

Communications in Partial Differential Equations

Berezin-Toeplitz quantization for lower energy forms

Chin-Yu Hsiao \& George Marinescu

To cite this article: Chin-Yu Hsiao \& George Marinescu (2017) Berezin-Toeplitz quantization for lower energy forms, Communications in Partial Differential Equations, 42:6, 895-942, DOI: 10.1080/03605302.2017.1330340

To link to this article: https://doi.org/10.1080/03605302.2017.1330340

Accepted author version posted online: 05 Jun 2017.
Published online: 21 Jul 2017.

Submit your article to this journal

Article views: 75

View related articles

View Crossmark data \triangle

Citing articles: 1 View citing articles

Berezin-Toeplitz quantization for lower energy forms

Chin-Yu Hsiao and George Marinescu ${ }^{\text {b,c }}$
${ }^{a}$ Institute of Mathematics, Academia Sinica and National Center for Theoretical Sciences, Taipei, Taiwan; ${ }^{\text {b }}$ Mathematisches Institut, Universität zu Köln, Germany; 'Institute of Mathematics 'Simion Stoilow', Romanian Academy, Bucharest, Romania

Abstract

Let M be an arbitrary complex manifold and let L be a Hermitian holomorphic line bundle over M. We introduce the Berezin-Toeplitz quantization of the open set of M where the curvature on L is nondegenerate. In particular, we quantize any manifold admitting a positive line bundle. The quantum spaces are the spectral spaces corresponding to $\left[0, k^{-N}\right]$, where $N>1$ is fixed, of the Kodaira Laplace operator acting on forms with values in tensor powers L^{k}. We establish the asymptotic expansion of associated Toeplitz operators and their composition in the semiclassical limit $k \rightarrow \infty$ and we define the corresponding star-product. If the Kodaira Laplace operator has a certain spectral gap this method yields quantization by means of harmonic forms. As applications, we obtain the Berezin-Toeplitz quantization for semi-positive and big line bundles.

ARTICLE HISTORY

Received 10 March 2015
Accepted 28 February 2017

KEYWORDS

Berezin-Toeplitz quantization; Kodaira Laplace operator; local holomorphic Morse inequalities; Melin-Sjöstrand stationary phase method; positive line bundle; spectral asymptotics

MATHEMATICS SUBJECT CLASSIFICATION

53D50; 32A25; 47B35; 81S10

1. Introduction and statement of the main results

The aim of the geometric quantization theory of Kostant and Souriau is to relate the classical observables (smooth functions) on a phase space (a symplectic manifold) to the quantum observables (bounded linear operators) on the quantum space (sections of a line bundle). Berezin-Toeplitz quantization is a particularly efficient version of the geometric quantization theory $[2,3,14,21,22,31]$. Toeplitz operators and more generally Toeplitz structures were introduced in geometric quantization by Berezin [3] and Boutet de Monvel-Guillemin [6]. We refer to [22, 26, 30] for reviews of Berezin-Toeplitz quantization.

The setting of Berezin-Toeplitz quantization on Kähler manifolds is the following. Let (M, ω, J) be a Kähler manifold of $\operatorname{dim}_{\mathbb{C}} M=n$ with Kähler form ω and complex structure J. Let (L, h) be a holomorphic Hermitian line bundle on X, and let ∇^{L} be the holomorphic Hermitian connection on (L, h) with curvature $R^{L}=\left(\nabla^{L}\right)^{2}$. We assume that $\left(L, h, \nabla^{L}\right)$ is a prequantum line bundle, i.e.,

$$
\begin{equation*}
\omega=\frac{\sqrt{-1}}{2 \pi} R^{L} . \tag{1.1}
\end{equation*}
$$

Let $g^{T M}:=\omega(\cdot, J \cdot)$ be the J-Riemannian metric on $T M$. The Riemannian volume form of $g^{T M}$ is denoted by $d v_{M}$. On the space of smooth sections with compact support $\mathscr{C}_{0}^{\infty}\left(M, L^{k}\right)$ we introduce the L^{2}-scalar product associated to the metrics h and the Riemannian volume
form $d v_{M}$ by

$$
\begin{equation*}
\left\langle s_{1}, s_{2}\right\rangle=\int_{M}\left\langle s_{1}(x), s_{2}(x)\right\rangle_{h^{k}} d v_{M}(x) \tag{1.2}
\end{equation*}
$$

The completion of $\mathscr{C}_{0}^{\infty}\left(M, L^{k}\right)$ with respect to (1.2) is denoted as usual by $L^{2}\left(M, L^{k}\right)$. We denote by $H_{(2)}^{0}\left(M, L^{k}\right)$ the closed subspace of $L^{2}\left(M, L^{k}\right)$ consisting of holomorphic sections. The Bergman projection is the orthogonal projection $P_{k}: L^{2}\left(M, L^{k}\right) \rightarrow H_{(2)}^{0}\left(M, L^{k}\right)$. For a bounded function $f \in \mathscr{C}{ }^{\infty}(M)$, set

$$
\begin{equation*}
T_{f, k}: L^{2}\left(M, L^{k}\right) \longrightarrow L^{2}\left(M, L^{k}\right), \quad T_{f, k}=P_{k} f P_{k} \tag{1.3}
\end{equation*}
$$

where the action of f is the pointwise multiplication by f. The map which associates to $f \in$ $\mathscr{C}^{\infty}(M)$ the family of bounded operators $\left\{T_{f, k}\right\}$ on $L^{2}\left(M, L^{k}\right)$ is called the Berezin-Toeplitz quantization. A Toeplitz operator is a sequence $\left\{T_{k}\right\}_{k \in \mathbb{N}}$ of bounded linear endomorphisms of $L^{2}\left(M, L^{k}\right)$ verifying $T_{k}=P_{k} T_{k} P_{k}$, such that there exist a sequence $g_{\ell} \in \mathscr{C}^{\infty}(M)$ such that for any $p \geqslant 0$, there exists $C_{p}>0$ with $\left\|T_{k}-\sum_{\ell=0}^{p} T_{g \ell, k} k^{-\ell}\right\|_{o p} \leqslant C_{p} k^{-p-1}$ for any $k \in \mathbb{N}$, where $\|\cdot\|_{o p}$ denotes the operator norm on the space of bounded operators.

Assume now that (M, ω, J) is a compact Kähler manifold. Then Bordemann et al. [5] and Schlichenmaier [29] (using the analysis of Toeplitz structures of Boutet de Monvel-Guillemin [6]), Charles [7] (inspired by semiclassical analysis of Boutet de Monvel-Guillemin [6]) and Ma-Marinescu [25] (using the expansion of the Bergman kernel [9,24]) showed that the composition of two Toeplitz operators is a Toeplitz operator, in the sense that for any $f, g \in$ $\mathscr{C}^{\infty}(M)$, the product $T_{f, k} T_{g, k}$ has an asymptotic expansion

$$
\begin{equation*}
T_{f, k} T_{g, k}=\sum_{p=0}^{\infty} T_{C_{p}(f, g), k} k^{-p}+\mathcal{O}\left(k^{-\infty}\right) \tag{1.4}
\end{equation*}
$$

where C_{p} are bidifferential operators of order $\leqslant 2 r$, satisfying $C_{0}(f, g)=f g$ and $C_{1}(f, g)-$ $C_{1}(g, f)=\sqrt{-1}\{f, g\}$. Here $\{\cdot, \cdot\}$ is the Poisson bracket on $(M, 2 \pi \omega)$. We deduce from (1.4),

$$
\begin{equation*}
\left[T_{f, k}, T_{g, k}\right]=\frac{\sqrt{-1}}{k} T_{\{f, g\}, k}+\mathcal{O}\left(k^{-2}\right) . \tag{1.5}
\end{equation*}
$$

In [24, 25] Ma-Marinescu extended the Berezin-Toeplitz quantization to symplectic manifolds and orbifolds by using as quantum space the kernel of the Dirac operator acting on powers of the prequantum line bundle twisted with an arbitrary vector bundle with arbitrary metric on manifolds. Recently, Charles [8] introduced a semiclassical approach for symplectic manifolds inspired from the Boutet de Monvel-Guillemin theory [6].

In this paper, we extend the Berezin-Toeplitz quantization in several directions. Firstly, we consider an arbitrary Hermitian manifold (M, Θ, J) endowed with arbitrary Hermitian holomorphic line bundle (L, h) and we quantize the open set $M(0)$ where the curvature of (L, h) is positive. Since there are no holomorphic L^{2} sections in general, we use as quantum spaces the spectral spaces of the Kodaira Laplacian $\square_{k}^{(0)}$ on $L^{2}\left(M, L^{k}\right)$, corresponding to energy less than $k^{-N}, N>1$ fixed, decaying to 0 polynomially in k, as $k \rightarrow \infty$. Secondly, we consider the same construction for the Kodaira Laplacian $\square_{k}^{(q)}$ acting on ($0, q$)-forms. In this case, we quantize the open set $M(q)$ where the curvature of (L, h) is nondegenerate and has exactly q negative eigenvalues (and hence $n-q$ positive ones). Quantization using $(0, q)$-forms was introduced in [24, Section 8.2] for bundles with mixed curvature of signature
($q, n-q$) everywhere on a compact manifold. It was based on the asymptotic of Bergman kernel developed in Ma and Marinescu [23].

The idea underlying the construction used in this paper comes from the local holomorphic Morse inequalities [4, 11, 18, 24]. Roughly speaking, the harmonic ($0, q$)-forms with values in L^{k} tend to concentrate on $M(q)$ as $k \rightarrow \infty$. More precisely, the semiclassical limit of the kernel of the spectral projectors considered above was determined in [18, Theorem 1.1], see also [18, Theorems $1.6-1.10$] for important particular cases. This is the main technical ingredient used in this paper, which is in turn based on techniques of microlocal and semiclassical analysis [13, 28], especially the stationary phase method of Melin-Sjöstrand [28].

We now formulate the main results. We refer to Section 2 for some standard notations and terminology used here. We are working in the following general setting:
(A) (M, Θ, J) is a Hermitian manifold of complex dimension n, where Θ is a smooth positive $(1,1)$-form and J is the complex structure. Moreover, (L, h) is a holomorphic Hermitian line bundle over M, where h is the Hermitian fiber metric on L, and $q \in\{0,1, \ldots, n\}$.
(B) $f, g \in \mathscr{C}^{\infty}(M)$ are smooth bounded functions.

Let $g_{\Theta}^{T M}(\cdot, \cdot)=\Theta(\cdot, J \cdot)$ be the Riemannian metric on $T M$ induced by Θ and J and let $\langle\cdot, \cdot\rangle$ be the Hermitian metric on $\mathbb{C} T M:=T M \otimes_{\mathbb{R}} \mathbb{C}$ induced by $g_{\Theta}^{T M}$. The Riemannian volume form $d v_{M}$ of (M, Θ) satisfies $d v_{M}=\Theta^{n} / n!$. For every $q=0,1, \ldots, n$, the Hermitian metric $\langle\cdot, \cdot\rangle$ on $T M \otimes_{\mathbb{R}} \mathbb{C}$ induces a Hermitian metric $\langle\cdot, \cdot\rangle$ on $\Lambda^{0, q}\left(T^{*} M\right)$ the bundle of $(0, q)$ forms of M.

We will denote by ϕ the local weights of the Hermitian metric h on L (see (2.1)). Let ∇^{L} be the holomorphic Hermitian connection on (L, h) with curvature $R^{L}=\left(\nabla^{L}\right)^{2}$. We will identify the curvature form R^{L} with the Hermitian matrix $\dot{R}^{L} \in \mathscr{C}^{\infty}\left(M, \operatorname{End}\left(T^{1,0} M\right)\right)$ satisfying for every $U, V \in T_{x}^{1,0} M, x \in M$,

$$
\begin{equation*}
\left\langle R^{L}(x), U \wedge \bar{V}\right\rangle=\left\langle\dot{R}^{L}(x) U, V\right\rangle \tag{1.6}
\end{equation*}
$$

Let $\operatorname{det} \dot{R}^{L}(x):=\mu_{1}(x) \ldots \mu_{n}(x)$, where $\left\{\mu_{j}(x)\right\}_{j=1}^{n}$, are the eigenvalues of \dot{R}^{L} with respect to $\langle\cdot, \cdot\rangle$. For $j \in\{0,1, \ldots, n\}$, let

$$
\begin{equation*}
M(j)=\left\{x \in M ; \dot{R}^{L}(x) \text { is nondegenerate and has exactly } j \text { negative eigenvalues }\right\} . \tag{1.7}
\end{equation*}
$$

We denote by W the subbundle of rank j of $\left.T^{1,0} M\right|_{M(j)}$ generated by the eigenvectors corresponding to negative eigenvalues of \dot{R}^{L}. Then $\operatorname{det} \bar{W}^{*}:=\left.\Lambda^{j} \bar{W}^{*} \subset \Lambda^{0, j}\left(T^{*} M\right)\right|_{M(j)}$ is a rank one sub-bundle. Here \bar{W}^{*} is the dual bundle of the complex conjugate bundle of W and $\Lambda^{j} \bar{W}^{*}$ is the vector space of all finite sums of $v_{1} \wedge \cdots \wedge v_{j}, v_{1}, \ldots, v_{j} \in \bar{W}^{*}$. We denote by $I_{\operatorname{det} \bar{W}^{*}} \in \operatorname{End}\left(\Lambda^{0, j}\left(T^{*} M\right)\right)$ the orthogonal projection from $\Lambda^{0, j}\left(T^{*} M\right)$ onto $\operatorname{det} \bar{W}^{*}$.

For $k>0$, let $\left(L^{k}, h^{k}\right)$ be the k th tensor power of the line bundle (L, h). Let $(\cdot, \cdot)_{k}$ and (\cdot, \cdot) denote the global L^{2} inner products on $\Omega_{0}^{0, q}\left(M, L^{k}\right)$ and $\Omega_{0}^{0, q}(M)$ induced by $\langle\cdot, \cdot \cdot\rangle$ and h^{k}, respectively (see (2.2)). We denote by $L_{(0, q)}^{2}\left(M, L^{k}\right)$ and $L_{(0, q)}^{2}(M)$ the completions of $\Omega_{0}^{0, q}\left(M, L^{k}\right)$ and $\Omega_{0}^{0, q}(M)$ with respect to $(\cdot, \cdot)_{k}$ and (\cdot, \cdot), respectively.

Let $\square_{k}^{(q)}$ be the Kodaira Laplacian acting on ($0, q$)-forms with values in L^{k}, cf. (2.6). We denote by the same symbol $\square_{k}^{(q)}$ the Gaffney extension of the Kodaira Laplacian, cf. (2.9). It is well-known that $\square_{k}^{(q)}$ is self-adjoint and the spectrum of $\square_{k}^{(q)}$ is contained in $\overline{\mathbb{R}}_{+}$(see [24, Proposition 3.1.2]). For a Borel set $B \subset \mathbb{R}$ let $E(B)$ be the spectral projection of $\square_{k}^{(q)}$ corresponding to the set B, where E is the spectral measure of $\square_{k}^{(q)}$ (see Davies [10, Section 2])
and for $\lambda \in \mathbb{R}$ we set $E_{\lambda}=E((-\infty, \lambda])$ and

$$
\begin{equation*}
\mathscr{E}_{\lambda}^{\mathscr{q}}\left(M, L^{k}\right)=\text { Range } E_{\lambda} \subset L_{(0, q)}^{2}\left(M, L^{k}\right) . \tag{1.8}
\end{equation*}
$$

If $\lambda=0$, then $\mathscr{E}_{0}^{q}\left(M, L^{k}\right)=\operatorname{Ker}^{\square} \square_{k}^{(q)}=: \mathscr{H}^{q}\left(M, L^{k}\right)$ is the space of global harmonic sections. The spectral projection of $\square_{k}^{(q)}$ is the orthogonal projection

$$
\begin{equation*}
P_{k, \lambda}^{(q)}: L_{(0, q)}^{2}\left(M, L^{k}\right) \rightarrow \mathscr{E}_{\lambda}^{q}\left(M, L^{k}\right) . \tag{1.9}
\end{equation*}
$$

Fix $f \in \mathscr{C}^{\infty}(M)$ be a bounded function. Let $\lambda \geq 0$. The Berezin-Toeplitz quantization for $\mathscr{E}_{\lambda}^{q}\left(M, L^{k}\right)$ is the operator

$$
\begin{equation*}
T_{k, \lambda}^{(q), f}:=P_{k, \lambda}^{(q)} \circ f \circ P_{k, \lambda}^{(q)}: L_{(0, q)}^{2}\left(M, L^{k}\right) \rightarrow \mathscr{E}_{\lambda}^{q}\left(M, L^{k}\right) . \tag{1.10}
\end{equation*}
$$

Let $T_{k, \lambda}^{(q), f}(\cdot, \cdot)$ be the Schwartz kernel of $T_{k, \lambda}^{(q), f}$, see (2.13), (2.14). Since $\square_{k}^{(q)}$ is elliptic, we have $T_{k, \lambda}^{(q), f}(\cdot, \cdot) \in \mathscr{C}^{\infty}\left(M \times M,\left(L^{k} \otimes \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes\left(L^{k} \otimes \Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right)$.

Let $A_{k}: L_{(0, q)}^{2}\left(M, L^{k}\right) \rightarrow L_{(0, q)}^{2}\left(M, L^{k}\right)$ be a k-dependent continuous operator with smooth kernel $A_{k}(x, y)$ and let $D_{0}, D_{1} \Subset M$ be open trivializations with trivializing sections s and \widehat{s}, respectively. In this paper, we will identify A_{k} and $A_{k}(x, y)$ on $D_{0} \times D_{1}$ with the localized operators $A_{k, s, \bar{s}}$ and $A_{k, s, s}(x, y)$, respectively (see (2.3)).

The first main result of this work is the following.
Theorem 1.1. Under the assumptions (A) and (B) let $j \in\{0,1, \ldots, n\}$ and $D_{0}, D_{1} \Subset M$ on which L is trivial. Suppose that one of the following conditions is fulfilled:
(i) $D_{0} \Subset M(j)$ and $j \neq q$,
(ii) $\quad D_{0} \Subset M(q)$ and $\bar{D}_{0} \bigcap \bar{D}_{1}=\emptyset$.

Then, for every $N>1, m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that

$$
\begin{equation*}
\left|T_{k, k^{-N}}^{(q) f}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{1}\right)} \leq C_{N, m} k^{2 n-\frac{N}{2}+2 m} . \tag{1.11}
\end{equation*}
$$

If $D_{0} \Subset M(q)$ there exists a symbol

$$
b_{f}(x, y, k) \in S^{n}\left(1 ; D_{0} \times D_{0}, \Lambda^{0, q}\left(T^{*} M\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right)
$$

and a phase function $\Psi \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0}\right)$ such that for every $N>1, m \in \mathbb{N}$, there exists $\widetilde{C}_{N, m}>0$ independent of k such that

$$
\begin{equation*}
\left|T_{k, k^{-N}}^{(q), f}(x, y)-e^{i k \Psi(x, y)} b_{f}(x, y, k)\right|_{\mathscr{C} m\left(D_{0} \times D_{0}\right)} \leq \widetilde{C}_{N, m} k^{2 n-\frac{N}{2}+2 m} \tag{1.12}
\end{equation*}
$$

where $b_{f}(x, y, k) \sim \sum_{j=0}^{\infty} b_{f, j}(x, y) k^{n-j}$ in the sense of Definition 2.1 and

$$
\begin{equation*}
b_{f, 0}(x, x)=(2 \pi)^{-n} f(x)\left|\operatorname{det} \dot{R}^{L}(x)\right| I_{\operatorname{det} t} \bar{W}^{*}(x), \quad x \in D_{0} \tag{1.13}
\end{equation*}
$$

and

$$
\begin{align*}
& \Psi(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0}\right), \quad \Psi(x, y)=-\bar{\Psi}(y, x), \\
& \exists c>0: \operatorname{Im} \Psi \geq c|x-y|^{2}, \Psi(x, y)=0 \Leftrightarrow x=y . \tag{1.14}
\end{align*}
$$

We collect more properties for the phase Ψ in Theorem 3.3. The results says that, roughly speaking, the Toeplitz kernel $T_{k, k^{-N}}^{(q), f}(\cdot, \cdot)$ acting on $(0, q)$-forms, decays rapidly as $k \rightarrow \infty$ outside $M(q)$ and off-diagonal, and admits an asymptotic expansion on the set $M(q)$.

Let $\ell, m \in \mathbb{N}$ be fixed and choose $N \geq 2(n+\ell+2 m+1)$. Then we deduce from (1.12) that

$$
\begin{equation*}
T_{k, k^{-N}}^{(q) f}(x, x)=\sum_{r=0}^{\ell} b_{f, r}(x, x) k^{n-r}+O\left(k^{n-\ell-1}\right) \text { in } \mathscr{C}^{m}\left(D_{0}\right), D_{0} \Subset M(q) . \tag{1.15}
\end{equation*}
$$

Note that if M is compact complex manifold endowed with a positive line bundle L (i.e., $M(0)=M)$ we have by $[27$, Theorem 0.1$]$ for any $\ell, m \in \mathbb{N}$,

$$
\begin{equation*}
T_{k, 0}^{(0), f}(x, x)=\sum_{r=0}^{\ell} b_{f, r}(x, x) k^{n-r}+O\left(k^{n-\ell-1}\right) \text { in } \mathscr{C}^{m}(M) \tag{1.16}
\end{equation*}
$$

Actually, in this case, due to the spectral gap of the Kodaira Laplacian [24, Theorem 1.5.5] we have $T_{f, k, k^{-N}}^{(0)}=T_{f, k, 0}^{(0)}$ for k large enough, so (1.15) follows from (1.16). The expansion (1.15) bears resemblance to the expansion of the Toeplitz kernels for functions $f \in \mathscr{C}^{p}(M)$ (see [1, (3.19)]), for arbitrary $p \in \mathbb{N}$. In (1.15) the upper bound for the order of expansion ℓ is due to the size k^{-N} of the spectral parameter, while in case of symbols of class $\mathscr{C}^{p}(M)$ is due to the order of differentiability p.

It is interesting to note that Theorem 1.1 and the following results provide a generalization of various expansions for Toeplitz operators in the case of an arbitrary complex manifold endowed with a positive line bundle. In this case, we have simply $M=M(0)$. Of course, in such generality, the quantum spaces have to be spectral spaces $\mathscr{E}_{k^{-N}}^{q}\left(M, L^{k}\right)$.

The first three coefficients of the kernel expansions of Toeplitz operators and of their composition for the quantization of a compact Kähler manifold with positive line bundle were calculated by Ma-Marinescu [27] in the presence of a twisting vector bundle E and later by Hsiao [17] for $E=\mathbb{C}$. Both [17, 27] work with a general not necessarily Kähler base metric Θ which might not be polarized, that is, $\Theta \neq \frac{\sqrt{-1}}{2 \pi} R^{L}$ in general. We will calculate the top coefficients $b_{f, 1}(x, x)$ and $b_{f, 2}(x, x)$ of the expansion (1.12) in Section 7. The coefficients $b_{f, 0}(x, x)$ and $b_{f, 1}(x, x)$ were given in [7] for $E=\mathbb{C}$ and $\Theta=\frac{\sqrt{-1}}{2 \pi} R^{L}$. It is a remarkable manifestation of universality, that the coefficients for the quantization with holomorphic sections $[17,27]$ and for the quantization with spectral spaces used in this paper are given by the same formulas. We refer to [32] for an interpretation in graph-theoretic terms of the Toeplitz kernel expansion. The formulas from [27] play an essential role in the quantization of the Mabuchi energy [15] and Laplace operator [20]. On the set where the curvature of L is degenerate we have the following behavior.

Theorem 1.2. Under the general assumptions (A) and (B), set

$$
M_{\mathrm{deg}}=\left\{x \in M ; \dot{R}^{L} \text { is degenerate at } x \in M\right\} .
$$

Then for every $x_{0} \in M_{\mathrm{deg}}, \varepsilon>0, N>1$ and every $j \in\{0,1, \ldots, n\}$, there exist a neighborhood U of x_{0} and $k_{0}>0$, such that for all $k \geq k_{0}$ we have

$$
\begin{equation*}
\left|T_{k, k^{-N}}^{(j), f}(x, x)\right| \leq \varepsilon k^{n}, \quad x \in U \tag{1.17}
\end{equation*}
$$

We consider next the composition of two Berezin-Toeplitz quantizations. We have first the following expansion of the kernels of Toeplitz operators.

Theorem 1.3. Under the assumptions (A) and (B) let $j \in\{0,1, \ldots, n\}$ and $D_{0}, D_{1} \Subset M$ on which L is trivial. Suppose that one of the following conditions is fulfilled:
(i) $D_{0} \Subset M(j)$ and $j \neq q$,
(ii) $\quad D_{0} \Subset M(q)$ and $\bar{D}_{0} \bigcap \bar{D}_{1}=\emptyset$.

Then, for every $N>1, m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that

$$
\begin{equation*}
\left|\left(T_{k, k^{-N}}^{(q), f} \circ T_{k, k^{-N}}^{(q), g}\right)(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{1}\right)} \leq C_{N, m} k^{3 n-\frac{N}{2}+2 m} \tag{1.18}
\end{equation*}
$$

If $D_{0} \Subset M(q)$ there exists a symbol

$$
b_{f, g}(x, y, k) \in S^{n}\left(1 ; D_{0} \times D_{0}, \Lambda^{0, q}\left(T^{*} M\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right)
$$

such that for every $N>1, m \in \mathbb{N}$, there exists $\widetilde{C}_{N, m}>0$ independent of k such that

$$
\begin{equation*}
\left|\left(T_{k, k^{-N}}^{(q), f} \circ T_{k, k^{-N}}^{(q), g}\right)(x, y)-e^{i k \Psi(x, y)} b_{f, g}(x, y, k)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq \widetilde{C}_{N, m} k^{3 n-\frac{N}{2}+2 m}, \tag{1.19}
\end{equation*}
$$

where $b_{f, g}(x, y, k) \sim \sum_{j=0}^{\infty} b_{f, g, j}(x, y) k^{n-j}$ in the sense of Definition 2.1 and

$$
\begin{equation*}
b_{f, g, 0}(x, x)=(2 \pi)^{-n} f(x) g(x)\left|\operatorname{det} \dot{R}^{L}(x)\right| I_{\operatorname{det}} \bar{W}^{*}(x), \quad x \in D_{0}, \tag{1.20}
\end{equation*}
$$

and $\Psi(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0}\right)$ is as in Theorem 1.1.
It should be noticed that Theorem 1.3 holds for any Hermitian manifold M, not necessarily compact. Note that the estimates in Theorem 1.3 involve the power $k^{3 n-\frac{N}{2}+2 m}$ compared to $k^{2 n-\frac{N}{2}+2 m}$ in Theorem 1.1. We will explain why there are different exponents $3 n$ and $2 n$ in the proof of Theorem 6.1.

We will calculate the top coefficients $b_{f, 1}(x, x), b_{f, 2}(x, x)$ and $b_{f, g, 1}(x, x), b_{f, g, 2}(x, x)$ of the expansions (1.12) and (1.19) in Section 7 (see Theorems 7.1 and 7.4).

We come now to the asymptotic expansion of the composition of two Toeplitz operators in the operator norm. Let $A_{k}: L^{2}\left(M, L^{k}\right) \rightarrow L^{2}\left(M, L^{k}\right)$ be k-dependent continuous operator. We say that $A_{k}=\mathcal{O}\left(k^{m}+k^{m_{1}}\right)$ as $k \rightarrow \infty$, locally in the L^{2} operator norm if for any $\chi, \chi_{1} \in$ $\mathscr{C}_{0}^{\infty}(M)$, there exists $C>0$ independent of k such that $\left\|\chi A_{k} \chi_{1}\right\|_{o p} \leq C\left(k^{m}+k^{m_{1}}\right)$, for k large, where $\|\cdot\|_{o p}$ denotes the L^{2} operator norm. We also denote by $\langle\cdot, \mid \cdot\rangle_{\omega}$ the Hermitian metric on $T^{*} M \otimes_{\mathbb{R}} \mathbb{C}$ induced by $\omega:=\frac{\sqrt{-1}}{2 \pi} R^{L}$.

Theorem 1.4. Under the assumptions (A) and (B) suppose moreover that $f, g \in \mathscr{C}^{\infty}(M)$ have compact support in $M(0)$. Then for every $N>1$, there exist functions $C_{p}(f, g) \in \mathscr{C}_{0}^{\infty}(M(0))$, $p \in \mathbb{N}$, such that for any $\ell \in \mathbb{N}$ the product $T_{k, k^{-N}}^{(0), f} T_{k, k^{-N}}^{(0), g}$ has the asymptotic expansion

$$
\begin{equation*}
T_{k, k^{-N}}^{(0), f} \circ T_{k, k^{-N}}^{(0), g}=\sum_{p=0}^{\ell} T_{k, k^{-N}}^{(0), C_{p}(f, g)} k^{-p}+\mathcal{O}\left(k^{-\ell-1}+k^{3 n-\frac{N}{2}}\right), \quad k \rightarrow \infty \tag{1.21}
\end{equation*}
$$

locally in the L^{2} operator norm. Moreover,

$$
\begin{equation*}
C_{0}(f, g)=f g, \quad C_{1}(f, g)=-\frac{1}{2 \pi}\langle\partial f, \partial \bar{g}\rangle_{\omega} \tag{1.22}
\end{equation*}
$$

and therefore the commutator of two Toeplitz operators satisfies

$$
\begin{equation*}
\left[T_{k, k^{-N}}^{(0), f}, T_{k, k^{-N}}^{(0), g}\right]=\frac{\sqrt{-1}}{k} T_{k, k^{-N}}^{(0),\{f, g\}}+\mathcal{O}\left(k^{-2}+k^{3 n-\frac{N}{2}}\right), \quad k \rightarrow \infty, \tag{1.23}
\end{equation*}
$$

where $\{f, g\}$ is the Poisson bracket on $(M(0), 2 \pi \omega)$.
We will give formulas for the coefficients $C_{j}(f, g), j=0,1,3$, in Corollary 7.5. They have the same form as those in the expansion of the Toeplitz operators acting on spaces of holomorphic sections, see [17, (1.29)], [27, (0.20)]. Formula (1.23) represents the semiclassical correspondence principle between classical and quantum observables. Theorem 1.4 allows us to introduce a star-product on the set where a line positive is positive, see Remark 6.5.

As an application of Theorems 1.1 and 1.2, we obtain:
Theorem 1.5. Assume (A) and (B) are fulfilled and let $N>2 n$. Then

$$
\begin{equation*}
T_{k, k^{-N}}^{(q), f}(x, x)=k^{n}(2 \pi)^{-n}\left|\operatorname{det} \dot{R}^{L}(x)\right| f(x) I_{\operatorname{det}} \bar{W}^{*}(x)+O\left(k^{n-1}\right), k \rightarrow \infty, \tag{1.24}
\end{equation*}
$$

locally uniformly on $M(q)$, for every $D \Subset M$, there exists $C_{D}>0$ independent of k such that

$$
\begin{equation*}
\left|T_{k, k^{-N}}^{(q), f}(x, x)\right| \leq C_{D} k^{n}, \quad \forall x \in D, \tag{1.25}
\end{equation*}
$$

and if $\mathbb{1}_{M(q)}$ denotes the characteristic function of $M(q)$, we have the pointwise convergence:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k^{-n} T_{k, k^{-N}}^{(q), f}(x, x)=(2 \pi)^{-n} f(x)\left|\operatorname{det} \dot{R}^{L}(x)\right| \mathbb{1}_{M(q)}(x) I_{\operatorname{det}} \bar{W}^{*}(x), \quad x \in M \tag{1.26}
\end{equation*}
$$

Since $L_{x}^{k} \boxtimes\left(L_{x}^{k}\right)^{*} \cong \mathbb{C}$, we can identify $T_{k, \lambda}^{(q), f}(x, x)$ to an element of $\operatorname{End}\left(\Lambda_{x}^{0, q}\left(T^{*} M\right)\right.$. Then

$$
\begin{equation*}
M \ni x \longmapsto T_{k, \lambda}^{(q), f}(x, x) \in \operatorname{End}\left(\Lambda_{x}^{0, q}\left(T^{*} M\right)\right) \tag{1.27}
\end{equation*}
$$

is a smooth section of $\operatorname{End}\left(\Lambda^{0, q}\left(T^{*} M\right)\right.$). Let $\operatorname{Tr} T_{k, \lambda}^{(q), f}(x, x)$ denote the trace of $T_{k, \lambda}^{(q), f}(x, x)$ with respect to $\langle\cdot, \cdot\rangle$. When M is compact, we define

$$
\begin{equation*}
\operatorname{Tr} T_{k, \lambda}^{(q), f}:=\int_{M} \operatorname{Tr} T_{k, \lambda}^{(q), f}(x, x) d v_{M}(x) \tag{1.28}
\end{equation*}
$$

For $\lambda=0$, we set $T_{k}^{(q), f}:=T_{k, 0}^{(q), f}, T_{k}^{(q), f}(x, y):=T_{k, 0}^{(q), f}(x, y), \operatorname{Tr} T_{k}^{(q), f}(x, x):=\operatorname{Tr} T_{k, 0}^{(q), f}(x, x)$, $\operatorname{Tr} T_{k}^{(q), f}:=\operatorname{Tr} T_{k, 0}^{(q), f}$.

From (1.24)-(1.26), we get Weyl's formula for Berezin-Toeplitz quantization.

Theorem 1.6. Assume (A) and (B) are fulfilled and let $N>2 n$. If M is compact, then

$$
\begin{equation*}
\operatorname{Tr} T_{k, k^{-N}}^{(q), f}=k^{n}(2 \pi)^{-n} \int_{M(q)} f(x)\left|\operatorname{det} \dot{R}^{L}(x)\right| d v_{M}(x)+o\left(k^{n}\right), \quad k \rightarrow \infty \tag{1.29}
\end{equation*}
$$

From Theorem 1.6 we deduce the following (see Section 8).
Theorem 1.7. Under assumptions (A) and (B) suppose that M is compact and $M(q-1)=\emptyset$, $M(q+1)=\emptyset$. Then

In particular,

$$
\begin{equation*}
\operatorname{Tr} T_{k}^{(q), f}=k^{n}(2 \pi)^{-n} \int_{M(q)} f(x)\left|\operatorname{det} \dot{R}^{L}(x)\right| d v_{M}(x)+o\left(k^{n}\right) \quad \text { as } k \rightarrow \infty \tag{1.31}
\end{equation*}
$$

Let's consider $q=0$ and $f \equiv 1$ in (1.31). If $M(1)=\emptyset$, we obtain $\operatorname{dim} H^{0}\left(M, L^{k}\right)=$ $k^{n}(2 \pi)^{-n} \int_{M(0)}\left|\operatorname{det} \dot{R}^{L}(x)\right| d v_{M}(x)+o\left(k^{n}\right)$ as $k \rightarrow \infty$. Therefore, $\operatorname{dim} H^{0}\left(M, L^{k}\right) \sim k^{n}$ as $k \rightarrow \infty$, provided $M(0) \neq \emptyset$ and $M(1)=\emptyset$. This is a form of Demailly's criterion for a line bundle to be big, which answers the Grauert-Riemenschneider conjecture, see [11], [24, Theorem 2.2.27].

We wish now to link the quantization scheme, we proposed above by using spectral spaces $\mathscr{E}_{k^{-N}}^{q}\left(M, L^{k}\right)$ to the more traditional quantization using holomorphic sections (or, more generally, harmonic forms). For this purpose we need the notion of $O\left(k^{-N}\right)$ small spectral gap property introduced in [18, Definition 1.5]:

Definition 1.8. Let $D \subset M$. We say that $\square_{k}^{(q)}$ has $O\left(k^{-N}\right)$ small spectral gap on D if there exist constants $C_{D}>0, N \in \mathbb{N}, k_{0} \in \mathbb{N}$, such that for all $k \geq k_{0}$ and $u \in \Omega_{0}^{0, q}\left(D, L^{k}\right)$, we have

$$
\left\|\left(I-P_{k, 0}^{(q)}\right) u\right\|_{k} \leq C_{D} k^{N}\left\|\square_{k}^{(q)} u\right\|_{k} .
$$

Let $D_{0}, D_{1} \subset M$ be open sets and $A_{k}, C_{k}: \Omega_{0}^{0, q}\left(D_{1}\right) \rightarrow \Omega^{0, q}\left(D_{0}\right)$ be k-dependent continuous operators with smooth kernels $A_{k}(x, y), C_{k}(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{1}, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes$ $\left.\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right)$. We write $A_{k} \equiv C_{k} \bmod O\left(k^{-\infty}\right)$ locally uniformly on $D_{0} \times D_{1}$ or $A_{k}(x, y) \equiv$ $C_{k}(x, y) \bmod O\left(k^{-\infty}\right)$ locally uniformly on $D_{0} \times D_{1}$ if

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta}\left(A_{k}(x, y)-C_{k}(x, y)\right)\right|=O\left(k^{-N}\right)
$$

uniformly on every compact set in $D_{0} \times D_{1}$, for all $\alpha, \beta \in \mathbb{N}_{0}^{2 n}$ and every $N>1$.
The following result describes the asymptotics of the kernels of Toeplitz operators corresponding to harmonic forms in the case of small spectral gap.

Theorem 1.9. Under the assumptions (A) and (B) let $j \in\{0,1, \ldots, n\}$ and $D_{0}, D_{1} \Subset M$ on which L is trivial. Suppose that one of the following conditions is fulfilled:
(i) $\quad D_{0} \Subset M(j)$ and $j \neq q$,
(ii) $\quad D_{0} \Subset M(q), \square_{k}^{(q)}$ has an $O\left(k^{-N}\right)$ small spectral gap on D_{0} and $\bar{D}_{0} \bigcap \bar{D}_{1}=\emptyset$.

Then

$$
\begin{aligned}
& T_{k}^{(q), f}(x, y) \equiv 0 \quad \bmod O\left(k^{-\infty}\right) \text { locally uniformly on } D_{0} \times D_{1}, \\
& \left(T_{k}^{(q), f} \circ T_{k}^{(q), g}\right)(x, y) \equiv 0 \quad \bmod O\left(k^{-\infty}\right) \text { locally uniformly on } D_{0} \times D_{1} .
\end{aligned}
$$

Assume that $D_{0} \Subset M(q)$ and $\square_{k}^{(q)}$ has an $O\left(k^{-N}\right)$ small spectral gap on D_{0}. Then,
$T_{k}^{(q), f}(x, y) \equiv e^{i k \Psi(x, y)} b_{f}(x, y, k) \quad \bmod O\left(k^{-\infty}\right)$ locally uniformly on $D_{0} \times D_{0}$, $\left(T_{k}^{(q), f} \circ T_{k}^{(q), g}\right)(x, y) \equiv e^{i k \Psi(x, y)} b_{f, g}(x, y, k) \quad \bmod O\left(k^{-\infty}\right)$ locally uniformly on $D_{0} \times D_{0}$, where $\left.b_{f}(x, y, k), b_{f, g}(x, y, k) \in S^{n}\left(1 ; D_{0} \times D_{0}, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right)$ are as in (1.12) and (1.19), respectively, and $\Psi(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0}\right)$ is as in Theorem 1.1.

There are several geometric situations when there exists a spectral gap. For example, if L is a positive line bundle on a compact manifold M, or more generally, if L is uniformly positive on a complete manifold (M, Θ) with $\sqrt{-1} R_{M}^{*}$ and $\partial \Theta$ bounded below, then the Kodaira Laplacian $\square_{k}^{(0)}$ has a "large" spectral gap on M, that is, there exists a constant $C>0$ such that for all k we have $\inf \left\{\lambda \in \operatorname{Spec}\left(\square_{k}^{(0)}\right) ; \lambda \neq 0\right\} \geq C k$, (see [24, Theorem 1.5.5], [24, Theorem 6.1.1, (6.1.8)]). Therefore, we can recover from Theorem 1.9 results about quantization of noncompact manifolds, such as [24, Theorem 7.5.1], [25, Theorem 5.3], [26, Theorem 2.30].

In this paper, as applications of Theorem 1.9, we establish Berezin-Toeplitz quantization for semipositive and big line bundles. We assume now that (M, Θ) is compact and we set

$$
\operatorname{Herm}(L)=\{\text { singular Hermitian metrics on } L\}
$$

$$
\mathcal{M}(L)=\{h \in \operatorname{Herm}(L) ; h \text { is smooth outside a proper analytic set }
$$ and the curvature current of h is strictly positive $\}$.

Note that by Siu's criterion [24, Theorem 2.2.27], L is big under the hypotheses of Theorem 1.10 below. By [24, Lemma 2.3.6], $\mathcal{M}(L) \neq \emptyset$. Set

$$
\begin{equation*}
M^{\prime}:=\{p \in M ; \exists h \in \mathcal{M}(L) \text { with } h \text { smooth near } p\} \tag{1.32}
\end{equation*}
$$

Theorem 1.10. Let (M, Θ) be a compact Hermitian manifold. Let $(L, h) \rightarrow M$ be a Hermitian holomorphic line bundle with smooth Hermitian metric h having semipositive curvature and with $M(0) \neq \emptyset$. Let $f, g \in \mathscr{C}^{\infty}(M)$ and let $D_{0} \Subset M(0) \bigcap M^{\prime}$ be an open set on which L is trivial. Then

$$
T_{k}^{(0), f}(x, y) \equiv e^{i k \Psi(x, y)} b_{f}(x, y, k) \quad \bmod O\left(k^{-\infty}\right) \text { locally uniformly on } D_{0} \times D_{0}
$$

$$
\left(T_{k}^{(0), f} \circ T_{k}^{(0), g}\right)(x, y) \equiv e^{i k \Psi(x, y)} b_{f, g}(x, y, k) \quad \bmod O\left(k^{-\infty}\right) \text { locally uniformly on } D_{0} \times D_{0}
$$

where $b_{f}(x, y, k), b_{f, g}(x, y, k) \in S^{n}\left(1 ; D_{0} \times D_{0}\right)$ are as in (1.12) and (1.19), respectively, and $\Psi(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0}\right)$ is as in Theorem 1.1.

Let us consider a singular Hermitian holomorphic line bundle $(L, h) \rightarrow M$ (see e.g., [24, Definition 2.3.1]). We assume that h is smooth outside a proper analytic set Σ and the curvature current of h is strictly positive. The metric h induces singular Hermitian metrics h^{k} on L^{k}. We denote by $\mathscr{I}\left(h^{k}\right)$ the Nadel multiplier ideal sheaf associated to h^{k} and by $H^{0}\left(M, L^{k} \otimes \mathscr{I}\left(h^{k}\right)\right) \subset H^{0}\left(M, L^{k}\right)$ the space of global sections of the sheaf $\mathscr{O}\left(L^{k}\right) \otimes \mathscr{I}\left(h^{k}\right)$ (see (2.12)), where $H^{0}\left(M, L^{k}\right):=\left\{u \in \mathscr{C}^{\infty}\left(M, L^{k}\right) ; \bar{\partial}_{k} u=0\right\}$. We denote by $(\cdot, \cdot)_{k}$ the natural inner products on $\mathscr{C}^{\infty}\left(M, L^{k} \otimes \mathscr{I}\left(h^{k}\right)\right)$ induced by h and the volume form $d v_{M}$ on M (see (2.11) and see also (2.10) for the precise meaning of $\mathscr{C}^{\infty}\left(M, L^{k} \otimes \mathscr{I}\left(h^{k}\right)\right)$). The (multiplier ideal) Bergman kernel of $\left.H^{0}\left(M, L^{k}\right) \mathscr{I}\left(h^{k}\right)\right)$ is the orthogonal projection

$$
\begin{equation*}
P_{k, \mathscr{I}}^{(0)}: L^{2}\left(M, L^{k}\right) \rightarrow H^{0}\left(M, L^{k} \otimes \mathscr{I}\left(h^{k}\right)\right) \tag{1.33}
\end{equation*}
$$

Let $f \in \mathscr{C}^{\infty}(M)$. The multiplier ideal Berezin-Toeplitz operator is

$$
\begin{equation*}
T_{k, \mathscr{I}}^{(0), f}:=P_{k, \mathscr{I}}^{(0)} \circ f \circ P_{k, \mathscr{I}}^{(0)}: L^{2}\left(M, L^{k}\right) \rightarrow H^{0}\left(M, L^{k} \otimes \mathscr{I}\left(h^{k}\right)\right) \tag{1.34}
\end{equation*}
$$

where we denote by f the multiplication operator on $L^{2}\left(M, L^{k}\right)$ by f. Let $T_{k, \mathscr{\mathscr { I }}}^{(0) f}(x, y)$ be the distribution kernel of $T_{k, \mathscr{\mathscr { I }}}^{(0), f}$. Note that $T_{k, \mathscr{\mathscr { I }}}^{(0), f}(x, y) \in \mathscr{C}^{\infty}\left((M \backslash \Sigma) \times(M \backslash \Sigma),\left(L^{k}\right)^{*} \boxtimes L^{k}\right)$.

Theorem 1.11. Let (L, h) be a singular Hermitian holomorphic line bundle over a compact Hermitian manifold (M, Θ). We assume that h is smooth outside a proper analytic set Σ and the curvature current of h is strictly positive. Let $f, g \in \mathscr{C}^{\infty}(M)$. Let $D_{0} \subset M \backslash \Sigma$ be an open set on which L is trivial. Then

$$
T_{k, \mathscr{I}}^{(0), f}(x, y) \equiv e^{i k \Psi(x, y)} b_{f}(x, y, k) \quad \bmod O\left(k^{-\infty}\right) \text { locally uniformly on } D_{0} \times D_{0}
$$

$\left(T_{k, \mathscr{\mathscr { I }}}^{(0), f} \circ T_{k, \mathscr{\mathscr { I }}}^{(0), g}\right)(x, y) \equiv e^{i k \Psi(x, y)} b_{f, g}(x, y, k) \quad \bmod O\left(k^{-\infty}\right)$ locally uniformly on $D_{0} \times D_{0}$, where $b_{f}(x, y, k), b_{f, g}(x, y, k) \in S^{n}\left(1 ; D_{0} \times D_{0}\right)$ are as in (1.12) and (1.19), respectively, and $\Psi(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0}\right)$ is as in Theorem 1.1.

The paper is organized as follows. In Section 2, we collect terminology, definitions and statements we use throughout. In Sections 3 and 4 prove the off-diagonal decay for the kernels $P_{k, k^{-N}}^{(q)}(\cdot, \cdot)$ and $T_{k, k^{-N}}^{(q),}(\cdot, \cdot)$. In Section 5, we establish the full asymptotic of the BerezinToeplitz kernels $T_{k, k^{-N}}^{(q) f}(\cdot, \cdot)$ and prove Theorem 1.1. Section 6 is devoted to the expansion of the composition of two Toeplitz operators and contains the proof of Theorems 1.3, 1.4, and 1.9-1.11. In Section 7, we calculate the leading coefficients of the various expansions we established. Finally, in Section 8, we prove Theorems 1.2 and 1.7.

2. Preliminaries

Some standard notations. We denote by $\mathbb{N}=\{0,1,2, \ldots\}$ the set of natural numbers and by \mathbb{R} the set of real numbers. We use the standard notations $w^{\alpha}, \partial_{x}^{\alpha}$ for multi-indices $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{N}^{m}, w \in \mathbb{C}^{m}, \partial_{x}=\left(\partial_{x_{1}}, \ldots, \partial_{x_{m}}\right)$.

Let Ω be a \mathscr{C}^{∞} paracompact manifold equipped with a smooth density of integration. We let $T \Omega$ and $T^{*} \Omega$ denote the tangent bundle of Ω and the cotangent bundle of Ω, respectively. The complexified tangent bundle of Ω and the complexified cotangent bundle of Ω will be denoted by $\mathbb{C} T \Omega:=T \Omega \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} T^{*} \Omega:=T^{*} \Omega \otimes_{\mathbb{R}} \mathbb{C}$, respectively. We write $\langle\cdot, \cdot\rangle$ to denote the pointwise duality between $T \Omega$ and $T^{*} \Omega$. We extend $\langle\cdot, \cdot\rangle$ bilinearly to ($T \Omega \otimes_{\mathbb{R}}$ $\mathbb{C}) \times\left(T^{*} \Omega \otimes_{\mathbb{R}} \mathbb{C}\right)$.

Let E be a \mathscr{C}^{∞} vector bundle over Ω. We write E^{*} to denote the dual bundle of E. The fiber of E at $x \in \Omega$ will be denoted by E_{x}. We denote by End (E) the vector bundle over Ω with fiber $\operatorname{End}(E)_{x}=\operatorname{End}\left(E_{x}\right)$ over $x \in \Omega$.

Let F be a vector bundle over another \mathscr{C}^{∞} paracompact manifold Ω^{\prime}. We introduce the vector bundle $F \boxtimes E^{*}=\pi_{1}^{*}(F) \otimes \pi_{2}^{*}\left(E^{*}\right)$ over $\Omega^{\prime} \times \Omega$, where π_{1} and π_{2} are the projections of $\Omega^{\prime} \times \Omega$ on the first and second factor (see [24, p. 337]). The fiber of $F \boxtimes E^{*}$ over (x, y) $\in \Omega^{\prime} \times \Omega$ consists of the linear maps from E_{y} to F_{x}.

Let $Y \subset \Omega$ be an open set and take any L^{2} inner product on $\mathscr{C}_{0}^{\infty}(Y, E)$. By using this L^{2} inner product, in this paper, we will consider a distribution section of E over Y is a continuous linear form on $\mathscr{C}_{0}^{\infty}(Y, E)$. From now on, the spaces distribution sections of E over Y will be denoted by $\mathscr{D}^{\prime}(Y, E)$. Let $\mathscr{E}^{\prime}(Y, E)$ be the subspace of $\mathscr{D}^{\prime}(Y, E)$ whose elements have compact
support in Y. For $m \in \mathbb{R}$, we let $H^{m}(Y, E)$ denote the Sobolev space of order m of sections of E over Y. Put

$$
\begin{gathered}
H_{\mathrm{loc}}^{m}(Y, E)=\left\{u \in \mathscr{D}^{\prime}(Y, E) ; \varphi u \in H^{m}(Y, E), \varphi \in \mathscr{C}_{0}^{\infty}(Y)\right\}, \\
H_{\text {comp }}^{m}(Y, E)=H_{\mathrm{loc}}^{m}(Y, E) \cap \mathscr{E}^{\prime}(Y, E)
\end{gathered}
$$

Let M be a complex manifold of dimension n. We always assume that M is paracompact. Let $T^{1,0} M$ and $T^{0,1} M$ denote the holomorphic tangent bundle of M and the antiholomorphic tangent bundle of M, respectively. Let $\Lambda^{1,0}\left(T^{*} M\right)$ be the holomorphic cotangent bundle of M and let $\Lambda^{0,1}\left(T^{*} M\right)$ be the antiholomorphic cotangent bundle of M. For $p, q \in \mathbb{N}$, let $\Lambda^{p, q}\left(T^{*} M\right)=\Lambda^{p}\left(\Lambda^{1,0}\left(T^{*} M\right)\right) \otimes \Lambda^{q}\left(\Lambda^{0,1}\left(T^{*} M\right)\right)$ be the bundle of (p, q) forms of M.

For an open set $D \subset M$ we let $\Omega^{p, q}(D)$ denote the space of smooth sections of $\Lambda^{p, q}\left(T^{*} M\right)$ over D and let $\Omega_{0}^{0, q}(D)$ be the subspace of $\Omega^{0, q}(D)$ whose elements have compact support in D. Similarly, if E is a vector bundle over D, then we let $\Omega^{p, q}(D, E)$ denote the space of smooth sections of $\Lambda^{p, q}\left(T^{*} M\right) \otimes E$ over D. Let $\Omega_{0}^{p, q}(D, E)$ be the subspace of $\Omega^{p, q}(D, E)$ whose elements have compact support in D.

For a multi-index $J=\left(j_{1}, \ldots, j_{q}\right) \in\{1, \ldots, n\}^{q}$ we set $|J|=q$. We say that J is strictly increasing if $1 \leqslant j_{1}<j_{2}<\cdots<j_{q} \leqslant n$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a local frame for $\Lambda^{0,1}\left(T^{*} M\right)$ on an open set $D \subset M$. For a multi-index $J=\left(j_{1}, \ldots, j_{q}\right) \in\{1, \ldots, n\}^{q}$, we put $e^{J}=e_{j_{1}} \wedge \cdots \wedge e_{j_{q}}$. Let E be a vector bundle over D and let $f \in \Omega^{0, q}(D, E)$. f has the local representation

$$
\left.f\right|_{D}=\sum_{|J|=q}^{\prime} f_{J}(z) e^{J}
$$

where \sum^{\prime} means that the summation is performed only over strictly increasing multi-indices and $f_{J} \in \mathscr{C}^{\infty}(D, E)$.

Metric data. Let (M, Θ) be a complex manifold of dimension n, where Θ is a smooth positive $(1,1)$ form, which induces a Hermitian metric $\langle\cdot, \cdot\rangle$ on the holomorphic tangent bundle $T^{1,0} M$. In local holomorphic coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$, if $\Theta=\sqrt{-1} \sum_{j, k=1}^{n} \Theta_{j, k} d z_{j} \wedge d \bar{z}_{k}$, then $\left\langle\left.\frac{\partial}{\partial z_{j}} \right\rvert\, \frac{\partial}{\partial z_{k}}\right\rangle=\Theta_{j, k}, j, k=1, \ldots, n$. We extend the Hermitian metric $\langle\cdot, \cdot\rangle$ to $T M \otimes_{\mathbb{R}} \mathbb{C}$ in a natural way. The Hermitian metric $\langle\cdot, \cdot\rangle$ on $T M \otimes_{\mathbb{R}} \mathbb{C}$ induces a Hermitian metric on $\Lambda^{p, q}\left(T^{*} M\right)$ also denoted by $\langle\cdot, \cdot\rangle$.

Let (L, h) be a Hermitian holomorphic line bundle over M, where the Hermitian metric on L is denoted by h. Until further notice, we assume that h is smooth. Given a local holomorphic frame s of L on an open subset $D \subset M$ we define the associated local weight of h by

$$
\begin{equation*}
|s(x)|_{h}^{2}=e^{-2 \phi(x)}, \quad \phi \in \mathscr{C}^{\infty}(D, \mathbb{R}) \tag{2.1}
\end{equation*}
$$

Let $R^{L}=\left(\nabla^{L}\right)^{2}$ be the Chern curvature of L, where ∇^{L} is the Hermitian holomorphic connection. Then $\left.R^{L}\right|_{D}=2 \partial \bar{\partial} \phi$.

Let $L^{k}, k>0$, be the k th tensor power of the line bundle L. The Hermitian fiber metric on L induces a Hermitian fiber metric on L^{k} that we shall denote by h^{k}. If s is a local trivializing holomorphic section of L then s^{k} is a local trivializing holomorphic section of L^{k}. For $p, q \in \mathbb{N}$, the Hermitian metric $\langle\cdot, \cdot\rangle$ on $\Lambda^{p, q}\left(T^{*} M\right)$ and h^{k} induce a Hermitian metric on $\Lambda^{p, q}\left(T^{*} M\right) \otimes L^{k}$, denoted by $\langle\cdot, \cdot\rangle_{h^{k}}$. For $s \in \Omega^{p, q}\left(M, L^{k}\right)$, we denote the pointwise norm $|s(x)|_{h^{k}}^{2}:=\langle s(x), s(x)\rangle_{h^{k}}$. We take $d v_{M}=d v_{M}(x)$ as the induced volume form on M.

The L^{2}-Hermitian inner products on the spaces $\Omega_{0}^{p, q}\left(M, L^{k}\right)$ and $\Omega_{0}^{p, q}(M)$ are given by

$$
\begin{align*}
& \left(s_{1}, s_{2}\right)_{k}=\int_{M}\left\langle s_{1}(x), s_{2}(x)\right\rangle_{h^{k}} d v_{M}(x), s_{1}, s_{2} \in \Omega_{0}^{p, q}\left(M, L^{k}\right) \\
& \left(f_{1}, f_{2}\right)=\int_{M}\left\langle f_{1}(x), f_{2}(x)\right\rangle d v_{M}(x), f_{1}, f_{2} \in \Omega_{0}^{p, q}(M) \tag{2.2}\\
& \|s\|_{k}^{2}=(s, s)_{k}, s \in \Omega_{0}^{p, q}\left(M, L^{k}\right), \quad\|f\|^{2}:=(f, f), f \in \Omega_{0}^{p, q}(M) .
\end{align*}
$$

Let $A_{k}: L_{(0, q)}^{2}\left(M, L^{k}\right) \rightarrow L_{(0, q)}^{2}\left(M, L^{k}\right)$ be a k-dependent continuous operator with smooth kernel $A_{k}(x, y)$. Let s, \widehat{s} be local trivializing holomorphic sections of L on $D_{0} \Subset M, D_{1} \Subset M$, respectively, $|s|_{h}^{2}=e^{-2 \phi},|\widehat{s}|_{h}^{2}=e^{-2 \widehat{\phi}}$, where D_{0}, D_{1} are open sets. The localized operator of A_{k} on $D_{0} \times D_{1}$ is given by

$$
\begin{equation*}
A_{k, s, \widehat{s}}: \Omega_{0}^{0, q}\left(D_{1}\right) \rightarrow \Omega^{0, q}\left(D_{0}\right), u \longmapsto s^{-k} e^{-k \phi}\left(A_{k} \widehat{s}^{k} e^{k \widehat{\phi}} u\right) \tag{2.3}
\end{equation*}
$$

and let $\left.A_{k, s, s}(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{1}, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right)$ be the distribution kernel of $A_{k, s, s}$. For $s=\widehat{s}, D_{0}=D_{1}$, we set

$$
\begin{equation*}
A_{k, s}:=A_{k, s, s}, \quad A_{k, s}(x, y):=A_{k, s, s}(x, y) . \tag{2.4}
\end{equation*}
$$

A self-adjoint extension of the Kodaira Laplacian. We denote by

$$
\begin{equation*}
\bar{\partial}_{k}: \Omega^{0, r}\left(M, L^{k}\right) \rightarrow \Omega^{0, r+1}\left(M, L^{k}\right), \bar{\partial}_{k}^{*}: \Omega^{0, r+1}\left(M, L^{k}\right) \rightarrow \Omega^{0, r}\left(M, L^{k}\right) \tag{2.5}
\end{equation*}
$$

the Cauchy-Riemann operator acting on sections of L^{k} and its formal adjoint with respect to $(\cdot \mid \cdot)_{k}$, respectively. Let

$$
\begin{equation*}
\square_{k}^{(q)}:=\bar{\partial}_{k} \bar{\partial}_{k}^{*}+\bar{\partial}_{k}^{*} \bar{\partial}_{k}: \Omega^{0, q}\left(M, L^{k}\right) \rightarrow \Omega^{0, q}\left(M, L^{k}\right) \tag{2.6}
\end{equation*}
$$

be the Kodaira Laplacian acting on $(0, q)$-forms with values in L^{k}. We extend $\bar{\partial}_{k}$ to $L_{(0, r)}^{2}\left(M, L^{k}\right)$ by

$$
\begin{equation*}
\bar{\partial}_{k}: \operatorname{Dom} \bar{\partial}_{k} \subset L_{(0, r)}^{2}\left(M, L^{k}\right) \rightarrow L_{(0, r+1)}^{2}\left(M, L^{k}\right), \tag{2.7}
\end{equation*}
$$

where $\operatorname{Dom} \bar{\partial}_{k}:=\left\{u \in L_{(0, r)}^{2}\left(M, L^{k}\right) ; \bar{\partial}_{k} u \in L_{(0, r+1)}^{2}\left(M, L^{k}\right)\right\}$, where $\bar{\partial}_{k} u$ is defined in the sense of distributions. We also write

$$
\begin{equation*}
\bar{\partial}_{k}^{*}: \operatorname{Dom} \bar{\partial}_{k}^{*} \subset L_{(0, r+1)}^{2}\left(M, L^{k}\right) \rightarrow L_{(0, r)}^{2}\left(M, L^{k}\right) \tag{2.8}
\end{equation*}
$$

to denote the Hilbert space adjoint of $\bar{\partial}_{k}$ in the L^{2} space with respect to $(\cdot, \cdot)_{k}$. Let $\square_{k}^{(q)}$ denote the Gaffney extension of the Kodaira Laplacian given by

$$
\begin{equation*}
\operatorname{Dom} \square_{k}^{(q)}=\left\{s \in L_{(0, q)}^{2}\left(M, L^{k}\right) ; s \in \operatorname{Dom} \bar{\partial}_{k} \cap \operatorname{Dom} \bar{\partial}_{k}^{*}, \bar{\partial}_{k} s \in \operatorname{Dom} \bar{\partial}_{k}^{*}, \bar{\partial}_{k}^{*} s \in \operatorname{Dom} \bar{\partial}_{k}\right\}, \tag{2.9}
\end{equation*}
$$

and $\square_{k}^{(q)} s=\bar{\partial}_{k} \bar{\partial}_{k}^{*} s+\bar{\partial}_{k}^{*} \bar{\partial}_{k} s$ for $s \in \operatorname{Dom} \square_{k}^{(q)}$. By a result of Gaffney [24, Proposition 3.1.2], $\square_{k}^{(q)}$ is a positive self-adjoint operator. Note that if M is complete, the Kodaira Laplacian $\square_{k}^{(q)}$ is essentially self-adjoint [24, Corollary 3.3.4] and the Gaffney extension coincides with the Friedrichs extension of $\square_{k}^{(q)}$.

Consider a singular Hermitian metric h on a holomorphic line bundle L over M. If h_{0} is a smooth Hermitian metric on L then $h=h_{0} e^{-2 \varphi}$ for some function $\varphi \in L_{l o c}^{1}(M, \mathbb{R})$. The Nadel
multiplier ideal sheaf of h is defined by $\mathscr{I}(h)=\mathscr{I}(\varphi)$; the definition does not depend on the choice of h_{0}. Recall that the Nadel multiplier ideal sheaf $\mathscr{I}(\varphi) \subset \mathscr{O}_{M}$ is the ideal subsheaf of germs of holomorphic functions $f \in \mathscr{O}_{M, x}$ such that $|f|^{2} e^{-2 \varphi}$ is integrable with respect to the Lebesgue measure in local coordinates near x for all $x \in M$. Put

$$
\begin{equation*}
\mathscr{C}^{\infty}(M, L \otimes \mathscr{I}(h)):=\left\{S \in \mathscr{C}^{\infty}(M, L) ; \int_{M}|S|_{h}^{2} d v_{M}=\int_{M}|S|_{h_{0}}^{2} e^{-2 \varphi} d v_{M}<\infty\right\} \tag{2.10}
\end{equation*}
$$

where $|\cdot|_{h}$ and $|\cdot|_{h_{0}}$ denote the pointwise norms for sections induced by h and h_{0}, respectively. With the help of h and the volume form $d v_{M}$ we define an L^{2} inner product on $\mathscr{C}^{\infty}(M, L \otimes \mathscr{I}(h)):$

$$
\begin{equation*}
\left(S, S^{\prime}\right)_{h}=\int_{M}\left\langle S, S^{\prime}\right\rangle_{h_{0}} e^{-2 \varphi} d v_{M}, \quad S, S^{\prime} \in \mathscr{C}^{\infty}(M, L \otimes \mathscr{I}(h)) \tag{2.11}
\end{equation*}
$$

The singular Hermitian metric h induces a singular Hermitian metric $h^{k}=h_{0}^{k} e^{-2 k \varphi}$ on L^{k}, $k>0$. We denote by $(\cdot, \cdot)_{k}$ the natural inner products on $\mathscr{C}^{\infty}\left(M, L^{k} \otimes \mathscr{I}\left(h^{k}\right)\right)$ defined as in (2.11) and by $L^{2}\left(M, L^{k}\right)$ the completion of $\mathscr{C}^{\infty}\left(M, L^{k} \otimes \mathscr{I}\left(h^{k}\right)\right)$ with respect to $(\cdot, \cdot)_{k}$. The space of global sections in the sheaf $\mathscr{O}\left(L^{k}\right) \otimes \mathscr{I}\left(h^{k}\right)$ is given by

$$
\begin{align*}
& H^{0}\left(M, L^{k} \otimes \mathscr{I}\left(h^{k}\right)\right) \\
& \quad=\left\{s \in \mathscr{C}^{\infty}\left(M, L^{k}\right) ; \bar{\partial}_{k} s=0, \int_{M}|s|_{h^{k}}^{2} d v_{M}=\int_{M}|s|_{h_{0}^{k}}^{2} e^{-2 k \varphi} d v_{M}<\infty\right\} . \tag{2.12}
\end{align*}
$$

Schwartz kernel theorem and semiclassical Hörmander symbol spaces. We recall here the Schwartz kernel theorem [16, Theorems 5.2.1, 5.2.6], [24, Thorem B.2.7]. Let Ω be a \mathscr{C}^{∞} paracompact manifold equipped with a smooth density of integration. Let E and F be smooth vector bundles over Ω. Any distribution ("kernel")

$$
\begin{equation*}
A(x, y) \in \mathscr{D}^{\prime}\left(\Omega \times \Omega, F \boxtimes E^{*}\right) \tag{2.13}
\end{equation*}
$$

defines a continuous operator

$$
\begin{equation*}
A: \mathscr{C}_{0}^{\infty}(\Omega, E) \rightarrow \mathscr{D}^{\prime}(\Omega, F), \quad\langle A u, v\rangle:=\langle A(x, y), v(x) \otimes u(y)\rangle, \tag{2.14}
\end{equation*}
$$

for any $u \in \mathscr{C}_{0}^{\infty}(\Omega, E), v \in \mathscr{C}_{0}^{\infty}(\Omega, F)$. Conversely, any continuous linear operator A : $\mathscr{C}_{0}^{\infty}(\Omega, E) \rightarrow \mathscr{D}^{\prime}(\Omega, F)$ is given by a distribution $A(x, y) \in \mathscr{D}^{\prime}\left(\Omega \times \Omega, F \boxtimes E^{*}\right)$ as above, called the Schwartz distribution kernel of A. Moreover, the following two statements are equivalent
(a) A is continuous: $\mathscr{E}^{\prime}(\Omega, E) \rightarrow \mathscr{C}^{\infty}(\Omega, F)$,
(b) $A(x, y) \in \mathscr{C}^{\infty}\left(\Omega \times \Omega, F \boxtimes E^{*}\right)$.

If A satisfies (a) or (b), we say that A is a smoothing operator. Furthermore, A is smoothing if and only if $A: H_{\text {comp }}^{s}(\Omega, E) \rightarrow H_{\text {loc }}^{s+N}(\Omega, F)$ is continuous, for all $N \geq 0, s \in \mathbb{R}$. Let $A, B: \mathscr{C}_{0}^{\infty}(\Omega, E) \rightarrow \mathscr{D}^{\prime}(\Omega, F)$ be continuous operators. We write $A \equiv B$ or $A(x, y) \equiv B(x, y)$ if $A-B$ is a smoothing operator.

We say that A is properly supported if the restrictions to $\operatorname{Supp} A(\cdot, \cdot)$ of the projections π_{1} and π_{2} from $\Omega \times \Omega$ to the first and second factor are proper.

We say that A is smoothing away the diagonal if $\chi_{1} A \chi_{2}$ is smoothing for all $\chi_{1}, \chi_{2} \in$ $\mathscr{C}_{0}^{\infty}(\Omega)$ with Supp $\chi_{1} \cap \operatorname{Supp} \chi_{2}=\emptyset$.

We recall the definition of semiclassical Hörmander symbol spaces [13, Chapter 8]:
Definition 2.1. Let U be an open set in \mathbb{R}^{N}. Let

$$
\begin{aligned}
S(1) & =S(1 ; U):=\left\{a \in \mathscr{C}^{\infty}(U)\left|\forall \alpha \in \mathbb{N}_{0}^{N}: \sup _{x \in U}\right| \partial^{\alpha} a(x) \mid<\infty\right\}, \\
S^{0}(1 ; U) & :=\left\{(a(\cdot, k))_{k \in \mathbb{N}} \in \mathscr{C}^{\infty}(U)^{\mathbb{N}}\left|\forall \alpha \in \mathbb{N}_{0}^{N}: \sup _{k \in \mathbb{N}} \sup _{x \in U}\right| \partial^{\alpha} a(x, k) \mid<\infty\right\} .
\end{aligned}
$$

For $m \in \mathbb{R}$ let

$$
S^{m}(1 ; U)=\left\{(a(\cdot, k))_{k \in \mathbb{N}} \in \mathscr{C}^{\infty}(U)^{\mathbb{N}} \mid\left(k^{-m} a(\cdot, k)\right) \in S^{0}(1 ; U)\right\} .
$$

Hence $(a(\cdot, k)) \in S^{m}(1 ; U)$ if for every $\alpha \in \mathbb{N}_{0}^{N}$, there exists $C_{\alpha}>0$, such that $\left|\partial^{\alpha} a(\cdot, k)\right| \leq$ $C_{\alpha} k^{m}$ on W. Consider a sequence $a_{j} \in S^{m_{j}}(1), j \in \mathbb{N}$, where $m_{j} \searrow-\infty$, and let $a \in S^{m_{0}}(1)$. We say that

$$
a(\cdot, k) \sim \sum_{j=0}^{\infty} a_{j}(\cdot, k), \quad \text { in } S^{m_{0}}(1)
$$

if for every $\ell \in \mathbb{N}$ we have $a-\sum_{j=0}^{\ell} a_{j} \in S^{m_{\ell+1}}(1)$. For a given sequence a_{j} as above, we can always find such an asymptotic sum a, which is unique up to an element in $S^{-\infty}(1)=$ $S^{-\infty}(1 ; U):=\cap_{m} S^{m}(1)$. We define $S^{m}(1 ; Y, E)$ in the natural way, where Y is a smooth paracompact manifold and E is a vector bundle over Y.

3. Spectral kernel estimates away the diagonal

The goal of this section is to prove the off-diagonal decay for the kernel $P_{k, k^{-N}}^{(q)}(\cdot, \cdot)$ of the spectral projection $P_{k, k^{-N}}^{(q)}$. For this purpose, we introduce a localization of the projection. Let s, \widehat{s} be local trivializing holomorphic sections of L on $D_{0} \Subset M, D_{1} \Subset M$, respectively, $|s|_{h}^{2}=e^{-2 \phi},|\hat{s}|_{h}^{2}=e^{-2 \widehat{\phi}}$, where D_{0}, D_{1} are open sets. We denote by $P_{k, k^{-N}, s, s}^{(q)}$ the localization given by (2.3).

Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be orthonormal frames of $\Lambda^{0,1}\left(T^{*} M\right)$ on D_{0} and D_{1}, respectively. Then,

$$
\left\{e^{J} ;|J|=q, J \text { is strictly increasing }\right\}, \quad\left\{w^{J} ;|J|=q, J \text { is strictly increasing }\right\}
$$

are orthonormal frames of $\Lambda^{0, q}\left(T^{*} M\right)$ on D_{0} and D_{1}, respectively. We write

$$
\begin{align*}
& P_{k, k^{-N}, \widehat{s}}^{(q)}(x, y)=\sum_{|I|=|J|=q}{ }^{\prime} P_{k, k^{-N}, s, \widehat{s}}^{(q), I J}(x, y) e^{I}(x) \wedge\left(w^{J}(y)\right)^{\dagger}, \\
& P_{k, k^{-N}, s, s}^{(q), I J}(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{1}\right), \forall|I|=|J|=q, I, J \text { are strictly increasing, } \tag{3.1}
\end{align*}
$$

in the sense that for every $u=\sum_{|J|=q}{ }^{\prime} u_{J} w^{J} \in \Omega_{0}^{0, q}\left(D_{1}\right)$, we have

$$
\begin{equation*}
\left(P_{k, k^{-N}, \widehat{s}, \bar{s}}^{(q)} u\right)(x)=\sum_{|I|=|J|=q}{ }^{\prime} e^{I}(x) \otimes \int P_{k, k^{-N}, s, \widehat{s}}^{(q), I J}(x, y) u_{J}(y) d v_{M}(y) . \tag{3.2}
\end{equation*}
$$

The goal of this section is to prove the following.

Theorem 3.1. With the notations used above, we assume that $D_{0} \Subset M(j), j \neq q, j \in$ $\{0,1, \ldots, n\}$ or $D_{0} \Subset M(q)$ and $\bar{D}_{0} \bigcap \bar{D}_{1}=\emptyset$. Then, for every $N>1, m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k, such that for all strictly increasing I, J with $|I|=|J|=q$,

$$
\left|P_{k, k^{-N}, s, s, S}^{(q), I, J}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{1}\right)} \leq C_{N, m} k^{2 n-\frac{N}{2}+2 m}
$$

As preparation, we recall the next result, established in [18, Theorems 4.11 and 4.12]. The localization $P_{k, k^{-N, s}}^{(q)}$ is defined as in (2.4).

Theorem 3.2. With the notations used above, assume that $D_{0} \Subset M(q)$. Then, for every $N>1$, $m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that

$$
\left|P_{k, k^{-N}, s}^{(q)}(x, y)-e^{i k \Psi(x, y)} b(x, y, k)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq C_{N, m} k^{3 n-N+2 m},
$$

where

$$
\begin{aligned}
& b(x, y, k) \in S^{n}\left(1 ; D_{0} \times D_{0}, \Lambda^{0, q}\left(T^{*} M\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right), \\
& b(x, y, k) \sim \sum_{j=0}^{\infty} b_{j}(x, y) k^{n-j} \text { in } S^{n}\left(1 ; D_{0} \times D_{0}, \Lambda^{0, q}\left(T^{*} M\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right), \\
& b_{j}(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0},\left(\Lambda^{0, q}\left(T^{*} M\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right), j=0,1,2, \ldots,\right. \\
& b_{0}(x, x)=(2 \pi)^{-n}\left|\operatorname{det} \dot{R}^{L}(x)\right| I_{\operatorname{det}} \bar{W}^{*}(x), \quad \forall x \in D_{0},
\end{aligned}
$$

and $b(x, y, k)$ is properly supported and $\Psi(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0}\right)$ is as in Theorem 1.1.
Assume that $D_{0} \Subset M(j), j \neq q, j \in\{0,1,2, \ldots, n\}$. Then, for every $N>1, m \in \mathbb{N}$, there exists $\widetilde{C}_{N, m}>0$ independent of k such that

$$
\left|P_{k, k^{-N}, s}^{(q)}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq \widetilde{C}_{N, m} k^{3 n-N+2 m}
$$

The following properties of the phase function Ψ follow also from [18, Theorem 3.8].
Theorem 3.3. With the assumptions and notations used in Theorem 1.1, for a given point $p \in$ D_{0}, let $x=z=\left(z_{1}, \ldots, z_{n}\right)$ be local holomorphic coordinates centered at p satisfying

$$
\begin{align*}
& \Theta(p)=\sqrt{-1} \sum_{j=1}^{n} d z_{j} \wedge d \bar{z}_{j} \tag{3.3}\\
& \phi(z)=\sum_{j=1}^{n} \lambda_{j}\left|z_{j}\right|^{2}+O\left(|z|^{3}\right), z \text { near } p,\left\{\lambda_{j}\right\}_{j=1}^{n} \subset \mathbb{R} \backslash\{0\},
\end{align*}
$$

then we have near $(0,0)$,

$$
\begin{equation*}
\Psi(z, w)=i \sum_{j=1}^{n}\left|\lambda_{j}\right|\left|z_{j}-w_{j}\right|^{2}+i \sum_{j=1}^{n} \lambda_{j}\left(\bar{z}_{j} w_{j}-z_{j} \bar{w}_{j}\right)+O\left(|(z, w)|^{3}\right) . \tag{3.4}
\end{equation*}
$$

Moreover, when $q=0$, we have

$$
\begin{equation*}
\Psi(z, w)=i(\phi(z)+\phi(w))-2 i \sum_{\alpha, \beta \in \mathbb{N},|\alpha|+|\beta| \leq N} \frac{\partial^{|\alpha|+|\beta|} \phi}{\partial z^{\alpha} \partial \bar{z}^{\beta}}(0) \frac{z^{\alpha}}{\alpha!} \frac{\bar{w}^{\beta}}{\beta!}+O\left(|(z, w)|^{N+1}\right), \tag{3.5}
\end{equation*}
$$

for every $N \in \mathbb{N}$.
Fix $N>1$. Let $\left\{g_{1}(x), g_{2}(x), \ldots, g_{d_{k}}(x)\right\}$ be an orthonormal frame for $\mathscr{E}_{k^{-N}}\left(M, L^{k}\right)$, where $d_{k} \in \mathbb{N} \cup\{\infty\}$. On D_{0}, D_{1}, we write

$$
\begin{align*}
& g_{j}(x)=s^{k}(x) \widetilde{g}_{j}(x), \widetilde{g}_{j}(x)=\sum_{|J|=q}{ }^{\prime} \widetilde{g}_{j, J}(x) e^{J}(x) \text { on } D_{0}, j=1, \ldots, d_{k}, \\
& g_{j}(x)=\widehat{s}^{k}(x) \widehat{g}_{j}(x), \widehat{g}_{j}(x)=\sum_{|J|=q}^{\prime} \widehat{g}_{j, J}(x) w^{J}(x) \text { on } D_{1}, j=1, \ldots, d_{k} . \tag{3.6}
\end{align*}
$$

It is not difficult to check that for every strictly increasing I, J, with $|I|=|J|=q$, we have

$$
\begin{align*}
& P_{k, k^{-N, s, \widehat{s}}}^{(q), I, J}(x, y)=\sum_{j=1}^{d_{k}} \widetilde{g}_{j, I}(x) e^{-k \phi(x)} \overline{\widehat{g}_{j, J}}(y) e^{-k \widehat{\phi}(y)}, \\
& P_{k, k^{-N}, s}^{(q), I J}(x, y)=\sum_{j=1}^{d_{k}} \widetilde{g}_{j, I}(x) e^{-k \phi(x)}{\widetilde{g_{j}}, J}(y) e^{-k \widehat{\phi}(y)} . \tag{3.7}
\end{align*}
$$

Lemma 3.4. Assume that $D_{0} \Subset M(j), j \neq q$. Then, for every $N>1, m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that for every strictly increasing I, J, with $|I|=|J|=q$,

$$
\left|P_{k, k^{-N}, s, s, S}^{(q), I J}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{1}\right)} \leq C_{N, m} k^{2 n-\frac{N}{2}+2 m}
$$

Proof. Fix I, J are strictly increasing, $|I|=|J|=q$, and let $\alpha, \beta \in \mathbb{N}_{0}^{2 n}$. By (3.7), we have

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} P_{k, k^{-N}, s, s}^{(q), I,}(x, y)\right| \leq \sqrt{\left.\sum_{j=1}^{d_{k}} \mid \partial_{x}^{\alpha} \widetilde{g}_{j, I}(x) e^{-k \phi(x)}\right)\left.\right|^{2}} \sqrt{\sum_{j=1}^{d_{k}}\left|\partial_{y}^{\beta}\left(\widehat{g}_{j, J}(y) e^{-k \widehat{\phi}(y)}\right)\right|^{2}} . \tag{3.8}
\end{equation*}
$$

In view of Theorem 3.2, we see that

$$
\begin{equation*}
\sum_{j=1}^{d_{k}}\left|\partial_{x}^{\alpha}\left(\widetilde{g}_{j, I}(x) e^{-k \phi(x)}\right)\right|^{2} \leq C_{\alpha} k^{3 n-N+4|\alpha|}, \text { on } D_{0} \tag{3.9}
\end{equation*}
$$

where $C_{\alpha}>0$ is a constant independent of k. Moreover, it is known (see [18, Theorem 4.3]) that

$$
\begin{equation*}
\sum_{j=1}^{d_{k}}\left|\partial_{y}^{\beta}\left(\widehat{g}_{j}, J(y) e^{-k \widehat{\phi}(y)}\right)\right|^{2} \leq C_{\beta} k^{n+4|\beta|} \text { on } D_{1} \tag{3.10}
\end{equation*}
$$

where $C_{\beta}>0$ is a constant independent of k. From (3.8) to (3.10), the lemma follows.

Lemma 3.4 provides the proof of Theorem 3.1 in the case $D_{0} \Subset M(j), j \neq q$. Now, we assume that $D_{0} \Subset M(q)$. Fix $p \in D_{0}, I_{0}, J_{0}$ strictly increasing with $\left|I_{0}\right|=\left|J_{0}\right|=q$, and $\alpha, \beta \in \mathbb{N}_{0}^{2 n}$. Put

$$
\begin{align*}
& \partial_{x}^{\alpha} \partial_{y}^{\alpha} e^{i k \Psi(x, y)} b(x, y, k)=e^{i k \Psi(x, y)} a(x, y, k)=\sum_{|I|=|J|=q}^{\prime} e^{i k \Psi(x, y)} a_{I, J}(x, y, k) e^{I}(x) \wedge\left(e^{J}(y)\right)^{\dagger}, \\
& \partial_{y}^{\alpha} e^{i k \Psi(x, y)} b(x, y, k)=e^{i k \Psi(x, y)} d(x, y, k)=\sum_{|I|=|J|=q}^{\prime} e^{i k \Psi(x, y)} d_{I, J}(x, y, k) e^{I}(x) \wedge\left(e^{J}(y)\right)^{\dagger}, \tag{3.11}
\end{align*}
$$

where $\Psi(x, y)$ and $b(x, y, k)$ are as in Theorem 3.2 and $a_{I, J}(x, y, k), d_{I, J}(x, y, k) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0}\right)$, for any I, J strictly increasing with $|I|=|J|=q$.

Lemma 3.5. Assume that $a_{I_{0}, I_{0}}(p, p, k) \leq 0$. Then, there exists $C_{\alpha, \beta}>0$ independent of k and the point p such that

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} P_{k, k^{-N}, s, \bar{S}}^{(q), I_{0}, J_{0}}(p, y)\right| \leq C_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|}, \quad \forall y \in D_{1} .
$$

Proof. In view of Theorems 3.2 and (3.7), we see that

$$
\begin{align*}
\left.\left.\sum_{j=1}^{d_{k}} \mid \partial_{x}^{\alpha} \widetilde{g}_{j, I_{0}} e^{-k \phi}\right)(p)\right)\left.\right|^{2} & =\partial_{x}^{\alpha} \partial_{y}^{\alpha} P_{k, k^{-N, s}}^{(q), I_{0}, I_{0}}(p, p) \leq\left|\partial_{x}^{\alpha} \partial_{y}^{\alpha} P_{k, k^{-N, s}}^{(q), I_{0}, I_{0}}(p, p)-a_{I_{0}, I_{0}}(p, p)\right| \\
& \leq C_{\alpha} k^{3 n-N+4|\alpha|}, \tag{3.12}
\end{align*}
$$

where $C_{\alpha}>0$ is a constant independent of k and the point p. From (3.12), (3.8), and (3.10), the lemma follows.

Now, we assume that $a_{I_{0}, I_{0}}(p, p)>0$. Take $\chi \in \mathscr{C}_{0}^{\infty}(\mathbb{R},[0,1])$ so that $\chi=1$ if $|x| \leq 1$, $\chi=0$ if $|x|>2$. Put

$$
\begin{align*}
& \tilde{u}_{k}(x)=\frac{1}{\sqrt{a_{I_{0}, I_{0}}(p, p, k)}} e^{i k \Psi(x, p)} \chi\left(\frac{|x-p|^{2}}{\varepsilon}\right) \sum_{|I|=q}^{\prime} d_{I, I_{0}}(x, p, k) e^{I}(x) \in \Omega_{0}^{0, q}\left(D_{0}\right), \\
& u_{k}(x)=s^{k}(x) \widetilde{u}_{k}(x) e^{k \phi(x)} \in \Omega_{0}^{0, q}\left(D_{0}, L^{k}\right) \tag{3.13}
\end{align*}
$$

where $\varepsilon>0$ is a small constant and $d_{I, I_{0}}(x, y)$ is as in (3.11). We need
Lemma 3.6. We have

$$
u_{k}(x) \equiv \frac{P_{k, k^{-N}}^{(q)} u_{k}(x)}{\left\|P_{k, k^{-N}}^{(q)} u_{k}\right\|_{k}} \quad \bmod O\left(k^{-\infty}\right) \text { on } M
$$

that is, for every local trivializing holomorphic section s_{1} of L on an open set $W \Subset M,\left|s_{1}\right|_{h}^{2}=$ $e^{-2 \phi_{1}}$, we have

$$
s_{1}^{-k} e^{-k \phi_{1}} u_{k}(x) \equiv s_{1}^{-k} e^{-k \phi} \frac{P_{k, k^{-N}}^{(q)} u_{k}(x)}{\left\|P_{k, k^{-N}}^{(q)} u_{k}\right\|_{k}} \quad \bmod O\left(k^{-\infty}\right) \text { on } W
$$

Proof. It is known from [18, Theorems 3.11 and 3.12] that

$$
\begin{align*}
& \int e^{i k \Psi(x, y)} e^{-i k \bar{\Psi}(x, y)}\left|\chi\left(\frac{|x-y|^{2}}{\varepsilon}\right)\right|^{2} \sum_{|I|=q}^{\prime}\left|d_{I, I_{0}}(x, y)\right|^{2} d v_{M}(x) \\
& \equiv a_{I_{0}, I_{0}}(y, y, k) \quad \bmod O\left(k^{-\infty}\right) . \tag{3.14}
\end{align*}
$$

From (3.14), it is easy to see that

$$
\begin{equation*}
\left\|u_{k}\right\|_{k} \equiv 1 \quad \bmod O\left(k^{-\infty}\right) . \tag{3.15}
\end{equation*}
$$

Moreover, we have by [18, Theorem 3.11],

$$
\begin{equation*}
\left\|\left(\square_{k}^{(q)}\right)^{j} u_{k}\right\|_{k} \equiv 0 \quad \bmod O\left(k^{-\infty}\right), j=1,2, \ldots \tag{3.16}
\end{equation*}
$$

From (3.16), we have

$$
\begin{equation*}
\left\|u_{k}-P_{k, k^{-N}}^{(q)} u_{k}\right\|_{k} \leq k^{N}\left\|\square_{k}^{(q)} u_{k}\right\|_{k} \equiv 0 \quad \bmod O\left(k^{-\infty}\right) . \tag{3.17}
\end{equation*}
$$

From (3.16) and semiclassical Gårding inequalities (see [18, Lemma 4.1]), we obtain

$$
\begin{equation*}
u_{k} \equiv P_{k, k^{-N}}^{(q)} u_{k} \quad \bmod O\left(k^{-\infty}\right) . \tag{3.18}
\end{equation*}
$$

From (3.18), (3.15), the lemma follows.

Lemma 3.7. With the notations and assumptions above, assume that for k large, dist $(p, y) \geq$ $c \frac{\log k}{\sqrt{k}}, \forall y \in D_{1}$, where $c>0$ is a constant independent of k. Then, there exists $C_{\alpha, \beta}>0$ independent of K and the point p such that

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} P_{k, k-N, s, s, s}^{(q), I_{0}, J_{0}}(p, y)\right| \leq C_{\alpha, \beta} k^{2 n-\frac{N}{2}+2(|\alpha|+|\beta|)}, \quad \forall y \in D_{1} .
$$

Proof. Let us choose

$$
\begin{equation*}
g_{1}=\frac{P_{k, k^{-N}}^{(q)} u_{k}}{\left\|P_{k, k^{-N}}^{(q)} u_{k}\right\|_{k}} \tag{3.19}
\end{equation*}
$$

in the orthonormal frame $\left\{g_{1}(x), g_{2}(x), \ldots, g_{d_{k}}(x)\right\}$ of $\mathscr{E}_{k}-N\left(M, L^{k}\right)$ (see (3.6)). From (3.11), (3.13), and Lemma 3.6, it is not difficult to check that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha}\left(\widetilde{g}_{1, I_{0}} e^{-k \phi}\right)(p)\right|^{2} \equiv a_{I_{0}, I_{0}}(p, p) \quad \bmod O\left(k^{-\infty}\right) \tag{3.20}
\end{equation*}
$$

From (3.10), (3.11), and Theorem 3.2, we conclude that

$$
\begin{equation*}
\left.\sum_{j=2}^{d_{k}} \mid \partial_{x}^{\alpha} \widetilde{g}_{j, I_{0}} e^{-k \phi}\right)\left.(p)\right|^{2} \leq k^{3 n-N+4|\alpha|} \tag{3.21}
\end{equation*}
$$

where $C>0$ is a constant independent of k and the point p. From (3.7), (3.10), and (3.21), we have

$$
\begin{aligned}
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} P_{k, k^{-N,, s, s}}^{(q), I_{0}, J_{0}}(p, y)\right| \leq & \left.\mid \partial_{x}^{\alpha} \widetilde{g}_{1, I_{0}} e^{-k \phi}\right)(p)\left|\left|\partial_{y}^{\beta}\left(\widehat{g}_{1, J_{0}} e^{-k \widehat{\phi}}\right)(y)\right|\right. \\
& +\sqrt{\left.\sum_{j=2}^{d_{k}} \mid \partial_{x}^{\alpha} \widetilde{g}_{j, I_{0}} e^{-k \phi}\right)\left.(p)\right|^{2}} \sqrt{\sum_{j=2}^{d_{k}}\left|\partial_{y}^{\beta}\left(\widehat{g}_{j, J_{0}} e^{-k \widehat{\phi}}\right)(y)\right|^{2}}
\end{aligned}
$$

$$
\begin{align*}
\leq & \left.\left|\partial_{x}^{\alpha}\left(\widetilde{g}_{1, I_{0}} e^{-k \phi}\right)(p)\right| \mid \partial_{y}^{\beta} \widehat{g}_{1, J_{0}} e^{-k \widehat{\phi}}\right)(y) \mid \\
& +C_{1} k^{2 n-\frac{N}{2}+2(|\alpha|+|\beta|)}, \tag{3.22}
\end{align*}
$$

where $C_{1}>0$ is a constant independent of k and the point p. From Lemma 3.6 and noting that $\tilde{u}_{k}(y) \equiv 0 \bmod O\left(k^{-\infty}\right)$ if dist $(p, y) \geq c \frac{\log k}{\sqrt{k}}$, where $c>0$ is a constant independent of k, we conclude that

$$
\left|\partial_{y}^{\beta}\left(\widehat{g}_{1, J_{0}} e^{-k \widehat{\phi}}\right)(y)\right| \equiv 0 \quad \bmod O\left(k^{-\infty}\right), \quad \forall y \in D_{1} .
$$

From this observation and (3.22), the lemma follows.
From Lemmas 3.4, 3.5, 3.7, Theorem 3.1 follows.
We can repeat the proof of Theorem 3.1 and conclude:
Theorem 3.8. Let s and \widehat{s} be local trivializing holomorphic sections of L on open sets $D_{0} \Subset M$, $D_{1} \Subset M$, respectively, $|s|_{h}^{2}=e^{-2 \phi},|\stackrel{s}{ }|_{h}^{2}=e^{-2 \widehat{\phi}}$. Assume that $D_{0} \Subset M(j), j \neq q$. Then

$$
P_{k, s, \widehat{s}}^{(q)}(x, y) \equiv 0 \quad \bmod O\left(k^{-\infty}\right) \text { locally uniformly on } D_{0} \times D_{1} .
$$

Assume now that $D_{0} \Subset M(q)$ and $\square_{k}^{(q)}$ has an $O\left(k^{-N}\right)$ small spectral gap on D_{0}. Suppose that $\bar{D}_{0} \bigcap \bar{D}_{1}=\emptyset$. Then,

$$
P_{k, s, \widehat{s}}^{(q)}(x, y) \equiv 0 \quad \bmod O\left(k^{-\infty}\right) \text { locally uniformly on } D_{0} \times D_{1} .
$$

4. Berezin-Toeplitz kernel estimates away the diagonal

In this section, we prove the off-diagonal decay of the kernel $T_{k, k^{-N}}^{(q),}(\cdot, \cdot)$ of the BerezinToeplitz quantization (cf. (1.10)), where $f \in \mathscr{C}^{\infty}(M)$ is as usual a bounded function and $N>1$. This yields one half of Theorem 1.1, i.e., (1.11).

We consider as before the localization of $T_{k, k^{-N}}^{(q), f}(\cdot, \cdot)$ as follows. Let s, \widehat{s} be local trivializing holomorphic sections of L on open sets $D_{0} \Subset M, D_{1} \Subset M$, respectively, $|s|_{h}^{2}=e^{-2 \phi},|\widehat{s}|_{h}^{2}=e^{-2 \widehat{\phi}}$. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be orthonormal frames of $\Lambda^{0,1}\left(T^{*} M\right)$ on D_{0} and D_{1}, respectively. Then, $\left\{e^{J} ;|J|=q, J\right.$ strictly increasing $\}$, $\left\{w^{J} ;|J|=q, J\right.$ strictly increasing $\}$ are orthonormal frames of $\Lambda^{0, q}\left(T^{*} M\right)$ on D_{0} and D_{1}, respectively. As in (3.1), we write

$$
\begin{equation*}
T_{k, k^{-N}, \widehat{s, \widehat{s}}}^{(q), f}=\sum_{|I|=|J|=q}{ }^{\prime} T_{k, k^{-N}, s, \widehat{s}}^{(q), f, I J}(x, y) e^{I}(x) \wedge\left(w^{J}(y)\right)^{\dagger}, T_{k, k^{-N}, s, \widehat{s}}^{(q), f, I J} \in \mathscr{C}^{\infty}\left(D_{0} \times D_{1}\right) . \tag{4.1}
\end{equation*}
$$

Let $\left\{g_{j}\right\}_{j=1}^{d_{k}}$ and $\left\{\delta_{j}\right\}_{j=1}^{d_{k}}$ be orthonormal bases of $\mathscr{E}_{k^{-N}}^{q}\left(M, L^{k}\right)$, where $d_{k} \in \mathbb{N} \cup\{\infty\}$. On D_{0}, D_{1}, we write

$$
\begin{align*}
& g_{j}(x)=s^{k}(x) \widetilde{g}_{j}(x), \widetilde{g}_{j}(x)=\sum_{|J|=q}{ }^{\prime} \widetilde{g}_{j, J}(x) e^{J}(x) \text { on } D_{0}, j=1, \ldots, d_{k}, \\
& \delta_{j}(x)=\widehat{s}^{k}(x) \widehat{\delta}_{j}(x), \widehat{\delta}_{j}(x)=\sum_{|J|=q} \widehat{\delta}_{j, J}(x) w^{J}(x) \text { on } D_{1}, j=1, \ldots, d_{k} . \tag{4.2}
\end{align*}
$$

It is not difficult to check that for every strictly increasing $I, J,|I|=|J|=q$, we have

$$
\begin{equation*}
T_{k, k^{-N}, s, \widehat{s}}^{(q), f, I,}(x, y)=\sum_{j, \ell=1}^{d_{k}} \widetilde{g}_{j, I}(x) e^{-k \phi(x)}\left(f \delta_{\ell} \mid g_{j}\right)_{k} \widehat{\delta}_{\ell, J}(y) e^{-k \widehat{\phi}(y)} \tag{4.3}
\end{equation*}
$$

Lemma 4.1. Assume that $D_{0} \Subset M(j), j \neq q$. Then, for every $N>1$ and $m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that for every I, J strictly increasing, $|I|=|J|=q$, we have

$$
\left|T_{k, k^{-N, s, s, S}}^{(q), f, I J}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{1}\right)} \leq C_{N, m} k^{2 n-\frac{N}{2}+2 m} .
$$

Proof. Fix $\alpha, \beta \in \mathbb{N}_{0}^{2 n}, I_{0}, J_{0}$ strictly increasing with $\left|I_{0}\right|=\left|J_{0}\right|=q$, and $\left(x_{0}, y_{0}\right) \in D_{0} \times D_{1}$. Take $\left\{g_{1}, g_{2}, \ldots, g_{d_{k}}\right\}$ and $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{d_{k}}\right\}$ so that

$$
\begin{align*}
& \left.\mid \partial_{x}^{\alpha} \widetilde{g}_{1, I_{0}} e^{-k \phi}\right)\left.\left(x_{0}\right)\right|^{2}=\sum_{j=1}^{d_{k}}\left|\partial_{x}^{\alpha}\left(\widetilde{g}_{j, I_{0}} e^{-k \phi}\right)\left(x_{0}\right)\right|^{2}, \\
& \mid \partial_{y}^{\beta}{\left.\left.\widehat{\left(\delta_{1, J_{0}}\right.} e^{-k \widehat{\phi}}\right)\left.\left(y_{0}\right)\right|^{2}=\sum_{j=1}^{d_{k}} \mid \partial_{y}^{\beta} \widehat{\delta}_{j, J_{0}} e^{-k \widehat{\phi}}\right)\left.\left(y_{0}\right)\right|^{2} .}^{2} . \tag{4.4}
\end{align*}
$$

This is always possible, see [18, Proposition 4.5]. From (4.3) and (4.4), we see that

$$
\begin{equation*}
\left.\left(\partial_{x}^{\alpha} \partial_{y}^{\beta} T_{k, k^{-N, s, s, s}}^{(q), f, I_{0}, J_{0}}\right)\left(x_{0}, y_{0}\right)=\partial_{x}^{\alpha} \widetilde{g}_{1, I_{0}} e^{-k \phi}\right)\left(x_{0}\right)\left(f \delta_{1} \mid g_{1}\right)_{k} \partial_{y}^{\beta}\left(\widehat{\widehat{\delta}_{1, J_{0}}} e^{-k \widehat{\phi}}\right)\left(y_{0}\right) \tag{4.5}
\end{equation*}
$$

In view of Theorems 3.2 and (3.10), we see that

$$
\begin{align*}
& \left.\mid \partial_{x}^{\alpha} \widetilde{g}_{1, I_{0}} e^{-k \phi}\right)\left.\left(x_{0}\right)\right|^{2} \leq C_{\alpha} k^{3 n-N+4|\alpha|}, \tag{4.6}\\
& \left.\mid \partial_{y}^{\beta} \widehat{\delta}_{1, J_{0}} e^{-k \widehat{\phi}}\right)\left.\left(y_{0}\right)\right|^{2} \leq C_{\beta} k^{n+4|\beta|},
\end{align*}
$$

where $C_{\alpha}>0, C_{\beta}>0$ are constants independent of k and the points x_{0} and y_{0}. From (4.5) and (4.6), the lemma follows.

Now, we assume that $D_{0} \Subset M(q)$. Fix $D_{0} \Subset \widetilde{D}_{0} \Subset M(q)$ and take $\tau(x) \in \mathscr{C}_{0}^{\infty}\left(\widetilde{D}_{0}\right), \tau=1$ on D_{0}.

Lemma 4.2. With the assumptions and notations above, for every $N>1$ and $m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that

$$
\left|T_{k, k^{-N}, \Omega, s, s}^{(q),(1-\tau) f, I J}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{1}\right)} \leq C_{N, m} k^{2 n-\frac{N}{2}+2 m},
$$

for every strictly increasing multi-indices $I, J,|I|=|J|=q$.
Proof. Fix $\alpha, \beta \in \mathbb{N}_{0}^{2 n},\left|I_{0}\right|=\left|J_{0}\right|=q, I_{0}, J_{0}$ are strictly increasing and $\left(p, y_{0}\right) \in D_{0} \times D_{1}$. Take $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{d_{k}}\right\}$ so that

$$
\begin{equation*}
\left.\left.\mid \partial_{y}^{\beta} \widehat{\delta}_{1, J_{0}} e^{-k \widehat{\phi}}\right)\left.\left(y_{0}\right)\right|^{2}=\sum_{j=1}^{d_{k}} \mid \partial_{y}^{\beta} \widehat{\delta}_{j, J_{0}} e^{-k \widehat{\phi}}\right)\left.\left(y_{0}\right)\right|^{2} . \tag{4.7}
\end{equation*}
$$

Assume that $a_{I_{0}, I_{0}}(p, p, k) \leq 0$, where $a_{I J J}(x, y, k)$ is as in (3.11). From (3.12) and (3.10), we have

$$
\begin{align*}
& \left|\partial_{x}^{\alpha} \partial_{y}^{\beta} T_{k, k^{-N, s, s}}^{(q),(1-\tau) f, I_{0}, J_{0}}\left(p, y_{0}\right)\right| \\
& \quad=\left|\sum_{j=1}^{d_{k}} \partial_{x}^{\alpha}\left(\widetilde{g}_{j, I_{0}} e^{-k \phi}\right)(p)\left((1-\tau) f \delta_{1} \mid g_{j}\right)_{k} \partial_{y}^{\beta}\left(\overline{\widehat{\delta}_{1, J_{0}}} e^{-k \widehat{\phi}}\right)\left(y_{0}\right)\right| \\
& \quad \leq C \sqrt{\sum_{j=1}^{d_{k}}\left|\partial_{x}^{\alpha}\left(\widetilde{g}_{j, I_{0}} e^{-k \phi}\right)(p)\right|^{2}\left|\partial_{y}^{\beta}\left(\overline{\delta_{1, J_{0}}} e^{-k \widehat{\phi}}\right)\left(y_{0}\right)\right|} \\
& \quad \leq C_{\alpha, \beta}\left(k^{3 n-N+4|\alpha|} k^{n+4|\beta|}\right)^{\frac{1}{2}}=C_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|}, \tag{4.8}
\end{align*}
$$

where $C_{\alpha, \beta}>0, C>0$ are constants independent of k and the points p, y_{0}.
Now, we assume that $a_{I_{0}, I_{0}}(p, p, k)>0$. We define now u_{k} is as in (3.13) and g_{1} as in (3.19). Since $g_{1} \equiv u_{k} \bmod O\left(k^{-\infty}\right)$ and $u_{k}(x) \equiv 0 \bmod O\left(k^{-\infty}\right)$ if dist $(x, p) \geq c \frac{\log k}{\sqrt{k}}$, where $c>0$ is a constant independent of k, we conclude that

$$
\begin{equation*}
\left.\mid \partial_{x}^{\alpha} \widetilde{g}_{1, I_{0}} e^{-k \phi}\right)(p)\left((1-\tau) f \delta_{1} \mid g_{1}\right)_{k} \partial_{y}^{\beta}\left(\overline{\delta_{1, J_{0}}} e^{-k \widehat{\phi}}\right)\left(y_{0}\right) \mid \equiv 0 \quad \bmod O\left(k^{-\infty}\right) . \tag{4.9}
\end{equation*}
$$

From (3.21) and (3.10), we have

$$
\begin{align*}
& \left.\mid \sum_{j=2}^{d_{k}} \partial_{x}^{\alpha}\left(\widetilde{g}_{j, I_{0}} e^{-k \phi}\right)(p)\left((1-\tau) f \delta_{1} \mid g_{j}\right)_{k} \partial_{y}^{\beta} \overline{\left(\overline{\delta_{1, j}}\right.} e^{-k \widehat{\phi}}\right)\left(y_{0}\right) \mid \\
& \quad \leq C_{1} \sqrt{\sum_{j=2}^{d_{k}}\left|\partial_{x}^{\alpha}\left(\widetilde{g}_{j, I_{0}} e^{-k \phi}\right)(p)\right|^{2}}\left|\partial_{y}^{\beta}\left(\overline{\widehat{\delta}_{1, j}} e^{-k \widehat{\phi}}\right)\left(y_{0}\right)\right| \\
& \quad \leq \widetilde{C}_{\alpha, \beta}\left(k^{3 n-N+4|\alpha|} k^{n+4|\beta|}\right)^{\frac{1}{2}}=\widetilde{C}_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|} \tag{4.10}
\end{align*}
$$

where $C_{1}>0, \widetilde{C}_{\alpha, \beta}>0$ are constants independent of k and the points p, y_{0}. From (4.9) and (4.10), we obtain

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} T_{k, k^{-N}, s, \widehat{s}}^{(q)(1-\tau) f, I_{0}, J_{0}}\left(p, y_{0}\right)\right| \leq \widehat{C}_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|} \tag{4.11}
\end{equation*}
$$

where $\widehat{C}_{\alpha, \beta}>0$ is a constant independent of k and the points p, y_{0}.
From (4.8) and (4.11), the lemma follows.
Lemma 4.3. With the assumptions and notations above, assume that $\bar{D}_{0} \bigcap \bar{D}_{1}=\emptyset$. Then, for every $N>1$ and $m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that

$$
\left|T_{k, k-N, s, s, s}^{(q), \tau f, I J}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{1}\right)} \leq C_{N, m} k^{2 n-\frac{N}{2}+2 m},
$$

for every I, J strictly increasing, $|I|=|J|=q$.

Proof. Fix $\alpha, \beta \in \mathbb{N}_{0}^{2 n},\left|I_{0}\right|=\left|J_{0}\right|=q, I_{0}, J_{0}$ are strictly increasing and $\left(p, y_{0}\right) \in D_{0} \times D_{1}$. Take $\left\{\delta_{1}, \delta_{2}, \cdots, \delta_{d_{k}}\right\}$ so that

$$
\begin{equation*}
\left|\partial_{y}^{\beta}\left(\widehat{\delta}_{1, J_{0}} e^{-k \phi}\right)\left(y_{0}\right)\right|^{2}=\sum_{j=1}^{d_{k}}\left|\partial_{y}^{\beta}\left(\widehat{\delta}_{j, J_{0}} e^{-k \widehat{\phi}}\right)\left(y_{0}\right)\right|^{2} \tag{4.12}
\end{equation*}
$$

Assume that $a_{I_{0}, I_{0}}(p, p, k) \leq 0$, where $a_{I, J}(x, y, k)$ is as in (3.11). We can repeat the procedure in the proof of Lemma 4.2 and conclude that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} T_{k, k^{-N}, s, s, s}^{(q), \tau f, I_{0}, J_{0}}\left(p, y_{0}\right)\right| \leq C_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|} \tag{4.13}
\end{equation*}
$$

where $C_{\alpha, \beta}>0$ is a constant independent of k and the points p and y_{0}. Now, we assume that $a_{I_{0}, I_{0}}(p, p, k)>0$. Let g_{1} be as in (3.19), where u_{k} is as in (3.13). From Lemma 3.6 and (3.13), we have

$$
\begin{align*}
& \tilde{g}_{1}(x) e^{-k \phi(x)} \equiv \frac{1}{\sqrt{a_{I_{0}, I_{0}}(p, p, k)}} e^{i k \Psi(x, p)} \chi\left(\frac{|x-p|^{2}}{\varepsilon}\right) \sum_{|I|=q}^{\prime} d_{I, I_{0}}(x, p, k) e^{I}(x) \bmod O\left(k^{-\infty}\right), \\
& \partial_{x}^{\alpha}\left(\widetilde{g}_{1, I_{0}} e^{-k \phi}\right)(p) \equiv \sqrt{a_{I_{0}, I_{0}}(p, p, k)} \quad \bmod O\left(k^{-\infty}\right) \tag{4.14}
\end{align*}
$$

From (4.14), it is straightforward to see that for every $N \in \mathbb{N}$, there exists $C_{N}>0$ independent of k and the points p and y_{0} such that

$$
\begin{align*}
& \left\lvert\, \partial_{x}^{\alpha}{\left.\widetilde{g_{1, I_{0}}} e^{-k \phi}\right)(p)\left(\tau f \delta_{1} \mid g_{1}\right)_{k} \partial_{y}^{\beta}\left(\overline{\widehat{\delta}_{1, J_{0}}} e^{-k \widehat{\phi}}\right)\left(y_{0}\right) \mid}_{\quad \leq \int e^{-k \operatorname{Im} \Psi(x, p)} \chi\left(\frac{|x-p|^{2}}{\varepsilon}\right) \sum_{|I|=q}^{\prime}\left|d_{I, I_{0}}(x, p, k)\right||\tau(x)||f(x)| d v_{M}(x)}^{\quad \times \sum_{|I|=q}^{\prime} \sup \left\{\left|\widehat{\delta}_{1, I}(x) e^{-k \widehat{\phi}(x)} \partial_{y}^{\beta}\left(\overline{\delta_{1, J_{0}}} e^{-k \widehat{\phi}}\right)\left(y_{0}\right)\right| ; x \in \operatorname{Supp} \chi\left(\frac{|x-p|^{2}}{\varepsilon}\right) \Subset \widetilde{D}_{0}\right\}} \quad \begin{array}{l}
\quad+C_{N} k^{-N} .
\end{array}\right. \text {. } \\
& \quad
\end{align*}
$$

From (3.11), we can check that

$$
\begin{equation*}
\sum_{|I|=q}^{\prime}\left|d_{I, I_{0}}(x, p, k)\right| \leq C_{\alpha} k^{n+|\alpha|}, \forall x \in \operatorname{Supp} \chi\left(\frac{|x-p|^{2}}{\varepsilon}\right) \tag{4.16}
\end{equation*}
$$

where $C_{\alpha}>0$ is a constant independent of k and the point p. F rom (4.16) and (3.4), it is not-difficult to check that

$$
\begin{equation*}
\int e^{-k \operatorname{Im} \Psi(x, p)} \chi\left(\frac{|x-p|^{2}}{\varepsilon}\right) \sum_{|I|=q}^{\prime}\left|d_{I, I_{0}}(x, p, k)\right||\tau(x)||f(x)| d v_{M}(x) \leq C_{0} k^{|\alpha|} \tag{4.17}
\end{equation*}
$$

where $C_{0}>0$ is a constant independent of k and the point p. Moreover, from Theorem 3.1, we see that

$$
\begin{equation*}
\left.\sum_{|I|=q}^{\prime} \sup \left\{\mid \widehat{\delta}_{1, I}(x) e^{-k \widehat{\phi}(x)} \partial_{y}^{\beta}{\overline{\left(\widehat{\delta}_{1, J_{0}}\right.}}^{-k \widehat{\phi}}\right)\left(y_{0}\right) \left\lvert\, ; x \in \operatorname{Supp} \chi\left(\frac{|x-p|^{2}}{\varepsilon}\right)\right.\right\} \leq C_{\beta} k^{2 n-\frac{N}{2}+2|\beta|} \tag{4.18}
\end{equation*}
$$

where $C_{\beta}>0$ is a constant independent of k and the points p, y_{0}. From (4.15), (4.17), and (4.18), we conclude that

$$
\begin{equation*}
\left.\mid \partial_{x}^{\alpha}{\widetilde{(\widetilde{g}} 1, I_{0}} e^{-k \phi}\right)(p)\left(\tau f \delta_{1} \mid g_{1}\right)_{k} \partial_{y}^{\beta}\left(\widehat{\delta}_{1, J_{0}} e^{-k \widehat{\phi}}\right)\left(y_{0}\right) \left\lvert\, \leq C_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|}\right. \tag{4.19}
\end{equation*}
$$

where $C_{\alpha, \beta}>0$ is a constant independent of k and the points p, y_{0}.
From (3.21) and (3.10), we have

$$
\begin{align*}
& \left.\mid \sum_{j=2}^{d_{k}} \partial_{x}^{\alpha} \widetilde{g}_{j, I_{0}} e^{-k \phi}\right)(p)\left(\tau f \delta_{1} \mid g_{j}\right)_{k} \partial_{y}^{\beta}\left(\overline{\widehat{\delta}_{1, J_{0}}} e^{-k \widehat{\phi}}\right)\left(y_{0}\right) \mid \\
& \left.\quad \leq C_{2} \sqrt{\sum_{j=2}^{d_{k}}\left|\partial_{x}^{\alpha}\left(\widetilde{g}_{j, I_{0}} e^{-k \phi}\right)(p)\right|^{2}} \mid \partial_{y}^{\beta} \overline{\left(\overline{\delta_{1, J_{0}}}\right.} e^{-k \widehat{\phi}}\right)\left(y_{0}\right) \mid \\
& \quad \leq \widehat{C}_{\alpha, \beta}\left(k^{3 n-N+4|\alpha|} k^{n+4|\beta|}\right)^{\frac{1}{2}}=\widehat{C}_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|}, \tag{4.20}
\end{align*}
$$

where $C_{2}>0, \widehat{C}_{\alpha, \beta}>0$ are constants independent of k and the point p. From (4.19) and (4.20), the lemma follows.

From Lemmas 4.1-4.3 we deduce:
Theorem 4.4. Let s, \widehat{s} be local trivializing holomorphic sections of L on $D_{0} \Subset M$ and $D_{1} \Subset M$, respectively. Assume that $D_{0} \Subset M(j), j \neq q$ or $D_{0} \Subset M(q)$ and $\bar{D}_{0} \bigcap \bar{D}_{1}=\emptyset$. Then, for every $m \in \mathbb{N}, N>1$, there exists $C_{N, m}>0$ independent of k such that

$$
\left|T_{k, k^{-N, S, S}(q), S}^{(q)}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{1}\right)} \leq C_{N, m} k^{2 n-\frac{N}{2}+2 m} .
$$

Theorem 4.4 implies immediately one half of Theorem 1.1, more precisely (1.11).
We can repeat the proof of Theorem 4.4 and deduce:
Theorem 4.5. Let s, \widehat{s} be local trivializing holomorphic sections of L on $D_{0} \Subset M$ and $D_{1} \Subset M$, respectively. Assume that $D_{0} \Subset M(j), j \neq q$. Then,

$$
T_{k, s, s, s}^{(q))}(x, y) \equiv 0 \quad \bmod O\left(k^{-\infty}\right) \text { locally uniformly on } D_{0} \times D_{1}
$$

Assume that $D_{0} \Subset M(q)$ and $\square_{k}^{(q)}$ has $O\left(k^{-N}\right)$ small spectral gap on D_{0}. Suppose that $\bar{D}_{0} \bigcap \bar{D}_{1}=\emptyset$. Then,

$$
T_{k, s, s, s}^{(q)) f}(x, y) \equiv 0 \quad \bmod O\left(k^{-\infty}\right) \text { locally uniformly on } D_{0} \times D_{1}
$$

Let's explain why in Theorem 4.5, we have " $\equiv 0 \bmod O\left(k^{-\infty}\right)$ ". Recall that Theorem 4.4 is based on Theorem 3.2 which says that if $D_{0} \Subset M(q)$, then, for every $N>1, m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that

$$
\begin{equation*}
\left|P_{k, k^{-N}, s}^{(q)}(x, y)-e^{i k \Psi(x, y)} b(x, y, k)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq C_{N, m} k^{3 n-N+2 m}, \tag{4.21}
\end{equation*}
$$

$\underset{\sim}{\text { and }}$ if $D_{0} \Subset M(j), j \neq q, j \in\{0,1,2, \ldots, n\}$, then, for every $N>1, m \in \mathbb{N}$, there exists $\widetilde{C}_{N, m}>0$ independent of k such that

$$
\begin{equation*}
\left|P_{k, k^{-N}, s}^{(q)}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq \widetilde{C}_{N, m} k^{3 n-N+2 m} . \tag{4.22}
\end{equation*}
$$

The estimates $\lesssim k^{3 n-N+2 m}$ in (4.21) and (4.22) imply that we have the estimate $\lesssim k^{2 n-\frac{N}{2}+2 m}$ in Theorem 4.4. Now, we consider the Bergman kernel. As in Theorem 3.2, assume that $D_{0} \Subset$ $M(q)$ and $\square_{k}^{(q)}$ has $O\left(k^{-N}\right)$ small spectral gap on D_{0}, then

$$
\begin{equation*}
P_{k, s}^{(q)}(x, y)-e^{i k \Psi(x, y)} b(x, y, k) \equiv 0 \quad \bmod O\left(k^{-\infty}\right) \text { on } D_{0} \times D_{0} . \tag{4.23}
\end{equation*}
$$

Moreover, if $D_{0} \Subset M(j), j \neq q, j \in\{0,1,2, \ldots, n\}$, then

$$
\begin{equation*}
P_{k, s}^{(q)}(x, y) \equiv 0 \quad \bmod O\left(k^{-\infty}\right) \text { on } D_{0} \times D_{0} \tag{4.24}
\end{equation*}
$$

by Theorems 4.12 and 4.14 in [27]. From (4.23) and (4.24), we can repeat the proof of Theorem 4.4 and deduce that in Theorem 4.5, we actually have " $\equiv 0 \bmod O\left(k^{-\infty}\right)$ ".

5. Asymptotic expansion of Berezin-Toeplitz quantization

In this section, we will establish the full asymptotic expansion for the kernel of the Toeplitz kernel $T_{k, k^{-N}}^{(q), f}(\cdot, \cdot)$ corresponding to lower energy forms. This leads to the proof of Theorem 1.1.

Let s be a local trivializing holomorphic section of L on an open set $D \Subset M,|s|_{h}^{2}=e^{-2 \phi}$. Fix $N>1$. We assume that $D \Subset M(q)$. Put

$$
\begin{equation*}
S_{k}(x, y):=e^{i k \Psi(x, y)} b(x, y, k) \tag{5.1}
\end{equation*}
$$

where $\Psi(x, y)$ and $b(x, y, k)$ are as in Theorem 3.2. Fix an open set $D_{0} \Subset D$ and $\tau \in \mathscr{C}_{0}^{\infty}(D)$ with $\tau=1$ on D_{0}. Put

$$
\begin{equation*}
R_{k}(x, y)=\int\left(P_{k, k^{-N}, s}^{(q)}(x, z)-S_{k}(x, z)\right) \tau(z) f(z) P_{k, k^{-N}, s}^{(q)}(z, y) d v_{M}(z) \tag{5.2}
\end{equation*}
$$

Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be an orthonormal frame of $\Lambda^{0,1}\left(T^{*} M\right)$ on D. Then,

$$
\left\{e^{J} ;|J|=q, J \text { is strictly increasing }\right\}
$$

is an orthonormal frame of $\Lambda^{0, q}\left(T^{*} M\right)$ on D. As in (3.1), we write

$$
\begin{align*}
& R_{k}(x, y)=\sum_{|I|=|J|=q}^{\prime} R_{k}^{I J J}(x, y) e^{I}(x) \wedge\left(e^{J}(y)\right)^{\dagger}, \\
& S_{k}(x, y)=\sum_{|I|=|J|=q}^{\prime} S_{k}^{I J}(x, y) e^{I}(x) \wedge\left(e^{J}(y)\right)^{\dagger}=\sum_{|I|=|J|=q}^{\prime} e^{i k \Psi(x, y)} b_{I, J}(x, y, k) e^{I}(x) \wedge\left(e^{J}(y)\right)^{\dagger}, \\
& P_{k, k^{-N}, s}^{(q)}(x, y)=\sum_{|I|=|J|=q}^{\prime} P_{k, k^{-N}, s}^{(q), I J}(x, y) e^{I}(x) \wedge\left(e^{J}(y)\right)^{\dagger} . \tag{5.3}
\end{align*}
$$

It is easy to see that for every $|I|=|J|=q, I, J$ are strictly increasing, we have

$$
\begin{equation*}
R_{k}^{I J J}(x, y)=\sum_{|K|=q}^{\prime} \int\left(P_{k, k^{-N, s}}^{(q), I, K}(x, z)-S_{k}^{I, K}(x, z)\right) \tau(z) f(z) P_{k, k^{-N, s}}^{(q), J, J}(z, y) d v_{M}(z) \tag{5.4}
\end{equation*}
$$

Take $\left\{g_{1}(x), g_{2}(x), \ldots, g_{d_{k}}(x)\right\}$ and $\left\{\delta_{1}(x), \delta_{2}(x), \ldots, \delta_{d_{k}}(x)\right\}$ be orthonormal frames for $\mathscr{E}_{k^{-N}}\left(M, L^{k}\right)$, where $d_{k} \in \mathbb{N} \cup\{\infty\}$. On D, we write

$$
\begin{align*}
& g_{j}(x)=s^{k}(x) \widetilde{g}_{j}(x), \tilde{g}_{j}(x)=\sum_{|J|=q} \tilde{g}_{j, J}(x) e^{J}(x) \text { on } D, j=1, \ldots, d_{k}, \tag{5.5}\\
& \delta_{j}(x)=s^{k}(x) \widetilde{\delta}_{j}(x), \widetilde{\delta}_{j}(x)=\sum_{|J|=q} \tilde{\delta}_{j, J}(x) e^{J}(x) \text { on } D, j=1, \ldots, d_{k} .
\end{align*}
$$

Lemma 5.1. With the assumptions and notations above, for every $N>1$ and $m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that

$$
\left|R_{k}(x, y)\right|_{\mathscr{C}^{m}(D \times D)} \leq C_{N, m} k^{2 n-\frac{N}{2}+2 m}
$$

Proof. Fix $\left(p, y_{0}\right) \in D \times D$, strictly increasing $I_{0}, J_{0},\left|I_{0}\right|=\left|J_{0}\right|=q$, and $\alpha, \beta \in \mathbb{N}_{0}^{2 n}$. Assume that $a_{I_{0}, I_{0}}(p, p, k) \leq 0$, where $a_{I, J}(x, y, k)$ is as in (3.11). In view of the proof of Lemma 3.5, we see that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{y}^{\alpha} P_{k, k^{-N, s}}^{(q), I_{0}, I_{0}}(p, p)\right|+\left|a_{I_{0}, I_{0}}(p, p)\right| \leq C_{\alpha} k^{3 n-N+4|\alpha|} \tag{5.6}
\end{equation*}
$$

where $C_{\alpha}>0$ is a constant independent of k and the point p. It is not difficult to see that for every $|I|=|J|=q, I, J$ are strictly increasing, we have

$$
\begin{align*}
& R_{k}^{I J J}(x, y)= \sum_{|K|=q}^{\prime} \int\left(\sum_{j=1}^{d_{k}} \widetilde{g}_{j, I}(x) e^{-k \phi(x)} \widetilde{\bar{g}}_{j, K}\right. \\
&\left.(z) e^{-k \phi(z)}-S_{k}^{I, K}(x, z)\right) \tau(z) f(z) \tag{5.7}\\
& \times\left(\sum_{\ell=1}^{d_{k}} \widetilde{\delta}_{\ell, K}(z) e^{-k \phi(z)} \widetilde{\bar{\delta}}_{\ell, J}(y) e^{-k \phi(y)}\right) d v_{M}(z)
\end{align*}
$$

Take $\left\{g_{1}, g_{2}, \ldots, g_{d_{k}}\right\}$ and $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{d_{k}}\right\}$ so that

$$
\begin{align*}
& \sum_{j=1}^{d_{k}}\left|\partial_{x}^{\alpha}\left(\widetilde{g}_{j, I_{0}} e^{-k \phi}\right)(p)\right|^{2}=\partial_{x}^{\alpha} \partial_{y}^{\alpha} P_{k, k^{-N, s}}^{(q)}(p, p)=\left|\partial_{x}^{\alpha}\left(\widetilde{g}_{1, I_{0}} e^{-k \phi}\right)(p)\right|^{2} \\
& \sum_{j=1}^{d_{k}}\left|\partial_{x}^{\beta}\left(\widetilde{\delta}_{j, J_{0}} e^{-k \phi}\right)\left(y_{0}\right)\right|^{2}=\partial_{x}^{\beta} \partial_{y}^{\beta} P_{k, k^{-N, s}}^{(q)}\left(y_{0}, y_{0}\right)=\left|\partial_{x}^{\beta}\left(\widetilde{\delta}_{1, J_{0}} e^{-k \phi}\right)\left(y_{0}\right)\right|^{2} \tag{5.8}
\end{align*}
$$

From (5.8) and (5.7), we get

$$
\begin{align*}
\partial_{x}^{\alpha} \partial_{y}^{\beta} R_{k}^{I_{0}, J_{0}}\left(p, y_{0}\right)= & \sum_{|K|=q}^{\prime} \int\left(\partial_{x}^{\alpha}\left(\widetilde{g}_{1, I_{0}} e^{-k \phi}\right)(p){\widetilde{g_{1, K}}}_{1, K}(z) e^{-k \phi(z)}-\partial_{x}^{\alpha} S_{k}^{I_{0}, K}(p, z)\right) \tau(z) f(z) \\
& \times \widetilde{\delta}_{1, K}(z) e^{-k \phi(z)} \partial_{y}^{\beta}\left(\overline{\widetilde{\delta}_{1, J_{0}}} e^{-k \phi}\right)\left(y_{0}\right) d v_{M}(z) \tag{5.9}
\end{align*}
$$

From (5.6), (5.8), and (3.10), we have

$$
\begin{align*}
& \mid \sum_{|K|=q}^{\prime} \int\left(\partial_{x}^{\alpha}\left(\widetilde{g}_{1, I_{0}} e^{-k \phi}\right)(p) \overline{\tilde{g}_{1, K}}(z) e^{-k \phi(z)} \tau(z) f(z) \widetilde{\delta}_{1, K}(z) \partial_{y}^{\beta}\left(\widetilde{\delta}_{1, J_{0}} e^{-k \phi}\right)\left(y_{0}\right) e^{-k \phi(z)} d v_{M}(z) \mid\right. \\
& \quad \leq C \sqrt{\partial_{x}^{\alpha} \partial_{y}^{\alpha} P_{k, k^{-N}, s}^{(q), I_{0}, I_{0}}(p, p)}\left|\partial_{y}^{\beta}\left(\widetilde{\delta}_{1, J_{0}} e^{-k \phi}\right)\left(y_{0}\right)\right| \\
& \quad \leq C_{\alpha, \beta} k^{\frac{3}{2} n-\frac{N}{2}+2|\alpha|} k^{\frac{n}{2}+2|\beta|}=C_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|}, \tag{5.10}
\end{align*}
$$

where $C>0, C_{\alpha, \beta}>0$ are constants independent of k and the points p and y_{0}.
It is known by [18, Theorem 3.11] that

$$
\begin{equation*}
\sum_{|K|=q}^{\prime} \int\left|\partial_{x}^{\alpha} S_{k}^{I_{0}, K}(p, z)\right|^{2}|\tau(z)|^{2} e^{-2 k \phi(z)} d v_{M}(z) \equiv a_{I_{0}, I_{0}}(p, p, k) \quad \bmod O\left(k^{-\infty}\right) \tag{5.11}
\end{equation*}
$$

From (5.11) and (5.6), we obtain

$$
\begin{align*}
& \left.\mid \sum_{|K|=q}^{\prime} \int \partial_{x}^{\alpha} S_{k}^{I_{0}, K}(p, z) \tau(z) f(z) \widetilde{\delta}_{1, K}(z) e^{-k \phi(z)} \partial_{y}^{\beta} \overline{\widetilde{\delta}_{1, J_{0}}} e^{-k \phi}\right)\left(y_{0}\right) d v_{M}(z) \mid \\
& \quad \leq \widetilde{C}_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|} \tag{5.12}
\end{align*}
$$

where $\widetilde{C}_{\alpha, \beta}>0$ is a constant independent of k and the points p and y_{0}. From (5.12), (5.10), and (5.9), we deduce that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} R_{k}^{I_{0}, J_{0}}\left(p, y_{0}\right)\right| \leq \widehat{C}_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|} \tag{5.13}
\end{equation*}
$$

where $\widehat{C}_{\alpha, \beta}>0$ is a constant independent of k and the points p and y_{0}.
Now, we assume that $a_{I_{0}, I_{0}}(p, p, k)>0$. Take $g_{1}=\left(P_{k, k^{-N}}^{(q)} u_{k}\right) /\left|u_{k}\right|_{h^{k}}$, where u_{k} is as in (3.13). From Theorem 3.2 and Lemma 3.6, we can check that for every $N>0$, there is $C_{N}>0$ independent of k and the point p such that

$$
\begin{equation*}
\left.\mid \sum_{|K|=q}^{\prime}\left(\partial_{x}^{\alpha} \widetilde{g}_{1, I_{0}} e^{-k \phi}\right)(p) \overline{\widetilde{g}_{1, K}(z)} e^{-k \phi(z)}-\partial_{x}^{\alpha} S_{k}^{I_{0}, K}(p, z)\right) \mid \leq C_{N} k^{-N}, \forall z \in D \tag{5.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=2}^{d_{k}}\left|\partial_{x}^{\alpha}\left(\widetilde{g}_{j, I_{0}} e^{-k \phi}\right)(p)\right|^{2} \leq C_{\alpha} k^{3 n-N+4|\alpha|} \tag{5.15}
\end{equation*}
$$

where $C_{\alpha}>0$ is a constant independent of k and the point p. Take $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{d_{k}}\right\}$ so that

$$
\begin{equation*}
\left|\partial_{x}^{\beta}\left(\widetilde{\delta}_{1, J_{0}} e^{-k \phi}\right)\left(y_{0}\right)\right|^{2}=\partial_{x}^{\beta} \partial_{y}^{\beta} P_{k, k^{-N}, s}^{(q), J_{0}, J_{0}}\left(y_{0}, y_{0}\right) \tag{5.16}
\end{equation*}
$$

From (5.7), (5.14), (5.15), (5.16), and (3.10), we have

$$
\begin{align*}
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} R_{k}^{I_{0}, J_{0}}\left(p, y_{0}\right)\right| & \leq C \sqrt{\left.\sum_{j=2}^{d_{k}} \mid \partial_{x}^{\alpha} \widetilde{g}_{j, I_{0}} e^{-k \phi}\right)\left.(p)\right|^{2}}\left|\partial_{y}^{\beta}\left(\overline{\widetilde{\delta}_{1, J_{0}}} e^{-k \phi}\right)\left(y_{0}\right)\right|+C_{N} k^{-N} \\
& \leq C_{\alpha, \beta} k^{2 n-\frac{N}{2}+2|\alpha|+2|\beta|}+C_{N} k^{-N}, \tag{5.17}
\end{align*}
$$

for every $N>0$, where $C, C_{N}, C_{\alpha, \beta}>0$ are independent of k and the points p and y_{0}. From (5.17) and (5.13), the lemma follows.

Put

$$
\begin{equation*}
\widetilde{R}_{k}(x, y)=\int S_{k}(x, z) \tau(z) f(z)\left(P_{k, k^{-N, s}}^{(q)}(z, y)-S_{k}(z, y)\right) d v_{M}(z) . \tag{5.18}
\end{equation*}
$$

We can repeat the proof of Lemma 5.1 and conclude:

Lemma 5.2. With the assumptions and notations above, for every $N>1$ and $m \in \mathbb{N}$, there exists $\widetilde{C}_{N, m}>0$ independent of k such that

$$
\left|\widetilde{R}_{k}(x, y)\right|_{\mathscr{C}^{m}(D \times D)} \leq \widetilde{C}_{N, m} k^{2 n-\frac{N}{2}+2 m}
$$

Lemma 5.3. We have

$$
\int S_{k}(x, z) \tau(z) f(z) S_{k}(z, y) d v_{M}(z) \equiv e^{i k \Psi(x, y)} b_{f}(x, y, k) \quad \bmod O\left(k^{-\infty}\right)
$$

locally uniformly on $D \times D$, where $b_{f}(x, y, k) \sim \sum_{j=0}^{\infty} b_{f, j}(x, y) k^{n-j}$ in $S^{n}\left(1 ; D \times D, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes$ $\left.\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right), b_{f, 0}(x, x)=(2 \pi)^{-n} f(x)\left|\operatorname{det} \dot{R}^{L}(x)\right| I_{\operatorname{det}} \bar{W}^{*}(x)$, for any $x \in D_{0}$.

Proof. From the stationary phase formula of Melin-Sjöstrand [28], there is a complex phase function $\Psi_{1}(x, y) \in \mathscr{C}^{\infty}(D \times D)$ with $\Psi_{1}(x, x)=0, \operatorname{Im} \Psi_{1}(x, y) \geq c|x-y|^{2}$ on $D \times D$, for some $c>0$, such that for every bounded function $f \in \mathscr{C}^{\infty}(M)$, we have

$$
\begin{equation*}
\int S_{k}(x, z) \tau(z) f(z) S_{k}(z, y) d v_{M}(z) \equiv e^{i k \Psi_{1}(x, y)} \widetilde{b}_{f}(x, y, k) \quad \bmod O\left(k^{-\infty}\right) \tag{5.19}
\end{equation*}
$$

locally uniformly on $D \times D$, where

$$
\left.\widetilde{b}_{f}(x, y, k) \sim \sum_{j=0}^{\infty} \widetilde{b}_{f, j}(x, y) k^{n-j} \text { in } S^{n}\left(1 ; D \times D, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right)
$$

with $\left.\widetilde{b}_{f, j} \in \mathscr{C}^{\infty}\left(D \times D, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right), j \in \mathbb{N}$. Moreover, for all $x \in D_{0}$ we have $b_{f, 0}(x, x)=(2 \pi)^{-n} f(x)\left|\operatorname{det} \dot{R}^{L}(x)\right| I_{\operatorname{det}} \bar{W}^{*}(x)$. Basically, here we used the fact that composition of complex Fourier integral operators is still a complex Fourier integral operator. Take $f=1$. Fix $D^{\prime} \Subset\{\tau=1\}$. We claim that

$$
\begin{equation*}
\int S_{k}(x, z) \tau(z) S_{k}(z, y) d v_{M}(z) \equiv e^{i k \Psi(x, y)} b(x, y, k) \quad \bmod O\left(k^{-\infty}\right) \tag{5.20}
\end{equation*}
$$

locally uniformly on $D^{\prime} \times D^{\prime}$, where

$$
b(x, y, k) \sim \sum_{j=0}^{\infty} b_{j}(x, y) k^{n-j} \text { in } S^{n}\left(1 ; D^{\prime} \times D^{\prime}, \Lambda^{0, q}\left(T^{*} M\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right)
$$

with $b_{j} \in \mathscr{C}^{\infty}\left(D^{\prime} \times D^{\prime}, \Lambda^{0, q}\left(T^{*} M\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right), j \in \mathbb{N}$. The S_{k} constructed in [18] is called approximated Szegö kernel. S_{k} satisfies

$$
\begin{equation*}
S_{k} \circ S_{k} \equiv S_{k} \quad \bmod O\left(k^{-\infty}\right) \text { on } D \tag{5.21}
\end{equation*}
$$

(see [18, Theorems 3.11 and 3.12]). Relation (5.21) says that

$$
\begin{equation*}
\int S_{k}(x, z) S_{k}(z, y) d v_{M}(z) \equiv S_{k}(x, y)=e^{i k \Psi(x, y)} b(x, y, k) \quad \bmod O\left(k^{-\infty}\right) \tag{5.22}
\end{equation*}
$$

locally uniformly on $D \times D$. Since S_{k} is properly supported (see the discussion after (2.15) for the meaning of properly supported), the integral (5.22) is well-defined. Now,

$$
\begin{align*}
\int S_{k}(x, z) \tau(z) S_{k}(z, y) d v_{M}(z)= & \int S_{k}(x, z) S_{k}(z, y) d v_{M}(z) \\
& -\int S_{k}(x, z)(1-\tau(z)) S_{k}(z, y) d v_{M}(z) \tag{5.23}
\end{align*}
$$

Note that $S_{k}(x, y)=O\left(k^{-\infty}\right)$ if $|x-y| \geq c$, for some $c>0$. From this observation, we conclude that for $(x, y) \in D^{\prime} \times D^{\prime}$ (recall that $D^{\prime} \Subset\{\tau=1\}$)

$$
\begin{align*}
& \int S_{k}(x, z)(1-\tau(z)) S_{k}(z, y) d v_{M}(z) \\
& \quad=\int_{z \notin \overline{D^{\prime}}} S_{k}(x, z)(1-\tau(z)) S_{k}(z, y) d v_{M}(z) \equiv 0 \quad \bmod O\left(k^{-\infty}\right) \tag{5.24}
\end{align*}
$$

locally uniformly on $D^{\prime} \times D^{\prime}$. From (5.22), (5.23), and (5.24), we get (5.20).
We claim that

$$
\begin{equation*}
\Psi(x, y)-\Psi_{1}(x, y) \text { vanishes to infinite order on } \operatorname{diag}\left(D^{\prime} \times D^{\prime}\right) \tag{5.25}
\end{equation*}
$$

Note that $\Psi(x, x)=\Psi_{1}(x, x)=0$. We assume that there are $\alpha_{0}, \beta_{0} \in \mathbb{N}_{0}^{2 n},\left|\alpha_{0}\right|+\left|\beta_{0}\right| \geq 1$ and $\left(x_{0}, x_{0}\right) \in D^{\prime} \times D^{\prime}$, such that

$$
\begin{align*}
& \left.\partial_{x}^{\alpha_{0}} \partial_{y}^{\beta_{0}}\left(\Psi_{1}(x, y)-\Psi(x, y)\right)\right|_{\left(x_{0}, x_{0}\right)} \neq 0, \\
& \left.\partial_{x}^{\alpha} \partial_{y}^{\beta}\left(\Psi_{1}(x, y)-\Psi(x, y)\right)\right|_{\left(x_{0}, x_{0}\right)}=0, \quad \forall \alpha, \beta \in \mathbb{N}_{0}^{2 n},|\alpha|+|\beta|<\left|\alpha_{0}\right|+\left|\beta_{0}\right| . \tag{5.26}
\end{align*}
$$

From (5.19) and (5.20), we have

$$
\begin{equation*}
e^{i k\left(\Psi_{1}(x, y)-\Psi(x, y)\right)} \widetilde{b}_{1}(x, y, k)-b(x, y, k)=e^{-i k \Psi(x, y)} F_{k}(x, y) \text { on } D^{\prime} \times D^{\prime} \tag{5.27}
\end{equation*}
$$

where $F_{k} \equiv 0 \bmod O\left(k^{-\infty}\right)$ locally uniformly on $D^{\prime} \times D^{\prime}$. From (5.26), it is easy to see that

$$
\begin{align*}
& \left.\lim _{k \rightarrow \infty} k^{-n-1} \partial_{x}^{\alpha_{0}} \partial_{y}^{\beta_{0}}\left(e^{i k\left(\Psi_{1}(x, y)-\Psi(x, y)\right)} \widetilde{b}_{1}(x, y, k)-b(x, y, k)\right)\right|_{\left(x_{0}, x_{0}\right)} \\
& \quad=\left.i \partial_{x}^{\alpha_{0}} \partial_{y}^{\beta_{0}}\left(\Psi(x, y)-\Psi_{1}(x, y)\right)\right|_{\left(x_{0}, x_{0}\right)} \widetilde{b}_{1,0}\left(x_{0}, x_{0}\right) \neq 0 \tag{5.28}
\end{align*}
$$

It is obviously that

$$
\begin{equation*}
\left.\lim _{k \rightarrow \infty} k^{-n-1} \partial_{x}^{\alpha_{0}} \partial_{y}^{\beta_{0}}\left(e^{-i k \Psi(x, y)} F_{k}(x, y)\right)\right|_{\left(x_{0}, x_{0}\right)}=0 . \tag{5.29}
\end{equation*}
$$

From (5.27) to (5.29), we get a contradiction. The claim follows. Since τ is arbitrary, Ψ and Ψ_{1} are independent of τ, we conclude that $\Psi_{1}(x, y)-\Psi(x, y)$ vanishes to infinite order on $D \times D$. Thus, we can replace Ψ_{1} by Ψ in (5.19). The lemma follows.

From Lemmas 5.1-5.3 and Lemma 4.2, we obtain the following.
Theorem 5.4. With the notations above, let s be local trivializing holomorphic section of L on $D_{0} \Subset M$. Assume that $D_{0} \Subset M(q)$. Then, for every $N>1, m \in \mathbb{N}$, there exists $\widetilde{C}_{N, m}>0$ independent of k such that

$$
\left|T_{k, k^{-N}, s}^{(q), f}(x, y)-e^{i k \Psi(x, y)} b_{f}(x, y, k)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq \widetilde{C}_{N, m} k^{2 n-\frac{N}{2}+2 m}
$$

where

$$
\begin{aligned}
& \left.b_{f}(x, y, k) \in S^{n}\left(1 ; D_{0} \times D_{0}, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right), \\
& \left.b_{f}(x, y, k) \sim \sum_{j=0}^{\infty} b_{f, j}(x, y) k^{n-j} \operatorname{in} S^{n}\left(1 ; D_{0} \times D_{0}, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right), \\
& b_{f, 0}(x, x)=(2 \pi)^{-n} f(x)\left|\operatorname{det} \dot{R}^{L}(x)\right| I_{\operatorname{det}} \bar{W}^{*}(x), \quad \forall x \in D_{0},
\end{aligned}
$$

and Ψ is as in Theorem 3.2.
Proof of Theorem 1.1. From Theorems 4.4 and 5.4, Theorem 1.1 follows.

6. Asymptotics of the composition of Toeplitz operators

In this section, we establish the expansion of the composition of two Toeplitz operators and prove Theorems 1.3, 1.4, 1.9, 1.10, and 1.11.

Let $f, g \in \mathscr{C}^{\infty}(M)$ be bounded. For $\lambda \geq 0$, put

$$
T_{k, \lambda}^{(q), f, g}:=T_{k, \lambda}^{(q), f} \circ T_{k, \lambda}^{(q), g}: L_{(0, q)}^{2}\left(M, L^{k}\right) \rightarrow \mathscr{E}_{\lambda}^{q}\left(M, L^{k}\right)
$$

and set $T_{k}^{(q), f, g}:=T_{k, 0}^{(q), f, g}$.
Theorem 6.1. Let s, \widehat{s} be local trivializing holomorphic sections of L on $D_{0} \Subset M$ and $D_{1} \Subset M$, respectively, $|s|_{h}^{2}=e^{-2 \phi},|\widehat{s}|_{h}^{2}=e^{-2 \widehat{\phi}}$, where D_{0} and D_{1} are open sets. Assume that $D_{0} \Subset M(j)$, $j \neq q$ or $D_{0} \Subset M(q)$ and $\bar{D}_{0} \bigcap \bar{D}_{1}=\emptyset$. Then, for every $m \in \mathbb{N}, N>1$, there exists $C_{N, m}>0$ independent of k such that

$$
\begin{equation*}
\left|T_{k, k^{-N, S, S, S}}^{(q) f, g}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{1}\right)} \leq C_{N, m} k^{3 n-\frac{N}{2}+2 m} . \tag{6.1}
\end{equation*}
$$

Proof. The proof is similar to the proof of Theorem 4.4, so we will insist here on the appearance of the exponent $3 n$ in the power of k in (6.1), compared to $2 n$ in the previous estimates. The argument holds for any complex manifold, not necessarily compact. For simplicity,
we only consider $q=0$. Let s, \widehat{s} be local trivializing holomorphic sections of L on $\widetilde{D}_{0} \Subset M$ and $\widetilde{D}_{1} \Subset M$, respectively, $|s|_{h}^{2}=e^{-2 \phi},|\widehat{s}|_{h}^{2}=e^{-2 \widehat{\phi}}$, where \widetilde{D}_{0} and \widetilde{D}_{1} are open sets. Fix $D_{0} \Subset \widetilde{D}_{0}$, $D_{1} \Subset \widetilde{D}_{1}, D_{0}$ and D_{1} are open sets. Let $\tau \in \mathscr{C}_{0}^{\infty}\left(\widetilde{D}_{0}\right)$ and $\tau=1$ on D_{0}. We will first show that how to estimate the kernel of $T_{k, k^{-N}}^{(0),(1-\tau) f, g}(x, y)$ on $D_{0} \times D_{1}$. Take

$$
\left\{\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{d_{k}}(x)\right\},\left\{\delta_{1}(x), \delta_{2}(x), \ldots, \delta_{d_{k}}(x)\right\}
$$

be orthonormal frames for $\mathscr{E}_{k^{-N}}^{0}\left(M, L^{k}\right)$, where $d_{k} \in \mathbb{N} \cup\{\infty\}$. On \widetilde{D}_{0}, we write $\alpha_{j}(x)=$ $s^{k}(x) \widetilde{\alpha}_{j}(x), j=1, \ldots, d_{k}$. On \widetilde{D}_{1}, we write $\delta_{j}(x)=\hat{s}^{k}(x) \hat{\delta}_{j}(x), j=1, \ldots, d_{k}$. For every $y \in \widetilde{D}_{1}$, put

$$
\begin{equation*}
T_{k, k^{-N}}^{(0), g}(x, y)\left(\hat{s}^{-k} e^{-k \widehat{\phi}}\right)(y):=\sum_{j, \ell=1}^{d_{k}} \alpha_{j}(x)\left(g \delta_{\ell} \mid \alpha_{j}\right)_{k} \widehat{\delta_{\ell}}(y) e^{-k \widehat{\phi}}(y) . \tag{6.2}
\end{equation*}
$$

Since $\sum_{j=1}^{d_{k}}\left|\alpha_{j}(x)\right|_{h^{k}}^{2}$ and $\sum_{j=1}^{d_{k}}\left|\delta_{j}(x)\right|_{h^{k}}^{2}$ converge locally uniformly in C^{∞} topology, for fixed $y, T_{k, k^{-N}}^{(0),}(\cdot, y)\left(\hat{s}^{-k} e^{-k \widehat{\phi}}\right)(y)$ is a smooth section of L^{k}. It is easy to see that for every $(x, y) \in$ $D_{0} \times D_{1}$,

$$
\begin{equation*}
\left.T_{k, k^{-N}, s, \hat{s}}^{(0),(1-\tau) f, g}(x, y)=\sum_{j=1}^{d_{k}} e^{-k \phi(x)} \widetilde{\alpha}_{j}(x)\left(((1-\tau) f)(\cdot) T_{k, k^{-N}}^{(0), g}\right)(\cdot, y)\left(\hat{s}^{-k} e^{-k \hat{\phi}}\right)(y) \mid \alpha_{j}(\cdot)\right)_{k} . \tag{6.3}
\end{equation*}
$$

When M is compact, d_{k} is finite and $d_{k} \approx k^{n}$ and it is easy to estimate (6.3). When M is noncompact, d_{k} could be infinite, so to estimate (6.3) we need a more detailed analysis. Now, we fix $p \in D_{0}$. From Theorem 3.2 and Lemma 3.6, we can find $v_{k} \in \mathscr{E}_{k^{-N}}^{0}\left(M, L^{k}\right)$ with $\left\|v_{k}\right\|_{k}=1$,

$$
\begin{equation*}
\int_{M \backslash D_{0}}\left|v_{k}\right|_{h^{k}}^{2} d v_{M}=O\left(k^{-\infty}\right) \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P_{k, k^{-N}, s}^{(0)}(p, p)-\left|v_{k}(p)\right|_{h^{k}}^{2}\right| \lesssim k^{3 n-N} \tag{6.5}
\end{equation*}
$$

We take $\alpha_{1}=v_{k}$ and obtain from (6.5) that

$$
\begin{equation*}
\sum_{j=2}^{d_{k}} e^{-2 k \phi(p)}\left|\widetilde{\alpha}_{j}(p)\right|^{2} \lesssim k^{3 n-N} \tag{6.6}
\end{equation*}
$$

Now,

$$
\begin{align*}
& \left.\left|e^{-k \phi(p)} \widetilde{\alpha}_{1}(p)\left(((1-\tau) f)(\cdot) T_{k, k^{-N}}^{(0), g}\right)(\cdot, y)\left(\hat{s}^{-k} e^{-k \hat{\phi}}\right)(y)\right| \alpha_{1}(\cdot)\right)_{k} \mid \\
& \quad \leq\left|e^{-k \phi(x)} \widetilde{\alpha}_{1}(p)\right|\left\|T_{k, k^{-N}}^{(0), g}(\cdot, y)\left(\hat{s}^{-k} e^{-k \widehat{\phi}}\right)(y)\right\|_{k}\left\|(1-\tau) f \alpha_{1}\right\|_{k} . \tag{6.7}
\end{align*}
$$

We claim that

$$
\begin{equation*}
\left\|T_{k, k^{-N}}^{(0), g}(\cdot, y)\left(\hat{s}^{-k} e^{-k \widehat{\phi}}\right)(y)\right\|_{k}^{2} \lesssim k^{n} \text { locally uniformly on } y \in D_{1} \tag{6.8}
\end{equation*}
$$

Fix $y_{0} \in D_{1}$. We take $\left\{\delta_{1}(x), \delta_{2}(x), \ldots, \delta_{d_{k}}(x)\right\}$ so that $\hat{\delta}_{1}\left(y_{0}\right) \neq 0, \hat{\delta}_{j}\left(y_{0}\right)=0, j=2,3, \ldots, d_{k}$. Then,

$$
\begin{equation*}
T_{k, k^{-N}}^{(0), g}\left(x, y_{0}\right)\left(\hat{s}^{-k} e^{-k \widehat{\phi}}\right)\left(y_{0}\right)=\sum_{j=1}^{d_{k}} \alpha_{j}(x)\left(g \delta_{1} \mid \alpha_{j}\right)_{k} \widehat{\delta}_{1}\left(y_{0}\right) e^{-k \hat{\phi}\left(y_{0}\right)} \tag{6.9}
\end{equation*}
$$

From (6.9), we can check that

$$
\begin{align*}
\left\|T_{k, k^{-N}}^{(0), g}\left(\cdot, y_{0}\right)\right\|_{k}^{2} & =\sum_{j=1}^{d_{k}}\left\|\alpha_{j}\right\|_{k}^{2}\left|\left(g \delta_{1} \mid \alpha_{j}\right)_{k}\right|^{2}\left|\overline{\delta_{1}}\left(y_{0}\right)\right|^{2} e^{-2 k \widehat{\phi}\left(y_{0}\right)} \\
& =\left\|P_{k, k^{-N}}^{(0)}\left(g \delta_{1}\right)\right\|_{k}^{2} e^{-2 k \hat{\phi}\left(y_{0}\right)}\left|\overline{\delta_{1}}\left(y_{0}\right)\right|^{2} \tag{6.10}
\end{align*}
$$

Since g is a bounded function, $\left\|P_{k, k^{-N}}^{(0)}\left(g \delta_{1}\right)\right\|_{k}^{2} \leq C$, for some constant $C>0$ independent of k. Moreover, $e^{-2 k \hat{\phi}\left(y_{0}\right)}\left|\overline{\delta_{1}}\left(y_{0}\right)\right|^{2} \lesssim k^{n}$ locally uniformly on D_{1}. From this observation and (6.10), the estimate (6.8) follows. Relation (6.4) yields

$$
\begin{equation*}
\left\|(1-\tau) f \alpha_{1}\right\|_{k}=O\left(k^{-\infty}\right) \tag{6.11}
\end{equation*}
$$

From (6.7), (6.8), (6.11) and since $\left|e^{-k \phi(p)} \widetilde{\alpha}_{1}(p)\right| \lesssim k^{\frac{n}{2}}$, we conclude that

$$
\begin{equation*}
\left.\left|e^{-k \phi(p)} \widetilde{\alpha}_{1}(p)\left(((1-\tau) f)(\cdot) T_{k, k^{-N}}^{(0), g}\right)(\cdot, y)\left(\hat{s}^{-k} e^{-k \hat{\phi}}\right)(y)\right| \alpha_{1}(\cdot)\right)_{k} \mid=O\left(k^{-\infty}\right) \tag{6.12}
\end{equation*}
$$

From (6.6) and (6.8), we have

$$
\begin{align*}
& \left.\left|\sum_{j=2}^{d_{k}} e^{-k \phi(p)} \widetilde{\alpha}_{j}(p)\left(((1-\tau) f)(\cdot) T_{k, k^{-N}}^{(0), g}\right)(\cdot, y)\left(\hat{s}^{-k} e^{-k \hat{\phi}}\right)(y)\right| \alpha_{j}(\cdot)\right)_{k} \mid \\
& \quad \leq \sqrt{\sum_{j=2}^{d_{k}} e^{-2 k \phi(p)}\left|\widetilde{\alpha}_{j}(p)\right|^{2}} \sqrt{\left.\sum_{j=2}^{d_{k}}\left|\left(((1-\tau) f)(\cdot) T_{k, k^{-N}}^{(0), g}\right)(\cdot, y)\left(\hat{s}^{-k} e^{-k \hat{\phi}}\right)(y)\right| \alpha_{j}(\cdot)\right)\left._{k}\right|^{2}} \\
& \quad \leq \sqrt{\sum_{j=2}^{d_{k}} e^{-2 k \phi(p)}\left|\widetilde{\alpha}_{j}(p)\right|^{2}} \sqrt{\left.\sum_{j=1}^{d_{k}}\left|\left(((1-\tau) f)(\cdot) T_{k, k^{-N}}^{(0), g}\right)(\cdot, y)\left(\hat{s}^{-k} e^{-k \hat{\phi}}\right)(y)\right| \alpha_{j}(\cdot)\right)\left._{k}\right|^{2}} \\
& \left.\quad=\sqrt{\sum_{j=2}^{d_{k}} e^{-2 k \phi(p)}\left|\widetilde{\alpha}_{j}(p)\right|^{2}} \| P_{k, k^{-N}}^{(0)}\left(((1-\tau) f)(\cdot) T_{k, k^{-N}}^{(0), g}\right)(\cdot, y)\left(\hat{s}^{-k} e^{-k \hat{\phi}}\right)(y)\right) \|_{k} \\
& \quad \leq \sqrt{\left.\sum_{j=2}^{d_{k}} e^{-2 k \phi(p)}\left|\widetilde{\alpha}_{j}(p)\right|^{2} \|((1-\tau) f)(\cdot) T_{k, k^{-N}}^{(0), g}\right)(\cdot, y)\left(\hat{s}^{-k} e^{-k \hat{\phi}}\right)(y) \|_{k}} \\
& \quad \lesssim k^{2 n-N} . \tag{6.13}
\end{align*}
$$

Note that here we still get the exponent $2 n-N$. From (6.3), (6.12), and (6.13), we get

$$
\begin{equation*}
\left|T_{k, k^{-N}, s, \hat{s}}^{(0),(1-\tau) f, g}(x, y)\right| \lesssim k^{2 n-N} \text { locally uniformly on } D_{0} \times D_{1} . \tag{6.14}
\end{equation*}
$$

Thus, to estimate $T_{k, k^{-N}, s, \hat{s}}^{(0), f, g}(x, y)$, we only need to estimate $T_{k, k^{-N}, s, \hat{s}}^{(0)}(x, y)$. Let $\hat{\tau} \in \mathscr{C}_{0}^{\infty}\left(\widetilde{D}_{1}\right)$ and $\hat{\tau}=1$ on D_{1}. We can repeat the procedure above and conclude that

$$
\begin{equation*}
\left|T_{k, k^{-N}, s, \hat{s}}^{(0), \tau f,(1-\hat{\tau}) g}(x, y)\right| \lesssim k^{2 n-N} \text { locally uniformly on } D_{0} \times D_{1} \text {. } \tag{6.15}
\end{equation*}
$$

Thus, to estimate $T_{k, k^{-N}, s, \hat{s}}^{(0), f, g}(x, y)$, we only need to estimate $T_{k, k^{-N}, s, s \hat{s}}^{(0), \tau f, \hat{\tau} g}(x, y)$. We now explain how to estimate $T_{k, k^{-N}, s, \hat{s}}^{(0), \tau \tau, \hat{\tau} g}(x, y)$. Take $\tau_{1}(x) \in \mathscr{C}_{0}^{\infty}\left(\widetilde{D}_{0}\right), \tau_{1}=1$ on $\operatorname{Supp} \tau$. We have

$$
\begin{align*}
& T_{k, k^{-N}}^{(0) \tau \tau f \hat{\tau} g}=\widetilde{T}_{k, k^{-N}}^{(0), \tau f, \hat{\tau} g}+\hat{T}_{k, k^{-N}}^{(0), \tau f, \hat{\tau} g}, \\
& \widetilde{T}_{k, k^{-N}}^{(0), \tau f}=\hat{\tau} g P_{k, k^{-N}}^{(0)} \tau f P_{k, k^{-N}}^{(0)} \tau_{1} P_{k, k^{-N}}^{(0)} \hat{\tau} g P_{k, k^{-N}}^{(0)}=T_{k, k^{-N}}^{(0), \tau f} \tau_{1} T_{k, k^{-N}}^{(0), \hat{g} g} \tag{6.16}\\
& \hat{T}_{k, k^{-N}}^{(0) \tau f, \hat{\tau} g}=P_{k, k^{-N}}^{(0)} \tau f P_{k, k^{-N}}^{(0)}\left(1-\tau_{1}\right) P_{k, k^{-N}}^{(0)} \hat{\tau} g P_{k, k^{-N}}^{(0)}=T_{k, k^{-N}}^{(0) \tau f}\left(1-\tau_{1}\right) T_{k, k^{-N}}^{(0), \hat{\imath} g .}
\end{align*}
$$

The estimate of $\widetilde{T}_{k, k^{-N},}^{(0)} \tau f, \hat{\mathrm{~g}}$, is as compact case since

$$
\widetilde{T}_{k, k^{-N}, s, \hat{s}}^{(0), \tau f, \hat{\tau} g}(x, y)=\int T_{k, k^{-N}, s, s}^{(0), \tau f}(x, z) \tau_{1}(z) T_{k, k^{-N}, s, \hat{s}}^{(0), \hat{\tau} g}(z, y) d v_{M}(z)
$$

and the integral is over some compact set of M. We only need to show how to estimate $\hat{T}_{k, k^{-N}, s, \hat{s}}^{(0), \tau f, \hat{\tau} g}(x, y)$. Note that

$$
\begin{equation*}
\hat{T}_{k, k^{-N}}^{(0), \tau f, \hat{\tau} g}=P_{k, k^{-N}}^{(0)} \tau f T_{k, k^{-N}}^{(0), 1-\tau_{1}} \hat{\tau} g P_{k, k^{-N}}^{(0)} . \tag{6.17}
\end{equation*}
$$

From (6.17), it is easy to see that

$$
\begin{align*}
& \hat{T}_{k, k^{-N, s, s, \hat{s}}}^{(0), \tau f, \hat{\tau} g}(x, y) \\
& =\sum_{j, \ell=1}^{d_{k}} \widetilde{\alpha}_{j}(x) e^{-k \phi(x)} \overline{\hat{\delta}_{\ell}(y)} e^{-k \hat{\phi}(y)} \\
& \quad \times \int T_{k, k^{-N}, s, \hat{s}}^{(0), 1-\tau_{1}}(z, u) \hat{\tau}(u) g(u) \hat{\delta}_{\ell}(u) \tau(z) f(z) \widetilde{\widetilde{\alpha}_{j}(z)} e^{-k \hat{\phi}(u)-k \phi(z)} d v_{M}(u) d v_{M}(z) . \tag{6.18}
\end{align*}
$$

Now, fix $x_{0} \in D_{0}$ and $y_{0} \in D_{1}$. We take $\left\{\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{d_{k}}(x)\right\}$ and $\left\{\delta_{1}(x), \delta_{2}(x), \ldots, \delta_{d_{k}}(x)\right\}$ so that $\widetilde{\alpha}_{1}\left(x_{0}\right) \neq 0, \widetilde{\alpha}_{j}\left(x_{0}\right)=0, j=2,3, \ldots, d_{k}, \hat{\delta}_{1}\left(y_{0}\right) \neq 0, \hat{\delta}_{j}\left(y_{0}\right)=0, j=2,3, \ldots, d_{k}$. Thus,

$$
\begin{align*}
& \hat{T}_{k, k-\tau, N, s, \hat{s}}^{(0), \tau f}\left(x_{0}, y_{0}\right) \\
& =\widetilde{\alpha}_{1}\left(x_{0}\right) e^{-k \phi\left(x_{0}\right)} \overline{\hat{\delta}_{1}\left(y_{0}\right)} e^{-k \hat{\phi}\left(y_{0}\right)} \\
& \quad \times \int T_{k, k^{-N}, s, \hat{s}}^{(0), 1-\tau_{1}}(z, u) \hat{\tau}(u) g(u) \hat{\delta}_{1}(u) \tau(z) f(z) \widetilde{\widetilde{\alpha}}_{1}(z) e^{-k \hat{\phi}(u)-k \phi(z)} d v_{M}(u) d v_{M}(z) . \tag{6.19}
\end{align*}
$$

From Lemma 4.2, we see that $\left|T_{k, k^{-N}, s, s, s}^{(0), \tau_{1}}(z, u)\right| \lesssim k^{2 n-N}$ locally uniformly on $\widetilde{D}_{0} \times \widetilde{D}_{1}$. From this observation and since $\left|\widetilde{\alpha}_{1}\left(x_{0}\right) e^{-k \phi\left(x_{0}\right)}{\widetilde{\delta_{1}}\left(y_{0}\right)} e^{-k \hat{\phi}\left(y_{0}\right)}\right| \lesssim k^{n}$, we deduce that

$$
\left|\hat{T}_{k, k^{-N}, s, \hat{s}}^{(0), \tau f, \hat{\tau} g}\left(x_{0}, y_{0}\right)\right| \lesssim k^{3 n-N}
$$

Here we get the power $3 n$.
We have moreover:
Theorem 6.2. With the notations above, let s be local trivializing holomorphic section of L on $D_{0} \Subset M$. Assume that $D_{0} \Subset M(q)$. Then, for every $N>1, m \in \mathbb{N}$, there exists $\widetilde{C}_{N, m}>0$ independent of k such that

$$
\left|T_{k, k^{-N, s}}^{(q), f, g}(x, y)-e^{i k \Psi(x, y)} b_{f, g}(x, y, k)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq \widetilde{C}_{N, m} k^{3 n-\frac{N}{2}+2 m},
$$

where

$$
\begin{align*}
& \left.b_{f, g}(x, y, k) \in S^{n}\left(1 ; D_{0} \times D_{0}, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right), \\
& \left.b_{f, g}(x, y, k) \sim \sum_{j=0}^{\infty} b_{f, g, j}(x, y) k^{n-j} \operatorname{in} S^{n}\left(1 ; D_{0} \times D_{0}, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right), \tag{6.20}\\
& b_{f, g, 0}(x, x)=(2 \pi)^{-n} f(x) g(x)\left|\operatorname{det} \dot{R}^{L}(x)\right| I_{\operatorname{det}} \bar{W}^{*}(x), \quad \forall x \in D_{0},
\end{align*}
$$

and Ψ is as in Theorem 3.2.

Proof. The proof of this theorem is similar to the proof of Theorem 5.4. We only give the outline of the proof and for simplicity we consider only $q=0$. Fix $D_{0} \subset \widetilde{D}_{0} \Subset M(q)$ and take $\tau(x) \in \mathscr{C}_{0}^{\infty}\left(\widetilde{D}_{0}\right), \tau=1$ on D_{0}. We may assume that the section s defined on \widetilde{D}_{0}. We can repeat the proof of Lemma 4.2 with minor changes and conclude that for every $N>1$ and $m \in \mathbb{N}$, there is $C_{N, m}>0$ independent of k such that

$$
\begin{align*}
& \left|T_{k, k^{-N, s}}^{(0)(1-\tau) f, g}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq C_{N, m} k^{3 n-\frac{N}{2}+2 m} \tag{6.21}\\
& \left|T_{k, k^{-N}, s}^{(0), \tau f,(1-\tau) g}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq C_{N, m} k^{3 n-\frac{N}{2}+2 m}
\end{align*}
$$

From (6.21), we only need to consider $T_{k, k^{-N}, s}^{(0), \tau f, \tau g}$. Take $\tau_{1}(x) \in \mathscr{C}_{0}^{\infty}\left(\widetilde{D}_{0}\right), \tau_{1}=1$ on $\operatorname{Supp} \tau$. We have

$$
\begin{align*}
& T_{k, k^{-N}}^{(0) \tau f, \tau g}=\widetilde{T}_{k, k^{-N}}^{(0) \tau \tau, \tau g}+\widehat{T}_{k, k^{-N}}^{(0), \tau f, \tau g}, \\
& \widetilde{T}_{k, k^{-N}}^{(0), \tau f}=P_{k, k^{-N}}^{(0)} \tau f P_{k, k^{-N}}^{(0)} \tau_{1} P_{k, k^{-N}}^{(0)} \tau g P_{k, k^{-N}}^{(0)}=T_{k, k^{-N}}^{(0), \tau f} \tau_{1} T_{k, k^{-N},}^{(0), \tau g} \tag{6.22}\\
& \widehat{T}_{k, k^{-N}}^{(0), \tau f g}=P_{k, k^{-N}}^{(0)} \tau f P_{k, k^{-N}}^{(0)}\left(1-\tau_{1}\right) P_{k, k^{-N}}^{(0)} \tau g P_{k, k^{-N}}^{(0)}=T_{k, k^{-N}}^{(0), \tau f}\left(1-\tau_{1}\right) T_{k, k^{-N}}^{(0), \tau g .}
\end{align*}
$$

Let $\left.\widetilde{T}_{k, k^{-N, s}}^{(0), \tau f}(x, y), \widehat{T}_{k, k^{-N}, s}^{(0), \tau f}(x, y) \in \mathscr{C}^{\infty}\left(\widetilde{D}_{0} \times \widetilde{D}_{0}, \Lambda^{0, q}\left(T^{*} M\right)\right) \boxtimes\left(\Lambda^{0, q}\left(T^{*} M\right)\right)^{*}\right)$ be the distribution kernels of $s^{-k} e^{-k \phi} \widetilde{T}_{k, k^{-N}}^{(0) \tau \tau} s^{k} e^{k \phi}$ and $s^{-k} e^{-k \phi} \widehat{T}_{k, k^{-N}}^{(0), \tau f \tau g} s^{k} e^{k \phi}$, respectively. We have

$$
\begin{equation*}
T_{k, k^{-N, s}}^{(0), \tau f, \tau g}(x, y)=\widetilde{T}_{k, k^{-N, s}}^{(0), \tau f \tau}(x, y)+\widehat{T}_{k, k^{-N}, s}^{(0), \tau f, \tau g}(x, y) . \tag{6.23}
\end{equation*}
$$

We first consider $\widehat{T}_{k, k^{-N}, s}^{(0), \tau f, \tau g}(x, y)$. Take

$$
\left\{\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{d_{k}}(x)\right\},\left\{\delta_{1}(x), \delta_{2}(x), \ldots, \delta_{d_{k}}(x)\right\}
$$

be orthonormal frames for $\mathscr{E}_{k^{-N}}^{0}\left(M, L^{k}\right)$, where $d_{k} \in \mathbb{N} \cup\{\infty\}$. On \widetilde{D}_{0}, we write

$$
\alpha_{j}(x)=s^{k}(x) \widetilde{\alpha}_{j}(x), \quad \delta_{j}(x)=s^{k}(x) \widetilde{\delta}_{j}(x), \quad j=1, \ldots, d_{k}
$$

It is straightforward to check that

$$
\begin{align*}
\widehat{T}_{k, k^{-N, s}}^{(0) \tau f, \tau g}(x, y)= & \sum_{j, s=1}^{d_{k}} \widetilde{\alpha}_{j}(x) e^{-k \phi(x)} \overline{\widetilde{\delta}_{s}(y)} e^{-k \phi(y)} \\
& \times \int T_{k, k^{-N, s}}^{(0), 1-\tau_{1}}(z, u) \tau(u) g(u) \widetilde{\delta}_{s}(u) \tau(z) f(z) \widetilde{\alpha}_{j}(z) e^{-k \phi(u)-k \phi(z)} d v_{M}(u) d v_{M}(z) . \tag{6.24}
\end{align*}
$$

From Lemmas 4.2, (3.10), and (6.24), it is not difficult to see that for every $N>1$ and $m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that

$$
\begin{equation*}
\left|\widehat{T}_{k, k^{-N}, s}^{(0), \tau f f \tau g}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq C_{N, m} k^{3 n-\frac{N}{2}+2 m} . \tag{6.25}
\end{equation*}
$$

We now consider $\widetilde{T}_{k, k^{-N}, s}^{(0), \tau f}(x, y)$. We have

$$
\begin{equation*}
\widetilde{T}_{k, k^{-N, s}}^{(0) \tau f f \tau g}(x, y)=\int T_{k, k^{-N}, s}^{(0) \tau f}(x, z) \tau_{1}(z) T_{k, k^{-N}, s}^{(0) \tau g}(z, y) d v_{M}(z) \tag{6.26}
\end{equation*}
$$

Put

$$
S_{k, f}(x, y)=e^{i k \Psi(x, y)} b_{f}(x, y, k), \quad S_{k, g}(x, y)=e^{i k \Psi(x, y)} b_{g}(x, y, k)
$$

where $\Psi(x, y)$ is as in Theorem 3.2 and $b_{f}(x, y, k), b_{g}(x, y, k) \in S^{n}\left(1 ; \widetilde{D}_{0} \times \widetilde{D}_{0}\right)$ are as in Theorem 5.4. Put

$$
A_{k}(x, y)=\int T_{k, k^{-N, s}}^{(0), \tau f}(x, z) \tau_{1}(z) T_{k, k^{-N, s}}^{(0), \tau g}(z, y) d v_{M}(z)-\int S_{k, f}(x, z) \tau_{1}(z) S_{k, g}(z, y) d v_{M}(z)
$$

From Theorem 5.4, it is straightforward to see that for every $N>1$ and $m \in \mathbb{N}$, there exists $C_{N, m}>0$ independent of k such that

$$
\begin{equation*}
\left|A_{k}(x, y)\right|_{\mathscr{C}^{m}\left(D_{0} \times D_{0}\right)} \leq C_{N, m} k^{3 n-\frac{N}{2}+2 m} \tag{6.27}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\int S_{k, f}(x, z) \tau_{1}(z) S_{k, g}(z, y) d v_{M}(z) \equiv e^{i k \Psi(x, y)} b_{f, g}(x, y, k) \quad \bmod O\left(k^{-\infty}\right) \tag{6.28}
\end{equation*}
$$

locally uniformly on $\widetilde{D}_{0} \times \widetilde{D}_{0}$, where $b_{f, g}(x, y, k) \in S^{n}\left(1 ; \widetilde{D}_{0} \times \widetilde{D}_{0}\right)$,

$$
b_{f, g}(x, y, k) \sim \sum_{j=0}^{\infty} b_{f, g, j}(x, y) k^{n-j} \text { in } S^{n}\left(1 ; \widetilde{D}_{0} \times \widetilde{D}_{0}\right)
$$

with $b_{f, g, j} \in \mathscr{C}^{\infty}\left(\widetilde{D}_{0} \times \widetilde{D}_{0}\right)$, and $b_{f, g, 0}(x, x)=(2 \pi)^{-n} \tau(x)^{2} \tau_{1}(x) f(x) g(x)\left|\operatorname{det} \dot{R}^{L}(x)\right|, x \in \widetilde{D}_{0}$.
We use now the theory of complex Fourier integral operator, in particular the fact that composition of complex Fourier integral operators is still a complex Fourier integral operator.

Indeed, the complex stationary phase formula of Melin-Sjöstrand [28] tells us that there is a complex phase $\Psi_{1}(x, y) \in \mathscr{C}^{\infty}\left(\widetilde{D}_{0} \times \widetilde{D}_{0}\right)$ with $\operatorname{Im} \Psi_{1}(x, y) \approx|x-y|^{2}$, such that for any $A(x, y)=e^{i k \Psi(x, y)} a(x, y, k), C(x, y)=e^{i k \Psi(x, y)} c(x, y, k)$, where $a(x, y, k), c(x, y, k) \in$ $S^{n}\left(1 ; \widetilde{D}_{0} \times \widetilde{D}_{0}\right)$, and every $\chi \in \mathscr{C}_{0}^{\infty}\left(\widetilde{D}_{0}\right)$, we have

$$
\begin{equation*}
\int A(x, z) \chi(z) B(z, y) d v_{M}(z) \equiv e^{i k \Psi_{1}(x, y)} h(x, y, k) \quad \bmod O\left(k^{-\infty}\right) \tag{6.29}
\end{equation*}
$$

locally uniformly on $\widetilde{D}_{0} \times \widetilde{D}_{0}$, where $h(x, y, k) \in S^{n}\left(1 ; \widetilde{D}_{0} \times \widetilde{D}_{0}\right)$,

$$
h(x, y, k) \sim \sum_{j=0}^{\infty} h_{j}(x, y) k^{n-j} \text { in } S^{n}\left(1 ; \widetilde{D}_{0} \times \widetilde{D}_{0}\right)
$$

and $h_{0}(x, x)=(2 \pi)^{-n} \chi(x) a_{0}(x, x) c_{0}(x, x), x \in \widetilde{D}_{0}$, where a_{0} and c_{0} denote the leading terms of $a(x, y, k)$ and $c(x, y, k)$, respectively. In the proof of Lemma 5.3, we proved that $\Psi(x, y)-$ $\Psi_{1}(x, y)$ vanishes to infinite order on $x=y$ (see (5.25)). Thus, we can replace Ψ_{1} in (6.29) by Ψ and we get (6.28).

From (6.28), (6.27), (6.25), (6.23), and (6.21), the theorem follows.
Proof of Theorem 1.3. Theorems 6.1 and 6.2 yield immediately Theorem 1.3.
Proof of Theorem 1.9. This follows by using the asymptotics of the Bergman kernel proved in [18, Theorem 1.6] in the case of an $O\left(k^{-N}\right)$ small spectral gap and adapting the proofs of Theorems 1.1 and 1.3 to the current situation.

Proof of Theorem 1.10. By [18, Theorem 8.2], we know that $\square_{k}^{(0)}$ has an $O\left(k^{-N}\right)$ small spectral gap on every $D \Subset M^{\prime} \cap M(0)$. This observation and Theorem 1.9 yield Theorem 1.10.

Proof of Theorem 1.11. $M \backslash \Sigma$ is a noncompact complex manifold. Let $\square_{k}^{(0)}$ be the Gaffney extension of Kodaira Laplacian on $M \backslash \Sigma$ and let $P_{k, M \backslash \Sigma}^{(0)}$ be the associated Bergman projection. By a result of Skoda (see [18, Lemma 7.2]), we know that

$$
\begin{equation*}
P_{k, \mathscr{I}}^{(0)}=P_{k, M \backslash \Sigma}^{(0)} \quad \text { on } M \backslash \Sigma \tag{6.30}
\end{equation*}
$$

Moreover, we know that $\square_{k}^{(0)}$ has $O\left(k^{-N}\right)$ small spectral gap on every $D \Subset M \backslash \Sigma$ (see [18, Theorem 9.1]). This observation, (6.30) and Theorem 1.9 imply Theorem 1.11.

In the following, we will prove Theorem 1.4. Fix $N>1$. Let $f, g \in \mathscr{C}_{0}^{\infty}(D), D \Subset M(0)$. For simplicity, we may assume that $\left.L\right|_{D}$ is trivial and let s be a local trivializing holomorphic section of L on $D,|s|_{h}^{2}=e^{-2 \phi}$. Take $\tau \in C_{0}^{\infty}(D)$ with $\tau=1$ on Supp $f \cup \operatorname{Supp} g$. Put

$$
\begin{equation*}
R_{k}=T_{k, k^{-N}}^{(0), f} T_{k, k^{-N}}^{(0), g}-\tau T_{k, k^{-N}}^{(0), f} T_{k, k^{-N}}^{(0), g} \tau \tag{6.31}
\end{equation*}
$$

We can repeat the proof of Lemma 4.2 with minor changes and obtain:
Lemma 6.3. Let s_{1}, s_{2} be local trivializing holomorphic sections of L on $D_{1} \Subset M$ and $D_{2} \Subset M$, respectively, where D_{1} and D_{2} are open sets. Then, for every $m \in \mathbb{N}$, there exists $C_{m}>0$
independent of k such that

$$
\left|R_{k, s_{1}, s_{2}}(x, y)\right|_{\mathscr{C}^{m}\left(D_{1} \times D_{2}\right)} \leq C_{m} k^{3 n-\frac{N}{2}+2 m}
$$

where $R_{k, s_{1}, s_{2}}(x, y)$ denotes the distribution kernel of $R_{k, s_{1}, s_{2}}:=s_{1}^{-k} e^{-k \phi_{1}} R_{k} s_{2}^{k} e^{k \phi_{2}}$.
In particular, $T_{k, k^{-N}}^{(0), f} T_{k, k^{-N}}^{(0), ~}-\tau T_{k, k^{-N}}^{(0), f} T_{k, k^{-N}}^{(0), g} \tau=\mathcal{O}\left(k^{3 n-\frac{N}{2}}\right)$ locally in the L^{2} operator norm.
Let $b_{f, g}(x, y, k) \in S^{n}(1 ; D \times D)$ be as in Theorem 1.3. Then

$$
b_{f, g}(x, y, k) \sim \sum_{j=0}^{\infty} b_{f, g, j}(x, y) k^{n-j} \text { in } S^{n}(1 ; D \times D)
$$

Since $f, g \in \mathscr{C}_{0}^{\infty}(D)$, we can take $b_{f, g}(x, y, k), b_{f, g, j}(x, y) \in \mathscr{C}_{0}^{\infty}(D \times D), j \in \mathbb{N}$. Note that $b_{f, g}(x, y, k)$ and $b_{f, g, j}(x, y)$ have uniquely determined Taylor expansion at $x=y$. Consider

$$
\begin{aligned}
B_{k}: L^{2}\left(M, L^{k}\right) & \rightarrow L^{2}\left(M, L^{k}\right) \\
u & \mapsto s^{k} e^{k \phi} \tau \int e^{i k \Psi(x, y)} b_{f, g}(x, y, k) s^{-k} e^{-k \phi(y)} \tau(y) u(y) d v_{M}(y)
\end{aligned}
$$

In view of Theorem 1.3 and Lemma 6.3, we see that

$$
\begin{equation*}
B_{k}-T_{k, k^{-N}}^{(0), f} T_{k, k^{-N}}^{(0), g}=\mathcal{O}\left(k^{3 n-\frac{N}{2}}\right) \text { locally in the } L^{2} \text { operator norm. } \tag{6.32}
\end{equation*}
$$

Lemma 6.4. For any $p \in \mathbb{N}$ there exist $C_{p}(f, g) \in \mathscr{C}_{0}^{\infty}(D)$ such that

$$
b_{f, g}(x, y, k) \sim \sum_{p=0}^{\infty} b_{C_{p}(f, g)}(x, y, k) k^{-p} \text { in } S^{n}(1 ; D \times D)
$$

where $b_{C_{p}(f, g)}(x, y, k) \in S^{n}(1 ; D \times D)$ for each $p \in \mathbb{N}$.
Proof. Set

$$
\begin{equation*}
C_{0}(f, g)=f g \in \mathscr{C}_{0}^{\infty}(D) \tag{6.33}
\end{equation*}
$$

From (1.20) and (1.13), we see that

$$
\begin{equation*}
b_{f, g, 0}(x, x)=b_{C_{0}(f, g), 0}(x, x), \quad \forall x \in D \tag{6.34}
\end{equation*}
$$

Note that $b_{f, g, 0}(x, y)$ and $b_{C_{0}(f, g), 0}(x, y)$ are holomorphic with respect to x and

$$
b_{f, g, 0}(x, y)=\bar{b}_{f, g, 0}(y, x), \quad b_{C_{0}(f, g), 0}(x, y)=\bar{b}_{C_{0}(f, g), 0}(y, x)
$$

From this observation and (6.34), it is easy to see that $b_{f, g, 0}(x, y)-b_{C_{0}(f, g), 0}(x, y)$ vanishes to infinite order on $x=y$. Thus, we can take $b_{C_{0}(f, g), 0}(x, y)$ so that $b_{C_{0}(f, g), 0}(x, y)=b_{f, g, 0}(x, y)$ and hence $b_{f, g}(x, y, k)-b_{C_{0}(f, g)}(x, y, k) \in S^{n-1}(1, D \times D)$. Consider the expansion

$$
\begin{equation*}
b_{f, g}(x, y, k)-b_{C_{0}(f, g)}(x, y, k) \sim \sum_{j=0}^{\infty} a_{j}(x, y) k^{n-1-j} \text { in } S^{n-1}(1 ; D \times D) \tag{6.35}
\end{equation*}
$$

where $a_{j}(x, y) \in \mathscr{C}_{0}^{\infty}(D), j \in \mathbb{N}$. Set

$$
\begin{equation*}
C_{1}(f, g)(x)=(2 \pi)^{n} a_{0}(x, x)\left|\operatorname{det} \dot{R}^{L}(x)\right|^{-1} \in \mathscr{C}_{0}^{\infty}(D) \tag{6.36}
\end{equation*}
$$

From (1.13), we have $b_{C_{1}(f, g), 0}(x, x)=a_{0}(x, x)$ and as in the discussion above, we can take $b_{C_{1}(f, g), 0}(x, y)$ so that $b_{C_{1}(f, g), 0}(x, y)=a_{0}(x, y)$ and hence

$$
b_{f, g}(x, y, k)-b_{C_{0}(f, g)}(x, y, k)-\frac{1}{k} b_{C_{1}(f, g)}(x, y, k) \in S^{n-2}(1, D \times D)
$$

Continuing inductively, the lemma follows.
Proof of Theorem 1.4. Let $a(x, y, k) \in S^{n-j_{0}}(1, D \times D), j_{0} \in \mathbb{N}$. Consider the operator

$$
\begin{aligned}
A_{k}: L^{2}\left(M, L^{k}\right) & \rightarrow L^{2}\left(M, L^{k}\right) \\
u & \mapsto s^{k} e^{k \phi} \tau \int e^{i k \Psi(x, y)} a(x, y, k) s^{-k} e^{-k \phi(y)} \tau(y) u(y) d v_{M}(y)
\end{aligned}
$$

By [18, Theorem 3.11], we have

$$
\begin{equation*}
A_{k}=\mathcal{O}\left(k^{-j_{0}}\right) \text { locally in the } L^{2} \text { operator norm. } \tag{6.37}
\end{equation*}
$$

For every $p \in \mathbb{N}$ put

$$
\begin{aligned}
B_{k, p}: L^{2}\left(M, L^{k}\right) & \rightarrow L^{2}\left(M, L^{k}\right) \\
u & \mapsto s^{k} e^{k \phi} \tau \int e^{i k \Psi(x, y)} b_{C_{p}(f, g)}(x, y, k) s^{-k} e^{-k \phi(y)} \tau(y) u(y) d v_{M}(y) .
\end{aligned}
$$

As in (6.32), we can check that for $p=0,1,2, \ldots$,

$$
\begin{equation*}
B_{k, p}-T_{k, k^{-N}}^{(0), C_{p}(f, g)}=\mathcal{O}\left(k^{3 n-\frac{N}{2}}\right) \text { locally in the } L^{2} \text { operator norm. } \tag{6.38}
\end{equation*}
$$

Moreover, from (6.37) and Lemma 6.4, we have

$$
\begin{equation*}
B_{k}-\sum_{p=0}^{\ell} B_{k, p} k^{-p}=\mathcal{O}\left(k^{-\ell-1}\right) \text { locally in the } L^{2} \text { operator norm, } \quad \ell=0,1,2, \ldots \tag{6.39}
\end{equation*}
$$

From (6.32), (6.38), and (6.39), we conclude that

$$
T_{k, k^{-N}}^{(0), f} T_{k, k^{-N}}^{(0), g}-\sum_{p=0}^{\ell} T_{k, k^{-N}}^{(0), C_{p}(f, g)} k^{-p}=\mathcal{O}\left(k^{-\ell-1}+k^{3 n-\frac{N}{2}}\right), \quad \ell=0,1,2, \ldots,
$$

locally in the L^{2} operator norm. Moreover, we have $C_{0}(f, g)=C_{0}(g, f)=f g$ by (6.33). We also have $C_{1}(f, g)=-\frac{1}{2 \pi}\langle\partial f \mid \partial \bar{g}\rangle_{\omega}$ by (7.36), so as in [27, (0.23)] we obtain

$$
\begin{equation*}
C_{1}(f, g)-C_{1}(g, f)=\sqrt{-1}\{f, g\} \tag{6.40}
\end{equation*}
$$

where $\{f, g\}$ is the Poisson bracket of the functions f, g with respect to the symplectic form $2 \pi \omega$ on $M(0)$ (see also [25, (4.89)], [24, (7.4.3)]). Therefore (1.23) follows.

Recall that the Poisson bracket $\{\cdot, \cdot\}$ on $(M, 2 \pi \omega)$ is defined as follows. For $f, g \in \mathscr{C}^{\infty}(M)$, let ξ_{f} be the Hamiltonian vector field generated by f, which is defined by $2 \pi \omega\left(\xi_{f}, \cdot\right)=d f$. Then

$$
\begin{equation*}
\{f, g\}:=\xi_{f}(d g) . \tag{6.41}
\end{equation*}
$$

Remark 6.5. Berezin introduced in his ground-breaking work [3] a star-product by using Toeplitz operators. Formal star-products are known to exist on symplectic manifolds by

De Wilde and Lecomte [12] and Fedosov [14]. The Berezin-Toeplitz star-product gives a concrete geometric realization of such product. For compact Kähler manifold the BerezinToeplitz star product was introduced in Karabegov and Schlichenmaier [19] and Schlichenmaier [29]. For general compact symplectic manifolds this was realized in Ma and Marinescu [24,25] by using Toeplitz operators obtained by projecting on the kernel of the Dirac operator. Due to Theorem 1.4, we can also define an associative star-product on the set $M(0)$ where a holomorphic line bundle $L \rightarrow M$ is positive, namely by setting for any $f, g \in \mathscr{C}_{0}^{\infty}(M(0))$,

$$
\begin{equation*}
f * g:=\sum_{k=0}^{\infty} C_{k}(f, g) \hbar^{k} \in \mathscr{C}^{\infty}(X)[[\hbar]] . \tag{6.42}
\end{equation*}
$$

7. Calculation of the leading coefficients

In this section, we will give formulas for the top coefficients of the expansion (1.13) in the case $q=0$, cf. Theorem 7.1. We introduce the geometric objects used in Theorem 7.1 below. Consider the (1,1)-form on M,

$$
\begin{equation*}
\omega:=\frac{\sqrt{-1}}{2 \pi} R^{L} . \tag{7.1}
\end{equation*}
$$

On $M(0)$ the $(1,1)$-form ω is positive and induces a Riemannian metric $g_{\omega}^{T M}(\cdot, \cdot)=\omega(\cdot, J \cdot)$. In local holomorphic coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$, put

$$
\begin{align*}
& \omega=\sqrt{-1} \sum_{j, k=1}^{n} \omega_{j, k} d z_{j} \wedge d \bar{z}_{k} \tag{7.2}\\
& \Theta=\sqrt{-1} \sum_{j, k=1}^{n} \Theta_{j, k} d z_{j} \wedge d \bar{z}_{k}
\end{align*}
$$

We notice that $\Theta_{j, k}=\left\langle\left.\frac{\partial}{\partial z_{j}} \right\rvert\, \frac{\partial}{\partial z_{k}}\right\rangle, \omega_{j, k}=\left\langle\left.\frac{\partial}{\partial z_{j}} \right\rvert\, \frac{\partial}{\partial z_{k}}\right\rangle_{\omega}, j, k=1, \ldots, n$. Put

$$
\begin{equation*}
h=\left(h_{j, k}\right)_{j, k=1}^{n}, h_{j, k}=\omega_{k, j}, j, k=1, \ldots, n \tag{7.3}
\end{equation*}
$$

and $h^{-1}=\left(h^{j, k}\right)_{j, k=1}^{n}, h^{-1}$ is the inverse matrix of h. The complex Laplacian with respect to ω is given by

$$
\begin{equation*}
\Delta_{\omega}=(-2) \sum_{j, k=1}^{n} h^{j, k} \frac{\partial^{2}}{\partial z_{j} \partial \bar{z}_{k}} . \tag{7.4}
\end{equation*}
$$

We notice that $h^{j, k}=\left\langle d z_{j} \mid d z_{k}\right\rangle_{\omega}, j, k=1, \ldots, n$. Put

$$
\begin{align*}
V_{\omega} & :=\operatorname{det}\left(\omega_{j, k}\right)_{j, k=1}^{n}, \tag{7.5}\\
V_{\Theta} & :=\operatorname{det}\left(\Theta_{j, k}\right)_{j, k=1}^{n}
\end{align*}
$$

and set

$$
\begin{align*}
& r=\triangle_{\omega} \log V_{\omega} \\
& \hat{r}=\triangle_{\omega} \log V_{\Theta} \tag{7.6}
\end{align*}
$$

r is called the scalar curvature with respect to ω. Let $R_{\Theta}^{\text {det }}$ be the curvature of the canonical line bundle $K_{M}=\operatorname{det} \Lambda^{1,0}\left(T^{*} M\right)$ with respect to the real two form Θ. We recall that

$$
\begin{equation*}
R_{\Theta}^{\operatorname{det}}=-\bar{\partial} \partial \log V_{\Theta} \tag{7.7}
\end{equation*}
$$

Let $\nabla_{\omega}^{T M}$ be the Levi-Civita connection on $\left(M(0), g_{\omega}^{T M}\right), R_{\omega}^{T M}=\left(\nabla_{\omega}^{T M}\right)^{2}$ its curvature. Let h be as in (7.3). Put $\theta=h^{-1} \partial h=\left(\theta_{j, k}\right)_{j, k=1}^{n}, \theta_{j, k} \in \Lambda^{1,0}\left(T^{*} M\right), j, k=1, \ldots, n . \theta$ is the Chern connection matrix with respect to ω. Then,

$$
\begin{align*}
& R_{\omega}^{T M}=\bar{\partial} \theta=\left(\bar{\partial} \theta_{j, k}\right)_{j, k=1}^{n}=\left(\mathcal{R}_{j, k}\right)_{j, k=1}^{n} \in \mathscr{C}^{\infty}\left(M, \Lambda^{1,1}\left(T^{*} M\right) \otimes \operatorname{End}\left(T^{1,0} M\right)\right) \\
& R_{\omega}^{T M}(\bar{U}, V) \in \operatorname{End}\left(T^{1,0} M\right), \forall U, V \in T^{1,0} M \tag{7.8}\\
& R_{\omega}^{T M}(\bar{U}, V) \xi=\sum_{j, k=1}^{n}\left\langle\mathcal{R}_{j, k} \mid \bar{U} \wedge V\right\rangle \xi_{k} \frac{\partial}{\partial z_{j}}, \quad \xi=\sum_{j=1}^{n} \xi_{j} \frac{\partial}{\partial z_{j}}, \quad U, V \in T^{1,0} M
\end{align*}
$$

We denote by $\langle\cdot, \cdot\rangle_{\omega}$ the pointwise Hermitian metrics induced by $g_{\omega}^{T M}$ on $\Lambda^{p, q}\left(T^{*} M\right) \otimes$ $\Lambda^{r, s}\left(T^{*} M\right), p, q, r, s \in\{0,1, \ldots, n\}$, and by $|\cdot|_{\omega}$ the corresponding norms.

Set

$$
\begin{equation*}
\left|R_{\omega}^{T M}\right|_{\omega}^{2}:=\sum_{j, k, s, t=1}^{n}\left|\left\langle R_{\omega}^{T M}\left(\bar{e}_{j}, e_{k}\right) e_{s} \mid e_{t}\right\rangle_{\omega}\right|^{2} \tag{7.9}
\end{equation*}
$$

where e_{1}, \ldots, e_{n} is an orthonormal frame for $T^{1,0} M$ with respect to $\langle\cdot, \cdot\rangle_{\omega}$. It is straightforward to see that the definition of $\left|R_{\omega}^{T M}\right|_{\omega}^{2}$ is independent of the choices of orthonormal frames. Thus, $\left|R_{\omega}^{T M}\right|_{\omega}^{2}$ is globally defined. The Ricci curvature with respect to ω is given by

$$
\begin{equation*}
\operatorname{Ric}_{\omega}:=-\sum_{j=1}^{n}\left\langle R_{\omega}^{T M}\left(\cdot, e_{j}\right) \cdot \mid e_{j}\right\rangle_{\omega} \tag{7.10}
\end{equation*}
$$

where e_{1}, \ldots, e_{n} is an orthonormal frame for $T^{1,0} M$ with respect to $\langle\cdot, \cdot\rangle_{\omega}$. That is,

$$
\left\langle\operatorname{Ric}_{\omega} \mid U \wedge V\right\rangle=-\sum_{j=1}^{n}\left\langle R_{\omega}^{T X}\left(U, e_{j}\right) V \mid e_{j}\right\rangle_{\omega}, \quad U, V \in T M \otimes_{\mathbb{R}} \mathbb{C}
$$

$\operatorname{Ric}_{\omega}$ is a global $(1,1)$ form.
Let

$$
\begin{equation*}
D^{1,0}: \mathscr{C}^{\infty}\left(M, \Lambda^{1,0}\left(T^{*} M\right)\right) \rightarrow \mathscr{C}^{\infty}\left(M, \Lambda^{1,0}\left(T^{*} M\right) \otimes \Lambda^{1,0}\left(T^{*} M\right)\right) \tag{7.11}
\end{equation*}
$$

be the $(1,0)$ component of the Chern connection on $\Lambda^{1,0}\left(T^{*} M\right)$ induced by $\langle\cdot, \cdot\rangle_{\omega}$. That is, in local coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$, put

$$
A=\left(a_{j, k}\right)_{j, k=1}^{n}, \quad a_{j, k}=\left\langle d z_{k} \mid d z_{j}\right\rangle_{\omega}, j, k=1, \ldots, n
$$

and set

$$
\begin{equation*}
\mathcal{A}=A^{-1} \partial A=\left(\alpha_{j, k}\right)_{j, k=1}^{n}, \alpha_{j, k} \in \Lambda^{1,0}\left(T^{*} M\right), j, k=1, \ldots, n \tag{7.12}
\end{equation*}
$$

Then, for $u=\sum_{j=1}^{n} u_{j} d z_{j} \in \mathscr{C}^{\infty}\left(M, \Lambda^{1,0}\left(T^{*} M\right)\right.$), we have

$$
D^{1,0} u=\sum_{j=1}^{n} \partial u_{j} \otimes d z_{j}+\sum_{j, k=1}^{n} u_{j} \alpha_{k, j} \otimes d z_{k} \in \mathscr{C}^{\infty}\left(M, \Lambda^{1,0}\left(T^{*} M\right) \otimes \Lambda^{1,0}\left(T^{*} M\right)\right)
$$

Theorem 7.1. With the assumptions and notations used in Theorem 1.1, the coefficients $b_{f, 1}(x, x)$ and $b_{f, 2}(x, x)$ in the expansion (1.12) for $q=0$ have the following form: for every $x \in D_{0}$,

$$
\begin{gather*}
b_{f, 1}(x, x)=(2 \pi)^{-n} f(x) \operatorname{det} \dot{R}^{L}(x)\left(\frac{1}{4 \pi} \widehat{r}-\frac{1}{8 \pi} r\right)(x) \\
+(2 \pi)^{-n} \operatorname{det} \dot{R}^{L}(x)\left(-\frac{1}{4 \pi} \Delta_{\omega} f\right)(x), \tag{7.13}\\
b_{f, 2}(x, x)=(2 \pi)^{-n} f(x) \operatorname{det} \dot{R}^{L}(x)\left(\frac{1}{128 \pi^{2}} r^{2}-\frac{1}{32 \pi^{2}} \widehat{r r}+\frac{1}{32 \pi^{2}} \widehat{r}\right)^{2}-\frac{1}{32 \pi^{2}} \Delta_{\omega} \widehat{r} \\
-\frac{1}{8 \pi^{2}}\left|R_{\Theta}^{\operatorname{det}}\right|_{\omega}^{2}+\frac{1}{8 \pi^{2}}\left\langle\operatorname{Ric}_{\omega} \mid R_{\Theta}^{\operatorname{det}}\right\rangle_{\omega}+\frac{1}{96 \pi^{2}} \Delta_{\omega} r-\frac{1}{24 \pi^{2}}\left|\operatorname{Ric}_{\omega}\right|_{\omega}^{2} \\
\left.+\frac{1}{96 \pi^{2}}\left|R_{\omega}^{T X}\right|_{\omega}^{2}\right)(x)+(2 \pi)^{-n} \operatorname{det} \dot{R}^{L}(z)\left(\frac{1}{16 \pi^{2}}\left(\Delta_{\omega} f\right)\left(-\widehat{r}+\frac{1}{2} r\right)\right. \\
\left.-\frac{1}{4 \pi^{2}}\left\langle\bar{\partial} \partial f \mid R_{\Theta}^{\operatorname{det}}\right\rangle_{\omega}+\frac{1}{8 \pi^{2}}\left\langle\bar{\partial} \partial f \mid \operatorname{Ric}_{\omega}\right\rangle_{\omega}+\frac{1}{32 \pi^{2}} \Delta_{\omega}^{2} f\right)(x) \tag{7.14}
\end{gather*}
$$

The formulas given in Theorem 7.1 simplify if we assume that $\omega=\Theta$. In this case, we have $V_{\omega}=V_{\Theta}$ and $r=\widehat{r}$. See also [26, Section 2.7], [27, Remark 0.5], concerning the calculation of the coefficients for an arbitrary underlying Hermitian metric Θ.

Let $q=0$ and let

$$
S_{k}(x, y)=e^{i k \Psi(x, y)} b(x, y, k)
$$

be as in (5.1). Note that $b(x, y, k) \in S^{n}\left(1 ; D_{0} \times D_{0}\right)$,

$$
b(x, y, k) \sim \sum_{j=0}^{\infty} b_{j}(x, y) k^{n-j} \text { in } S^{n}\left(1 ; D_{0} \times D_{0}\right)
$$

where $b_{j}(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0}\right), j \in \mathbb{N}$, and $b_{0}(x, x)=(2 \pi)^{-n}\left|\operatorname{det} \dot{R}^{L}(x)\right|$. We have

$$
\begin{equation*}
\int S_{k}(x, z, k) f(z) S_{k}(z, y, k) d v_{M}(z) \equiv e^{i k \Psi(x, y)} b_{f}(x, y, k) \quad \bmod O\left(k^{-\infty}\right) \tag{7.15}
\end{equation*}
$$

locally uniformly on $D_{0} \times D_{0}$, where $b_{f}(x, y, k) \in S^{n}\left(1 ; D_{0} \times D_{0}\right)$,

$$
\begin{equation*}
b_{f}(x, y, k) \sim \sum_{j=0}^{\infty} b_{f, j}(x, y) k^{n-j} \text { in } S^{n}\left(1 ; D_{0} \times D_{0}\right) \tag{7.16}
\end{equation*}
$$

where $b_{f, j}(x, y) \in \mathscr{C}^{\infty}\left(D_{0} \times D_{0}\right), j \in \mathbb{N}$, and $b_{0, f}(x, x)=(2 \pi)^{-n} f(x)\left|\operatorname{det} \dot{R}^{L}(x)\right|$. In this section, we will calculate $b_{1, f}(x, x)$ and $b_{2, f}(x, x), x \in D_{0}$. Fix $p \in D_{0}$. In a small neighborhood of the point p there exist local coordinates $z=\left(z_{1}, \ldots, z_{n}\right)=x=\left(x_{1}, \ldots, x_{2 n}\right), z_{j}=x_{2 j-1}+$ $i x_{2 j}, j=1, \ldots, n$, and a local frame s of $L,|s|_{h}^{2}=e^{-2 \phi}$ so that

$$
\begin{aligned}
& z(p)=0, \\
& \phi(z)=\sum_{j=1}^{n} \lambda_{j}\left|z_{j}\right|^{2}+\phi_{1}(z),
\end{aligned}
$$

$$
\begin{align*}
& \left.\phi_{1}(z)=O(|z|)^{4}\right), \frac{\partial^{|\alpha|+|\beta|} \phi_{1}}{\partial z^{\alpha} \partial \bar{z}^{\beta}}(0)=0 \text { for } \alpha, \beta \in \mathbb{N}^{n},|\alpha| \leq 1 \text { or }|\beta| \leq 1 \\
& \Theta(z)=\sqrt{-1} \sum_{j=1}^{n} d z_{j} \wedge d \bar{z}_{j}+O(|z|) \tag{7.17}
\end{align*}
$$

Until further notice, we work with this local coordinates x and we identify p with the point $x=z=0$. It is well-known (see [18, Section 4.5]) that for every $N \in \mathbb{N}$, we have

$$
\begin{equation*}
\Psi(z, 0)=i \phi(z)+O\left(|z|^{N}\right), \Psi(0, z)=i \phi(z)+O\left(|z|^{N}\right) . \tag{7.18}
\end{equation*}
$$

We have

$$
\begin{align*}
& \int S_{k}(0, z, k) f(z) S_{k}(z, 0, k) d v_{M}(z) \\
& \quad=\int_{D_{0}} e^{i k(\Psi(0, z)+\Psi(z, 0))} b(0, z, k) b(z, 0, k) f(z) V_{\Theta}(z) d \lambda(z)+r_{k} \tag{7.19}
\end{align*}
$$

where $d \lambda(z)=2^{n} d x_{1} d x_{2} \cdots d x_{2 n}, d v_{M}(z)=V_{\Theta}(z) d \lambda(z)$ and

$$
\lim _{k \rightarrow \infty} \frac{r_{k}}{k^{N}}=0, \quad \forall N \geq 0
$$

We notice that since $b(z, w, k)$ is properly supported, we have

$$
\begin{equation*}
b(0, z, k) \in \mathscr{C}_{0}^{\infty}\left(D_{0}\right), \quad b(z, 0, k) \in \mathscr{C}_{0}^{\infty}\left(D_{0}\right) . \tag{7.20}
\end{equation*}
$$

We recall the stationary phase formula of Hörmander (see [16, Theorem 7.7.5]).
Theorem 7.2. Let $K \subset D$ be a compact set and N a positive integer. If $u \in \mathscr{C}_{0}^{\infty}(K), F \in \mathscr{C}^{\infty}(D)$ and $\operatorname{Im} F \geq 0$ in $D, \operatorname{Im} F(0)=0, F^{\prime}(0)=0, \operatorname{det} F^{\prime \prime}(0) \neq 0, F^{\prime} \neq 0$ in $K \backslash\{0\}$ then

$$
\begin{align*}
& \left|\int e^{i k F(z)} u(z) V_{\Theta}(z) d \lambda(z)-2^{n} e^{i k F(0)} \operatorname{det}\left(\frac{k F^{\prime \prime}(0)}{2 \pi i}\right)^{-\frac{1}{2}} \sum_{j<N} k^{-j} L_{j} u\right| \\
& \quad \leq C k^{-N} \sum_{|\alpha| \leq 2 N} \sup \left|\partial_{x}^{\alpha} u\right|, \quad k>0 \tag{7.21}
\end{align*}
$$

where C is uniform when F runs in a relatively compact set of $\mathscr{C}^{\infty}(D), \frac{|x|}{\left|F^{\prime}(x)\right|}$ has a uniform bound and

$$
\begin{equation*}
L_{j} u=\sum_{\nu-\mu=j} \sum_{2 v \geq 3 \mu} i^{-j} 2^{-v}\left\langle F^{\prime \prime}(0)^{-1} D, D\right\rangle^{\nu} \frac{\left(h^{\mu} V_{\Theta} u\right)(0)}{\nu!\mu!} \tag{7.22}
\end{equation*}
$$

Here

$$
\begin{equation*}
h(x)=F(x)-F(0)-\frac{1}{2}\left\langle F^{\prime \prime}(0) x, x\right\rangle \tag{7.23}
\end{equation*}
$$

and $D=\left(\begin{array}{c}-i \partial_{x_{1}} \\ \vdots \\ -i \dot{\partial}_{x_{2 n}}\end{array}\right)$.

We now apply (7.21) to the integral in (7.19). Put

$$
F(z)=\Psi(0, z)+\Psi(z, 0) .
$$

From (7.17) and (7.18), we see that

$$
\begin{align*}
& F(z)=2 i \sum_{j=1}^{n} \lambda_{j}\left|z_{j}\right|^{2}+2 i \phi_{1}(z)+O\left(|z|^{N}\right), \quad \forall N \geq 0 \\
& h(z)=2 i \phi_{1}(z)+O\left(|z|^{N}\right), \quad \forall N \geq 0 \tag{7.24}
\end{align*}
$$

where h is given by (7.23). Moreover, we can check that

$$
\begin{equation*}
\operatorname{det}\left(\frac{k F^{\prime \prime}(0)}{2 \pi i}\right)^{-\frac{1}{2}}=k^{-n} \pi^{n} 2^{-n} \lambda_{1}^{-1} \lambda_{2}^{-1} \cdots \lambda_{n}^{-1}=k^{-n} \pi^{n}\left(\operatorname{det} \dot{R}^{L}(0)\right)^{-1} \tag{7.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle F^{\prime \prime}(0)^{-1} D, D\right\rangle=i \Delta_{0}, \quad \Delta_{0}=\sum_{j=1}^{n} \frac{1}{\lambda_{j}} \frac{\partial^{2}}{\partial \bar{z}_{j} \partial z_{j}} . \tag{7.26}
\end{equation*}
$$

From (7.24), (7.26) and using that $h=O\left(|z|^{4}\right)$, it is not difficult to see that

$$
\begin{equation*}
L_{j}(b(0, z, k) b(z, 0, k) f)=\sum_{v-\mu=j} \sum_{2 v \geq 4 \mu}(-1)^{\mu} 2^{-j} \frac{\triangle_{0}^{v}\left(\phi_{1}^{\mu} V_{\Theta} b(0, z, k) b(z, 0, k) f\right)(0)}{\nu!\mu!}, \tag{7.27}
\end{equation*}
$$

where L_{j} is given by (7.22). We notice that

$$
\begin{aligned}
b(0, z, k) \equiv \sum_{j=0}^{\infty} b_{j}(0, z) k^{n-j} \bmod O\left(k^{-\infty}\right), \quad b(z, 0, k) \equiv & \sum_{j=0}^{\infty} b_{j}(z, 0) k^{n-j} \\
& \bmod O\left(k^{-\infty}\right)
\end{aligned}
$$

From this observation, (7.27) becomes:

$$
\begin{align*}
& L_{j}(b(0, z, k) b(z, 0, k) f) \\
& \quad=\sum_{\nu-\mu=j} \sum_{2 v \geq 4 \mu} \sum_{0 \leq s+t \leq N}(-1)^{\mu} 2^{-j} \frac{k^{2 n-s-t} \Delta_{0}^{v}\left(\phi_{1}^{\mu} V_{\Theta} f b_{s}(0, z) b_{t}(z, 0)\right)(0)}{\nu!\mu!} \\
& \quad+O\left(k^{2 n-N-1}\right) \tag{7.28}
\end{align*}
$$

for all $N \geq 0$. From (7.28), (7.25), (7.21), (7.19) and (7.15), we get

$$
\begin{align*}
& b_{f}(0,0, k)=(2 \pi)^{n}\left(\operatorname{det} \dot{R}^{L}(0)\right)^{-1} \\
& \quad \times \sum_{j=0}^{N} k^{n-j}\left(\sum_{0 \leq m \leq j} \sum_{v-\mu=m} \sum_{2 v \geq 4 \mu} \sum_{s+t=j-m}(-1)^{\mu} 2^{-m} \frac{\triangle_{0}^{v}\left(\phi_{1}^{\mu} V_{\Theta} f b_{s}(0, z) b_{t}(z, 0)\right)(0)}{\nu!\mu!}\right) \\
& \quad+O\left(k^{n-N-1}\right), \quad \forall N \geq 0 . \tag{7.29}
\end{align*}
$$

Combining (7.29) with (7.16), we obtain
Theorem 7.3. The coefficients $b_{f, j}$ of the expansion (7.16) of $b_{f}(x, y, k)$, are given by

$$
\begin{align*}
b_{f, j}(0,0)= & (2 \pi)^{n}\left(\operatorname{det} \dot{R}^{L}(0)\right)^{-1} \\
& \times \sum_{0 \leq m \leq j} \sum_{v-\mu=m} \sum_{2 v \geq 4 \mu} \sum_{s+t=j-m}(-1)^{\mu} 2^{-m} \frac{\triangle_{0}^{v}\left(\phi_{1}^{\mu} V_{\Theta} f b_{s}(0, z) b_{t}(z, 0)\right)(0)}{\nu!\mu!}, \tag{7.30}
\end{align*}
$$

for all $j=0,1, \ldots$ In particular,

$$
\begin{gather*}
b_{f, 0}(0,0)=(2 \pi)^{n}\left(\operatorname{det} \dot{R}^{L}(0)\right)^{-1} f(0) b_{0}(0,0)^{2}, \tag{7.31}\\
b_{f, 1}(0,0)=(2 \pi)^{n}\left(\operatorname{det} \dot{R}^{L}(0)\right)^{-1}\left(2 f(0) b_{0}(0,0) b_{1}(0,0)\right. \\
\left.+\frac{1}{2} \Delta_{0}\left(V_{\Theta} f b_{0}(0, z) b_{0}(z, 0)\right)(0)-\frac{1}{4} \Delta_{0}^{2}\left(\phi_{1} V_{\Theta} f b_{0}(0, z) b_{0}(z, 0)\right)(0)\right) \tag{7.32}
\end{gather*}
$$

and

$$
\begin{align*}
b_{f, 2}(0,0)= & (2 \pi)^{n}\left(\operatorname{det} \dot{R}^{L}(0)\right)^{-1}\left(2 f(0) b_{0}(0,0) b_{2}(0,0)+f(0) b_{1}(0,0)^{2}\right. \\
& +\frac{1}{2} \triangle_{0}\left(V_{\Theta} f\left(b_{0}(0, z) b_{1}(z, 0)+b_{1}(0, z) b_{0}(z, 0)\right)\right)(0) \\
& -\frac{1}{4} \triangle_{0}^{2}\left(\phi_{1} V_{\Theta} f\left(b_{0}(0, z) b_{1}(z, 0)+b_{1}(0, z) b_{0}(z, 0)\right)\right)(0) \\
& +\frac{1}{8} \triangle_{0}^{2}\left(V_{\Theta} f b_{0}(0, z) b_{0}(z, 0)\right)(0)-\frac{1}{24} \triangle_{0}^{3}\left(\phi_{1} V_{\Theta} f b_{0}(0, z) b_{0}(z, 0)\right)(0) \\
& \left.+\frac{1}{192} \triangle_{0}^{4}\left(\phi_{1}^{2} V_{\Theta} f b_{0}(0, z) b_{0}(z, 0)\right)(0)\right) . \tag{7.33}
\end{align*}
$$

In [18, Section 4.5], we determined all the derivatives of $b_{0}(x, y), b_{1}(x, y), b_{2}(x, y)$ at $(0,0)$. From this observation and Theorem 7.3, we can repeat the procedure in [17, Section 4] and obtain Theorem 7.1. Since the calculation is the same, we omit the details.

Let $D^{1,0}: \mathscr{C}^{\infty}\left(M, \Lambda^{1,0}\left(T^{*} M\right)\right) \rightarrow \mathscr{C}^{\infty}\left(M, \Lambda^{1,0}\left(T^{*} M\right) \otimes \Lambda^{1,0}\left(T^{*} M\right)\right)$ be the $(1,0)$ component of the Chern connection on $\Lambda^{1,0}\left(T^{*} M\right)$ induced by $\langle\cdot, \cdot\rangle_{\omega}$ (see the discussion after (7.11)). From Theorem 7.1 and the proof of Theorem 1.3, we can repeat the proof of [17, Theorem 1.5] and get the following (see also Ma-Marinescu [24] for another method).

Theorem 7.4. With the notations as in Theorem 1.3, let $q=0$. Then, for $b_{f, g, 1}, b_{f, g, 2}$ in (1.19), we have

$$
\begin{equation*}
b_{f, g, 1}(x)=b_{f g, 1}(x)+(2 \pi)^{-n} \operatorname{det} \dot{R}^{L}(x)\left(-\frac{1}{2 \pi}\langle\partial f \mid \partial \bar{g}\rangle_{\omega}\right)(x), \tag{7.34}
\end{equation*}
$$

$$
\begin{align*}
b_{f, g, 2}(x)= & b_{f g, 2}(x) \\
& +(2 \pi)^{-n} \operatorname{det} \dot{R}^{L}(x)\left(-\frac{1}{4 \pi^{2}}\left\langle\bar{\partial} g \wedge \partial f \mid \operatorname{Ric}_{\omega}\right\rangle_{\omega}+\frac{1}{4 \pi^{2}}\left\langle\bar{\partial} g \wedge \partial f \mid R_{\Theta}^{\operatorname{det}}\right\rangle_{\omega}\right. \\
& +\frac{1}{8 \pi^{2}}\left\langle\partial \Delta_{\omega} f \mid \partial \bar{g}\right\rangle_{\omega}+\frac{1}{8 \pi^{2}}\left\langle\bar{\partial} \Delta_{\omega} g \mid \bar{\partial} \bar{f}\right\rangle_{\omega}-\frac{1}{8 \pi^{2}}\left\langle D^{1,0} \partial f \mid D^{1,0} \partial \bar{g}\right\rangle_{\omega} \\
& \left.-\frac{1}{4 \pi^{2}}\langle\bar{\partial} \partial f \mid \bar{\partial} \partial \bar{g}\rangle_{\omega}+\frac{1}{8 \pi^{2}}\langle\partial f \mid \partial \bar{g}\rangle_{\omega}\left(-\widehat{r}+\frac{1}{2} r\right)\right)(x) . \tag{7.35}
\end{align*}
$$

Corollary 7.5. The coefficients $C_{1}(f, g)$ and $C_{2}(f, g)$ of the expansion (1.21) of the composition $T_{k, k^{-N}}^{(0), f} \circ T_{k, k^{-N}}^{(0), g}$ of two Toeplitz operators are given by

$$
\begin{gather*}
C_{1}(f, g)=-\frac{1}{2 \pi}\langle\partial f \mid \partial \bar{g}\rangle_{\omega} \tag{7.36}\\
C_{2}(f, g)=\frac{1}{8 \pi^{2}}\left\langle D^{1,0} \partial f \mid D^{1,0} \partial \bar{g}\right\rangle_{\omega}+\frac{1}{4 \pi^{2}}\left\langle\bar{\partial} g \wedge \partial f \mid R_{\Theta}^{d e t}\right\rangle_{\omega} . \tag{7.37}
\end{gather*}
$$

Proof. Formula (7.36) follows from (7.34) and

$$
b_{1, f, g}=b_{1, f g}+b_{0, C_{1}(f, g)}=b_{1, f g}+(2 \pi)^{-n}\left(\operatorname{det} \dot{R}^{L}\right) C_{1}(f, g)
$$

see [17, (5.21)] or [27, (5.76)]. Formula (7.37) follows as in [17, Section 5.3].

8. Behavior on the degenerate set and the Weyl law

In this section, we will prove Theorems 1.2 and 1.7. We recall first the following.
Theorem 8.1 ([18, Theorem 1.3]). Set

$$
M_{\mathrm{deg}}=\left\{x \in M ; \dot{R}^{L} \text { is degenerate at } x \in M\right\} .
$$

Then for every $x_{0} \in M_{\text {deg, }}, \varepsilon>0, N>1$ and every $m \in\{0,1, \ldots, n\}$, there exist a neighborhood U of x_{0} and $k_{0}>0$, such that for all $k \geq k_{0}$ we have

$$
\begin{equation*}
\left|P_{k, k^{-N}}^{(m)}(x, x)\right| \leq \varepsilon k^{n}, \quad x \in U . \tag{8.1}
\end{equation*}
$$

Proof of Theorem 1.2. Fix $x_{0} \in M_{\text {deg }}, \varepsilon>0$ and $m \in\{0,1, \ldots, n\}$. Let U be a small neighborhood of x_{0} as in Theorem 8.1. Let p be any point of U and let s be a local section of L defined in a small open set $D \Subset U$ of $p,|s|_{h}^{2}=e^{-2 \phi}$. Fix $\left|I_{0}\right|=\left|J_{0}\right|=q, I_{0}, J_{0}$ are strictly increasing. Take $\left\{\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{d_{k}}(x)\right\}$ and $\left\{\beta_{1}(x), \beta_{2}(x), \ldots, \beta_{d_{k}}(x)\right\}$ be orthonormal frames for $\mathscr{E}_{k^{-N}}\left(M, L^{k}\right)$ so that

$$
\begin{aligned}
& \left|\widetilde{\alpha}_{1, I_{0}}(p) e^{-k \phi(p)}\right|^{2}=\sum_{j=1}^{d_{k}}\left|\widetilde{\alpha}_{j, I_{0}}(p) e^{-k \phi(p)}\right|^{2}, \\
& \left|\widetilde{\beta}_{1, J_{0}}(p) e^{-k \phi(p)}\right|^{2}=\sum_{j=1}^{d_{k}}\left|\widetilde{\beta}_{j, J_{0}}(p) e^{-k \phi(p)}\right|^{2},
\end{aligned}
$$

where $d_{k} \in \mathbb{N} \cup\{\infty\}$ and on D, we write

$$
\begin{aligned}
& \alpha_{j}(x)=s^{k}(x) \widetilde{\alpha}_{j}(x), \widetilde{\alpha}_{j}(x)=\sum_{|J|=q}^{\prime} \widetilde{\alpha}_{j, J}(x) e^{J}(x) \text { on } D, j=1, \ldots, d_{k}, \\
& \beta_{j}(x)=s^{k}(x) \widetilde{\beta}_{j}(x), \quad \widetilde{\beta}_{j}(x)=\sum_{|J|=q}^{\prime} \widetilde{\beta}_{j, J}(x) e^{J}(x) \text { on } D, j=1, \ldots, d_{k} .
\end{aligned}
$$

We have

$$
\begin{align*}
T_{k, k^{-N}}^{(q), f, I_{0}, J_{0}}(p, p) & =\sum_{j, \ell=1}^{d_{k}} \widetilde{\alpha}_{j, I_{0}}(p) e^{-k \phi(p)}\left(f \beta_{\ell} \mid \alpha_{j}\right)_{k} \overline{\widetilde{\beta}_{\ell, J_{0}}(p)} e^{-k \phi(p)} \\
& =\widetilde{\alpha}_{1, I_{0}}(p) e^{-k \phi(p)}\left(f \beta_{1} \mid \alpha_{1}\right)_{k} \overline{\widetilde{\beta}_{1, J_{0}}(p)} e^{-k \phi(p)} \tag{8.2}
\end{align*}
$$

From (8.2), it is not difficult to see that

$$
\begin{equation*}
\left|T_{k, k^{-N}}^{(q), f, I_{0}, J_{0}}(p, p)\right| \leq \sup \{|f(x)| ; x \in M\}\left|P_{k, k^{-N}}^{(q)}(p, p)\right| \tag{8.3}
\end{equation*}
$$

From (8.3) and (8.1), the theorem follows.
We now prove Theorem 1.7. We introduce some notations. For $\lambda \geq 0$, put

$$
\left.\left.\left.\left.P_{k, 0<\mu \leq \lambda}^{(q)}:=E(] 0, \lambda\right]\right), \quad \mathscr{E}_{0<\mu \leq \lambda}^{q}\left(M, L^{k}\right):=\operatorname{Rang} E(] 0, \lambda\right]\right)
$$

Recall that E denotes the spectral measure of $\square_{k}^{(q)}$. Let $P_{k, 0<\mu \leq \lambda}^{(q)}(\cdot, \cdot)$ be the Schwartz kernel of $P_{k, 0<\mu \leq \lambda}^{(q)}$. The trace of $P_{k, 0<\mu \leq \lambda}^{(q)}(x, x)$ is given by

$$
\operatorname{Tr} P_{k, 0<\mu \leq \lambda}^{(q)}(x, x):=\sum_{j=1}^{d}\left\langle P_{k, 0<\mu \leq \lambda}^{(q)}(x, x) e_{J_{j}}(x) \mid e_{j_{j}}(x)\right\rangle,
$$

where $e_{J_{1}}, \ldots, e_{J_{d}}$ is a local orthonormal basis of $\Lambda^{0, q}\left(T^{*} M\right)$ with respect to $\langle\cdot, \cdot\rangle$. Now, we assume that M is compact. We need the following.

Lemma 8.2. There exists $C>0$ independent of k such that

$$
\begin{equation*}
\left|T_{k}^{(q), f}(x, x)-T_{k, k^{-N}}^{(q), f}(x, x)\right| \leq C k^{\frac{n}{2}} \sqrt{\operatorname{Tr} P_{k, 0<\mu \leq k^{-N}}^{(q)}(x, x)}, \quad \forall x \in M . \tag{8.4}
\end{equation*}
$$

Proof. Let p be any point of M and let s be a local trivializing holomorphic section of L defined in a small open set $D \Subset U$ of $p,|s|_{h}^{2}=e^{-2 \phi}$. Fix $\left|I_{0}\right|=\left|J_{0}\right|=q, I_{0}, J_{0}$ are strictly increasing. Take $\left\{\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{m_{k}}(x)\right\},\left\{\beta_{1}(x), \beta_{2}(x), \ldots, \beta_{m_{k}}(x)\right\}$ to be orthonormal frames for $\mathscr{E}_{0}^{q}\left(M, L^{k}\right)$ and

$$
\left\{\alpha_{m_{k}+1}(x), \alpha_{m_{k}+2}(x), \ldots, \alpha_{d_{k}}(x)\right\},\left\{\beta_{m_{k}+1}(x), \beta_{m_{k}+2}(x), \ldots, \beta_{d_{k}}(x)\right\}
$$

to be orthonormal frames for $\mathscr{E}_{0<\mu \leq k^{-N}}^{q}\left(M, L^{k}\right)$ so that

$$
\begin{aligned}
& \left|\widetilde{\alpha}_{1, I_{0}}(p) e^{-k \phi(p)}\right|^{2}=\sum_{j=1}^{m_{k}}\left|\widetilde{\alpha}_{j, I_{0}}(p) e^{-k \phi(p)}\right|^{2} \\
& \left|\widetilde{\alpha}_{m_{k}+1, I_{0}}(p) e^{-k \phi(p)}\right|^{2}=\sum_{j=m_{k}+1}^{d_{k}}\left|\widetilde{\alpha}_{j, I_{0}}(p) e^{-k \phi(p)}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\widetilde{\beta}_{1, J_{0}}(p) e^{-k \phi(p)}\right|^{2}=\sum_{j=1}^{m_{k}}\left|\widetilde{\beta}_{j, J_{0}}(p) e^{-k \phi(p)}\right|^{2} \\
& \left|\widetilde{\beta}_{m_{k}+1, J_{0}}(p) e^{-k \phi(p)}\right|^{2}=\sum_{j=m_{k}+1}^{d_{k}}\left|\widetilde{\beta}_{j, J_{0}}(p) e^{-k \phi(p)}\right|^{2},
\end{aligned}
$$

where $d_{k} \in \mathbb{N} \cup\{\infty\}$ and on D, we write

$$
\begin{aligned}
& \alpha_{j}(x)=s^{k}(x) \widetilde{\alpha}_{j}(x), \widetilde{\alpha}_{j}(x)=\sum_{|J|=q}^{\prime} \widetilde{\alpha}_{j, J}(x) e^{J}(x) \text { on } D, j=1, \ldots, d_{k}, \\
& \beta_{j}(x)=s^{k}(x) \widetilde{\beta}_{j}(x), \widetilde{\beta}_{j}(x)=\sum_{|J|=q}^{\prime} \widetilde{\beta}_{j, J}(x) e^{J}(x) \text { on } D, j=1, \ldots, d_{k} .
\end{aligned}
$$

We have

$$
\begin{align*}
& T_{k}^{(q), f, I_{0}, J_{0}}(p, p) \\
&= \widetilde{\alpha}_{1, I_{0}}(p) e^{-k \phi(p)}\left(f \beta_{1} \mid \alpha_{1}\right)_{k} \widetilde{\beta}_{1, J_{0}}(p) \\
& e \\
&= T_{k, k}^{(q), f, I_{0}, J_{0}}(p, p)-\widetilde{\alpha}_{m_{k}+1, I_{0}}(p) e^{-k \phi(p)}\left(f \beta_{1} \mid \alpha_{m_{k}+1}\right)_{k} \overline{\widetilde{\beta}_{1, J_{0}}(p)} e^{-k \phi(p)} \\
&-\widetilde{\alpha}_{m_{k}+1, I_{0}}(p) e^{-k \phi(p)}\left(f \beta_{m_{k}+1} \mid \alpha_{m_{k}+1}\right)_{k}{\widetilde{\beta_{m}+1, J_{0}}}(p) e^{-k \phi(p)} \tag{8.5}\\
&-\widetilde{\alpha}_{1, I_{0}}(p) e^{-k \phi(p)}\left(f \beta_{m_{k}+1} \mid \alpha_{1}\right)_{k} \widetilde{\widetilde{\beta}}_{m_{k}+1, J_{0}}(p) e^{-k \phi(p)} .
\end{align*}
$$

From (8.5), it is easy to see that

$$
\left|T_{k}^{(q), f, I_{0}, J_{0}}(p, p)-T_{k, k^{-N}}^{(q), f, I_{0}, J_{0}}(p, p)\right| \leq C_{1} k^{\frac{n}{2}} \sqrt{\operatorname{Tr} P_{k, 0<\mu \leq k^{-N}}^{(q)}(p, p)},
$$

where $C_{1}>0$ is a constant independent of k and the point p. The lemma follows.
Proof of Theorem 1.7. Since $M(q-1)=\emptyset$ and $M(q+1)=\emptyset$, it is known [18, Corollary 1.4], that for every $N>1$,

$$
\begin{equation*}
\operatorname{dim} \mathscr{E}_{k^{-N}}^{q-1}\left(M, L^{k}\right)=o\left(k^{n}\right), \quad \operatorname{dim} \mathscr{E}_{k^{-N}}^{q+1}\left(M, L^{k}\right)=o\left(k^{n}\right) \tag{8.6}
\end{equation*}
$$

Moreover, it is easy to see that

$$
\begin{equation*}
\operatorname{dim} \mathscr{E}_{0<\mu \leq k^{-N}}^{q}\left(M, L^{k}\right) \leq \operatorname{dim} \mathscr{E}_{k^{-N}}^{q-1}\left(M, L^{k}\right)+\operatorname{dim} \mathscr{E}_{k^{-N}}^{q+1}\left(M, L^{k}\right) . \tag{8.7}
\end{equation*}
$$

From (8.6) and (8.7), we have

$$
\begin{align*}
\int_{M} \sqrt{\operatorname{Tr} P_{k, 0<\mu \leq k^{-N}}^{(q)}(x, x)} d v_{M}(x) & \leq C_{0} \sqrt{\int_{M} \operatorname{Tr} P_{k, 0<\mu \leq k^{-N}}^{(q)}(x, x) d v_{M}(x)} \\
& =C_{0} \sqrt{\operatorname{dim} \mathscr{E}_{0<\mu \leq k^{-N}}^{q}\left(M, L^{k}\right)} \\
& =o\left(k^{\frac{n}{2}}\right), \tag{8.8}
\end{align*}
$$

where $C_{0}>0$ is a constant independent of k. From (8.8) and (8.4), we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k^{-n}\left|T_{k}^{(q), f}(x, x)-T_{k, k^{-N}}^{(q), f}(x, x)\right|=0 \text { in } L_{(0, q)}^{1}(M) . \tag{8.9}
\end{equation*}
$$

In view of Theorem 1.5, we see that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|k^{-n} T_{k, k^{-N}}^{(q), f}(x, x)-(2 \pi)^{-n}\right| \operatorname{det} \dot{R}^{L}(x)\left|f(x) \mathbb{1}_{M(q)}(x) I_{\operatorname{det}} \bar{W}^{*}(x)\right|=0 \tag{8.10}
\end{equation*}
$$

in $L_{(0, q)}^{1}(M)$. From (8.9) and (8.10), the theorem follows.

Acknowledgment

We are grateful to the referee for several suggestions which led to the improvement of the presentation.

Funding

The first author was supported by Taiwan Ministry of Science of Technology project 104-2628-M-001-003-MY2, the Golden-Jade fellowship of Kenda Foundation, Academia Sinica Career Development Award, and partially funded through the Institutional Strategy of the University of Cologne within the German Excellence Initiative. Second author partially supported by DFG funded projects SFB/TR 12, MA 2469/2-2, SFB TRR 191.

References

[1] Barron, T., Ma, X., Marinescu, G., Pinsonnault, M. (2014). Semi-classical properties of BerezinToeplitz operators with \mathscr{C}^{k} symbol. J. Math. Phys. 55:042108.
[2] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D. (1977). Deformation theory and quantization. Part I, Lett. Math. Phys. 1:521-530; Part II and III, Ann. Phys. 1978, 111:61-110, 111-151.
[3] Berezin, F.A. (1974). Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38:1116-1175.
[4] Bismut, J.-M. (1987). Demailly's asymptotic Morse inequalities: A heat equation proof. J. Funct. Anal. 72:263-278.
[5] Bordemann, M., Meinrenken, E., Schlichenmaier, M. (1994). Toeplitz quantization of Kähler manifolds and $q l(n), n \rightarrow \infty$ limits. Commun. Math. Phys. 165:281-296.
[6] Boutet de Monvel, L., Guillemin, V. (1981). The Spectral Theory of Toeplitz Operators. Annals of Mathematics Studies, Vol. 99. Princeton, NJ: Princeton University Press.
[7] Charles, L. (2003). Berezin-Toeplitz operators, a semi-classical approach. Commun. Math. Phys. 239:1-28.
[8] Charles, L. (2016). Quantization of compact symplectic manifolds. J. Geom. Anal. 26: 2664-2710.
[9] Dai, X., Liu, K., Ma, X. (2006). On the asymptotic expansion of Bergman kernel. J. Differ. Geom. 72:1-41; announced in C. R. Math. Acad. Sci. Paris 339:193-198.
[10] Davies, E.B. (1995). Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, Vol. 42. Cambridge: Cambridge University Press.
[11] Demailly, J.-P. (1985). Champs magnétiques et inegalités de Morse pour la $d^{\prime \prime}$-cohomologie. Ann. Inst. Fourier (Grenoble) 35:189-229.
[12] De Wilde, M., Lecomte, P. (1983). Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7:487-496.
[13] Dimassi, M., Sjöstrand, J. (1999). Spectral Asymptotics in the Semi-classical Limit. London Mathematical Society Lecture Note Series, Vol. 268. Cambridge: Cambridge University Press.
[14] Fedosov, B.V. (1996). Deformation Quantization and Index Theory. Mathematical Topics, Vol. 9. Berlin: Akademie Verlag.
[15] Fine, J. (2012). Quantization and the Hessian of Mabuchi energy. Duke Math. J. 161: 2753-2798.
[16] Hörmander, L. (2003). The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Berlin: Springer-Verlag, Distribution Theory and Fourier analysis, Reprint of the second (1990) edition.
[17] Hsiao, C.-Y. (2012). On the coefficients of the asymptotic expansion of the kernel of BerezinToeplitz quantization. Ann. Glob. Anal. Geom. 42:207-245.
[18] Hsiao, C.-Y., Marinescu, G. (2014). Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles. Commun. Anal. Geom. 22:1-108.
[19] Karabegov, A.V., Schlichenmaier, M. (2001). Identification of Berezin-Toeplitz deformation quantization. J. Reine Angew. Math. 540:49-76.
[20] Keller, J., Meyer, J., Seyyedali, R. (2016). Quantization of the Laplacian operator on vector bundles, I. Math. Ann. 366:865-907.
[21] Kostant, B. (1970). Quantization and Unitary Representations. I. Prequantization. Lectures in Modern Analysis and Applications, III. Berlin: Springer, pp. 87-208. Lecture Notes in Mathematics, Vol. 170.
[22] Ma, X. (2010). Geometric Quantization on Kähler and Symplectic Manifolds. International Congress of Mathematicians, Vol. II. Hyderabad, India, August 19-27 2010, pp. 785-810.
[23] Ma, X., Marinescu, G. (2006). The first coefficients of the asymptotic expansion of the Bergman kernel of the Spin ${ }^{c}$ Dirac operator. Int. J. Math. 17:737-759.
[24] Ma, X., Marinescu, G. (2007). Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, Vol. 254. Basel: Birkhäuser, p. 422.
[25] Ma, X., Marinescu, G. (2008). Toeplitz operators on symplectic manifolds. J. Geom. Anal. 18: 565-611.
[26] Ma, X., Marinescu, G. (2011). Berezin-Toeplitz Quantization and its kernel expansion. Trav. Math. 19:125-166.
[27] Ma, X., Marinescu, G. (2012). Berezin-Toeplitz quatization on Kähler manifolds. J. Reine Angew. Math. 662:1-56.
[28] Melin, A., Sjöstrand, J. (1975). Fourier integral operators with complex-valued phase functions. Springer Lect. Notes Math. 459:120-223.
[29] Schlichenmaier, M. (2000). Deformation quantization of compact Kähler manifolds by BerezinToeplitz quantization. Conférence Moshé Flato 1999, Vol. II (Dijon), Mathematical Physics Studies, Vol. 22. Dordrecht: Kluwer Academic Publications, pp. 289-306.
[30] Schlichenmaier, M. (2010). Berezin-Toeplitz Quantization for Compact Kähler Manifolds. A review of results. Adv. Math. Phys. 2010:Article ID 927280, 38 pages.
[31] Souriau, J.-M. (1970). Structure des Systèmes Dynamiques. Mâtrises de Mathématiques. Paris: Dunod.
[32] Xu, H. (2012). An explicit formula for the Berezin star product. Lett. Math. Phys. 101:239-264.

