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In this paper we study the asymptotic behaviour of the spectral
function corresponding to the lower part of the spectrum of the
Kodaira Laplacian on high tensor powers of a holomorphic line
bundle. This implies a full asymptotic expansion of this function on
the set where the curvature of the line bundle is non-degenerate. As
application we obtain the Bergman kernel asymptotics for adjoint
semi-positive line bundles over complete Kähler manifolds, on the
set where the curvature is positive. We also prove the asymptotics
for big line bundles endowed with singular Hermitian metrics with
strictly positive curvature current. In this case, the full asymptotics
holds outside the singular locus of the metric.
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1. Introduction and statement of the main results

Let L be a holomorphic line bundle over a complex manifold M and let
Lk be the k-th tensor power of L. The Bergman kernel is the smooth ker-
nel of the orthogonal projection onto the space of L2-integrable holomor-
phic sections of Lk. The study of the large k behaviour of the Bergman
kernel is an active research subject in complex geometry and is closely
related to topics like the structure of algebraic manifolds (e.g., [23, 58]),
the existence of canonical Kähler metrics (e.g., [13–15, 27, 31, 32, 63, 64]),
Berezin–Toeplitz quantization (e.g., [6, 30, 51, 52]), equidistribution of zeros
of holomorphic sections (e.g., [16, 25, 59, 60]), quantum chaos and math-
ematical physics [29]. We refer the reader to the book [49] for a compre-
hensive study of the Bergman kernel and its applications and also to the
survey [46].

In the case of a positive line bundle L over a compact base manifold
M , Catlin [12] and Zelditch [70] established the asymptotic expansion of the
Bergman kernel on the diagonal by using a fundamental result by Boutet
de Monvel–Sjöstrand [10] about the asymptotics of the Szegö kernel on a
strictly pseudoconvex boundary. It was already pointed out by Boutet de
Monvel–Guillemin [11] that the Bergman kernel of Lk is linked to the Szegö
kernel on the boundary of the unit disc bundle (Grauert tube), which is
strictly pseudoconvex if L is positive.

Dai, Liu and Ma [19, 20] obtained the full off-diagonal asymptotic expan-
sion and Agmon estimates of the Bergman kernel for a high power of positive
line bundle on a compact complex manifold by using the heat kernel method.
Their result holds actually for the more general Bergman kernel of the spinc

Dirac operator associated to a positive line bundle on a compact symplec-
tic manifold. In [47, 49, 50], Ma and the second-named author proved the
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asymptotic expansion for yet another generalization of the Kodaira Lapla-
cian, namely the renormalized Bochner–Laplacian on a symplectic manifold
and also showed the existence of the estimate on a large class of non-compact
manifolds. The main analytic tool in [19, 20, 47, 49, 50] is the analytic local-
ization technique in local index theory developed by Bismut–Lebeau [49].

Another proof of the existence of the full asymptotic expansion for the
Bergman kernel for a high power of a positive line bundle on a compact
complex manifold was obtained by Berndtsson et al. [3].

A natural generalization is the asymptotic of the kernel of the projection
on the harmonic forms in the case of a line bundle with non-degenerate
curvature. Berman and Sjöstrand [4] obtained these asymptotics building
on the heat equation method of Menikoff–Sjöstrand [55]. More generally,
the expansion in the non-degenerate case was obtained independently by
Ma and the second-named author [48] for the kernel of the projection on the
kernel of the spinc Dirac operator on symplectic manifolds. The asymptotics
of the Szegö kernel for forms on a compact abstract CR manifold with non-
degenerate Levi form were established by the first-named author [40].

For a singular Hermitian metric hL on L with strictly positive curvature
current, Ma and the second-named author used the generalized Poincaré
metric on the regular locus of hL and a modified fibre metric on L to obtain
a full asymptotic expansion for the associated Bergman kernel [49, 50]. As a
corollary, they could reprove the Shiffman conjecture, asserting that Moishe-
zon manifolds can be characterized in terms of integral Kähler currents.

Witten [68] suggested that the subcomplex of eigenforms of the Witten
Laplacian, correponding to the lower part of the spectrum, is isomorphic to
the Thom–Smale complex. This was first made rigorous by Helffer–Sjöstrand
[37] by means of microlocal analysis. Inspired by [68], Demailly [23] used the
subcomplex of eigenforms of the Kodaira Laplacian on Lk in order to prove
the holomorphic Morse inequalities (see also Bismut [5]). In this paper we
give the first microlocal study of the latter complex.

The first main result of this paper is a local asymptotic expansion of
the spectral function of the Kodaira Laplacian on Lk on a not necessarily
compact Hermitian manifold M for states of energy less than k−N0 , for
N0 ∈ N fixed, on the non-degenerate locus of L, cf. Theorem 1.1. This is a
very general result since it holds without global assumptions on the manifold
or the line bundle. However, the estimates obtained do not apply directly to
the Bergman kernel, which is obtained by formally letting N0 →∞ in (1.7).
We then impose a very mild semiclassical local condition on the Kodaira
Laplacian, namely the O(k−n0) small spectral gap on an open set D � M
(see Definition 1.5). We prove that the Bergman kernel admits an asymptotic
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expansion on D if the Kodaira Laplacian has O(k−n0) small spectral gap on
D, cf. Theorem 1.6.

The distinctive feature of these asymptotics is that they work under
minimal hypotheses. This allows us to apply them in situations which were
up to now out of reach. We illustrate this in the study of the Bergman
kernel of semi-positive or positive but singular Hermitian line bundles. We
prove that if M is a complete Kähler manifold and L is semi-positive on M ,
then the Bergman kernel of Lk ⊗KM admits a full asymptotic expansion
on the non-degenerate locus of L, cf. Theorem 1.7. Moreover, we show in
Theorem 1.10 that if M is any compact complex manifold and L is semi-
positive and positive at some point, then the Bergman kernel of Lk admits
a full asymptotic expansion on the set where L is positive, with the possible
exception of a proper analytic variety Σ ⊂ M .

We also consider the case of a singular Hermitian fibre metric on L. The
holomorphic sections which are L2 with respect to the singular metric turn
out to be sections of L twisted with a multiplier ideal sheaf. One can natu-
rally define the orthogonal projection on this space of sections and consider
its kernel on the regular locus of the metric. We show that this kernel has
an asymptotic expansion on the regular locus, if the curvature current is
strictly positive and smooth outside a proper analytic set (Theorem 1.8).
This yields yet another proof of the Shiffman conjecture.

We further give formulas for the first top leading terms of the asymptotic
expansion of the spectral function and recover the top leading coefficients of
the Bergman kernel expansion. These coefficients recently attracted a lot of
attention, see the comments after Theorem 1.6.

Other applications of the main results are local and global holomorphic
Morse inequalities, a local form of the expansion of the Bergman kernel on
forms, examples of manifolds having very small spectral gap, Tian’s conver-
gence theorem and equidistribution of zeros of holomorphic sections in the
case of singular metrics.

We now formulate the main results. We refer to Section 2 for some
standard notations and terminology used here.

1.1. Statement of main results

Let (M, Θ, J) be a Hermitian manifold of complex dimension n, where Θ is a
smooth positive (1, 1)-form and J is the complex structure. Let gTM

Θ (·, ·) =
Θ(·, J ·) be the Riemannian metric on TM induced by Θ and J and let 〈 ·, · 〉
be the Hermitian metric on CTM induced by gTM

Θ . The Riemannian volume
form dvM of (M, Θ) has the form dvM = Θn/n!.
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Let (L, hL) be a holomorphic Hermitian line bundle on M and set
Lk := L⊗k. Let ∇L be the holomorphic Hermitian connection on (L, hL)
with curvature RL = (∇L)2. We will identify the curvature form RL with the
Hermitian matrix ṘL ∈ C∞(M, End(T (1,0)M)) satisfying for every U, V ∈
T

(1,0)
x M , x ∈ M ,

(1.1) 〈RL(x), U ∧ V 〉 = 〈ṘL(x)U, V 〉.

Let det ṘL(x) := μ1(x), . . . , μn(x), where {μj(x)}n
j=1, are the eigenvalues of

ṘL with respect to 〈 ·, · 〉. For q ∈ {0, 1, . . . , n}, let

M(q) =
{
x ∈ M ; ṘL(x) ∈ End(T (1,0)

x M) is non-degenerate(1.2)
and has exactly q negative eigenvalues

}
.

We denote by W the subbundle of rank q of T (1,0)M |M(q) generated by the
eigenvectors corresponding to negative eigenvalues of ṘL. Then detW

∗ :=
ΛqW

∗ ⊂ ΛqT ∗(0,1)M |M(q) is a rank one subbundle, where ΛqT ∗(0,1)M is the
bundle of (0, q) forms, W

∗ is the dual bundle of the complex conjugate
bundle of W and ΛqW

∗ is the vector space of all finite sums of v1 ∧ · · · ∧ vq,
v1, . . . , vq ∈ W

∗. We denote by Idet W
∗ ∈ End(ΛqT ∗(0,1)M) the orthogonal

projection from ΛqT ∗(0,1)M onto det W
∗.

Let (Lk, hk) be the k-th tensor power of (L, hL), where hk := (hL)⊗k.
Let (·, ·)k be the inner product on Ω0,q

0 (M, Lk) induced by gTM
Θ and hk

(see (2.3)). Let ‖·‖ be the corresponding norm and let L2
(0,q)(M, Lk) be

the completion of Ω0,q
0 (M, Lk) with respect to ‖·‖. For q = 0, we write

L2(M, Lk) := L2
(0,0)(M, Lk).

Let �(q)
k be the Kodaira Laplacian acting on (0, q)–forms with values in

Lk, cf. (2.5). We denote by the same symbol �(q)
k the Gaffney extension of

the Kodaira Laplacian; cf. (2.8). It is well-known that �(q)
k is self-adjoint

and the spectrum of �(q)
k is contained in R+ (see [49, Proposition 3.1.2]).

For a Borel set B ⊂ R we denote by E(B) the spectral projection of �(q)
k

corresponding to the set B, where E is the spectral measure of �(q)
k (see

Section 2 in Davies [21]) and for λ ∈ R we set Eλ = E
(
(−∞, λ]

)
and

(1.3) E q
λ (M, Lk) = RangeEλ ⊂ L2

(0,q)(M, Lk).
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If λ = 0, then E q
0 (M, Lk) = Ker�(q)

k =: H q(M, Lk) is the space of global
harmonic sections. For a holomorphic vector bundle E over M we have

H0
(2)(M, E) :=

{
s ∈ L2(M, E); ∂Es = 0

}
= Ker�E ,

where ∂E is the Cauchy–Riemann operator with values in E and �E is the
Kodaira Laplacian with values in E (see Section 2.3). The spectral projection
of �(q)

k is the orthogonal projection

(1.4) P
(q)
k,λ : L2

(0,q)(M, Lk) → E q
λ (M, Lk).

The spectral function P
(q)
k,λ( ·, ·) = P

(q)
k ( ·, ·, λ) is the Schwartz kernel of P

(q)
k,λ,

see (4.16) and (4.17). Since �(q)
k is elliptic, it is not difficult to see that

P
(q)
k ( ·, ·, λ) ∈ C∞

(
M ×M, Lk ⊗ (ΛqT ∗(0,1)M � ΛqT ∗(0,1)M)⊗ (Lk)∗

)
and E q

λ (M, Lk) ⊂ Ω0,q(M, Lk). Since Lk
x ⊗ (Lk

x)∗ ∼= C we can identify P
(q)
k

(x, x, λ) to an element of End(ΛqT
∗(0,1)
x M). Then

(1.5) M  x �−→ P
(q)
k (x, x, λ) = P

(q)
k,λ(x, x) ∈ End(ΛqT ∗(0,1)

x M)

is a smooth section of End(ΛqT ∗(0,1)M), called local density of states of
E q

λ (M, Lk). The trace of P
(q)
k (x, x, λ) is given by

Tr P
(q)
k,λ(x, x) = Tr P

(q)
k (x, x, λ) :=

d∑
j=1

〈
P

(q)
k (x, x, λ) eJj

(x), eJj
(x)
〉
,

where eJ1 , . . . , eJd
is a local orthonormal basis of ΛqT ∗(0,1)M with respect

to 〈·, ·〉. The projection

(1.6) P
(q)
k := P

(q)
k,0 : L2

(0,q)(M, Lk) → Ker�(q)
k ,

on the lowest energy level λ = 0 is called the Bergman projection, its kernel
P

(q)
k ( ·, ·) is called the Bergman kernel. The restriction to the diagonal of

P
(q)
k ( ·, ·) is denoted P

(q)
k (·) and is called the Bergman kernel form. The

function TrP
(q)
k,0 (x, x) := TrP

(q)
k (x) is called the Bergman kernel function.

We notice that Tr P
(0)
k (x) = P

(0)
k (x).
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We introduce the notion of asymptotic expansion (see Definition 3.10).
Let D ⊂ M be an open set and a(x, k), aj(x) ∈ C∞(M, End(ΛqT ∗(0,1)M)),
j = 0, 1, . . . and m ∈ Z. We say that a(x, k) has an asymptotic expansion

a(x, k) ∼
∞∑

j=0

aj(x)km−j locally uniformly on D,

if for every N ∈ N0, � ∈ N0 and every compact set K ⊂ D, there exists a
constant CN,�,K > 0 independent of k, such that for k sufficiently large

∣∣∣a(x, k)−
N∑

j=0

km−jaj(x)
∣∣∣
C �(K)

≤ CN,�,K km−N−1.

We say that a(x, k) = O(k−∞) locally uniformly on D if a(x, k) ∼ 0 locally
uniformly on D.

The following theorem is one of the main results. It expresses the fact
that the Kodaira Laplacian acting on Ω•,•(M, Lk) admits a local semi-
classical Hodge decomposition. Note that there are neither global assump-
tions on the positivity of the bundle nor on the base manifold.

Theorem 1.1. Let (M, Θ) be a Hermitian manifold, (L, hL) be a holomor-
phic Hermitian line bundle on M . Fix q ∈ {0, 1, . . . , n} and N0 � 1. Then
for every m ∈ {0, 1, . . . , n} there exists a k-dependent section b(m)(x, k) ∈
C∞(M(q), End(ΛmT ∗(0,1)M)) with the following properties: for every D �
M(q), � ∈ N0, there exists a constant CD,� > 0 independent of k with

(1.7)
∣∣∣P (m)

k (x, x, k−N0)− b(m)(x, k)
∣∣∣
C �(D)

� CD,� k3n+2�−N0 ,

b(m)(x, k) = 0 for m �= q and b(q)(x, k) has an asymptotic expansion

(1.8) b(q)(x, k) ∼
∞∑

j=0

b
(q)
j (x)kn−j locally uniformly on M(q),

for some b
(q)
j ∈ C∞(M(q), End(ΛqT ∗(0,1)M)), j = 0, 1, 2, . . .. On M(q) we

have

(1.9) b
(q)
0 = (2π)−n

∣∣ det ṘL
∣∣Idet W

∗ .

We wish to give formulas for the top coefficients of the expansion in the
case q = 0. We introduce the geometric objects used in Theorems 1.2 and 1.7
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below. Put

(1.10) ω :=
√
−1
2π

RL.

On the set M(0) the (1, 1)-form ω is positive and induces a Riemannian met-
ric gTM

ω (·, ·) = ω(·, J ·). Let∇TM
ω be the Levi–Civita connection on (M, gTM

ω ),
RTM

ω = (∇TM
ω )2 its curvature (cf. (4.71)), Ric its Ricci curvature and r the

scalar curvature of gTM
ω (see (4.69)). We denote by Ricω = Ric (J ·, ·) the

(1, 1)-form associated to Ric (cf. (4.73)) and by �ω be the complex Lapla-
cian with respect to ω (see (4.67)). We also denote by 〈 ·, · 〉ω the pointwise
Hermitian metric induced by gTM

ω on (p, q)-forms on M and by | · |ω the
corresponding norm.

Let Rdet
Θ denote the curvature of the canonical line bundle

KM = det T ∗(1,0)M

with respect to the metric induced by Θ (see (4.70)). Put

r̂ = �ω log VΘ, VΘ = det (Θj,k)
n
j,k=1 ,

where Θ =
√
−1
∑n

j,k=1 Θj,kdzj ∧ dzk in local holomorphic coordinates z =
(z1, . . . , zn).

Theorem 1.2. Let (M, Θ) and (L, hL) be as in Theorem 1.1. The coeffi-
cients b

(0)
1 and b

(0)
2 in the expansion(1.8) for q = 0 have the following form:

b
(0)
1 = (2π)−n det ṘL

( 1
8π

r − 1
4π

Δω log det ṘL
)

(1.11)

= (2π)−n det ṘL
( 1

4π
r̂ − 1

8π
r
)
,

b
(0)
2 = (2π)−n det ṘL

( 1
128π2

r2 − 1
32π2

rr̂ +
1

32π2
(r̂)2 − 1

32π2
�ω r̂

− 1
8π2

∣∣∣Rdet
Θ

∣∣∣2
ω

+
1

8π2
〈Ricω, Rdet

Θ 〉ω +
1

96π2
�ωr − 1

24π2
|Ricω|2ω

+
1

96π2

∣∣RTM
ω

∣∣2
ω

)
,

(1.12)

where
∣∣RTM

ω

∣∣2
ω

is given by (4.72).
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On the set where the curvature of L is degenerate we have the following
behaviour.

Theorem 1.3. Let (M, Θ) and (L, hL) be as in Theorem 1.1. Set

Mdeg =
{

x ∈ M ; ṘL is degenerate at x ∈ M
}

.

Then for every x0 ∈ Mdeg, ε > 0 and every m ∈ {0, 1, . . . , n} , there exists
a neighbourhood U of x0 and k0 > 0, such that for all k ≥ k0 we have

(1.13) TrP
(m)
k (x, x, k−N0) ≤ εkn, x ∈ U.

As a Corollary of Theorems 1.1, 1.2 and 1.3, we obtain

Corollary 1.4 (Local holomorphic Morse inequalities). Let (M, Θ),
(L, hL) be as in Theorem 1.1. Let N0 ≥ 2n + 1. Then the spectral function
of the Kodaira Laplacian has the following asymptotic bahaviour:

(1.14) TrP
(q)
k (x, x, k−N0) = kn(2π)−n

∣∣∣det ṘL(x)
∣∣∣+ O(kn−1), k →∞,

locally uniformly on M(q), and if 1M(q) denotes the characteristic function
of M(q),

(1.15)
lim

k→∞
k−nTr P

(q)
k (x, x, k−N0) = (2π)−n

∣∣∣det ṘL(x)
∣∣∣1M(q)(x), x ∈ M.

Moreover, for every ε > 0, every D � M , there exists a k0 > 0, such that
for all k ≥ k0, we have

(1.16)
Tr P

(q)
k (x, x, k−N0) ≤

(
ε + (2π)−n

∣∣∣det ṘL(x)
∣∣∣1M(q)(x)

)
kn, x ∈ D,

and for q = 0 and N0 ≥ 2n + 3, we have as k →∞

P
(0)
k (x, x, k−N0)(1.17)

≤ kn(2π)−n det ṘL(x) + kn−1b
(0)
1 (x) + kn−2b

(0)
2 (x) + O(kn−3),

locally uniformly on M(0), where b
(0)
1 (x) and b

(0)
2 (x) are as in (1.11) and

(1.12) respectively.
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The term local holomorphic Morse inequalities is motivated by the fact
that when M is compact, integration of the inequalities from Corollary 1.4
yields the holomorphic Morse inequalities of Demailly; see Section 10.5.
Berman [1] proved that

lim sup
k→∞

k−nTr P
(q)
k (x) ≤ (2π)−n

∣∣∣det ṘL(x)
∣∣∣1M(q)(x), x ∈ M,

and when M is compact, there exists a sequence μk → 0, as k →∞, such
that

lim
k→∞

k−nTr P
(q)
k (x, x, μk) = (2π)−n

∣∣∣det ṘL(x)
∣∣∣1M(q)(x), x ∈ M.

Corollary 1.4 refines and generalizes Berman’s results.
In order to obtain precise asymptotics we combine the local asymptotics

from Theorem 1.1 with a mild condition on the semiclassical behaviour of
the spectrum of the Kodaira Laplacian �(q)

k for k large, which we call (local)
O(k−n0) small spectral gap.

Definition 1.5. Let D ⊂ M . We say that �(q)
k has O(k−n0) small spectral

gap on D if there exist constants CD > 0, n0 ∈ N, k0 ∈ N, such that for all
k ≥ k0 and u ∈ Ω0,q

0 (D, Lk), we have

∥∥∥(I − P
(q)
k )u

∥∥∥ ≤ CD kn0

∥∥∥�(q)
k u

∥∥∥ .

To explain this condition, assume that M is a complete Hermitian man-
ifold. Then the operator �(q)

k is essentially self-adjoint and Ω0,q
0 (D, Lk) is

dense with respect to the graph-norm in the domain of the quadratic form
of �(q)

k (see e.g., [49, Section 3.3]). If �(q)
k has O(k−n0) small spectral gap on

M then inf
{

λ ∈ Spec(�(q)
k ); λ �= 0

}
≥ Ck−n0 , for some n0 ∈ N and C > 0

independent of k.
From Theorem 1.1, Definition 1.5 and some simple arguments (see Sec-

tion 4.4), we deduce:

Theorem 1.6. Let (M, Θ) be a Hermitian manifold, (L, hL) be a holo-
morphic Hermitian line bundle on M . Fix q ∈ {0, 1, . . . , n} and N0 � 1. Let
D ⊂ M(q). If �(q)

k has O(k−n0) small spectral gap on D, then for every
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D′ � D, � ∈ N0, there exists a constant CD′,� > 0 independent of k with∣∣∣P (q)
k (x, x, k−N0)− P

(q)
k (x)

∣∣∣
C �(D′)

� CD′,� k3n+2�−N0 .

In particular,

(1.18) P
(q)
k (x) ∼

∞∑
j=0

b
(q)
j (x)kn−j locally uniformly on D,

where b
(q)
j ∈ C∞(D, End(ΛqT ∗(0,1)M)), j = 0, 1, 2, . . ., are as in (1.8) and

b
(q)
0 , b

(0)
1 , b

(0)
2 are given by (1.9), (1.11), (1.12).

Note that if L is a positive line bundle on a compact manifold M , or
more generally L is uniformly positive on a complete manifold (M, Θ) with√
−1RK∗

M and ∂Θ bounded below, then the Kodaira Laplacian �(0)
k has a

“large” spectral gap on M , i.e., there exists a constant C > 0 such that for
all k we have

inf
{

λ ∈ Spec(�(0)
k ); λ �= 0

}
≥ Ck,

(see [49, Theorem 1.5.5], [49, Theorem 6.1.1, (6.1.8)]). Therefore the Bergman
kernel P

(q)
k has the asymptotic expansion (1.18) and we recover from Theo-

rem 1.6 the asymptotic expansion of the Bergman kernel for:

(i) compact manifolds for q = 0, [12], [70] (cf. also [49, Theorem 4.1.1]);

(ii) compact manifolds for arbitrary q, [4], [48] [49, Theorem 8.2.4];

(iii) for complete manifolds [50, Theorem 3.11], [49, Theorem 6.1.1].

In the case q = 0 the precise formulas (1.11), (1.12) for the coefficients of
the Bergman kernel expansion (1.18) play an important role in the inves-
tigations about the relation between canonical metrics in Kähler geometry
and stability in algebraic geometry, see e.g., [27, 31, 32, 34, 63, 66, 67] (cf.
also [49, Section 5.2]).

The coefficients b
(0)
1 , b

(0)
2 were computed by Z. Lu [44], L. Wang [66],

X. Wang [67], in various degrees of generality. The method of these authors
is to construct appropriate peak sections as in [63], using Hörmander’s L2

∂-method.
In [19, Section 5.1], Dai-Liu-Ma computed b

(0)
1 by using the heat kernel,

and in [50, Section 2], [48, Section 2] (cf. also [49, Section 4.1.8, Section
8.3.4]), b

(0)
1 was computed in the symplectic case. The coefficient b

(0)
2 was
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calculated in [53, Theorem 0.1] (these results include a twisting Hermitian
vector bundle E). Recently, a combinatorial formula for the coefficients b

(0)
j

was obtained in [65] and the formula for b
(0)
2 was rederived in [34]. In the

above mentioned results it was supposed that the curvature ω =
√−1
2π RL

equals the underlying metric Θ. If ω �= Θ formulas for b
(0)
1 , b

(0)
2 were given

in [49, Theorem 4.1.3], [53, Remark 0.5], [41, Theorem 1.4]. We notice that
all the results mentioned above concern the coefficients of the Bergman
kernel expansion and our results (1.11), (1.12) could recover the first three
coefficients of the Bergman kernel expansion in the complex case.

Let M be a compact complex manifold and L → M be a holomorphic
line bundle with non-degenerate curvature of signature q ∈ {0, 1, . . . , n}, i.e.,
M(q) = M . The coefficient b

(q)
0 given by (1.9) appeared in [48, Theorem 1.3]

(the manifold M there is supposed to be symplectic). The coefficient b
(q)
1

was calculated recently by Wen Lu [45] and by Hsiao [42] for the trivial line
bundle with mixed curvature over Cn endowed with the Euclidean metric.

Since we allow a local O(k−n0) small spectral gap, we can obtain the
Bergman kernel expansion under weak conditions, such as semi-positivity
of the line bundle. In this case, we have to twist Lk with the canonical line
bundle KM , which we endow with the natural Hermitian metric induced by
Θ. We denote by Pk,KM

the orthogonal projection from L2(M, Lk ⊗KM ) on
H0

(2)(M, Lk ⊗KM ) = H 0(M, Lk ⊗KM ).

Theorem 1.7. Let (M, Θ) be a complete Kähler manifold and (L, hL)
be a semi-positive line bundle over M . Then the Bergman kernel function
Pk,KM

( · ) of H0
(2)(M, Lk ⊗KM ) has the asymptotic expansion

(1.19) Pk,KM
(x) ∼

∞∑
j=0

kn−jb
(0)
j,KM

(x) locally uniformly on M(0),

where b
(0)
j,KM

∈ C∞(M(0), End(KM )), j = 0, 1, 2, . . ., are given by

b
(0)
0,KM

= (2π)−ndet ṘL IdKM
,(1.20)

b
(0)
1,KM

= (2π)−n det ṘL
(
− 1

8π
r
)

IdKM
,

b
(0)
2,KM

= (2π)−n det ṘL
( 1

128π2
r2 +

1
96π2

�ωr − 1
24π2

|Ric ω|2ω

+
1

96π2

∣∣RTM
ω

∣∣2
ω

)
IdKM

,
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where
∣∣RTM

ω

∣∣2
ω

is given by (4.72) and IdKM
is the identity map on KM .

In [2, Theorem1.8] the expansion is proved on M(0) \B+(L) for M com-
pact, where B+(L) is the augmented base locus of L. Note that L is ample
if and only if B+(L) is empty.

Let us consider a singular Hermitian holomorphic line bundle (L, hL) →
M (see, e.g., [49, Definition 2.3.1]). We assume that hL is smooth outside
a proper analytic set Σ and the curvature current of hL is strictly posi-
tive. The metric h = hL induces singular Hermitian metrics hk on Lk. We
denote by I (hk) the Nadel multiplier ideal sheaf associated to hk and by
H0(M, Lk ⊗I (hk)) ⊂ H0(M, Lk) the space of global sections of the sheaf
O(Lk)⊗I (hk) (see (9.3)), where H0(M, Lk) :=

{
u ∈ C∞(X, Lk); ∂ku = 0

}
.

We denote by (·, ·)k the natural inner products on C∞(M, Lk ⊗I (hk))
induced by hL and the volume form dvM on M (see (9.2) and see also (9.1) for
the precise meaning of C∞(M, Lk ⊗I (hk)) ). Let {Sk

j }dk

j=1 be an orthonor-
mal basis of H0(X, Lk ⊗I (hk)) with respect to the inner product induced
(·, ·)k. The (multiplier ideal) Bergman kernel function of H0(M, Lk ⊗I (hk))
is defined by

(1.21) P
(0)
k,I (x) :=

dk∑
j=1

∣∣∣Sk
j (x)

∣∣∣2
hk

, x ∈ M \ Σ.

Theorem 1.8. Let (L, hL) be a singular Hermitian holomorphic line bundle
over a compact Hermitian manifold (M, Θ). We assume that hL is smooth
outside a proper analytic set Σ and the curvature current of hL is strictly
positive. Then the Bergman kernel function Pk,I ( · ) of H0(M, Lk ⊗I (hk))
has the asymptotic expansion

(1.22) P
(0)
k,I (x) ∼

∞∑
j=0

kn−jb
(0)
j (x) locally uniformly on M \ Σ,

where b
(0)
j ∈ C∞(M \ Σ), j = 0, 1, 2, . . ., b

(0)
0 = (2π)−n det ṘL and b

(0)
1 and

b
(0)
2 are given by (1.11) and (1.12), respectively.

We obtain in this way another proof of the Shiffman–Ji–Bonavero–Takayama
criterion (cf. [49, Theorem 2.3.28, 2.3.30]).
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Corollary 1.9. Under the assumptions in Theorem 1.8, we have

dimH0(M, Lk ⊗I (hk)) ≥ ckn

for k large, where c > 0 is independent of k. Therefore, L is big and M is
Moishezon.

We assume that (M, Θ) is compact and we set

Herm(L) =
{
singular Hermitian metrics on L

}
,

M(L) =
{
hL ∈ Herm(L); hL is smooth outside a proper analytic set

and the curvature current of hL is strictly positive
}
.

Note that by Siu’s criterion [49, Theorem 2.2.27], L is big under the hypothe-
ses of Theorem 1.10 below. By [49, Lemma 2.3.6], M(L) �= ∅. Set

(1.23) M ′ :=
{
p ∈ M ; ∃ hL ∈M(L) with hL smooth near p

}
.

Theorem 1.10. Let (M, Θ) be a compact Hermitian manifold. Let (L, hL)
→ M be a Hermitian holomorphic line bundle with smooth Hermitian metric
hL having semi-positive curvature and with M(0) �= ∅. Then the Bergman
kernel function Pk( · ) has the asymptotic expansion

Pk(x) ∼
∞∑

j=0

kn−jb
(0)
j (x) locally uniformly on M(0) ∩M ′,

where b
(0)
j ∈ C∞(M(0)), j = 0, 1, 2, . . ., b

(0)
0 = (2π)−ndet ṘL and b

(0)
1 and

b
(0)
2 are given in (1.11) and (1.12), respectively.

The existence of the asymptotic expansion from Theorem 1.10 was
obtained by Berman [2] in the case of a projective manifold M .

Remark 1.11. (I) In Theorems 1.1, 1.6, we obtain the diagonal expansion
of the kernels P

(q)
k,k−N0 (·, ·) . We will prove actually more, namely the off-

diagonal asymptotic expansion for P
(q)
k,k−N0 (x, y) on the non-degenerate part

of L, see Theorems 4.11, 4.12 and 4.14 for the details. In the same vein, the
diagonal expansions of the Bergman kernels from Theorems 1.6, 1.7, 1.8 and
1.10 have off-diagonal counterparts. See Theorems 6.4, 9.2 and 8.3 for the
details.
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(II) Let E be a holomorphic vector bundle over M . Theorems 1.1, 1.3, 1.6,
1.8 and 1.10 and their off-diagonal counterparts can be generalized to the sit-
uation when Lk is replaced by Lk ⊗ E. See Remark 4.13 and the discussions
in the end of Sections 4.4 and 5, for the details.

The layout of this paper is as follows. In Section 2, we collect some
notations, definitions and statements we use throughout (geometric set-up,
self-adjoint extension of the Kodaira Laplacian, Schwartz kernel theorem).
In Section 3, we exhibit a microlocal Hodge decomposition for the Kohn
Laplacian on a non-degenerate CR manifold and apply this to obtain the
semiclassical Hodge decomposition for the Kodaira Laplacian on a complex
manifold. In Section 4, we prove the existence of the asymptotic expansion of
the spectral function associated to forms of energy less that k−N0 . As a con-
sequence we obtain the expansion of the Bergman kernel if the local O(k−n0)
spectral gap exists. In Section 5 we get an asymptotic upper bound near the
degeneracy set of the curvature of L. In Section 6, we prove the expansion of
the Bergman kernel on the positivity set of an adjoint semi-positive line bun-
dle over a complete Kähler manifold. In Section 7, we prove an L2-estimate
for the ∂ for singular metrics. We use this estimate in Sections 8 and 9,
to prove the existence of the Bergman kernel expansion for semi-positive
line bundles and bundles endowed with a strictly positively-curved singular
Hermitian metric. In Section 10, we apply the previous methods to obtain
miscellaneous results, such as Bergman kernel expansion under various con-
ditions, holomorphic Morse inequalities, Tian’s convergence theorem and
equidistribution of zeros of holomorphic sections.

2. Preliminaries

2.1. Some standard notations

We denote by N = {1, 2, . . .} the set of natural numbers and by R the set of
real numbers. We set N0 = N

⋃ {0}. We use the standard notations wα, ∂α
x

for multi-indices α = (α1, . . . , αm) ∈ Nm
0 , w ∈ Cm, ∂x = (∂x1 , . . . , ∂xm

).
Let M be a complex manifold of dimension n. We always assume that

M is paracompact. We denote holomorphic charts on M by (D, z), where
z = (z1, . . . , zn) : D → Cn are local coordinates. The associated real chart is
denoted by (D, x) ∼= (D, z), where x = (x1, . . . , x2n) are real coordinates on
M given by zj = x2j−1 + ix2j , j = 1, . . . , n. For a multi-index J = (j1, . . . , jq)
∈ {1, . . . , n}q we set |J | = q. We say that J is strictly increasing if 1 � j1 <
j2 < · · · < jq � n. We put dzJ = dzj1 ∧ · · · ∧ dzjq

. A (0, q)-form f on M has
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the local representation

f |D =
∑′

|J |=q

fJ(z)dzJ ,

where
∑′

means that the summation is performed only over strictly increas-
ing multi-indices. In this paper all multi-indices will be supposed to be
strictly increasing.

Let Ω be a C∞ paracompact manifold equipped with a smooth density
of integration. We let TΩ and T ∗Ω denote the tangent bundle of Ω and the
cotangent bundle of Ω respectively. The complexified tangent bundle of Ω
and the complexified cotangent bundle of Ω will be denoted by CTΩ and
CT ∗Ω respectively. We write 〈 ·, · 〉 to denote the pointwise duality between
TΩ and T ∗Ω. We extend 〈 ·, · 〉 bilinearly to CTΩ× CT ∗Ω. Let E be a C∞

vector bundle over Ω. We write E∗ to denote the dual bundle of E. The fibre
of E at x ∈ Ω will be denoted by Ex. We write End (E) to denote the vector
bundle over Ω with fibre over x ∈ Ω consisting of the linear maps from Ex

to Ex. Let F be another vector bundle over Ω. We write E � F to denote
the vector bundle over Ω× Ω with fibre over (x, y) ∈ Ω× Ω consisting of the
linear maps from Ex to Fy. Let Y ⊂ Ω be an open set. From now on, the
spaces of smooth sections of E over Y and distribution sections of E over
Y will be denoted by C∞(Y, E) and D ′(Y, E) respectively. Let E ′(Y, E) be
the subspace of D ′(Y, E) whose elements have compact support in Y . For
m ∈ R, we let Hm(Y, E) denote the Sobolev space of order m of sections of
E over Y . Put

Hm
loc (Y, E) =

{
u ∈ D ′(Y, E); ϕu ∈ Hm(Y, E), ϕ ∈ C∞0 (Y )

}
,

Hm
comp (Y, E) = Hm

loc(Y, E) ∩ E ′(Y, E).

2.2. Metric data

Let (M, Θ) be a complex manifold of dimension n, where Θ is a smooth pos-
itive (1, 1) form, which induces a Hermitian metric 〈 ·, · 〉 on the holomorphic
tangent bundle T (1,0)M . In local holomorphic coordinates z = (z1, . . . , zn),
if Θ =

√
−1
∑n

j,k=1 Θj,kdzj ∧ dzk, then 〈 ∂
∂zj

, ∂
∂zk

〉 = Θj,k, j, k = 1, . . . , n. Let
T (0,1)M be the anti-holomorphic tangent bundle of M . We extend the Her-
mitian metric 〈 ·, · 〉 to CTM in a natural way by requiring T (1,0)M to be
orthogonal to T (0,1)M and 〈u, v 〉 = 〈u, v 〉, u, v ∈ T (0,1)M . Let T ∗(1,0)M
be the holomorphic cotangent bundle of M and let T ∗(0,1)M be the anti-
holomorphic cotangent bundle of M . For p, q ∈ N0, let Λp,qT ∗M = ΛpT ∗(1,0)
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M ⊗ ΛqT ∗(0,1)M be the bundle of (p, q) forms of M . We write Λ0,qT ∗M =
ΛqT ∗(0,1)M . The Hermitian metric 〈 ·, · 〉 on CTM induces a Hermitian met-
ric on Λp,qT ∗M also denoted by 〈 ·, · 〉. Let D ⊂ M be an open set. Let
Ωp,q(D) denote the space of smooth sections of Λp,qT ∗M over D. Similarly,
if E is a vector bundle over D, then we let Ωp,q(D, E) denote the space of
smooth sections of (Λp,qT ∗M)⊗ E over D. Let Ωp,q

0 (D, E) be the subspace
of Ωp,q(D, E) whose elements have compact support in D.

If w ∈ ΛrT
∗(0,1)
z M , r ∈ N, let (w∧)∗ : Λq+rT

∗(0,1)
z M → ΛqT

∗(0,1)
z M, q ≥

0, be the adjoint of left exterior multiplication

w∧ : ΛqT ∗(0,1)
z M → Λq+rT ∗(0,1)

z M.

That is,

(2.1) 〈w ∧ u, v 〉 = 〈u, (w∧)∗v 〉,

for all u ∈ ΛqT
∗(0,1)
z M , v ∈ Λq+rT

∗(0,1)
z M . Notice that (w∧)∗ depends anti-

linearly on w.
Let (L, hL) be a Hermitian holomorphic line bundle over M , where the

Hermitian metric on L is denoted by hL. Until further notice, we assume
that hL is smooth. Given a local holomorphic frame s of L on an open subset
D ⊂ M we define the associated local weight of hL by

(2.2) |s(x)|2 = |s(x)|2hL = e−2φ(x), φ ∈ C∞(D, R).

Let RL = (∇L)2 be the Chern curvature of L, where ∇L is the Hermitian
holomorphic connection. Then RL|D = 2∂∂φ. Let Lk, k > 0, be the k-th ten-
sor power of the line bundle L. The Hermitian fibre metric on L induces a
Hermitian fibre metric on Lk that we shall denote by hk. If s is a local trivi-
alizing section of L then sk is a local trivializing section of Lk. For p, q ∈ N0,
the Hermitian metric 〈 ·, · 〉 on Λp,qT ∗M and hk induce a Hermitian metric on
Λp,qT ∗M ⊗ Lk, also denoted by 〈 ·, · 〉. For f ∈ Ωp,q(M, Lk), we denote the
pointwise norm |f(x)|2 := |f(x)|2hk = 〈f(x), f(x)〉. We take dvM = dvM (x)
as the induced volume form on M . The L2–Hermitian inner products on the
spaces Ωp,q

0 (M, Lk) and Ωp,q
0 (M) are given by

(s1, s2)k =
∫

M
〈s1(x), s2(x)〉 dvM (x), s1, s2 ∈ Ωp,q

0 (M, Lk),

(f1, f2) =
∫

M
〈f1(x), f2(x)〉 dvM (x), f1, f2 ∈ Ωp,q

0 (M).
(2.3)
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We write ‖f‖2 := ‖f‖2
hk = (f, f)k, f ∈ Ωp,q

0 (M, Lk). For g ∈ Ωp,q
0 (M), we also

write ‖g‖2 := (g, g). Let L2
(p,q)(M, Lk) be the completion of Ωp,q

0 (M, Lk) with
respect to ‖·‖.

2.3. A self-adjoint extension of the Kodaira Laplacian

We denote by

(2.4)
∂k : Ω0,r(M, Lk) → Ω0,r+1(M, Lk), ∂

∗
k : Ω0,r+1(M, Lk) → Ω0,r(M, Lk)

the Cauchy–Riemann operator acting on sections of Lk and its formal adjoint
with respect to (·, ·)k respectively. Let

(2.5) �(q)
k := ∂k∂

∗
k + ∂

∗
k ∂k : Ω0,q(M, Lk) → Ω0,q(M, Lk)

be the Kodaira Laplacian acting on (0, q)–forms with values in Lk. We extend
∂k to L2

(0,r)(M, Lk) by

(2.6) ∂k : Dom ∂k ⊂ L2
(0,r)(M, Lk) → L2

(0,r+1)(M, Lk),

where Dom ∂k := {u ∈ L2
(0,r)(M, Lk); ∂ku ∈ L2

(0,r+1)(M, Lk)}, where ∂ku is
defined in the sense of distributions. We also write

(2.7) ∂
∗
k : Dom ∂

∗
k ⊂ L2

(0,r+1)(M, Lk) → L2
(0,r)(M, Lk)

to denote the Hilbert space adjoint of ∂k in the L2 space with respect to
( ·, · )k. Let �(q)

k denote the Gaffney extension of the Kodaira Laplacian given
by

Dom �(q)
k ={s ∈ L2

(0,q)(M, Lk); s ∈ Dom ∂k ∩Dom ∂
∗
k ,(2.8)

∂ks ∈ Dom ∂
∗
k , ∂

∗
k s ∈ Dom ∂k},

and �(q)
k s = ∂k∂

∗
k s + ∂

∗
k ∂ks for s ∈ Dom �(q)

k . By a result of Gaffney [49,
Proposition 3.1.2], �(q)

k is a positive self-adjoint operator. Note that if M is
complete, the Kodaira Laplacian �(q)

k is essentially self-adjoint [49, Corol-
lary 3.3.4] and the Gaffney extension coincides with the Friedrichs extension
of �(q)

k .
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2.4. Schwartz kernel theorem

We recall the Schwartz kernel theorem [39, Theorem 5.2.1, 5.2.6], [62, p. 296].
Let Ω be a C∞ paracompact manifold equipped with a smooth density of
integration. Let E and F be smooth vector bundles over Ω. Then any contin-
uous linear operator A : C∞0 (Ω, E) → D ′(Ω, F ) has a Schwartz distribution
kernel, denoted KA(x, y) or A(x, y). Moreover, the following two statements
are equivalent

1) A is continuous: E ′(Ω, E) → C∞(Ω, F ),

2) KA(x, y) ∈ C∞(Ω× Ω, Ey � Fx).

If A satisfies (I) or (II), we say that A is a smoothing operator. Furthermore,
A is smoothing if and only if A : Hs

comp (Ω, E) → Hs+N
loc (Ω, F ) is continuous,

for all N ≥ 0, s ∈ R. We say that A is properly supported if SuppKA ⊂
Ω× Ω is proper. That is, the two projections: tx : (x, y) ∈ SuppKA → x ∈ Ω,
ty : (x, y) ∈ SuppKA → y ∈ Ω are proper (i.e., the inverse images of tx and
ty of all compact subsets of Ω are compact). We say that A is smooth-
ing away the diagonal if χ1Aχ2 is smoothing, for all χ1, χ2 ∈ C∞0 (Ω) with
Suppχ1

⋂
Suppχ2 = ∅.

Let H(x, y) ∈ D ′(Ω× Ω, Ey � Fx). We write H to denote the unique con-
tinuous operator H : C∞0 (Ω, E) → D ′(Ω, F ) with distribution kernel H(x, y).
In this work, we identify H with H(x, y). Let A, B : C∞0 (Ω, E) → D ′(Ω, F )
be continuous operators. We write A ≡ B or A(x, y) ≡ B(x, y) if A−B is a
smoothing operator.

3. Szegö kernels and semi-classical Hodge
decomposition

The goal of this Section is to prove the semiclassical Hodge decomposition
for the Kodaira Laplacian, i.e., to find a semi-classical partial inverse and an
approximate kernel for �(q)

k , cf. Theorem 3.11. For this purpose we reduce
the analysis of the Kodaira Laplacian to the analysis of the Kohn Laplacian
on the Grauert tube of the line bundle L. In Section 3.1 we recall the con-
struction of these two objects. Section 3.2 contains a detailed study of the
microlocal Hodge decomposition of the Kohn Laplacian on a non-degenerate
CR manifold and especially on the Grauert tube, by following [40]. Finally,
in Section 3.3 we apply this results in order to obtain the semi-classical
Hodge decomposition for the Kodaira Laplacian.
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3.1. The Grauert tube

Let (M, Θ) be a Hermitian manifold and (L, hL) be a holomorphic Hermitian
line bundle on M . Let (L∗, hL∗) be the dual bundle of L. We denote

(3.1) G := {v ∈ L∗; |v|hL∗ < 1} , X := ∂G = {v ∈ L∗; |v|hL∗ = 1} .

The domain G is called Grauert tube associated to L. We denote

T (1,0)X := T (1,0)L∗ ∩ CTX, T (0,1)X := T (0,1)L∗ ∩ CTX.

Then (X, T (1,0)X) is a CR manifold of dimension 2n + 1 and the bundle
T (1,0)X is called the holomorphic tangent bundle of X. The manifold X is
equipped with a natural S1 action. Locally X can be represented in local
holomorphic coordinates (z, λ), where λ is the fibre coordinate, as the set of
all (z, λ) such that |λ|2 e2φ(z) = 1, where φ is a local weight of hL. The S1

action on X is given by eiθ ◦ (z, λ) = (z, eiθλ), eiθ ∈ S1, (z, λ) ∈ X. Let Y be
the global real vector field on X determined by

Y u(x) =
∂

∂θ
u(eiθ ◦ x)

∣∣
θ=0

for all u ∈ C∞(X).

Let π : X → M be the natural projection. We have the bijective map:

π∗ : T (1,0)X ⊕ T (0,1)X → T (1,0)M ⊕ T (0,1)M, W → π∗W,

where (π∗W )f = W (f ◦ π), for all f ∈ C∞(M). We take the Hermitian met-
ric 〈 ·, · 〉 on CTX so that Y⊥

(
T (1,0)X ⊕ T (0,1)X

)
, 〈Y, Y 〉 = 1 and 〈Z, W 〉 =

〈π∗Z, π∗W 〉, Z, W ∈ T (1,0)X ⊕ T (0,1)X. The Hermitian metric 〈 ·, · 〉 on CTX
induces, by duality, a Hermitian metric on the complexified cotangent bun-
dle CT ∗X that we shall also denote by 〈 ·, · 〉. Define T ∗(1,0)X :=

(
T (0,1)X ⊕

CY
)⊥ ⊂ CT ∗X, T ∗(0,1)X :=

(
T (1,0)X ⊕ CY

)⊥ ⊂ CT ∗X. For q ∈ N, the bun-
dle of (0, q) forms of X is given by ΛqT ∗(0,1)X := Λq

(
T ∗(0,1)X

)
. The Hermi-

tian metric 〈 ·, · 〉 on CT ∗X induces a Hermitian metric on ΛqT ∗(0,1)X also
denoted by 〈 ·, · 〉.

Locally there is a real one form ω0 of length one which is pointwise
orthogonal to T ∗(0,1)X ⊕ T ∗(1,0)X. ω0 is unique up to the choice of sign. We
take ω0 so that 〈ω0, Y 〉 = −1. Therefore ω0, so chosen, is globally defined.
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The Levi form Lp of X at p ∈ X is the Hermitian quadratic form on
T

(1,0)
p X defined as follows:

(3.2) Lp(U, V ) =
1
2i
〈
[U ,V ](p), ω0(p)

〉
, U, V ∈ T (1,0)

p X

where U ,V ∈ C∞(X, T (1,0)X) that satisfy U(p) = U , V(p) = V and [U ,V ] =
UV − VU denotes the commutator of U and V.

Let B ⊂ X be an open set. Let Ω0,q(B) denote the space of smooth
sections of ΛqT ∗(0,1)X over B. Let Ω0,q

0 (B) be the subspace of Ω0,q(B) whose
elements have compact support in B. Let ∂b : Ω0,q(X) → Ω0,q+1(X) be the
tangential Cauchy–Riemann operator. We take dvX = dvX(x) as the induced
volume form on X. Then, we get natural inner product ( ·, ·) on Ω0,q(X).
Let ∂

∗
b : Ω0,q+1(X) → Ω0,q(X) be the formal adjoint of ∂b with respect to

( ·, ·). The Kohn Laplacian on (0, q) forms is given by

�(q)
b := ∂b∂

∗
b + ∂

∗
b ∂b : Ω0,q(X) → Ω0,q(X).

We introduce now a local holomorphic frame and local coordinates in
terms of which we shall write down the operators explicitly. Let

(i) s be a local trivializing section of L on an open set D � M ,

(ii) φ ∈ C∞(D) be the local weight of the metric hL defined by |s|2hL =
e−2φ.

Then s∗ := s−1 is a local trivializing section of L∗ on D. We have |s∗|2hL∗ =
e2φ.

We introduce holomorphic and real coordinates on D by
(3.3)

z = (z1, . . . , zn), x′ = (x1, . . . , x2n), zj = x2j−1 + ix2j , j = 1, . . . , n.

We identify D with an open set of Cn. We have the local diffeomorphism:

(3.4) τ : D × ]− ε0, ε0[ → X, (z, θ) �→ e−φ(z)s∗(z)e−iθ, 0 < ε0 ≤ π.

It is convenient to work with the local coordinates (z, θ). In terms of these
coordinates, it is straightforward to see that Y = − ∂

∂θ . Moreover,

T (1,0)
v X = C

{ ∂

∂zj
− i

∂φ

∂zj
(z)

∂

∂θ
; j = 1, . . . , n

}
, v = e−φ(z)s∗(z)e−iθ ∈ X.

Further, let {Zj}n
j=1 be an orthonormal basis for the holomorphic tan-

gent bundle T (1,0)M and let {ej}n
j=1 be the dual basis of T ∗(1,0)M . Then,
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{Zj − iZj(φ) ∂
∂θ}n

j=1 is an orthonormal basis for T (1,0)X and {ej}n
j=1 is the

dual orthonormal basis for T ∗(1,0)X. Furthermore, we can check that

(3.5) ω0 = dθ +
n∑

j=1

(−iZj(φ)ej + iZj(φ)ej).

From this, we can compute for j, k = 1, . . . , n, p ∈ X:

Lp

( ∂

∂zj
− i

∂φ

∂zj
(π(p))

∂

∂θ
,

∂

∂zk
+ i

∂φ

∂zk
(π(p))

∂

∂θ

)
=

∂2φ

∂zj∂zk
(π(p)).

Thus, for a given point p ∈ X, we have

Lp(U, V ) = 〈 ∂∂φ(π(p)), π∗U ∧ π∗V 〉 =
〈

1
2
RL(π(p)), π∗U ∧ π∗V

〉
(3.6)

=
〈

1
2
ṘL(π(p))π∗U, π∗V

〉
, ∀ U, V ∈ T (1,0)

p X.

We deduce the following:

Proposition 3.1. Let (L, hL) be a Hermitian holomorphic line bundle over
a complex manifold M and let X ⊂ L∗ be the boundary of the Grauert tube
associated to L. Let p ∈ X. If the curvature RL has signature (n−, n+) at
π(p), then Lp has signature (n−, n+).

We define the operators ∂s, ∂
∗
s, �(q)

s , which are the local versions of the
operators ∂k, ∂

∗
k, �(q)

k (see (2.4)–(2.8)), by the following equations:

∂s = ∂ + k(∂φ)∧ : Ω0,q(D) → Ω0,q+1(D),

∂
∗
s = ∂

∗ + k
(
(∂φ)∧

)∗ : Ω0,q+1(D) → Ω0,q(D),

�(q)
s = ∂s∂

∗
s + ∂

∗
s∂s : Ω0,q(D) → Ω0,q(D).

(3.7)

Here ∂
∗ : Ω0,q+1(D) → Ω0,q(D) is the formal adjoint of ∂ with respect to

( ·, ·). We have the unitary identifications:

Ω0,q(D, Lk) ←→ Ω0,q(D)

f = skg ←→ f̂(z) = e−kφs−kf = g(z)e−kφ(z), g ∈ Ω0,q(D),

∂k ←→ ∂s, ∂kf = skekφ∂sf̂ ,

∂
∗
k ←→ ∂

∗
s, ∂

∗
k f = skekφ∂

∗
s f̂ ,

�(q)
k ←→ �(q)

s , �(q)
k f = skekφ�(q)

s f̂ .

(3.8)
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We continue to work with the local coordinates (z, θ). As above, let
(Zj)n

j=1 be an orthonormal basis for T (0,1)M and let (ej)n
j=1 be an orthonor-

mal basis for T ∗(0,1)M which is dual to (Zj)n
j=1. We can check that

(3.9) ∂b =
n∑

j=1

(ej∧) ◦
(

Zj + iZj(φ)
∂

∂θ

)
+

n∑
j=1

(
(∂ej)∧

)
◦ (ej∧)∗

and correspondingly

(3.10) ∂
∗
b =

n∑
j=1

(
(ej∧)∗

)
◦
(

Z∗j + iZj(φ)
∂

∂θ

)
+

n∑
j=1

(ej∧)◦
(
(∂ej)∧

)∗
,

where Z∗j is the formal adjoint of Zj with respect to ( ·, ·), j = 1, . . . , n.
Let ∂s and ∂

∗
s be as in (3.8) and (3.7). We can check that

∂s =
n∑

j=1

(ej∧) ◦ (Zj + kZj(φ)) +
n∑

j=1

(
(∂ej)∧

)
◦ (ej∧)∗,

∂
∗
s =

n∑
j=1

(
(ej∧)∗

)
◦ (Z∗j + kZj(φ)) +

n∑
j=1

(ej∧)◦
(
(∂ej)∧

)∗
.

(3.11)

From now on, we identify ΛqT ∗(0,1)M with ΛqT ∗(0,1)X. From (3.8), (3.7),
explicit formulas of ∂s, ∂

∗
s and (3.9), (3.10), we get

(3.12) �(q)
k f = skekφeikθ�(q)

b (f̂e−ikθ),

for all f ∈ Ω0,q(D, Lk), where f̂ is given by (3.8).
Let u(z, θ) ∈ Ω0,q

0 (D × (−ε0, ε0)). Note that

k

∫
eiθku(z, θ)dθ =

∫
(−i)

∂

∂θ
(eiθk)u(z, θ)dθ =

∫
eiθki

∂u

∂θ
(z, θ)dθ.

From this observation and explicit formulas of ∂b, ∂
∗
b , ∂s and ∂

∗
s (see (3.9),

(3.10) and (3.11)), we conclude that

(3.13) �(q)
s

( ∫
eiθku(z, θ)dθ

)
=
∫

eiθk(�(q)
b u)(z, θ) dθ,

for all u(z, θ) ∈ Ω0,q
0 (D × (−ε0, ε0)).
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3.2. Approximate Szegö kernels

In this Section we review the results in [40] about the existence of a microlo-
cal Hodge decomposition of the Kohn Laplacian on an open set of a CR
manifold where the Levi form is non-degenerate. The approximate Szegö
kernel is a Fourier integral operator with complex phase in the sense of
Melin–Sjöstrand [54]. We then specialize to the case of the Grauert tube
of a line bundle and give a useful formula for the phase function of the
approximate Szegö kernel in Theorem 3.8.

Theorems 3.2–3.4 are proved in chapter 6, chapter 7 and chapter 8 of
part I in [40]. In [40] the existence of the microlocal Hodge decomposition is
stated for compact CR manifolds, but the construction and arguments used
are essentially local.

Theorem 3.2. Let X be an orientable CR manifold whose Levi form L
is non-degenerate of constant signature (n−, n+) at each point of an open
set B � X. Let q �= n−, n+. There exists a properly supported continuous
operator

(3.14) A :

{
Hs

loc (B,ΛqT ∗(0,1)X) → Hs+1
loc (B,ΛqT ∗(0,1)X),

Hs
comp (B,ΛqT ∗(0,1)X) → Hs+1

comp (B,ΛqT ∗(0,1)X)

for all s ≥ 0, such that A is smoothing away the diagonal and �(q)
b A ≡ I.

For m ∈ R let Sm
1,0 be the Hörmander symbol space (see the book Grigis–

Sjöstrand [36, Definition 1.1], for the definition of Sm
1,0). Let p0(x, ξ) ∈ C∞

(T ∗X) be the principal symbol of �(q)
b . Note that p0(x, ξ) is a polynomial of

degree 2 in ξ. The characteristic manifold of �(q)
b is given by Σ = Σ+

⋃
Σ−,

where

Σ+ = {(x, λω0(x)) ∈ T ∗X; λ > 0} ,

Σ− = {(x, λω0(x)) ∈ T ∗X; λ < 0} .

Theorem 3.3. Let X, B and (n−, n+) be as in Theorem 3.2. Let q = n−
or n+. Then there exist properly supported continuous operators

A :

{
Hs

loc (B,ΛqT ∗(0,1)X) → Hs+1
loc (B,ΛqT ∗(0,1)X),

Hs
comp (B,ΛqT ∗(0,1)X) → Hs+1

comp (B,ΛqT ∗(0,1)X),

S−, S+ :

{
Hs

loc (B,ΛqT ∗(0,1)X) → Hs
loc (B,ΛqT ∗(0,1)X),

Hs
comp (B,ΛqT ∗(0,1)X) → Hs

comp (B,ΛqT ∗(0,1)X),

(3.15)
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for all s ≥ 0, such that A, S−, S+ are smoothing away the diagonal and

�(q)
b A + S− + S+ = I, �(q)

b S− ≡ 0, �(q)
b S+ ≡ 0,

A ≡ A∗, S− ≡ S∗− ≡ S2
−, S+ ≡ S∗+ ≡ S2

+, S−S+ ≡ S+S− ≡ 0,

where A∗, S∗− and S∗+ are the formal adjoints of A, S− and S+ with respect
to ( ·, ·) respectively and KS−(x, y) satisfies

KS−(x, y) ≡
∫ ∞

0
eiϕ−(x,y)ts−(x, y, t) dt

with a symbol

s−(x, y, t) ∈ Sn
1,0

(
B ×B × ]0,∞[, ΛqT ∗(0,1)

y X � ΛqT ∗(0,1)
x X

)
,

s−(x, y, t) ∼
∞∑

j=0

sj
−(x, y)tn−j

inSn
1,0

(
B ×B × ]0,∞[, ΛqT ∗(0,1)

y X � ΛqT ∗(0,1)
x X

)
,

sj
−(x, y) ∈ C∞

(
B ×B,ΛqT ∗(0,1)

y X � ΛqT ∗(0,1)
x X

)
, j ∈ N0,

(3.16)

and phase function

ϕ− ∈ C∞(B ×B), Im ϕ−(x, y) ≥ 0, ϕ−(x, x) = 0, ϕ−(x, y) �= 0(3.17)
if x �= y,

dxϕ− �= 0, dyϕ− �= 0 where Im ϕ− = 0,(3.18)
dxϕ−(x, y)|x=y = −ω0(x), dyϕ−(x, y)|x=y = ω0(x),(3.19)

ϕ−(x, y) = −ϕ−(y, x).(3.20)

Moreover, there is a function f ∈ C∞(B ×B) such that

(3.21) p0(x, (ϕ−)′x(x, y))− f(x, y)ϕ−(x, y)

vanishes to infinite order at x = y.
Similarly,

KS+(x, y) ≡
∫ ∞

0
eiϕ+(x,y)ts+(x, y, t) dt

with s+(x, y, t) ∈ Sn
1,0

(
B ×B × ]0,∞[ΛqT

∗(0,1)
y X � ΛqT

∗(0,1)
x X

)
,

s+(x, y, t) ∼
∞∑

j=0

sj
+(x, y)tn−j
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in Sn
1,0

(
B ×B × ]0,∞[, ΛqT

∗(0,1)
y X � ΛqT

∗(0,1)
x X

)
, where

sj
+(x, y) ∈ C∞

(
B ×B,ΛqT ∗(0,1)

y X � ΛqT ∗(0,1)
x X

)
, j ∈ N0,

and −ϕ+(x, y) satisfies (3.18)–(3.21). Moreover, if q �= n+, then s+(x, y, t)
vanishes to infinite order at x = y. If q �= n−, then s−(x, y, t) vanishes to
infinite order at x = y.

The operators S+, S− are called approximate Szegö kernels.

Proof. We only sketch the proof. For all the details, we refer the reader to
Part I in [40]. We will use the heat equation method. We work with some
real local coordinates x = (x1, . . . , x2n+1) defined on B. We will say that
a ∈ C∞(R+ ×B × R2n+1) is quasi-homogeneous of degree j if a(t, x, λη) =
λja(λt, x, η) for all λ > 0. We consider the problem

(3.22)

{
(∂t + �(q)

b )u(t, x) = 0 in R+ ×B,

u(0, x) = v(x).

We start by a formal construction. We look for an approximate solution of
(3.22) of the form u(t, x) = A(t)v(x),

(3.23) A(t)v(x) =
1

(2π)2n+1

∫
ei(ψ(t,x,η)−〈y,η〉)a(t, x, η)v(y) dy dη,

where formally

a(t, x, η) ∼
∞∑

j=0

aj(t, x, η),

with aj(t, x, η) matrix-valued quasi-homogenous functions of degree −j.
The full symbol of �(q)

b equals
∑2

j=0 pj(x, ξ), where pj(x, ξ) is positively
homogeneous of order 2− j in the sense that

pj(x, λη) = λ2−jpj(x, η), |η| ≥ 1, λ ≥ 1.

We apply ∂t + �(q)
b formally inside the integral in (3.23) and then intro-

duce the asymptotic expansion of �(q)
b (aeiψ). Set (∂t + �(q)

b )(aeiψ) ∼ 0 and
regroup the terms according to the degree of quasi-homogeneity. The phase
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ψ(t, x, η) should solve

(3.24)

⎧⎨⎩
∂ψ

∂t
− ip0(x, ψ′x) = O(|Im ψ|N ), ∀N ≥ 0,

ψ|t=0 = 〈x, η〉.

This equation can be solved with Imψ(t, x, η) ≥ 0 and the phase ψ(t, x, η)
is quasi-homogeneous of degree 1. Moreover,

ψ(t, x, η) = 〈x, η〉 on Σ, dx,η(ψ − 〈x, η〉) = 0 on Σ,

Im ψ(t, x, η) �
(
|η| t |η|

1 + t |η|

)(
dist

((
x,

η

|η|

)
, Σ
))2

, |η| ≥ 1.

Furthermore, there exists ψ(∞, x, η) ∈ C∞(B × Ṙ2n+1) with a uniquely
determined Taylor expansion at each point of Σ such that for every compact
set K ⊂ B × Ṙ

2n+1 there is a constant cK > 0 such that

Im ψ(∞, x, η) ≥ cK |η|
(

dist
((

x,
η

|η|

)
, Σ
))2

, |η| ≥ 1.

If λ ∈ C (T ∗B � 0), λ > 0 is positively homogeneous of degree 1 and λ|Σ <
minλj , λj > 0, where ±iλj are the non-vanishing eigenvalues of the funda-
mental matrix of �(q)

b , then the solution ψ(t, x, η) of (3.24) can be chosen
so that for every compact set K ⊂ B × Ṙ

2n+1 and all indices α, β, γ, there
is a constant cα,β,γ,K such that∣∣∣∂α

x ∂β
η ∂γ

t (ψ(t, x, η)− ψ(∞, x, η))
∣∣∣ ≤ cα,β,γ,K e−λ(x,η)t on R+ ×K.

We obtain the transport equations

{
T (t, x, η, ∂t, ∂x)a0 = O(|Im ψ|N ), ∀N,

T (t, x, η, ∂t, ∂x)aj + lj(t, x, η, a0, . . . , aj−1) = O(|Im ψ|N ), ∀N, j ∈ N.

(3.25)

Following the method of Menikoff–Sjöstrand [55], we see that we can
solve (3.25). Moreover, aj decay exponentially fast in t when q �= n−, n+,
and has subexponential growth in general. We assume that q = n− or n+.
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We use ∂b�(q)
b = �(q+1)

b ∂b, ∂
∗
b �(q)

b = �(q−1)
b ∂

∗
b and get

∂t(∂b(eiψa)) + �(q+1)
b (∂b(eiψa)) ∼ 0,

∂t(∂
∗
b (eiψa)) + �(q−1)

b (∂ ∗b (eiψa)) ∼ 0.

Put
∂b(eiψa) = eiψâ, ∂

∗
b (eiψa) = eiψã.

We have

(∂t + �(q+1)
b )(eiψâ) ∼ 0,

(∂t + �(q−1)
b )(eiψã) ∼ 0.

The corresponding degrees of â and ã are q + 1 and q − 1. We deduce as
above that â and ã decay exponentially fast in t. This also applies to

�(q)
b (aeiψ) = ∂b(∂

∗
b aeiψ) + ∂

∗
b (∂baeiψ) = ∂b(eiψã) + ∂

∗
b (eiψâ).

Thus, ∂t(aeiψ) decay exponentially fast in t. Since ∂tψ decay exponentially
fast in t so does ∂ta. Hence, there exist positively homogeneous functions of
degree −j

aj(∞, x, η) ∈ C∞
(
T ∗B,ΛqT ∗(0,1)X � ΛqT ∗(0,1)X

)
, j = 0, 1, 2, . . . ,

such that aj(t, x, η) converges exponentially fast to aj(∞, x, η), t →∞, for
all j ∈ N0.

Choose χ ∈ C∞0 (R2n+1) so that χ(η) = 1 when |η| < 1 and χ(η) = 0
when |η| > 2. We formally set

A =
1

(2π)2n+1

∫ ∫ ∞

0

(
ei(ψ(t,x,η)−〈y,η〉)a(t, x, η)

− ei(ψ(∞,x,η)−〈y,η〉)a(∞, x, η)
)
(1− χ(η)) dt dη

and

S =
1

(2π)2n+1

∫ (
ei(ψ(∞,x,η)−〈y,η〉)a(∞, x, η)

)
dη.

We can show that A is a pseudodifferential operator of order −1 and type
(1
2 , 1

2) satisfying

S + �(q)
b ◦A ≡ I, �(q)

b ◦ S ≡ 0.

Moreover, the stationary phase formula of Melin–Sjöstrand [54] shows that
S ≡ S− + S+, where S−, S+ are as in Theorem 3.3. �
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The following result describes the phase function in local coordinates.

Theorem 3.4. Let X, B and (n−, n+) be as in Theorem 3.2. For a given
point x0 ∈ B, let {Wj}n

j=1 be an orthonormal frame of T (1,0)X in a neigh-
bourhood of x0, such that the Levi form is diagonal at x0, i.e., Lx0(Wj , W j) =
μj, j = 1, . . . , n. We take local coordinates x = (x1, . . . , x2n+1), zj = x2j−1 +
ix2j, j = 1, . . . , n, defined on some neighbourhood of x0 such that ω0(x0) =
dx2n+1, x(x0) = 0, and for some cj ∈ C, j = 1, . . . , n,

Wj =
∂

∂zj
− iμjzj

∂

∂x2n+1
− cjx2n+1

∂

∂x2n+1
+ O(|x|2), j = 1, . . . , n.

Set y = (y1, . . . , y2n+1), wj = y2j−1 + iy2j, j = 1, . . . , n. Then, for ϕ− in
Theorem 3.3, we have

(3.26) Imϕ−(x, y) ≥ c

2n∑
j=1

|xj − yj |2 , c > 0,

in some neighbourhood of (0, 0) and

ϕ−(x, y) =− x2n+1 + y2n+1 + i

n−1∑
j=1

|μj | |zj − wj |2(3.27)

+
n−1∑
j=1

(
iμj(zjwj − zjwj) + cj(−zjx2n+1 + wjy2n+1)

+ cj(−zjx2n+1 + wjy2n+1)
)

+ (x2n+1 − y2n+1)f(x, y)

+ O(|(x, y)|3),

where f is smooth and satisfies f(0, 0) = 0, f(x, y) = f(y, x).

Remark 3.5. If we go through the proofs of Theorems 3.2 and 3.3 (see [40]),
it is not difficult to see that Theorems 3.2 and 3.3 have straightforward gen-
eralizations to the case when the functions take values in ΛqT ∗(0,1)X ⊗ F ,
for a given smooth CR vector bundle F over X. We recall that F is a CR
vector bundle if its transition functions are CR.

Remark 3.6. Let ϕ̂ ∈ C∞(B ×B). We assume that ϕ̂ satisfies (3.18)–
(3.19), (3.21) and (3.26), (3.27). Then it is well-known (see [40, Section 3,7]
and Menikoff–Sjöstrand [55]) that ϕ̂(x, y)t, t > 0, and ϕ−(x, y)t, t > 0, are
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equivalent at each point of diag
(
(Σ−

⋂
T ∗B)× (Σ−

⋂
T ∗B)

)
in the sense

of Melin–Sjöstrand (see Melin–Sjöstrand [54, p. 172]). We recall briefly that
ϕ̂(x, y)t, t > 0, and ϕ−(x, y)t, t > 0, are equivalent at each point of

diag
(
(Σ− ∩ T ∗B)× (Σ− ∩ T ∗B)

)
if for every

(x0,−λ0ω0) = (x0, λ0dxϕ−(x0, x0)) = (x0, λ0dxϕ̂(x0, x0)) ∈ Σ− ∩ T ∗B,

there is a conic neighbourhood Γ of (x0, x0, λ0), such that for every a(x, y, t)
∈ Sm

cl (B ×B × R+), m ∈ Z, with support in Γ, we can find â(x, y, t) ∈ Sm
cl

(B ×B × R+) with support in Γ, such that∫ ∞

0
eiϕ−(x,y)ta(x, y, t) dt ≡

∫ ∞

0
eiϕ̂(x,y)tâ(x, y, t) dt

and vice versa, where Sm
cl denotes the classical symbol of order m (see [36,

p. 38] for the definition of Sm
cl ).

If ω ∈ T
∗(0,1)
x X, as (2.1), we let (ω∧)∗ : Λq+1T

∗(0,1)
x X → ΛqT

∗(0,1)
x X, q ≥

0, denote the adjoint of left exterior multiplication ω∧ : ΛqT
∗(0,1)
x X → Λq+1

T
∗(0,1)
x X.

The following formula for the principal symbol s0− on the diagonal follows
from [40, Section 8], its calculation being local in nature.

Theorem 3.7. Let q = n−. For a given point x0 ∈ X, let {Wj}n
j=1 be an

orthonormal frame of T (1,0)X near x0, for which the Levi form is diagonal
at x0. Put Lx0(Wj , W j) = μj(x0), j = 1, . . . , n. Let {Tj}n

j=1 denote the dual
basis of T ∗(0,1)X, dual to {W j}n

j=1. We assume that μj(x0) < 0 if 1 ≤ j ≤
n−. Then, for s0−(x, y) in (3.16), we have

s0
−(x0, x0) =

1
2
|μ1(x0)| · · · |μn(x0)|π−n−1

n−∏
j=1

(Tj(x0)∧) ◦ (Tj(x0)∧)∗.

We return now to the situation where X is the Grauert tube of a line
bundle L as in Section 3.1 and use the notations introduced there. Let (z, θ)
be the coordinates as in (3.3), (3.4) on B = D × ]− ε0, ε0[, ε0 > 0, D � M .
Until further notice, we work with the local coordinates
(z, θ) = (x′, x2n+1) = x. If we denote the holomorphic coordinates of D by
wj = y2j−1 + iy2j , j = 1, . . . , n, and by y2n+1 the coordinate of ]− ε0, ε0[, we
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also write (w, y2n+1) = (y′, y2n+1) = y, y′ = (y1, . . . , y2n). Let ξ be the dual
variables of x. From (3.9) and (3.10), we can check that the principal symbol
of �(q)

b satisfies

(3.28) p0(x, ξ) = p0(x′, ξ).

That is, the principal symbol of �(q)
b is independent of x2n+1.

Using (3.19) and recalling (3.5), we have

dxϕ−(x, x) = −dx2n+1 + a(x′)dx′, a ∈ C∞.

Thus, near a given point (x0, x0) ∈ B ×B, we have ∂ϕ−
∂x2n+1

�= 0. Using the
Malgrange preparation theorem [39, Theorem 7.57], we have

(3.29) ϕ−(x, y) = g(x, y)(−x2n+1 + h(x′, y))

in some neighbourhood of (x0, x0), where g, h ∈ C∞, g(x, x) = 1, h(x′, x) =
x2n+1. Since Imϕ− ≥ 0, it is not difficult to see that Imh ≥ 0 in some neigh-
bourhood of (x0, x0). We may take B small enough so that (3.29) holds
and Imh ≥ 0 on B ×B. From the global theory of Fourier integral opera-
tors [54, Theorem 4.2], we see that ϕ−(x, y)t and (−x2n+1 + h(x′, y))t are
equivalent in the sense of Melin–Sjöstrand. We can replace the phase ϕ− by
−x2n+1 + h(x′, y). Again from (3.19), we have

∂h

∂x′
(x′, x)dx′ − dx2n+1 = −ω0(x) = −dx2n+1 + a(x′) dx′.

Thus, ∂h
∂x′ (x

′, x) is independent of x2n+1. We conclude that

(3.30)
∂h

∂x′
(x′, x)dx′ − dx2n+1 =

∂h

∂x′
(x′, x′)dx′ − dx2n+1 = −ω0(x).

Similarly, we have

(3.31)
∂h

∂y
(y′, y)dy = dy2n+1 +

∂h

∂y′
(y′, y′)dy′ = ω0(y).

Put
ϕ̂ = −x2n+1 + y2n+1 + h(x′, y′).

Note that −x2n+1 + h(x′, y) satisfies (3.21). From this and (3.28), we have

p0

(
x,

(
∂h

∂x′
(x′, y),−1

))
= p0

(
x′,
(

∂h

∂x′
(x′, y),−1

))
= f(x, y)(−x2n+1 + h(x′, y)) + O(|x− y|N )
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for all N ∈ N, for some f ∈ C∞. Hence,

p0(x, ϕ̂′x) = p0(x′, ϕ̂′x)

= f(x, y′)(−x2n+1 + h(x′, y′)) + O(
∣∣x′ − y′

∣∣N + |x2n+1|N ),

(3.32)

for all N ∈ N. We replace x2n+1 by x2n+1 − y2n+1 in (3.32) and get

(3.33) p0(x, ϕ̂′x) = p0(x′, ϕ̂′x) = f̂(x, y)ϕ̂ + O(|x− y|N ),

for all N ∈ N, for some f̂ ∈ C∞. Thus, ϕ̂ satisfies (3.21). Note that p0(x, ϕ̂′x)
is independent of x2n+1. Take x2n+1 = y2n+1 + h(x′, y′) in (3.33) and note
that h(x′, x′) = 0, we conclude that

(3.34) p0(x, ϕ̂′x) = O(
∣∣x′ − y′

∣∣N ), ∀N ∈ N.

Furthermore, from (3.30) and (3.31), we see that ϕ̂ satisfies (3.19). More-
over, for a given point p ∈ D, we may take local coordinates z = (z1, . . . , zn)
centred at p such that

Θ(p) =
√
−1

n∑
j=1

dzj ∧ dzj ,

φ(z) =
n∑

j=1

λj |zj |2 + O(|z|3), z near p, {λj}n
j=1 ⊂ R \ {0}.

(3.35)

From (3.27) and (3.29), it is not difficult to see that
(3.36)

h(x′, y′) = i
n∑

j=1

|λj | |zj − wj |2 + i

n∑
j=1

λj(zjwj − zjwj) + O(
∣∣(x′, y′)∣∣3).

Thus ϕ̂ satisfies (3.27). Formula (3.36) and the Taylor expansion of h(x′, y′)
at x′ = y′ yield

Im h(x′, y′) ≥ c
∣∣x′ − y′

∣∣2 , c > 0.

Thus, ϕ̂ = 0 if and only if x = y. We conclude that ϕ̂ satisfies (3.18)–(3.19),
(3.21), (3.26) and (3.27). In view of Remark 3.6, we see that tϕ− and tϕ̂ are
equivalent at each point of diag

(
(Σ− ∩ T ∗B)× (Σ− ∩ T ∗B)

)
in the sense of
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Melin–Sjöstrand. Since ϕ−(x, y) = −ϕ−(y, x), we can replace ϕ− by

1
2
(ϕ̂(x, y)− ϕ̂(y, x)) = (−x2n+1 + y2n+1) +

1
2
(h(x′, y′)− h(y′, x′)).

Summing up, we get the following.

Theorem 3.8. Let (L, hL) be a holomorphic Hermitian line bundle over
M whose curvature RL is non-degenerate of constant signature (n−, n+) at
each point of an open set D � M . We assume that L is trivial on D. Let
π : X → M be the Grauert tube of L (cf. (3.1)) and let B = π−1(D). With
the notations used before, we can take the phase ϕ−(x, y) in Theorem 3.3 so
that

ϕ−(x, y) = −x2n+1 + y2n+1 + Ψ(z, w), Ψ(x′, y′) = Ψ(z, w) ∈ C∞,

p0(x, ϕ′−(x, y)) = O(|x′ − y′|N ), locally uniformly on B ×B, for all N ∈ N,

(3.37)

where p0(x, ξ) is the principal symbol of �(q)
b and Ψ satisfies

(3.38)
Ψ(z, w) = −Ψ(w, z), ∃ c > 0 : ImΨ ≥ c |z − w|2 , Ψ(z, w) = 0 ⇔ z = w.

For a given point p ∈ D, let z = (z1, . . . , zn) be local holomorphic coordinates
centred at p satisfying (3.35). Then, near (0, 0), we have
(3.39)

Ψ(z, w) = i
n∑

j=1

|λj | |zj − wj |2 + i
n∑

j=1

λj(zjwj − zjwj) + O(|(z, w)|3).

From now on, we assume that ϕ− has the form (3.37).

3.3. Semi-classical Hodge decomposition for the Kodaira
Laplacian

In this Section we apply the results about the Szegö kernel previously
deduced in order to describe the semiclassical behaviour of the spectrum
of the Kodaira Laplacian �(q)

k . We work locally in the following setup.

Setup 3.9. Let (M, Θ) be a Hermitian manifold, (L, hL) be a holomorphic
Hermitian line bundle on M . Assume that the curvature

√
−1RL is non-

degenerate of constant signature (n−, n+) on the domain of a chart (D, z) ∼=
(D, x) � M . Assume that L|D is trivial and let s be a frame of L|D and set
|s|2hL = e−2φ.
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We introduce some notations. For an open set D � M and any k-
dependent continuous function

Fk : Hs
comp (D, ΛqT ∗(0,1)M) → Hs′

loc (D, ΛqT ∗(0,1)M), s, s′ ∈ R,

we write

Fk = O(kn0) : Hs
comp (D, ΛqT ∗(0,1)M) → Hs′

loc (D, ΛqT ∗(0,1)M), n0 ∈ Z,

if for any χ0, χ1 ∈ C∞0 (D), there is a positive constant c, c is independent
of k, such that

(3.40) ‖(χ0Fkχ1)u‖s′ ≤ ckn0 ‖u‖s , ∀u ∈ Hs
loc (D, ΛqT ∗(0,1)M),

where ‖u‖s is the usual Sobolev norm of order s.
A k-dependent smoothing operator Ak : Ω0,q

0 (D) → Ω0,q(D) is called k-
negligible if the kernel Ak(x, y) of Ak satisfies

∣∣∣∂α
x ∂β

y Ak(x, y)
∣∣∣ = O(k−N )

locally uniformly on every compact set in D ×D, for all multi-indices α,
β and all N ∈ N. Ak is k-negligible if and only if

Ak = O(k−N ′
) : Hs

comp (D, ΛqT ∗(0,1)M) → Hs+N
loc (D, ΛqT ∗(0,1)M),

for all N, N ′ ≥ 0 and s ∈ Z. Let Ck : Ω0,q
0 (D) → Ω0,q(D) be another k-

dependent smoothing operator. We write Ak ≡ Ck mod O(k−∞) or

Ak(x, y) ≡ Ck(x, y) mod O(k−∞)

if Ak − Ck is k-negligible.
We recall the definition of semi-classical Hörmander symbol spaces:

Definition 3.10. Let U be an open set in R
N . Let S(1; U) = S(1) be the

set of a ∈ C∞(U) such that for every α ∈ NN
0 , there exists Cα > 0, such

that |∂α
x a(x)| ≤ Cα on U . If a = a(x, k) depends on k ∈ ]1,∞[, we say that

a(x, k) ∈ Sloc (1) if χ(x)a(x, k) uniformly bounded in S(1) when k varies
in ]1,∞[, for any χ ∈ C∞0 (U). For m ∈ R, we put Sm

loc(1) = kmSloc (1). If
aj ∈ S

mj

loc (1), mj ↘ −∞, we say that a ∼∑∞
j=0 aj in Sm0

loc (1) if a−∑N0
j=0 aj ∈

S
mN0+1

loc (1) for every N0. From this, we form Sm
loc (1; Y, E) in the natural way,

where Y is a smooth paracompact manifold and E is a vector bundle over Y .

Let D, s, φ be as in Setup 3.9. Let (z, θ) be the local coordinates as
in (3.3) and (3.4) defined on D × ]− ε0, ε0[, π ≥ ε0 > 0. Let �(q)

s be the
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operator as in (3.8) and (3.7). Since ∂∂φ has constant signature (n−, n+)
at each point of D, from (3.6), we know that the Levi form L has constant
signature (n−, n+) at each point of D × ]− ε0, ε0[.

Let q = n− or n+ and let S−, S+ be the approximate Szegö kernels
defined in Theorem 3.3. Define also the approximate Szegö kernel

(3.41) S = S− + S+.

Let χ(θ), χ1(θ) ∈ C∞0 (]− ε0, ε0[), χ, χ1 ≥ 0. We assume that χ1 = 1 on
Suppχ. We take χ so that

∫
χ(θ)dθ = 1. Put

(3.42) χk(θ) = e−ikθχ(θ).

The approximate Szegö kernel was introduced in (3.41). We introduce the
localized approximate Szegö kernel Sk by

Sk : Hs
loc (D, ΛqT ∗(0,1)M) → Hs

loc (D, ΛqT ∗(0,1)M), ∀s ∈ N0,(3.43)

u(z) →
∫

eiθkχ1(θ)S(χku)(z, θ) dθ.

Let u(z) ∈ Hs
loc (D, ΛqT ∗(0,1)M), s ∈ N0. We have χk(θ)u(z) ∈ Hs

loc (D ×
]− ε0, ε0[, ΛqT ∗(0,1)X). From Theorem 3.3, we know that

S(χku) ∈ Hs
loc (D × ]− ε0, ε0[, ΛqT ∗(0,1)X).

From this, it is not difficult to see that∫
eiθkχ1(θ)S(χku)(z, θ)dθ ∈ Hs

loc (D, ΛqT ∗(0,1)M).

Thus, the localization Sk is well-defined. Since S is properly supported, Sk

is properly supported, too. Moreover, from (3.15) and (3.43), we can check
that

(3.44) Sk = O(ks) : Hs
comp (D, ΛqT ∗(0,1)M) → Hs

comp (D, ΛqT ∗(0,1)M),

for all s ∈ N0.
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Let S∗k : D ′(D, ΛqT ∗(0,1)M) → D ′(D, ΛqT ∗(0,1)M) be the formal adjoint
of Sk with respect to ( ·, ·). Then S∗k is also properly supported and we have

(3.45) S∗k : E ′(D, ΛqT ∗(0,1)M) → E ′(D, ΛqT ∗(0,1)M).

From (3.13), we have

�(q)
s ◦
( ∫

eiθkχ1(θ)S(χku)dθ
)

=
∫

eiθk
(
�(q)

b (χ1S)
)
(χku)(z, θ) dθ(3.46)

=
∫

eiθk
(
�(q)

b (χ1Sχ̃)
)
(χku)(z, θ) dθ,

where χ̃ ∈ C∞0 (]− ε0, ε0[), χ̃ = 1 on Suppχ and χ1 = 1 on Supp χ̃ and u ∈
Ω0,q

0 (D). Note that �(q)
b (χ1Sχ̃) = �(q)

b (Sχ̃)−�(q)
b ((1− χ1)Sχ̃). From The-

orem 3.3, we know that �(q)
b S is smoothing and the kernel of S is smoothing

away the diagonal. Thus, (1− χ1)Sχ̃ is smoothing. It follows that �(q)
b ((1−

χ1)Sχ̃) is smoothing. We conclude that �(q)
b (χ1Sχ̃) is smoothing. Let

K((z, θ), (w, η)) ∈ C∞ be the distribution kernel of �(q)
b (χ1Sχ̃), where w =

(w1, . . . , wn) are the local holomorphic coordinates of D and η is the coor-
dinate of ]− ε0, ε0[. From (3.46) and recall the form χk (see (3.42)), we see
that the distribution kernel of �(q)

s Sk is given by

(3.47) (�(q)
s Sk)(z, w) =

∫
ei(θ−η)kK((z, θ), (w, η))χ(η) dη dθ.

For N ∈ N, we have

∣∣∣kN (�(q)
s Sk)(z, w)

∣∣∣ = ∣∣∣∣∣
∫ ((

i
∂

∂η

)N

ei(θ−η)k

)
K((z, θ), (w, η))χ(η) dη dθ

∣∣∣∣∣
=

∣∣∣∣∣
∫

ei(θ−η)k

(
−i

∂

∂η

)N(
K((z, θ), (w, η))χ(η)

)
dη dθ

∣∣∣∣∣ .

(3.48)

Thus, (�(q)
s Sk)(z, w) = O(k−N ), locally uniformly for all N ∈ N, and simi-

larly for the derivatives. We deduce that

(3.49) �(q)
s Sk ≡ 0 mod O(k−∞).

Thus,

(3.50) S∗k�(q)
s ≡ 0 mod O(k−∞).
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Let A be the partial parametrix of �(q)
b described in Theorem 3.3. Define

the localized partial parametrix Ak by

Ak : Hs
loc (D, ΛqT ∗(0,1)M) → Hs+1

loc (D, ΛqT ∗(0,1)M), ∀s ∈ N0,(3.51)

u(z) �→
∫

eiθkχ1A(χku)(z, θ) dθ.

As above, we can show thatAk is well-defined. Since A is properly supported,
Ak is properly supported, too. Moreover, from (3.15) and (3.51), we can
check that

(3.52) Ak = O(ks) : Hs
comp (D, ΛqT ∗(0,1)M) → Hs+1

comp (D, ΛqT ∗(0,1)M),

for all s ∈ N0.
Let A∗k : D ′(D, ΛqT ∗(0,1)M) → D ′(D, ΛqT ∗(0,1)M) be the formal adjoint

of Ak with respect to ( ·, ·). We can check that

(A∗kv)(z) =
∫

χk(θ)A∗(ve−iθkχ1)(z, θ) dθ ∈ Ω0,q
0 (D),

for all v ∈ Ω0,q
0 (D). Thus, A∗k : Ω0,q

0 (D) → Ω0,q
0 (D). Moreover, as before, we

can show that

A∗k = O(ks) : Hs
comp (D, ΛqT ∗(0,1)M) → Hs+1

comp (D, ΛqT ∗(0,1)M), ∀s ∈ N0.

(3.53)

Let u ∈ Ω0,q
0 (D). From (3.13), we have

�(q)
s (Aku) = �(q)

s ◦
(∫

eiθkχ1A(χku) dθ

)
=
∫

eiθk
(
�(q)

b χ1Aχ̃)(χku)(z, θ) dθ,

where χ̃ is as in (3.46). Note that �(q)
b (χ1Aχ̃) = �(q)

b (Aχ̃)−�(q)
b ((1− χ1)

Aχ̃). From Theorem 3.3, we know that �(q)
b A + S = I and the kernel of A is

smoothing away the diagonal. Thus, (1− χ1)Aχ̃ is smoothing. It follows that
�(q)

b ((1− χ1)Aχ̃) is smoothing. We conclude that �(q)
b (χ1Aχ̃) ≡ (I − S)χ̃.
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From this, we get

�(q)
s (Aku) =

∫
eiθk(I − S)(χku)(z, θ) dθ +

∫
eiθkF (χku)(z, θ) dθ(3.54)

= u−
∫

eiθkS(χku)(z, θ) dθ +
∫

eiθkF (χku)(z, θ) dθ

= (I − Sk)u−
∫

eiθk(1− χ1)S(χku)(z, θ) dθ

+
∫

eiθkF (χku)(z, θ) dθ,

where F is a smoothing operator. We can repeat the procedure as in (3.48)
and conclude that the operator

u →
∫

eiθkF (χku)(z, θ) dθ, u ∈ Ω0,q
0 (D),

is k-negligible. Similarly, since (1− χ1)Sχ is smoothing, the operator

u →
∫

eiθk(1− χ1)S(χku)(z, θ) dθ, u ∈ Ω0,q
0 (D),

is also k-negligible. Summing up, we obtain

(3.55) �(q)
s Ak + Sk ≡ I mod O(k−∞).

We may replace Sk by I −�(q)
s Ak and we have �(q)

s Ak + Sk = I and
hence A∗k�

(q)
s + S∗k = I. Thus,

(3.56) Sk = (A∗k�(q)
s + S∗k)Sk = A∗k�(q)

s Sk + S∗kSk.

From (3.49) and (3.53), we see that

A∗k�(q)
s Sk = O(k−N ′

) : Hs
comp (D, ΛqT ∗(0,1)M) → Hs+N

comp (D, ΛqT ∗(0,1)M ′),

for all s ∈ Z and N ′, N ∈ N. Thus, A∗k�
(q)
s Sk ≡ 0 mod O(k−∞). From this

and (3.56), we get

(3.57) S∗kSk ≡ Sk mod O(k−∞).

It follows that

(3.58) Sk ≡ S∗k mod O(k−∞), S2
k ≡ Sk mod O(k−∞).
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From (3.44), (3.49), (3.50), (3.52), (3.53), (3.55), (3.57) and (3.58), we
get our main technical result:

Theorem 3.11. In the situation of Setup 3.9 let q = n− or n+ and let Sk

be the localized approximate Szegö kernel (3.43) and Ak the localized partial
parametrix (3.51). Then,

Sk = O(ks) : Hs
comp (D, ΛqT ∗(0,1)M) → Hs

comp (D, ΛqT ∗(0,1)M), ∀s ∈ N0,

Ak = O(ks) : Hs
comp (D, ΛqT ∗(0,1)M) → Hs+1

comp (D, ΛqT ∗(0,1)M), ∀s ∈ N0,

(3.59)

and we have

�(q)
s Sk ≡ 0 mod O(k−∞), S∗k�(q)

s ≡ 0 mod O(k−∞),(3.60)

Sk ≡ S∗k mod O(k−∞), Sk ≡ S2
k ≡ S∗kSk mod O(k−∞),(3.61)

S∗k +A∗k�(q)
s ≡ I mod O(k−∞), Sk + �(q)

s Ak ≡ I mod O(k−∞),
(3.62)

where S∗k and A∗k are the formal adjoints of Sk and Ak with respect to ( ·, ·)
respectively and �(q)

s is given by (3.8) and (3.7).

We notice that Sk, S∗k , Ak, A∗k, are all properly supported. We need

Theorem 3.12. The localized approximate Szegö kernel Sk given by (3.43)
is a smoothing operator. Moreover, if q = n−, then the kernel of Sk satisfies

(3.63) Sk(z, w) ≡ eikΨ(z,w)b(z, w, k) mod O(k−∞),

with

b(z, w, k) ∈ Sn
loc

(
1; D ×D, ΛqT ∗(0,1)

w M � ΛqT ∗(0,1)
z M

)
,

b(z, w, k) ∼
∞∑

j=0

bj(z, w)kn−j in Sn
loc

(
1; D ×D, ΛqT ∗(0,1)

w M � ΛqT ∗(0,1)
z M

)
,

bj(z, w) ∈ C∞
(
D ×D, ΛqT ∗(0,1)

w M � ΛqT ∗(0,1)
z M

)
, j = 0, 1, 2, . . . ,

(3.64)

and Ψ(z, w) is as in Theorem 3.8.
If q = n+, n− �= n+, then

(3.65) Sk(z, w) ≡ 0 mod O(k−∞).
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Proof. Theorem 3.12 essentially follows from the stationary phase formula
of Melin–Sjöstrand [54]. Let D, s, φ be as in Setup 3.9. Let q = n− or n+.
Let (z, θ) = x = (x′, x2n+1) be the local coordinates as in (3.3), (3.4) defined
on D × ]− ε0, ε0[. We identify x′ with (x′, 0). If we denote the holomorphic
coordinates of D by wj = y2j−1 + iy2j , j = 1, . . . , n, and by η the coordinate
of ]− ε0, ε0[, we also write

(w, η) = (y′, η) = y, y′ = (y1, . . . , y2n).

From Definition (3.43) of Sk and Theorem 3.3, we see that the distribution
kernel of Sk is given by

Sk(x′, y′) ≡
∫

t≥0
eiϕ−(x,y)t+iθk−iηks−(x, y, t)χ1(θ)χ(η) dθ dt dη

+
∫

t≥0
eiϕ+(x,y)t+iθk−iηks+(x, y, t)χ1(θ)χ(η) dθ dt dη mod O(k−∞)

≡ I0(x′, y′) + I1(x′, y′) mod O(k−∞),

(3.66)

where the integrals above are defined as oscillatory integrals. First, we study
the kernel

I1(x′, y′) =
∫

t≥0
eiϕ+(x,y)t+iθk−iηks+(x, y, t)χ1(θ)χ(η) dθ dt dη.

By the change of variables t = kσ we get

I1(x′, y′) =
∫

σ≥0
eik
(
ϕ+(x,y)σ+θ−η

)
ks+(x, y, kσ)χ1(θ)χ(η) dθ dσ dη.

Note that dxϕ+(x, x) = ω0(x). Taking into account the form ω0(x) (cf. (3.5)),
we see that ∂ϕ+

∂θ (x, x) = 1. In view of Theorem 3.3, we see that ϕ+(x, y) = 0
if and only if x = y. We conclude that(

dσ(ϕ+(x, y)σ + θ − η), dθ(ϕ+(x, y)σ + θ − η)
)
�=
(
0, 0
)
, σ ≥ 0.

Thus, we can integrate by parts in σ and θ and conclude that I1 is smoothing
and

(3.67) I1 ≡ 0 mod O(k−∞).

Now, we study the kernel

I0(x′, y′) =
∫

t≥0
eiϕ−(x,y)t+iθk−iηks−(x, y, t)χ1(θ)χ(η) dθ dt dη.
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As before, by letting t = kσ, we get

(3.68) I0(x′, y′) =
∫

σ≥0
eik
(
ϕ−(x,y)σ+θ−η

)
ks−(x, y, kσ)χ1(θ)χ(η) dθ dσ dη.

In view of (3.37), we see that

(3.69) ϕ−(x, y) = Ψ(x′, y′) + η − θ, Im Ψ(x′, y′) ≥ 0.

Put

(3.70) Ψ(x, y, σ) = (Ψ(x′, y′) + η − θ)σ + θ − η.

Let ϕ(σ) ∈ C∞0 (R+) with ϕ(σ) = 1 in some small neighbourhood of 1. We
introduce the cut-off functions ϕ(σ) and 1− ϕ(σ) in the integral (3.68):

I0
0 (x′, y′) :=

∫
σ≥0

eikΨ(x,y,σ)ϕ(σ)ks−(x, y, kσ)χ1(θ)χ(η) dθ dσ dη,(3.71)

I1
0 (x′, y′) :=

∫
σ≥0

eikΨ(x,y,σ)(1− ϕ(σ))ks−(x, y, kσ)χ1(θ)χ(η) dθ dσ dη,

(3.72)

so that

I0(x′, y′) = I0
0 (x′, y′) + I1

0 (x′, y′).

First, we study I1
0 (x′, y′). Note that when σ �= 1, dθΨ(x, y, σ) = 1− σ �= 0.

Thus, we can integrate by parts and get that I1
0 is smoothing and I1

0 (x′, y′) ≡
0 mod O(k−∞).

Next, we study the kernel I0
0 (x′, y′). First, we assume that q = n+, n+ �=

n−. In view of Theorem 3.3, we see that s−(x, y, t) vanishes to infinite order
at x = y. From this observation, it is straightforward to see that I0

0 ≡ 0
mod O(k−∞). Therefore, we get (3.65).

Now, we assume that q = n−. Since the integral (3.71) converges, we
have

I0
0 (x′, y′) =

∫
H(x′, y)χ(η) dη,

H(x′, y) =
∫

σ≥0
eikΨ(x,y,σ)ϕ(σ)ks−(x, y, kσ)χ1(θ) dθ dσ.

(3.73)

Recalling the form of Ψ(x, y, σ), we have Im Ψ(x, y, σ) ≥ 0, dσΨ(x, y, σ) = 0
if and only if x = y and dθΨ(x, y, σ)|x=y = 1− σ. Thus, x = y and σ = 1 are
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real critical points. Moreover, we can check that the Hessian of Ψ(x, y, σ) at
x = y, σ = 1, is given by(

Ψ′′σσ(x, x, 1) Ψ′′θσ(x, x, 1)
Ψ′′σθ(x, x, 1) Ψ′′θθ(x, x, 1)

)
=
(

0 −1
−1 0

)
.

Thus, Ψ(x, y, σ) is a non-degenerate complex valued phase function in the
sense of Melin–Sjöstrand [54]. Let

Ψ̃(x̃, ỹ, σ̃) :=
(
Ψ̃(x̃′, ỹ′) + (η̃ − θ̃)

)
σ̃ + θ̃ − η̃

be an almost analytic extension of Ψ(x, y, σ), where Ψ̃(x̃′, ỹ′) is an almost
analytic extension of Ψ(x′, y′) (with Ψ(x′, y′) as in (3.69)) and similarly for
η̃, θ̃ and σ̃ (see [54, Section 2] for the precise meaning of the almost analytic
extension). We can check that given η and (x′, y′), θ̃ = η + Ψ(x′, y′), σ̃ = 1
are the solutions of

∂Ψ̃
∂σ̃

= 0,
∂Ψ̃

∂θ̃
= 0.

From this and by the stationary phase formula of Melin–Sjöstrand [54], we
get

(3.74) H(x′, y) ≡ eikΨ(x′,y′)a(x′, y, k) mod O(k−∞),

where a(x′, y, k) ∈ C∞
(
D × (D × ]− ε0, ε0[), ΛqT ∗(0,1)M � ΛqT ∗(0,1)M

)
,

a(x′, y, k) ∼
∞∑

j=0

kn−jaj(x′, y)

in Sn
loc

(
1; D × (D × ]− ε0, ε0[), ΛqT ∗(0,1)M � ΛqT ∗(0,1)M

)
,

aj(x′, y) ∈ C∞
(
D × (D × ]− ε0, ε0[), ΛqT ∗(0,1)M � ΛqT ∗(0,1)M

)
, j ∈ N0,

and

(3.75) a0(x′, y) = 2πs̃0
−
(
(x′, η + Ψ(x′, y′)), y

)
,

where s̃0− is an almost analytic extension of s0−, s0− is as in (3.16). From
(3.73) and (3.74) we get

(3.76) I0
0 (x′, y′) ≡ eikΨ(x′,y′)b(x′, y′, k) mod O(k−∞),
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where

b(x′, y′, k) ∼
∞∑

j=0

kn−jbj(x′, y′) in Sn
loc (1; D ×D, ΛqT ∗(0,1)M � ΛqT ∗(0,1)M),

with

bj(x′, y′)

=
∫

aj(x′, y)χ(η)dη ∈ C∞(D ×D, ΛqT ∗(0,1)M � ΛqT ∗(0,1)M), j ∈ N0.

(3.77)

Theorem 3.12 follows. �
Let D, s, φ be as in Setup 3.9. In view of Theorem 3.11 and (3.65), we

see that when q = n+, n+ �= n−, we have

(3.78) �(q)
s Ak ≡ I mod O(k−∞),

where Ak is as in Theorem 3.11.
Now, we assume that q �= n−, n+. Using Theorem 3.2 and repeating the

proof of Theorem 3.11 we conclude that there exists a properly supported
continuous operator

Ak = O(ks) : Hs
comp (D, ΛqT ∗(0,1)M) → Hs+1

comp (D, ΛqT ∗(0,1)M), ∀s ∈ N0,

such that

(3.79) �(q)
s Ak ≡ I mod O(k−∞).

Summing up, we obtain

Theorem 3.13. In the situation of Setup 3.9 let q �= n−. Then, there exists
a properly supported continuous operator

Ak = O(ks) : Hs
comp (D, ΛqT ∗(0,1)M) → Hs+1

comp (D, ΛqT ∗(0,1)M), ∀s ∈ N0,

such that
�(q)

s Ak ≡ I mod O(k−∞).

Remark 3.14. From Remark 3.5, we can generalize Theorem 3.11 and
Theorem 3.13 with essentially the same proofs to the case when the forms
take values in Lk ⊗ E, for a given holomorphic vector bundle E over M .



Asymptotics of spectral function of lower energy 45

We have the following

Theorem 3.15. In the situation of Setup 3.9 let q = n−. For a given point
p ∈ D, let V1, . . . , Vn be an orthonormal frame of T (1,0)M in a neighbourhood
of p, for which ṘL is diagonalized at p, namely,

ṘL(p)Vj(p) = λj(p)Vj(p), j = 1, . . . , n,

λj(p) < 0, j = 1, . . . , q,

λj(p) > 0, j = q + 1, . . . , n.

Let (Tj)n
j=1 denote the basis of T ∗(0,1)M , which is dual to (V j)n

j=1. Then,

b0(p, p) = (2π)−n
∣∣∣det ṘL(p)

∣∣∣ q∏
j=1

(Tj(p)∧) ◦ (Tj(p)∧)∗(3.80)

= (2π)−n
∣∣ det ṘL(p)

∣∣Idet W
∗ ,

where Idet W
∗ ∈ End(ΛqT ∗(0,1)M) is as in the discussion after (1.2).

Proof. We use the same notations as in the proof of Theorem 3.12. From
(3.75) and (3.77), we have

(3.81) b0(x′, x′) = 2π

∫
s0
−
(
(x′, η), (x′, η)

)
χ(η) dη.

In view of Theorem 3.7, we know that
(3.82)

s0
−
(
(x′, η), (x′, η)

)
=

1
2

∣∣μ1(x′)
∣∣ · · · ∣∣μn(x′)

∣∣π−n−1

n−∏
j=1

(Tj(x′)∧) ◦ (Tj(x′)∧)∗,

where {μj(x′)}n
j=1 are the eigenvalues of Lx′ and {Tj(x′)}n

j=1 are as in The-
orem 3.7. Here, we identify x′ ∈ D with (x′, 0) ∈ X. Note that

(3.83) |μ1(p)| · · · |μn(p)| = 2−n |λ1(p)| · · · |λn(p)| = 2−n
∣∣∣det ṘL(p)

∣∣∣ .
Now, (3.6), (3.81), (3.82) and (3.83) yield (3.80). �

4. Asymptotic expansion of the spectral function for lower
energy forms

Let (M, Θ) be a Hermitian manifold and let (L, hL) be a Hermitian holomor-
phic line bundle on M . We recall that (cf. (1.3)) E q

k−N0 (M, Lk) denote the
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spectral space of �(q)
k corresponding to energy less than k−N0 . In the present

Section we study the asymptotic expansion of the spectral function associ-
ated to E q

k−N0 (M, Lk). In Section 4.1 we prove pointwise upper bounds for
the eigenforms of the spectral spaces E q

k−N0 (M, Lk) in terms of their L2-norm
(Theorem 4.3). In Section 4.2 we compare the localized spectral projection
with the localized approximate Szegö projection Sk. In Section 4.3, we apply
this results to prove the asymptotic expansion of the spectral function and
thus give the proof of Theorem 1.1. In Section 4.4, we exhibit the asymptotic
expansion of the Bergman kernel and prove Theorem 1.6. Finally, in Sec-
tion 4.5, we calculate the coefficients b0

1 and b0
2 and thus prove Theorem 1.2.

4.1. Asymptotic upper bounds

Fix N0 ≥ 1. In this Section we will give pointwise upper bounds for u and
∂αu, where u ∈ E q

k−N0 (M, Lk).
Let D � M be a chart domain such that L|D is trivial. Let s be a local

frame of L on D and set |s|2hL = e−2φ. Let (, )kφ be the inner product on the
space Ω0,q

0 (D) defined as follows:

(f, g)kφ =
∫

D
〈 f, g 〉e−2kφdvM (x), f, g ∈ Ω0,q

0 (D).

Let ∂
∗,kφ : Ω0,q+1(D) → Ω0,q(D) be the formal adjoint of ∂ with respect to

(, )kφ. Put �(q)
kφ = ∂ ∂

∗,kφ + ∂
∗,kφ

∂ : Ω0,q(D) → Ω0,q(D). Let u ∈ Ω0,q(D, Lk).
On D, we write u = skũ, ũ ∈ Ω0,q(D). We have

(4.1) �(q)
k u = sk�(q)

kφ ũ.

Fix p ∈ D and consider local coordinates (D, z) ∼= (D, x), such that x(p) =
z(p) = 0 and φ(z) = O(|z|2) near p. Let Fk(z) := z√

k
be the scaling map.

For r > 0, let Dr = {x; |xj | < r, j = 1, . . . , 2n}. Let f ∈ Ω0,q(D log k√
k

), f =∑′
|J |=q fJdzJ . We define the scaled form F ∗k f ∈ Ω0,q(Dlog k) by

F ∗k f =
∑′

|J |=q

fJ

(
k−1/2z

)
dzJ ∈ Ω0,q(Dlog k).

Let �(q)
kφ,(k) : Ω0,q(Dlog k) → Ω0,q(Dlog k) be the scaled Laplacian defined by

(4.2) �(q)
kφ,(k)(F

∗
k u) =

1
k
F ∗k (�(q)

kφu), u ∈ Ω0,q(D log k√
k

).
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By Berman [1, Section 2] and Hsiao–Marinescu [43, Section 2] it is known
all the derivatives of the coefficients of the operator �(q)

kφ,(k) are uniformly
bounded in k on Dlog k. Let Dr ⊂ Dlog k and let W s

kF ∗k φ(Dr, ΛqT ∗(0,1)M),
s ∈ N0, denote the Sobolev space of order s of sections of ΛqT ∗(0,1)M over
Dr with respect to the weight e−2kF ∗k φ. The Sobolev norm on this space is
given by

‖u‖2
kF ∗k φ,s,Dr

=
∑′

α∈N2n
0 ,|α|≤s,|J |=q

∫
Dr

|∂α
x uJ |2 e−2kF ∗k φ(F ∗m)(x) dx,

where u =
∑′
|J |=q uJdzJ ∈ W s

kF ∗k φ(Dr, ΛqT ∗(0,1)M) and m(x)dx is the vol-
ume form. If s = 0, we write ‖·‖kF ∗k φ,Dr

to denote ‖·‖kF ∗k φ,0,Dr
.

Lemma 4.1. For every r > 0 with D2r ⊂ Dlog k and s ∈ N0, there is a con-
stant Cr,s > 0 independent of k, such that for every u ∈ Ω0,q(Dlog k),

(4.3) ‖u‖2
kF ∗k φ,2s,Dr

� Cr,s

(
‖u‖2

kF ∗k φ,D2r
+

s∑
m=1

∥∥(�(q)
kφ,(k))

mu
∥∥2

kF ∗k φ,D2r

)
.

Proof. Since �(q)
kφ,(k) is elliptic, we conclude from G̊arding’s inequality that

for every r > 0, D2r ⊂ Dlog k and s ∈ N0, we have for every u ∈ Ω0,q(Dlog k),

(4.4) ‖u‖2
kF ∗k φ,s+2,Dr

� C̃r′,s

(
‖u‖2

kF ∗k φ,Dr′
+
∥∥�(q)

kφ,(k)u
∥∥2

kF ∗k φ,s,Dr′

)
,

for some r′ > r. Since all the derivatives of the coefficients of the operator
�(q)

kφ,(k) are uniformly bounded in k, it is straightforward to see that C̃r′,s

can be taken to be independent of k. (See Proposition 2.4 and Remark 2.5
in Hsiao–Marinescu [43].) From (4.4) and using induction, we get (4.3). �

Lemma 4.2. For k large and for every α ∈ N2n
0 , there is a constant Cα > 0

independent of k, such that

(4.5) |(∂α
x u)(0)| ≤ Cα,

where u ∈ Ω0,q(Dlog k), ‖u‖kF ∗k φ,Dlog k
≤ 1 and

∥∥∥(�(q)
kφ,(k))

mu
∥∥∥

kF ∗k φ,Dlog k

≤ k−m, ∀m ∈ N0.

Proof. Let u ∈ Ω0,q(Dlog k), ‖u‖kF ∗k φ,Dlog k
≤ 1,

∥∥∥(�(q)
kφ,(k))

mu
∥∥∥

kF ∗k φ,Dlog k

≤ k−m, ∀m ∈ N0. By using Fourier transform, it is easy to see that (cf.
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Lemma 2.6 in [43])

(4.6) |(∂α
x u)(0)| ≤ C ‖u‖kF ∗k φ,n+1+|α|,Dr

,

for some r > 0, where C > 0 only depends on the dimension and the length
of α. From (4.3), we see that

‖u‖2
kF ∗k φ,n+1+|α|,Dr

≤ Cr,α

(
‖u‖2

kF ∗k φ,D2r
+

N∑
m=1

∥∥∥(�(q)
kφ,(k))

mu
∥∥∥

kF ∗k φ,D2r

)(4.7)

≤ Cr,α

(
1 +

∞∑
m=1

k−m

)
≤ C̃α

if k large, where 2N ≥ n + 1 + |α| and C̃α > 0 is independent of k. Combin-
ing (4.6) with (4.7), (4.5) follows. �

Now, we can prove

Theorem 4.3. For k large and for every α ∈ N
2n
0 , D′ � D, there is a con-

stant Cα,D′ > 0 independent of k, such that

(4.8)
∣∣∣(∂α

x (ũe−kφ))(x)
∣∣∣ ≤ Cα,D′k

n

2
+|α| ‖u‖ , ∀x ∈ D′,

where u ∈ E q
k−N0 (M, Lk), N0 ≥ 1, u|D = skũ, ũ ∈ Ω0,q(D).

Remark 4.4. Let s1 be another local frame of L on D, |s1|2 = e−2φ1 . We
have s1 = gs for some holomorphic function g ∈ C∞(D), g �= 0 on D. Let
u ∈ Ω0,q(D, Lk). On D, we write u = skũ = sk

1 ṽ. Then, we can check that

(4.9) ṽe−kφ1 = ũ(g 1/2g−1/2)ke−kφ.

From (4.9), it is easy to see that if ũ satisfies (4.8), then ṽ also satisfies (4.8).
Thus, the conclusion of Theorem 4.3 makes sense.

Proof of Theorem 4.3. We may assume that 0 ∈ D′. Let u ∈ E q
k−N0 (M, Lk),

N0 ≥ 1, u|D = skũ, ũ ∈ Ω0,q(D). We may assume that D log k√
k

⊂ D and con-

sider ũ|D log k√
k

. Set βk := k−
n

2 F ∗k ũ = k−
n

2 ũ( x√
k
) ∈ Ω0,q(Dlog k). We can check
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that

(4.10) ‖βk‖kF ∗k φ,Dlog k
≤ ‖u‖ .

Since u ∈ E q
k−N0 (M, Lk), we have

∥∥∥(�(q)
k )mu

∥∥∥ ≤ k−mN0 ‖u‖ for all m ∈ N.
From this observation and (4.2), we have∥∥∥(�(q)

kφ,(k))
mβk

∥∥∥
kF ∗k φ,Dlog k

=
1

km+ n

2

∥∥∥F ∗k ((�(q)
kφ )mũ

)∥∥∥
kF ∗k φ,Dlog k

(4.11)

≤ 1
km

∥∥∥(�(q)
k )mu

∥∥∥ ≤ k−mN0−m ‖u‖ .

From (4.10), (4.11) and Lemma 4.2, we conclude that for every α ∈ N
2n
0 ,

there is a constant C̃α > 0 independent of k, such that∣∣∣k−n

2
− |α|

2 (∂α
x ũ)(0)

∣∣∣ = |(∂α
x βk)(0)| ≤ C̃α ‖u‖ .

Thus, for every α ∈ N2n
0 , there is a constant Cα > 0 independent of k, such

that ∣∣∣(∂α
x (ũe−kφ))(0)

∣∣∣ ≤ Cαk
n

2
+|α| ‖u‖ .

Let x0 be another point of D′. We can repeat the procedure above and
conclude that for every α ∈ N

2n
0 , there is a Cα(x0) > 0 independent of k,

such that ∣∣∣(∂α
x (ũe−kφ))(x0)

∣∣∣ ≤ Cα(x0)k
n

2
+|α| ‖u‖ .

It is straightforward to see that the constant Cα(x0) depends continuously
on φ and the coefficients of �(q)

kφ,(k) in C m(D) topology, for some m ∈ N0.

(See Remark 2.5 and Theorem 2.7 in [43], for the details.) Since D
′ ⊂ D

is compact, Cα(x0) can be taken to be independent of the point x0. The
theorem follows. �

4.2. Kernel of the spectral function

As in (1.4), let

P
(q)
k,k−N0 : L2

(0,q)(M, Lk) → E q
k−N0 (M, Lk)

be the spectral projection on the spectral space of �(q)
k corresponding to

energy less than k−N0 . The goal of this Section is to compare the localized
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spectral projection P̂
(q)
k,k−N0 ,s (see (4.18)) to the localized approximate Szegö

projection Sk defined in (3.43). This will be achieved in Proposition 4.10.
We introduce some notations. Let (e1, . . . , en) be a smooth local

orthonormal frame of T
∗(0,1)
x M over an open set D � M . Then (eJ := ej1 ∧

· · · ∧ ejq
)1�j1<j2<···<jq�n is an orthonormal frame of ΛqT

∗(0,1)
x M over D. For

f ∈ Ω0,q(D), we may write f =
∑′
|J |=q fJeJ , with fJ = 〈 f, eJ 〉 ∈ C∞(D).

We call fJ the component of f along eJ . Let A : Ω0,q
0 (D) → Ω0,q(D) be a

continuous operator with smooth kernel. We write

(4.12) A(x, y) =
∑′

|I|=q,|J |=q

eI(x)AI,J(x, y)eJ(y), AI,J ∈ C∞(D ×D).

We have

(4.13) (Au)(x) =
∑′

|I|=q,|J |=q

eI(x)
∫

D
AI,J(x, y)uJ(y) dvM (y),

for all u =
∑′
|J |=q uJeJ ∈ Ω0,q

0 (D). Let A∗ be the formal adjoint of A with
respect to ( ·, ·). We can check that

(4.14) A∗(x, y) =
∑′

|I|=q,|J |=q

eI(x)A∗I,J(x, y)eJ(y), A∗I,J(x, y) = AJ,I(y, x),

Let

B : Ω0,q(D) → Ω0,q(D), Ω0,q
0 (D) → Ω0,q

0 (D),

B(x, y) =
∑′

|I|=q,|J |=q

eI(x)BI,J(x, y)eJ(y),

be a properly supported smoothing operator. We write

(B ◦A)(x, y) =
∑′

|I|=q,|J |=q

eI(x)(B ◦A)I,J(x, y)eJ(y)

in the sense of (4.13). It is not difficult to see that

(4.15) (B ◦A)I,J(x, y) =
∑′

|K|=q

∫
D

BI,K(x, z)AK,J(z, y) dvM (z).

Now, we return to our situation. Let

P
(q)
k,λ(x, y) ∈ C∞

(
M ×M, (ΛqT ∗(0,1)

y M ⊗ Lk
y) � (ΛqT ∗(0,1)

x M ⊗ Lk
x)
)
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be the spectral function, i.e., the Schwartz kernel of P
(q)
k,λ:

(4.16) (P (q)
k,λu)(x) =

∫
M

P
(q)
k,λ(x, y)u(y)dvM (y), u ∈ L2

(0,q)(M, Lk).

Let s be a local frame of L over D, where D ⊂ M . Then on D ×D we can
write

P
(q)
k,λ(x, y) = s(x)kP

(q)
k,λ,s(x, y)s∗(y)k,

where P
(q)
k,λ,s(x, y) is smooth on D ×D, so that for x ∈ D, u ∈ Ω0,q

0 (D, Lk),

(P (q)
k,λu)(x) = s(x)k

∫
M

P
(q)
k,λ,s(x, y)〈u(y), s∗(y)k〉 dvM (y)

= s(x)k

∫
M

P
(q)
k,λ,s(x, y)ũ(y)dvM (y), u = skũ, ũ ∈ Ω0,q

0 (D).

(4.17)

For x = y, we can check that P
(q)
k,λ,s(x, x) ∈ C∞(D, End(ΛqT ∗(0,1)M)) is inde-

pendent of the choices of local frame s.
Let D � M be an open set. Assume that L|D is trivial and let s be a

local frame of L on D and set |s|2hL = e−2φ. Let (D, z) ∼= (D, x) be local
coordinates of D. Fix N0 ≥ 1. We define the localized spectral projection
(with respect to the trivializing section s) by

P̂
(q)
k,k−N0 ,s : L2

(0,q)(D) ∩ E ′(D, ΛqT ∗(0,1)M) → Ω0,q(D),

(4.18)

u → e−kφs−kP
(q)
k,k−N0 (s

kekφu).

That is, if P
(q)
k,k−N0 (s

k ekφu) = skv on D, then P̂
(q)
k,k−N0 ,su = e−kφv. We notice

that

(4.19) P̂
(q)
k,k−N0 ,s(x, y) = e−kφ(x)P

(q)
k,k−N0 ,s(x, y) ekφ(y),

where P̂
(q)
k,k−N0 ,s(x, y) is the kernel of P̂

(q)
k,k−N0 ,s with respect to ( ·, ·) and

P
(q)
k,k−N0 ,s(x, y) is as in (4.17). We write

(4.20) P̂
(q)
k,k−N0 ,s(x, y) =

∑′

|I|=q,|J |=q

eI(x)P̂ (q)
k,k−N0 ,s,I,J(x, y)eJ(y)
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in the sense of (4.13), where P
(q)
k,k−N0 ,s,I,J ∈ C∞(D ×D). Since P

(q)
k,k−N0 is

self-adjoint, we have

(4.21) P̂
(q)
k,k−N0 ,s,I,J(x, y) = P̂

(q)
k,k−N0 ,s,J,I(y, x),

for all strictly increasing I, J with |I| = |J | = q.
Let {fj}dk

j=1 ⊂ Ω0,q(M, Lk) be an orthonormal frame for E q
k−N0 (M, Lk),

dk ∈ N0
⋃ {∞}. For each j, we write

fj |D =
∑′

|J |=q

fj,J(x)eJ(x), fj,J ∈ C∞(D, Lk).

For j = 1, . . . , dk and strictly increasing J with |J | = q we define f̃j,J ∈
C∞(D) and f̃j ∈ Ω0,q(D) by

fj,J = skf̃j,J , f̃j =
∑′

|J |=q

f̃j,J(x)eJ(x).

Then, fj |D = skf̃j , j = 1, . . . , dk, and it is not difficult to see that

(4.22) P̂
(q)
k,k−N0 ,s,I,J(x, y) =

dk∑
j=1

f̃j,I(x)f̃j,J(y) e−k(φ(x)+φ(y)),

for all strictly increasing I, J with |I| = |J | = q. Since P̂
(q)
k,k−N0 ,s,I,J are

smooth for all strictly increasing I, J , |I| = |J | = q, we conclude that for
all α ∈ N2n

0 ,

(4.23)
∑dk

j=1

∣∣∣(∂α
x (f̃je−kφ))(x)

∣∣∣2 converges at each point of x ∈ D.

Similarly, if F : E ′(D, ΛqT ∗(0,1)M) → E ′(D, ΛqT ∗(0,1)M) is a properly sup-
ported continuous operator such that for all s ∈ N0,

F : Hs
comp (D, ΛqT ∗(0,1)M) → Hs+s0

comp (D, ΛqT ∗(0,1)M)

is continuous, for some s0 ∈ R. Then, we can check that

(4.24)
∑dk

j=1

∣∣∣(F (f̃je−kφ))(x)
∣∣∣2 converges at each point of x ∈ D.
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Proposition 4.5. With the notations used above, for every α ∈ N
2n
0 , D′ �

D, there is a constant Cα,D′ > 0 independent of k, such that

(4.25)
dk∑

j=1

∣∣∣(∂α
x (f̃je−kφ))(x)

∣∣∣2 ≤ Cα,D′k
n+2|α|, ∀x ∈ D′.

Proof. Fix α ∈ N2n
0 and p ∈ D′. We may assume that

dk∑
j=1

∣∣∣(∂α
x (f̃je−kφ))(p)

∣∣∣2 �= 0.

Set

u(x) =
1√∑dk

j=1

∣∣∣(∂α
x (f̃je−kφ))(p)

∣∣∣2
dk∑

j=1

fj(x)(∂α
x (f̃je−kφ))(p).

Since
∑dk

j=1

∣∣∣(∂α
x (f̃je−kφ))(p)

∣∣∣2 converges, it is easy to check that

u ∈ E q
k−N0 (M, Lk), ‖u‖ = 1.

On D, we write u = skũ, ũ ∈ Ω0,q(D). We can check that

(4.26) ũ =
1√∑dk

j=1

∣∣∣(∂α
x (f̃je−kφ))(p)

∣∣∣2
dk∑

j=1

f̃j(x)(∂α
x (f̃je−kφ))(p).

In view of Theorem 4.3, we see that
∣∣(∂α

x (ũe−kφ))(p)
∣∣ ≤ Cαk

n

2
+|α|, with Cα >

0 independent of k and of the point p. From (4.26), it is straightforward to
see that

∣∣∣(∂α
x (ũe−kφ))(p)

∣∣∣ =
√√√√ dk∑

j=1

∣∣∣(∂α
x (f̃je−kφ))(p)

∣∣∣2 ≤ Cαk
n

2
+|α|.

The proposition follows. �

Now, assume that ∂∂φ is non-degenerate of constant signature (n−, n+)
at each point of D and let q = n−. Let Sk, Ak be as in Theorem 3.11 and let
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�(q)
s be as in (3.8), (3.7). If we replace Sk by I −�(q)

s Ak, then �(q)
s Ak + Sk =

I = A∗k�
(q)
s + S∗k on D ′(D, ΛqT ∗(0,1)M). Now,

(4.27)
P̂

(q)
k,k−N0 ,s = (A∗k�(q)

s +S∗k)P̂ (q)
k,k−N0 ,s = R +S∗k P̂

(q)
k,k−N0 ,s on E ′(D, ΛqT ∗(0,1)M),

where we denote

R = A∗k�(q)
s P̂

(q)
k,k−N0 ,s.

We write

R(x, y) =
∑′

|I|=q,|J |=q

eI(x)RI,J(x, y)eJ(y), RI,J ∈ C∞(D ×D),

in the sense of (4.13). From (4.22), it is straightforward to see that

RI,J(x, y) =
dk∑

j=1

g̃j,I(x)f̃j,J(y)e−kφ(y),

g̃j = A∗k�(q)
s (f̃je−kφ)(x), g̃j(x) =

∑′

|I|=q

g̃j,I(x)eI(x), j = 1, . . . , dk,

(4.28)

for all strictly increasing I, J , |I| = |J | = q. From (4.24), we see that for all
α ∈ N

2n
0 , ∑dk

j=1 |(∂α
x g̃j)(x)|2 converges at each point of x ∈ D.

To estimate RI,J(x, y), we first need

Lemma 4.6. With the notations used above, for every D′ � D, α ∈ N2n
0 ,

there is a constant Cα,D′ > 0 independent of k, such that for all u ∈ E q
k−N0

(M, Lk), ‖u‖ = 1, u|D = skũ, ũ ∈ Ω0,q(D), if we set ṽ(x) = A∗k�
(q)
s (ũe−kφ),

then

|(∂α
x ṽ)(x)| ≤ Cα,D′k

5n

2
+2|α|−N0 , ∀x ∈ D′.

Proof. Let u ∈ E q
k−N0 (M, Lk), ‖u‖ = 1, u|D = skũ, ũ ∈ Ω0,q(D). Set ṽ(x) =

A∗k�
(q)
s (ũe−kφ). We recall that

(4.29)
A∗k : O(ks) : Hs

comp (D, ΛqT ∗(0,1)M) → Hs+1
comp (D, ΛqT ∗(0,1)M), ∀s ∈ N0.
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Let D′ � D′′ � D. By using Fourier transforms, we see that for all x ∈ D′,
we have

|(∂α
x ṽ)(x)| ≤ Cα ‖ṽ‖n+1+|α|,D′′ ,

where Cα only depends on the dimension and the length of α. Here ‖.‖s,D′′

denotes the usual Sobolev norm of order s on D′′. From this observation and
(4.29), we see that

(4.30) |(∂α
x ṽ)(x)| ≤ Cα ‖ṽ‖n+1+|α|,D′′ ≤ C ′αkn+|α|

∥∥∥�(q)
s (ũe−kφ)

∥∥∥
n+|α|,D′′

,

where C ′α > 0 is independent of k. Let �(q)
k u = f , f |D = skf̃ , f̃ ∈ Ω0,q(D).

We can check that f ∈ E q
k−N0 (M, Lk) and ‖f‖ ≤ k−N0 . From (3.8), we see

that

(4.31) �(q)
s (e−kφũ) = e−kφf̃ .

In view of Theorem 4.3, we know that for all β ∈ N2n
0 ,∣∣∣∂β

x (�(q)
s (e−kφũ))

∣∣∣ = ∣∣∣∂β
x (e−kφf̃)

∣∣∣ ≤ Cβk
n

2
+|β| ‖f‖ ≤ Cβk

n

2
+|β|−N0 on D′′,

where Cβ > 0 is independent of k. Thus,

(4.32)
∥∥∥�(q)

s (e−kφũ)
∥∥∥

n+|α|,D′′
≤ C̃αk

3n

2
+|α|−N0 ,

where C̃α > 0 is independent of k. Combining (4.32) with (4.30), the lemma
follows. �

Lemma 4.7. Let g̃j(x) ∈ Ω0,q(D), j = 1, . . . , dk, be as in (4.28). For every
D′ � D, α ∈ N2n

0 , there is a constant Cα > 0 independent of k, such that for
all x ∈ D′

dk∑
j=1

|(∂α
x g̃j)(x)|2 ≤ Cαk5n+4|α|−2N0 .

Proof. Fix α ∈ N2n
0 and p ∈ D′. We may assume that

∑dk

j=1 |(∂α
x g̃j)(p)|2 �= 0.

Set

h(x) =
1√∑dk

j=1 |(∂α
x g̃j)(p)|2

dk∑
j=1

fj(x)(∂α
x g̃j)(p).
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Since
∑dk

j=1 |(∂α
x g̃j)(p)|2 converges, we can check that h ∈ E q

k−N0 (M, Lk),
‖h‖ = 1. On D, we write h = skh̃. We can check that

A∗k�(q)
s (h̃e−kφ) =

1√∑dk

j=1 |(∂α
x g̃j)(p)|2

dk∑
j=1

g̃j(x)(∂α
x g̃j)(p).

In view of Lemma 4.6, we see that

∣∣∣∂α
x (A∗k�(q)

s (h̃e−kφ))(p)
∣∣∣ =

√√√√ dk∑
j=1

|(∂α
x g̃j)(p)|2 ≤ Cαk

5n

2
+2|α|−N0 ,

where Cα > 0 is independent of k and the point p. The lemma follows. �

Now, we can prove

Proposition 4.8. With the notations used above, for every D′ � D, α, β ∈
N

2n
0 , there is a constant Cα,β > 0 independent of k, such that

(4.33)
∣∣∣(∂α

x ∂β
y RI,J)(x, y)

∣∣∣ ≤ Cα,βk3n+2|α|+|β|−N0 , ∀(x, y) ∈ D′ ×D′,

for all strictly increasing I, J , |I| = |J | = q, where RI,J(x, y) is as in (4.28).

Proof. Fix p ∈ D′ and J strictly increasing, |J | = q. Let α, β ∈ N2n
0 . We may

assume that
∑dk

j=1

∣∣∣(∂β
y (f̃j,Je−kφ))(p)

∣∣∣2 �= 0. Put

(4.34) u(x) =
1√∑dk

j=1

∣∣∣(∂β
y (f̃j,Je−kφ))(p)

∣∣∣2
dk∑

j=1

fj(x)(∂β
y (f̃j,Je−kφ))(p).

Then, u ∈ E q
k−N0 (M, Lk), ‖u‖ = 1. On D, we write u = skũ, ũ =

∑′
|I|=q ũIe

I .

Put ṽ = A∗k�
(q)
s (ũe−kφ) =

∑′
|I|=q ṽIe

I ∈ Ω0,q(D). It is not difficult to check
that

ṽ =
1√∑dk

j=1

∣∣∣(∂β
y (f̃j,Je−kφ))(p)

∣∣∣2
dk∑

j=1

g̃j(∂
β
y (f̃j,Je−kφ))(p),

where {g̃j}dk

j=1 are as in (4.28). In view of Lemma 4.6, there exists Cα > 0
independent of k and the point p such that |(∂α

x ṽ)(x)| ≤ Cαk
5n

2
+2|α|−N0 , for
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all x ∈ D′. In particular,

|(∂α
x ṽI)(x)| = 1√∑dk

j=1

∣∣∣(∂β
y (f̃j,Je−kφ))(p)

∣∣∣2
∣∣∣∣∣∣

dk∑
j=1

(∂α
x g̃j,I)(x)(∂β

y (f̃j,Je−kφ))(p)

∣∣∣∣∣∣
≤ Cαk

5n

2
+2|α|−N0 , ∀x ∈ D′,

(4.35)

for all strictly increasing I, |I| = q. In view of Proposition 4.5, we see that

dk∑
j=1

∣∣∣(∂β
y (f̃je−kφ))(p)

∣∣∣2 ≤ Cβkn+2|β|,

where Cβ > 0 is independent of k and the point p. From this and (4.35),
we conclude the existence of a constant Cα,β > 0 independent of k and the
point p with

∣∣∣(∂α
x ∂β

y RI,J)(x, p)
∣∣∣ =

√√√√ dk∑
j=1

∣∣∣(∂β
y (f̃j,Je−kφ))(p)

∣∣∣2 |(∂α
x ṽI)(x)|

≤ Cα,βk3n+2|α|+|β|−N0 ,

for all x ∈ D′, all strictly increasing I, J with |I| = |J | = q. The proposition
follows. �

From (4.27) and Proposition 4.8, we know that

P̂
(q)
k,k−N0 ,s = R + S∗k P̂

(q)
k,k−N0 ,s,

where R(x, y) satisfies (4.33). We have

(4.36) P̂
(q)
k,k−N0 ,s Sk = (R + S∗k P̂

(q)
k,k−N0 ,s)Sk = RSk + S∗k P̂

(q)
k,k−N0 ,s Sk.

Let R∗ be the formal adjoint R with respect to ( ·, ·). Then,

(4.37) P̂
(q)
k,k−N0 ,s = R∗ + P̂

(q)
k,k−N0 ,s Sk.

From (4.37) and (4.36), we get

(4.38) P̂
(q)
k,k−N0 ,s = R∗ + RSk + S∗k P̂

(q)
k,k−N0 ,sSk.
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We also write

R∗(x, y) =
∑′

|I|=q,|J |=q

eI(x)R∗I,J(x, y)eJ(y).

Note that R∗I,J(x, y) = RJ,I(y, x), for all strictly increasing I, J , |I| = |J | =
q. Combining this observation with (4.33), we conclude that for every D′ �
D, α, β ∈ N

2n
0 , there is a constant Cα,β > 0 independent of k, such that∣∣∣(∂α

x ∂β
y R∗I,J)(x, y)

∣∣∣ ≤ Cα,βk3n+2|β|+|α|−N0 , ∀(x, y) ∈ D′ ×D′,

for all strictly increasing I, J , |I| = |J | = q.
Now, we study the kernel of RSk. We write

(RSk)(x, y) =
∑′

|I|=q,|J |=q

eI(x)(RSk)I,J(x, y)eJ(y).

From (4.15), we know that for all strictly increasing I, J , |I| = |J | = q,

(4.39) (RSk)I,J(x, y) =
∑′

|K|=q

∫
D

RI,K(x, z)SkK,J(z, y) dvM (z).

Lemma 4.9. For every D′ � D, α ∈ N2n
0 , there is a constant Cα > 0 inde-

pendent of k, such that for all strictly increasing I, |I| = q, we have

(4.40)
∑′

|K|=q

∫
D
|(∂α

x RI,K)(x, z)|2 dvM (z) ≤ Cαk5n+4|α|−2N0 , x ∈ D′.

Proof. From (4.28), we see that for α ∈ N
2n
0 we have

(4.41) (∂α
x RI,K)(x, y) =

dk∑
j=1

(∂α
x g̃j,I)(x)f̃j,K(y)e−kφ(y).

We claim that

(4.42)
∑′

|K|=q

∫
D
|(∂α

x RI,K)(x, y)|2 dvM (y) ≤
dk∑

j=1

|(∂α
x g̃j,I)(x)|2 ,
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for all x ∈ D, strictly increasing I, |I| = q. Fix such I and p ∈ D. We may
assume that

∑dk

j=1 |(∂α
x g̃j,I)(p)|2 �= 0. Put

u(x) =
1√∑dk

j=1 |(∂α
x g̃j,I)(p)|2

dk∑
j=1

(∂α
x g̃j,I)(p)fj(x) ∈ E q

k−N0 (M, Lk).

We see that ‖u‖ = 1. Thus,
∫
D |u|

2 ≤ 1. On D, we can check that

∫
D
|u|2

=
1∑dk

j=1 |(∂α
x g̃j,I)(p)|2

∑′

|K|=q

∫
D

∣∣∣∣∣∣
dk∑

j=1

(∂α
x g̃j,I)(p)f̃j,K(y)

∣∣∣∣∣∣
2

e−2kφ(y) dvM (y) ≤ 1.

(4.43)

From (4.41) and (4.43), we see that

∑′

|K|=q

∫
D
|(∂α

x RI,K)(p, y)|2 dvM (y) ≤
dk∑

j=1

|(∂α
x g̃j,I)(p)|2 .

(4.42) follows. From (4.42) and Lemma 4.7, the lemma follows. �

From (4.39), for all strictly increasing I, J , |I| = |J | = q, we have

∣∣∣∂α
x ∂β

y ((RSk)I,J)(x, y)
∣∣∣

=

∣∣∣∣∣∣
∑′

|K|=q

∫
D

(∂α
x RI,K)(x, z)(∂β

y SkK,J)(z, y)dvM (z)

∣∣∣∣∣∣
≤
∑′

|K|=q

(∫
D
|(∂α

x RI,K)(x, z)|2 dvM (z)
) 1

2
(∫

D

∣∣∣(∂β
y SkK,J)(z, y)

∣∣∣2 dvM (z)
) 1

2

≤
√√√√∑′

|K|=q

∫
D
|(∂α

x RI,K)(x, z)|2 dvM (z)

√√√√∑′

|K|=q

∫
D

∣∣∣(∂β
y SkK,J)(z, y)

∣∣∣2 dvM (z).

(4.44)
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Note that ∑′

|K|=q

∫
D

∣∣∣(∂β
y SkK,J)(z, y)

∣∣∣2 dvM (z)(4.45)

=
∑′

|K|=q

∫
D

(∂β
xS∗kJ,K)(y, z)(∂β

y SkK,J)(z, y)dvM (z)

= (∂β
x∂β

y (S∗kSk)J,J)(y, y).

We notice that S∗kSk ≡ Sk mod O(k−∞). From this observation and the
explicit formula of the kernel of Sk (see (3.63)), we conclude that

(4.46)
∣∣∣(∂β

x∂β
y (S∗kSk)J,J)(y, y)

∣∣∣ ≤ Cβkn+2|β|,

locally uniformly on D, for all strictly increasing J , |J | = q, where Cβ > 0 is
independent of k. From (4.46), (4.45), (4.44) and Lemma 4.9, we conclude
that for all strictly increasing I, J , |I| = |J | = q,∣∣∣(∂α

x ∂β
y (RSk)I,J)(x, y)

∣∣∣ ≤ Cα,βk3n+2|α|+|β|−N0 ,

locally uniformly on D, where Cα,β > 0 is independent of k. Put

T = R∗ + RSk.

We write

T (x, y) =
∑′

|I|=q,|J |=q

eI(x)TI,J(x, y)eJ(y)

in the sense of (4.13). From (4.38), we know that

(4.47) P̂
(q)
k,k−N0 ,s = T + S∗k P̂

(q)
k,k−N0 ,sSk.

From the discussion above, we know that for every D′ � D, α, β ∈ N2n
0 , every

strictly increasing I, J , |I| = |J | = q, there is a constant Cα,β > 0 indepen-
dent of k such that

(4.48)
∣∣∣(∂α

x ∂β
y TI,J)(x, y)

∣∣∣ ≤ Cα,β

(
k3n+2|α|+|β|−N0 + k3n+|α|+2|β|−N0

)
,

for every (x, y) ∈ D′ ×D′.
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Summing up, we get the following.

Proposition 4.10. In the situation of Setup 3.9 let q = n−. Fix N0 ≥ 1.
Let Sk be the localized approximate Szegö kernel (3.43) and let P̂

(q)
k,k−N0 ,s be

the localized spectral projection (4.18). Then,

P̂
(q)
k,k−N0 ,s = T + S∗k P̂

(q)
k,k−N0 ,sSk,

where T is smoothing and the distribution kernel of T satisfies (4.48).

4.3. Asymptotic expansion of the spectral function. Proof of
Theorem 1.1

Consider λ � 0 and denote by E q
>λ(M, Lk) ⊂ L2

(0,q)(M, Lk) the spectral space

given by the range of E((λ,∞)), where E is the spectral measure of �(q)
k .

Let

P
(q)
k,>λ : L2

(0,q)(M, Lk) → E q
>λ(M, Lk)

be the orthogonal projection. As before, let s be a local frame of L on an
open set D � M and |s|2hL = e−2φ. Consider the localization

P̂
(q)
k,>λ,s : L2

(0,q)(D) ∩ E ′(D, ΛqT ∗(0,1)M) → L2
(0,q)(D),(4.49)

u �→ e−kφs−kP
(q)
k,>λ(skekφu).

Fix N0 ≥ 1. It is well-known that (see Davies [21, Section 2])

L2
(0,q)(M) = E q

k−N0 (M, Lk)⊕ E q
>k−N0 (M, Lk)

and

(4.50) ‖u‖ ≤ kN0

∥∥∥�(q)
k u

∥∥∥ , ∀u ∈ E q
>k−N0 (M, Lk) ∩Dom �(q)

k .

We have the decomposition

(4.51) u = P̂
(q)
k,k−N0 ,su + P̂

(q)
k,>k−N0 ,su, u ∈ Ω0,q

0 (D).

Now, assume that ∂∂φ is non-degenerate of constant signature (n−, n+)
at each point of D and let q = n−. Let Sk be the localized approximate Szegö
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kernel (3.43). From the explicit formula of the kernel of Sk (see (3.63)), we
can check that

S∗k ,Sk = O(kn+|s1|+|s|) : Hs1
loc (D, ΛqT ∗(0,1)M) → Hs

loc (D, ΛqT ∗(0,1)M),
(4.52)

locally uniformly on D, for all s, s1 ∈ Z, s1 ≤ 0, s ≥ 0.
Let u ∈ Hs1

comp (D, ΛqT ∗(0,1)M), s1 ≤ 0, s1 ∈ Z. From (4.51), we have

(4.53) Sku = P̂
(q)
k,k−N0 ,s Sku + P̂

(q)
k,>k−N0 ,s Sku.

From (4.49) and (4.50), we can check that∥∥∥P̂ (q)
k,>k−N0 ,s Sku

∥∥∥
D
≤
∥∥∥P (q)

k,>k−N0 (s
kekφ(Sku))

∥∥∥(4.54)

≤ kN0

∥∥∥�(q)
k P

(q)
k,>k−N0 (s

kekφ(Sku))
∥∥∥

≤ kN0

∥∥∥�(q)
k (skekφ(Sku))

∥∥∥ = kN0

∥∥∥�(q)
s (Sku)

∥∥∥ .

Here we have used (3.8). In view of Theorem 3.11, we see that �(q)
s Sk ≡ 0

mod O(k−∞). From this observation and (4.54), we conclude that

P̂
(q)
k,>k−N0 ,s Sk = O(k−N ) : Hs1

comp (D, ΛqT ∗(0,1)M) → H0
loc (D, ΛqT ∗(0,1)M),

(4.55)

locally uniformly on D, for all N ≥ 0, s1 ∈ Z, s1 ≤ 0. From (4.52) and (4.55),
we conclude that

(4.56) S∗k P̂
(q)
k,>k−N0 ,s Sk ≡ 0 mod O(k−∞).

Combining (4.56) with (4.53) and using that S∗kSk ≡ Sk mod O(k−∞), we
get

(4.57) Sk ≡ S∗k P̂
(q)
k,k−N0 ,s Sk mod O(k−∞).

From (4.57) and Proposition 4.10, Theorem 3.12 and Theorem 3.15, we get
one of the main results of this work:

Theorem 4.11. In the situation of Setup 3.9 let q = n−, fix N0 ≥ 1 and let
P̂

(q)
k,k−N0 ,s be the localized spectral projection (4.18) and let P̂

(q)
k,k−N0 ,s(·, ·) be its
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distribution kernel. Then, for every D′ � D, α, β ∈ N2n
0 , there is a constant

Cα,β > 0 independent of k, such that∣∣∣∂α
x ∂β

y

(
P̂

(q)
k,k−N0 ,s(x, y)− Sk(x, y)

)∣∣∣(4.58)

≤ Cα,β

(
k3n+2|α|+|β|−N0 + k3n+|α|+2|β|−N0

)
holds on D′ ×D′, where

Sk(x, y) = Sk(z, w) ≡ eikΨ(z,w)b(z, w, k) mod O(k−∞),

with

b(z, w, k) ∈ Sn
loc

(
1; D ×D, ΛqT ∗(0,1)

w M � ΛqT ∗(0,1)
z M

)
,

b(z, w, k) ∼
∞∑

j=0

bj(z, w)kn−j in Sn
loc

(
1; D ×D, ΛqT ∗(0,1)

w M � ΛqT ∗(0,1)
z M

)
,

bj(z, w) ∈ C∞
(
D ×D, ΛqT ∗(0,1)

w M � ΛqT ∗(0,1)
z M

)
, j = 0, 1, 2, . . . ,

b0(z, z) is given by (3.80),

and Ψ ∈ C∞(D ×D) satisfying (3.38) and for a given point p ∈ D, con-
sider local holomorphic coordinates z = (z1, . . . , zn) centred at p as in (3.35).
Then Ψ has the form (3.39) near (0, 0). Moreover, let {Zj}n

j=1 be a smooth
orthonormal frame of T (0,1)M over D. Then,

(4.59)
n∑

j=1

((
iZjΨ

)
(z, w)+

(
Zjφ

)
(z)
)((

−iZjΨ
)
(z, w)+

(
Zjφ

)
(z)
)

= O(|z − w|N ),

locally uniformly on D ×D, for all N ∈ N.

When q �= n−, we use Theorem 3.13 and repeat the proof of Theorem 4.11
to conclude that

Theorem 4.12. In the situation of Setup 3.9 let q �= n−, fix N0 ≥ 1. With
the notations used in Theorem 4.11. Then, for every D′ � D, α, β ∈ N2n

0 ,
there is a constant Cα,β > 0 independent of k, such that

(4.60)
∣∣∣∂α

x ∂β
y (P̂ (q)

k,k−N0 ,s(x, y))
∣∣∣ ≤ Cα,β

(
k3n+2|α|+|β|−N0 + k3n+|α|+2|β|−N0

)
on D′ ×D′.
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Proof of Theorem 1.1. Combining Theorems 4.11 and 4.12, we get (1.7),
(1.8) and (1.9). �

Remark 4.13. In view of Remark 3.14, we can generalize Theorem 4.11
and Theorem 4.12 with essentially the same proofs to the case when the
forms take values in Lk ⊗ E, for a given holomorphic vector bundle E
over M .

4.4. Asymptotic expansion of the Bergman kernel. Proof of
Theorem 1.6

We are now ready to prove Theorem 1.6. In the situation of Setup 3.9 let
q = n−. Define the localized Bergman projection (with respect to s) by

P̂
(q)
k,s : L2

(0,q)(D) ∩ E ′(D, ΛqT ∗(0,1)M) → Ω0,q(D),(4.61)

u �→ e−kφs−kP
(q)
k (skekφu).

Let P̂
(q)
k,s (x, y) be the distribution kernel of P̂

(q)
k,s . We have the following

Theorem 4.14. With the assumptions and notations above, fix N0 ≥ 1
and assume that �(q)

k has O(k−n0) small spectral gap on D. Then for every
D′ � D, α, β ∈ N2n

0 , there is a constant Cα,β > 0 independent of k, such that∣∣∣∂α
x ∂β

y (P̂ (q)
k,k−N0 ,s(x, y)− P̂

(q)
k,s (x, y))

∣∣∣(4.62)

≤ Cα,β

(
k3n+2|α|+|β|−N0 + k3n+|α|+2|β|−N0

)
on D′ ×D′,

where P̂
(q)
k,k−N0 ,s is as in Theorem 4.11. In particular,

P̂
(q)
k,s ≡ Sk mod O(k−∞)

locally uniformly on D, where Sk is as in Theorem 4.11.

Proof. Let Sk be the oprator as in Theorem 4.11. We can repeat the proof
of Proposition 4.10 and conclude that

(4.63) P̂
(q)
k,k−N0 ,s − P̂

(q)
k,s = T + S∗k

(
P̂

(q)
k,k−N0 ,s − P̂

(q)
k,s

)
Sk,

where T is smoothing and the Schwartz distribution kernel T (x, y) of T
satisfies (4.48). Let

u ∈ Hm
comp (D, ΛqT ∗(0,1)M), m ≤ 0, m ∈ Z.
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We consider

v = skekφSku− P
(q)
k (skekφSku).

Since Sk is a smoothing operator, v ∈ C∞(M, Lk). Moreover, it is easy to
see that v⊥H 0(M, Lk). We have

(4.64) �(q)
k v = skekφ�(q)

s Sku.

From Theorem 3.11, we see that �(q)
s Sk ≡ 0 mod O(k−∞). Combining this

with (4.64), we obtain ∥∥∥�(q)
k v
∥∥∥ ≤ CNk−N ‖u‖m ,

for every N > 0, where CN > 0 is independent of k. Since v⊥H 0(M, Lk),
from Definition 1.5 we conclude that

‖v‖ ≤ C̃Nk−N ‖u‖m ,

for every N > 0, where C̃N > 0 is independent of k. Thus,

Sk − P̂
(q)
k,sSk = O(k−N ) : Hm

comp (D, ΛqT ∗(0,1)M) → L2(D, ΛqT ∗(0,1)M),

for all N > 0, m ∈ Z, m ≤ 0, and hence

S∗kSk − S∗k P̂
(q)
k,sSk

= O(k−N ) : Hm
comp (D, ΛqT ∗(0,1)M) → Hm+N1

loc (D, ΛqT ∗(0,1)M),

for all N, N1 > 0, m ∈ Z. We conclude that

S∗kSk ≡ S∗k P̂
(q)
k,sSk mod O(k−∞).

From this, (3.61) and (4.58), we obtain

P̂
(q)
k,k−N0 ,s = T̃ + S∗k P̂

(q)
k,sSk,

where T̃ is smoothing and the Schwartz distribution kernel T̃ (x, y) of T̃
satisfies (4.48). From this and Proposition 4.10, we conclude that the distri-
bution kernel of S∗k

(
P̂

(q)
k,k−N0 ,s − P̂

(q)
k,s

)
Sk satisfies (4.48). Combining this with

(4.63) and (4.62) follows. �
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Since Theorems 3.11 and 4.11 hold in the case when the forms take
values in Lk ⊗ E, for a given holomorphic vector bundle E over M , we can
generalize Theorem 4.14 with the same proof to the case when the forms
take values in Lk ⊗ E.

4.5. Calculation of the leading coefficients. Proof of Theorem 1.2

Now, we prove (1.11) and (1.12). In this section, we assume that q = 0. First,
let us review the necessary definitions from Riemannian geometry. We will
use the same notations as in the discussion after (1.9).

Consider the Kähler metric ω =
√−1
2π RL introduced in (1.10). Let 〈 ·, · 〉ω

be the Hermitian metric on CTM induced by ω. In local holomorphic coor-
dinates z = (z1, . . . , zn), put

ω =
√
−1

n∑
j,k=1

ωj,kdzj ∧ dzk, Θ =
√
−1

n∑
j,k=1

Θj,kdzj ∧ dzk,(4.65)

where Θj,k = 〈 ∂
∂zj

, ∂
∂zk

〉, ωj,k = 〈 ∂
∂zj

, ∂
∂zk

〉ω, j, k = 1, . . . , n. Put

(4.66) h = (hj,k)
n
j,k=1 , hj,k = ωk,j , j, k = 1, . . . , n,

and h−1 =
(
hj,k
)n
j,k=1

, h−1 is the inverse matrix of h. The complex Laplacian
with respect to ω is given by

(4.67) �ω = (−2)
n∑

j,k=1

hj,k ∂2

∂zj∂zk
.

We note that hj,k = 〈 dzj , dzk 〉ω, j, k = 1, . . . , n. Put

Vω := det (ωj,k)
n
j,k=1 , VΘ := det (Θj,k)

n
j,k=1(4.68)

and set

r = �ω log Vω, r̂ = �ω log VΘ.(4.69)

Then r is the scalar curvature of gTX
ω . Let Rdet

Θ be the curvature of the
canonical line bundle KM = detT ∗(1,0)M with respect to the real two form
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Θ. We recall that

(4.70) Rdet
Θ = −∂∂ log VΘ.

Let h be as in (4.66). The connection matrix of the Chern connection on
T (1,0)M is given by θ = h−1∂h = (θj,k)

n
j,k=1, θj,k ∈ T ∗(1,0)M , j, k = 1, . . . , n.

θ is the Chern connection matrix with respect to ω. The Chern curvature
with respect to ω is given by

RTM
ω = ∂θ =

(
∂θj,k

)n
j,k=1

= (Rj,k)
n
j,k=1

∈ C∞
(
M, Λ1,1T ∗M ⊗ End (T (1,0)M)

)
,

RTM
ω (U, V ) ∈ End (T (1,0M), ∀U, V ∈ T (1,0)M,

RTM
ω (U, V )ξ =

n∑
j,k=1

〈Rj,k, U ∧ V 〉ξk
∂

∂zj
, ξ =

n∑
j=1

ξj
∂

∂zj
, U, V ∈ T (1,0)M.

(4.71)

Set

(4.72)
∣∣RTM

ω

∣∣2
ω

:=
n∑

j,k,s,t=1

∣∣〈RTM
ω (ej , ek)es, et 〉ω

∣∣2 ,

where e1, . . . , en is an orthonormal frame for T (1,0)M with respect to 〈 ·, · 〉ω.
It is straightforward to see that the definition of

∣∣RTM
ω

∣∣2
ω

is independent of
the choices of orthonormal frames. Thus,

∣∣RTM
ω

∣∣2
ω

is globally defined. The
Ricci curvature with respect to ω is given by

(4.73) Ric ω := −
n∑

j=1

〈RTM
ω (·, ej) ·, ej 〉ω,

where e1, . . . , en is an orthonormal frame for T (1,0)M with respect to 〈 ·, · 〉ω.
That is,

〈Ric ω, U ∧ V 〉 = −
n∑

j=1

〈RTX
ω (U, ej)V, ej 〉ω, U, V ∈ CTM.

Ric ω is a global (1, 1) form. We can check that

Ric ω = −∂∂ log Vω,

where Vω is as in (4.68).
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Let Sk, b(z, w, k), bj(z, w), j = 0, 1, 2, . . ., be as in Theorem 4.11. We
will calculate b1(p, p) and b2(p, p) at a fixed p ∈ D. In a small neighbourhood
D � M(0) of the point p there exist local coordinates (D, z) ∼= (D, x) centred
at p and a local frame s of L, |s|2hL = e−2φ so that φ is a Kähler potential of
ω satisfying

φ(z) =
n∑

j=1

λj |zj |2 + φ1(z),

φ1(z) = O(|z|)4), ∂|α|+|β|φ1

∂zα∂zβ
(0) = 0 for α, β ∈ N

n
0 , |α| ≤ 1 or |β| ≤ 1,

(4.74)

and moreover

(4.75) Θ(z) =
√
−1

n∑
j=1

dzj ∧ dzj + O(|z|), z → 0,

(this is possible by Ruan [57]). First, we claim that

(4.76) ∂sSk ≡ 0 mod O(k−∞),

where ∂s is as in (3.7). We notice that �(0)
s Sk ≡ 0 mod O(k−∞). Thus,

�(1)
s ∂sSk ≡ 0 mod O(k−∞). From Theorem 3.13, we know that �(1)

s has
semi-classical parametrices. Thus, ∂sSk ≡ 0 mod O(k−∞) so (4.76) follows.
Now, we claim that

(4.77) ∂z

(
iΨ(z, w) + φ(z)

)
vanishes to infinite order at z = w.

We write w = (w1, . . . , wn) = (y1, . . . , y2n) = y, wj = y2j−1 + iy2j , j = 1,
. . . , n. We assume that there exist α0, β0 ∈ N2n

0 , |α0|+ |β0| ≥ 1 and (z0, z0) ∈
D ×D, such that

(4.78) ∂α0
x ∂β0

y

(
∂z

(
iΨ(z, w) + φ(z)

))∣∣∣
(z0,z0)

= Cα0,β0 �= 0,

and if |α|+ |β| < |α0|+ |β0|, α, β ∈ N2n
0 , then

(4.79) ∂α
x ∂β

y

(
∂z

(
iΨ(z, w) + φ(z)

))∣∣∣
(z0,z0)

= 0.
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From (4.78), (4.79) and since b0(z0, z0) �= 0, Ψ(z0, z0) = 0, we can check
that

(4.80)
lim

k→∞
k−n−1 ∂α0

x ∂β0
y

(
∂s

(
eikΨ(z,w)b(z, w, k)

))∣∣∣
(z0,z0)

= Cα0,β0b0(z0, z0) �= 0.

On the other hand, since ∂s(eikΨ(z,w)b(z, w, k)) ≡ 0 mod O(k−∞), we can
check that

(4.81) lim
k→∞

k−n−1 ∂α0
x ∂β0

y

(
∂s

(
eikΨ(z,w)b(z, w, k)

))∣∣∣
(z0,z0)

= 0.

We get thus a contradiction, hence the claim (4.77) follows. Similarly, we
have

(4.82) ∂w

(
iΨ(z, w) + φ(w)

)
vanishes to infinite order at z = w.

In particular, we have

∂z

(
iΨ(z, 0) + φ(z)

)
, ∂z

(
iΨ(0, z) + φ(z)

)
vanish to infinite order at z = 0.

(4.83)

Combining (4.77), (4.82), (4.83) with Ψ(z, z) = 0, it is easy to check that
for all α ∈ Nn

0 ,

i
∂|α|Ψ(z, 0)

∂zα

∣∣∣∣∣
z=0

= − i
∂|α|Ψ(0, z)

∂zα

∣∣∣∣∣
z=0

=
∂|α|φ
∂zα

(0) = 0,

i
∂|α|Ψ(0, z)

∂zα

∣∣∣∣∣
z=0

= − i
∂|α|Ψ(z, 0)

∂zα

∣∣∣∣∣
z=0

=
∂|α|φ
∂zα (0) = 0.

(4.84)

Here we used (4.74). From (4.83) and (4.84), we deduce that for every
N ∈ N0

Ψ(z, 0) = iφ(z) + O(|z|N ), Ψ(0, z) = iφ(z) + O(|z|N ).(4.85)

We claim that

∂zbj(z, w) and ∂wbj(z, w) vanish to infinite order at z = w, for all j ∈ N0.
(4.86)
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In view of (4.77), we see that ∂z(iΨ(z, w) + φ(z)) vanishes to infinite order
at z = w. From this observation and (4.76), we conclude that

(4.87) eikΨ(z,w)∂zb(z, w, k) = Hk(z, w),

where Hk(z, w) ≡ 0 mod O(k−∞). We assume that there exist γ0, δ0 ∈ N2n
0 ,

|γ0|+ |δ0| ≥ 1 and (z1, z1) ∈ D ×D, such that

∂γ0
x ∂δ0

y (∂zb0(z, w))
∣∣∣
(z1,z1)

= Dγ0,δ0 �= 0,

and

∂γ
x∂δ

y(∂zb0(z, w))
∣∣∣
(z1,z1)

= 0 if |γ|+ |δ| < |γ0|+ |δ0|, γ, δ ∈ N
2n
0 .

From (4.87), we have

(4.88) ∂γ0
x ∂δ0

y

(
∂zb(z, w, k)

)∣∣∣
(z1,z1)

= ∂γ0
x ∂δ0

y

(
e−ikΨ(z,w)Hk(z, w)

)∣∣∣
(z1,z1)

.

Since Ψ(z1, z1) = 0, we have

(4.89) lim
k→∞

k−n ∂γ0
x ∂δ0

y

(
e−ikΨ(z,w)Hk(z, w)

)∣∣∣
(z1,z1)

= 0.

On the other hand, we can check that

(4.90) lim
k→∞

k−n ∂γ0
x ∂δ0

y

(
∂zb(z, w, k)

)∣∣∣
(z1,z1)

= Dγ0,δ0 �= 0.

From (4.90), (4.89) and (4.88), we get a contradiction. Thus, ∂zb0(z, w)
vanishes to infinite order at z = w. Similarly, we can repeat the procedure
above and conclude that ∂zbj(z, w) and ∂wbj(z, w) vanish to infinite order
at z = w, ∀j ∈ N0. The claim (4.86) follows.

Now, we are ready to calculate b1(0, 0) and b2(0, 0). We note that

b0(z, z) = (2π)−n det ṘL(z).

From this and (4.86), it is easy to see that for all α ∈ Nn
0 ,

∂|α|b0(z, 0)
∂zα

∣∣∣∣∣
z=0

= (2π)−n ∂|α|(det ṘL(z))
∂zα

∣∣∣∣∣
z=0

,
∂|α|b0(z, 0)

∂zα

∣∣∣∣∣
z=0

= 0.

(4.91)
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Since Sk ◦ Sk ≡ Sk mod O(k−∞), we have

(4.92) b(0, 0, k) =
∫

D
eik(Ψ(0,z)+Ψ(z,0))b(0, z, k)b(z, 0, k)VΘ(z) dλ(z) + rk,

where dλ(z) = 2ndx1dx2 · · · dx2n, VΘ is given by (4.68) and

lim
k→∞

rk

kN
= 0, ∀N ≥ 0.

We notice that since b(z, w, k) is properly supported, we have

b(0, z, k) ∈ C∞0 (D), b(z, 0, k) ∈ C∞0 (D).

We apply the stationary phase formula of Hörmander [39, Theorem 7.7.5])
to the integral in (4.92) and obtain ( for the details see Hsiao [41, Section 4]):

Theorem 4.15. We have

b1(0, 0) = (2π)n(det ṘL(0))−1

(
2b0(0, 0)b1(0, 0)

+
1
2
�0

(
VΘb0(0, z)b0(z, 0)

)
(0)− 1

4
�2

0

(
φ1VΘb0(0, z)b0(z, 0)

)
(0)
)

(4.93)

and

b2(0, 0) = (2π)n(det ṘL(0))−1

(
2b0(0, 0)b2(0, 0) + b1(0, 0)2

+
1
2
�0

(
VΘ(b0(0, z)b1(z, 0) + b1(0, z)b0(z, 0))

)
(0)

− 1
4
�2

0

(
φ1VΘ(b0(0, z)b1(z, 0) + b1(0, z)b0(z, 0))

)
(0)

+
1
8
�2

0

(
VΘb0(0, z)b0(z, 0)

)
(0)− 1

24
�3

0

(
φ1VΘb0(0, z)b0(z, 0)

)
(0)

+
1

192
�4

0

(
φ2

1VΘb0(0, z)b0(z, 0)
)
(0)

)
,

(4.94)

where �0 =
∑n

j=1
1
λj

∂2

∂zj∂zj
, φ1 is as in (4.74) and VΘ is as in (4.68).
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From (4.86), (4.91) and (4.93), it is straightforward to see that (see
Section 4.2 in [41], for the details)

b1(0, 0) = (2π)−n det ṘL(0)
( 1

4π
r̂(0)− 1

8π
r(0)

)
(4.95)

=
Vω(0)
VΘ(0)

( 1
4π

(
�ω log VΘ

)
(0)− 1

8π

(
�ω log Vω

)
(0)
)
,

where r̂ and r are as in (4.69) and Vω is as in (4.68). From this, (1.11)
follows.

Similarly, from (1.11) and (4.86), it is easy to see that for all α ∈ N
n
0 ,

∂|α|b1(z, 0)
∂zα

∣∣∣∣∣
z=0

= (2π)−n
∂|α|
(

det ṘL(z)
(

1
4π r̂(z)− 1

8π r(z)
))

∂zα

∣∣∣∣∣∣
z=0

,(4.96)

∂|α|b1(z, 0)
∂zα

∣∣∣∣∣
z=0

= 0.

From (4.86), (4.96) and (4.94), it is straightforward to see that (see Section
4.3 in [41], for the details)

b2(0, 0) = (2π)−n det ṘL(0)
( 1

128π2
r2 − 1

32π2
rr̂ +

1
32π2

(r̂)2 − 1
32π2

�ω r̂

− 1
8π2

∣∣∣Rdet
Θ

∣∣∣2
ω

+
1

8π2
〈Ric ω, Rdet

Θ 〉ω +
1

96π2
�ωr − 1

24π2
|Ric ω|2ω

+
1

96π2

∣∣RTM
ω

∣∣2
ω

)
(0),

(4.97)

where �ω, Rdet
Θ , Ric ω and RTM

ω are as in (4.67), (4.70), (4.73) and (4.71)
respectively, and 〈 ·, · 〉ω, |·|ω are as as in the discussion after (1.10) and∣∣RTM

ω

∣∣2
ω

is given by (4.72). From (4.97), (1.12) follows.

5. Asymptotic upper bounds near the degeneracy set

In this section, we will use the heat equation expansion for �(q)
k of Ma-

Marinescu [49, Section 1.6] to get an asymptotic upper bound near the degen-
erate part of L. The goal of this Section is to prove (1.13).

By the spectral theorem (see Davies [21, Theorem 2.5.1]), there exists
a finite measure μ on S× N, where S denotes the spectrum of �(q)

k , and a
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unitary operator

(5.1) U : L2
(0,q)(M, Lk) → L2(S× N, dμ)

with the following properties. If h : S× N → R is the function h(s, n) = s,
then the element ξ of L2

(0,q)(M, Lk) lies in Dom�(q)
k if and only if hU(ξ) ∈ L2.

We have U�(q)
k U−1ϕ = hϕ for all ϕ ∈ U(Dom �(q)

k ).
We identify L2

(0,q)(M, Lk) with L2(S× N, dμ). Then the heat operator

exp(−t �(q)
k ), t > 0, is the operator on L2(S× N, dμ) given by

exp(−t �(q)
k ) : L2(S× N, dμ) → L2(S× N, dμ), u(s, n) �→ e−stu(s, n).

Since �(q)
k is elliptic, the distribution kernel of exp(−t �(q)

k ) is smooth
(see [49, Theorem D.1.2]). Let

exp(−t �(q)
k )(x, y) ∈ C∞(M ×M, Lk

y ⊗ ΛqT ∗(0,1)
y M � Lk

x ⊗ ΛqT ∗(0,1)
x M)

be the distribution kernel of exp(−t �(q)
k ) with respect to (·, ·)k. That is,

(exp(−t �(q)
k )u)(x) =

∫
M

exp(−t �(q)
k )(x, y)u(y) dvM (y),

u ∈ L2
(0,q)(M, Lk).

Let s be a local section of L over X̃, where X̃ ⊂ M . Then on X̃ × X̃ we can
write

exp(−t �(q)
k )(x, y) = exp(−t �(q)

k )s(x, y)s(x)ks∗(y)k,

where
exp(−t �(q)

k )s(x, y) ∈ C∞(X̃ × X̃, ΛqT ∗y M � ΛqT ∗xM).

For u ∈ Ω0,q
0 (X̃, Lk) consider ũ ∈ Ω0,q

0 (X̃) with u = skũ. Then for x ∈ X̃,

(exp(−t �(q)
k )u)(x) = s(x)k

∫
M

exp(−t �(q)
k )s(x, y)〈u(y), s∗(y)k 〉 dvM (y)

= s(x)k

∫
M

exp(−t �(q)
k )s(x, y)ũ(y) dvM (y) .

(5.2)

For x = y, we can check that the function

exp(−t �(q)
k )s(x, x) ∈ C∞(X̃, ΛqT ∗xM � ΛqT ∗xM)
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is independent of the choices of local section s. We identify the function
exp(−t �(q)

k )s(x, x) with exp(−t �(q)
k )(x, x). The trace of exp(−t �(q)

k )(x, x)
is given by

Tr exp(−t �(q)
k )(x, x) :=

d∑
j=1

〈
exp(−t �(q)

k )(x, x)eJj
(x), eJj

(x)
〉
,

where {eJj
(x)}d

j=1 is an orthonormal basis of the space ΛqT
∗(0,1)
x M with

respect to 〈 ·, · 〉, dim ΛqT
∗(0,1)
x M = d.

Proposition 5.1. Fix t > 0 and N0 ≥ 1. We have for k large,

(5.3) Tr exp
(
− t

k
�(q)

k

)
(x, x) ≥ (1− k−N0)Tr P

(q)
k,k−N0 (x, x), ∀x ∈ M,

where P
(q)
k,k−N0 (x, x) is as in (1.5).

Proof. First, we claim that for all u ∈ Ω0,q
0 (M, Lk),

(5.4)
(
exp
(
− t

k
�(q)

k

)
u, u

)
k
≥ (1− k−N0)(P (q)

k,k−N0 u, u)k .

We identify L2
(0,q)(M, Lk) with L2(S× N, dμ). Then

exp
(
− t

k
�(q)

k

)
: u(s, n) ∈ L2(S× N, dμ) �→ e−s t

k u(s, n)

and
P

(q)
k,k−N0 : u(s, n) ∈ L2(S× N, dμ) �→ u(s, n)1[0,k−N0 ](s).

For u(s, n) ∈ L2(S× N, dμ), we have(
exp
(
− t

k
�(q)

k

)
u, u

)
k

=
∫

S×N

e−s t

k |u(s, n)|2 dμ(5.5)

≥
∫

S×N

e−s t

k |u(s, n)|2 1[0,k−N0 ](s) dμ

≥
∫

S×N

|u(s, n)|2 1[0,k−N0 ](s) dμ

−
∫

S×N

∣∣∣e−s t

k − 1
∣∣∣ |u(s, n)|2 1[0,k−N0 ](s) dμ

≥
(
1− sup

s∈[0,k−N0 ]
(1− e−s t

k )
)
(P (q)

k,k−N0u, u)k.
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It is easy to see that fix t > 0, we have sups∈[0,k−N0 ](1− e−s t

k ) ≤ k−N0 if k
large. From this observation and (5.5), the claim (5.4) follows.

Now, fix p ∈ M and let s be a local section of L defined in some open
neighbourhood D of p, |s|2hL = e−2φ. Let eJ1(p), . . . , eJd

(p), be an orthonor-
mal basis of ΛqT

∗(0,1)
p M with respect to 〈 ·, · 〉. Fix l ∈ {1, . . . , d}. For each j ∈

N, take χj ∈ Ω0,q
0 (D, Lk) so that for every continuous operator F : C∞(D,

Lk ⊗ ΛqT ∗(0,1)M) → C∞(D, Lk ⊗ ΛqT ∗(0,1)M) with smooth kernel F (x, y)
∈ C∞(M ×M, Lk

y ⊗ ΛqT
∗(0,1)
y M � Lk

x ⊗ ΛqT
∗(0,1)
x M), we have

(Fχj , χj)k → 〈F (p, p)eJl
(p), eJl

(p)〉, j →∞.

Then, we have(
exp

(
− t

k
�(q)

k

)
χj , χj

)
k

→
〈

exp
(
− t

k
�(q)

k

)
(p, p)eJl

(p), eJl
(p)
〉

, j →∞,(
P

(q)
k,k−N0χj , χj

)
k
→
〈
P

(q)
k,k−N0 (p, p)eJl

(p), eJl
(p)
〉
, j →∞.

Combining this with (5.4), we conclude that〈
exp

(
− t

k
�(q)

k

)
(p, p)eJl

(p), eJl
(p)
〉
≥ (1− k−N0)

×
〈
P

(q)
k,k−N0 (p, p)eJl

(p), eJl
(p)
〉
.

Thus,

Tr exp
(
− t

k
�(q)

k

)
(p, p) ≥ (1− k−N0)Tr P

(q)
k,k−N0 (p, p),

so (5.3) follows. �

Theorem 5.2 [49, Theorem 1.6.1]. For each t > 0 fixed and any D � M ,
m ∈ N, we have as k →∞,

Tr exp
(
− t

k
�(q)

k

)
(x, x)

= kn(2π)−n

⎛⎝ ∑
j1<j2<···<jq

exp

(
−t

q∑
i=1

aji
(x)

)⎞⎠ n∏
j=1

aj(x)
1− e−taj(x)

+ o(kn),

(5.6)

in the C m norm on C∞(D, ΛqT ∗(0,1)M � ΛqT ∗(0,1)M), where a1(x),
. . . , an(x) are the eigenvalues of ṘL(x). Here we use the convention that

aj(x)

1−e−taj(x) := 1
t , if aj(x) = 0.
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From (5.3) and (5.6), we know that

(1− k−N0)Tr P
(q)
k,k−N0 (x, x)

≤ kn(2π)−n

⎛⎝ ∑
j1<j2<···<jq

exp

(
−t

q∑
i=1

aji
(x)

)⎞⎠ n∏
j=1

aj(x)
1− e−taj(x)

+ o(kn),

(5.7)

locally uniformly on M .
Now, let Mdeg be as in Theorem 1.3. Fix t > 1, t large and x0 ∈ Mdeg

and let U be a small neighbourhood of x0 such that for every point x ∈ U ,
there is an eigenvalue a0(x) of ṘL(x) such that |ta0(x)| < 1. Fix p ∈ U . Set

ι(p) ={j ∈ {1, . . . , n}; |aj(p)t| < 1,

where a1(p), . . . , an(p) are the eigenvalues of ṘL(p)}.

Fix 1 ≤ j1 < j2 < · · · < jq ≤ n. We have

exp

(
−t

q∑
i=1

aji
(p)

)
n∏

j=1

aj(p)
1− e−taj(p)

(5.8)

=
∏

ji∈ι(p)

e−taji
(p)aji

(p)
1− e−taji

(p)

∏
ji /∈ι(p)

e−taji
(p)aji

(p)
1− e−taji

(p)

×
∏

j∈ι(p),j /∈{j1,...,jq}

aj(p)
1− e−taj(p)

∏
j /∈ι(p),j /∈{j1,...,jq}

aj(p)
1− e−taj(p)

.

We observe that there is a constant C > 0 such that∣∣∣∣ x

1− ex

∣∣∣∣ ≤ C,

∣∣∣∣ xex

1− ex

∣∣∣∣ ≤ C, ∀x ∈ R, |x| ≤ 1,∣∣∣∣ 1
1− ex

∣∣∣∣ ≤ C,

∣∣∣∣ ex

1− ex

∣∣∣∣ ≤ C, ∀x ∈ R, |x| > 1.

(5.9)

From (5.9) and (5.8), it is straightforward to see that

(5.10) exp

(
−t

q∑
i=1

aji
(p)

)
n∏

j=1

aj(p)
1− e−taj(p)

≤
∏

j∈ι(p)

C

t

∏
j /∈ι(p)

C |aj(p)| ,

where C is the constant as in (5.9).
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The proof of (1.13). Let ε > 0. Let W � M be any open set of x0. Take
t > max {C, 1} large enough so that
(5.11)

(2π)−nd
C

t

(
1 + C sup

{
|a(x)| ; a(x): eigenvalue of ṘL(x), x ∈ W

})n
<

ε

2
,

where C is the constant as in (5.9) and d = dim ΛqT
∗(0,1)
x M . Let U � W

be a small neighbourhood of x0 such that for every point x ∈ U , there is
an eigenvalue a0(x) of ṘL(x) such that |ta0(x)| < 1. From (5.10), (5.7) and
(5.11), we see that

Tr P
(q)
k,k−N0 (x, x) ≤ 1

1− k−N0

ε

2
kn + o(kn), x ∈ U,

thus (1.13) follows. �
Theorem 5.2 also holds on the case when the forms take values in Lk ⊗ E,

for a given holomorphic vector bundle E over M . In this case, the right-hand
side of (5.6) gets multiplied by rank(E), see Theorem 1.6.1 in [49]. From
this observation, (1.13) remains true with the same proof on the case when
the forms take values in Lk ⊗ E, for a given holomorphic vector bundle E
over M .

6. Bergman kernel asymptotic expansion for adjoint
semi-positive line bundles

In this section, we prove Theorem 1.7, i.e., the asymptotic expansion of the
Bergman kernel of Lk ⊗KM , where L is a semi-positive line bundle over
a complete Kähler manifold M and KM is the canonical line bundle. The
existence of the expansion (1.19) follows immediately from Theorem 6.4,
while the calculation of the coefficients is given at the end of this section.

We assume that (M, Θ) is a complete Kähler manifold. Let KM be the
canonical line bundle over M . Then, Ωn,q(M, Lk) = Ω0,q(M, Lk ⊗KM ). Let
�(0)

k,KM
be the Gaffney extension of the Kodaira Laplacian acting on Lk ⊗

KM . Then

Ker�(0)
k,KM

= H 0(M, Lk ⊗KM ) =
{

u ∈ L2(M, Lk ⊗KM ); ∂ku = 0
}

.

Set
P

(0)
k,KM

: L2(M, Lk ⊗KM ) → H 0(M, Lk ⊗KM )

be the orthogonal projection with respect to (·, ·)k. The goal of this Section is
to prove that the kernel of P

(0)
k,KM

admits a full asymptotic expansion on the
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non-degenerate part of L. We recall the following form of the L2-estimates
for ∂ for semi-positive line bundles. Assume that (L, hL) is a semi-positive
Hermitian line bundle over a complex manifold M . Let g ∈ Λn,1T ∗M ⊗ L.
For x ∈ M , we denote by |g|RL(x) ∈ [0,∞] the smallest constant such that
〈g, g′〉2(x) ≤ |g|2RL(x)〈

√
−1RL ∧ (Θ∧)∗g′, g′〉(x) for all g′ ∈ Λn,1T ∗M ⊗ L.

Theorem 6.1 [22, Theorem 4.1]. Let (M, Θ) be a complete Kähler man-
ifold, (L, hL) be a semi-positive Hermitian line bundle over M . Then for any
form g ∈ L2

(0,1)(M, L⊗KM ) satisfying ∂g = 0 and
∫
M |g|2RL(x) dvM (x) < ∞

there exists f ∈ L2
(0,0)(M, L⊗KM ) with ∂f = g and∫

M
|f |2hL(x) dvM (x) ≤

∫
M
|g|2RL(x) dvM .

Denote by γ(x) the smallest eigenvalue of the curvature
√
−1RL

x with
respect to Θx, for x ∈ M ; the function γ : M → [0,∞) is continuous. More-
over, |g|2RL(x) ≤ γ−1(x)|g|2hL(x), for any x ∈ M and g ∈ Λn,1T ∗M ⊗ L
(where γ−1 := ∞ if γ = 0). Therefore we deduce the following.

Theorem 6.2. Let (M, Θ) be a complete Kähler manifold and (L, hL)
be a smooth semi-positive line bundle over M . Let D � M(0) be a rel-
atively compact open set. There exists a constant CD > 0 such that for
any k > 0 and any g ∈ Ω0,1

0 (D, Lk ⊗KM ) satisfying ∂kg = 0 there exists
f ∈ C∞(M, Lk ⊗KM ) such that ∂kf = g and

(6.1) ‖f‖2 ≤ CD

k
‖g‖2 .

We can actually take CD = supD γ−1. We need

Lemma 6.3. Let (M, Θ) be a complete Kähler manifold and (L, hL) be
a smooth semi-positive line bundle over M . Let D � M(0) be a relatively
compact open set. Then �(0)

k,KM
has O(k−n0) small spectral on D.

Proof. Let u ∈ C∞0 (D, Lk ⊗KM ). We consider ∂ku ∈ Ω0,1(D, Lk ⊗KM ).
From Theorem 6.2, we know that there exists f ∈ C∞(M, Lk ⊗KM ) such
that ∂kf = ∂ku and

(6.2) ‖f‖2 ≤ CD

k

∥∥∂ku
∥∥2

,
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where CD > 0 is independent of k and u. We note that (I − P
(0)
k,KM

)u has
minimal L2 norm of the set{

f ∈ C∞(M, Lk ⊗KM )
⋂

L2(M, Lk ⊗KM ); ∂kf = ∂ku
}

.

From this observation and (6.2), we conclude that

(6.3)
∥∥∥(I − P

(0)
k,KM

)u
∥∥∥2
≤ CD

k

∥∥∂ku
∥∥2

.

It is easy to check that∥∥∂ku
∥∥2 ≤

∥∥∥�(0)
k,KM

u
∥∥∥∥∥∥(I − P

(0)
k,KM

)u
∥∥∥ .

Combining this with (6.3), we get
∥∥∥(I − P

(0)
k,KM

)u
∥∥∥ ≤ CD

k

∥∥∥�(0)
k,KM

u
∥∥∥. Thus,

�(0)
k,KM

has O(k−n0) small spectral on D. The lemma follows. �

Let s be a local frame of L on an open set D � M(0) and |s|2hL = e−2φ. As
in (4.61), we consider the localized Bergman projection

P̂
(0)
k,s,KM

: L2(D, KM ) ∩ E ′(D, KM ) → L2(D, KM ),(6.4)

u �→ e−kφs−kP
(0)
k,KM

(skekφu).

From Lemma 6.3 and Theorem 4.14, we get one of the main results of this
work:

Theorem 6.4. Let (M, Θ) be a complete Kähler manifold and (L, hL) be
a smooth semi-positive line bundle over M . Let D � M(0) be a relatively
compact open set and s be a local frame of L on D. Then the localized
Bergman projection P̂

(0)
k,s,KM

satisfies

P̂
(0)
k,s,KM

≡ Sk mod O(k−∞)

on D, where Sk : E ′(D, KM ) → C∞0 (D, KM ) is a smoothing operator and
the distribution kernel Sk(z, w) ∈ C∞(D ×D, KM � KM ) of Sk satisfies

Sk(z, w) ≡ eikΨ(z,w)b(z, w, k) mod O(k−∞),
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with

b(z, w, k) ∈ Sn
loc

(
1; D ×D, KM � KM

)
,

b(z, w, k) ∼
∞∑

j=0

bj(z, w)kn−j in Sn
loc

(
1; D ×D, KM � KM

)
,

bj(z, w) ∈ C∞
(
D ×D, KM � KM

)
, j = 0, 1, 2, . . . ,

b0(z, z) = (2π)−n det ṘL(z)⊗ IdKM
(z), IdKM

is the identity map on KM ,

and Ψ(z, w) is as in Theorems 3.8 and 4.11.

From Theorem 6.4, the existence of the asymptotic expansion (1.19) for
Lk ⊗KM follows immediately.

We prove now the formulas (1.20) for the coefficients. Le s be a local
frame of L on an open set D � M(0). We take local coordinates (D, z) ∼=
(D, x) defined in D. Let Sk and Sk( ·, ·) ∈ C∞(D ×D, KM � KM ) be as in
Theorem 6.4. We may replace Sk by 1

2(Sk + S∗k), where S∗k is the formal
adjoint of Sk with respect to ( ·, ·). Then,

(6.5) S∗k = Sk.

Let e(z) be a local section of KM so that |e(z)|2 = (VΘ(z))−1, where VΘ(z)
is given by (4.68). Define the smooth kernels S̃k(·, ·), Ŝk(·, ·) ∈ C∞(D ×D)
by

(6.6) Sk(z, w) = e(z)S̃k(z, w)e∗(w), Ŝk(z, w) = S̃k(z, w)VΘ(w).

From Theorem 6.4, we have

Ŝk(z, w) ≡ eikΨ(z,w)b̂(z, w, k) mod O(k−∞),

b̂(z, w, k) ∈ Sn
loc

(
1; D ×D

)
,

b̂(z, w, k) ∼
∞∑

j=0

b̂j(z, w)kn−j in Sn
loc

(
1; D ×D

)
,

b̂j(z, w) ∈ C∞
(
D ×D

)
, j = 0, 1, 2, . . . ,

b̂0(z, z) = (2π)−nVΘ(z) det ṘL(z).

(6.7)

Let (, )dλ be the inner product on C∞0 (D) given by

(u, v)dλ =
∫

u(z)v(z) dλ(z), u, v ∈ C∞0 (D),
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where dλ(z) = 2ndx1dx2 · · · dx2n. Let Ŝk be the continuous operator given
by

Ŝk : C∞0 (D) → C∞0 (D),

u �→
∫
Ŝk(z, w)u(w) dλ(w).

Let Ŝk
∗,dλ

be the formal adjoint of Ŝk with respect to (, )dλ. From (6.5), (6.6)
we can check that

(6.8) Ŝk
∗,dλ

= Ŝk.

Since S2
k ≡ Sk mod O(k−∞), we can check that

(6.9) (Ŝk)2 ≡ Ŝk mod O(k−∞).

Moreover, it is obviously that

(6.10) ∂sŜk ≡ 0 mod O(k−∞).

We recall that ∂s = ∂ + k(∂φ)∧.
From (6.8), (6.9) and (6.10), we can repeat the procedure in Section 4.5

and conclude that (see (4.95) and (4.97))

b̂1(0, 0) = Vω(0)
(
− 1

8π
r(0)

)
,

b̂2(0, 0) = Vω(0)
( 1

128π2
r2 +

1
96π2

�ωr − 1
24π2

|Ric ω|2ω +
1

96π2

∣∣RTM
ω

∣∣2
ω

)
(0),

(6.11)

where Vω, r, �ω, Ric ω and RTM
ω are as in (4.68), (4.69), (4.67), (4.73) and

(4.71) respectively, and 〈 ·, · 〉ω, |·|ω are as in the discussion after (1.10) and∣∣RTM
ω

∣∣2
ω

is given by (4.72). From (6.6) and (6.7), we can check that for
b
(0)
1,KM

(z), b
(0)
2,KM

(z) in (1.19), we have

b
(0)
1,KM

(0) =
1

VΘ(0)
b̂1(0, 0) IdKM

(0), b
(0)
2,KM

(0) =
1

VΘ(0)
b̂2(0, 0) IdKM

(0).

Combining this with (6.11) and observing that

1
VΘ(0)

Vω(0) = (2π)−n det ṘL(0),

we obtain (1.20).
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Remark 6.5. In [49, (4.1.9)], Ma–Marinescu gave a formula for b
(0)
1 in the

presence of a twisting vector bundle E (under the assumption that L is
positive everywhere). For E = KM the formula [49, (4.1.9)] reads:

b
(0)
1,KM

= (2π)−n(det ṘL)
1
8π

(
r − 2�ω

(
log(det ṘL)

)
(6.12)

+ 4
√
−1Λω(RKM )

)
IdKM

,

where Λω(RKM ) is given by nRKM ∧ ωn−1 = Λω(RKM )ωn. Formula (1.20)
gives

(6.13) b
(0)
1,KM

= (2π)−n det ṘL
(
− 1

8π
r
)

IdKM
.

We show that the right-hand sides of (6.12) and (6.13) are equal. By defin-
tion, we have

(6.14) r = �ω log Vω, det ṘL = (2π)n Vω

VΘ
,

where Vω and VΘ are given by (4.68). Using (6.14), (6.12) becomes

b
(0)
1,KM

= (2π)−n(det ṘL)
1
8π

(
− r + 2�ω log VΘ + 4

√
−1Λω(RKM )

)
IdKM

.

(6.15)

Moreover, it is straightforward to see that

(6.16) 4
√
−1Λω(RKM ) = −2�ω log VΘ.

Combining (6.16) with (6.15), we conclude that our claim holds true.

7. Singular L2-estimates

In Section 9, we need a singular version of L2 estimates. We assume that
(M, Θ) is a compact Hermitian manifold and (L, hL) is a holomorphic line
bundle over M , endowed with a singular Hermitian metric hL. We solve
the ∂-equation ∂kf = g for (0, 1) forms with values in Lk with a rough L2-
estimate, namely ‖f‖2 ≤ CDkN ‖g‖2 with N > 0, instead of the estimate
‖f‖2 ≤ CD

k ‖g‖2 from (6.1).
For a singular Hermitian metric hL on L (see, e.g., [49, Definition 2.3.1])

the local weight with respect to a holomorphic frame s : D → L is a function
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φ ∈ L1
loc (D), D � M , defined by

|s|2hL = e−2φ ∈ [0,∞].

The curvature current RL is given locally by RL := 2∂∂φ and does not
depend on the choice of local frame s, is thus well-defined as a (1, 1) current
on M .

We say that
√
−1RL is strictly positive if there exists ε > 0 such that√

−1RL ≥ εΘ, that is,
√
−1RL − εΘ is a positive current in the sense of

Lelong (see e.g., [49, Definition B.2.11]). If
√
−1RL is strictly positive then

φ is strictly psh on D (in particular φ is bounded above on D). The goal of
this Section is to prove the following.

Theorem 7.1. Let (L, hL) be a singular Hermitian holomorphic line bundle
over a compact Hermitian manifold (M, Θ). We assume that hL is smooth
outside a proper analytic set Σ and

(7.1)
√
−1RL ≥ εΘ, ε > 0.

Let D � M \ Σ. Then, there exist k0 > 0, N > 0 and CD > 0, such that for
all k ≥ k0, and g ∈ Ω0,1

0 (D, Lk) with ∂kg = 0, there is u ∈ C∞(M, Lk) such
that ∂ku = g and

(7.2) ‖u‖2
hk,Θ ≤ kNCD ‖g‖2

hk,Θ ,

where ‖u‖2
hk,Θ :=

∫
M |u|2hk dvM , dvM := Θn

n! , and similarly for ‖g‖2
hk,Θ.

Proof. Let Θε0 be the generalized Poincaré metric on M \ Σ (see [49, p. 276]).
Let Tε0 := [(Θε0∧)∗, ∂Θε0 ] be the Hermitian torsion of Θε0 . Let Rdet

Θε0
denote

the curvature of the holomorphic line bundle ΛnT ∗(1,0)M induced by Θε0 .
By [49, Lemma 6.2.1] we have

Θε0 is a complete Hermitian metric of finite volume on M \ Σ,

Θε0 ≥ c0Θ for some c0 > 0,

−CΘε0 <
√
−1Rdet

Θε0
< CΘε0 , |Tε0 |Θε0

< C,

(7.3)

where C > 0 is a constant and |Tε0 |Θε0
is the norm with respect to Θε0 .

Moreover, by [49, Section 6.2] there is a Hermitian metric hL
ε0 of L on M \ Σ
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such that hL
ε0 is smooth on M \ Σ and

(7.4) hL
ε0 > hL,

√
−1RL

ε0 > cΘε0 ,

where c > 0 is a constant and RL
ε0 is the curvature of L induced by hL

ε0 .
Let s be a local frame of L and define local weights φε0 and φ for hL

ε0

and hL by |s|2hL
ε0

= e−2φε0 , |s|2hL = e−2φ. Let ĥk be the Hermitian metric on
Lk locally given by

|s|2
ĥk := exp(−2(log k)φε0 − 2(k − log k)φ).

Since hL
ε0 > hL, we have ĥk > hk. Moreover, from (7.1) and (7.4), we can

check that

(7.5)
√
−1R̂Lk

> c(log k)Θε0 ,

where R̂Lk

denotes the curvature of Lk associated to ĥk and c > 0 is the
constant as in (7.4). Let (, )

ĥk,Θε0
denote the L2 inner product on Ω0,q

0 (M \
Σ, Lk) with respect to ĥk and Θε0 as (2.3). For f ∈ Ω0,q

0 (M \ Σ, Lk), we
write ‖f‖2

ĥk,Θε0
:= (f, f)

ĥk,Θε0
. Let L̂2

(0,q)(M \ Σ, Lk) be the completion of

Ω0,q
0 (M \ Σ, Lk) with respect to ‖·‖

ĥk,Θε0
. Let

�̂(1)
k = ∂k∂

∗
k + ∂

∗
k∂k : Dom �̂(1)

k ⊂ L̂2
(0,1)(M \ Σ, Lk) → L̂2

(0,1)(M \ Σ, Lk)

be the Gaffney extension of the Kodaira Laplacian with respect to ĥk and
Θε0(see (2.8)). Here ∂

∗
k is the Hilbert space adjoint of ∂k with respect to

(, )
ĥk,Θε0

. From (7.3) and (7.5), we can repeat the procedure in [49, p. 272–
273] and conclude that for k large, we have

(7.6) ‖g‖2
ĥk,Θε0

≤ 1
c(log k)

∥∥∥�̂(1)
k g
∥∥∥2

ĥk,Θε0

,

for all g ∈ Ω0,1
0 (M \ Σ, Lk), where c > 0 is a positive constant. From this, we

can repeat the method in [49, p. 272–273] and conclude that �̂(1)
k has closed

range in L̂2
(0,1)(M \ Σ, Lk), Ker �̂(1)

k

⋂
L̂2

(0,1)(M \ Σ, Lk) = {0} and there is a

bounded operator Gk : L̂2
(0,1)(M \ Σ, Lk) → Dom �̂(1)

k such that �̂(1)
k Gk = I
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on L̂2
(0,1)(M \ Σ, Lk), Gk�̂(1)

k = I on Dom �̂(1)
k and

(7.7) ‖Gkg‖2
ĥk,Θε0

≤ 1
c(log k)

‖g‖2
ĥk,Θε0

for k large, for all g ∈ L̂2
(0,1)(M \ Σ, Lk), where c > 0 is independent of g and

k, and

Gk : Ω0,1(M \ Σ, Lk) → Ω0,1(M \ Σ, Lk),(7.8)

g = �̂(1)
k Gkg = ∂k∂

∗
k Gkg, if ∂kg = 0, g ∈ L̂2

(0,1)(M \ Σ, Lk).(7.9)

Now, fix D � M \ Σ and let g ∈ Ω0,1
0 (D, Lk) with ∂kg = 0 and set

u = ∂
∗
k Gkg ∈ Ω0,1(M \ Σ, Lk)

⋂
L̂2

(0,0)(M \ Σ, Lk).

From (7.9) and (7.7), it is not difficult to see that

∂ku = g on M \ Σ,(7.10)

‖u‖2
ĥk,Θε0

≤ 1
c1
√

log k
‖g‖2

ĥk,Θε0
,

where c1 > 0 is a constant independent of g and k. Now, let us compare
the norms ‖·‖

ĥk,Θε0
and ‖·‖hk,Θ. Let s be a local section of L on D and

|s|2hL
ε0

= e−2φε0 , |s|2hL = e−2φ. Then,

|s|2
ĥk = e−2kφe2 log k(φ−φε0 ) = |s|2hk e2 log k(φ−φε0 ).

Thus, on D, we have

(7.11) |s|2
ĥk < kN |s|2hk ,

where N > supx∈D |2φ(x)− 2φε0(x)|. Thus,

(7.12) ‖g‖2
ĥk,Θε0

< C̃DkN ‖g‖2
hk,Θ ,

where C̃D > 0 is a constant independent of g and k. From ĥk > hk and the
second property in (7.3), we have ‖u‖2

hk,Θ < c̃ ‖u‖2
ĥk,Θε0

, where c̃ > 0 is a
constant independent of k and u. Combining this with (7.12) and (7.10), we
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obtain

(7.13) ‖u‖2
hk,Θ ≤ CDkN ‖g‖2

hk,Θ ,

where CD > 0 is a constant independent of k and g. Note that hL is bounded
away from zero and Σ has Lebesgue measure zero. From this observation and
(7.13), we see that u is L2 integrable with respect to some smooth metric of
L over M . Combining this with Skoda’s Lemma (see Lemma 7.2 below), we
get ∂ku = g on M and u ∈ Ω0,1(M, Lk). The theorem follows. �

We recall the following result of Skoda (for a proof, see Demailly [24,
Lemma7.3, Ch. VIII]).

Lemma 7.2. Let u ∈ D ′(M, Lk), g ∈ D ′(M, Lk ⊗ T ∗(0,1)M). We assume
that u and g are L2 integrable with respect to some smooth metric of L and
Θ over M . If ∂ku = g on M \ Σ in the sense of distributions, then ∂ku = g
on M in the sense of distributions.

8. Bergman kernel asymptotics for semi-positive line bundles

In this Section we prove Theorem 1.10. Let (M, Θ) a compact Hermitian
manifold. Assume that (L, hL) → M is a smooth semi-positive line bundle
which is positive at some point of M . By Siu’s criterion [49, Theorem 2.2.27]
(see also Corollary 10.8) we know that L is big and M is Moishezon. By [49,
Lemma2.3.6], L admits a singular Hermitian metric hL

sing , smooth outside
a proper analytic set Σ, and with strictly positive curvature current.

Lemma 8.1. With the assumptions and notations above, let D � M \ Σ
be an open set. Then, there exist k0 > 0, N > 0 and CD > 0, such that for
all k ≥ k0, and g ∈ Ω0,1

0 (D, Lk) with ∂kg = 0, there is u ∈ C∞(M, Lk) such
that ∂ku = g and

‖u‖2 ≤ kNCD ‖g‖2 .

Proof. Let φ and φ̂ denote local weights for hL and hL
sing respectively. Then,

φ̂ is smooth on M \ Σ and bounded above. We may assume that

φ̂ ≤ φ.

Let h̃k be the Hermitian metric on Lk induced by the local weight

φ̃ := (log k)φ̂ + (k − log k)φ.
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We can check that h̃k is a strictly positive singular Hermitian metric, smooth
outside a proper analytic set Σ. Let ‖·‖

h̃k and ‖·‖hk denote the corresponding
L2 norms for sections with respect to h̃k and hk respectively. We can repeat
the proof of Theorem 7.1 and conclude that for a given g ∈ Ω0,1

0 (D, Lk) with
∂kg = 0, there is u ∈ C∞(M, Lk) such that ∂ku = g and

(8.1) ‖u‖2
h̃k ≤

1
c
√

log k
‖g‖2

h̃k ,

where c > 0 is independent of k and g. Since φ̂ ≤ φ, we have

(8.2) ‖u‖hk ≤ ‖u‖
h̃k .

On the other hand, we have

‖g‖2
h̃k =

∫
D
|g|2 e−2(log k)φ̂−2(k−log k)φdvM (x)(8.3)

≤ (sup
x∈D

e2(log k)(φ(x)−φ̂(x)))
∫

D
|g|2 e−2kφ dvM (x)

≤ kN ‖g‖2
hk ,

where N = supx∈D 2(φ(x)− φ̂(x)). From (8.2) and (8.3), the lemma follows.
�

For a holomorphic line bundle L over a compact Hermitian manifold
(M, Θ) we set Herm(L) =

{
singular Hermitian metrics on L

}
,

M(L) =
{
hL ∈ Herm(L); hL is smooth outside a proper analytic set,√

−1RL > εΘ, ε > 0
}
.

By [49, Lemma 2.3.6],M(L) �= ∅ under the hypotheses of Theorem 8.2 below.
Set

(8.4) M ′ :=
{
p ∈ M ; ∃ hL ∈M(L) with hL smooth near p

}
.

From Lemma 8.1, we can repeat the proof of Lemma 6.3 with minor
changes and conclude the following.

Theorem 8.2. Let (M, Θ) be a compact Hermitian manifold. Let (L, hL) →
M be a Hermitian holomorphic line bundle with smooth Hermitian metric
hL having semi-positive curvature and with M(0) �= ∅. Let D � M ′⋂M(0)
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be an open set, where M ′ is given by (8.4). Then, �(0)
k has O(k−n0) small

spectral gap on D.

Let s be a local frame of L on an open set D � M and |s|2hL = e−2φ. We
define the localized Bergman projection (with respect to s) by

P̂
(0)
k,s : L2(D) ∩ E ′(D) → C∞0 (D),(8.5)

u → e−kφs−kP
(0)
k (skekφu).

That is, if P
(0)
k (skekφu) = skv on D, then P̂

(0)
k,s u = e−kφv.

From Theorem 8.2 and Theorem 4.14, we get the following result.

Theorem 8.3. Let (M, Θ) be a compact Hermitian manifold. Let (L, hL) →
M be a Hermitian holomorphic line bundle with smooth Hermitian metric
hL having semi-positive curvature and with M(0) �= ∅. Let s be a local frame
of L on an open set D � M ′⋂M(0). Then the localized Bergman projection
P̂

(0)
k,s satisfies

P̂
(0)
k,s ≡ Sk mod O(k−∞)

on D, where Sk is as in Theorem 4.11.

Theorem 8.3 immediately implies Theorem 1.10.

9. Multiplier ideal Bergman kernel asymptotics. Proof of
Theorem 1.8

Let us first recall the notion of multiplier ideal sheaf. Let M be a com-
pact complex manifold and ϕ ∈ L1

loc(M, R). The Nadel multiplier ideal sheaf
I (ϕ) ⊂ OM is the ideal subsheaf of germs of holomorphic functions f ∈
OM,x such that |f |2e−2ϕ is integrable with respect to the Lebesgue measure
in local coordinates near x for all x ∈ M .

Consider now a singular Hermitian metric hL on a holomorphic line
bundle L over M . If hL

0 is a smooth Hermitian metric on L then hL = hL
0 e−2ϕ

for some function ϕ ∈ L1
loc(M, R). The Nadel multiplier ideal sheaf of hL is

defined by I (hL) = I (ϕ); the definition does not depend on the choice of
hL

0 . Put

C∞(M, L⊗I (hL))(9.1)

:=
{

S ∈ C∞(M, L);
∫

M

∣∣S∣∣2
hL dvM =

∫
M

∣∣S∣∣2
hL

0
e−2ϕ dvM < ∞

}
,
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where |·|hL and |·|hL
0

denote the pointwise norms for sections induced by hL

and hL
0 respectively. With the help of hL and the volume form dvM we can

define an L2 inner product on C∞(M, L⊗I (hL)):

(9.2) (S, S′) =
∫

M
〈S, S′〉hL

0
e−2ϕdvM , S, S′ ∈ C∞(M, L⊗I (hL)).

The singular Hermitian metric hL induces a singular Hermitian metric
hk = hk

0e
−2kϕ on Lk, k > 0. We denote by (·, ·)k the natural inner products

on C∞(M, Lk ⊗I (hk)) defined as in (9.2) and by L2(M, Lk) the completion
of C∞(M, Lk ⊗I (hk)) with respect to (·, ·)k. The space of global sections
in the sheaf O(Lk)⊗I (hk) is given by

H0(M, Lk ⊗I (hk))

=
{

s ∈ C∞(M, Lk); ∂ks = 0,

∫
M

∣∣s∣∣2
hk dvM =

∫
M

∣∣s∣∣2
hk

0
e−2kϕ dvM < ∞

}
.

(9.3)

Let

(9.4) P
(0)
k,I : L2(M, Lk) → H0(M, Lk ⊗I (hk))

be the orthogonal projection.
Now, we assume that hL is a strictly positive singular Hermitian metric

on L, smooth outside a proper analytic set Σ of M . Let L2(M \ Σ, Lk) be
the completion of C∞0 (M \ Σ, Lk) with respect to ( ·, · )k. We notice that
Σ is closed and has Lebesgue measure zero. From this observation, it is
straightforward to see that

(9.5) L2(M \ Σ, Lk) = L2(M, Lk).

We consider the Gaffney extension �(0)
k of the Kodaira Laplacian ∂

∗
k∂k on

M \ Σ (see (2.8)), where ∂
∗
k is the formal adjoint of ∂k with respect to ( ·, · )k

on M \ Σ. It is easy to see that Ker �(0)
k = L2(M \ Σ, Lk) ∩Ker ∂k. The local

weights of hL are strictly psh, so they are bounded above, hence elements in
L2(M \ Σ, Lk) are locally square integrable with respect to smooth metrics
on M and L. Since holomorphic sections on M \ Σ which are locally square
integrable extend to holomorphic sections on M (see Lemma 7.2), we see
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that

(9.6) Ker�(0)
k = L2(M, Lk) ∩Ker ∂k = H0(M, Lk ⊗I (hk)).

Let

P
(0)
k : L2(M \ Σ, Lk) → Ker�(0)

k

be the Bergman projection. From (9.5) and (9.6), we see that

(9.7) P
(0)
k,I = P

(0)
k on L2(M, Lk) = L2(M \ Σ, Lk).

From Theorem 7.1, we can repeat the proof of Lemma 6.3 and conclude
that

Theorem 9.1. With the notations and assumptions above. Let D � M \ Σ.
Then, �(0)

k has O(k−n0) small spectral gap on D.

Let s be a local frame of L on an open set D � M \ Σ and |s|2hL = e−2φ.
Then, φ is smooth on D and ∂∂φ is positive defined at each point of D. Let
us denote by

(9.8) P̂
(0)
k,s,I : L2(D) ∩ E ′(D) −→ L2(D), u �−→ e−kφs−kP

(0)
k,I (skekφu),

the localized (multiplier ideal) Bergman projection.
From Theorems 9.1, 4.14 and (9.7), we get one of the main results of

this work

Theorem 9.2. Let (L, hL) be a singular Hermitian holomorphic line bundle
with strictly positive curvature current over a compact Hermitian manifold
(M, Θ). We assume that hL is smooth outside a proper analytic set Σ. Let s
be a local frame of L on an open set D � M \ Σ. Then the localized multiplier
ideal Bergman projection P̂

(0)
k,s,I (see (9.8)) satisfies

P̂
(0)
k,s,I ≡ Sk mod O(k−∞)

on D, where Sk is as in Theorem 4.11.

From Theorem 9.2, we get Theorem 1.8.
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10. Further applications

In this section, we collect further applications of the methods developed
here. In Section 10.1, we show the existence of manifolds and line bundles
whose Kodaira–Laplace operator has no O(k−n0) small spectral gap. In Sec-
tion 10.2, we show that under an integral condition (due to Bouche) on the
first eigenvalue of the curvature, the asymptotic expansion of the Bergman
kernel of a semi-positive line bundle holds. In Section 10.3, we apply our
results to prove a result of Berman about the Bergman kernel associated
to an arbitrary semi-positive Hermitian metric on an ample line bundle. In
Section 10.4, we give a local version of the Bergman kernel expansion for
q-forms. In Section 10.5, we obtain precise semiclassical estimates for the
dimension of the spectral spaces of the Kodaira Laplacian. Using them one
obtains immediately the holomorphic Morse inequalities of Demailly. Finally,
we prove in Section 10.6, a version of Tian’s theorem about the convergence
of the induced Fubini–Study metrics in the case of singular metrics on a big
line bundle. This implies the equidistribution of the zeros of sections in the
high tensor powers twisted with the Nadel ideal sheaves.

10.1. Existence of “small” eigenvalues of the Kodaira Laplacian

The hypothesis on the existence of a O(k−n0) small spectral gap was of
central importance in our approach. It is interesting to know if there is a
compact complex manifold M and a holomorphic line bundle L over M
such that the associated Kodaira Laplacian does not exhibit such a spectral
gap. We will construct a compact manifold and a holomorphic line bundle L

over M such that the associated Kodaira Laplacian �(q)
k has non-vanishing

eigenvalues of order O(k−∞).

Theorem 10.1. Let 0 ≤ q ≤ n, q ∈ N0. There exists a compact complex
manifold M of dimension n and a holomorphic line bundle L over M such
that for

λk := inf
{

λ; λ : non-zero eigenvalues of �(q)
k

}
,

we have for every N > 0

lim
k→∞

kNλk = 0.

Let S be a compact Riemann surface with a smooth Hermitian metric.
Let (L0, h

L0) be a holomorphic line bundle over S. We assume that
√
−1RL0



92 Chin-Yu Hsiao and George Marinescu

is positive. It is not difficult to see that L0 admits another smooth Hermi-
tian fibre metric h̃L0 such that the associated curvature form

√
−1R̃L0 is

positive on S+ ⊂ S, negative on S− ⊂ S and degenerate on S0 ⊂ S, where
S = S+

⋃
S−
⋃

S0, S+, S− contain non-empty open subsets of S.
Let M1 be a compact complex manifold of dimension n− 1 with a

smooth Hermitian metric and let (L1, h
L1) be a holomorphic line bundle

over M1. We assume that
√
−1RL1 is non-degenerate of constant signature

(n−, n+), n− + n+ = n− 1, at each point of M1. Put

M := M1 × S, L := L1 ⊗ L0.

Then, M is a compact complex manifold of dimension n and L is a holomor-
phic line bundle over M . The Hermitian metrics on M1 and S induce a Her-
mitian metric 〈 ·, · 〉 on M . Consider the metric hL = hL0 ⊗ hL1 on L; then
the associated curvature

√
−1RL is non-degenerate of constant signature

(n−, n+ + 1) at each point of M . Similarly, setting h̃L = h̃L0 ⊗ hL1 , the asso-
ciated curvature

√
−1R̃L is non-degenerate of constant signature (n−, n+ +

1) on M+ ⊂ M , non-degenerate of constant signature (n− + 1, n+) on M− ⊂
M and degenerate on M0 ⊂ M , where M = M−

⋃
M+

⋃
M0, M−, M+ con-

tain non-empty open subsets of M . First, we need

Lemma 10.2. Under the notations above let q = n−. Then

dimH q(M, Lk) = (−1)q kn

n!

(∫
M+

(√−1
2π R̃L

)n +
∫

M−

(√−1
2π R̃L

)n)+ o(kn).

Proof. Note that L admits a smooth Hermitian fibre metric such that the
induced curvature is non-degenerate of constant signature (n−, n+ + 1) at
each point of M . From this observation and Andreotti–Grauert vanishing
theorem, we know that if k large, then

(10.1) H j(M, Lk) = 0 if j �= n−.

From the Riemann–Roch–Hirzebruch theorem (see e.g., [49, (4.1.10)]), we
see that

(10.2)
n∑

j=0

(−1)jdimH j(M, Lk) =
kn

n!

∫
M

c1(L)n + O(kn−1),
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where c1(L) is the first Chern class. Combining (10.2) with (10.1), we have
for k large enough

(10.3) dimH q(M, Lk) = (−1)q kn

n!

∫
M

c1(L)n + O(kn−1).

But
√−1
2π R̃L represents the Chern class so∫

M
c1(L)n =

∫
M

(√−1
2π R̃L

)n
.

The lemma follows from (10.3). �

The Hermitian fibre metric h̃L induces a Hermitian fibre metric h̃k on
the k-th tensor power of L. As before, let �(q)

k be the Kodaira Laplacian
with values in Lk associated to h̃k.

Theorem 10.3. Under the notations above let q = n−. Then, for any N >
2n, we have

lim
k→∞

kNλk = 0.

Proof. Fix N0 > 2n. From Corollary 10.7 below and Lemma 10.2, we know
that

dimE q
k−N0 (M, Lk) = (−1)q kn

n!

∫
M+

(√−1
2π R̃L

)n + o(kn)

> (−1)q kn

n!

(∫
M+

(√−1
2π R̃L

)n +
∫

M−

(√−1
2π R̃L

)n)+ o(kn)

> dim H q(M, Lk) + o(kn).

Thus, for k large, we have

dimE q
0<λ≤k−N0 (M, Lk) > 0,

where E q
0<λ≤k−N0 (M, Lk) denotes the spectral space spanned by the eigen-

forms of �(q)
k whose eigenvalues are bounded by k−N0 and > 0. We notice

that since M is compact, �(q)
k has a discrete spectrum, each eigenvalues

occurs with finite multiplicity. Thus, λk ≤ k−N0 for k large. The theorem
follows. �

From Theorem 10.3, we get Theorem 10.1.
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10.2. Bouche integral condition

Let (L, hL) be a semi-positive holomorphic line bundle over a compact Her-
mitian manifold (M, Θ) of dimension n. Let 0 ≤ λ1(x) ≤ λ2(x) ≤ · · · be the
eigenvalues of ṘL(x). We say that (L, hL) satisfies the Bouche integral con-
dition [8] if

(10.4)
∫

M
λ−6n

1 < ∞.

If (L, hL) satisfies (10.4) then Bouche [8] proved that

inf
{

λ ∈ Spec(�(q)
k ); λ �= 0

}
≥ k

10n+1
12n+1 ,

for k large. From this and Theorem 1.6, we deduce

Corollary 10.4. Let (L, hL) be a semi-positive holomorphic line bundle
over a compact Hermitian manifold (M, Θ) of dimension n. If (L, hL) sat-
isfies (10.4) then

P
(0)
k (x) ∼

∞∑
j=0

kn−jb
(0)
j (x) locally uniformly on M(0),

where b
(0)
j (x) ∈ C∞(M(0)), j = 0, 1, 2, . . ., are as in (1.8).

10.3. Asymptotics for arbitrary semi-positive metrics on ample
line bundles

We consider now the Bergman kernel of a metric with semi-positive curva-
ture on an ample line bundle and recover the following result of Berman [2].

Corollary 10.5. Let L be an ample line bundle over a compact projective
manifold M of dimension n. We endow M with a Hermitian metric Θ and L
with a Hermitian metric hL with semi-positive curvature. Then the Bergman
kernel function associated to these metric data admits an asymptotic expan-
sion

P
(0)
k (x) ∼

∞∑
j=0

kn−jb
(0)
j (x) locally uniformly on M(0),

where b
(0)
j (x) ∈ C∞(M(0)), j = 0, 1, 2, . . ., are as in (1.8).
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Proof. By a result due to Donnelly [28] there exist C > 0 and k0 ∈ N such
that for all k ≥ k0

inf
{

λ ∈ Spec(�(0)
k ); λ �= 0

}
≥ C.

In particular, �(0)
k has O(k−n0) small spectral gap on any open set D ⊂

M(0). By applying Theorem 1.6 we immediately deduce the result. �

10.4. Expansion for Bergman kernel on forms

Let (L, hL) be a holomorphic line bundle over a compact Hermitian mani-
fold (M, Θ) of dimension n. Given q ∈ N0, 0 ≤ q ≤ n, ṘL is said to satisfy
condition Z(q) at p ∈ M if ṘL(p) has at least n + 1− q positive eigenvalues
or at least q + 1 negative eigenvalues. If ṘL(p) is non-degenerate of constant
signature (n−, n+), then Z(q) holds at p if and only if q �= n−. It is well-
known that if Z(q − 1) and Z(q + 1) hold at each point of M , then �(q)

k has
a “large” spectral gap, i.e., there exists a constant C > 0 such that for all k
we have

(10.5) inf
{

λ ∈ Spec(�(q)
k ); λ �= 0

}
≥ Ck.

This fact essentially follows from the L2 method for ∂ of Hörmander (see
Hörmander [38] for the classical case and Sjöstrand [61, Appendix] for the
semi-classical case). From this and Theorem 1.6, we deduce the following
local version of the results due to Catlin [12], Zelditch [70], Dai et al. [19]
(for q = 0) and Berman–Sjöstrand [4], Ma–Marinescu [48] (for q > 0):

Corollary 10.6. Let (L, hL) be a holomorphic line bundle over a compact
Hermitian manifold (M, Θ) of dimension n. Given q ∈ N0, 0 ≤ q ≤ n. We
assume that Z(q − 1) and Z(q + 1) hold at each point of M . If ṘL is non-
degenerate of constant signature (n−, n+) on an open set D ⊂ M , where
q = n−, then we have

P
(q)
k (x) ∼

∞∑
j=0

kn−jb
(q)
j (x) locally uniformly on D,

where b
(q)
j (x) ∈ C∞(D, End(ΛqT ∗(0,1)M)), j = 0, 1, 2, . . ., are as in (1.8).

Let us illustrate Corollary 10.6 in the case q = 0: if at each point the
curvature RL has either only positive eigenvalues or at least two negative
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eigenvalues, then the Bergman kernel of the sections of Lk has an asymptotic
expansion on M(0) as k →∞.

10.5. Holomorphic Morse inequalities

Let (L, hL) be a holomorphic line bundle over a compact Hermitian manifold
(M, Θ) of dimension n. Since M is compact, �(q)

k has a discrete spectrum,
each eigenvalues occurs with finite multiplicity. From (1.15), (1.16) and the
Lebesgue dominated convergence theorem, we deduce the following.

Corollary 10.7. Let (L, hL) be a holomorphic line bundle over a compact
Hermitian manifold (M, Θ) of dimension n. Given q ∈ N0, 0 ≤ q ≤ n. If
N0 > 2n, then

dim E q
k−N0 (M, Lk) = kn(2π)−n

∫
M(q)

∣∣∣det ṘL(x)
∣∣∣ dvM (x) + o(kn).

Fix N0 ≥ 1. Let E q
0<λ≤k−N0 (M, Lk) denote the spectral space spanned

by the eigenforms of �(q)
k whose eigenvalues are bounded by k−N0 and

> 0. Since the operator ∂k ⊕ ∂
∗
k maps E q

0<λ≤k−N0 (M, Lk) injectively into
E q+1

0<λ≤k−N0 (M, Lk)⊕ E q−1
0<λ≤k−N0 (M, Lk). Thus,

dimE q
0<λ≤k−N0 (M, Lk) ≤ dim E q+1

0<λ≤k−N0 (M, Lk) + dimE q−1
0<λ≤k−N0 (M, Lk).

From this observation and Corollary 10.7, we deduce:

Corollary 10.8. Let (L, hL) be a holomorphic line bundle over a compact
Hermitian manifold (M, Θ) of dimension n. Given q ∈ N0, 0 ≤ q ≤ n. If
N0 > 2n, then

dimH q(M, Lk) + dimE q−1
0<λ≤k−N0 (M, Lk) + dimE q+1

0<λ≤k−N0 (M, Lk)

≥ kn(2π)−n

∫
M(q)

∣∣∣det ṘL(x)
∣∣∣ dvM (x) + o(kn).
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In particular, we have

dimH q(M, Lk)

≥ kn(2π)−n
(∫

M(q)

∣∣∣det ṘL(x)
∣∣∣ dvM (x)−

∫
M(q−1)

∣∣∣det ṘL(x)
∣∣∣ dvM (x)

−
∫

M(q+1)

∣∣∣det ṘL(x)
∣∣∣ dvM (x)

)
+ o(kn).

(10.6)

Hence, if M(q − 1) = ∅, M(q + 1) = ∅, then

(10.7) dimH q(M, Lk) = kn(2π)−n
(∫

M(q)

∣∣∣det ṘL(x)
∣∣∣ dvM (x)

)
+o(kn).

By Corollary 10.7 and a straightforward application of the linear alge-
bra result from Demailly [23, Lemma 4.2] or [49, Lemma 3.2.12] to the com-
plex (E •k−N0 (M, Lk), ∂k), we obtain the following fundamental result due to
Demailly’s [23, Theorem 0.1]. We refer the reader to [49, Ch. 1–3] for a thor-
ough discussion of the holomorphic Morse inequalities.

Corollary 10.9 (strong holomorphic Morse inequalities). Let (L, hL)
be a holomorphic line bundle over a compact Hermitian manifold (M, Θ) of
dimension n. Then for any q ∈ {0, 1, . . . , n} we have for k →∞

q∑
j=0

(−1)q−j dimH j(M, Lk)

≤ kn(2π)−n
q∑

j=0

(−1)q−j

∫
M(j)

∣∣∣det ṘL(x)
∣∣∣ dvM (x) + o(kn).

It is well-known that the strong Morse inequalities provide the solution
of the Grauert-Riemenschneider conjecture [34] (cf. [23], [49], [58]).

Let us also give an example of a quite general holomorphic Morse inequal-
ities on arbitrary complete Kähler manifolds.

Corollary 10.10. Let (M, Θ) be a complete Kähler manifold and (L, hL)
be a semi-positive Hermitian holomorphic line bundle on M . Then

(10.8) lim inf
k→∞

k−n dimH 0(M, Lk ⊗KM ) ≥ 1
n!

∫
M

(√−1
2π RL

)n
.
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Proof. Let {Sk
j }dk

j=1 be an orthonormal basis of H 0(M, Lk ⊗KM ), dk ∈
N ∪ {∞}. Then the Bergman kernel function is given by TrPk,KM

(x) =∑dk

j=1 |Sk
j (x)|2, x ∈ X, where | · | denotes the pointwise norm in the met-

ric hk ⊗ hKM . By integrating this relation we obtain

dim H 0(M, Lk ⊗KM ) = dk =
∫

M
Tr Pk,KM

(x) dvM .

By (1.19) we know that the sequence k−nTr Pk,KM
(x) converges pointwise

on M(0) to Tr b
(0)
0,KM

as k →∞. By Fatou’s lemma we obtain

lim inf
k→∞

k−n

∫
M

Tr Pk,KM
(x) dvM ≥ lim inf

k→∞

∫
M(0)

k−nTr Pk,KM
(x) dvM

≥
∫

M(0)
Tr b

(0)
0,KM

(x) dvM =
1
n!

∫
M(0)

(√−1
2π RL

)n =
1
n!

∫
M

(√−1
2π RL

)n
.

Hence (10.8) follows. �

Let us close with an amusing by-product of Theorem 1.1. Let (L, hL)
be a holomorphic line bundle over a compact Hermitian manifold (M, Θ)
of dimension n. Assume that ṘL is non-degenerate of constant signature
(n−, n+) at each point of M . From Theorem 1.1, we see that if q �= n−, then
P

(q)
k (x) = O(k−N ), for every N ≥ 0. Thus,

dimH q(M, Lk) = O(k−N ), ∀N ≥ 0.

Since dimH q(M, Lk) is an integer, we obtain the Andreotti–Grauert coarse
vanishing theorem (see [48, Theorem 1.5], [49, Rem. 8.2.6]):

(10.9) dimH q(M, Lk) = 0, for k large enough.

This proof uses just estimates of the spectral spaces. The original proof of
Andreotti–Grauert was based on cohomology finiteness theorems for the disc
bundle L∗. Ph. Griffiths gave a proof using the Bochner–Kodaira–Nakano
formula. For a proof using Lichnerowicz formula and a comparison of meth-
ods, see [48, Theorem 1.5], [48, Rem. 1.6]. Note that the above proof of (10.9)
provides a positive answer to a question of Bouche [9] whether one could get
vanishing theorems by just using (heat or Bergman) kernel methods.
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10.6. Tian’s theorem and equidistribution of zeros

Given a positive line bundle L on a compact manifold M one can con-
sider the Kodaira embeddings Φk : M → P(H0(M, Lk)∗) for large k, where
H0(M, Lk) =

{
u ∈ C∞(M, Lk); ∂ku = 0

}
. Denote by ωFS the Fubini-Study

metric on P(H0(M, Lk)∗). Tian [63, Theorem A] proved that 1
kΦ∗k(ωFS) con-

verges to the curvature
√−1
2π RL as k →∞ in the C 2-topology. This answered

a conjecture of Yau [69]. Ruan [57] proved the convergence in the C∞-
topology and improved the estimate of the convergence speed. Both papers
use the peak section method, based on L2–estimates for ∂. A proof of the
convergence in the C 0-topology using the heat kernel appeared in Bouche [7].
Catlin [12] and Zelditch [70] deduced the convergence from the asymptotic
expansion of the Bergman kernel.

We will consider here a compact Hermitian manifold (M, Θ) and a big
line bundle L → M . Let hL be a strictly positive singular Hermitian metric
on L, smooth outside a proper analytic set Σ of M . We endow H0(M, Lk ⊗
I (hk)) with the L2 scalar product (9.2) induced by hL and dvM = Θn/n!.
Consider the Kodaira map

Φk : M \Bk → P
(
H0(M, Lk ⊗I (hk))∗

)
,

x �−→
{
s ∈ H0(M, Lk ⊗I (hk)); s(x) = 0

}
,

(10.10)

where Bk is the base locus of H0(M, Lk ⊗I (hk)). To the Hermitian struc-
ture (9.2) corresponds a Fubini–Study metric ωFS on P

(
H0(M, Lk ⊗

I (hk))∗
)
, defined as the curvature of the hyperplane line bundle (see, e.g.,

[49, (5.1.3)]). The induced Fubini–Study metric is the metric 1
kΦ∗k(ωFS) on

M \Bk.

Theorem 10.11. Let (M, Θ) be a compact Hermitian manifold and let
L → M be a big line bundle. Let hL be a strictly positive singular Hermitian
metric on L, smooth outside a proper analytic set Σ of M . Then for any
compact set K ⊂ M \ Σ, there exists k0 such that for k ≥ k0 the base locus
Bk of H0(M, Lk ⊗I (hk)) is disjoint of K. Moreover, for any � ∈ N, there
exists C�,K > 0 independent of k such that for k ≥ k0 the following holds

(10.11)
∣∣∣1
k
Φ∗k(ωFS)−

√
−1
2π

RL
∣∣∣
C �(K)

� C�,K

k
·
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Proof. Let {Sk
j }mk

j=1 be an orthonormal basis of H0(M, Lk ⊗I (hk)). Then
the multiplier Bergman kernel function (1.21) is given by

P
(0)
k,I (x) =

mk∑
j=1

|Sk
j (x)|2hk , x ∈ M \ Σ.

Let K ⊂ M \ Σ be a compact set. The expansion (1.22) yields P
(0)
k,I (x) =

b
(0)
0 (x)kn + o(kn), as k →∞, uniformly on K. Since infx∈K b

(0)
0 (x) > 0, there

exists k0 such that for all k ≥ k0 we have infx∈K P
(0)
k,I (x) > 0. Hence, K ∩

Bk = ∅, for all k ≥ k0.
For a local holomorphic frames eL of L over an open set U ⊂ M , we

set Sk
j = fk

j e⊗k
L , where fk

j ∈ O(U). The choice of the basis {Sk
j }mk

j=1 induces
an isometric identification P

(
H0(M, Lk ⊗I (hk))∗

) ∼= Pmk−1 and in terms
of this identification Φk has the form

Φk : M \Bk → P
mk−1, Φk(x) = [fk

1 (x), . . . , fk
mk

(x)],

hence

Φ∗k(ωFS) =
√
−1
2π

∂∂ log
( mk∑

j=1

|fk
j (x)|2

)
on U \Bk,

thus

(10.12)
1
k
Φ∗k(ωFS)−

√
−1
2π

RL = −
√
−1

2πk
∂∂ log P

(0)
k,I (x), on M \Bk.

The expansion (1.22) shows that ∂∂ log P
(0)
k,I (x) = O(1), for k →∞ in the

C �-topology, since log P
(0)
k,I (x) = log kn + log(b(0)

0 (x) + O( 1
k )) in the C �+2-

topology. Hence (10.11) is a consequence of (10.12). �

An important application of the convergence of the Fubini–Study cur-
rents is the study of the asymptotic distribution of zeros of random holo-
morphic sections. After the pioneering work of Nonnenmacher–Voros [56],
general methods were developed by Shiffman–Zelditch [59] and Dinh–Sibony
[26] to describe the asymptotic distribution of zeros of random holomorphic
sections of a positive line bundle over a projective manifold endowed with a
smooth positively curved metric. The paper [26] gives moreover very good
convergence speed and applies to general measures (e.g., equidistribution
of complex zeros of homogeneous polynomials with real coefficients). Some
important technical tools for higher dimension used in the previous works
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were introduced by Fornæss–Sibony [33]. For the non-compact setting and
the case of singular Hermitian metrics, see [16–18, 25].

Using the results of the present paper we can further generalize some
results from [16].

We define positive (1, 1) currents γk on M , called Fubini–Study currents,
by

(10.13) γk |U =
√
−1
2π

∂∂ log
( mk∑

j=1

|fk
j (x)|2

)
.

Then

(10.14)
1
k
γk −

√
−1
2π

RL = −
√
−1

2πk
∂∂ log P

(0)
k,I (x), on M \ Σ.

This shows that the definition (10.13) of γk is independent of the choice of
holomorphic frame eL and basis {Sk

j }mk

j=1.
Let λk be the normalized surface measure on the unit sphere Sk of

H0(M, Lk ⊗I (hk)), defined in the natural way by using a fixed orthonor-
mal basis. Consider the probability space S∞ =

∏∞
p=1 Sp endowed with the

probability measure λ∞ =
∏∞

p=1 λp. Denote by [S = 0] the current of integra-
tion (with multiplicities) over the analytic hypersurface {S = 0} determined
by a non-trivial section S ∈ H0(M, Lk ⊗I (hk)).

Corollary 10.12. Let (M, Θ) be a compact Hermitian manifold and let
L → M be a big line bundle. Then we have in the weak sense of currents
on M

lim
k→∞

1
k
γk =

√
−1
2π

RL,

lim
k→∞

1
k

[σk = 0] =
√
−1
2π

RL, for λ∞— a.e. sequence {σk}k≥1 ∈ S∞.

Proof. Let us observe that H0(M, Lk ⊗I (hk)) = H0
(2)(M \ Σ, Lk, hk, dvM )

and hL and dvM satisfy the conditions (A)–(C) of [16]. Owing to the asymp-
totic expansion (1.22) on M \ Σ the conclusion follows from Theorems 1.1
and 4.3 from [16]. �
Corollary 10.12 generalizes [16, Theorem 6.5], where the result was obtained
under the hypothesis that M is Kähler.

The results of this paper allow also to extend Tian’s convergence theorem
to the situation considered in Theorem 1.7. Let {Sk

j }dk

j=1, dk ∈ N ∪ {∞}, be
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an orthonormal basis of H0
(2)(X, Lk ⊗KM ). We define the Fubini–Study

currents γk on M in analogy to (10.13) as follows. Let U be an open set and
let eL be a local holomorphic frame for L on U . Set

(10.15) γk |U =
√
−1
2π

∂∂ log
( dk∑

j=1

|fk
j (x)|2

)
.

The currents γk don’t depend on the choice of the local frame eL and are
globally defined (1, 1) currents (see [16, Lemma3.2 (ii)], [49], [50]). If dk <
∞, then γk = Φ∗k(ωFS), where Φk : M \Bk → P

(
H0

(2)(X, Lk ⊗KM )∗
)
, x �−→{

s ∈ H0
(2)(X, Lk ⊗KM ); s(x) = 0

}
is the Kodaira map. We have moreover

(10.16)
1
k
γk −

√
−1
2π

RL = −
√
−1

2πk
∂∂ log Pk,KM

(x), on M.

Hence Theorem 1.7 implies immediately the following.

Theorem 10.13. Let (M, Θ) be a complete Kähler manifold and (L, hL)
be a holomorphic semi-positive line bundle over M , with smooth Hermitian
metric hL. Let M(0) be the set where (L, hL) be a positive. Then for any
compact set K ⊂ M(0), there exists k0 such that for k ≥ k0 the base locus Bk

of H0(M, Lk ⊗KM ) is disjoint of K. Moreover, for any � ∈ N, there exists
C�,K > 0 independent of k such that for k ≥ k0 the following holds

(10.17)
∣∣∣1
k
γk −

√
−1
2π

RL
∣∣∣
C �(K)

� C�,K

k
·

Theorem 10.13 can be used as above to prove the analogue of Corol-
lary 10.12. Note that in [18, Theorem 3.1 (ii)] the equidistribution of sec-
tions of adjoint bundles was actually obtained in the presence of singular
Hermitian metrics.
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[30] M. Englǐs, Weighted Bergman kernels and quantization, Comm. Math.
Phys. 227, (2002), 211–241.

[31] J. Fine, Calabi flow and projective embeddings, with an Appendix by
K. Liu and X. Ma, J. Differ. Geom. 84 (2010), 489–523.

[32] J. Fine, Quantisation and the Hessian of Mabuchi energy, Duke Math.
J. 161(14) (2012), 2753–2798.

[33] J.E. Fornæss and N. Sibony, Oka’s inequality for currents and applica-
tions, Math. Ann. 301 (1995), 399–419.

[34] M. Garcia-Fernandez and J. Ross, Limits of balanced metrics on vec-
tor bundles and polarised manifolds, Proc. London Math. Soc. 106(5)
(2013), 1143–1156.

[35] H. Grauert and O. Riemenschneider, Verschwindungssätze für ana-
lytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11
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