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Let (X̂, T 1,0X̂) be a compact orientable CR embeddable 
three dimensional strongly pseudoconvex CR manifold, where 
T 1,0X̂ is a CR structure on X̂. Fix a point p ∈ X̂ and 
take a global contact form θ̂ so that θ̂ is asymptotically flat 
near p. Then (X̂, T 1,0X̂, ̂θ) is a pseudohermitian 3-manifold. 
Let Gp ∈ C∞(X̂ \ {p}), Gp > 0, with Gp(x) ∼ ϑ(x, p)−2

near p, where ϑ(x, y) denotes the natural pseudohermitian 
distance on X̂. Consider the new pseudohermitian 3-manifold 
with a blow-up of contact form (X̂ \ {p} , T 1,0X̂, G2

pθ̂) and let 
�b denote the corresponding Kohn Laplacian on X̂ \ {p}.
In this paper, we prove that the weighted Kohn Laplacian 
G2

p�b has closed range in L2 with respect to the weighted 
volume form G2

pθ̂∧dθ̂, and that the associated partial inverse 
and the Szegö projection enjoy some regularity properties 
near p. As an application, we prove the existence of some 
special functions in the kernel of �b that grow at a specific 
rate at p. The existence of such functions provides an 
important ingredient for the proof of a positive mass theorem 
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in 3-dimensional CR geometry by Cheng, Malchiodi and 
Yang [5].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation from CR geometry

The study described in this paper was motivated by that on a positive mass theorem 
in 3-dimensional CR geometry by Cheng, Malchiodi and Yang [5], where one needs to 
find some special functions in the kernel of the Kohn Laplacian that grow at a specific 
rate at a given point on an asymptotically flat pseudohermitian 3-manifold. We begin 
by giving a brief description of the relevance of our result with their work below.

Consider a compact orientable 3-dimensional strongly pseudoconvex CR manifold 
(X̂, T 1,0X̂) with CR structure T 1,0X̂. We assume throughout that it is CR embeddable 
in some CN . By choosing a contact form θ̂0 on X̂ that is compatible with its CR structure, 
one can make (X̂, T 1,0X̂, θ̂0) a pseudohermitian 3-manifold; in particular, one can define 
a Hermitian inner product on T 1,0X̂, by

〈Z1|Z2〉θ̂0 = 1
2dθ̂0(Z1, iZ2).

Now fix p ∈ X̂. By conformally changing the contact form, we may find another con-
tact form θ̂ (which is a multiple of θ̂0 by a positive smooth function), so that near p, 
there exists CR normal coordinates (z, t). In other words, the contact form θ̂ and the 
coordinates (z, t) are chosen, so that

(i) the point p corresponds to (z, t) = (0, 0);
(ii) one can find a local section Ẑ1 of T 1,0X̂ near p, with 〈Ẑ1|Ẑ1〉θ̂ = 1, such that Ẑ1

admits an expansion near p as described in (1.31) below; and
(iii) the Reeb vector field T̂ with respect to θ̂ admits an expansion as described in (1.32).

Then (X̂, T 1,0X̂, θ̂) is another pseudohermitian 3-manifold. Assume that this pseudo-
hermitian 3-manifold is of positive Tanaka–Webster class: this means that the lowest 
eigenvalue of the conformal sublaplacian

Lb := −4Δb + R

is strictly positive. Here R = Rθ̂ is the Tanaka–Webster curvature of X̂, and Δb is 
the sublaplacian on X̂. (The above assumption on Lb will hold when e.g. Rθ̂ is strictly 
positive on X̂.) Then Lb is invertible, so one can write down the Green’s function Gp of 
Lb with pole at p. We normalize Gp so that

LbGp = 16δp.
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Then near p, Gp admits the following expansion

Gp = 1
2π ρ̂

−2 + A + f, f ∈ E(ρ̂1), (1.1)

where A is some real constant, ρ̂4(z, t) = |z|4 + t2, and for m ∈ R, E(ρ̂m) denotes, 
roughly speaking, the set of all smooth functions g ∈ C∞(X̂ \ {p}) such that |g(z, t)| ≤
ρ̂(z, t)m−p−q−2r near p, along with some suitable control of the growth of derivatives 
near p (see (1.34) for the precise meaning of the Fréchet space E(ρ̂m)).

Let now

X = X̂ \ {p} and θ = G2
pθ̂

and let T 1,0X be the restriction of T 1,0X̂ to X. Then (X, T 1,0X, θ) is a new non-compact 
pseudohermitian manifold, which we think of as the blow-up of our original (X̂, T 1,0X̂, θ̂)
at p. We say that this pseudohermitian manifold is asymptotically flat, since under an 
inversion of coordinates, X has asymptotically the geometry of the Heisenberg group 
at infinity. We note that the Tanaka–Webster scalar curvature Rθ of X is identically
zero, since the conformal factor Gp we used is the Green’s function for the conformal 
sublaplacian on X̂. Let ∂b and �b denote the associated tangential Cauchy–Riemann 
operator and Kohn Laplacian respectively. In [5], Cheng, Malchiodi and Yang introduced 
the pseudohermitian p-mass for (X, T 1,0X, θ), given by

m(θ) := lim
Λ→0

i

∫
{ρ̂=Λ}

ω1
1 ∧ θ,

where ω1
1 stands for the connection form of the given pseudohermitian structure. Then 

they proved that there is a specific β̃ ∈ E(ρ̂−1), with �bβ̃ = E(ρ̂4), such that

m(θ) = −3
2

∫
X

∣∣∣�bβ̃
∣∣∣2 θ ∧ dθ + 3

∫
X

|β̃,1̄1̄|2θ ∧ dθ + 3
4

∫
X

β̃ · P β̃θ ∧ dθ, (1.2)

where β̃,1̄1̄ is some derivative of the function β̃, and P is the CR Paneitz operator of 
(X, T 1,0X, θ). (Note Rθ = 0 in our current set-up, so the term involving Rθ in the 
corresponding identity of mass in [5] is not present above.) Moreover, it was shown that 
(1.2) holds for any β in place of β̃, as long as β̃ − β ∈ E(ρ̂1+δ), and �bβ = E(ρ̂3+δ)
for some δ > 0. Thus, if we could find such a β in the kernel of �b, then under the 
assumption that the CR Paneitz operator P is non-negative, one can conclude that the 
mass m(θ) is non-negative. The construction of such β is the motivation of the current 
paper. (See Corollary 1.2 in the next subsection.)

Classically, if one wants to solve �b on say a compact CR manifold, one proceeds by 
showing first that �b extends to a closed linear operator on L2, and that this extended 
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�b has closed range on L2. Then one solves �b in a weak sense, and shows that the 
solution is classical if the right hand side of the equation is smooth. This strategy does 
not directly apply in our situation, since our CR manifold X is non-compact. In fact, 
the natural volume form on X is given by θ ∧ dθ, and even if we extend �b so that it 
becomes a closed linear operator on L2(θ∧ dθ), this operator may not have closed range 
in L2(θ∧ dθ), as is seen in some simple examples (e.g. when X̂ is the unit sphere in C2).

To overcome this difficulty, we introduce in this paper a weighted volume form

m1 := G−2
p θ ∧ dθ,

as well as a weighted Kohn Laplacian, namely

�b,1 := G2
p�b.

We will show that �b,1 extends as a densely defined closed linear operator

�b,1: Dom �b,1 ⊂ L2(m1) → L2(m1),

and this extended operator has closed range in L2(m1). (See Theorem 1.3 below.) Here 
L2(m1) is the space of L2 functions with respect to the volume form m1. As a result, we 
have the following L2 decomposition:

�b,1N + Π = I on L2(m1)

Here N : L2(m1) → Dom �b,1 is the partial inverse of �b,1 and Π : L2(m1) →
(Ran �b,1)⊥ is the orthogonal projection onto the orthogonal complement of the range 
of �b,1 in L2(m1). We will show that for every 0 < δ < 2, N and Π can be extended 
continuously to

N : E(ρ̂−2+δ) → E(ρ̂δ),

Π : E(ρ̂−2+δ) → E(ρ̂−2+δ) (1.3)

(see Theorem 1.4 below). Hence

�b,1N + Π = I on E(ρ̂−2+δ), (1.4)

for every 0 < δ < 2. Now, let β̃ be as in (1.2). Put

f := �b,1β̃ = G2
p�bβ̃.

Then by the expansion of Gp and the assumption on �bβ̃, we have f ∈ E(ρ̂−1+δ), for 
every 0 < δ < 1. From (1.3), we know that Πf is well-defined and Nf ∈ E(ρ̂1+δ), for 
every 0 < δ < 1. Moreover, we will show, in Theorem 1.5 below, that

Πf = 0.
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Thus from (1.4), we have

�b,1(Nf) = f = �b,1β̃.

If we put

β := β̃ −Nf,

then

�bβ = 0 and β − β̃ ∈ E(ρ̂1+δ),

for every 0 < δ < 1. With this we have achieved our goal.
It turns out that a large part of our analysis does not depend on the fact that Gp is 

the Green’s function of a conformal sublaplacian. All that we need is that Gp admits an 
expansion as in (1.1), that it is smooth on X, and that it is positive everywhere on X. 
We will formulate our result in this framework in the next subsection.

We expect that it is possible to approach the same problem by proceeding via Lp

spaces rather than weighted L2 spaces. In [13], we solved the �b equation in some Lp

spaces in a special case.
The operator �b,1 can be seen as the Kohn Laplacian on the non-compact CR manifold 

X = X̂ \ {p} defined with respect to the natural CR structure T 1,0X̂ and the “singular” 
volume form m1. The coefficients of �b,1 are smooth on X but singular at p. This work 
can be seen as a first study of this kind of “singular Kohn Laplacians”. It will be quite 
interesting to develop some kind of “singular” functional calculus for pseudodifferential 
operators and Fourier integral operators and establish a completely microlocal analysis 
for �b,1 along the lines of Beals and Greiner [1], Boutet de Monvel and Sjöstrand [3]
and [12]. We hope that the “singular Kohn Laplacians” will be interesting for analysts.

1.2. Our main result

Let us now formulate our main results in their full generality. Consider a compact 
orientable 3-dimensional strongly pseudoconvex pseudohermitian manifold X̂, with CR 
structure T 1,0X̂ and contact form θ̂0. We assume throughout that it is CR embeddable 
in some CN . By conformally changing the contact form θ̂0, we may find another contact 
form θ̂, so that near p, one can find CR normal coordinates (z, t) as described in the 
previous subsection. We will write

ρ̂(z, t) = (|z|4 + t2)1/4,

and for every m ∈ R, we can define a Fréchet function space E(ρ̂m) as in (1.34).
Now fix a point p ∈ X̂, and let

X = X̂ \ {p}.
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We fix from now on an everywhere positive function Gp ∈ C∞(X), such that Gp admits 
an expansion

Gp = 1
2π ρ̂

−2 + A + f, f ∈ E(ρ̂1), (1.5)

where A is some real constant. (Again Gp need not be the Green’s function of the 
conformal sublaplacian any more.) Define now

θ = G2
pθ̂.

Then (X, T 1,0X̂, θ) is a non-compact pseudohermitian 3-manifold, which we think of as 
the blow-up of the original X̂. The θ defines for us a pointwise Hermitian inner product 
on T 1,0X, given by

〈Z1|Z2〉θ = 1
2dθ(Z1, iZ2);

we denote the dual pointwise inner product on the space (0, 1) forms on X by the same 
notation 〈·|·〉θ. Let ∂b be the tangential Cauchy–Riemann operator on X. This is defined 
depending only on the CR structure on X. Now there is a natural volume form on X, 
given by

m := θ ∧ dθ.

This induces an inner product on functions on X, given by

(f |g)m =
∫
X

fgm,

and an inner product on (0, 1) forms on X, given by

(α|β)m,θ =
∫
X

〈α|β〉θ m.

We write ∂∗,f
b for the formal adjoint of ∂b under these two inner products. In other words, 

∂∗,f
b satisfies

(∂bu|v)m,θ = (u|∂∗,f
b v)m

for all functions u and (0, 1) forms v on X that are smooth with compact support. We 
can now define the Kohn Laplacian on X, namely

�b := ∂∗,f
b ∂b,
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at least on smooth functions with compact support on X; then

(�bu | f)m = (u | �bf)m

for all functions u, f on X that are smooth with compact support, so we can extend �b

to distributions on X by duality.
Our goal is then to solve a specific equation involving �b. First, let χ(z, t) be a 

smooth function with compact support on X̂, so that its support is contained in the local 
coordinate chart given by the CR normal coordinates (z, t), and that it is identically 1 
in a neighborhood of p. Let

β0 = χ(z, t) iz

|z|2 − it
∈ E(ρ̂−1).

Then �bβ0 ∈ E(ρ̂3). Furthermore, as was shown in [5], there exists β1 ∈ E(ρ̂1), such that 
if

β̃ := β0 + β1,

then

F := �bβ̃ ∈ E(ρ̂4).

Actually, in what follows, all we will use is that F ∈ E(ρ̂3+δ) for all 0 < δ < 1. Our main 
theorem can now be stated as follows:

Theorem 1.1. Let F be as defined above. Then there exists a smooth function u on X, 
such that u ∈ E(ρ̂1+δ) for any 0 < δ < 1, and

�bu = F.

By taking β := β̃ − u, we then have:

Corollary 1.2. There exists β ∈ E(ρ̂−1) with β − β̃ ∈ E(ρ̂1+δ) for any 0 < δ < 1, such 
that

�bβ = 0.

This provides a key tool in the proof of a positive mass theorem in 3-dimensional CR 
geometry in the work of Cheng, Malchiodi and Yang [5], as was explained in the last 
subsection.

Some remarks are in order. The first is about numerology. Considerations of homo-
geneity shows that �b takes a function in E(ρ̂k) to E(ρ̂k+2). Thus the homogeneity above 
works out right; the only small surprise is that while β0 is in E(ρ̂−1), �bβ0 is in E(ρ̂3), 
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which is 2 orders better than expected. But that is a reflection of the fact that our β0

has been chosen such that ∂bβ0 is almost annihilated by ∂∗,f
b .

Next, β1 above is an explicit correction in E(ρ̂1) such that �bβ1 ∈ E(ρ̂3) cancels out 
the main contribution of �bβ0 ∈ E(ρ̂3). This ensures that F ∈ E(ρ̂3+δ) for all 0 < δ < 1, 
which in turn guarantees that the β we construct in Corollary 1.2 is determined explicitly 
up to E(ρ̂1+δ) for all (in particular, for some) 0 < δ < 1. The latter is important in the 
proof of the positive mass theorem in [5], since any term in the expansion of β that 
is in E(ρ̂1) would enter into the calculation of mass in (1.2). But for the purpose of 
solving �b in the current paper, the correction term β1 is not essential; in particular, 
if F0 := �bβ0 ∈ E(ρ̂3), then our proof below carries over, and shows that there exists 
u0 ∈ E(ρ̂1) such that �bu0 = F0.

Finally, in Corollary 1.2, note that we do not claim ∂bβ = 0. It is only �bβ that 
vanishes, as can be shown by say the example when X̂ is the standard CR sphere in C2.

1.3. Our strategy

As we mentioned earlier, the difficulty in establishing the above theorem is that the 
CR manifold we are working on, namely X, is non-compact; also, the natural measure 
on X, namely m = θ ∧ dθ, has infinite volume on X. Let L2(m) be the space of L2

functions on X with respect to m. Even if we extend �b to be a closed linear operator 
on L2(m) → L2(m), in general the extended �b may not have closed range in L2(m). 
Thus the classical methods of solving �b fail in our situation.

We thus proceed by introducing a weighted L2 space, and a weighted Kohn Laplacian. 
Let

m1 := G−2
p θ ∧ dθ.

We define L2(m1) to be the space of L2 functions on X with respect to the inner product

(f |g)m1 :=
∫
X

fgm1,

and define L2
(0,1)(m1, θ̂) to be the space of L2 (0, 1) forms on X with respect to the inner 

product

(α|β)m1,θ̂
:=

∫
X

〈α|β〉θ̂ m1.

We extend the tangential Cauchy–Riemann operator so that

Dom∂b,1 := {u ∈ L2(m1): the distributional ∂b of u on X is in L2
(0,1)(m1, θ̂)},
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and define

∂b,1u := the distributional ∂b of u on X

if u ∈ Dom∂b,1. Then

∂b,1: Dom ∂b,1 ⊂ L2(m1) → L2
(0,1)(m1, θ̂),

is a densely defined closed linear operator. Let

∂∗
b,1: Dom ∂∗

b,1 ⊂ L2
(0,1)(m1, θ̂) → L2(m1)

be its adjoint. Let �b,1 denote the Gaffney extension of the singular Kohn Laplacian 
given by

Dom �b,1 =
{
s ∈ L2(m1): s ∈ Dom ∂b,1, ∂b,1s ∈ Dom ∂∗

b,1
}
,

and �b,1s = ∂∗
b,1∂b,1s for s ∈ Dom �b,1. By a result of Gaffney, �b,1 is a non-negative 

self-adjoint operator (see [19, Prop. 3.1.2]). We extend �b,1 to distributions on X by

�b,1 : D ′(X) → D ′(X),

(�b,1u | f)m1 = (u | �b,1f)m1 , u ∈ D ′(X), f ∈ C∞
0 (X).

This is well-defined, since if f is a test function on X, then so is �b,1f . One can show

�b,1u = G2
p�bu, ∀u ∈ D ′(X).

In fact, by duality, it suffices to check this for a test function u ∈ C∞
0 (X). If u is as such, 

then for any test function v ∈ C∞
0 (X),

(�b,1u | v)m1 = (∂b,1u | ∂b,1v)m1,θ̂

= (∂bu | ∂bv)m1,θ̂

= (∂bu |G−2
p ∂bv)m,θ̂

= (∂bu | ∂bv)m,θ

= (�bu | v)m
= (G2

p�bu | v)m1 ,

and the desired equality follows.
Thus solving �b is essentially the same as solving for �b,1, and it is the latter that 

forms the heart of our paper.
The key here is then three-fold, as is represented by the next three theorems. First 

we will show that
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Theorem 1.3. �b,1: Dom �b,1 ⊂ L2(m1) → L2(m1) has closed range in L2(m1).

Once this is shown, we have the following L2 decomposition:

�b,1N + Π = I on L2(m1).

Here N : L2(m1) → Dom �b,1 is the partial inverse of �b,1 and Π : L2(m1) →
(Ran �b,1)⊥ is the orthogonal projection onto (Ran �b,1)⊥. We now need:

Theorem 1.4. For every 0 < δ < 2, Π and N can be extended continuously to

Π : E(ρ̂−2+δ) → E(ρ̂−2+δ),

N : E(ρ̂−2+δ) → E(ρ̂δ).

It then follows that

�b,1N + Π = I on E(ρ̂−2+δ),

for every 0 < δ < 2. Now, let F be as in Theorem 1.1. Put

f := G2
pF.

Then f ∈ E(ρ̂−1+δ), for every 0 < δ < 1. From Theorem 1.4, we know that Πf is 
well-defined; we will show that

Theorem 1.5.

Πf = 0.

It then follows that u := Nf satisfies

u ∈ E(ρ̂1+δ), �b,1u = f = G2
pF.

From the relation between �b,1 and �b, we obtain the desired conclusion in Theorem 1.1.

1.4. Outline of proofs

To prove the theorems in the previous subsection, we need to introduce two other 
Kohn Laplacians, which we denote by �̂b and �̃b, as follows.

First, �̂b is the natural Kohn Laplacian on (X̂, T 1,0X̂, θ̂). There we have the natural 
measure

m̂ := θ̂ ∧ dθ̂.
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One can then define L2(m̂) to be the space of L2 functions on X̂ with respect to the 
inner product

(f |g)m̂ :=
∫
X̂

fg m̂,

and define L2
(0,1)(m̂, θ̂) to be the space of L2 (0, 1) forms on X̂ with respect to the inner 

product

(α|β)m̂,θ̂ :=
∫
X̂

〈α|β〉θ̂ m̂.

We extend the tangential Cauchy–Riemann operator so that

Dom∂̂b := {u ∈ L2(m̂): the distributional ∂b of u on X̂ is in L2
(0,1)(m̂, θ̂)},

and define

∂̂bu := the distributional ∂b of u on X̂

if u ∈ Dom∂̂b. Then

∂̂b: Dom ∂̂b ⊂ L2(m̂) → L2
(0,1)(m̂, θ̂)

is a densely defined closed linear operator. Let

∂̂
∗
b : Dom ∂̂

∗
b ⊂ L2

(0,1)(m̂, θ̂) → L2(m̂)

be its adjoint. Let �̂b denote the Gaffney extension of the Kohn Laplacian given by

Dom �̂b = {s ∈ L2(m̂): s ∈ Dom ∂̂b, ∂̂bs ∈ Dom ∂̂
∗
b},

�̂bs = ∂̂
∗
b ∂̂bs for s ∈ Dom �̂b.

It is then a non-negative self-adjoint operator on L2(m̂) (see e.g. [19, Prop. 3.1.2]). 
The analysis of this �̂b is very well-understood; see work of Kohn [16,17], Boas–Shaw 
[2], Christ [6,7] and Fefferman–Kohn [9] in the CR embeddable case, and work of Kohn–
Rossi [18], Folland–Stein [10], Rothschild–Stein [26], Greiner–Stein [11], Nagel–Stein [22], 
Fefferman [8], Boutet de Monvel–Sjöstrand [3], Nagel–Stein–Wainger [23], Nagel–Rosay–
Stein–Wainger [24,25] and Machedon [20,21] for some earlier work or related results. 
On the other hand, it is not very straightforward to reduce the analysis of �b,1 to the 
analysis of this �̂b; we go through an intermediate Kohn Laplacian, which we denote 
by �̃b.
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To introduce �̃b, first we need to construct a special CR function ψ on X̂, such that 
∂bψ = 0 on X̂, ψ 
= 0 on X, and near p, we have

ψ(z, t) = 2π(|z|2 + it) + error,

where the error vanishes like ρ̂4 near p. (The precise construction is given in Section 4.) 
One can then define the following volume form on X̂:

m̃ := G2
p|ψ|2θ̂ ∧ dθ̂.

Note that X̂ has finite volume with respect to this volume form, since G2
p|ψ|2 is bounded 

near p. However, this volume form does not have a smooth density against m̂; this is 
one of the biggest sources of difficulties in what we do below. The key turns out to be 
the following: the asymptotics (1.5) we assumed of Gp allows us to obtain some crucial 
asymptotics of the density of m̃ against m̂ near p. This in turn implies a crucial relation 
between the �̃b we will introduce, and the �̂b we defined above (see (1.9) below).

Now let L2(m̃) be the space of L2 functions on X̂ with respect to the inner product

(f |g)m̃ :=
∫
X̂

fg m̃,

and define L2
(0,1)(m̃, θ̂) to be the space of L2 (0, 1) forms on X̂ with respect to the inner 

product

(α|β)m̃,θ̂ :=
∫
X̂

〈α|β〉θ̂ m̃.

We extend the tangential Cauchy–Riemann operator so that

Dom∂̃b := {u ∈ L2(m̃): the distributional ∂b of u on X is in L2
(0,1)(m̃, θ̂)},

and define

∂̃bu := the distributional ∂b of u on X

if u ∈ Dom∂̃b. Then

∂̃b: Dom ∂̃b ⊂ L2(m̃) → L2
(0,1)(m̃, θ̂)

is a densely defined closed linear operator. Let

∂̃
∗
b : Dom ∂̃

∗
b ⊂ L2

(0,1)(m̃, θ̂) → L2(m̃)
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be its adjoint. Let �̃b denote the Gaffney extension of the Kohn Laplacian given by

Dom �̃b = {s ∈ L2(m̃): s ∈ Dom ∂̃b, ∂̃bs ∈ Dom ∂̃
∗
b},

�̃bs = ∂̃
∗
b ∂̃bs for s ∈ Dom �̃b.

It is then a non-negative self-adjoint operator on L2(m̃). The analysis of �̃b is not as 
well-understood, since this Kohn Laplacian (in particular, the operator ∂̃

∗
b) is defined 

with respect to a non-smooth measure m̃. Nonetheless, it is this Kohn Laplacian that 
can be related to our operator of interest, namely �b,1, in a simple manner. We will 
prove that since m̃ = |ψ|2m1,

u ∈ Dom �b,1 if and only if u
ψ ∈ Dom �̃b, (1.6)

�b,1u = ψ�̃b(ψ−1u), ∀u ∈ Dom �b,1. (1.7)

Thus we can understand the solutions of �b,1, once we understand the solutions of �̃b. 
In order to carry out the latter, we relate �̃b to �̂b: we will show that

Dom �̃b = Dom �̂b, (1.8)

and there exists some g ∈ E(ρ̂1, T 0,1X̂) (possibly non-smooth at p) such that

�̃bu = �̂bu + g∂̂bu, ∀u ∈ Dom �̃b. (1.9)

(Here g∂̂bu is the pointwise pairing of the (0, 1) vector g with the (0, 1) form ∂̂bu; see 
the discussion in Section 1.5 for the precise meaning of E(ρ̂1, T 0,1X̂).)

We can now outline the proofs of Theorems 1.3, 1.4 and 1.5.
First, from (1.6) and (1.7), it is clear that �b,1 has closed range in L2(m1), if 

and only if �̃b has closed range in L2(m̃). On the other hand, one can check that 
∂̃b: Dom ∂̃b ⊂ L2(m̃) → L2

(0,1)(m̃, θ̂) is the identical as an operator to ∂̂b: Dom ∂̂b ⊂
L2(m̂) → L2

(0,1)(m̂, θ̂). The latter is known to have closed range in L2(m̂) by the CR 

embeddability of X̂; see [17] (also [4]). Hence the same holds for the former, and it follows 
that �̃b has closed range in L2(m̃). This proves Theorem 1.3.

Now from the above argument, we see that not only �̃b has closed range in L2(m̃), 
but also �̂b has closed range in L2(m̂). Thus there exist partial inverses

Ñ :L2(m̃) → Dom(�̃b) ⊂ L2(m̃),

and

N̂ :L2(m̂) → Dom(�̂b) ⊂ L2(m̂)
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to �̃b and �̂b respectively, so that if

Π̃:L2(m̃) → L2(m̃)

is the orthogonal projection onto the kernel of �̃b in L2(m̃), and

Π̂:L2(m̂) → L2(m̂)

is the orthogonal projection onto the kernel of �̂b in L2(m̂), then

�̃bÑ + Π̃ = I on L2(m̃),

and

�̂bN̂ + Π̂ = I on L2(m̂).

From the relation

m1 = |ψ|−2m̃

and (1.7), it is easy to see that

Π = ψΠ̃ψ−1 and N = ψÑψ−1, (1.10)

at least when applied to functions in L2(m1); thus to prove Theorem 1.4, it suffices to 
prove instead that Π̃ and Ñ extend as continuous operators

Π̃: E(ρ̂−4+δ) → E(ρ̂−4+δ) (1.11)

Ñ : E(ρ̂−4+δ) → E(ρ̂−2+δ) (1.12)

for every 0 < δ < 2. In order to do so, we relate Π̃ to Π̂, and Ñ to N̂ , since Π̂ and N̂ are 
much better understood. We will show, on L2(m̃), that

Π̃(I + R̂) = Π̂ (1.13)

Ñ(I + R̂) = (I − Π̃)N̂ , (1.14)

where

R̂ := g∂̂bN̂ :L2(m̃) → L2(m̃)

is a continuous linear operator; in fact, these identities are almost immediate from (1.8)
and (1.9). Furthermore, one can show that N̂ and Π̂ extend as continuous operators
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Π̂: E(ρ̂−4+δ) → E(ρ̂−4+δ) (1.15)

N̂ : E(ρ̂−4+δ) → E(ρ̂−2+δ) (1.16)

for every 0 < δ < 2; thus if one can show that (I + R̂) is invertible on L2(m̃), and that 
the inverse extends to a continuous operator E(ρ̂−4+δ) → E(ρ̂−4+δ), then from (1.13), 
at least one can conclude the assertion about Π̃ in Theorem 1.4. It turns out that it is 
unclear whether or not the latter can be done; so we choose to proceed differently, by 
some bootstrap argument. It is this argument that we explain below.

First, so far Π̃ and Ñ are defined only on L2(m̃). Since E(ρ̂−4+δ) is not a subset of 
L2(m̃) when 0 < δ < 2, we need to first extend Π̃ and Ñ to E(ρ̂−4+δ), 0 < δ < 2. This 
is done by rewriting (1.13) and (1.14) as

Π̃ = Π̂ − Π̃R̂, Ñ = (I − Π̃)N̂ − ÑR̂. (1.17)

Note that R̂ extends to a continuous operator

R̂: E(ρ̂−4+δ) → E(ρ̂−2+δ) ⊂ L2(m̃)

for every 0 < δ < 2, since R̂ = g∂̂bN̂ , and N̂ satisfies the analogous property. Thus the 
second term on the right hand sides of the equations in (1.17) map E(ρ̂−4+δ) continuously 
to L2(m̃). It follows that the domains of definition of Π̃ and Ñ can be extended to 
E(ρ̂−4+δ), 0 < δ < 2.

To proceed further, let’s write Π̂∗,m̃, N̂∗,m̃ and R̂∗,m̃ for the adjoints of Π̂, N̂ and R̂
with respect to the inner product of L2(m̃). Since Π̃ and Ñ are self-adjoint operators on 
L2(m̃), we have, by (1.13) and (1.14), that

(I + R̂∗,m̃)Π̃ = Π̂∗,m̃ (1.18)

(I + R̂∗,m̃)Ñ = N̂∗,m̃(I − Π̃) (1.19)

on L2(m̃). Now we need to understand some mapping properties of Π̂∗,m̃, N̂∗,m̃ and 
R̂∗,m̃; to do so, we note that

Π̂∗,m̃ = m̂

m̃
Π̂m̃

m̂
,

N̂∗,m̃ = m̂

m̃
N̂

m̃

m̂
,

R̂∗,m̃ = m̂

m̃
N̂ ∂̂

∗
b(g∗

m̃

m̂
),

where m̃/m̂ := G2
p|ψ|2 is the density of m̃ with respect to m̂, and similarly m̂/m̃ :=

G−2
p |ψ|−2. Here g∗ is the (0, 1) form dual to g. Note that m̃/m̂, m̂/m̃ ∈ E(ρ̂0). Hence 

one can show that
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Π̂∗,m̃: E(ρ̂−4+δ) → E(ρ̂−4+δ) (1.20)

N̂∗,m̃: E(ρ̂−4+δ) → E(ρ̂−2+δ) (1.21)

R̂∗,m̃: E(ρ̂−4+δ) → E(ρ̂−2+δ) (1.22)

for every 0 < δ < 2; these are easy consequences of the analogous properties of Π̂, 
N̂ and R̂. It then follows that (1.18) and (1.19) continue to hold on E(ρ̂−4+δ) for all 
0 < δ < 2.

Now we return to (1.18) and (1.19). The problem facing us there is that we do not 
know whether I + R̂∗,m̃ is invertible on E(ρ̂−4+δ); if it is, then we can conclude, say from 
(1.18), that at least Π̃ satisfies the conclusion of Theorem 1.4. In order to get around this 
problem, we have to proceed differently; the trick here is to introduce a suitable cut-off 
function, as follows.

Let χ be a smooth function on X̂, such that χ is identically 1 in a neighborhood of p, 
and vanishes outside a small neighborhood of p. Then by (1.18) and (1.19), we have

(I + R̂∗,m̃χ)Π̃ = Π̂∗,m̃ − R̂∗,m̃(1 − χ)Π̃, (1.23)

(I + R̂∗,m̃χ)Ñ = N̂∗,m̃(I − Π̃) − R̂∗,m̃(1 − χ)Ñ (1.24)

on E(ρ̂−4+δ) for all 0 < δ < 2. The upshot here is the following: if the support of χ is 
sufficiently small, then (I + R̂∗,m̃χ) is invertible on L2(m̃), and extends to a linear map

(I + R̂∗,m̃χ)−1: E(ρ̂−4+δ) → E(ρ̂−4+δ) (1.25)

for every 0 < δ < 4. Roughly speaking, this is possible, because

I + R̂∗,m̃χ = I + m̂

m̃
N̂ ∂̂

∗
b(χg∗

m̃

m̂
),

and because

χg∗ ∈ E(ρ̂1,Λ0,1T ∗X̂)

has compact support in a sufficiently small neighborhood of p. (In particular, χg∗ is 
small.) Furthermore, for any 0 < δ < 2, one can show that

(1 − χ)Π̃: E(ρ̂−4+δ) → C∞
0 (X) (1.26)

(1 − χ)Ñ : E(ρ̂−4+δ) → C∞
0 (X) (1.27)

where C∞
0 (X) is the space of all smooth functions on X that has compact support 

in X. These can be used to control the last term on the right hand side of (1.23) and 
(1.24). By (1.20) and (1.22), one then concludes that the right hand side of (1.23) maps 
E(ρ̂−4+δ) into itself for 0 < δ < 2; thus (1.25) shows that (1.11) holds as desired. This 
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in turn controls the first term of (1.24); by (1.21), (1.22) and (1.27), one concludes that 
the right hand side of (1.24) maps E(ρ̂−4+δ) into E(ρ̂−2+δ) for 0 < δ < 2. Finally, 
another application of (1.25) shows that Ñ satisfies (1.12) as desired. Thus Theorem 1.4
is established, modulo (1.25), (1.26) and (1.27).

It may help to reiterate here the reason for the introduction of the cut-off χ: that 
was introduced so that one can invert I + R̂∗,m̃χ. In fact, since the coefficient of 
g∗ ∈ E(ρ̂1, Λ0,1T ∗X̂), χg∗ has sufficiently small L∞ norm, if the support of χ is chosen 
sufficiently small. As a result, one could make ‖R̂∗,m̃χ‖L2(m̃)→L2(m̃) ≤ 1/2, by control-
ling the support of χ. This allows one to invert I + R̂∗,m̃χ on L2(m̃) via a Neumann 
series. We note in passing that it is only because we have taken the adjoint of R̂ that the 
product χg∗ appears in the expression for I + R̂∗,m̃χ; that is essentially why we want to 
take the adjoints of (1.13) and (1.14). One can then proceed to extend (I + R̂∗,m̃χ)−1

so that it satisfies (1.25); the precise detail is rather involved, and we leave this until 
Section 3.

It then remains to prove (1.26) and (1.27). To do so, we need yet to introduce yet 
another Kohn Laplacian, namely �̂b,ε. Let η ∈ C∞

0 (R3) be a non-negative function such 
that η(z, t) = 1 if ρ̂(z, t) ≤ 1/2, and η(z, t) = 0 if ρ̂(z, t) ≥ 1. For 0 < ε < 1, let 
ηε(z, t) = η(ε−1z, ε−2t), and let

m̂ε := ηεm̂ + (1 − ηε)m̃.

This volume form has a smooth density against m̂, and the volume of X̂ with respect to 
this volume form is finite. So if we extend the Cauchy–Riemann operator such that

Dom∂̂b,ε := {u ∈ L2(m̂ε): the distributional ∂b of u is in L2
(0,1)(m̂ε, θ̂)},

and define

∂̂b,εu := the distributional ∂b of u

if u ∈ Dom∂̂b,ε, then

∂̂b,ε: Dom ∂̂b,ε ⊂ L2(m̂ε) → L2
(0,1)(m̂ε, θ̂)

is a densely defined closed linear operator. Let

∂̂
∗
b,ε: Dom ∂̂

∗
b,ε ⊂ L2

(0,1)(m̂ε, θ̂) → L2(m̂ε)

be its adjoint. Let �̂b,ε be the Gaffney extension of the Kohn Laplacian ∂̂
∗
b,ε∂̂b,ε. Then 

�̂b,ε is almost as well-behaved as �̂b. In particular, �̂b,ε: Dom �̂b,ε ⊂ L2(m̂ε) → L2(m̂ε)
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has closed range in L2(m̂ε), and if Π̂ε denotes the orthogonal projection of L2(m̂ε) onto 
the kernel of �̂b,ε, and N̂ε: L2(m̂ε) → L2(m̂ε) is the partial inverse of �̂b,ε, then

�̂b,εN̂ε + Π̂ε = I.

Furthermore,

Dom �̃b = Dom �̂b,ε,

and there will exist some gε ∈ E(ρ̂1, T 0,1X̂) (possibly non-smooth near p) such that

�̃bu = �̂b,εu + gε∂̂bu, ∀u ∈ Dom �̃b. (1.28)

The upshot here is that gε will be compactly supported in the support of ηε, whereas our 
previous g may not be compactly supported near p. One can repeat the proof of (1.18)
and (1.19), and show that

(I + R̂∗,m̃
ε )Π̃ = Π̂∗,m̃

ε

(I + R̂∗,m̃
ε )Ñ = N̂∗,m̃

ε (I − Π̃)

on L2(m̃), where

R̂ε := gε∂̂b,εN̂ε.

It follows that

(1 − χ)Π̃ = (1 − χ)Π̂∗,m̃
ε − (1 − χ)R̂∗,m̃

ε Π̃, (1.29)

(1 − χ)Ñ = (1 − χ)N̂∗,m̃
ε (I − Π̃) − (1 − χ)R̂∗,m̃

ε Ñ . (1.30)

Now

(1 − χ)R̂∗,m̃
ε = m̂ε

m̃
(1 − χ)N̂ε∂̂

∗
b,εg

∗
ε

m̃

m̂ε
,

and if ε is chosen sufficiently small (so that the support of gε is disjoint from that of 
1 − χ), then (1 − χ)N̂ε∂̂

∗
b,εg

∗
ε is an infinitely smoothing pseudodifferential operator, by 

pseudolocality of N̂ε. Hence the last term of (1.29), and also the last term of (1.30), map 
E(ρ̂−4+δ) into C∞

0 (X). Since for every 0 < ε < 1 and every 0 < δ < 2,

Π̂∗,m
ε : E(ρ̂−4+δ) → E(ρ̂−4+δ),

and

N̂∗,m
ε : E(ρ̂−4+δ) → E(ρ̂−2+δ),
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it follows that (1 − χ)Π̃ and (1 − χ)Ñ satisfy (1.26) and (1.27), and we are done with 
the proof of Theorem 1.4.

Finally, to prove Theorem 1.5, the key is the following fact, which we prove in 
Lemma 9.1: if α is a (0, 1) form with coefficients in E(ρ̂0), then ∂∗

b,1α ∈ E(ρ̂−1) sat-
isfies Π∂∗

b,1α = 0. To compute Πf = Π�b,1β̃ = Π∂∗
b,1(∂b,1β̃), we will then decompose 

∂b,1β̃ into a sum

∂b,1β̃ = α0 + E,

where the main term α0 has coefficients in E(ρ̂−2), and the error E has coefficients in 
E(ρ̂0). Then by Lemma 9.1, Π∂∗

b,1E = 0. Furthermore, we will construct by hand an 
explicit family of (0, 1) forms αε, with coefficients in E(ρ̂0), such that

∂∗
b,1αε → ∂∗

b,1α0 in E(ρ̂−1) as ε → 0.

Thus by continuity of Π on E(ρ̂−1), we have Π∂∗
b,1α0 = limε→0 Π∂∗

b,1αε = 0 as well, the 
last equality following from Lemma 9.1. Together we get Πf = 0, as desired.

1.5. Definitions and notations

We shall now recall some basic definitions, and introduce some basic notations.
A 3-dimensional smooth manifold X is said to be a CR manifold, if there exists a 

1-dimensional subbundle L of the complexified tangent bundle CTX such that L ∩ L =
{0}; such subbundle L is then denoted as T 1,0X, and L denoted as T 0,1X. The dual 
bundles to T 1,0X and T 0,1X will be denoted by Λ1,0T ∗X and Λ0,1T ∗X respectively. 
A typical example is a 3-dimensional smooth submanifold X of CN ; there one has a 
natural CR structure induced from CN , given by the bundle of all (1, 0) vectors in CN

that are tangent to X.
A 3-dimensional CR manifold X is said to be strongly pseudoconvex, if at every 

point on X there exists a local section Z of T 1,0X such that [Z,Z] is transverse to 
T 1,0X⊕T 0,1X. It is said to be CR embeddable in CN , if there exists a smooth embedding 
Φ: X → Φ(X) ⊂ CN , such that dΦ(T 1,0X) agrees with the natural CR structure of Φ(X)
induced from CN .

We shall write C∞(X) for the space of smooth functions on X, and Ω0,1(X) for the 
space of smooth sections of Λ0,1T ∗X. We shall also write C∞

0 (X) and Ω0,1
0 (X) for the 

subspaces of C∞(X) and Ω0,1(X) which consist of elements that have compact support 
in X.

Suppose X is a 3-dimensional CR manifold. If there exists a real contact form θ (i.e. 
a global real 1-form θ with θ ∧ dθ 
= 0 everywhere) such that T 1,0X ⊕ T 0,1X is given by 
the kernel of θ, then (X, T 1,0X, θ) is called a pseudohermitian 3-manifold. In that case, 
X is strongly pseudoconvex, and one can define a Hermitian inner product on T 1,0X, by

〈Z1|Z2〉θ := 1
dθ(Z1, iZ2).
2
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This allows one to define various geometric quantities on X, like the connection form ω1
1 , 

and the Tanaka–Webster scalar curvature R. One can also define the sublaplacian Δb, 
the conformal sublaplacian Lb := −4Δb + R, and the CR Paneitz operator P . We refer 
the reader to say [5] for the precise definitions of such.

We note that the above Hermitian inner product on T 1,0X induces naturally a Her-
mitian inner product on Λ0,1T ∗X, which we still denote by 〈·|·〉θ. For α ∈ Ω0,1X, we 
write |α|2θ := 〈α|α〉θ.

In what follows, we will need the Reeb vector field T on a contact manifold (X, θ), 
which is the unique vector field such that

θ(T ) ≡ 1, dθ(T, ·) ≡ 0.

If ρ̂ is a non-negative smooth function defined near a point p, then we write ε(ρ̂k) for 
the set of smooth functions f ∈ C∞(X̂) such that |f | ≤ Cρ̂k near p for some C > 0.

Suppose now (X̂, T 1,0X̂, θ̂0) is a pseudohermitian 3-manifold, and we fix p ∈ X̂. Then 
as is known, there exists another contact form θ̂ on X̂, which is a multiple of θ̂0 by a 
positive smooth function, so that near p, there exist CR normal coordinates (z, t). In 
other words, the contact form θ̂ and the coordinates (z, t) are chosen, so that

(i) the point p corresponds to (z, t) = (0, 0);
(ii) one can find a local section Ẑ1 of T 1,0X̂ near p, with 〈Ẑ1|Ẑ1〉θ̂ = 1, such that Ẑ1

admits the following expansion near p:

Ẑ1 = ∂

∂z
− iz

∂

∂t
+ ε(ρ̂4) ∂

∂z
+ ε(ρ̂4) ∂

∂z
+ ε(ρ̂5) ∂

∂t
; (1.31)

(iii) the Reeb vector field T̂ with respect to θ̂ admits an expansion

T̂ = ∂

∂t
+ ε(ρ̂3) ∂

∂z
+ ε(ρ̂3) ∂

∂z
+ ε(ρ̂4) ∂

∂t
. (1.32)

Here

ρ̂(z, t) = (|z|4 + t2) 1
4

for (z, t) in a neighborhood of (0, 0). For later convenience, from now on we will fix a 

positive smooth extension of ρ̂ to the whole manifold X. We will also write Ẑ1̄ := Ẑ1. 
Note that in CR normal coordinates we have

θ̂ = dt− i(zdz − zdz) + ε(ρ̂5)dz + ε(ρ̂5)dz + ε(ρ̂4)dt. (1.33)

Next, for m ∈ R, we will introduce a Fréchet space E(ρ̂m), with which our results 
are formulated. We pause and introduce some notations first. Let k ∈ N. We denote by 
∇̂k

b any differential operator of the form L1 . . . Lk, where Lj ∈ C∞(X̂, T 1,0X̂ ⊕ T 0,1X̂), 
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〈 Lj | Lj 〉θ̂ ≤ 1, j = 1, . . . , k. Let O(ρ̂m) = O(0)(ρ̂m), m ∈ R, denote the set of all 
f ∈ C∞(X) such that |f | ≤ Cρ̂m near p, for some C > 0. Let O(1)(ρ̂m) denote the set 
of all functions f ∈ O(ρ̂m) such that ∇̂bf ∈ O(ρ̂m−1). Similarly, for k ∈ N, k ≥ 2, let 
O(k)(ρ̂m) denote the set of all functions f ∈ O(ρ̂m) such that ∇̂bf ∈ O(k−1)(ρ̂m−1). Put

E(ρ̂m) =
⋂

k∈N
⋃
{0}

O(k)(ρ̂m). (1.34)

Let Ω ⊂ X̂ be an open set. For f ∈ C∞(Ω), define

‖f‖L∞(Ω) := sup
x∈Ω

|f(x)| .

E(ρ̂m) is a Fréchet space with the semi-norms:

u →
∥∥∥∇̂k

b (ρ̂−m+ku)
∥∥∥
L∞(X)

, u ∈ E(ρ̂m), (1.35)

for k ∈ N0. These semi-norms then define the topology of E(ρ̂m).
There is a version of this space for smooth vector bundles over X. Let E be a smooth 

vector bundle over X̂ of rank r. Let f1, . . . , fr be any local frame in some small neigh-
borhood U of p. For m ∈ R, let E(ρ̂m, E) be the set of all u ∈ C∞(X, E) such that 
u = u1f1+· · ·+urfr on U , and χuj ∈ E(ρ̂m) for every χ ∈ C∞

0 (U) and every j = 1, . . . , r.
Note that E(ρ̂m) ⊂ E(ρ̂m′) if m′ < m. We also notice that for every m ∈ R, C∞

0 (X)
is dense in E(ρ̂m) for the topology of E(ρ̂m′), for every m′ < m. Similarly for E(ρ̂m, E)
for any smooth vector bundle E.

Distributions on X̂ will be denoted by D′(X̂).
Finally, suppose T : Dom(T ) ⊂ H1 → H2 is a densely defined closed linear operator 

between two Hilbert spaces H1 and H2, and suppose the range of T is closed in H2. 
Then the partial inverse of T is the unique linear operator S: H2 → H1, such that if 
Π1: H1 → H1 and Π2: H2 → H2 are the orthogonal projections onto the kernels of T and 
T ∗ respectively, then

TS + Π2 = I, SΠ2 = 0, and Π1S = 0.

(Here T ∗: Dom(T ∗) ⊂ H2 → H1 is the adjoint of T , which is also densely defined and 
closed; and I is the identity operator.) It follows that S: H2 → H1 is bounded, and

ST + Π1 = I on the domain of T.

As we saw in Section 1.4, the operators

∂̂b: Dom∂̂b ⊂ L2(m̂) → L2
(0,1)(m̂),

�̂b: Dom�̂b ⊂ L2(m̂) → L2(m̂),

�̃b: Dom�̃b ⊂ L2(m̃) → L2(m̃),
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and

�b,1: Dom�b,1 ⊂ L2(m1) → L2(m1)

all have closed ranges. (See Section 7 for more details.) Their partial inverses will be 
denoted by K̂, N̂ , Ñ and N respectively.

A piece of convention here: recall that K̂ is an operator that takes (0, 1) forms to 
functions. By identifying the space of (0, 1) forms locally with functions, we would some-
times like to think of K̂ as a map from functions to functions. To do so rigorously, 
we proceed as follows. At every point x ∈ X̂, there exists a non-isotropic ball B(x, rx)
such that T 0,1X̂ has a non-zero section on B(x, rx). The set {B(x, rx/2): x ∈ X̂} covers 
X̂; one can thus take a finite subcover that covers X̂. Denote this finite subcover by 
{B1, . . . , BN}, and the dual of a non-zero local section of T 0,1X̂ on 2Bi by ω̂i; here 2Bi

is the non-isotropic ball that has the same center as Bi, but twice the radius. We further 
normalize ω̂i so that 〈ω̂i|ω̂i〉θ̂ = 1 on 2Bi. One then has the following property: there is 
some r0 > 0 such that if B is a non-isotropic ball of radius < r0 on X̂ that intersects 
some of the Bi above, then ω̂i is defined and of norm 1 on B. By taking a partition of 
unity 

∑
ηi = 1 subordinate to the open cover {B1, . . . , BN}, we can define maps K̂i, 

1 ≤ i ≤ N , that map from functions to functions, by the following formula:

K̂iϕ := K̂(ηiϕω̂i). (1.36)

Then since K̂ =
∑

i K̂ηi, and ηiφ = ηi〈φ|ω̂i〉θ̂ω̂i for all (0, 1) forms φ, we have

K̂φ =
∑
i

K̂i[〈φ|ω̂i〉θ̂].

It will be slightly more convenient to consider properties of K̂i instead of K̂ at a number 
of places below. The result will always be independent (up to constants) of the choices 
of the cut-offs ηi, and of the choice of frames ω̂i.

The plan of the paper is as follows. In Section 2, we gather together some properties of 
the Szegö projection Π̂, as well as the partial inverse N̂ of the smooth Kohn Laplacian �̂b. 
In Section 3, we develop tools to establish the key mapping property (1.25), that involves 
the weighted space E(ρ̂−4+δ). In Section 4, we construct the CR function ψ that is 
crucial for us. Sections 5 and 6 clarify the relations between the various Kohn Laplacians. 
Sections 7 to 9 contain the proofs of Theorems 1.3 to 1.5, which implies Theorem 1.1
and Corollary 1.2 as we have explained above. Finally, in Appendix A, we establish 
some properties of the Green’s function of the conformal Laplacian Lb, which allows us 
to apply our results towards the study of the CR positive mass theorem as was laid out 
in [5]. In Appendix B, we prove a subelliptic estimate for �̂b, which should be known to 
the experts, but which has not appeared explicitly in literature.
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2. Some properties of the smooth Kohn Laplacian �̂b

We collect in this section some results from subelliptic analysis and several complex 
variables. The key is to introduce a class of non-isotropic smoothing operators on our 
pseudohermitian manifold X̂, and show that the Szegö projection Π̂, as well as the partial 
inverse N̂ of �̂b, are examples of such; we will deduce, as a result, mapping properties of 
Π̂ and N̂ with respect to the weighted spaces E(ρ̂δ). Many of these are known; we refer 
the reader to Nagel, Stein and Wainger [23], Kohn [16], Christ [6,7], Nagel, Rosay, Stein 
and Wainger [25], Koenig [15] and the references therein for further details.

First, we recall the Carnot–Caratheodory metric on our CR manifold X̂. For δ > 0, 
let C(δ) be the class of all absolutely continuous mappings ϕ: [0, 1] → X̂ such that for 
a.e. t,

ϕ′(t) = a1(t)X1(ϕ(t)) + a2(t)X2(ϕ(t)), |aj(t)| < δ, j = 1, 2.

Here X1 and X2 are the real and imaginary parts of Ẑ1 respectively. The Carnot–
Caratheodory metric on X̂ is then defined by

ϑ(x, y) = inf{δ > 0: there exists ϕ ∈ C(δ) such that ϕ(0) = x, ϕ(1) = y}

for x, y ∈ X̂. From Theorem 4 of [23], coupled with the representations (1.31) and (1.32)
of Ẑ1 and T̂ in CR normal coordinates, it is easy to show that for points x sufficiently 
close to p, we have

ϑ(x, p) � ρ̂(x).

(See also Theorem 3.5 and Remark 3.3 of Jean [14].) We write B(x, r) for the non-
isotropic ball {y ∈ X̂: ϑ(x, y) < r} of radius r centered at x.

Next, we proceed to define on X̂ a class of (non-isotropic) smoothing operators of 
order j. For our purposes, it suffices to restrict our attention to the case when 0 ≤ j < 4.

Recall that a function φ on X̂ is said to be a normalized bump function on a ball 
B(x, r), if it is smooth with compact support on B(x, r), and satisfies∥∥∥∇̂k

bφ
∥∥∥
L∞(B(x,r))

≤ Ckr
−k (2.1)

for all k ≥ 0; here Ck > 0 are absolute constants independent of r.
Usually we only require the above derivative estimate to be satisfied for all 0 ≤ k ≤ N

for some large integer N . In that case, we say that φ is a normalized bump function of 
order N in B(x, r).

Suppose now T is a continuous linear operator T : C∞(X̂) → C∞(X̂), and its adjoint 
T ∗ (with respect to the inner product of L2(m̂)) is also a continuous map T ∗: C∞(X̂) →
C∞(X̂). We say that T is a smoothing operator of order j, 0 ≤ j < 4, if
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(a) there exists a kernel T (x, y), defined and smooth away from the diagonal in X̂ × X̂, 
such that

Tf(x) =
∫
X̂

T (x, y)f(y)m̂(y) (2.2)

for any f ∈ C∞(X̂), and every x not in the support of f ;
(b) the kernel T (x, y) satisfies the following differential inequalities when x 
= y:

|(∇̂b)α1
x (∇̂b)α2

y T (x, y)| �α ϑ(x, y)−4+j−|α|, |α| = |α1| + |α2|;

(c) the operators T and T ∗ satisfy the following cancellation conditions: if φ is a nor-
malized bump function in some ball B(x, r), then

‖∇̂α
b Tφ‖L∞(B(x,r)) �α rj−|α|,

and

‖∇̂α
b T

∗φ‖L∞(B(x,r)) �α rj−|α|.

It is then clear that T is smoothing of order j, if and only if T ∗ is smoothing of order j. 
We also have the following proposition:

Proposition 2.1. If T is a smoothing operator of order 0, then T is bounded on Lp(m̂)
for 1 < p < ∞.

Proof. The boundedness of T on L2(m̂) follows from a version of T (1) theorem. In fact, 
suppose f is a normalized bump function on a ball B(x0, r). If T is a smoothing operator 
of order 0, then by the cancellation condition on T ,

‖Tf‖L2(B(x0,2r)) � r2,

and by the kernel representation of T , when x /∈ B(x0, 2r),

|Tf(x)| �
∫

y∈B(x0,r)

|f(y)|
ϑ(x, y)4 m̂(y) � ϑ(x, x0)−4r4.

Hence ∫
|Tf(x)|2m̂(x) �

∫
ϑ(x, x0)−8r8m̂(x) � r4.
x/∈B(x0,2r) x/∈B(x0,2r)
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Altogether,

‖Tf‖L2(X̂) � r2;

similarly for ‖T ∗f‖L2(X̂). Hence both T and T ∗ are restrictedly bounded, and by the T (1)
theorem (see e.g. Chapter 7 of [27]), T is bounded on L2(m̂). By the Calderon–Zygmund 
theory of singular integrals, it then follows that such operators are bounded on Lp(m̂), 
1 < p < ∞. (See e.g. Chapter 1 of [27].) �

Next we have the following theorem:

Theorem 2.2. The Szegö projection Π̂, and the partial inverse N̂ of �̂b, are smoothing 
operators of orders 0 and 2 respectively. Furthermore, K̂ is smoothing of order 1, in the 
sense that the local representations K̂i defined by (1.36) are smoothing of order 1.

We defer its proof until the end of this section.
We will need two further key facts about this class of smoothing operators:

Theorem 2.3. If T1 and T2 are smoothing operators of orders j1 and j2 respectively, with 
j1, j2 ≥ 0 and j1 + j2 < 4, then T1 ◦ T2 is a smoothing operator of order j1 + j2.

Theorem 2.4. If T is a smoothing operator of order j, 0 ≤ j < 4, then T extends to a 
continuous linear map

T : E(ρ̂−γ) → E(ρ̂−γ+j),

as long as j < γ < 4.

In particular, in proving Theorem 2.2, it suffices to prove the statements for Π̂ and K̂, 
since the statement for N̂ follows from Theorem 2.3 and the well-known fact that

N̂ = K̂K̂∗.

Also, combining Theorems 2.2 and 2.4, Π̂ and N̂ extend to continuous linear maps

Π̂: E(ρ̂−4+δ) → E(ρ̂−4+δ), 0 < δ < 4,

N̂ : E(ρ̂−4+δ) → E(ρ̂−2+δ), 0 < δ < 2,

and (1.15), (1.16) follow.

Proof of Theorem 2.3. We will only need the case when T1 is smoothing of order 1, and 
T2 is smoothing of order 0 or 1. Thus we will focus on these cases.

Suppose first both T1 and T2 are smoothing of order 1. Then T := T1◦T2 is continuous 
on C∞(X̂), and so is T ∗. Furthermore, when f ∈ C∞(X̂), we have
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Tjf(x) =
∫
X̂

Tj(x, y)f(y)m̂(y), j = 1, 2

for all x not in the support of f . Using the cancellation conditions, one can show that this 
integral representation actually holds for all x ∈ X̂ (not just for all x outside the support 
of f ; cf. Chapter 1.7 of Stein [27]). This is typical of operators that are smoothing of 
positive orders.

As a result, by Fubini’s theorem, when f ∈ C∞(X̂), (2.2) holds for all x ∈ X̂, where

T (x, y) =
∫
X̂

T1(x, z)T2(z, y)m̂(z). (2.3)

Fix now x, y ∈ X̂, and let r = ϑ(x, y)/4. We pick normalized bump functions χ1, χ2 in 
B(x, r) and B(y, r) respectively, such that χ1 ≡ 1 on B(x, r/2), and χ2 ≡ 1 on B(y, r/2). 
Then inserting 1 = χ1(z) + χ2(z) + (1 − χ1 − χ2)(z) into the integral defining T (x, y), 
we have

T (x, y) = T (1)(x, y) + T (2)(x, y) + T (3)(x, y),

and we estimate these one by one.
First,

T (1)(x, y) =
∫
X̂

T1(x, z)χ1(z)T2(z, y)m̂(z).

We can differentiate under the integral, and obtain

(∇̂b)α2
y T (1)(x, y) = (T1f

(α2)
y )(x)

where

f (α2)
y (z) := χ1(z)(∇̂b)α2

y T2(z, y)

is r−3−|α2| times a normalized bump function in B(x, r). Thus by the cancellation con-
dition for T1, we obtain

|(∇̂b)α1
x (∇̂b)α2

y T (1)(x, y)| � r−3−|α2|r1−|α1| = r−2−|α|.

This proves the desired differential inequalities for T (1)(x, y). A similar argument, using 
the cancellation conditions for T ∗

2 instead, shows that

|(∇̂b)α1
x (∇̂b)α2

y T (2)(x, y)| � r−2−|α|.
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Finally, the integral defining T (3)(x, y) is supported for z outside the balls B(x, r/2)
and B(y, r/2). As a result, ϑ(x, z) � ϑ(y, z) for z in the support of the integral defining 
T (3)(x, y). One can now differentiate under the integral, and obtain

|(∇̂b)α1
x (∇̂b)α2

y T (3)(x, y)| �
∫

ϑ(x,z)>r/2

ϑ(x, z)−3−|α1|ϑ(x, z)−3−|α2|dz � r−2−|α|.

This proves the desired differential inequalities for T (x, y).
Next, to prove the cancellation conditions for T , suppose φ is a normalized bump 

function in a ball B(x0, r). Then we let χ be a normalized bump function supported in 
B(x0, 4r), that is identically 1 on B(x0, 3r), and write

Tφ = T1(χT2φ) + T1((1 − χ)T2φ).

Now by cancellation conditions for T2, one sees that r−1χT2φ is a normalized bump 
function on B(x0, 4r). Hence T1(χT2φ) obeys the desired bound, namely

‖∇̂α
b T1(χT2φ)‖L∞(B(x0,r)) �α r2−|α|.

Furthermore, for x ∈ B(x0, r),

∇̂α
b T1[(1 − χ)T2φ](x)

=
∫

z /∈B(x,3r)

(∇̂b)αxT1(x, z)(1 − χ)(z)T2φ(z)m̂(z)

=
∫

z /∈B(x,3r)

∫
y∈B(x,2r)

(∇̂b)αxT1(x, z)(1 − χ)(z)T2(z, y)φ(y)m̂(y)m̂(z).

Putting absolute values,

|∇̂α
b T1[(1 − χ)T2φ](x)|

≤
∫

z /∈B(x,3r)

∫
y∈B(x,2r)

ϑ(x, z)−3−|α|ϑ(z, y)−3m̂(y)m̂(z)

�
∫

z /∈B(x,3r)

∫
y∈B(x,2r)

ϑ(x, z)−6−|α|m̂(y)m̂(z)

� r2−|α|,

the second to last line following since ϑ(x, z) � ϑ(z, y) on the support of the integrals. 
This provides the desired bound for ‖(∇̂b)αTφ‖L∞(B(x,r)). A similar argument establishes 
the bound for ‖(∇̂b)αT ∗φ‖L∞(B(x,r)). This completes our proof when both T1 and T2 are 
smoothing of order 1.
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Finally, suppose T1 is smoothing of order 0, and T2 is smoothing of order 1. Then 
T := T1 ◦ T2 maps C∞(X̂) continuously into itself, and so does T ∗ = T ∗

2 ◦ T ∗
1 ; one 

can repeat the above argument to show that both T and T ∗ satisfy the cancellation 
conditions for an operator of order 1. Thus it remains to compute the kernel of T , and 
to establish differential inequalities for the kernel of T , to which we now turn.

For x, y ∈ X̂ with x 
= y, let r := ϑ(x, y)/4, and

T (x, y) := (T1ky)(x) where ky(z) := T2(z, y).

We first show that T (x, y) is smooth away from the diagonal, and that it satisfies the 
differential inequalities

|(∇̂b)α1
x (∇̂b)α2

y T (x, y)| � r−3−|α|.

To do so, fix x 
= y, and let χ1, χ2 be normalized bump functions in B(x, r) and B(y, r)
respectively, such that χ1 ≡ 1 on B(x, r/2), χ2 ≡ 1 on B(y, r/2). Then

T (x, y) = T1(χ1ky)(x) + T1(χ2ky)(x) +
∫
X̂

T1(x, z)(1 − χ1 − χ2)(z)T2(z, y)m̂(z).

The last term can be differentiated in both x and y under the integral, and the desired 
estimates follow. Thus it remains to consider the first two terms. But in the first term, 
by continuity of T on C∞(X̂), one can differentiate with respect to y, and obtain

(∇̂b)α2
y [T1(χ1ky)(x)] = T1[χ1(∇̂b)α2

y ky](x);

the latter is T1 acting on r−3−|α2| times a normalized bump function in B(x, r). Thus 
by cancellation condition on T1,

|(∇̂b)α1
x (∇̂b)α2

y [T1(χ1ky)(x)]| � r−3−|α|.

Similarly,

T1(χ2ky)(x) =
∫
X̂

T1(x, z)χ2(z)T2(z, y)m̂(z)

= T ∗
2[T1(x, ·)χ2(·)](y).

By continuity of T ∗
2 on C∞(X̂), one can differentiate with respect to x, and obtain

(∇̂b)α1
x [T1(χ2ky)(x)] = T ∗

2[(∇̂b)α1
x T1(x, ·)χ2(·)](y).
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The latter is T ∗
2 acting on an r−4−|α1| times a normalized bump function in B(y, r), so 

by cancellation condition on T ∗
2, we have

|(∇̂b)α1
x (∇̂b)α2

y [T1(χ2ky)(x)]| � r−3−|α|.

This proves our desired estimates.
It remains to show that T (x, y) is the kernel of the operator T , in the sense that (2.2)

holds for all f ∈ C∞(X̂) and all x not in the support of f . In fact, fix such an f , and 
a closed set K disjoint from the support of f . Let χ ∈ C∞(X̂) such that χ = 1 on a 
neighborhood of K, and χ = 0 on the support of f . Then for x ∈ K,

Tf(x) = T1(χT2f)(x) + T1((1 − χ)T2f)(x).

The second term is equal to∫
X̂

T1(x, z)(1 − χ)(z)T2f(z)m̂(z)

=
∫
X̂

⎛⎜⎝∫
X̂

T1(x, z)(1 − χ)(z)T2(z, y)m̂(z)

⎞⎟⎠ f(y)m̂(y),

the last equality following from Fubini’s theorem. We claim that for almost every x ∈ X̂, 
the first term is equal to ∫

X̂

T1(χky)(x)f(y)m̂(y), (2.4)

where ky(z) := T2(z, y); if this were true, then (2.2) holds for almost every x ∈ K. Since 
K is an arbitrary compact set disjoint from the support of f , (2.2) holds for almost every 
x not in the support of f . But then by continuity of T (x, y), and bounded convergence 
theorem, (2.2) holds for every x not in the support of f . Our theorem then follows.

To prove our claim, we approximate

χ(z)T2f(z) =
∫
X̂

χ(z)T2(z, y)f(y)m̂(y)

by Riemann sums; since T (z, y) is smooth away from the diagonal, and f is smooth, by 
uniform continuity, the Riemann sums converge uniformly to χT2f . By continuity of T in 
L2(m̂), we have T1 of the Riemann sums converging in L2 to T1(χT2f). Thus by passing 
to a subsequence, T1 of the Riemann sums converge almost everywhere to T1(χT2f). On 
the other hand, T1 of the Riemann sums is the Riemann sums of (2.4); by continuity of 
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T1(χky)(x) for (x, y) ∈ K × supp f , the Riemann sums of (2.4) converges uniformly to 
(2.4). This establishes our claim. �
Proof of Theorem 2.4. Suppose T is a smoothing operator of order j, 0 ≤ j < 4, and 
g ∈ E(ρ̂−γ), j < γ < 4. Fix k ∈ N0 and fix a point x0 
= p sufficiently close to p. Let 
r = 1

4ϑ(x0, p), and η be a normalized bump function supported in B(x0, r), with η = 1
on B(x0, r/2). Then,

|∇̂k
bTg(x0)| ≤ |∇̂k

bT (ηg)(x0)| + |∇̂k
bT ((1 − η)g)(x0)|

and rγ(ηg)(x) is a normalized bump function on B(x0, r). So by the cancellation condi-
tion for T , we see that

|∇̂k
bT (ηg)(x0)| ≤ Ckr

j−γ−k,

where Ck > 0 is a constant independent of x0 and r. By using the kernel estimates, 
∇̂k

bT ((1 − η)g)(x0) can be estimated by writing out the integrals directly:

∇̂k
bT ((1 − η)g)(x0) =

∫
(∇̂k

bT )(x0, y)(1 − η)(y)g(y)m̂(y),

which can be split into two pieces. The first is over where ϑ(y, p) ≤ r; this piece is 
dominated by

Dk

∫
ϑ(y,p)<r

r−4+j−kϑ(y, p)−γm̂(y) ≤ Dkr
j−γ−k,

where Dk > 0 is a constant independent of x0 and r. The second piece is over where 
ϑ(y, p) > r; note since we have cut off those y near x0 with 1 − η already, we can assume 
that ϑ(y, x0) > r/2 on this piece of integral as well. As a result, ϑ(x0, y) � ϑ(y, p); it 
follows that this piece is bounded by∫

ϑ(y,p)>r

ϑ(y, p)−4+j−kϑ(y, p)−γm̂(y) ≤ Ekr
j−γ−k,

where Ek > 0 is a constant independent of x0 and r. Altogether,

|∇̂k
bTg(x0)| ≤ C̃kr

j−γ−k

as desired, where C̃k > 0 is a constant independent of x0 and r. This completes our 
proof. �

We now turn to the proof of Theorem 2.2. The key is the following L2 estimate, which 
can be proved by microlocalization and integration by parts (see e.g. Kohn [16]). Suppose 
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Ẑ is a local section of T 0,1X̂ with 〈Ẑ|Ẑ〉θ̂ = 1 on some ball B(x, 2r) ⊂ X̂, and Ẑ
∗

be its 
formal adjoint under L2(m̂).

Proposition 2.5. If Ẑ
∗
v = u on B(x, 2r), where u, v ∈ C∞(X̂), then for every k ∈ N0, 

there is a constant Ck > 0 independent of r and x such that

‖∇̂k
bu‖L2(B(x,r))

≤ Ck(‖∇̂k−1
b Ẑu‖L2(B(x,2r)) + r−k‖u‖L2(B(x,2r)) + r−(k+1)‖v‖L2(B(x,2r))). (2.5)

Proposition 2.6. If Ẑv = u on B(x, 2r), where u, v ∈ C∞(X̂), then for every k ∈ N0, 
there is a constant Ck > 0 independent of r and x such that

‖∇̂k
bu‖L2(B(x,r))

≤ Ck(‖∇̂k−1
b Ẑ

∗
u‖L2(B(x,2r)) + r−k‖u‖L2(B(x,2r)) + r−(k+1)‖v‖L2(B(x,2r))). (2.6)

Here the L2 norms are taken using the norms of L2(m̂). Various variants and refine-
ments of these estimates are very well-known; however, we have not been able to locate a 
precise reference for these estimates. For completeness and the convenience of the reader, 
we present the proofs of these estimates in Appendices A and B.

Using these L2 estimates, one can prove that Π̂ and K̂ (more precisely, the local repre-
sentations K̂i’s defined by (1.36)) map C∞(X̂) continuously into C∞(X̂), and that their 
kernels satisfy differential inequalities of the correct order; cf. Christ [6,7]. In particular, 
if Π̂(x, y) and K̂i(x, y) denote the Schwartz kernels of Π̂ and K̂i respectively, then they 
are smooth away from the diagonal, and

|(∇̂b)α1
x (∇̂b)α2

y Π̂(x, y)| �α ϑ(x, y)−4−|α|,

|(∇̂b)α1
x (∇̂b)α2

y K̂i(x, y)| �α ϑ(x, y)−3−|α|.

It thus remains to prove cancellation conditions for Π̂ and K̂i. The proofs will be based 
on strategies similar to those used in the proofs of the above kernel estimates.

Let φ be a normalized bump function in B(x, r). We claim that

‖∇̂k
b Π̂φ‖L∞(B(x,r)) ≤ Ckr

−k. (2.7)

This will follow from the continuity of Π̂ on C∞(X̂) if r is sufficiently large. Therefore, 
without loss of generality, we assume that r < r0/2, where r0 is some small absolute 

constant, so that one can find a section Ẑ of T 1,0X̂ that does not vanish on B(x, 2r)
(cf. discussion before (1.36)). We further normalize Ẑ so that 〈Ẑ|Ẑ〉θ̂ = 1 on B(x, 2r). 
Now (2.7) is the same as showing ‖∇̂k

b (I − Π̂)φ‖L∞(B(x,r)) ≤ Ckr
−k. Let v be such that 

∂̂
∗
bv = (I − Π̂)φ, with v orthogonal to the kernel of ∂̂

∗
b . Then by (2.5), we have
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‖∇̂k
b (I − Π̂)φ‖L2(B(x,r))

≤ Ck(‖∇̂k−1
b Ẑφ‖L2(B(x,2r)) + r−k‖(I − Π̂)φ‖L2(B(x,2r)) + r−(k+1)‖〈v|ω̂〉θ̂‖L2(B(x,2r))),

where ω̂ is the dual (0, 1) form to Ẑ on B(x, 2r). The first term on the right hand side 
is bounded by

Ckr
−k|B(x, 2r)|1/2 = Ckr

2−k.

In the second term, we estimate ‖(I − Π̂)φ‖L2(B(x,2r)) trivially by ‖φ‖L2(X̂) ≤
C|B(x, r)|1/2 = Cr2 (recall φ is normalized in B(x, r)), so that the second term is 
bounded by Ckr

2−k as well. In the last term, we estimate using Poincaré-type inequality 
(see Corollary 11.5* of Christ [6]):

‖〈v|ω̂〉θ̂‖L2(B(x,2r)) ≤ Cr‖(I − Π̂)φ‖L2(X̂) ≤ Cr‖φ‖L2(X̂) ≤ Crr2.

Thus altogether,

‖∇̂k
b (I − Π̂)φ‖L2(B(x,r)) ≤ Ckr

2−k,

and since this holds for all k, by Sobolev embedding,

‖∇̂k
b (I − Π̂)φ‖L∞(B(x,r)) ≤ Ckr

−k

as desired. (2.7) follows, and since Π̂ is self-adjoint on L2(m̂), this completes the proof 
that Π̂ is smoothing of order 0.

Let now Π̂1: L2
(0,1)(m̂, θ̂) → L2

(0,1)(m̂, θ̂) be the Szegö projection on (0, 1) forms, i.e. 

the orthogonal projection onto the kernel of ∂̂
∗
b in L2

(0,1)(m̂, θ̂). Using the partition of 
unity given just before (1.36), we can define local representations of Π̂1, by letting

(Π̂1)ijϕ := 〈ηiΠ̂1(ηjϕω̂j)|ω̂i〉θ̂.

Then (Π̂1)ij sends functions to functions for all 1 ≤ i, j ≤ N , and

Π̂1φ =
∑
i,j

(
(Π̂1)ij [〈φ|ω̂j〉θ̂]

)
ω̂i

for any (0, 1) form φ on X̂. A proof similar to the above shows that Π̂1 is a smoothing 
operator of order 0, in the sense that the local representations (Π̂1)ij are all smoothing 
of order 0; for instance, to prove that (Π̂1)ij satisfies the desired cancellation conditions, 
if ϕ is a normalized bump function on a sufficiently small ball B(x, 2r) that intersects 
the support of ηi, one would apply Proposition 2.6 with Ẑ being the (0, 1) vector field 
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dual to ω̂i, u = ηjϕ〈ω̂j |ω̂i〉θ̂ −〈Π1(ηjϕω̂j)|ω̂i〉θ̂, and v being a function that solves ∂̂bv =
(I − Π̂1)(ηjϕω̂j). In fact then Ẑv = u on B(x, 2r). We omit the details.

Now, let ϕ be a normalized bump function in a ball B(x, r) that intersects the support 
of ηi, with r < r0/4 as before. We prove cancellation properties for K̂i and K̂∗

i , namely

‖∇̂k
b K̂iϕ‖L∞(B(x,r)) ≤ Ckr

1−k, (2.8)

and

‖∇̂k
b K̂

∗
i ϕ‖L∞(B(x,r)) ≤ Ckr

1−k. (2.9)

To prove the former, let

u = (I − Π̂)(ψK̂iϕ),

where ψ ≡ 1 on B(x, 2r), and ψ is a normalized bump function on B(x, 4r). We apply 

estimate (2.5) for this u. On B(x, 2r), ∂̂bu = (I − Π̂1)(ηiϕω̂i), since ψ is identically 1
there. In other words, writing Ẑ for the dual of ω̂i, we have

Ẑu = 〈(I − Π̂1)(ηiϕω̂i)|ω̂i〉θ̂ = ηiϕ−
∑
j

[(Π̂1)jiϕ]〈ω̂j |ω̂i〉θ̂

on B(x, 2r). So the first term on the right hand side of (2.5) is bounded by 
Cr1−k|B(x, 2r)|1/2 = Cr1−kr2, by the cancellation property of Π̂1 we just proved above. 
On the other hand, by Proposition B of Christ [7], since u is orthogonal to the kernel 
of ∂̂b,

‖u‖L2(B(x,2r)) ≤ Cr‖∂̂bu‖L2
(0,1)(X̂),

which implies

‖u‖L2(B(x,2r)) ≤ Cr
(
‖ψ(I − Π̂1)(ηiϕω̂i)‖L2

(0,1)(X̂) + ‖(∇̂bψ)K̂iϕ‖L2(X̂)

)
.

But the first term in the bracket is bounded by ‖ηiϕ‖L2(X̂) ≤ C|B(x, r)|1/2 = Cr2, and 

the second term is bounded by Cr2 by the kernel estimates on K̂i (note ϕ is supported on 
B(x, r), while ∇̂bψ is supported in an annulus B(x, 4r) \B(x, 2r)). This in turn implies

‖u‖L2(B(x,2r)) ≤ Crr2,

and the second term on the right hand side of (2.5) is bounded by Cr1−kr2. Finally, let 
v be such that ∂̂

∗
bv = u, so that Ẑ

∗
[〈v|ω̂i〉θ̂] = u on B(x, 2r). Then

‖〈v|ω̂i〉ˆ‖L2(B(x,2r)) ≤ Cr‖u‖L2(X̂) ≤ Cr‖ψK̂iϕ‖L2(X̂) ≤ Cr2‖ϕ‖L2(X̂) ≤ Cr2r2.
θ
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(The first and the fourth inequality are both applications of Proposition B of Christ [7]
again.) Thus altogether, ‖∇̂k

bu‖L2(B(x,r)) ≤ Ckr
1−kr2 for all k, and by Sobolev embed-

ding, this implies

‖∇̂k
bu‖L∞(B(x,r)) ≤ Ckr

1−k

for all k.
Remember we want the same estimate for K̂iϕ in place of u, so as to prove (2.8). 

But K̂iϕ − u can be computed on B(x, r) fairly easily. In fact, since K̂iϕ = K̂(ηiϕω̂i) is 
orthogonal to the kernel of ∂̂b, we have K̂iϕ = (I − Π̂)K̂iϕ. So

K̂iϕ− u = (I − Π̂)(1 − ψ)K̂iϕ.

Since ψ ≡ 1 on B(x, 2r), we have

K̂iϕ− u = −Π̂(1 − ψ)K̂iϕ on B(x, r).

It follows that for y ∈ B(x, r),

∇̂k
b (K̂iϕ− u)(y) = −

∞∑
j=1

∫
2jr≤ϑ(z,x)≤2j+1r

(∇̂b)kyΠ̂(y, z)(1 − ψ)(z)K̂iϕ(z)m̂(z),

so

‖∇̂k
b (K̂iϕ− u)‖L∞(B(x,r)) ≤ Ck

∞∑
j=1

(2jr)−2−k‖K̂iϕ‖L2(B(x,2j+1r))

≤ Ck

∞∑
j=1

(2jr)−2−k(2jr)‖∂̂bK̂iϕ‖L2(X̂).

(The last inequality is Proposition B of Christ [7].) By estimating the term ‖∂̂bK̂iϕ‖L2(X̂)

by ‖(I − Π̂1)(ηiϕω̂i)‖L2(X̂) ≤ ‖ϕ‖L2(X̂) ≤ Cr2, we get

‖∇̂k
b (K̂iϕ− u)‖L∞(B(x,r)) ≤ Ckr

−2−krr2 = Ckr
1−k.

By combining with the previous estimate on ∇̂k
bu, we get

‖∇̂k
b K̂iϕ‖L∞(B(x,r)) ≤ Ckr

1−k,

as desired. (2.8) follows then. A similar argument proves (2.9), since K̂∗ is the partial 
inverse of ∂̂

∗
b . This shows that K̂ and K̂∗ are smoothing of order 1, and it follows now 

that N̂ = K̂K̂∗ (more precisely, N̂ =
∑

i,j K̂i〈ω̂i|ω̂j〉θ̂K̂∗
j ) is smoothing of order 2. This 

completes the proof of Theorem 2.2.



768 C.-Y. Hsiao, P.-L. Yung / Advances in Mathematics 281 (2015) 734–822
We conclude this section by making the following useful observation: as was demon-
strated in Folland and Stein [10] (see Theorem 15.15 there), on X̂ one can construct 
some smoothing operators T0, T1 of orders 1, such that schematically,

I = T1∇̂b + T0.

Thus if A is a smoothing operator of order 1, then for any positive integers j, one can 
then find smoothing operators A0, A1, . . . , Aj of orders 1 such that

∇̂j
bA =

j∑
i=0

Ai∇̂i
b; (2.10)

in fact, e.g. when j = 1, one just needs to observe

∇̂bA = ∇̂bA(T1∇̂b + T0),

and the desired equality follows by letting Ai = ∇̂bATi, i = 0, 1. (Ai is smoothing of 
order 1 by Theorem 2.3 above.) The general case for (2.10) follows by induction on j. 
(2.10) can be thought of as a way of commuting derivatives past smoothing operators. 
In particular, if NLk,p denotes the non-isotropic Sobolev space, given by the set of all 
functions whose ∇̂j

b is in Lp(m̂) for j = 0, 1, 2, . . . , k, then (2.10) implies the first part of 
the following proposition:

Proposition 2.7.

(a) Any smoothing operator of order 1 maps NLk,p continuously into NLk+1,p, for all 
k ≥ 0 and all 1 < p < ∞.

(b) Any smoothing operator of order 1 maps L∞(m̂) continuously into L∞(m̂).

The last part of this proposition then follows from the case k = 0 of the first part 
by noting that L∞(m̂) embeds into Lp(m̂) for any p > 4, and that NL1,p embeds into 
L∞(m̂) by Sobolev embedding.

3. A key mapping property

3.1. The main theorem

In this section, we prove the following theorem, which allows one to establish the 
important mapping property (1.25) of (I + R̂∗,m̃χ)−1. We use the notion of smoothing 
operators of order j we introduced in the last section.

Theorem 3.1. Suppose A is a smoothing operator of order 1 on X̂, and h is a function in 
E(ρ̂1) supported in a sufficiently small neighborhood of p. We write h also for the operator 
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that is multiplication by h. Then the bounded linear operator I −Ah: L2(m̂) → L2(m̂) is 
invertible, and its inverse extends to a continuous linear map

(I −Ah)−1: E(ρ̂−4+δ) → E(ρ̂−4+δ)

for every 0 < δ < 4.

The key of the proof is the following:

Lemma 3.2. Suppose A and h are as in the above theorem. Then for any non-negative 
integer k, and any function u ∈ C∞(X) ∩ L∞(X̂), we have

‖ρ̂k∇̂k
b (Ah)k+1u‖L∞(m̂) �k ‖u‖L∞(m̂).

Assuming the lemma, we first prove Theorem 3.1.

Proof of Theorem 3.1. First, if A is smoothing of order 1, then since X̂ is compact, the 
kernel of A satisfies

sup
x∈X̂

∫
X̂

|A(x, y)|m̂(y) + sup
y∈X̂

∫
X̂

|A(x, y)|m̂(x) < ∞.

It follows that A is bounded on L2(m̂). If the support of h is a sufficiently small neigh-
borhood of p, then since h ∈ E(ρ̂1), one can make ‖h‖L∞ sufficiently small. Thus the 
norm of Ah, as a bounded linear operator on L2(m̂), can be made smaller than 1/2. This 
in turn allows one to invert I −Ah by a Neumann series: for u ∈ L2(m̂), one has

u + (Ah)u + (Ah)2u + (Ah)3u + . . .

converging to a limit v in L2(m̂), and (I − Ah)v = u. Thus (I − Ah) is invertible on 
L2(m̂), and its inverse is given by the Neumann series

(I −Ah)−1 = I + Ah + (Ah)2 + (Ah)3 + . . . .

Now we extend (I − Ah)−1 to E(ρ̂−4+δ), 0 < δ < 4. In order to do so, we need to 
further assume that the norm of Ah, as a bounded linear operator on L∞(m̂), is smaller 
than 1/2. That can be achieved if the support of h is sufficiently small.

Suppose now u ∈ E(ρ̂−4+δ), 0 < δ < 4. Let v = [I + (Ah) + (Ah)2 + . . .]u. We want 
to show that v ∈ E(ρ̂−4+δ). To do so, suppose k is a non-negative integer. To show that

ρ̂k+(4−δ)∇̂k
bv ∈ L∞(m̂), (3.1)
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we split the sum defining v into two parts: let v1 = [I + (Ah) + · · · + (Ah)k+2]u, and 
v2 = [(Ah)k+3 + (Ah)k+4 + . . .]u. Then ρ̂k+(4−δ)∇̂k

bv1 ∈ L∞(m̂) by Theorem 2.4, since 
each term of v1 is in E(ρ̂−4+δ). Furthermore, note that

A: E(ρ̂−1+δ) → L∞(m̂) for all 0 < δ < 1. (3.2)

This holds because E(ρ̂−1+δ) ⊂ Lp(m̂) for some p > 4, and A: Lp(m̂) → L∞(m̂) whenever 
p > 4. Thus from u ∈ E(ρ̂−4+δ), 0 < δ < 4, we conclude, from Theorem 2.4 and (3.2), 
that (Ah)2u ∈ C∞(X) ∩ L∞(X̂). As a result, by Lemma 3.2, and our bound of Ah on 
L∞(m̂), we have

‖ρ̂k∇̂k
bv2‖L∞(m̂) ≤ Ck

∞∑

=0

‖(Ah)2+
u‖L∞(m̂)

≤ Ck

∞∑

=0

2−
‖(Ah)2u‖L∞(m̂) ≤ Ck.

Combining this with the bound for v1, (3.1) follows, and this shows v ∈ E(ρ̂−4+δ) as 
desired. �
3.2. An auxiliary family of operators

Now we need to detour into a discussion of a two-parameter family of operators, that 
will be indexed by two non-negative integers j and �. Suppose A is a smoothing operator 
of order 1. Suppose also that q
(x, y) is a function in C∞(X̂ × X̂) that vanishes to 
non-isotropic order � along the diagonal, i.e.

|q
(x, y)| � ϑ(x, y)


for some non-negative integer �. We will write qx
 (y) := q
(x, y); by abuse of notation, we 
will also denote by qx
 the multiplication operator v(y) �→ qx
 (y)v(y). Given a non-negative 
integer j, for v ∈ C∞(X̂) and x ∈ X̂, we define

Tv(x) = (∇̂b)jz
∣∣∣
z=x

[Aqx
 v](z). (3.3)

This is well defined, since qx
 v is a C∞ function on X̂ for each fixed x, and A maps C∞(X̂)
into C∞(X̂). We will see below that this assignment v �→ Tv defines a continuous map 
from C∞(X̂) to C∞(X̂). Since the properties of this map depend mainly only on the 
integers j and �, we will denote any operator of this form by Tj,
. In other words, if 
v ∈ C∞(X̂) and x ∈ X̂, then Tj,
v(x) is given by the right hand side of (3.3) for 
some smoothing operator A of order 1, and some q
 ∈ C∞(X̂ × X̂) that vanishes to 
non-isotropic order � along the diagonal.
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Lemma 3.3. Suppose v ∈ C∞(X̂), and for all x ∈ X̂, we have

Tj,
v(x) := (∇̂b)jz
∣∣∣
z=x

[Aqx
 v](z) (3.4)

for some A and q
 as above. Then Tj,
v is a C∞ function on X̂. Furthermore, for any 
r ≥ 0, one has the following Leibniz rule:

(∇̂b)rxTj,
v(x) =
r∑

s=0

(
r

s

)
(∇̂b)j+r−s

z

∣∣∣
z=x

[A(∇̂b)sxqx
 v](z) (3.5)

where (∇̂b)sxqx
 denotes the multiplication operator v(y) �→ (∇̂b)sxq
(x, y)v(y). In addition, 
the adjoint T ∗

j,
 of Tj,
 with respect to L2(m̂) maps C∞(X̂) into itself, and is given by

T ∗
j,
w(z) = A∗[(∇̂∗

b)j(q
,zw)](z) (3.6)

where q
,z(x) := q
(x, z).

Proof. Suppose v ∈ C∞(X̂), and x ∈ X̂. First we show that Tj,
 is differentiable at x, 
and that (3.5) holds when r = 1. In fact, for any smooth curve γ: (−1, 1) → X̂ with 
γ(0) = x, γ′(0) = Y , we have

1
ε

[Tj,
v(γ(ε)) − Tj,
v(γ(0))]

= (∇̂b)jz
∣∣∣
z=γ(ε)

[
A

(
q
γ(ε)

 v − q

γ(0)

 v

ε
− Yxq

x



)
v

]
(z)

+ 1
ε

(
(∇̂b)jz

∣∣∣
z=γ(ε)

− (∇̂b)jz
∣∣∣
z=γ(0)

)
[Aqx
 v](z)

+ (∇̂b)jz
∣∣∣
z=γ(ε)

[A(Yxq
x

 )v](z). (3.7)

(We wrote Yx to emphasize that the derivative is with respect to x.) Now the first term 
on the right hand side of (3.7) is bounded by∥∥∥∥∥(∇̂b)jzA

(
q
γ(ε)

 v − q

γ(0)



ε
− Yxq

x



)
v(z)

∥∥∥∥∥
L∞(m̂(z))

,

which tends to zero as ε → 0 since(
q
γ(ε)

 v − q

γ(0)



ε
− Yxq

x



)
v(z) → 0 in C∞(X̂) as a function of z,

and A: C∞(X̂) → C∞(X̂) is continuous. Next, the second term on the right hand side 
of (3.7) converges to
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Yz (∇̂b)jz[Aqx
 v](z)
∣∣∣
z=x

as ε → 0, since Aqx
 v(z) is C∞ as a function of z ∈ X̂. Finally, the last term on the right 
hand side of (3.7) converges to

(∇̂b)jz
∣∣∣
z=x

[A(Yxq
x

 )v](z)

as ε → 0, since (∇̂b)jz[A(Yxq
x

 )v](z) is a continuous function of z ∈ X̂. This proves Tj,
v

is differentiable at x, and that

[Y Tj,
v](x) = (Yz(∇̂b)jz)
∣∣∣
z=x

[Aqx
 v](z) + (∇̂b)jz
∣∣∣
z=x

[A(Yxq
x

 )v](z). (3.8)

In particular, (3.5) holds when r = 1.
By successive differentiation of (3.8), using the case r = 1 of (3.5), then shows that 

Tj,
v ∈ C∞(X̂), and that (3.5) holds for all r ≥ 1.
Now we prove that T ∗

j,
 is given by the expression (3.6). The case when j = 0 is easy; 
in fact then

T0,
v(x) =
∫
X̂

A(x, y)q
(x, y)v(y)dm̂(y),

so integrating this against w(x)dm̂(x), and applying Fubini’s theorem, we see that 
T ∗

0,
w(y) = A∗[q
,yw](y), as desired.
The case j > 0 is more tricky, because while formally

Tj,
v(x) =
∫
X̂

[(∇b)jxA(x, y)]q
(x, y)v(y)dm̂(y),

the integral on the right hand side simply does not converge, due to the singularity of 
(∇b)jxA(x, y). Hence we have to proceed differently, as follows.

We assume that (3.6) holds for all T ∗
k,
 with 0 ≤ k ≤ j − 1. Take r = 1 and replace j

to j − 1 in (3.5), we have

Tj,
 = ∇̂bTj−1,
 − Tj−1,
0 , (3.9)

where �0 = min {�− 1, 0} and

Tj−1,
0v(x) := (∇̂b)j−1
z

∣∣∣
z=x

[A(∇̂b)xqx
 v](z).

By taking adjoint of (3.9) in the sense of distribution with respect to L2(m̂), we deduce

T ∗
j,
 = T ∗

j−1,
(∇̂b)∗ − T ∗
j−1,
 . (3.10)
0
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From (3.10) and the induction assumptions, we can check that

T ∗
j,
w(z) = A∗[(∇̂∗

b)j−1(q
,z∇̂∗
bw)](z) −A∗[(∇̂∗

b)j−1(∇̂bq
,z)w)](z)

= A∗[(∇̂∗
b)j(q
,zw)](z).

(3.6) follows. As a result, by repeating the proof of (3.5), T ∗
j,
 maps C∞(X̂) into C∞(X̂), 

with

(∇b)rzT ∗
j,
w(z) =

r∑
s=0

(
r

s

)
(∇̂b)r−s

y

∣∣∣
y=z

[A(∇̂b)sz(∇̂∗
b)j(q
,zw)](y). �

Lemma 3.4. For any j, � ≥ 0, the linear operators

Tj,
:C∞(X̂) → C∞(X̂)

and

T ∗
j,
:C∞(X̂) → C∞(X̂)

considered in the previous lemma are both continuous.

Proof. Suppose vm converges to v in C∞(X̂) as m → ∞. Then for any k, s ≥ 0,

‖(∇̂b)kz [(∇̂b)sxqx
 (z)(vm − v)(z)]‖L2(m̂(z)) → 0 uniformly in x ∈ X̂,

and by continuity of A on NLk,2 (see Proposition 2.7(a)), we see that for any k, s ≥ 0,

‖(∇̂b)kz [A(∇̂b)sxqx
 (vm − v)](z)‖L2(m̂(z)) → 0 uniformly in x ∈ X̂.

By Sobolev embedding, it follows that the same is true for all k, s ≥ 0 if the L2 norm is 
replaced by L∞ in the above equation. Hence by (3.5), we conclude that

‖(∇̂b)rTj,
(vm − v)‖L∞(X̂) → 0

for all r ≥ 0. Since this is true for all r, we proved Tj,
vm → Tj,
v in C∞(X̂) as 
m → ∞. A similar argument, based on (3.6) instead, proves that T ∗

j,
: C∞(X̂) → C∞(X̂)
is continuous. �
Lemma 3.5. For any � ≥ 0, the operator T
+1,
 is smoothing of order 0.

Proof. By the previous lemma, both T
+1,
 and its adjoint T ∗

+1,
 map C∞(X̂) into 

C∞(X̂) continuously.
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Given v ∈ C∞(X̂), and x ∈ X̂ not in the support of v, if z is in a sufficiently small 
neighborhood of x, we have z not in the support of qx
 v. Hence if A(x, y) is the kernel 
of A, then for all such z, we have

[Aqx
 v](z) =
∫
X̂

A(z, y)q
(x, y)v(y)m̂(y).

It follows that one can differentiate under the integral, and obtain

Tj,
v(x) =
∫
X̂

[(∇̂b)jxA(x, y)]q
(x, y)v(y)m̂(y).

Hence the kernel of Tj,
 is given by

Tj,
(x, y) = [(∇̂b)jxA(x, y)]q
(x, y).

When j = � + 1, this kernel satisfies the differential inequalities

|(∇̂b)α1
x (∇̂b)α2

y Tj,
(x, y)| � ϑ(x, y)−4−|α|,

since A is a smoothing operator of order 1, and q
 vanishes to order � along the diagonal. 
It follows that the kernel of T
+1,
 satisfies the differential inequalities of a smoothing 
operator of order 0.

Finally, we verify the cancellation property of T
+1,
. To do so, suppose φ is a normal-
ized bump function in some ball B(x0, r0) ⊂ X̂. Then for any x ∈ B(x0, r0) and s ≥ 0, 
we have (∇̂b)sxqx
 φ being r
−s

0 times a normalized bump function in B(x0, r0). Thus by 
cancellation property of A, we have

‖(∇̂b)j+r−s[A(∇̂b)sxqx
 φ]‖L∞(B(x0,r)) � r
1−(j+r−
)
0

for all j, r and s with j ≥ 0, r ≥ s. In particular, evaluating at x ∈ B(x0, r0), we have∣∣∣ (∇̂b)j+r−s
y

∣∣∣
z=x

[A(∇̂b)sxqx
 φ](z)
∣∣∣ � r

1−(j+r−
)
0 .

Hence by (3.5), we see that

|(∇̂b)rxTj,
φ(x)| � r
1−(j+r−
)
0 .

Since this is true for all x ∈ B(x0, r0), we obtain

‖(∇̂b)rxTj,
φ‖L∞(B(x0,r0)) � r
1−(j+r−
)
0 .
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When j = � +1, this gives the desired cancellation property of order 0 for T
+1,
. Similarly, 
one can prove the desired cancellation property of T ∗


+1,
. Hence T
+1,
 is a smoothing 
operator of order 0. �
Lemma 3.6. Suppose v ∈ C∞(X) ∩L∞(X̂). Then for x ∈ X, one can still define Tj,
v(x)
by (3.4), and formula (3.5) continues to hold for all x ∈ X.

Proof. Suppose v ∈ C∞(X) ∩ L∞(X̂), and x ∈ X. Let η ∈ C∞
0 (X) be such that η ≡ 1

in a neighborhood of x, and write w1 = ηv, w2 = (1 − η)v. Then w1 ∈ C∞(X̂), and 
Tj,
w1(x) is given by (3.4) with v replaced by w1. Furthermore, w2 is identically zero 
near x. Thus by pseudolocality of A, we have [Aqx
w2](z) being C∞ for z near x, and 
one can define Tj,
w2(x) by (3.4) with v replaced by w2. Since Tj,
v = Tj,
w1 + Tj,
w2, 
it follows that one can define Tj,
v(x) by (3.4).

In order to differentiate Tj,
v at x, it suffices to differentiate Tj,
w1 and Tj,
w2 at x. 
One can differentiate Tj,
w1 using (3.5). To differentiate Tj,
w2 at x, note that since x
is not in the support of w2, for any z in a small neighborhood of x, we have

Tj,
w2(z) =
∫
X̂

[(∇̂b)jzA(z, y)]q
(z, y)w2(y)m̂(y).

Differentiating under the integral using the dominated convergence theorem, one sees 
that the derivatives of Tj,
w2 at x satisfies

(∇̂b)rxTj,
w2(x) =
r∑

s=0

(
r

s

)
(∇̂b)j+r−s

z

∣∣∣
z=x

[A(∇̂b)sxqx
w2](z).

Together, one concludes that the derivatives of Tj,
v(x) is given by (3.5) in our current 
case as well. �
3.3. Proof of Lemma 3.2

We now move on to the proof of Lemma 3.2. To do so, we fix a neighborhood U of p, 
and fix a frame Ẑ1, Ẑ1̄, T of the complexified tangent bundle in U as in Section 1.5. 
Write X1 and X2 for the real and imaginary parts of Ẑ1. One can now define normal 
coordinates centered at any point x ∈ U : for y sufficiently close to x, there exists a unique 
w ∈ R3 such that if γ(t) is the integral curve of w1X1 +w2X2 +w3T with γ(0) = x, then 
γ(1) = y. In that case we write y = x exp(w), or equivalently w = Θ(x, y). Note in this 
case,

ϑ(x, y) � |w1| + |w2| + |w3|1/2.

Also, in this normal coordinate system, X1 and X2 then takes the form
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X1 = ∂

∂w1
+ 2w2

∂

∂w3
+ O1 ∂

∂w1
+ O1 ∂

∂w2
+ O2 ∂

∂w3
,

X2 = ∂

∂w2
− 2w1

∂

∂w3
+ O1 ∂

∂w1
+ O1 ∂

∂w2
+ O2 ∂

∂w3

where Ok are functions that vanish to non-isotropic order ≥ k at w = 0. It follows that 
if α is the multi-index (α1, α2, α3) and j ≤ ‖α‖ (here ‖α‖ := |α1| + |α2| + 2|α3| is the 
non-isotropic length of α), then (∇̂b)jxΘ(x, y)α vanishes to non-isotropic order ‖α‖ − j

along the diagonal y = x, i.e.

|(∇̂b)jxΘ(x, y)α| � ϑ(x, y)‖α‖−j .

Now fix h ∈ E(ρ̂1). For x ∈ U , let hx be the function of w defined by hx(w) =
h(x exp(w)). Let P x

k be the Taylor polynomial of hx at w = 0 up to non-isotropic 
order k. We sometimes think of P x

k as a function of y. Then

P x
k (y) =

∑
‖α‖≤k

1
α! (∂

α
wh

x)(0)[Θ(x, y)]α.

One can show, by reduction to the ordinary Taylor’s theorem, that

|h(y) − P x
k−1(y)| ≤ Cρ̂(x)1−kϑ(x, y)k if ϑ(x, y) < 1

4 ρ̂(x). (3.11)

We will make crucial use of this in the proof of the following lemma:

Lemma 3.7. Suppose A is a smoothing operator of order 1, and h ∈ E(ρ̂1). If v ∈ C∞(X) ∩
L∞(X̂), then for any k ≥ 1, we have∥∥∥ρ̂k(x) (∇̂b)kz

∣∣∣
z=x

[A(h− P x
k−1)v](z)

∥∥∥
L∞(m̂(x))

� ‖v‖L∞(m̂)

where P x
k−1(y) is defined as above.

Proof. Fix x ∈ X, and write r := ρ̂(x)/8. Let ε ∈ (0, r), and write

1 = (1 − ϕr) + (ϕr − ϕε) + ϕε

where ϕr and ϕε are normalized bump functions on B(x, 2r) and B(x, 2ε) respectively, 
with ϕr(y) ≡ 1 on B(x, r), ϕε(y) ≡ 1 on B(x, ε). Then

h− P x
k−1 = (h− P x

k−1)(1 − ϕr) + (h− P x
k−1)(ϕr − ϕε) + (h− P x

k−1)ϕε,

and we estimate the contribution of each of these three terms to

ρ̂k(x) (∇̂b)kz
∣∣∣ [A(h− P x

k−1)v](z).

z=x
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Let’s call the above contributions I, II and III . We will show that I and II are bounded 
by C‖v‖L∞(m̂) uniformly in x and ε, while III tends to 0 as ε → 0. These obviously 
imply the desired conclusion in our lemma.

Now note I and II can be computed using the kernel of A: we have

I = ρ̂k(x)
∫
X̂

(1 − ϕr(y))[(∇̂b)kxA(x, y)][h(y) − P k−1
x (y)]v(y)m̂(y)

and

II = ρ̂k(x)
∫
X̂

(ϕr(y) − ϕε(y))[(∇̂b)kxA(x, y)][h(y) − P k−1
x (y)]v(y)m̂(y).

I can then be estimated by breaking up h − P x
k−1 into h and the individual terms in 

P x
k−1: the term involving h only is bounded by

ρ̂k(x)
∫

ϑ(y,x)≥r

|(∇̂b)kxA(x, y)h(y)v(y)|m̂(y)

≤ ρ̂k(x)
∫

ϑ(y,x)≥r

ϑ(x, y)−3−km̂(y)‖v‖L∞(m̂)

�
{
r‖v‖L∞(m̂) if k > 1
r log r‖v‖L∞(m̂) if k = 1

� ‖v‖L∞(m̂).

Also, the term involving P x
k−1 can be bounded by

ρ̂k(x)
∫

ϑ(y,x)≥r

|[(∇̂b)kxA(x, y)]P x
k−1(y)v(y)|m̂(y)

≤
∑

‖α‖≤k−1

ρ̂k(x)
∫

ϑ(y,x)≥r

ϑ(x, y)−3−kρ̂1−‖α‖(x)ϑ(x, y)‖α‖m̂(y)‖v‖L∞(m̂).

The terms when ‖α‖ = k − 1 can be bounded by

ρ̂2(x)
∫

ϑ(y,x)≥r

ϑ(x, y)−4m̂(y)‖v‖L∞(m̂) � r2 log r‖v‖L∞(m̂) � ‖v‖L∞(m̂).

The terms when ‖α‖ < k − 1 can be bounded by
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ρ̂(x)k+1−‖α‖
∫

ϑ(x,y)≥r

ϑ(x, y)−4+‖α‖−(k−1)m̂(y)‖v‖L∞(m̂)

� ρ̂(x)k+1−‖α‖r‖α‖−(k−1)‖v‖L∞(m̂)

� r2‖v‖L∞(m̂) � ‖v‖L∞(m̂).

This shows that |I| � ‖v‖L∞(m̂) uniformly in x, as desired.
Next, II can be bounded using (3.11), uniformly in x and ε:

ρ̂k(x)
∫

ϑ(y,x)<r

|[(∇̂b)kxA(x, y)](h− P x
k−1)(y)v(y)|m̂(y)

≤ ρ̂k(x)
∫

ϑ(y,x)<r

ϑ(x, y)−3−kr1−kϑ(x, y)km̂(y)‖v‖L∞(m̂)

� r2‖v‖L∞(m̂) � ‖v‖L∞(m̂).

Thus it remains to show that III tends to 0 as ε → 0.
To do so, note that there is some constant Cv (possibly depending on many derivatives 

of v) such that C−1
v ε−krkϕε(h − P x

k−1)v is a normalized bump function in B(x, 2ε). In 
fact, the L∞(m̂) norm of ε−krkϕε(h − P x

k−1) is bounded by

Cε−krkr1−kεk ≤ C.

Also, each ∇̂b derivative of this function gains at worst ε−1, and the function v is C∞

on this ball B(x, 2ε). Hence C−1
v ε−krkϕε(h − P x

k−1)v is a normalized bump function in 
B(x, 2ε), as claimed. Since A is smoothing of order 1, by the cancellation conditions 
of A, we have

|III | ≤ rk
∥∥∥(∇̂b)k[Aϕε(h− P x

k−1)v]
∥∥∥
L∞(B(x,2ε))

≤ Cvε,

which tends to 0 as ε → 0. This completes the proof of the current lemma. �
We are now ready to prove Lemma 3.2. In fact we will prove the following slight 

generalization:

Lemma 3.8. For any non-negative integer k, if A1, A2, . . . , Ak+1 are smoothing operators 
of order 1, and h ∈ E(ρ̂1) is supported in a sufficiently small neighborhood of p, then for 
any function u ∈ C∞(X) ∩ L∞(X̂), we have

‖ρ̂k∇̂k
b (Ak+1hAkh . . . A1h)u‖L∞(m̂) �k ‖u‖L∞(m̂).
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For simplicity, we will write below Sk for the operator Akh . . . A1h. We then need to 
bound ‖ρ̂k∇̂k

bSk+1u‖L∞(m̂) for u ∈ C∞(X) ∩ L∞(X̂).

Proof. We proceed by induction on k. When k = 0, one just need to notice that 
‖A1hu‖L∞(m̂) � ‖u‖L∞(m̂), which holds since A1 and h both preserve L∞(m̂). Sup-
pose now the proposition has been proved up to k − 1 for some positive integer k. In 
other words, we assume

‖ρ̂i∇̂i
bSi+1u‖L∞(m̂) �i ‖u‖L∞(m̂) (3.12)

for all 0 ≤ i ≤ k − 1. Let u ∈ C∞(X) ∩ L∞(X̂), and write

ρ̂k∇̂k
bSk+1u(x) = ρ̂k∇̂k

bAk+1hSku(x) = V1(x) + V2(x)

where

V1(x) = ρ̂k(x) (∇̂b)kz
∣∣∣
z=x

[Ak+1(h− P x
k−1)Sku](z)

and

V2(x) = ρ̂k(x) (∇̂b)kz
∣∣∣
z=x

[Ak+1P
x
k−1Sku](z).

We want to show that both V1(x) and V2(x) are bounded by C‖u‖L∞(m̂).
First V1(x) is like an error term, that can be estimated by Lemma 3.7. In fact, applying 

it to v = Sku, which is in C∞(X) ∩ L∞(X̂), we have∥∥∥ρ̂k(x) (∇̂b)kz
∣∣∣
z=x

[Ak+1(h− P x
k−1)(Sku)](z)

∥∥∥
L∞(m̂(x))

≤ C‖Sku‖L∞(m̂),

and the latter is bounded trivially by C‖u‖L∞(m̂). Thus it remains to estimate the main 
term V2(x).

Now write Θx(y) = Θ(x, y). Then

V2(x) =
∑

‖α‖≤k−1

1
α! (∂

α
wh

x)(0)ρ̂k(x) (∇̂b)kz
∣∣∣
z=x

[Ak+1Θα
xSku](z).

Note that on the right hand side of this sum, (∇̂b)ky
∣∣∣
z=x

[Ak+1Θα
xSku](z) is of the form 

Tk,
Sku if � = ‖α‖, where Tk,
 is defined as in (3.4), with A = Ak+1 and q
(x, y) =
Θ(x, y)α. Thus

|V2(x)| �
k−1∑

ρ̂k−
+1(x)|Tk,
(Sku)(x)|.


=0
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We will prove, by induction, that when 1 ≤ j ≤ k, and 0 ≤ � ≤ j − 1, if Tj,
 is any 
operator of the form (3.4), we have

∥∥ρ̂j−
−1(x)Tj,
(Sku)(x)
∥∥
L∞(m̂(x)) � ‖u‖L∞(m̂), (3.13)

and that the bound is uniform in the choice of A and q
, as long as A is normalized 
as a smoothing operator of order 1 (so that all constants arising in the definition of a 
smoothing operator of order 1 are uniformly bounded), and q
 is normalized as a smooth 
function vanishing to non-isotropic order � along the diagonal (so that all constants 
arising in the definition of such functions are uniformly bounded). Assume this for the 
moment. Then applying it to the case j = k, with Tk,
 defined using A = Ak+1 and 
q
(x, y) = Θ(x, y)α, we have

|V2(x)| �
k−1∑

=0

ρ̂2(x)‖u‖L∞(m̂) � ‖u‖L∞(m̂).

This will complete the proof of the current lemma.
It remains to prove (3.13). To do so, we proceed by induction on j. First, when j = 1

(hence � = 0), note that T1,0 is a smoothing operator of order 0 by Lemma 3.5. Hence

T1,0Sku = (T1,0Ak)hSk−1u = ÃhSk−1 = S̃1Sk−1u,

where Ã := T1,0Ak is smoothing of order 1 by Theorem 2.3, and S̃1 = Ãh. Since S̃1 and 
Sk−1 both preserve L∞(m̂) (which can be see, e.g. by our induction hypothesis (3.12)
with i = 0, and its iteration), we see that

‖T1,0Sku(x)‖L∞(m̂(x)) = ‖S̃1[Sk−1u](x)‖L∞(m̂(x)) � ‖Sk−1u‖L∞(m̂) � ‖u‖L∞(m̂).

Hence (3.13) holds when j = 1.
Next, fix positive integer j0 with 2 ≤ j0 ≤ k, and assume that (3.13) has been proved 

for all j ≤ j0 − 1. In other words, we assume that we have verified already

∥∥ρ̂a−b−1(x)Ta,b(Sku)(x)
∥∥
L∞(m̂(x)) � ‖u‖L∞(m̂) (3.14)

for all a and b with 1 ≤ a ≤ j0 − 1 and 0 ≤ b ≤ a − 1. We want to prove the same 
statement when a = j0. So we fix � with 0 ≤ � ≤ j0 − 1. First, Sku ∈ C∞(X) ∩ L∞(X̂)
since u is as such. Thus we can apply Lemma 3.6 and (3.5) to v = Sku: in fact, if 
Tj0,
 is defined so that Tj0,
v(x) = (∇̂b)j0z

∣∣∣
z=x

[Aqx
 v](z), then by (3.5), one can compute 

∇̂j0−
−1
b [T
+1,
(Sku)](x) as a sum over s from 0 to j0 − � − 1. In this sum, the term with 

s = 0 is exactly Tj0,
(Sku)(x). Hence by rearranging, we have
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Tj0,
(Sku)(x) = ∇̂j0−
−1
b [T
+1,
(Sku)](x)

−
j0−
−1∑
s=1

(
j0 − �− 1

s

)
(∇̂b)j0−s

z

∣∣∣
z=x

[A(∇̂b)sxqx
 Sku](z). (3.15)

The first term on the right hand side can then be written as

∇̂j0−
−1
b [ÃhSk−1u](x) = ∇̂j0−
−1

b [ÃhSj0−
−1](Sk−j0+
u)(x)

where Ã := T
+1,
Ak is smoothing of order 1 by Lemma 3.5 and Theorem 2.3. Hence 
by our induction hypothesis (3.12), with i = j0 − � − 1 (note 0 ≤ i ≤ k − 1 under our 
assumptions so (3.12) applies), we have

|ρ̂j0−
−1(x)∇̂j0−
−1
b [T
+1,
(Sku)](x)| � ‖Sk−j0+
u‖L∞(m̂) � ‖u‖L∞(m̂). (3.16)

To bound the rest of the sum on the right hand side of (3.15), note that (∇̂b)j0−s
z

∣∣∣
z=x

×
[A(∇̂b)sxqx
 Sku](z) is of the form Tj0−s,max{
−s,0}Sku(x). This is because (∇̂b)sxq
(x, y) is 
smooth on X̂ × X̂, and vanishes on the diagonal to order max{� − s, 0}. Hence

∣∣∣∣∣ρ̂j0−
−1(x)
j0−
−1∑
s=1

(
j0 − �− 1

s

)
(∇̂b)j0−s

z

∣∣∣
z=x

[A(∇̂b)sxqx
 Sku](z)

∣∣∣∣∣
�

j0−
−1∑
s=1

ρ̂max{s−
,0}(x)ρ̂j0−s−max{
−s,0}−1(x)|Tj0−s,max{
−s,0}Sku(x)|

�
j0−
−1∑
s=1

ρ̂max{s−
,0}(x)‖u‖L∞(m̂) � ‖u‖L∞(m̂), (3.17)

the second inequality following from our induction hypothesis (3.14) with a = j0 − s, 
b = max{� − s, 0} (note that then 1 ≤ a ≤ j0 − 1 and 0 ≤ b ≤ j0 − s − 1 in the above 
sum over s, so (3.14) applies for this a and b). Combining (3.15), (3.16) and (3.17), we 
see that

|ρj0−
−1(x)Tj0,
Sku(x)| � ‖u‖L∞(m̂)

uniformly in x, as desired. This completes our proof of (3.13), and hence the proof of 
the current lemma. �
4. Construction of the CR function ψ

The goal in this section is to show that there exists a function ψ ∈ C∞(X̂) such that 
∂̂bψ = 0 and near p, we have ψ = |z|2 + it + R, R = ε(ρ̂4) (see Theorem 4.4). It is via 
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this ψ that we reduce our problem from the non-compact manifold X to the compact 
manifold X̂, as was explained in the introduction.

Until further notice, we work in some small neighborhood of p. Put

Z0
1 = ∂

∂z
+ iz

∂

∂t
.

We say that g is a quasi-homogeneous polynomial of degree d ∈ N0 := N 
⋃
{0} if g is 

the finite sum

g =
∑

α+β+2γ=d,α,β,γ∈N0

cα,β,γz
αzβtγ , cα,β,γ ∈ C.

First, we need

Lemma 4.1. For any monomial azαzβtγ , a ∈ C, α, β, γ ∈ N0, with α + β + 2γ ≥ 3, we 
can find a polynomial f , that is quasi-homogeneous of degree α + β + 2γ + 1, such that 
Z0

1f = azαzβtγ and

|Re f(z, t)| ≤ c |z|2 (|z| + |t|) in a neighborhood of p,

where c > 0 is a constant. (4.1)

Proof. We proceed by induction over γ. First we assume that γ = 0. Given a monomial 
azαzβ , a ∈ C, α, β ∈ N0, with α + β ≥ 3. Put f = a

α+1z
α+1zβ . It is easy to see that 

Z0
1f = azαzβ and (4.1) hold. Let γ ≥ 1. Given a monomial azαzβtγ , a ∈ C, α, β, γ ∈ N0, 

with α + β + 2γ ≥ 3. First, we assume that α = β = 0. By the induction assumption, 
we can find a quasi-homogeneous polynomial f1, of degree 2γ + 1, such that

Z0
1f1 = −iaγ |z|2 tγ−1 + iaγz2tγ−1

and (4.1) hold. Put

f = aztγ − aztγ + f1.

It is not difficult to check that Z0
1f = atγ and (4.1) hold. Now, we assume that α+β ≥ 1. 

By the induction assumption, we can find a quasi-homogeneous polynomial f1, of degree 
α + β + 2γ + 1, such that

Z0
1f1 = −i

aγ

α + 1z
α+1zβ+1tγ−1

and (4.1) hold. Put

f = a

α + 1z
α+1zβtγ + f1.

It is not difficult to check that Z0
1f = azαzβtγ and (4.1) hold.

The lemma follows. �
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Proposition 4.2. There exists a function ϕ ∈ C∞(X̂) such that Reϕ ≥ 0 on X̂, ∂̂bϕ

vanishes to infinite order at p and near p, we have

ϕ(z, t) = (2π)(|z|2 + it) + S, S = ε(ρ̂6).

Proof. We assume that the local coordinates (z, t) defined on a small open set W ⊂ X

of p. From Lemma 4.1 and (1.31), it is not difficult to see that we can find fj(z, t), 
j = 6, 7, . . . , where for each j, fj is a quasi-homogeneous polynomial of degree j, such 
that

Ẑ1
(
(2π)(|z|2 + it) +

m∑
j=6

fj(z, t)
)
∈ ε(ρ̂m+3), m = 6, 7, . . . , (4.2)

and for each j = 6, 7, . . . ,

|Re fj(z, t)| ≤ cj |z|2 (|z| + |t|) on Wj ⊂ W, cj > 0 is a constant, (4.3)

where Wj is an open set, for each j = 6, 7, . . .. Take φ(z, t) ∈ C∞
0 (C × R,R+) so that 

φ(z, t) = 1 if 
∣∣z2
∣∣ + |t| ≤ 1

2 and φ(z, t) = 0 if 
∣∣z2
∣∣ + |t| ≥ 1. For each j = 6, 7, . . . , take 

εj > 0 be a small constant (εj ∼ 2−j will do) so that Suppφ( z
εj
, t
ε2j

) ⊂ Wj ,∣∣∣∣∣φ( z
εj
,
t

ε2j
)Re fj(z, t)

∣∣∣∣∣ < 2−j |z|2 (4.4)

and for all α, β, γ ∈ N0, α + β + 2γ < j, we have∥∥∥∥∥∂α
z ∂

β
z ∂

γ
t

(
φ( z

εj
,
t

ε2j
)fj(z, t)

)∥∥∥∥∥
L∞

< 2−j . (4.5)

On W , we put

ϕ1(z, t) = (2π)(|z|2 + it) +
∞∑
j=6

φ( z
εj
,
t

ε2j
)fj(z, t).

From (4.5), we can check that ϕ1(z, t) is well-defined as a smooth function on W and 
for all α, β, γ ∈ N0, α + β + 2γ = d, d ≥ 6, we have

∂α
z ∂

β
z ∂

γ
t ϕ1|(0,0) = ∂α

z ∂
β
z ∂

γ
t fd|(0,0).

Combining this with (4.2), we conclude that ∂̂bϕ1 vanishes to infinite order at p. More-
over, from (4.4), we have

Reϕ1(z, t) ≥
∣∣z2∣∣ (2π −

∞∑
2−j) > 1

2 |z|2 .

j=6
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Thus, Reϕ1 ≥ 0 on W . Take χ ∈ C∞
0 (W ), χ ≥ 0 and χ = 1 near p and put ϕ = χϕ1 ∈

C∞(X). Then, ϕ satisfies the claim of this proposition. The proposition follows. �
Let W be a small neighborhood of p such that |ϕ(z, t)| ≥ ρ̂(z, t)2 on W , where ϕ is 

as in Proposition 4.2. Take χ ∈ C∞
0 (W,R+) so that χ = 1 in some small neighborhood

of p. Put

τ := χ

ϕ
.

It is easy to check that τ is well-defined as an element in D ′(X̂). Since ∂̂bϕ vanishes to 

infinite order at p, we have ∂̂bτ ∈ C∞(X̂). Thus,

�̂bτ ∈ C∞(X̂).

Now

I = Π̂ + N̂�̂b on D′(X̂), (4.6)

since I = Π̂ + �̂bN̂ on L2(m̂), and since the operators involved are self-adjoint and 
pseudolocal. Hence we obtain

τ = Π̂τ + N̂�̂bτ = Π̂τ − F, (4.7)

where F ∈ C∞(X̂). Thus,

∂̂b(τ + F ) = 0 in D ′(X̂). (4.8)

Take C0 > 0 be a large constant so that ReF + C0 > 0 on X̂. Since Reϕ ≥ 0, we 
conclude that

Re (τ + F + C0) > 0 on X̂. (4.9)

Put

ψ = 1
τ + F + C0

.

From (4.9), we know that τ +F +C0 
= 0 on X. Since τ +F +C0 ∈ C∞(X), we conclude 
that ψ ∈ C∞(X). Now, we study the behavior of ψ near p. Let W ′ � W be a small 
neighborhood of p such that χ = 1 on W ′ and |ϕ(F + C0)| < 1 on W ′. Then, on W ′,

ψ = 1
τ + F + C0

= 1
1 + F + C

= ϕ

1 + ϕ(F + C0)
∈ C∞(W ′). (4.10)
ϕ 0
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Thus,

ψ ∈ C∞(X̂). (4.11)

Moreover, from (4.10), we can check that near p,

ψ = (2π)(|z|2 + it) + R, R ∈ ε(ρ̂4). (4.12)

Lemma 4.3. We have

∂̂bψ = 0 on X̂.

Proof. Put h := τ + F + C0, so that ψ = h−1, and take any g ∈ Ω0,1
0 (X). We have

(∂̂bψ | g)m̂,θ̂ = −(∂̂bh | h−2g)m̂,θ̂ = 0 (4.13)

since ∂̂bh = 0 in the sense of distribution. Thus, ∂̂bψ = 0 on X. Since ψ ∈ C∞(X̂), we 

conclude that ∂̂bψ = 0 on X̂. The lemma follows. �
From (4.9), (4.11), (4.12) and Lemma 4.3, we obtain the main result of this section.

Theorem 4.4. There is a smooth function ψ ∈ C∞(X̂) such that ∂̂bψ = 0 on X̂, ψ 
= 0
on X, Reψ ≥ 0 on X̂ and near p, we have

ψ(z, t) = (2π)(|z|2 + it) + R, R = ε(ρ̂4). (4.14)

In the study of the positive p-mass theorem (see [5]), one needs to find a special CR

function of specific growth rate on X̂. More precisely, in [5], one needs to find a CR 
function g ∈ C∞(X) with

g = z

|z|2 + it
+ g1

near p, where g1 ∈ E(ρ̂0). By using the proof of Theorem 4.4, we can construct a such 
CR function:

Theorem 4.5. There is a function g ∈ C∞(X) 
⋂

D ′(X̂) such that ∂̂bg = 0 and

g = 1
ψ

(z + r),

where ψ is as in Theorem 4.4 and r ∈ C∞(X̂), r = ε(ρ̂2).
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Proof. We can repeat the proof of Proposition 4.2 with minor change and conclude that 
there is a function r̃ ∈ C∞(X̂) with r̃ = ε(ρ̂5) such that ∂̂b(z + r̃) vanishes to infinite 
order at p. Put

g̃ = 1
ψ

(z + r̃).

Since ∂̂b(z + r̃) vanishes to infinite order at p and ∂̂bψ = 0, we have

∂̂bg̃ ∈ C∞(X̂). (4.15)

Thus,

�̂bg̃ ∈ C∞(X̂).

By (4.6), we obtain

g̃ = Π̂g̃ + N̂�̂bg̃ = Π̂g̃ − f,

where f ∈ C∞(X̂). Thus,

∂̂b(g̃ + f) = 0 on D ′(X̂).

Put g = g̃ + f . Then ∂̂bg = 0 and we can check that g = 1
ψ (z + r̃ + ψf) = 1

ψ (z + r), 
where r = r̃ + ψf ∈ C∞(X̂), r = ε(ρ̂2). The theorem follows. �
5. The relation between �b,1 and �̃b

Having constructed our CR function ψ, we can proceed as in Section 1.4, and construct
the intermediate Kohn Laplacian �̃b. We refer the reader to that section for the details of 
this construction. The goal of the current section is to reduce the study of our operator 
of interest, namely �b,1, to the study of �̃b. This is done by establishing (1.6) and (1.7)
in Section 1.4.

First, we recall that m1 = |ψ|−2
m̃. Thus,

u ∈ L2(m1) if and only if ψ−1u ∈ L2(m̃),

u ∈ L2
(0,1)(m1, θ̂) if and only if ψ−1u ∈ L2

(0,1)(m̃, θ̂), (5.1)

and

‖u‖m1
=
∥∥ψ−1u

∥∥
m̃
, ‖v‖m1,θ̂

=
∥∥ψ−1v

∥∥
m̃,θ̂

, ∀u ∈ L2(m1), v ∈ L2
(0,1)(m1, θ̂),

(u1 | u2)m1 = (ψ−1u1 | ψ−1u2)m̃, ∀u1, u2 ∈ L2(m1),

(v1 | v2) ˆ = (ψ−1v1 | ψ−1v2) ˆ, ∀v1, v2 ∈ L2
(0,1)(m1, θ̂). (5.2)
m1,θ m̃,θ
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Let

∂∗,f
b,1 : Ω0,1(X) → C∞(X) (5.3)

be the formal adjoint of ∂b with respect to ( · | · )m1 , ( · | · )m1,θ̂
. Let also

∂̃
∗,f
b : Ω0,1(X) → C∞(X) (5.4)

be the formal adjoint of ∂b with respect to ( · | · )m̃, ( · | · )m̃,θ̂. Then

Lemma 5.1. For v ∈ Ω0,1
0 (X), we have

∂∗,f
b,1 v = ψ∂̃

∗,f
b (ψ−1v). (5.5)

Proof. Let h ∈ C∞
0 (X), g ∈ Ω0,1

0 (X). We have

(∂bh | g)m1,θ̂
= (∂bh | g |ψ|−2)m̃,θ̂ = (∂b(ψ−1h) |ψ−1g)m̃,θ̂

= (ψ−1h | ∂̃
∗,f
b (ψ−1g))m̃ = (h |ψ∂̃

∗,f
b (ψ−1g))m1 .

Hence (5.5) follows. �
The next lemma clarifies the relation between ∂b,1 and ∂̃b:

Lemma 5.2. We have

u ∈ Dom ∂b,1 if and only if ψ−1u ∈ Dom ∂̃b. (5.6)

Moreover,

∂b,1u = ψ∂̃b(ψ−1u), ∀u ∈ Dom ∂b,1. (5.7)

Proof. Let u ∈ Dom ∂b,1. Then, there is an h ∈ L2
(0,1)(m1, θ̂) such that

(h | α)m1,θ̂
= (u | ∂∗,f

b,1α)m1 , ∀α ∈ Ω0,1
0 (X). (5.8)

Note that ∂b,1u := h. From (5.5) and (5.8), it is easy to see that

(ψ−1h | g)m̃,θ̂ = (h | ψg)m1,θ̂
= (u | ∂∗,f

b,1 (ψg))m1

= (ψ−1u | ψ−1∂∗,f
b,1 (ψg))m̃

= (ψ−1u | ∂̃
∗,f
b g)m̃, ∀g ∈ Ω0,1

0 (X). (5.9)
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Since ψ−1h in L2
(0,1)(m̃, θ̂), from (5.9), we conclude that ψ−1u ∈ Dom ∂̃b and

∂̃b(ψ−1u) = ψ−1h = ψ−1∂b,1u.

We have proved that if u ∈ Dom ∂b,1 then ψ−1u ∈ Dom ∂̃b and

ψ∂̃b(ψ−1u) = ∂b,1u.

We can repeat the procedure above and conclude that if v ∈ Dom ∂̃b then ψv ∈
Dom ∂b,1 and ψ−1∂b,1(ψv) = ∂̃bv. In fact, suppose v ∈ Dom ∂̃b. It suffices to show that 
if g ∈ Ω0,1

0 (X), then

(ψv | ∂∗,f
b,1 g)m1 = (ψ∂̃bv | g)m1,θ̂

,

and that ψ∂̃bv ∈ L2(m1, θ̂). These are easy verifications, which we leave to the reader. 
The lemma follows. �

We have a corresponding lemma about the relation between ∂∗
b,1 and ∂̃

∗
b :

Lemma 5.3. We have

u ∈ Dom ∂∗
b,1 if and only if ψ−1u ∈ Dom ∂̃

∗
b . (5.10)

Moreover,

∂∗
b,1u = ψ∂̃

∗
b(ψ−1u), ∀u ∈ Dom ∂∗

b,1. (5.11)

Proof. Let u ∈ Dom ∂∗
b,1. We claim that ψ−1u ∈ Dom ∂̃

∗
b and ∂̃

∗
b(ψ−1u) = ψ−1∂∗

b,1u. Put 
∂∗
b,1u = h ∈ L2(m1). By definition, we have

(∂b,1g | u)m1,θ̂
= (g | h)m1 , ∀g ∈ Dom ∂b,1. (5.12)

From (5.2), Lemma 5.2 and (5.12), we have

(∂̃bf | ψ−1u)m̃,θ̂ = (ψ∂̃bf | u)m1,θ̂
= (∂b,1(ψf) | u)m1,θ̂

= (ψf | h)m1 = (f | ψ−1h)m̃, ∀f ∈ Dom ∂̃b. (5.13)

Thus, ψ−1u ∈ Dom ∂̃
∗
b and ∂̃

∗
b(ψ−1u) = ψ−1h = ψ−1∂∗

b,1u.

We can repeat the procedure above and conclude that if v ∈ Dom ∂̃
∗
b then ψv ∈

Dom ∂∗
b,1 and ∂∗

b,1(ψv) = ψ∂̃
∗
bv. In fact, suppose v ∈ Dom ∂̃

∗
b . It suffices to show that if 

f ∈ Dom ∂b,1, then
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(ψv | ∂b,1f)m1,θ̂
= (ψ∂̃

∗
bv | f)m1 ,

and ψ∂̃
∗
bv ∈ L2(m1). The verifications are easy and left to the reader. The lemma fol-

lows. �
Combining the above, we obtain (1.6) and (1.7):

Theorem 5.4. We have

u ∈ Dom �b,1 if and only if u

ψ
∈ Dom �̃b

and

�b,1u = ψ�̃b(
u

ψ
), ∀u ∈ Dom �b,1.

Thus �b,1 will have closed range in L2(m1), if and only if �̃b has closed range in L2(m̃). 
We will prove the latter in the next two sections, and that will establish Theorem 1.3.

6. The relation between �̃b and �̂b

In the last section, we saw how the solution of �b,1 is reduced to the solution of the 
intermediate operator �̃b. In this section, we see how the latter could be further reduced 
to solving �̂b, which we introduced in Section 1.4. In particular, we will prove (1.8) and 
(1.9) there.

First, note that

L2(m̃) = L2(m̂), L2
(0,1)(m̃, θ̂) = L2

(0,1)(m̂, θ̂).

In fact, from the expansions (1.5) of Gp and (4.14) of ψ, we see that near p,

m̂

m̃
= G−2

p |ψ|−2 = 1 + a(z, t), a(z, t) ∈ E(ρ̂2). (6.1)

Let

∂̂
∗,f
b : Ω0,1(X) → C∞(X)

be the formal adjoint of ∂b with respect to ( · | · )m̂, ( · | · )m̂,θ̂. Then

∂̃
∗,f
b = m̂

∂̂
∗,f
b

m̃
,

m̃ m̂
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so from the above, we see that

∂̃
∗,f
b = ∂̂

∗,f
b + g, for some g ∈ E(ρ̂, T 0,1X̂). (6.2)

(Here we think of the (0, 1) vector g as an element on the dual space of Λ0,1T ∗X̂.) We 

then have the following lemma about the relation between ∂̃b and ∂̂b:

Lemma 6.1. We have ∂̃b = ∂̂b. That is,

Dom ∂̃b = Dom ∂̂b, and ∂̃bu = ∂̂bu

for all u in the common domain of definition.

Proof. Let u ∈ Dom ∂̃b. We claim that u ∈ Dom ∂̂b and ∂̃bu = ∂̂bu. By definition, there 
is an h ∈ L2

(0,1)(m̃, θ̂) such that

(h | α)m̃,θ̂ = (u | ∂̃b

∗,f
α)m̃, ∀α ∈ Ω0,1

0 (X). (6.3)

Note that h = ∂̃bu. From (6.2) and (6.3), we have

(h | γ)m̂,θ̂ = (h | m̂
m̃
γ)m̃,θ̂ = (u | ∂̃

∗,f
b (m̂

m̃
γ))m̃,θ̂ = (u | m̂

m̃
∂̂
∗,f
b γ)m̃,θ̂

= (u | ∂̂
∗,f
b γ)m̂,θ̂, ∀γ ∈ Ω0,1

0 (X). (6.4)

Take α ∈ Ω0,1(X̂). Let

Dr :=
{
x = (x1, x2, x3) ∈ R3; |x|2 := |x1|2 + |x2|2 + |x3|2 < r

}
, r > 0,

be a small ball. We identify Dr with a neighborhood of p. Take χ ∈ C∞
0 (Dr,R+), χ = 1

on D r
2

:=
{
x ∈ R3; |x|2 < r

2

}
. Take ε > 0, ε small and put αε = (1 −χ(xε ))α ∈ Ω0,1

0 (X). 
Then,

‖αε − α‖2
m̂,θ̂ =

∫
|α|2θ̂

∣∣∣χ(x
ε
)
∣∣∣2 m̂ ≤ C

∫
|x|≤εr

m̂ → 0 as ε → 0,

∥∥∥∥∂̂∗,f
b (αε − α)

∥∥∥∥2

m̂

≤
∫ ∣∣∣∣∂̂∗,f

b α

∣∣∣∣2
m̂

∣∣∣χ(x
ε
)
∣∣∣2 m̂ +

∫
|α|2θ̂

∣∣∣∣1ε (Z1χ)(x
ε
)
∣∣∣∣2 m̂

≤ C1

ε2

∫
m̂ → 0 as ε → 0,
|x|≤εr
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where C > 0, C1 > 0 are constants independent of ε. We conclude that there exist 
αj ∈ Ω0,1

0 (X), j = 1, 2, . . . , such that

lim
j→∞

‖αj − α‖m̂,θ̂ = 0, lim
j→∞

∥∥∥∥∂̂∗,f
b (αj − α)

∥∥∥∥
m̂

= 0.

Combining this with (6.4), we have

(h | α)m̂,θ̂ = lim
j→∞

(h | αj)m̂,θ̂ = lim
j→∞

(u | ∂̂
∗,f
b αj)m̂ = (u | ∂̂

∗,f
b α)m̂.

Thus, u ∈ Dom ∂̂b and ∂̂bu = ∂̃bu = h.
We have proved that if u ∈ Dom ∂̃b then u ∈ Dom ∂̂b and ∂̂bu = ∂̃bu.
We can repeat the procedure above and conclude that if v ∈ Dom ∂̂b then v ∈ Dom ∂̃b

and ∂̃bv = ∂̂bv. In fact, suppose v ∈ Dom ∂̂b. It suffices to show that if γ ∈ Ω0,1
0 (X), then

(v | ∂̂
∗,f
b γ)m̂ = (∂̃bv | γ)m̂,θ̂,

which is easy to verify. The lemma follows. �
Next, we want to understand the relation between ∂̃

∗
b and ∂̂

∗
b . To do so, we need the 

following lemma:

Lemma 6.2. Let v ∈ Dom ∂̂b. Then, m̃m̂v ∈ Dom ∂̂b and

∂̂b(
m̃

m̂
v) = m̃

m̂
∂̂bv −

m̃

m̂
g∗v

where g∗ is the (0, 1) form dual to the (0, 1) vector g with respect to the Hermitian inner 
product 〈·|·〉θ̂ on T 0,1X.

Proof. For all α ∈ Ω0,1
0 (X), we have

(m̃
m̂
v | ∂̂

∗,f
b α)m̂ = (m̃

m̂
v | (∂̃

∗,f
b − g)α)m̂ here we used (6.2)

= (v | (∂̃
∗,f
b − g)α)m̃

= (∂̂bv |α)m̃,θ̂ − (g∗v | α)m̃,θ̂ here we used Lemma 6.1

= (m̃ ∂̂bv −
m̃
g∗v | α)m̂,θ̂.
m̂ m̂
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We can now repeat the procedure in the proof of Lemma 6.1 and conclude that

(m̃
m̂
v | ∂̂

∗,f
b h)m̂ = (m̃

m̂
∂̂bv −

m̃

m̂
g∗v | h)m̂,θ̂, ∀h ∈ Ω0,1(X̂).

The lemma follows. �
We can now prove:

Lemma 6.3. We have Dom ∂̂
∗
b = Dom ∂̃

∗
b and

∂̃
∗
bu = ∂̂

∗
bu + gu, ∀u ∈ Dom ∂̂

∗
b = Dom ∂̃

∗
b . (6.5)

Proof. Let u ∈ Dom ∂̂
∗
b . We claim that u ∈ Dom ∂̃

∗
b and ∂̃

∗
bu = ∂̂

∗
bu +gu. From Lemma 6.1

and Lemma 6.2, we can check that for every v ∈ Dom ∂̃b,

(v | (∂̂
∗
b + g)u)m̃ = (m̃

m̂
v | ∂̂

∗
bu)m̂ + (v | gu)m̃

= (∂̂b(
m̃

m̂
v) | u)m̂,θ̂ + (g∗v | u)m̃,θ̂

= (m̃
m̂

∂̂bv −
m̃

m̂
g∗v | u)m̂,θ̂ + (m̃

m̂
g∗v | u)m̂

= (∂̂bv | u)m̃,θ̂ = (∂̃bv | u)m̃,θ̂.

Thus, u ∈ Dom ∂̃
∗
b and ∂̃

∗
bu = ∂̂

∗
bu + gu.

Similarly, for u ∈ Dom ∂̃
∗
b , we can repeat the procedure above and conclude that 

u ∈ Dom ∂̂
∗
b . In fact, suppose u ∈ Dom ∂̃

∗
b . It suffices to show that for every v ∈ Dom ∂̂b,

(u | ∂̂bv)m̂,θ̂ = (∂̃
∗
bu− gu | v)m̂,

and that ∂̃
∗
bu − gu ∈ L2(m̂). This can be proved in exactly the same manner as above. 

The lemma follows. �
It follows from the above that (1.8) and (1.9) hold:

Theorem 6.4.

Dom �̃b = Dom �̂b,

and

�̃bu = �̂bu + g∂̂bu, ∀u ∈ Dom �̃b.

This allows one to understand solutions to �̃b via solutions to �̂b, as we will see below.
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7. Proof of Theorem 1.3

In this section, we will see that �̃b and �b,1 have closed ranges in L2(m̃) and L2(m1)
respectively. The analogous property for �̂b is well-known by the CR embeddability of 
X̂ into CN .

Theorem 7.1. The operator

∂̃b : Dom ∂̃b ⊂ L2(m̃) → L2
(0,1)(m̃, θ̂)

has closed range.

Proof. One simply notes that since X̂ is CR embeddable in some CN , by the result of 
[17], ∂̂b: Dom∂̂b ⊂ L2(m̂) → L2

(0,1)(m̂, θ̂) has closed range in L2
(0,1)(m̂, θ̂). By the identity 

of ∂̂b with ∂̃b as in Lemma 6.1, it follows that ∂̃b has closed range in L2
(0,1)(m̃, θ̂). �

It is now a standard matter to prove:

Theorem 7.2. The operator

�̃b : Dom �̃b ⊂ L2(m̃) → L2(m̃)

has closed range.

Proof. By Theorem 7.1, there is a constant c > 0 such that

∥∥∥∂̃bu
∥∥∥2

m̃,θ̂
≥ c ‖u‖2

m̃ , ∀u⊥Ker ∂̃b. (7.1)

Let f ∈ Dom �̃b

⋂
(Ker �̃b)⊥. It is not difficult to see that Ker �̃b = Ker ∂̃b. Thus, 

f ∈ Dom ∂̃b

⋂
(Ker ∂̃b)⊥. From this observation and (7.1), we have

‖�̃bf‖m̃ ‖f‖m̃ ≥ (�̃bf | f)m̃ = (∂̃bf | ∂̃bf)m̃,θ̂ ≥ c ‖f‖2
m̃ ,

where c > 0 is the constant as in (7.1). Thus,

‖�̃bf‖m̃ ≥ c ‖f‖m̃ , ∀f ∈ Dom �̃b

⋂
(Ker �̃b)⊥, (7.2)

where c > 0 is the constant as in (7.1). From (7.2), it is easy to see that �̃b has closed 
range. The theorem follows. �

Now we use the closed range property of ∂̃b to prove the same for ∂b,1.
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Theorem 7.3. The operator

∂b,1 : Dom ∂b,1 ⊂ L2(m1) → L2
(0,1)(m1, θ̂)

has closed range.

Proof. Let fj ∈ Dom ∂b,1, j = 1, 2, . . ., ∂b,1fj = gj ∈ L2
(0,1)(m1, θ̂), j = 1, 2, . . .. We 

assume that there is a function g ∈ L2
(0,1)(m1, θ̂) such that limj→∞ ‖gj − g‖m1,θ̂

= 0. We 

are going to show that g ∈ Ran ∂b,1. From (5.6), (5.7) and (5.2), we see that

ψ−1fj ∈ Dom ∂̃b, j = 1, 2, . . . ,

∂̃b(ψ−1fj) = ψ−1gj ∈ L2
(0,1)(m̃, θ̂), j = 1, 2, . . . ,

lim
j→∞

∥∥ψ−1gj − ψ−1g
∥∥
m̃,θ̂

= 0. (7.3)

Since ∂̃b has closed range, we can find h̃ ∈ Dom ∂̃b such that ∂̃bh̃ = ψ−1g. Put h =
ψh̃ ∈ L2(m1). From (5.6) and (5.7), we see that h ∈ Dom ∂b,1 and ∂b,1h = g. Thus, 
g ∈ Ran ∂b,1. The theorem follows. �

From Theorem 7.3, we can repeat the proof of Theorem 7.2 and conclude the proof 
of Theorem 1.3.

8. Proof of Theorem 1.4

In the last section, we have seen that �b,1 and �̃b have closed ranges in L2. Thus one 
can define the partial inverses N and Ñ of �b,1 and �̃b respectively (cf. Section 1.5). 
Furthermore, we write Π and Π̃ for the Szegö projections, which are orthogonal projec-
tions onto Ker �̃b and Ker�b,1 respectively, as in Sections 1.3 and 1.4. Our goal is to 
understand N and Π, as in Theorem 1.4. But from (5.1), (5.2) and Theorem 5.4, we 
obtain

�b,1ψÑ
1
ψ

+ ψΠ̃ 1
ψ

= I on L2(m1).

Thus we obtain (1.10), namely

N = ψÑ
1
ψ

and Π = ψΠ̃ 1
ψ
.

The analysis of N and Π then reduces to the analysis of Ñ and Π̃; in fact, to prove 
Theorem 1.4, it suffices to prove instead (1.11) and (1.12):
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Theorem 8.1. Π̃ and Ñ extend as continuous operators

Π̃: E(ρ̂−4+δ) → E(ρ̂−4+δ)

Ñ : E(ρ̂−4+δ) → E(ρ̂−2+δ)

for every 0 < δ < 2.

We will achieve this by reducing to the analogous properties of N̂ and Π̂, which we 
proved in Section 2.

The starting point is the following lemma:

Lemma 8.2. On L2(m̃), we have

Π̃(I + R̂) = Π̂, (8.1)

Ñ(I + R̂) = (I − Π̃)N̂ , (8.2)

where R̂ = g∂̂bN̂ .

Proof. First, we know that N̂ : L2(m̂) → Dom �̂b = Dom �̃b. From Theorem 6.4, we 
can check that

�̃bN̂ + Π̂ = �̂bN̂ + Π̂ + R̂ = I + R̂.

From this, we have

Π̃(I + R̂) = Π̃(�̃bN̂ + Π̂) = Π̃Π̂. (8.3)

On the other hand, we have

Π̂ = (Ñ�̃b + Π̃)Π̂ = Π̃Π̂. (8.4)

From (8.3) and (8.4), we get (8.1).
Now, from Theorem 6.4 again, we have

N̂ = (Ñ�̃b + Π̃)N̂

= (Ñ�̂b + Π̃)N̂ + ÑR̂

= Ñ(I − Π̂) + Π̃N̂ + ÑR̂

= Ñ + Π̃N̂ + ÑR̂;

in the last line we used that fact that ÑΠ̂ = 0. (8.2) then follows, and we are done. �
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We now extend the definitions of Π̃ and Ñ to E(ρ̂−4+δ), 0 < δ < 2. The problem is 
that one does not have a good inverse for (I + R̂) in (8.1) and (8.2). The key then is to 
rewrite (8.1) and (8.2) as

Π̃ = Π̂ − Π̃R̂, (8.5)

Ñ = (I − Π̃)N̂ − ÑR̂. (8.6)

Note that R̂ extends to a continuous operator

R̂: E(ρ̂−4+δ) → E(ρ̂−2+δ) ⊂ L2(m̃)

for every 0 < δ < 2, since R̂ = g∂̂bN̂ , and N̂ satisfies the analogous property. Thus 
Π̃R̂ maps E(ρ̂−4+δ) continuously to L2(m̃). Since Π̂ maps E(ρ̂−4+δ) continuously to 
E(ρ̂−4+δ), by (8.5), we have extended the domain of definition of Π̃ to E(ρ̂−4+δ). Further-
more, ÑR̂ maps E(ρ̂−4+δ) continuously to L2(m̃), and N̂ maps E(ρ̂−4+δ) continuously 
to E(ρ̂−2+δ) ⊂ L2(m̃). Thus together with the continuity of Π̃ on L2(m̃), from (8.6), we 
see that Ñ extends as a continuous map E(ρ̂−4+δ) → L2(m̃).

To proceed further, let’s write Π̂∗,m̃, N̂∗,m̃ and R̂∗,m̃ for the adjoints of Π̂, N̂ and R̂
with respect to the inner product of L2(m̃). We note that

Π̂∗,m̃ = m̂

m̃
Π̂m̃

m̂
,

N̂∗,m̃ = m̂

m̃
N̂

m̃

m̂
,

R̂∗,m̃ = m̂

m̃
N̂ ∂̂

∗
b(g∗

m̃

m̂
),

where m̃/m̂ := G2
p|ψ|2 is the density of m̃ with respect to m̂, and similarly m̂/m̃ :=

G−2
p |ψ|−2. Here g∗ is the (0, 1) form dual to g. Since m̃/m̂, m̂/m̃ ∈ E(ρ̂0), one can show 

that

Π̂∗,m̃: E(ρ̂−4+δ) → E(ρ̂−4+δ) (8.7)

N̂∗,m̃: E(ρ̂−4+δ) → E(ρ̂−2+δ) (8.8)

R̂∗,m̃: E(ρ̂−4+δ) → E(ρ̂−2+δ) (8.9)

for every 0 < δ < 2; these are easy consequences of the analogous properties of Π̂, N̂
and R̂. The problem is that it is not clear that (I + R̂∗,m̃) is invertible on E(ρ̂−4+δ); if 
it is, then we can invoke (1.18) and (1.19) and our proof of Theorem 1.4 would be much 
easier. In order to get around this problem, we introduce a cut-off χ, as was explained 
in Section 1.4; we will prove
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Theorem 8.3. Let χ ∈ C∞(X̂) with χ = 1 near p. Then

(1 − χ)Ñ , (1 − χ)Π̃ : E(ρ̂−4+δ) → C∞
0 (X)

are continuous for 0 < δ < 2.

Theorem 8.4. If the support of χ ∈ C∞(X̂) is a sufficiently small neighborhood of p, then 
(I + R̂∗,m̃χ) is invertible on L2(m̃), and extends to a linear map

(I + R̂∗,m̃χ)−1: E(ρ̂−4+δ) → E(ρ̂−4+δ)

for every 0 < δ < 4.

Assuming these for the moment. Then one can finish the proof of Theorem 8.1 using 
(1.23) and (1.24) as explained in Section 1.4 shortly after these identities. Theorem 1.4
then follows from (1.10) and Theorem 8.1. We omit the details.

We now turn to the proofs of the theorems above.

Proof of Theorem 8.4. First, observe that

I + R̂∗,m̃χ = m̂

m̃
(I + N̂ ∂̂

∗
bχg

∗)m̃
m̂
,

and m̃/m̂, m̂/m̃ ∈ E(ρ̂0). Thus it suffices to prove that I + N̂ ∂̂
∗
bχg

∗ is invertible on 
L2(m̃), and extends to a linear map

(I + N̂ ∂̂
∗
bχg

∗)−1: E(ρ̂−4+δ) → E(ρ̂−4+δ)

for every 0 < δ < 4. But this follows from Theorem 3.1, since χg∗ ∈ E(ρ̂, Λ0,1T ∗X̂) has 
compact support in a sufficiently small neighborhood of p. Thus we are done. �
Proof of Theorem 8.3. We need to recall the Kohn Laplacian �̂b,ε := ∂̂

∗
b,ε∂̂b,ε with respect 

to the volume form mε := ηεm̂ + (1 − ηε)m̃ as described in Section 1.4. First

m̂ε

m̃
= ηεG

−2
p |ψ|−2 + (1 − ηε) = ηε(1 + a) + (1 − ηε) = 1 + ηεa.

The upshot is that ηεa ∈ E(ρ̂2, T 0,1X̂) has compact support near p. Thus if we follow the 
construction in Section 6, there will exist some gε ∈ E(ρ̂1, T 0,1X̂) (possibly non-smooth 
near p) such that

�̃bu = �̂b,εu + gε∂̂bu, ∀u ∈ Dom �̃b; (8.10)
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in addition gε will be compactly supported in the support of ηε. It is known that �̂b,ε

has closed range in L2(m̂ε). Thus one can define the partial inverse N̂ε of �̂b,ε, as well 
as the Szegö projection Π̂ε onto the kernel of �̂b,ε, such that

�̂b,εN̂ε + Π̂ε = I.

One can then repeat the proof of Lemma 8.2, and show that

Π̃(I + R̂ε) = Π̂ε (8.11)

Ñ(I + R̂ε) = (I − Π̃)N̂ε (8.12)

on L2(m̃), where

R̂ε := gε∂̂b,εN̂ε.

Now we write Π̂∗,m̃
ε , N̂∗,m̃

ε and R̂∗,m̃
ε for the adjoints of Π̂ε, N̂ε and R̂ε with respect to 

L2(m̃). By taking adjoints of (8.11) and (8.12), and multiplying by (1 − χ), it follows 
that

(1 − χ)Π̃ = (1 − χ)Π̂∗,m̃
ε − (1 − χ)R̂∗,m̃

ε Π̃, (8.13)

(1 − χ)Ñ = (1 − χ)N̂∗,m̃
ε (I − Π̃) − (1 − χ)R̂∗,m̃

ε Ñ . (8.14)

But

(1 − χ)R̂∗,m̃
ε = m̂ε

m̃
(1 − χ)N̂ε∂̂

∗
b,εg

∗
ε

m̃

m̂ε
,

and if ε is chosen sufficiently small (so that the support of gε is disjoint from that of 
1 − χ), then (1 − χ)N̂ε∂̂

∗
b,εg

∗
ε is an infinitely smoothing pseudodifferential operator, by 

pseudolocality of N̂ε. Hence the last term of (8.13), and also the last term of (8.14), map 
E(ρ̂−4+δ) into C∞

0 (X). Since for every 0 < ε < 1 and every 0 < δ < 2,

Π̂∗,m̃
ε = m̂ε

m̃
Π̂ε

m̃

m̂ε
: E(ρ̂−4+δ) → E(ρ̂−4+δ),

and

N̂∗,m̃
ε = m̂ε

m̃
N̂ε

m̃

m̂ε
: E(ρ̂−4+δ) → E(ρ̂−2+δ),

it follows from (8.13) that (1 −χ)Π̃ maps E(ρ̂−4+δ) continuously into C∞
0 (X) as desired. 

This then implies the corresponding result for (1 −χ)Ñ by (8.14), and we are done. �
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9. Proof of Theorem 1.5

In this section, we will complete the proof of Theorem 1.5. To begin with, we have 
the following lemma:

Lemma 9.1. If α ∈ E(ρ̂0, Λ0,1T ∗X̂), then ∂∗
b,1α ∈ E(ρ̂−1), and

Π∂∗
b,1α = 0.

Proof. Given α ∈ E(ρ̂0, Λ0,1T ∗X̂), and any γ ∈ (0, 1), there exists a sequence of smooth 
and compactly supported αj ∈ Ω0,1

0 (X) such that

αj → α in E(ρ̂−γ ,Λ0,1T ∗X̂).

Then

∂∗
b,1αj → ∂∗

b,1α in E(ρ̂−1−γ ,Λ0,1T ∗X̂),

so by continuity of Π on E(ρ̂−1−γ , Λ0,1T ∗X̂), we have

Π∂∗
b,1α = lim

j→∞
Π∂∗

b,1αj .

But the right hand side here is zero, since

Π∂∗
b,1 = 0 on Dom ∂∗

b,1,

and αj ∈ Dom ∂∗
b,1 for all j. Hence we are done. �

Now to prove of Theorem 1.5, suppose f = G2
pF and F = �bβ̃ as in Section 1.3, where

β̃ = β0 + β1, β0 = χ(z, t) iz̄

|z|2 − it
∈ E(ρ̂−1), β1 ∈ E(ρ̂1).

Then f = �b,1β̃. Our goal is to compute Πf = Π∂∗
b,1(∂b,1β̃). The problem is that ∂b,1β̃

is not in E(ρ̂0, Λ0,1T ∗X̂); otherwise we could simply apply the above lemma to conclude. 
Nevertheless, we will write ∂b,1β̃ as the sum of a main term and an error, where the error 
is in E(ρ̂0, Λ0,1T ∗X̂), and the ∂∗

b,1 of the main term can be approximated in E(ρ̂−1) by 

the ∂∗
b,1 of some forms in E(ρ̂0, Λ0,1T ∗X̂). Then we can conclude using the lemma, and 

the continuity of Π on E(ρ̂−1).
To begin with, note that

∂b,1β̃ = χ∂b,1
iz̄
2 + (∂b,1χ) iz̄

2 + ∂b,1β1,
|z| − it |z| − it
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and the last two terms are in E(ρ̂0, Λ0,1T ∗X̂). Thus the key is to compute the first term. 
Suppose we pick a local section Ẑ1 of T 1,0X̂ near p, with 〈Ẑ1|Ẑ1〉θ̂ = 1, such that Ẑ1
admits the expansion (1.31) in CR normal coordinates (z, t) near p. We also write Ẑ1̄ for 
Ẑ1, and Ẑ 1̄ for the dual (0, 1) form of Ẑ1̄. Then by the expansion (1.31) of Ẑ1, we have

χ∂b,1
iz̄

|z|2 − it
= χẐ1̄

(
iz̄

|z|2 − it

)
Ẑ 1̄ = −iχ

|z|2 + it

(|z|2 − it)2 Ẑ
1̄ + error,

where the error is in E(ρ̂0, Λ0,1T ∗X̂). Thus

∂b,1β̃ = −iχ
|z|2 + it

(|z|2 − it)2 Ẑ
1̄ + error,

where the first term is in E(ρ̂−2, Λ0,1T ∗X̂), and the error is in E(ρ̂0, Λ0,1T ∗X̂).
To proceed further, we write

m1 = G2
pθ̂ ∧ dθ̂ = 2iv(z, t)dt ∧ dz̄ ∧ dz

for some function v(z, t) near p. Then by the expansion (1.5) of Gp and the expansion 
(1.33) of θ̂, we have

v(z, t) = 1
4π2ρ̂4 + A

πρ̂2 + error in E(ρ̂−1).

Now we define a (0, 1) form

α0 := −2πiχv−1ψ−3Ẑ 1̄

near p. Then using the expansion (4.14) of ψ, we get

−iχ
|z|2 + it

(|z|2 − it)2 Ẑ
1̄ = α0 + error in E(ρ̂0,Λ0,1T ∗X̂).

It follows that

∂b,1β̃ = α0 + E,

where α0 is the main term in E(ρ̂−2, Λ0,1T ∗X̂), and E is an error term in E(ρ̂0, Λ0,1T ∗X̂).
Recall our goal was to compute Πf = Π∂∗

b,1(∂b,1β̃). But by Lemma 9.1,

Π∂∗
b,1E = 0.

Thus it suffices to compute Π∂∗
b,1α0. Now define, for ε > 0,

αε := −2πiχv−1ψ−2(ψ + ε)−1Ẑ 1̄.
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Then

αε ∈ E(ρ̂0,Λ0,1T ∗X̂) (9.1)

for all ε > 0, since by Theorem 4.4, Re ψ ≥ 0, which implies ψ + ε 
= 0 on X. By (1.31), 
there exists some s ∈ E(ρ̂3) such that

∂∗
b,1(hẐ 1̄) = (−Ẑ1 −

Ẑ1v

v
+ s)h

for all h ∈ C∞(X). But Ẑ1ψ = 0 on X. Thus

∂∗
b,1α0 = −2πisχv−1ψ−3 + 2πi(Ẑ1χ)v−1ψ−3 on X.

Similarly,

∂∗
b,1αε = −2πisχv−1ψ−2(ψ + ε)−1 + 2πi(Ẑ1χ)v−1ψ−2(ψ + ε)−1 on X.

It follows that

∂∗
b,1αε → ∂∗

b,1α0 in E(ρ̂−1).

From (9.1) and Lemma 9.1, we then have

Π∂∗
b,1α0 = lim

ε→0
Π∂∗

b,1αε = 0.

This completes the proof of Theorem 1.5.
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Appendix A. The Green’s function of the conformal Laplacian

Assume, as in Section 1.1, that X̂ is a compact pseudohermitian 3-manifold of positive 
Tanaka–Webster class. In order to apply our results to the positive p-mass theorem 
in [5], one needs to check that the Green function Gp for the conformal sublaplacian 
Lb := −4�b + R at p satisfies (1.1) under the assumption that the Tanaka–Webster 
curvature R is positive on X. This can be done by using an argument similar to the one 
in Theorem 2.4.
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We recall that �b denotes the sublaplacian on X. It was shown in Section 5 of [5]
that Gp has the form: Gp = 1

2πρ̂2 + ω, where ω ∈ C1(X̂) and ω satisfies the equation

Lbω = g̃, g̃ ∈ E(ρ̂0). (A.1)

It is obvious that Gp satisfies (1.1) if ω − ω(p) ∈ E(ρ̂). We are going to prove that 
ω − ω(p) ∈ E(ρ̂).

First we extend Lb to

Lb: Dom (Lb) ⊂ L2(m̂) → L2(m̂)

in the standard way. Note that Lb = −4�b +R is subelliptic, self-adjoint and −4�b +R

has L2 closed range. Since the conformal sublaplacian is conformally invariant, and 
the Tanaka–Webster curvature R can be made positive on X via a conformal change 
of the contact form, it follows that Lb: Dom (Lb) ⊂ L2(m̂) → L2(m̂) is injective. Let 
H : L2(m̂) → Dom (Lb) be the inverse of Lb. We have

LbH = I on L2(m̂),

HLb = I on Dom (Lb). (A.2)

We can repeat the L2 estimates of Kohn and show that for every k ∈ N0, there is a 
constant ck > 0 such that

∥∥∥∇̂k+2
b Hu

∥∥∥
m̂

≤ ck

∥∥∥∇̂k
bu
∥∥∥
m̂
, ∀u ∈ C∞(X̂), (A.3)

and the distribution kernel H(x, y) of H is C∞ away from the diagonal.
Now, we claim that H is a smoothing operator of order 2. Let B(x, r) be a small ball 

and let (x1, x2, x3) be local coordinates on B(x, r). We first observe that for any smooth 
function f with support in B(x, r), we have

‖f(x)‖L∞(B(x,r)) ≤ c0

∫
B(x,2r)

∣∣∣∣ ∂3f

∂x1∂x2∂x3
(x)

∣∣∣∣ m̂(x)

≤ c1

∫
B(x,2r)

∣∣∣∇̂4
bf(x)

∣∣∣ m̂(x), (A.4)

where c0 > 0 and c1 > 0 are constants independent of f and r. Let φ be a normalized 
bump function in the ball B(x, r) and let k ∈ N0. From (A.3) and (A.4), we have
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∥∥∥∇̂k
bHφ

∥∥∥
L∞(B(x,r))

≤ c1

4∑
j=0

rj−4
∫

B(x,2r)

∣∣∣(∇̂k+j
b Hφ)(x)

∣∣∣ m̂(x)

≤ c2

4∑
j=0

rj−2
∥∥∥∇̂k+j

b Hφ
∥∥∥
m̂

≤ c̃k

4∑
j=0

rj−2
∥∥∥∇̂k+j−2

b φ
∥∥∥
m̂

≤ ĉkr
2−k, (A.5)

where c1 > 0, c2 > 0, c̃k > 0 and ĉk > 0 are constants independent of r, φ and x. Thus, 
H satisfies the cancellation property for a smoothing operator of order 2. From (A.5)
and (A.3), we can repeat the methods as in Christ [6,7] and Koenig [15] and conclude 
that for all multi-indices α1, α2, we have,

|(∇α1
b )x(∇α2

b )yH(x, y)| ≤ Cαϑ(x, y)−2−|α|, ∀(x, y) ∈ X̂ × X̂, x 
= y, (A.6)

where Cα > 0 is a constant. This shows that H is a smoothing operator of order 2.
Now, we are ready to prove that ω − ω(p) ∈ E(ρ̂). From (A.1) and (A.2), we have 

ω = Hg̃. Fix k ∈ N0 and fix a point x0 
= p, x0 is in some small neighborhood W of p. 
Let r = 1

4ϑ(x0, p), and η be a normalized bump function supported in B(x0, r), with 
η = 1 on B(x0, r/2). Then,

|∇̂k+1
b ω(x0)| = |∇̂k+1

b Hg̃(x0)| ≤ |∇̂k+1
b H(ηg̃)(x0)| + |∇̂k+1

b H((1 − η)g̃)(x0)|

and ηg̃(x) is a normalized bump function on B(x0, r). So by (A.5), we see that

|∇̂k+1
b H(ηg̃)(x0)| ≤ Ckr

1−k, (A.7)

where Ck > 0 is a constant independent of x0 and r. By using (A.6), ∇̂k+1
b H((1 −η)g̃)(x0)

can be estimated by writing out the integral directly:

∇̂k+1
b H((1 − η)g̃)(x0) =

∫
(∇̂k+1

b H)(x0, y)(1 − η)(y)g̃(y)m̂(y),

this integral is dominated by

Dk

∫
ϑ(y,x0)≥ 1

2 r

ϑ(y, x0)−3−km̂(y) ≤ Ekr
−k

∫
X̂

ϑ(y, x0)−3m̂(y) ≤ Fkr
−k, (A.8)

where Dk > 0, Ek > 0 and Fk > 0 are constants independent of the point x0 and r. 
From (A.7) and (A.8), we conclude that ∇̂bω ∈ E(ρ̂0) and hence ω − ω(p) ∈ E(ρ̂).
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Appendix B. Subelliptic estimates for ∂b

In this appendix we present a proof of Propositions 2.5 and 2.6. As is well-known, 
the crux of the matter is to prove a normalized subelliptic estimate on a unit cube, and 
rescale to a ball of radius r. It is this normalized subelliptic estimate we will focus on 
below.

Suppose on R3, T = ∂
∂x3

, and on the cube Q2 := (−2, 2)3, there is a (complex) vector 
field Z such that [Z,Z] = −iT + bZ + bZ and [Z, T ] = cZ + dZ + eT . Fix a sequence 
of positive numbers ck. The only assumptions we make on b, c, d and e are that they are 
C∞ on Q2, and that their Ck norms are bounded by ck for all k.

We also need to assume the following condition on Z: Write Z =
∑3

i=1 Ai(x) ∂
∂xi

on Q2. Then the only assumption we make on the Ai’s is that |Ai(x)| ≤ 1.
Note that Z and Z are only defined on Q2. They will never hit any function that is 

not supported in Q2, whereas T could hit a function that is defined on all of R3.
Suppose also that we have a smooth contact form θ on Q2, so that θ(T ) = 1, and 

θ(Z) = θ(Z) = 0 on Q2. One then has a measure θ ∧ dθ on Q2. We also assume that 
the formal adjoint of Z with respect to L2(θ ∧ dθ) on Q2 is given by −Z + a for some 
C∞ function a, where again the only assumption on a is that its Ck norm is bounded 
by ck for all k. Similarly for the adjoint of Z. We also assume that on Q2, θ ∧ dθ = ρ2dx

where dx = dx1dx2dx3 is the Lebesgue measure on R3 and ρ is a positive smooth function 
on Q2. The only assumptions on ρ are that c−1

0 ≤ ρ ≤ 1 and that its C1 norm is bounded 
by c1. There are no other assumptions on θ.

We shall also fix two functions η, η̃ such that they are C∞
c with support in Q2, 

identically equal to 1 on Q1 := (−1, 1)3, and η̃ ≡ 1 on a neighborhood of the support 
of η.

Write ∇bu for (Zu,Zu). We claim the following proposition:

Proposition B.1. For all functions u ∈ C∞(Q2) and k ≥ 1, we have

‖∇k
b (ηu)‖ ≤ Ck

(
‖∇k−1

b Z(η̃u)‖ + ‖η̃u‖ + ‖η̃v‖
)

where v is any solution to the equation Zv = u on Q2, all norms are L2(θ ∧ dθ) norms, 
and Ck depends only on the chosen sequence ck and on η, η̃ (but not otherwise on the 
vector fields, the coefficients a, b, c, d, e, Ai or θ).

We remark that if we have Zv + αv = u instead of Zv = u, where α is a fixed 
C∞ function on Q2, then the above theorem still holds. See the end of this section for 
a discussion about that. Propositions 2.5 and 2.6 now follow easily by a well-known 
rescaling procedure. We omit the details.

To prove Proposition B.1, recall on R3 we have the Lebesgue measure dx = dx1dx2dx3, 
and there is the Fourier transform defined by û(ξ) =

∫
u(x)e−2πixξdx. Let Ψ+ be a 

smooth function of ξ, such that it is (Euclidean) homogeneous of degree 0 outside the 
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unit ball {|ξ| ≤ 1}, equal to 1 on {ξ3 > 2ε0(|ξ1| + |ξ2|)} there, and equal to 0 on 
both {ξ3 < ε0(|ξ1| + |ξ2|)} ∩ {|ξ| > 1} and {|ξ| ≤ 1

2}. Here ε0 is a small positive 
absolute constant to be chosen. Let Ψ−(ξ) = Ψ+(ξ1, ξ2, −ξ3), and Ψ0 = 1 − Ψ+ − Ψ−. 
Let Λ+, Λ0, Λ− be the Fourier multipliers corresponding to Ψ+, Ψ0, Ψ− respectively. For 
instance, if U is a function on R3, then Λ̂+U(ξ) := Ψ+(ξ)Û(ξ). Then Λ+ + Λ0 + Λ− is 
the identity operator on L2(dx).

We shall also fix a sequence of C∞ functions Ψ+
0 , Ψ

+
1 , Ψ

+
2 , . . . of ξ, with Ψ+

0 = Ψ+, such 
that each Ψ+

k is (Euclidean) homogeneous of degree 0 outside the unit ball {|ξ| ≤ 1}, 
equal to 1 on a neighborhood of the support of Ψ+

k−1, and equal to 0 on both {ξ3 <

(1/2)ε0(|ξ1| + |ξ2|)} ∩{|ξ| > 1} and {|ξ| ≤ 1
4}. We shall denote the corresponding Fourier 

multipliers Λ+
k . Note Λ+

k Λ+
k−1 = Λ+

k−1 for all k ≥ 1.
In addition, we fix a Fourier multiplier operator Λ̃−, with symbol Ψ̃− that is supported 

on {ξ3 < 0}, such that Λ̃−Λ− = Λ−.
Finally, we fix a sequence of C∞

c functions η0, η1, η2, . . ., with η0 = η, such that each 
ηk has support in Q2, ηk+1 ≡ 1 on a neighborhood of the support of ηk for all k, and 
η̃ ≡ 1 on the support of ηk for all k.

Now suppose we are given u ∈ C∞(Q2). We write u+ for η1Λ+(ηu), and similarly u0

and u−. Note that then ηu = u+ + u0 + u−.

B.1. Estimate for u−

First we prove that for any k ≥ 1,

‖∇k
bu

−‖ ≤ Ck

(
‖∇k−1

b Zu−‖ + ‖ηu‖
)
. (B.1)

A useful lemma is the following:

Lemma B.2. For every k ≥ 1, there exist Euclidean pseudodifferential operators S−1 and 
S−k, smoothing of orders 1 and k respectively, so that

u− = Λ̃−u− + S−1u
− + S−k(ηu).

Here a Euclidean pseudodifferential operator is said to be smoothing of order k, if its 
symbol is in the Hörmander class S−k

1,0 .

Proof. To see this, write

u− = η1Λ−ηu

= η1Λ̃−η2Λ−ηu + η1Λ̃−(1 − η2)Λ−ηu

= Λ̃−η1Λ−ηu + [η1, Λ̃−]η2Λ−ηu + η1Λ̃−(1 − η2)Λ−ηu. (B.2)

The last term here is S−k(ηu) for some (Euclidean) pseudodifferential operator that is 
smoothing of order k, because one can pick some C∞

c function ζ such that ζ ≡ 1 on 
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the support of η and η1 ≡ 1 on the support of ζ; this is possible because η1 ≡ 1 on a 
neighborhood of the support of η. Then writing ηu as ζηu, and commuting the ζ past 
Λ− to hit (1 − η2), the last term above is just

η1Λ̃−(1 − η2)[[[Λ−, ζ], ζ], . . . , ζ](ηu) = S−k(ηu).

With the same choice of ζ, the second term in (B.2) can be written as

[η1, Λ̃−]η2η1Λ−ηu + [η1, Λ̃−]η2(1 − η1)Λ−ηu = [η1, Λ̃−]u− + [η1, Λ̃−]η2(1 − η1)Λ−ηu,

and by the same argument above, the last term here is a pseudodifferential operator of 
order −k acting on ηu. It follows that this second term in (B.2) is of the form S−1u

− +
S−k(ηu). Finally, the first term in (B.2) is just Λ̃−u−. This completes our proof of this 
lemma. �

Also, to prove (B.1), it suffices to prove that

‖∇k
bu

−‖ ≤ Ck

(
k−1∑
l=0

‖∇l
bZu−‖ + ‖ηu‖

)
, (B.3)

in view of the following interpolation inequality:

Lemma B.3. If k ≥ 1, then

‖∇l
bZu‖2 ≤ Ck

(
‖∇k−1

b Zu‖2 + ‖u‖2)
for all 0 ≤ l ≤ k − 1, for any function u that is smooth and compactly supported in Q2.

Proof. One proves, by induction on l beginning at l = 0, that for any ε > 0, there exists 
Ck,ε such that

‖∇l
bZu‖2 ≤ ε

k−1∑
j=0

‖∇j
bZu‖2 + Ck,ε‖u‖2

for all 0 ≤ l ≤ k − 2. The key is that

(∇l
bZu,∇l

bZu) = (∇l−1
b Zu,∇l+1

b Zu) + O(‖∇l−1
b u‖‖∇l

bu‖)

≤ ε(‖∇l+1
b Zu‖2 + ‖∇l

bZu‖2) + Cl,ε‖∇l−1
b Zu‖2.

Once this is established, the lemma follows easily by summing over l. �
Now, to prove (B.3), we proceed by induction on k.
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When k = 1, it suffices to bound ‖Zu−‖2. Denote (·, ·) the inner product in L2(θ∧dθ). 
Then

‖Zu−‖2 = −(ZZu−, u−) + O(‖u−‖‖∇bu
−‖)

= −(ZZu−, u−) − (iTu−, u−) + O(‖u−‖‖∇bu
−‖)

= ‖Zu−‖2 − (iTu−, u−) + O(‖u−‖‖∇bu
−‖).

Now (iTu−, u−) = 〈ρiTu−, ρu−〉, where 〈·, ·〉 is the L2 inner product with respect to the 
Lebesgue measure dx. Hence

(iTu−, u−) = 〈iTρu−, ρu−〉 + O(‖u−‖2).

Also, by the above lemma,

ρu− = Λ̃−ρu− + [ρ, Λ̃−]u− + ρS−1u
− + ρS−1(ηu)

= Λ̃−ρu− + S−1u
− + S−1(ηu).

So

(iTu−, u−) = 〈iT Λ̃−ρu−, Λ̃−ρu−〉 + 〈iT Λ̃−ρu−, S−1u
−〉

+ 〈iT Λ̃−ρu−, S−1(ηu)〉 + O(‖u−‖2) + O(‖ηu‖2).

But the second and third terms are O(‖u−‖2) + O(‖ηu‖2) (one just needs to integrate 
by parts in T and let T fall on S−1), and the first term is

〈iT Λ̃−ρu−, Λ̃−ρu−〉 =
∫

−2πξ3|Ψ̃−(ξ)|2|ρ̂u−(ξ)|2dξ

which is non-negative since ξ3 < 0 on the support of Ψ̃−. Hence altogether

‖Zu−‖2 ≤ C‖Zu−‖2 + O(‖u−‖2) + O(‖ηu‖2) + O(‖u−‖‖∇bu
−‖),

and using ‖u−‖‖∇bu
−‖ ≤ δ‖∇bu

−‖2 + δ−1‖u−‖2 and ‖u−‖2 ≤ C‖ηu‖2, we get

‖Zu−‖2 ≤ C(‖Zu−‖2 + ‖ηu‖2)

as desired.
Next, suppose (B.3) has been proved for k − 1 for some k ≥ 2. We prove the same 

estimate for k. To do so, we first prove that for all 0 ≤ m ≤ �k
2 � and all ε > 0, there 

exists Cε such that
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‖Tm∇k−2m
b u−‖2

≤ ε‖∇k
bu

−‖2 + Cε

(
‖∇k−1

b Zu−‖2 +
k−1∑
l=0

‖∇l
bu

−‖2 + ‖ηu‖2

)
. (B.4)

In fact the desired inequality (B.1) for k follows readily from the above inequality when 
m = 0.

To prove (B.4), we proceed in two steps. First, we prove that for all 0 ≤ m ≤ �k2 � and 
all ε > 0, there exists Cε such that

‖TmZk−2mu−‖2

≤ ε‖∇k
bu

−‖2 + Cε

(
‖∇k−1

b Zu−‖2 +
k−1∑
l=0

‖∇l
bu

−‖2 + ‖ηu‖2

)
. (B.5)

Next, we prove by induction on m, beginning from m that is as large as possible, that 
(B.4) holds.

In the first step, there are two cases: either k − 2m = 0 (which occurs only when k is 
even), or k − 2m ≥ 1.

In the first case, we need to estimate ‖Tmu−‖2. Now m ≥ 1, and

‖Tmu−‖2

= (Tmu−, i(ZZ − ZZ)Tm−1u−) + O(‖Tmu−‖‖∇k−1
b u−‖)

= −(Tmu−, iZZTm−1u−) + (Tmu−, iZTm−1Zu−) + O(‖Tmu−‖
k−1∑
l=0

‖∇l
bu

−‖)

= −(Tmu−, iZZTm−1u−) + O(‖Tmu−‖‖∇k−1
b Zu−‖) + O(‖Tmu−‖

k−1∑
l=0

‖∇l
bu

−‖).

But

(Tmu−, iZZTm−1u−)

= (iT (ZTm−1u−), ZTm−1u−) + O(‖Tmu−‖‖∇k−1
b u−‖) + O(‖∇k−1

b u−‖2)

= 〈iT (ρZTm−1u−), ρZTm−1u−〉 + O(‖Tmu−‖‖∇k−1
b u−‖) + O(‖∇k−1

b u−‖2).

Also by Lemma B.2,

ρZTm−1u−

= Λ̃−(ρZTm−1u−) + [ρZTm−1, Λ̃−]u− + ρZTm−1S−1(u−) + ρZTm−1S−k(ηu)

= Λ̃−(ρZTm−1u−) + S−1

k−1∑
∇l

bu
− + S−1(ηu).
l=0
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Hence

〈iT (ρZTm−1u−), ρZTm−1u−〉

= 〈iT Λ̃−(ρZTm−1u−), Λ̃−(ρZTm−1u−)〉 + 〈iT Λ̃−(ρZTm−1u−), S−1

k−1∑
l=0

∇l
bu

−〉

+ 〈iT Λ̃−(ρZTm−1u−), S−1(ηu)〉 + O(
k−1∑
l=0

‖∇l
bu

−‖2) + O(‖ηu‖2),

where the first term is non-negative, and the second and third terms are
O(
∑k−1

l=0 ‖∇l
bu

−‖2) + O(‖ηu‖2) after integrating by parts in T . Altogether, we get

‖Tmu−‖2 ≤ ε‖∇k
bu

−‖2 + Cε

(
‖∇k−1

b Zu−‖2 +
k−1∑
l=0

‖∇l
bu

−‖2 + ‖ηu‖2

)

as desired.
Next, in the second case, we need to estimate ‖TmZk−2mu−‖2 when k−2m ≥ 1. The 

strategy is the same as the one when we dealt with the case when k = 1 and m = 0. One 
observes that

‖TmZk−2mu−‖2

= −(TmZZk−2mu−, TmZk−2m−1u−) + O(
k−1∑
l=0

‖∇l
bu

−‖‖∇k
bu

−‖) + O(
k−1∑
l=0

‖∇l
bu

−‖2)

= −(TmZk−2mZu−, TmZk−2m−1u−)

− (k − 2m)(iT (TmZk−2m−1u−), TmZk−2m−1u−)

+ O(
k−1∑
l=0

‖∇l
bu

−‖‖∇k
bu

−‖) + O(
k−1∑
l=0

‖∇l
bu

−‖2)

= ‖TmZk−2m−1Zu−‖2 − [2(k − 2m) − 1]〈iT (ρTmZk−2m−1u−), ρTmZk−2m−1u−〉

+ O(
k−1∑
l=0

‖∇l
bu

−‖‖∇k
bu

−‖) + O(
k−1∑
l=0

‖∇l
bu

−‖2).

Now [2(k − 2m) − 1] > 0, and by Lemma B.2,

ρTmZk−2m−1u− = Λ̃−(ρTmZk−2m−1u−) + [ρTmZk−2m−1, Λ̃−]u−

+ ρTmZk−2m−1S−1(u−) + ρTmZk−2m−1S−k(ηu)

= Λ̃−(ρTmZk−2m−1u−) + S−1

k−1∑
∇l

bu
− + S−1(ηu).
l=0
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Hence

〈iT (ρTmZk−2m−1u−), ρTmZk−2m−1u−〉

= 〈iT Λ̃−(ρTmZk−2m−1u−), Λ̃−(ρTmZk−2m−1u−)〉

+ 〈iT Λ̃−(ρTmZk−2m−1u−), S−1

k−1∑
l=0

∇l
bu

−〉

+ 〈iT Λ̃−(ρTmZk−2m−1u−), S−1(ηu)〉 + O(
k−1∑
l=0

‖∇l
bu

−‖2) + O(‖ηu‖2),

where the first term is non-negative, and the second and third terms are
O(
∑k−1

l=0 ‖∇l
bu

−‖2) + O(‖ηu‖2) after integrating by parts in T . Altogether,

‖TmZk−2mu−‖2 ≤ ε‖∇k
bu

−‖2 + Cε

(
‖∇k−1

b Zu−‖2 +
k−1∑
l=0

‖∇l
bu

−‖2 + ‖ηu‖2

)

as desired. This finishes our first step in proving (B.4).
Now to complete the proof of (B.4), we proceed by induction on m, beginning with 

m that is as big as possible. In that case k− 2m is either 0 or 1. Both cases follow right 
away by what we have proved above in the first step. Now we prove the inequality (B.4)
for m, assuming the inequality has been proved for all strictly bigger m’s. Then we need 
to estimate ‖Tm∇k−2m

b u−‖2. Consider Tm∇k−2m
b u−. If all the ∇b’s are Z, then this 

follows again from what we have proved above. If one of the ∇b’s is Z, then one only 
needs to commute the Z all the way through the other ∇b’s to get Tm∇k−2m−1

b Zu−, up 
to an error that either has fewer ∇b derivatives, or an error of the form Tm+1∇k−2m−2

b u−. 
For example,

‖TmZ∇k−2m−1
b u−‖2

= ‖Tm∇k−2m−1
b Zu−‖2 + O(‖Tm+1∇k−2m−2

b u−‖2) + O(
k−1∑
l=0

‖∇l
bu

−‖2).

The first error term can then be estimated by our induction hypothesis on m. Hence

‖TmZ∇k−2m−1
b u−‖2 ≤ ε‖∇k

bu
−‖2 + Cε

(
‖∇k−1

b Zu−‖2 +
k−1∑
l=0

‖∇l
bu

−‖2 + ‖ηu‖2

)
.

This completes the proof of (B.4), and thus the proof of (B.1).
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B.2. Estimate for u0

Next we prove that for any k ≥ 1 and any ε > 0,

‖∇k
bu

0‖ ≤ ‖∇k−1
b Zu0‖2 + ε‖∇k

b (ηu)‖2 + Ck,ε

k−1∑
l=0

‖∇l
b(ηu)‖. (B.6)

We proceed by induction on k exactly as before.
When k = 1, we only need to estimate |(iTu0, u0)|. But

|(iTu0, u0)| ≤ ε‖Tu0‖2 + ε−1‖ηu‖2,

and

‖Tu0‖2 ≤ ‖TΛ0(ρηu)‖2 + C‖ηu‖2.

Taking Fourier transform,

‖TΛ0(ρηu)‖2 ≤
∫

(1 + 2ε2
0(|ξ1|2 + |ξ2|2))| ̂Λ0(ρηu)(ξ)|2dξ

≤ 2ε2
0

(∥∥∥∥ ∂

∂x1
Λ0(ρηu)

∥∥∥∥2

+
∥∥∥∥ ∂

∂x2
Λ0(ρηu)

∥∥∥∥2
)

+ ‖ηu‖2

≤ 2ε2
0

(∥∥∥∥ ∂

∂x1
η1Λ0(ρηu)

∥∥∥∥2

+
∥∥∥∥ ∂

∂x2
η1Λ0(ρηu)

∥∥∥∥2
)

+ ‖ηu‖2.

(The last line follows since ρηu = η1ρηu and one can commute the η1 past Λ0 to obtain 
a better error.)

Now the key observation is that on Q2, ∂
∂x1

and ∂
∂x2

can be written as linear combina-
tions of Z, Z and T with coefficients that are bounded by an absolute constant. In fact 
we only need to bound the coefficients of the inverse of the matrix whose first column 
is (A1, A2, A3), the second column is the conjugate of the first, and the third column is 
(0, 0, 1). From θ ∧ dθ(Z,Z, T ) = dθ(Z,Z) = −θ(Z,Z) = θ(iT ) = i, θ ∧ dθ = ρ2dx, and 
ρ ≤ 1, we have |dx(Z,Z, T )| ≥ 1, i.e. the determinant of the matrix to be inverted is 
bounded below by 1. Together with the assumed bounds on the Ai’s, we obtain our key 
observation.

Hence, continuing from above,

‖TΛ0(ρηu)‖2 ≤ C0ε
2
0

(∥∥∇bΛ0(ρηu)
∥∥2 +

∥∥TΛ0(ρηu)
∥∥2
)

+ ‖ηu‖2,

which implies
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‖TΛ0(ρηu)‖2 ≤ C
∥∥∇bΛ0(ρηu)

∥∥2 + ‖ηu‖2

≤ C(‖∇b(ηu)‖2 + ‖ηu‖2)

if ε0 was chosen to be sufficiently small. One then completes the proof of the case k = 1
as before.

Next, we prove by induction on m the following for any ε > 0:

‖Tm∇k−2m
b u0‖2 ≤ Cε

(
‖∇k−1

b Zu0‖2 +
k−1∑
l=0

‖∇l
b(ηu)‖2

)
+ ε‖∇k

b (ηu)‖2. (B.7)

First, suppose k − 2m = 0. Then we need only estimate |(iTZTm−1u0, ZTm−1u0)|. 
One certainly has

|(iTZTm−1u0, ZTm−1u0)| ≤ ε‖TZTm−1u0‖2 + ε−1
k−1∑
l=0

‖∇l
b(ηu)‖2.

To estimate ‖TZTm−1u0‖2, we write TZTm−1u0 = TΛ0ZTm−1(ηu) + T [ZTm−1η1,

Λ0](ηu). The second term is bounded by

k∑
l=0

‖∇l
b(ηu)‖.

The first term satisfies

‖TΛ0ZTm−1(ηu)‖2 ≤ ‖∇k−1
b (ηu)‖2 + C0ε

2
0‖∇bΛ0ZTm−1(ηu)‖2

+ C0ε
2
0‖TΛ0ZTm−1(ηu)‖2,

from which it follows that

‖TΛ0ZTm−1(ηu)‖2 ≤ ‖∇k−1
b (ηu)‖2 + C‖∇bΛ0ZTm−1(ηu)‖2

≤ C‖∇k−1
b (ηu)‖2 + C‖∇k

b (ηu)‖2

by our choice of ε0. Hence

|(iTZTm−1u0, ZTm−1u0)| ≤ ε‖∇k
b (ηu)‖2 + Cε

k−1∑
l=0

‖∇l
b(ηu)‖2

and one finishes the proof for the case k − 2m = 0 as before.
Next, when k − 2m = 1, we need to estimate |(iTTmu0, Tmu0)|. One certainly has

|(iTTmu0, Tmu0)| ≤ ε‖Tm+1u0‖2 + ε−1
k−1∑

‖∇l
b(ηu)‖2.
l=0



C.-Y. Hsiao, P.-L. Yung / Advances in Mathematics 281 (2015) 734–822 813
To estimate ‖Tm+1u0‖2, we write Tm+1u0 = TΛ0Tm(ηu) +T [Tmη1, Λ0](ηu). The second 
term is bounded by

k∑
l=0

‖∇l
b(ηu)‖.

The first term satisfies

‖TΛ0Tm(ηu)‖2 ≤ ‖∇k−1
b (ηu)‖2 + C0ε

2
0‖∇bΛ0Tm(ηu)‖2 + C0ε

2
0‖TΛ0Tm(ηu)‖2,

from which it follows that

‖TΛ0Tm(ηu)‖2 ≤ ‖∇k−1
b (ηu)‖2 + C‖∇bΛ0Tm(ηu)‖2

≤ C‖∇k−1
b (ηu)‖2 + C‖∇k

b (ηu)‖2.

Hence

|(iTTmu0, Tmu0)| ≤ ε‖∇k
b (ηu)‖2 + Cε

k−1∑
l=0

‖∇l
b(ηu)‖2

and one finishes the proof for the case k − 2m = 1 as before.
Now we prove (B.7) for m, assuming that the statement has been proved for all 

larger m’s. We then estimate ‖Tm∇k−2m
b u0‖2. If one of the ∇b is Z, we proceed exactly 

as before and commute the Z until it hits u0. This proves the desired estimate with the 
induction hypothesis on m. If now all ∇b are Z’s, then as before we only need to bound 
|(iTTmZk−2m−1u0, TmZk−2m−1u0)|. One certainly has

|(iTTmZk−2m−1u0, TmZk−2m−1u0)| ≤ ε‖Tm+1Zk−2m−1u0‖2 + ε−1
k−1∑
l=0

‖∇l
b(ηu)‖2.

To estimate ‖Tm+1Zk−2m−1u0‖2, we write Tm+1Zk−2m−1u0 = TΛ0TmZk−2m−1(ηu) +
T [TmZk−2m−1η1, Λ0](ηu). The second term is bounded by

k∑
l=0

‖∇l
b(ηu)‖.

The first term satisfies

‖TΛ0TmZk−2m−1(ηu)‖2

≤ ‖∇k−1
b (ηu)‖2 + C0ε

2
0‖∇bΛ0TmZk−2m−1(ηu)‖2 + C0ε

2
0‖TΛ0TmZk−2m−1(ηu)‖2,

from which it follows that
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‖TΛ0TmZk−2m−1(ηu)‖2 ≤ ‖∇k−1
b (ηu)‖2 + C‖∇bΛ0TmZk−2m−1(ηu)‖2

≤ C‖∇k−1
b (ηu)‖2 + C‖∇k

b (ηu)‖2.

Hence

|(iTTmZk−2m−1u0, TmZk−2m−1u0)| ≤ ε‖∇k
b (ηu)‖2 + Cε

k−1∑
l=0

‖∇l
b(ηu)‖2

and one finishes the proof for this case as before.

B.3. Estimate for u+

Now we turn to estimate u+. Recall we introduced a sequence of cut-offs η0 =
η, η1, η2, . . ., and a sequence of Fourier multipliers Λ+

0 = Λ+, Λ+
1 , Λ

+
2 , . . ., such that 

ηkηk+1 = ηk, and Λ+
k Λ+

k+1 = Λ+
k for all k ≥ 0. In fact the Fourier multiplier for Λ+

k+1
is identically equal to 1 on a neighborhood of the support of that of Λ+

k . Also, the cut-
off function η̃ dominates all the ηj ’s, in the sense that ηj η̃ = ηj for all j. We wrote 
u+ = η1Λ+ηu, and v is any solution to Zv = u on Q2. The estimate we shall prove is

‖∇k
bu

+‖ ≤ Ck(‖∇k−1
b Zu+‖ +

k−1∑
l=0

‖∇l
b(ηku)‖ + ‖ηk+1v‖) (B.8)

for all k ≥ 1.
To prove this, the first observation is the following:

Lemma B.4. For all k ≥ 1,

‖∇k
bv

+‖ ≤ Ck

(
‖∇k−1

b Zv+‖ + ‖ηv‖
)
,

where v+ = η1Λ+ηv.

The proof of this inequality is the same as that of (B.1), except that one reverses the 
role of Z and Z, and replaces u− by v+. It does not make use of the fact that v solves 
Zv = u. By the same token,

Lemma B.5. For all k ≥ 1 and all j ≥ 1,

‖∇k
b (ηjΛ+

j−1ηj−1v)‖ ≤ Cj,k

(
‖∇k−1

b Z(ηjΛ+
j−1ηj−1v)‖ + ‖ηj−1v‖

)
.

Another useful lemma is the following:

Lemma B.6. For any k ≥ 1 and any j ≥ 1, there exist pseudodifferential operators S0
and S−k, smoothing of order 0 and k respectively, such that
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ηjΛ+
j−1ηj−1u = Z(ηjΛ+

j ηj−1v) + S0(ηj+1Λ+
j ηjv) + S−k(ηjv).

In particular, when j = 1,

u+ = Zv+ + S0(η2Λ+
1 η1v) + S−k(η1v).

Proof. For all j ≥ 1,

ηjΛ+
j−1ηj−1u = ηjΛ+

j−1ηj−1Zv

= ηjΛ+
j−1ηj−1Z(ηjv)

= ηjΛ+
j−1ηj−1Z(ηj+1Λ+

j ηjv) + ηjΛ+
j−1ηj−1Z(ηj+1(1 − Λ+

j )ηjv).

(B.9)

We shall argue that the second term on the last line is S−k(ηjv) for any k ≥ 1.
Since the Fourier multiplier Ψ+

j of Λ+
j is identically 1 on a neighborhood of the support 

of Ψ+
j−1, there exists a Fourier multiplier Ψ+

j,0 such that Ψ+
j is identically 1 on the support 

of Ψ+
j,0, and Ψ+

j,0 is identically 1 on the support of Ψ+
j−1. Writing Λ+

j,0 for the Fourier 
multiplier operator corresponding to Ψ+

j,0, we have

(1 − Λ+
j ) = (1 − Λ+

j,0)(1 − Λ+
j );

indeed Ψ+
j ≡ 1 on the support of Ψ+

j,0 implies that Λ+
j,0(1 − Λ+

j ) = 0. Putting this back 
in the second term (B.9), and commuting 1 − Λ+

j,0 until it hits Λ+
j−1, we get

ηjΛ+
j−1(1 − Λ+

j,0)ηj−1Z(ηj+1(1 − Λ+
j )ηjv) + ηjΛ+

j−1[ηj−1Zηj+1, 1 − Λ+
j,0](1 − Λ+

j )ηjv).

The first term here is zero, since

Λ+
j−1(1 − Λ+

j,0) = 0;

the second term here is

ηjΛ+
j−1S0(1 − Λ+

j )ηjv.

Again writing (1 −Λ+
j ) = (1 −Λ+

j,0)(1 −Λ+
j ) and commuting 1 −Λ+

j,0 until it hits Λ+
j−1, 

we get that this is

ηjΛ+
j−1S−1(1 − Λ+

j )ηjv.

Repeating this argument, it is clear that we can make this ηjΛ+
j−1S−k(1 − Λ+

j )ηjv for 
any k, and this is thus S−k(ηjv).
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Next, the first term in (B.9) is

ηjΛ+
j−1ηj−1Z(ηj+1Λ+

j ηjv)

= ZηjΛ+
j−1ηj−1ηj+1Λ+

j ηjv + [ηjΛ+
j−1ηj−1, Z](ηj+1Λ+

j ηjv)

= ZηjΛ+
j−1ηj−1Λ+

j ηjv + S0(ηj+1Λ+
j ηjv).

By writing Λ+
j = 1 − (1 − Λ+

j ), the first term in the last line is equal to

Z(ηjΛ+
j−1ηj−1v) − ZηjΛ+

j−1ηj−1(1 − Λ+
j )ηjv.

We only need to argue now that the second term in the last line is S−k(ηjv) for any k. 
But we only need to adopt the strategy above again: writing (1 −Λ+

j ) = (1 −Λ+
j,0)(1 −Λ+

j )
and commuting 1 − Λ+

j,0 until it hits Λ+
j−1, we get that this is S−k(ηjv) for any k. �

It follows that

Lemma B.7. For all k ≥ 1,

k∑
l=0

‖∇l
b(η2Λ+

1 η1v)‖ ≤ C(
k−1∑
l=0

‖∇l
b(ηku)‖ + ‖ηk+1v‖).

Proof. We shall prove by induction on k that for all j, k ≥ 1,

k∑
l=0

‖∇l
b(ηjΛ+

j−1ηj−1v)‖ ≤ C(
k−1∑
l=0

‖∇l
b(ηj+k−2u)‖ + ‖ηj+k−1v‖).

The case j = 2 yields the current lemma. Assume this has been proved for k− 1, and we 
prove the statement for k. By Lemma B.5,

‖∇k
b (ηjΛ+

j−1ηj−1v)‖ ≤ C(‖∇k−1
b Z(ηjΛ+

j−1ηj−1v)‖ + ‖ηj−1v‖).

Now by Lemma B.6, one has

Z(ηjΛ+
j−1ηj−1v) = ηjΛ+

j−1ηj−1u + S0(ηj+1Λ+
j ηjv) + S−(k−1)(ηjv).

Hence one only needs to estimate ‖∇k−1
b S0(ηj+1Λ+

j ηjv)‖, which can be estimated by 
induction hypothesis since this involves fewer than k derivatives on ηj+1Λ+

j ηjv. �
As a result,

Lemma B.8. For all k ≥ 0,

‖∇k+1
b v+‖ ≤ C(‖∇k

bu
+‖ +

k−1∑
l=0

‖∇l
b(ηku)‖ + ‖ηk+1v‖).
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Proof. By Lemma B.4,

‖∇k+1
b v+‖ ≤ C(‖∇k

bZv+‖ + ‖ηv‖).

Now by Lemma B.6, one has

Zv+ = u+ + S0(η2Λ+
1 η1v) + S−k(η1v).

Hence one only needs to estimate ‖∇k
bS0(η2Λ+

1 η1v)‖, which can be estimated by 
Lemma B.7. �

Now we prove (B.8) by induction on k.
When k = 1, we need only estimate ‖Zu+‖2. But by Lemma B.6, we have

u+ = Zv+ + S0(η2Λ+
1 η1v) + S−1(η1v).

Hence

‖Zu+‖2

= (ZZv+, Zu+) + O(‖Zη2Λ+
1 η1v‖‖Zu+‖) + O(‖η1v‖‖Zu+‖)

= (ZZv+, Zu+) + O(‖η1u‖‖Zu+‖) + O(‖η2v‖‖Zu+‖)) by Lemma B.7

= −(Zv+, ZZu+) − (Zv+, iTu+) + O(‖Zv+‖‖∇bu
+‖)

+ O(‖η1u‖‖Zu+‖) + O(‖η2v‖‖Zu+‖)

= −(Zv+, ZZu+) − (Zv+, iTu+) + O(‖η1u‖‖∇bu
+‖)

+ O(‖η2v‖‖∇bu
+‖) by Lemma B.8

= (ZZv+, Zu+) + (iTv+, Zu+) + O(‖∇2
bv

+‖‖u+‖) + O(‖∇bv
+‖(‖∇bu

+‖ + ‖u+‖))

+ O(‖η1u‖‖∇bu
+‖) + O(‖η2v‖‖∇bu

+‖)

= O(‖∇2
bv

+‖‖Zu+‖) + O(‖∇2
bv

+‖‖u+‖) + O(‖∇bv
+‖(‖∇bu

+‖ + ‖u+‖))

+ O(‖η1u‖‖∇bu
+‖) + O(‖η2v‖‖∇bu

+‖)

≤ C(ε‖∇2
bv

+‖2 + ε−1‖Zu+‖2 + ε−1‖u+‖2 + ε‖Zu+‖2 + ε−1‖∇bv
+‖2

+ ε−1‖η1u‖2 + ε−1‖η2v‖2).

Absorbing Cε‖Zu+‖2 to the left hand side, we get

‖Zu+‖2 ≤ C(ε‖∇2
bv

+‖2 + ε−1‖Zu+‖2 + ε−1‖∇bv
+‖2 + ε−1‖η1u‖2 + ε−1‖η2v‖2).

Now by Lemma B.8, one estimates ‖∇2
bv

+‖ and ‖∇bv
+‖:
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‖∇2
bv

+‖ ≤ C
(
‖∇bu

+‖ + ‖η1u‖ + ‖η2v‖
)
,

‖∇bv
+‖ ≤ C(‖u+‖ + ‖η1v‖) ≤ C(‖η1u‖ + ‖η2v‖).

Together, we get

‖Zu+‖2 ≤ C
(
‖Zu+‖2 + ‖η1u‖ + ‖η2v‖

)
as desired.

Next, to prove (B.8) for a general k, we prove the following statement by induction 
on m for all 0 ≤ m ≤ �k

2 � and ε > 0:

‖Tm∇k−2m
b u+‖ ≤ ε‖∇k

bu
+‖ + Cε

(
‖∇k−1

b Zu+‖ +
k−1∑
l=0

‖∇l
b(ηku)‖ + ‖ηk+1v‖

)
(B.10)

In fact the case m = 0 readily implies (B.8) for k.
Again we begin from the biggest possible value of m. Suppose k − 2m = 0. Then we 

need to estimate ‖Tmu+‖. Now

‖Tmu+‖2

= (TmZv+, Tmu+) + O((‖∇k
b (η2Λ+

1 η1v)‖ + ‖η1v‖)‖Tmu+‖)

= −(Tmv+, TmZu+) + O(
k∑

l=0

‖∇l
bv

+‖‖Tmu+‖) + O(‖Tmv+‖
k∑

l=0

‖∇l
bu

+‖)

+ O((
k−1∑
l=0

‖∇l
b(ηku)‖ + ‖ηk+1v‖)‖Tmu+‖)

= (∇bT
mv+,∇bT

m−1Zu+) + O(
k∑

l=0

‖∇l
bv

+‖‖Tmu+‖) + O(‖Tmv+‖
k∑

l=0

‖∇l
bu

+‖)

+ O((
k−1∑
l=0

‖∇l
b(ηku)‖ + ‖ηk+1v‖)‖Tmu+‖)

the last line following by writing one of the T ’s in TmZu+ as a commutator and inte-
grating by parts. Hence

‖Tmu+‖2 ≤ ε‖∇k+1
b v+‖2 + ε‖∇k

bu
+‖2 + Cε(‖∇k−1

b Zu+‖2 +
k∑

l=0

‖∇l
bv

+‖2

+
k−1∑

‖∇l
b(ηku)‖2 + ‖ηk+1v‖2).
l=0
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Now we invoke Lemma B.8 to estimate ‖∇k+1
b v+‖ and 

∑k
l=0 ‖∇l

bv
+‖. Together,

‖Tmu+‖2 ≤ ε‖∇k
bu

+‖2 + Cε

(
‖∇k−1

b Zu+‖2 +
k−1∑
l=0

‖∇l
b(ηku)‖2 + ‖ηk+1v‖2

)

which implies the desired estimate for Tmu+.
Next, we estimate ‖TmZk−2mu+‖ for any 0 ≤ m ≤ �k

2 �, if k − 2m > 0. Then

‖TmZk−2mu+‖2

= (TmZk−2m+1v+, TmZk−2mu+) + O((‖∇k
b (η2Λ+

1 η1v)‖ + ‖η1v‖)‖TmZk−2mu+‖)
= −(TmZk−2mv+, TmZk−2mZu+) − (k − 2m)(TmZk−2mv+, iTm+1Zk−2m−1u+)

+ O(
k∑

l=0

‖∇l
bv

+‖
k∑

j=0
‖∇j

bu
+‖) + O((

k−1∑
l=0

‖∇l
b(ηku)‖ + ‖ηk+1v‖)‖TmZk−2mu+‖)

Now in the first term, we split off one Z in TmZk−2mZ and integrate by parts. Also, in 
the second term, we split off one T in Tm+1Zk−2m−1 and integrate by parts; then we 
split off one Z in TmZk−2m and integrate by parts. We get

‖TmZk−2mu+‖2

= (ZTmZk−2mv+, TmZk−2m−1Zu+) + (k − 2m)(iTm+1Zk−2m−1v+, TmZk−2mu+)

+ O(‖∇k+1
b v+‖

k−1∑
l=0

‖∇l
bu

+‖) + O(
k∑

l=0

‖∇l
bv

+‖
k∑

j=0
‖∇l

bu
+‖)

+ O((
k−1∑
l=0

‖∇l
b(ηku)‖ + ‖ηk+1v‖)‖TmZk−2mu+‖)

≤ O(‖∇k+1
b v+‖‖∇k−1

b Zu+‖) + O(‖∇k+1
b v+‖‖

k−1∑
l=0

‖∇l
bu

+‖)

+ O(
k∑

l=0

‖∇l
bv

+‖
k∑

j=0
‖∇l

bu
+‖) + O((

k−1∑
l=0

‖∇l
b(ηku)‖ + ‖ηk+1v‖)‖TmZk−2mu+‖)

As a result,

‖TmZk−2mu+‖2

≤ ε‖∇k+1
b v+‖2 + ε‖∇k

bu
+‖2

+ Cε

(
‖∇k−1

b Zu+‖2 +
k∑

l=0

‖∇l
bv

+‖2 +
k−1∑
l=0

‖∇l
b(ηku)‖2 + ‖ηk+1v‖2

)

and the desired estimate follows upon invoking Lemma B.8.
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Now suppose we have proved (B.10) for all strictly bigger m’s, and want to prove the 
inequality for m. Then we need to estimate ‖Tm∇k−2m

b u+‖. If one of the ∇b is Z, we 
commute until that Z hits u+, obtaining an error that has more T in it, which one can 
estimate by the induction hypothesis. Otherwise all ∇b are Z’s, and the estimate follows 
from what we have proved above. This completes the proof of (B.8).

Now putting (B.1), (B.6) and (B.8) together, and remembering that ηu = u−+u0+u+, 
we get

‖∇k
b (ηu)‖ ≤ Ck

(
‖∇k−1

b Z(ηu)‖ +
k−1∑
l=0

‖∇l
b(ηku)‖ + ‖ηk+1v‖

)
.

But 
∑k−1

l=0 ‖∇l
b(ηku)‖ involves fewer than k derivatives of ηku, and can be estimated if 

we iterate the above inequality. In fact

k−1∑
l=0

‖∇l
b(ηku)‖ ≤ C

(
k−2∑
l=0

‖∇l
bZ(η̃u)‖ + ‖η̃u‖ + ‖η̃v‖

)
.

It follows that

‖∇k
b (ηu)‖ ≤ Ck

(
k−1∑
l=0

‖∇l
bZ(η̃u)‖ + ‖η̃v‖

)
.

Using the interpolation inequality in Lemma B.3, one obtains the desired inequality in 
Proposition B.1.

Finally, we come back to the remark we made after the statement of Proposition B.1. 
We remark that if we have Zv + αv = u instead of Zv = u, where α is a fixed C∞

function on Q2, then the above theorem still holds. See the end of this section for a 
discussion about that. The key there is to observe that Lemma B.6 above holds under 
this modified assumption as well. In fact, then

ηjΛ+
j−1ηj−1u = ηjΛ+

j−1ηj−1(Z + α)v

= ηjΛ+
j−1ηj−1(Z + α)(ηjv)

= ηjΛ+
j−1ηj−1(Z + α)(ηj+1Λ+

j ηjv)

+ ηjΛ+
j−1ηj−1(Z + α)(ηj+1(1 − Λ+

j )ηjv).

The α in the first term contributes only S0(ηj+1Λ+
j ηjv), while the α in the last term 

contributes only S−k−1(ηjv).
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