) = 0. Putting this back

in the second term (B.9), and commuting 1 — AIO until it hits Aj_l,

we get
AT (1= AT o)1 Z (i1 (1= A )njo) +mj AT [n-1Zmj41,1 = A ) (1 = AT )n;v).
The first term here is zero, since

A;r_l(l — A;fo) =0;
the second term here is

’I]]‘A;llso(l - Aj)?’]JU

Again writing (1 — A;‘) =(1- AIO)(l - Aj) and commuting 1 — AIO until it hits A;ll,
we get that this is

A1 S-1(1 = Af )nyv.

Repeating this argument, it is clear that we can make this ;AT | S_x(1 — AJ)n;v for
any k, and this is thus S_g(n,v).
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Next, the first term in (B.9) is

A1 Z (1A nyv)
— Zm At m ma AT v+ | AT n Z)(n; AT )
Uz jfl’r]j 175+1 ]n] Uk jfln] 1 Tj+1 377]
= Zn; A 1A njv 4+ So(njp 1A njv).

By writing Aj' =1-(1- A;‘), the first term in the last line is equal to

Z (A mj—1v) = ZniAT_ni—1 (1 — A )njv.

We only need to argue now that the second term in the last line is S_4(n;v) for any k.
But we only need to adopt the strategy above again: writing (1 —Aj) =(1 —AZO)(l —A;r)
we get that this is S_g(n;v) for any k. O

and commuting 1 — A, until it hits A,

It follows that

Lemma B.7. For all k > 1,

k k—1
Y IVEmATmo) | < O IVEm)ll + Ik0])-
1=0 1=0

Proof. We shall prove by induction on & that for all j, k& > 1,

k k—1
S IVEmAT 1)l < COIVEMjr—2w)l| + 745—10]))-
=0 1=0

The case j = 2 yields the current lemma. Assume this has been proved for k — 1, and we
prove the statement for k. By Lemma B.5,

k—
IV (i Ay i)l < CUIVE ™ Z(ni A ymi—1)l| + [Inj—1ll)-
Now by Lemma B.6, one has
Z(ni NS nj—1v) = ;AT mj—1u + So(ny 1A myv) + S_ge—1y (njv).
Hence one only needs to estimate ||V§7150(77j+1Aj+77jv)||, which can be estimated by
induction hypothesis since this involves fewer than k derivatives on 17j+1A;r17jv. a

As a result,

Lemma B.8. For all k > 0,

k—1
IVEF ot < CUVETI + D IV |+ lawraol).
=0
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Proof. By Lemma B.4,
IV ot < CUVE 2ot | + [lnol)).

Now by Lemma B.6, one has
Zvt = ut 4+ So(naATmv) + S_g(mv).

Hence one only needs to estimate ||[VF¥Sq(n2Afn1v)||, which can be estimated by
Lemma B.7. O

Now we prove (B.8) by induction on k.
When k = 1, we need only estimate ||Zu™||?. But by Lemma B.6, we have

ut = Zvt + So(TIQATTh'U) +S_1(mv).

Hence

|Zu*t|?
= (Z22v*, Zu™) + O(|| Zn2 AL mo|[[| Zu ) + O([lmol [ Zu™ )

=(Z22v", Zu") + O(|mullll Zu™[) + O[ln2v[| | Zu™|))) by Lemma B.7

= —(Zvt, ZZu") — (ZvT,iTu™) + O(|| Zv ||| VeuT||)
+ O([lmull | Zu™]]) + O(|nzv]ll| Zu ™)

= —(Zv", ZZut) — (Zv T, iTu™) + O(||mul || Veyu™||)
+ O(||n2v||[[Vou™]]) by Lemma B.8

= (ZZv", Zu*) + (iTv*, Zu™) + O(|Viu™|[[[ut ) + O(| Voo || (I Vs || + [lut]]))
+O(mull[Vou™[l) + O([[nev || Veu™])

= O([IViv ™ 1 Zu™ ) + OIViv T ™)) + O(IVev ™ [ (I Vou™ || + lu*[]))
+ O(llmulllVou™[|) + O[ln2v[| [ Vyu™]])

< Ce| Vi |IP + e ZuT|? + e w1 + el| Zu™|* + e Vir ™|

+e mull* + e o).
Absorbing Ce||Zu™||? to the left hand side, we get
1Zu*|? < ClellVavFII? + e Zu™ | + e IVov™ I + e~ Himull* + e~ Inzvl?).

Now by Lemma B.8, one estimates ||VivT|| and ||[V,oT||:
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IVeu™ Il < C (IVou™ || + [lnaull + [In2vll)
IVt |l < C(llut | + lmoll) < Cllmull + [[n20]).

Together, we get
1Zu™)? < C (1Zu™|* + [lmul| + [In2v]])

as desired.
Next, to prove (B.8) for a general k, we prove the following statement by induction
onm forall0 <m < L%J and € > 0:

k—1
1TV =2t | < e Vit + Ce (IIVz’leWII + > Vi tmew)l| + ||77k+1v||>
=0

(B.10)

In fact the case m = 0 readily implies (B.8) for k.
Again we begin from the biggest possible value of m. Suppose k — 2m = 0. Then we
need to estimate ||[T™u*|. Now

[T

= (T Zv*, T"u™) + O((IV5 (n2AT o)l + o )| T ™))

k k
= —(T"o", T Zu™) + O |IVio 1T ™)) + O(IT™ o™ || Y IIViu™ )
=0 =0
k—1
+O(Q_ IV )| + 1o DIT™u* )
=0
_ k k
= (VoI VoT™ ' Zu) + O VG [T ) + O(IT™ | Y IVu* )
=0 =0
k—1
+O(Q_ IV )|+ [0 DIT™u* )
=0

the last line following by writing one of the T’s in T™Zut as a commutator and inte-

grating by parts. Hence

k
Tt < el Vit o |P + e Vi |P + Co(1V5 ™ Zut | + Y | Vie )
=0
k-1

+ Y IV + s 0l]?)-
=0
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Now we invoke Lemma B.8 to estimate ||V} 'oF|| and Zf:o [VivT|. Together,

k—1
1T u*[|* < e ViuT|? + Ce (IIV’Z_IZWII2 + D IVh ()| + ||nk+1v||2>
=0

which implies the desired estimate for T™u™.
Next, we estimate ||T™Z*=2mu*|| for any 0 <m < [£], if k — 2m > 0. Then
HTmZk72mu+H2
= (T 282t T 2820t + O(( Vi (AT mov) | + ([ )| T™ 252t )

_ _(TmZk—va—‘,-7 TmZk—2mZu+) _ (k _ 2m) (TmZk—va-i-, iTm+1 Zk—?m—1u+>

k k k—1
+ O IV D IvEutIh + O IV mea)ll + llmaol DI T™ 252t ))
1=0 Jj=0 =0

Now in the first term, we split off one Z in T Z*~?™Z and integrate by parts. Also, in
the second term, we split off one 7" in T™H! Z¥=2m~1 and integrate by parts; then we
split off one Z in T™Z*k=2™ and integrate by parts. We get

||TmZk—2mu+||2

= (ZT™ 7+ 2myt T ZE 2L Z0 ) 4 (k= 2m) (T P ZR2mm Lyt pm ke 2my

k—1 k k
+O(IVy ot 1Y VRt ) + 0 V5™l Y IViu™ )
1=0 1=0 j=0
k—1
+O(Q_ IV | + o DIT™ 252t )
1=0
k—1
< O(|Vy ot IV~ Zut ) + O VE o I ) IVhut )
1=0
k k k—1
+O0 IVt I Y IVEet D) + OO IVl + I aolDIT™ 252wt )
1=0 j=0 1=0
As a result,

||TmZk72mu+||2
< el Vot + e Vi
k k—1
+C- <||v’g—1Zu+|2 + D IV I2 + Y IV w1 + Ink+1vll2>
=0 =0

and the desired estimate follows upon invoking Lemma B.8.
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Now suppose we have proved (B.10) for all strictly bigger m’s, and want to prove the
inequality for m. Then we need to estimate |7V~ 2™u*|. If one of the V, is Z, we
commute until that Z hits u™, obtaining an error that has more 7 in it, which one can
estimate by the induction hypothesis. Otherwise all V; are Z’s; and the estimate follows
from what we have proved above. This completes the proof of (B.8).

Now putting (B.1), (B.6) and (B.8) together, and remembering that nu = u~+u’+u™,
we get

k-1
IV5 ()l < Ci (IIV’Z_lz(W)II + 2 Vi tmew)l] + ||nk+1v||> :
=0

But Zé:ol [V (miw)|| involves fewer than k derivatives of nyu, and can be estimated if
we iterate the above inequality. In fact

k—1 k-2
oIVl < © (Z IV6Z (i) || + l[ull + IIﬁvl) -

=0 =0

It follows that

k—1
IVE ()| < Ci (Z IV6Z (i) || + IIﬁv|> :

=0

Using the interpolation inequality in Lemma B.3, one obtains the desired inequality in
Proposition B.1.

Finally, we come back to the remark we made after the statement of Proposition B.1.
We remark that if we have Zv + av = u instead of Zv = u, where « is a fixed C'*®
function on @3, then the above theorem still holds. See the end of this section for a
discussion about that. The key there is to observe that Lemma B.6 above holds under
this modified assumption as well. In fact, then

A = A ni1 (Z 4 a)v
= A ni1(Z + «)
= 0iAj_1nj—1(Z + @) (11145 njv)

+ AT n1(Z 4 @) (g (1= AT )nj0).

n;v)

(
(
The « in the first term contributes only So(nj+1Ajnjv), while the « in the last term

contributes only S_j;_1(n;v).
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