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Abstract Let (X, T 1,0X) be a compact orientable embeddable three dimensional
strongly pseudoconvex CR manifold and let P be the associated CR Paneitz operator.
In this paper, we show that (I) P is self-adjoint and P has L2 closed range. Let N and�

be the associated partial inverse and the orthogonal projection onto Ker P respectively,
then N and � enjoy some regularity properties. (II) Let P̂ and P̂0 be the space of L2

CR pluriharmonic functions and the space of real part of L2 global CR functions
respectively. Let S be the associated Szegö projection and let τ , τ0 be the orthogonal
projections onto P̂ and P̂0 respectively. Then, � = S + S + F0, τ = S + S + F1,
τ0 = S + S + F2, where F0, F1, F2 are smoothing operators on X . In particular,
�, τ and τ0 are Fourier integral operators with complex phases and P̂⊥ ⋂

Ker P,
P̂⊥
0

⋂ P̂ , P̂⊥
0

⋂
Ker P are all finite dimensional subspaces of C∞(X) (it is well-

known that P̂0 ⊂ P̂ ⊂ Ker P). (III) Spec P is a discrete subset of R and for every
λ ∈ Spec P, λ �= 0, λ is an eigenvalue of P and the associated eigenspace Hλ(P) is a
finite dimensional subspace of C∞(X).
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1 Introduction and statement of the main results

Let (X, T 1,0X) be a compact orientable embeddable strongly pseudoconvex CRman-
ifold of dimension three. Let P be the associated Paneitz operator and let P̂ be the
space of L2 CR pluriharmonic functions. The operator P and the space P̂ play impor-
tant roles in CR embedding problems and CR conformal geometry (see [2–4,9]). The
operator

P : Dom P ⊂ L2(X) → L2(X)

is a real, symmetric, fourth order non-hypoelliptic partial differential operator and
P̂ is an infinite dimensional subspace of L2(X). In CR embedding problems and
CR conformal geometry, it is crucial to be able to answer the following fundamental
analytic problems about P and P̂ (see [2–4,9]):

(I) Is P self-adjoint? Does P has L2 closed range? What is Spec P ?
(II) If we have Pu = f , where f is in some Sobolev space Hs(X), s ∈ Z, and

u ⊥ Ker P. Can we have u ∈ Hs′(X), for some s′ ∈ Z?
(III) The kernel of P studied first by Hirachi [9] contains CR pluriharmonic func-

tions(see also Lee [11]). The question asked by Hirachi is whether there is any-
thing else in the kernel? In [4], they asked further that is the kernel of P a direct
sum of a finite dimensional subspace with CR pluriharmonic functions?

(IV) Let � be the orthogonal projection onto Ker P and let τ be the orthogonal pro-
jection onto P̂ . Let �(x, y) and τ(x, y) denote the distribution kernels of � and
τ respectively. The P′ operator introduced in Case and Yang [2] plays a critical
role in CR conformal geometry. To understand the operator P′, it is crucial to be
able to know the exactly forms of �(x, y) and τ(x, y).

The purpose of this work is to answer the above questions. On the other hand, in
several complex variables, the study of the associated Szegö projection S and τ are
classical subjects. The operator S is well-understood; S is a Fourier integral operator
with complex phase (see Boutet de Monvel-Sjöstrand [1,10]). But for τ , there are
fewer results. In this paper, by using the Paneitz operator P, we could prove that τ

is also a complex Fourier integral operator and τ = S + S + F1, F1 is a smoothing
operator. It is quite interesting to see if the result hold in dimension ≥5. We hope that
the Paneitz operator P will be interesting for complex analysts and will be useful in
several complex variables.

We now formulate the main results. We refer to Sect. 2 for some standard notations
and terminology used here.

Let (X, T 1,0X) be a compact orientable 3-dimensional strongly pseudoconvex CR
manifold, where T 1,0X is a CR structure of X . We assume throughout that it is CR
embeddable in some C

N , for some N ∈ N. Fix a contact form θ ∈ C∞(X, T ∗X)

compactable with the CR structure T 1,0X . Then, (X, T 1,0X, θ) is a 3-dimensional
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On CR Paneitz operators and CR pluriharmonic functions 905

pseudohermitian manifold. Let T ∈ C∞(X, T X) be the real non-vanishing global
vector field given by

〈 dθ , T ∧ u 〉 = 0, ∀u ∈ T 1,0X ⊕ T 0,1X,

〈 θ , T 〉 = −1.

Let 〈 · | · 〉 be the Hermitian inner product on CT X given by

〈Z1|Z2〉 = − 1

2i
〈 dθ , Z1 ∧ Z2 〉, Z1, Z2 ∈ T 1,0X,

T 1,0X ⊥ T 0,1X := T 1,0X , T ⊥ (T 1,0X ⊕ T 0,1X), 〈 T | T 〉 = 1.

The Hermitian metric 〈 · | · 〉 on CT X induces a Hermitian metric 〈 · | · 〉 onCT ∗X . Let
T ∗0,1X be the bundle of (0, 1) forms of X . Take θ ∧ dθ be the volume form on X , we
then get natural inner products on C∞(X) and �0,1(X) := C∞(X, T ∗0,1X) induced
by θ ∧ dθ and 〈 · | · 〉. We shall use (· | ·) to denote these inner products and use ‖·‖ to
denote the corresponding norms. Let L2(X) and L2

(0,1)(X) denote the completions of

C∞(X) and �0,1(X) with respect to (· | ·) respectively. Let

�b := ∂
∗
b∂b : C∞(X) → C∞(X)

be the Kohn Laplacian (see [10]), where ∂b : C∞(X) → �0,1(X) is the tangential
Cauchy–Riemann operator and ∂

∗
b : �0,1(X) → C∞(X) is the formal adjoint of

∂b with respect to (· | ·). That is, (∂b f | g) = ( f | ∂∗
bg), for every f ∈ C∞(X),

g ∈ �0,1(X).
Let P be the set of all CR pluriharmonic functions on X . That is,

P = {u ∈ C∞(X, R); ∀x0 ∈ X, there is a f ∈ C∞(X)

with ∂b f = 0 near x0 and Re f = u near x0}. (1.1)

The Paneitz operator

P : C∞(X) → C∞(X)

can be characterized as follows (see section 4 in [2] and Lee [11]): P is a fourth order
partial differential operator, real, symmetric, P ⊂ Ker P and

P f = �b�b f + L1 ◦ L2 f + L3 f, ∀ f ∈ C∞(X),

L1, L2, L3 ∈ C∞(X, T 1,0X ⊕ T 0,1X). (1.2)

We extend P to L2 space by

P : Dom P ⊂ L2(X) → L2(X),

Dom P =
{
u ∈ L2(X); Pu ∈ L2(X)

}
. (1.3)
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Let P̂ ⊂ L2(X) be the completion of P with respect to (· | ·). Then,

P̂ ⊂ Ker P.

Put

P0 = {Re f ∈ C∞(X, R); f ∈ C∞(X) is a global CR function on X}

and let P̂0 ⊂ L2(X) be the completion of P0 with respect to (· | ·). It is clearly that
P̂0 ⊂ P̂ ⊂ Ker P. Let

τ : L2(X) → P̂,

τ0 : L2(X) → P̂0, (1.4)

be the orthogonal projections.
We recall

Definition 1.1 Suppose Q is a closed densely defined self-adjoint operator

Q : Dom Q ⊂ H → Ran Q ⊂ H,

where H is a Hilbert space. Suppose that Q has closed range. By the partial inverse
of Q, we mean the bounded operator M : H → Dom Q such that

QM + π = I on H,

MQ + π = I on Dom Q,

where π : H → Ker Q is the orthogonal projection.

Let � ⊂ X be an open set. For any continuous operator A : C∞
0 (�) → D ′(�),

throughout this paper, we write A ≡ 0 (on �) if A is a smoothing operator on � (see
Sect. 2).

The main purpose of this work is to prove the following

Theorem 1.2 With the notations and assumptions above,

P : Dom P ⊂ L2(X) → L2(X)

is self-adjoint and P has L2 closed range. Let N : L2(X) → Dom P be the partial
inverse and let � : L2(X) → Ker P be the orthogonal projection. Then,

�, τ, τ0 : Hs(X) → Hs(X) is continuous,∀s ∈ Z,

N : Hs(X) → Hs+2(X) is continuous,∀s ∈ Z, (1.5)

� ≡ τ on X, � ≡ τ0 on X (1.6)
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On CR Paneitz operators and CR pluriharmonic functions 907

and the kernel �(x, y) ∈ D ′(X × X) of � satisfies

�(x, y) ≡
∫ ∞

0
eiϕ(x,y)t a(x, y, t)dt +

∫ ∞

0
e−iϕ(x,y)t a(x, y, t)dt, (1.7)

where

ϕ ∈ C∞(X × X), Im ϕ(x, y) ≥ 0, dxϕ|x=y = −θ(x),

ϕ(x, y) = −ϕ(y, x),

ϕ(x, y) = 0 if and only if x = y, (1.8)

(see Theorem 1.9 and Theorem 1.11 for more properties of the phase ϕ), and

a(x, y, t) ∈ S1cl(X × X×]0,∞[),

a(x, y, t) ∼
∞∑

j=0

a j (x, y)t
1− j in S11,0(X × X×]0,∞[),

a j (x, y) ∈ C∞(X × X), j = 0, 1, . . . ,

a0(x, x) = 1

2
π−n, ∀x ∈ X. (1.9)

(See Sect. 2 and Definition 2.1 for the precise meanings of the notation ≡ and the
Hörmander symbol spaces S1cl(X × X×]0,∞[) and S11,0(X × X×]0,∞[).
Remark 1.3 With the notations and assumptions used in Theorem 1.2, it is easy to see
that � is real, that is � = �.

Remark 1.4 With the notations and assumptions used in Theorem 1.2, let S :
L2(X) → Ker ∂b be the Szegö projection. That is, S is the orthogonal projection
onto Ker ∂b = {

u ∈ L2(X); ∂bu = 0
}
with respect to (· | ·). In view of the proof of

Theorem 1.2 (see Sect. 4), we see that � ≡ S + S on X .

We have the classical formulas

∫ ∞

0
e−t x tmdt =

{
m!x−m−1, if m ∈ Z, m ≥ 0,

(−1)m

(−m−1)! x
−m−1

(
log x + c − ∑−m−1

1
1
j

)
, if m ∈ Z, m < 0.

(1.10)
Here x �= 0, Re x ≥ 0 and c is the Euler constant, i.e. c = limm→∞(

∑m
1

1
j − logm).

Note that

∫ ∞

0
eiϕ(x,y)t

∞∑

j=0

a j (x, y)t
1− j dt = lim

ε→0+

∫ ∞

0
e−t(−i(ϕ(x,y)+iε))

∞∑

j=0

a j (x, y)t
1− j dt.

(1.11)
We have the following corollary of Theorem 1.2
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908 C.-Y. Hsiao

Corollary 1.5 With the notations and assumptions used in Theorem 1.2, there exist
F1,G1,∈ C∞(X × X) such that

�(x, y) = F1(−iϕ(x, y))−2 + G1 log(−iϕ(x, y))

+ F1(iϕ(x, y))−2 + G1 log(iϕ(x, y)).

Moreover, we have

F1 = a0(x, y) + a1(x, y)(−iϕ(x, y)) + f1(x, y)(−iϕ(x, y))2,

G1 ≡
∞∑

0

(−1)k+1

k! a2+k(x, y)(−iϕ(x, y))k , (1.12)

where a j (x, y), j = 0, 1, . . ., are as in (1.9) and f1(x, y) ∈ C∞(X × X).

Remark 1.6 It should be mentioned that Hirachi [8] derived the leading order asymp-
totics for the Szegö kernel. The key feature of Hirachi’s work is the identification of
the coefficient for the logarithm term of the Szegö kernel. From Hirachi’s result, we
can determine the logarithm terms in Corollary 1.5 and it is possible to to derive the
full asymptotics for �(x, y) by Hirachi’s method.

Put

P̂⊥ :=
{
u ∈ L2(X); (u | f ) = 0,∀ f ∈ P̂

}
,

P̂⊥
0 :=

{
v ∈ L2(X); (v | g) = 0,∀g ∈ P̂0

}
.

From (1.6) and some standard argument in functional analysis (see Sect. 4), we deduce

Corollary 1.7 With the notations and assumptions above, we have

P̂⊥ ⋂
Ker P ⊂ C∞(X), P̂⊥

0

⋂
Ker P ⊂ C∞(X), P̂⊥

0

⋂
P̂ ⊂ C∞(X)

and P̂⊥ ⋂
Ker P, P̂⊥

0

⋂
Ker P, P̂⊥

0

⋂ P̂ are all finite dimensional.

We have the orthogonal decompositions

Ker P = P̂⊥ ⊕
(
P̂⊥ ⋂

Ker P
)

,

Ker P = P̂⊥
0 ⊕

(
P̂⊥
0

⋂
Ker P

)
,

P̂ = P̂0 ⊕
(
P̂⊥
0

⋂
P̂

)
. (1.13)

From Corollary 1.7, we know that P̂⊥ ⋂
Ker P, P̂⊥

0

⋂
Ker P, P̂⊥

0

⋂ P̂ are all finite
dimensional subsets of C∞(X).

Since P is self-adjoint, Spec P ⊂ R. In Sect. 5, we establish spectral theory for P.

Theorem 1.8 With the notations and assumptions above, Spec P is a discrete subset
in R and for every λ ∈ Spec P, λ �= 0, λ is an eigenvalue of P and the eigenspace
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On CR Paneitz operators and CR pluriharmonic functions 909

Hλ(P) := {u ∈ Dom P; Pu = λu}

is a finite dimensional subspace of C∞(X).

1.1 The phase ϕ

In this section, we collect some properties of the phase function ϕ. We refer the reader
to [10] for the proofs.

The following result describes the phase function ϕ in local coordinates.

Theorem 1.9 With the assumptions and notations used in Theorem 1.2, for a given
point x0 ∈ X, let {Z1} be an orthonormal frame of T 1,0X in a neighbourhood of x0,
i.e. Lx0(Z1, Z1) = 1. Take local coordinates x = (x1, x2, x3), z = x1 + i x2, defined
on some neighbourhood of x0 such that θ(x0) = dx3, x(x0) = 0, and for some c ∈ C,

Z1 = ∂

∂z
− i z

∂

∂x3
− cx3

∂

∂x3
+ O(|x |2),

where ∂
∂z = 1

2 (
∂

∂x1
− i ∂

∂x2
). Set y = (y1, y2, y3), w = y1 + iy2. Then, for ϕ in

Theorem 1.2, we have

Im ϕ(x, y) ≥ c
2∑

j=1

∣
∣x j − y j

∣
∣2 , c > 0, (1.14)

in some neighbourhood of (0, 0) and

ϕ(x, y) = −x3 + y3 + i |z − w|2
+ (i(zw − zw) + c(−zx3 + wy3)

+c(−zx3 + wy3)) + (x3 − y3) f (x, y) + O(|(x, y)|3), (1.15)

where f is smooth and satisfies f (0, 0) = 0, f (x, y) = f (y, x).

Definition 1.10 With the assumptions and notations used in Theorem 1.2, let
ϕ1(x, y), ϕ2(x, y) ∈ C∞(X × X). We assume that ϕ1(x, y) and ϕ2(x, y) satisfy
(1.8) and (1.14). We say that ϕ1(x, y) and ϕ2(x, y) are equivalent on X if for any
b1(x, y, t) ∈ S1cl(X × X×]0,∞[) we can find b2(x, y, t) ∈ S1cl(X × X×]0,∞[) such
that

∫ ∞

0
eiϕ1(x,y)t b1(x, y, t)dt ≡ eiϕ2(x,y)t b2(x, y, t)dt on X

and vise versa.

We characterize the phase ϕ
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910 C.-Y. Hsiao

Theorem 1.11 With the assumptions and notations used in Theorem 1.2, let
ϕ1(x, y) ∈ C∞(X × X). We assume that ϕ1(x, y) satisfies (1.8) and (1.14). ϕ1(x, y)
and ϕ(x, y) are equivalent on X in the sense of Definition 1.10 if and only if there is
a function h ∈ C∞(X × X) such that ϕ1(x, y) − h(x, y)ϕ(x, y) vanishes to infinite
order at x = y, for every (x, x) ∈ X × X.

2 Preliminaries

We shall use the following notations: R is the set of real numbers, R+ :=
{x ∈ R; x ≥ 0}, N = {1, 2, . . .}, N0 = N

⋃ {0}. An element α = (α1, α2, α3) of
N
3
0 will be called a multiindex, the size of α is: |α| = α1 + α2 + α3. For m ∈ N, we

write α ∈ {1, . . . ,m}3 if α j ∈ {1, . . . ,m}, j = 1, 2, 3. We write xα = xα1
1 xα2

2 xα3
3 ,

x = (x1, x2, x3), ∂α
x = ∂

α1
x1 ∂

α2
x2 ∂

α3
x3 , ∂x j = ∂

∂x j
, ∂α

x = ∂ |α|
∂xα .

In this paper, we let T X and T ∗X denote the tangent bundle of X and the cotangent
bundle of X respectively. The complexified tangent bundle of X and the complexified
cotangent bundle of X will be denotedbyCT X andCT ∗X respectively.Wewrite 〈 · , · 〉
to denote the pointwise duality between T X and T ∗X . We extend 〈 · , · 〉 bilinearly to
CT X × CT ∗X . Let E be a C∞ vector bundle over X . The fiber of E at x ∈ X will be
denoted by Ex . Let Y ⊂ X be an open set. From now on, the spaces of smooth sections
of E over Y and distribution sections of E over Y will be denoted by C∞(Y, E) and
D ′(Y, E) respectively. Let E ′(Y, E) be the subspace ofD ′(Y, E)whose elements have
compact support in Y . Form ∈ R, we let Hm(Y, E) denote the Sobolev space of order
m of sections of E over Y . Put

Hm
loc(Y, E) = {

u ∈ D ′(Y, E); ϕu ∈ Hm(Y, E), ∀ϕ ∈ C∞
0 (Y )

}
,

Hm
comp(Y, E) = Hm

loc(Y, E) ∩ E ′(Y, E).

Let � ⊂ X be an open set. If A : C∞
0 (�) → D ′(�) is continuous, we write

KA(x, y) or A(x, y) to denote the distribution kernel of A. The following two state-
ments are equivalent

(a) A is continuous: E ′(�) → C∞(�),
(b) KA ∈ C∞(� × �).

If A satisfies (a) or (b), we say that A is smoothing. Let B : C∞
0 (�) → D ′(�) be

a continuous operator. We write A ≡ B (on �) if A − B is a smoothing operator.
We say that A is properly supported if Supp KA ⊂ � × � is proper. That is, the two
projections: tx : (x, y) ∈ Supp KA → x ∈ �, ty : (x, y) ∈ Supp KA → y ∈ � are
proper (i.e. the inverse images of tx and ty of all compact subsets of � are compact).
Let H(x, y) ∈ D ′(� × �). We write H to denote the unique continuous operator
C∞
0 (�) → D ′(�) with distribution kernel H(x, y). In this work, we identify H with

H(x, y).
We recall Hörmander symbol spaces

Definition 2.1 Let M ⊂ R
N be an open set, 0 ≤ ρ ≤ 1, 0 ≤ δ ≤ 1, m ∈ R, N1 ∈ N.

Smρ,δ(M×R
N1) is the space of all a ∈ C∞(M×R

N1) such that for all compact K � M
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On CR Paneitz operators and CR pluriharmonic functions 911

and all α ∈ N
N
0 , β ∈ N

N1
0 , there is a constant C > 0 such that

∣
∣
∣∂α

x ∂
β
θ a(z, θ)

∣
∣
∣ ≤ C(1 + |θ |)m−ρ|β|+δ|α|, (x, θ) ∈ K × R

N1 .

We say that Smρ,δ is the space of symbols of order m type (ρ, δ). Put

S−∞(M × R
N1) :=

⋂

m∈R
Smρ,δ(M × R

N1).

Let a j ∈ S
m j
ρ,δ(M × R

N1), j = 0, 1, 2, . . . with m j → −∞, j → ∞. Then there

exists a ∈ Sm0
ρ,δ(M × R

N1) unique modulo S−∞(M × R
N1), such that a − ∑k−1

j=0 a j ∈
Smk
ρ,δ(M × R

N1) for k = 0, 1, 2, . . ..

If a and a j have the properties above, we write a ∼ ∑∞
j=0 a j in Sm0

ρ,δ(M × R
N1).

Let Smcl (M × R
N1) be the space of all symbols a(x, θ) ∈ Sm1,0(M × R

N1) with

a(x, θ) ∼
∞∑

j=0

am− j (x, θ) in Sm1,0(M × R
N1),

with ak(x, θ) ∈ C∞(M × R
N1) positively homogeneous of degree k in θ , that is,

ak(x, λθ) = λkak(x, θ), λ ≥ 1, |θ | ≥ 1.
By using partition of unity, we extend the definitions above to the cases when M is

a smooth paracompact manifold and when we replace M × R
N1 by T ∗M .

Let � ⊂ X be an open set. Let a(x, ξ) ∈ Sk1
2 , 12

(T ∗�). We can define

A(x, y) = 1

(2π)3

∫

ei〈x−y,ξ〉a(x, ξ)dξ

as an oscillatory integral and we can show that

A : C∞
0 (�) → C∞(�)

is continuous and has unique continuous extension:

A : E ′(�) → D ′(�).

Definition 2.2 Let k ∈ R. A pseudodifferential operator of order k type ( 12 ,
1
2 ) is a

continuous linear map A : C∞
0 (�) → D ′(�) such that the distribution kernel of A is

A(x, y) = 1

(2π)3

∫

ei〈x−y,ξ〉a(x, ξ)dξ

with a ∈ Sk1
2 , 12

(T ∗�). We call a(x, ξ) the symbol of A. We shall write Lk
1
2 , 12

(�) to

denote the space of pseudodifferential operators of order k type ( 12 ,
1
2 ).
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912 C.-Y. Hsiao

We recall the following classical result of Calderon–Vaillancourt (see chapterXVIII
of Hörmander [7]).

Proposition 2.3 If A ∈ Lk
1
2 , 12

(�). Then,

A : Hs
comp(�) → Hs−k

loc (�)

is continuous, for all s ∈ R. Moreover, if A is properly supported, then

A : Hs
loc(�) → Hs−k

loc (�)

is continuous, for all s ∈ R.

3 Microlocal analysis for �b

We will reduce the analysis of the Paneitz operator to the analysis of Kohn Laplacian.
We extend ∂b to L2 space by ∂b : Dom ∂b ⊂ L2(X) → L2

(0,1)(X), where Dom ∂b :=
{u ∈ L2(X); ∂bu ∈ L2

(0,1)(X)}. Let

∂
∗
b : Dom ∂

∗
b ⊂ L2

(0,1)(X) → L2(X)

be the L2 adjoint of ∂b. The Gaffney extension of Kohn Laplacian is given by

�b = ∂
∗
b∂b : Dom �b ⊂ L2(X) → L2(X),

Dom �b : =
{
u ∈ L2(X); u ∈ Dom ∂b, ∂bu ∈ Dom ∂

∗
b

}
. (3.1)

It is well-known that�b is a positive self-adjoint operator.Moreover, the characteristic
manifold of �b is given by

� = {
(x, ξ) ∈ T ∗X; ξ = λθ(x), λ �= 0

}
. (3.2)

Since X is embeddable, �b has L2 closed range. Let G : L2(X) → Dom �b be
the partial inverse and let S : L2(X) → Ker �b be the orthogonal projection (Szegö
projection). Then,

�bG + S = I on L2(X),

G�b + S = I on Dom �b. (3.3)

In [10], we proved that G ∈ L−1
1
2 , 12

(X), S ∈ L0
1
2 , 12

(X) and we got explicit formulas of

the kernels G(x, y) and S(x, y).
We introduce some notations. Let� ⊂ X be an open set with real local coordinates

x = (x1, x2, x3). Let f , g ∈ C∞(�). We write f � g if for every compact set K ⊂ �

there is a constant cK > 0 such that f ≤ cK g and g ≤ cK f on K . We need
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On CR Paneitz operators and CR pluriharmonic functions 913

Definition 3.1 a(t, x, η) ∈ C∞(R+ × T ∗�) is quasi-homogeneous of degree j if
a(t, x, λη) = λ j a(λt, x, η) for all λ > 0.

We introduce some symbol classes

Definition 3.2 Let μ > 0. We say that a(t, x, η) ∈ S̃mμ (R+ × T ∗�) if a(t, x, η) ∈
C∞(R+×T ∗�) and there is a a(x, η) ∈ Sm1,0(T

∗�) such that for all indicesα, β ∈ N
3
0,

γ ∈ N0, every compact set K � �, there exists a constant cα,β,γ > 0 independent of
t such that for all t ∈ R+,
∣
∣
∣∂

γ
t ∂α

x ∂β
η (a(t, x, η) − a(x, η))

∣
∣
∣ ≤ cα,β,γ e

−tμ|η|(1 + |η|)m+γ−|β|, x ∈ K , |η| ≥ 1.

The following is well-known (see [10])

Theorem 3.3 With the assumptions and notations above, G ∈ L−1
1
2 , 12

(X), S ∈
L0

1
2 , 12

(X), S(x, y) ≡ ∫
eiϕ(x,y)t a(x, y, t)dt, where ϕ(x, y) ∈ C∞(X × X) is as in

(1.8) and

a(x, y, t) ∈ S1cl(X × X×]0,∞[),

a(x, y, t) ∼
∞∑

j=0

a j (x, y)t
1− j in S11,0(X × X×]0,∞[),

a j (x, y) ∈ C∞(X × X), j = 0, 1, . . . ,

a0(x, x) = 1

2
π−n, ∀x ∈ X,

and on every open local coordinate patch � ⊂ X with real local coordinates
x = (x1, x2, x3), we have

G(x, y) ≡
∫ ∫ ∞

0
ei(ψ(t,x,η)−〈y,η〉) − t

(

iψ ′
t (t, x, η)a(t, x, η) + ∂a

∂t
(t, x, η)

)

dtdη,

(3.4)
where a(t, x, η) ∈ S̃0μ(R+ × T ∗�), ψ(t, x, η) ∈ S̃1μ(R+ × T ∗�) for some μ > 0,

ψ(t, x, η) is quasi-homogeneous of degree 1, ψ ′
t (t, x, η) = ∂ψ

∂t (t, x, η), ψ(0, x, η)

= 〈x, η〉, Im ψ ≥ 0 with equality precisely on ({0} × T ∗� \ 0)⋃
(R+ × �),

ψ(t, x, η) = 〈x, η〉 on �, dx,η(ψ − 〈x, η〉) = 0 on �,

and

Im ψ(t, x, η) �
(

|η| t |η|
1 + t |η|

) (

dist

((

x,
η

|η|
)

, �

))2

, t ≥ 0, |η| ≥ 1. (3.5)

(See Theorem 3.4 below for the meaning of the integral (3.4).)
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914 C.-Y. Hsiao

Proof We only sketch the proof. For all the details, we refer the reader to Part I in
[10]. We use the heat equation method. We work with some real local coordinates
x = (x1, x2, x3) defined on �. We consider the problem

{
(∂t + �b)u(t, x) = 0 in R+ × �,

u(0, x) = v(x).
(3.6)

We look for an approximate solution of (3.6) of the form u(t, x) = A(t)v(x),

A(t)v(x) = 1

(2π)3

∫

ei(ψ(t,x,η)−〈y,η〉)α(t, x, η)v(y)dydη (3.7)

where formally

α(t, x, η) ∼
∞∑

j=0

α j (t, x, η),

with α j (t, x, η) quasi-homogeneous of degree − j .
The full symbol of �b equals

∑2
j=0 p j (x, ξ), where p j (x, ξ) is positively homo-

geneous of order 2 − j in the sense that

p j (x, λη) = λ2− j p j (x, η), |η| ≥ 1, λ ≥ 1.

Weapply ∂t+�b formally inside the integral in (3.7) and then introduce the asymptotic
expansion of �b(αeiψ). Set (∂t + �b)(αeiψ) ∼ 0 and regroup the terms according to
the degree of quasi-homogeneity. The phase ψ(t, x, η) should solve

{
∂ψ
∂t − i p0(x, ψ ′

x ) = O(|Im ψ |N ), ∀N ≥ 0,

ψ |t=0 = 〈x, η〉, (3.8)

where ψ ′
x = (

∂ψ
∂x1

,
∂ψ
∂x2

,
∂ψ
∂x3

). Note that p0(x, ξ) is a polynomial with respect to ξ .
This equation can be solved with Im ψ(t, x, η) ≥ 0 and the phase ψ(t, x, η) is quasi-
homogeneous of degree 1. Moreover,

ψ(t, x, η) = 〈x, η〉 on �, dx,η(ψ − 〈x, η〉) = 0 on �,

Im ψ(t, x, η) �
(

|η| t |η|
1 + t |η|

) (

dist

((

x,
η

|η|
)

, �

))2

, |η| ≥ 1.

Furthermore, there exists ψ(∞, x, η) ∈ C∞(� × Ṙ
3) with a uniquely determined

Taylor expansion at each point of � such that for every compact set K ⊂ � × Ṙ
3

there is a constant cK > 0 such that

Im ψ(∞, x, η) ≥ cK |η|
(

dist

((

x,
η

|η|
)

, �

))2

, |η| ≥ 1.
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On CR Paneitz operators and CR pluriharmonic functions 915

If λ ∈ C(T ∗� � 0), λ > 0 is positively homogeneous of degree 1 and λ|� < min λ j ,
λ j > 0, where ±iλ j are the non-vanishing eigenvalues of the fundamental matrix of
�b, then the solution ψ(t, x, η) of (3.8) can be chosen so that for every compact set
K ⊂ � × Ṙ

3 and all indices α, β, γ , there is a constant cα,β,γ,K such that

∣
∣
∣∂α

x ∂β
η ∂

γ
t (ψ(t, x, η) − ψ(∞, x, η))

∣
∣
∣ ≤ cα,β,γ,K e

−λ(x,η)t on R+ × K .

We obtain the transport equations

{
T (t, x, η, ∂t , ∂x )α0 = O(|Im ψ |N ), ∀N ,

T (t, x, η, ∂t , ∂x )α j + l j (t, x, η, α0, . . . , α j−1) = O(|Im ψ |N ), ∀N , j ∈ N.

(3.9)
It was proved in [10] that (3.9) can be solved. Moreover, there exist positively

homogeneous functions of degree − j

α j (∞, x, η) ∈ C∞(T ∗�), j = 0, 1, 2, . . . ,

such that α j (t, x, η) converges exponentially fast to α j (∞, x, η), t → ∞, for all
j ∈ N0. Set

G̃ = 1

(2π)3

∫ ∫ ∞

0
ei(ψ(t,x,η)−〈y,η〉) − t

(

iψ ′
t (t, x, η)α(t, x, η) + ∂α

∂t
(t, x, η)

)

dtdη

and

S̃ = 1

(2π)3

∫

ei(ψ(∞,x,η)−〈y,η〉)α(∞, x, η)dη,

where ψ ′
t (t, x, η) := ∂ψ

∂t (t, x, η). We can show that G̃ is a pseudodifferential operator
of order −1 type ( 12 ,

1
2 ), S̃ is a pseudodifferential operator of order 0 type ( 12 ,

1
2 )

satisfying

S̃ + �bG̃ ≡ I, �b S̃ ≡ 0.

Moreover, from global theory of complex Fourier integral operators, we can show
that S̃ ≡ ∫

eiϕ(x,y)t a(x, y, t)dt . Furthermore, by using some standard argument in
functional analysis, we can show that G̃ ≡ G, S̃ ≡ S.

Until further notice, we work in an open local coordinate patch � ⊂ X with real
local coordinates x = (x1, x2, x3). The following iswell-known (seeChapter 5 in [10])

Theorem 3.4 With the notations and assumptions used in Theorem 3.3, let χ ∈
C∞
0 (R3) be equal to 1 near the origin. Put
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916 C.-Y. Hsiao

Gε(x, y) =
∫ ∫ ∞

0
ei(ψ(t,x,η)−〈y,η〉)

−t

(

iψ ′
t (t, x, η)a(t, x, η) + ∂a

∂t
(t, x, η)

)

χ(εη)dtdη,

where ψ(t, x, η), a(t, x, η) are as in (3.4). For u ∈ C∞
0 (�), we can show that

Gu := lim
ε→0

∫

Gε(x, y)u(y)dy ∈ C∞(�)

and

G : C∞
0 (�) → C∞(�),

u → lim
ε→0

∫

Gε(x, y)u(y)dy

is continuous.
Moreover, G ∈ L−1

1
2 , 12

(�) with symbol

∫ ∞

0
ei(ψ(t,x,η)−〈x,η〉) − t

(

iψ ′
t (t, x, η)a(t, x, η) + ∂a

∂t
(t, x, η)

)

dt ∈ S−1
1
2 , 12

(T ∗�).

We need the following (see Lemma 5.13 in [10] for a proof)

Lemma 3.5 With the notations and assumptions used in Theorem 3.3, for every com-
pact set K ⊂ � and all α ∈ N

3
0, β ∈ N

3
0, there exists a constant cα,β,K > 0 such

that
∣
∣
∣∂α

x ∂β
η (ei(ψ(t,x,η)−〈x,η〉)tψ ′

t (t, x, η))

∣
∣
∣

≤ cα,β,K (1 + |η|) |α|−|β|
2 e−tμ|η|e−Im ψ(t,x,η)(1 + Im ψ(t, x, η))1+

|α|+|β|
2 ,

(3.10)

where x ∈ K, t ∈ R+, |η| ≥ 1 and μ > 0 is a constant independent of α, β and K .

In this work, we need

Theorem 3.6 Let L ∈ C∞(X, T 1,0X ⊕ T 0,1X). Then, L ◦ G ∈ L
− 1

2
1
2 , 12

(X).

Proof We work on an open local coordinate patch � ⊂ X with real local coordi-
nates x = (x1, x2, x3). Let l(x, η) ∈ C∞(T ∗�) be the symbol of L . Then, l(x, λη)

= λl(x, η), λ > 0. It is well-known (see Chapter 5 in [10]) that

(LG)(x, y) ≡
∫

ei〈x−y,η〉α(x, η)dη,
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On CR Paneitz operators and CR pluriharmonic functions 917

where

α(x, η) = α0(x, η) + α1(x, η) ∈ S01
2 , 12

(T ∗�),

α0(x, η) =
∫

ei(ψ(t,x,η)−〈x,η〉)(−1)l(x, ψ ′
x (t, x, η))tψ ′

t (t, x, η)a(t, x, η)dt,

α1(x, η) ∈ S−1
1
2 , 12

(T ∗�).

Here a(t, x, η) ∈ S̃0μ(R+ × T ∗�), μ > 0. We only need to prove that α0(x, η) ∈
S

− 1
2

1
2 , 12

(T ∗�). Fix α, β ∈ N
3
0. From (3.10), (3.5) and notice that l(x, ψ ′

x (t, x, η)) = 0

at �, we can check that

∣
∣
∣∂α

x ∂β
η α0(x, η)

∣
∣
∣

≤
∑

|α′|+|α′′|=|α|,|β ′|+|β ′′|=|β|

∫ ∣
∣
∣∂α′

x ∂β ′
η

(
ei(ψ(t,x,η)−〈x,η〉)tψ ′

t (t, x, η)
)∣
∣
∣

×
∣
∣
∣∂α′′

x ∂β ′′
η

(
l(x, ψ ′

x (t, x, η))a(t, x, η)
)∣∣
∣ dt

≤ Cα,β

∑

|α′|+|α′′|=|α|,|β ′|+|β ′′|=|β|

∫

(1 + |η|) |
α′|−|β′|

2 e−tμ|η|e− 1
2 Im ψ(t,x,η)

×(1 + |η|)1−|β ′′|
(

dist

((

x,
η

|η|
)

, �

))max{0,1−|β ′′|}
dt

≤ C̃α,β

∑

|α′|+|α′′|=|α|,|β ′|+|β ′′|=|β|

∫

(1 + |η|) |
α′|−|β′|

2 e
−c t |η|2

1+t |η|
(
dist

((
x, η

|η|
)
,�

))2

×e−tμ|η|(1 + |η|)1−|β ′′|
(

dist

((

x,
η

|η|
)

, �

))max{0,1−|β ′′|}
dt, (3.11)

where c > 0, μ > 0, Cα,β > 0 and C̃α,β > 0 are constants.
When

∣
∣β ′′∣∣ = 0, we have

∫

(1 + |η|) |
α′|−|β′|

2 e
−c t |η|2

1+t |η|
(
dist

((
x, η

|η|
)
,�

))2

×e−tμ|η|(1 + |η|)1−|β ′′|
(

dist

((

x,
η

|η|
)

, �

))

dt

≤ c̃
∫

(1 + |η|) |
α′|−|β′|

2
1√
t
(1 + |η|)−|β ′′|e− 1

2 tμ|η|dt

≤ c̃1

∫ 1
1+|η|

0
(1 + |η|) |

α′|−|β′|
2

1√
t
(1 + |η|)−|β ′′|e− 1

2 tμ|η|dt
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918 C.-Y. Hsiao

+ c̃2

∫ ∞
1

1+|η|
(1 + |η|) |

α′|−|β′|
2

1√
t
(1 + |η|)−|β ′′|e− 1

2 tμ|η|dt

≤ c̃3(1 + |η|)− 1
2−|β ′′|+ |α′|−|β′|

2 , (3.12)

where |η| ≥ 1, c̃1 > 0, c̃2 > 0 and c̃3 > 0 are constants.
When

∣
∣β ′′∣∣ ≥ 1, we have

∫

(1 + |η|) |
α′|−|β′|

2 e
−c t |η|2

1+t |η|
(
dist

(
(x, η

|η| ),�
))2

×e−tμ|η|(1 + |η|)1−|β ′′|dt
≤ ĉ

∫

(1 + |η|) |
α′|−|β′|

2 (1 + |η|)1−|β ′′|e−tμ|η|dt

≤ ĉ1(1 + |η|)−|β ′′|+ |α′|−|β′|
2

≤ ĉ2(1 + |η|)− 1
2+|α′|−|β′|−|β′′|

2 , (3.13)

where |η| ≥ 1, ĉ1 > 0, ĉ2 > 0 are constants.

From (3.11), (3.12) and (3.13), we conclude that α0(x, η) ∈ S
− 1

2
1
2 , 12

(T ∗�). The

theorem follows.

4 Microlocal Hodge decomposition theorems for P and the proof of Theorem 1.2

By using Theorems 3.3 and 3.6, we will establish microlocal Hodge decomposition
theorems for P in this section. Let G ∈ L−1

1
2 , 12

(X), S ∈ L0
1
2 , 12

(X) be as in Theorem 3.3.

From (1.2) and (3.3), we have

PGG = (�b�b + L1 ◦ L2 + L3)GG

= �b(I − S)G + L1 ◦ L2GG + L3GG

= I − S − �bSG + L1 ◦ L2GG + L3GG

= I − S − S�bG + S�bG − �bSG + L1 ◦ L2 ◦ GG + L3GG

= I − S − S(I − S) + [S,�b]G + L1 ◦ L2GG + L3GG

= I − S − S + SS + [S,�b]G + L1 ◦ L2GG + L3GG. (4.1)

We need

Lemma 4.1 We have

[S,�b]G + L1 ◦ L2GG + L3GG

: Hs(X) → Hs+ 1
2 (X) is continuous, for every s ∈ Z. (4.2)
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Proof From Theorem 3.6, we see that L1 ◦ L2G ∈ L
1
2
1
2 , 12

(X). Thus,

L1 ◦ L2GG + L3GG : Hs(X) → Hs+ 1
2 (X) is continuous,∀s ∈ Z. (4.3)

Since �bS = S �b = 0, we have

[S,�b] = [S,�b − �b]. (4.4)

Since the principal symbol of �b is real, �b − �b is a first order partial differential
operator. From this observation and note that S ∈ L0

1
2 , 12

(X), it is not difficult to see

that [S,�b − �b] ∈ L
1
2
1
2 , 12

(X). From this and (4.4), we conclude that

[S,�b]G : Hs(X) → Hs+ 1
2 (X) is continuous,∀s ∈ Z. (4.5)

From (4.5) and (4.3), (4.2) follows.

We also need

Lemma 4.2 We have SS ≡ 0 on X, SS ≡ 0 on X.

Proof We first notice that S ◦ S is smoothing away x = y. We have

S ◦ S(x, y) ≡
∫

σ>0,t>0
e−iϕ(x,w)σ+iϕ(w,y)t a(x, w, σ )a(w, y, t)dσdvX (w)dt

≡
∫

s>0,t>0
eit (−ϕ(x,w)s+ϕ(w,y))ta(x, w, st)a(w, y, t)dsdvX (w)dt,

(4.6)

where dvX = θ ∧ dθ is the volume form. Take χ ∈ C∞
0 (R, [0, 1]) with χ = 1 on

[− 1
2 ,

1
2

]
, χ = 0 on ] − ∞,−1]⋃[1,∞[. From (4.6), we have

S ◦ S(x, y) ≡ Iε + I Iε,

Iε =
∫

s>0,t>0
eit (−ϕ(x,w)s+ϕ(w,y))χ

(
|x − w|2

ε

)

ta(x, w, st)a(w, y, t)dsdvX (w)dt,

I Iε =
∫

s>0,t>0
eit (−ϕ(x,w)s+ϕ(w,y))

(

1 − χ

(
|x − w|2

ε

))

× ta(x, w, st)a(w, y, t)dsdvX (w)dt, (4.7)

where ε > 0 is a small constant. Since ϕ(x, w) = 0 if and only if x = w, we can
integrate by parts with respect to s and conclude that I Iε is smoothing. Since S ◦ S
is smoothing away x = y, we may assume that |x − y| < ε. Since dw(−ϕ(x, w)s +
ϕ(w, y))|x=y=w = −ω0(x)(s + 1) �= 0, if ε > 0 is small, we can integrate by parts

123



920 C.-Y. Hsiao

with respect tow and conclude that Iε is smoothing. We get S ◦ S ≡ 0 on X . Similarly,
we can repeat the procedure above and conclude that S ◦ S ≡ 0 on X . The lemma
follows.

Put
R0 = SS + [S,�b]G + L1 ◦ L2GG + L3GG. (4.8)

From Lemmas 4.1 and 4.2, we see that

R0 : Hs(X) → Hs+ 1
2 (X) is continuous,∀s ∈ Z. (4.9)

We can prove

Theorem 4.3 With the assumptions and notations above, for every m ∈ N0, there are
continuous operators

Rm, Am : C∞
0 (X) → D ′(X)

such that

PAm + S + S = I + Rm,

Am : Hs(X) → Hs+2(X) is continuous,∀s ∈ Z,

Rm : Hs(X) → Hs+m+1
2 (X) is continuous,∀s ∈ Z. (4.10)

Proof From (4.8) and (4.1), we have

PGG + S + S = I + R0. (4.11)

Since (S + S)P = 0, from (4.11), we have

(S + S)2 = S + S + (S + S)R0. (4.12)

From Lemma 4.2, we have

(S + S)2 = S2 + SS + SS + S
2 ≡ S + S. (4.13)

From (4.12) and (4.13), we conclude that

(S + S)R0 ≡ 0 on X. (4.14)

Fix m ∈ N0. From (4.11), we have

PGG
(
I − R0 + R2

0 + · · · + (−R0)
m
)

+ (S + S)
(
I − R0 + R2

0 + · · · + (−R0)
m
)

= (I + R0)
(
I − R0 + R2

0 + · · · + (−R0)
m
)

= I + R0(−R0)
m . (4.15)
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From (4.14), we have

(
S + S

) (
I − R0 + R2

0 + · · · + (−R0)
m
)

= S + S − F, F is smoothing. (4.16)

Put Am = GG(I − R0 + R2
0 + · · · + (−R0)

m), Rm = R0(−R0)
m + F . From (4.15),

(4.16) and (4.9), we obtain

PAm + S + S = I + Rm,

Am : Hs(X) → Hs+2(X) is continuous,∀s ∈ Z,

Rm : Hs(X) → Hs+m+1
2 (X) is continuous,∀s ∈ Z.

The theorem follows.

Lemma 4.4 Let u ∈ Dom P. Then, u = u0 + (S + S)u, for some u0 ∈
H2(X)

⋂
Dom P.

Proof Fix m ≥ 3, m ∈ N. Let Am , Rm be as in (4.10) and let A∗
m and R∗

m be the
adjoints of Am and Rm with respect to (· | ·) respectively. Then,

A∗
mP + S + S = I + R∗

m . (4.17)

Let u ∈ Dom P. Then, Pu = v ∈ L2(X). From (4.17), it is easy to see that

u = A∗
mv − R∗

mu + (S + S)u.

Since A∗
mv − R∗

mu ∈ H2(X) and (S + S)u ∈ Ker P ⊂ Dom P, the lemma follows.

Lemma 4.5 Let u ∈ Dom P. Then,

((S + S)u |Pg) = 0, ∀g ∈ Dom P.

Proof Let u, g ∈ Dom P. Take u j , g j ∈ C∞(X), j = 1, 2, . . ., u j → u ∈ L2(X) as
j → ∞ and g j → g ∈ L2(X) as j → ∞. Then, (S + S)u j → (S + S)u in L2(X)

as j → ∞ and Pg j → Pg in H−4(X) as j → ∞. Thus,

((S + S)u |Pg) = lim
j→∞((S + S)u j |Pg) = lim

j→∞ lim
k→∞((S + S)u j |Pgk). (4.18)

For any j, k, ((S + S)u j |Pgk) = (P(S + S)u j | gk) = 0. From this observation and
(4.18), the lemma follows.

Now, we can prove
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Theorem 4.6 The operator P : Dom P ⊂ L2(X) → L2(X) is self-adjoint.

Proof Let u, v ∈ Dom P. From Lemma 4.4, we have

u = u0 + (S + S)u, u0 ∈ H2(X)
⋂

Dom P,

v = v0 + (S + S)v, v0 ∈ H2(X)
⋂

Dom P.

From Lemma 4.5, we see that

(u |Pv) = (u0 |Pv0), (Pu | v) = (Pu0 | v0). (4.19)

Let g j , f j ∈ C∞(X), j = 1, 2, . . ., g j → u0 ∈ H2(X) as j → ∞ and f j → v0 ∈
H2(X) as j → ∞. We have

(g j |P f j ) = (g j − u0 |P f j ) + (u0 |P f j )

= (g j − u0 |P f j ) + (u0 |Pv0) + (u0 |P( f j − v0)). (4.20)

Now,

∣
∣
∣(g j − u0 |P f j )

∣
∣
∣ ≤ C0

∥
∥
∥g j − u0

∥
∥
∥
2

∥
∥P f j

∥
∥−2

≤ C1

∥
∥
∥g j − u0

∥
∥
∥
2

∥
∥ f j

∥
∥
2 → 0 as j → ∞ (4.21)

and
∣
∣
∣(u0 |P( f j − v0))

∣
∣
∣ ≤ C2

∥
∥
∥u0

∥
∥
∥
2

∥
∥
∥P( f j − v0

∥
∥
∥−2

≤ C3

∥
∥
∥u0

∥
∥
∥
2

∥
∥
∥ f j − v0

∥
∥
∥
2

→ 0 as j → ∞, (4.22)

where C0 > 0,C1 > 0,C2 > 0,C3 > 0 are constants and ‖·‖s denotes the standard
Sobolev norm of order s on X . From (4.20), (4.21) and (4.22), we obtain

(u0 |Pv0) = lim
j→∞(g j |P f j ). (4.23)

For each j , it is clearly that (g j |P f j ) = (Pg j | f j ). We can repeat the procedure
above and conclude that

lim
j→∞(Pg j | f j ) = (Pu0 | v0).

From this observation, (4.23) and (4.19), we conclude that

(Pu | v) = (u |Pv), ∀u, v ∈ DomP. (4.24)
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Let P∗ : Dom P∗ ⊂ L2(X) → L2(X) be the Hilbert space adjoint of P. From (4.24),
we deduce that Dom P ⊂ Dom P∗ and Pu = P∗u, ∀u ∈ Dom P∗.

Let v ∈ Dom P∗. By definition, there is a f ∈ L2(X) such that

(v |Pg) = ( f | g), ∀g ∈ Dom P.

Since C∞(X) ⊂ Dom P, Pv = f in the sense of distribution. Since f ∈ L2(X),
v ∈ Dom P and Pv = P∗v = f . The theorem follows.

We should noticed that Chiu [5] gave a detailed proof (and different proof) of
Theorem 4.6.

Theorem 4.7 The operator P : Dom P ⊂ L2(X) → L2(X) has closed range.

Proof Fix m ∈ N0, let Am, Rm be as in (4.10) and let A∗
m and R∗

m be the adjoints of
Am and Rm with respect to (· | ·) respectively. Then,

A∗
mP + S + S = I + R∗

m . (4.25)

Now, we claim that there is a constant C > 0 such that

‖Pu‖ ≥ C ‖u‖ , ∀u ∈ Dom P
⋂

(Ker P)⊥. (4.26)

If the claim is not true, then we can find u j ∈ Dom P
⋂

(Ker P)⊥ with
∥
∥u j

∥
∥ = 1,

j = 1, 2, . . ., such that

∥
∥Pu j

∥
∥ ≤ 1

j

∥
∥u j

∥
∥ , j = 1, 2, . . . . (4.27)

From (4.25), we have

u j = A∗
mPu j + (S + S)u j − Rmu j , j = 1, 2, . . . . (4.28)

Since u j ∈ (Ker P)⊥, j = 1, 2, . . ., and P(S + S) = 0, we have

(S + S)u j = 0, j = 1, 2, . . . . (4.29)

From (4.28) and (4.29), we get

u j = A∗
mPu j − Rmu j , j = 1, 2, . . . . (4.30)

From (4.30) and Rellich’s theorem, we can find subsequence {u js }∞s=1, 1 ≤ j1 < j2 <

. . ., u js → u in L2(X). From (4.27), we see that Pu = 0. Hence, u ∈ Ker P. Since
u j ∈ (Ker P)⊥, j = 1, 2, . . ., we get a contradiction. The claim (4.26) follows. From
(4.26), the theorem follows.
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In view of Theorems 4.6 and 4.7, we know that P is self-adjoint and P has closed
range. Let N : L2(X) → Dom P be the partial inverse and let � : L2(X) → Ker P
be the orthogonal projection. We can prove

Theorem 4.8 With the notations and assumptions above, we have

� : Hs(X) → Hs(X) is continuous,∀s ∈ Z,

N : Hs(X) → Hs+2(X) is continuous,∀s ∈ Z,

� ≡ S + S. (4.31)

Proof Fix m ∈ N0. Let Am, Rm be as in Theorem 4.3. Then,

PAm + S + S = I + Rm .

Thus,
� + �Rm = �(PAm + S + S) = �(S + S) = S + S. (4.32)

From (4.10) and (4.32), we have

� − (S + S) : H−m+1
2 (X) → L2(X) is continuous. (4.33)

By taking adjoint in (4.33), we get

� − (S + S) : L2(X) → H
m+1
2 (X) is continuous. (4.34)

From (4.33) and (4.34), we have

(
� − (S + S)

)2 : H−m+1
2 (X) → H

m+1
2 (X) is continuous. (4.35)

Now,

(
� − (S + S)

)2 = � − �(S + S) − (S + S)� + (S + S)2

= � − (S + S) − (S + S) + S + S + SS + SS

≡ � − (S + S) (here we used Lemma 4.2). (4.36)

From (4.35) and (4.36), we conclude that

� − (S + S) : H−m+1
2 (X) → H

m+1
2 (X) is continuous.

Since m is arbitrary, we get
� ≡ S + S. (4.37)

Now,
N (PAm + S + S) = N (I + Rm). (4.38)
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Note that NP = I − �, N� = 0. From this observation, we have

N (PAm + S + S) = (I − �)Am + NF, (4.39)

where F ≡ 0 [here we used (4.37)]. From (4.39) and (4.38), we have

N − Am = −�Am + NF − N Rm . (4.40)

From (4.37) and (4.40), we have

N − A∗
m = −A∗

m� + F∗N − R∗
mN

= −A∗
m� + F∗(−�Am + NF − N Rm + Am)

−R∗
m(−�Am + NF − N Rm + Am)

: Hs(X) → Hs+2(X) is continuous,∀ − m + 1

2
≤ s ≤ m − 3

2
, s ∈ Z,

(4.41)

where A∗
m , F

∗, R∗
m are adjoints of Am , F , Rm respectively. Note that

A∗
m : Hs(X) → Hs+2(X) is continuous,∀s ∈ Z.

From this observation, (4.41) and note that m is arbitrary, we conclude that

N : Hs(X) → Hs+2(X) is continuous,∀s ∈ Z.

The theorem follows.

Let τ and τ0 be as in (1.4). Now, we can prove

Theorem 4.9 We have τ ≡ � on X, τ0 ≡ � on X.

Proof Since P̂ ⊂ Ker P, we have �τ = τ . From this observation and (4.31), we get

(S + S)τ − τ = Fτ, (4.42)

where F is a smoothing operator. It is clearly that (S+S)τ = τ(S+S) = S+S. From
this observation and (4.42), we get S + S − τ = Fτ and hence S + S − τ = τ F∗,
where F∗ is the adjoint of F . Thus,

(S + S − τ)(S + S − τ) = Fτ 2F∗ ≡ 0. (4.43)

Now,

(S + S − τ)2 = (S + S)2 − (S + S)τ − τ(S + S) + τ 2

= S + SS + SS + S − S − S − S − S + τ

≡ τ − (S + S) (here we used Lemma 4.2). (4.44)

From (4.44), (4.43) and (4.31), we get τ ≡ �.
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Similarly, we can repeat the procedure above and conclude that τ0 ≡ �. The
theorem follows.

From Theorems 4.6, 4.7, 4.8, 4.9 and 3.3, we get Theorem 1.2.

Corollary 4.10 We have

P̂⊥ ⋂
Ker P ⊂ C∞(X), P̂⊥

0

⋂
Ker P ⊂ C∞(X), P̂⊥

0

⋂
P̂ ⊂ C∞(X)

and P̂⊥ ⋂
Ker P, P̂⊥

0

⋂
Ker P, P̂⊥

0

⋂ P̂ are all finite dimensional.

Proof If P̂⊥ ⋂
Ker P is infinite dimensional, then we can find

f j ∈ P̂⊥ ⋂
Ker P, j = 1, 2, . . . ,

such that ( f j | fk) = δ j,k , j, k = 1, 2, . . ., where δ j,k = 1 if j = k, δ j,k = 0 if j �= k.
Since f j ∈ Ker P, j = 1, 2, . . ., f j = � f j , j = 1, 2, . . .. From Theorem 4.9, we have

f j = τ f j + F f j , j = 1, 2, 3, . . . , (4.45)

where F is a smoothing operator. Since f j ∈ P̂⊥, j = 1, 2, . . ., τ f j = 0, j = 1, 2, . . ..
From this observation and (4.45), we get

f j = F f j , j = 1, 2, 3, . . . . (4.46)

From (4.46) and Rellich’s theorem, we can find subsequence { f js }∞s=1, 1 ≤ j1 < j2 <

· · · , f js → f in L2(X). Since ( f j | fk) = δ j,k , j, k = 1, 2, . . ., we get a contradiction.
Thus, P̂⊥ ⋂

Ker P is finite dimensional. Let { f1, f2, . . . , fd} be an orthonormal frame
of P̂⊥ ⋂

Ker P, d < ∞. As (4.46), we have f j = F f j , j = 1, 2, . . . , d. Thus,
f j ∈ C∞(X), j = 1, 2, . . . , d, and hence P̂⊥ ⋂

Ker P ⊂ C∞(X).
We can repeat the procedure above and conclude that P̂⊥

0

⋂
Ker P ⊂ C∞(X),

P̂⊥
0

⋂ P̂ ⊂ C∞(X), P̂⊥
0

⋂
Ker P, P̂⊥

0

⋂ P̂ are all finite dimensional.

5 Spectral theory for P

In this section, we will prove Theorem 1.8. For any λ > 0, put

�[−λ,λ] := E([−λ, λ]),

where E denotes the spectral measure for P (see section 2 in Davies [6], for the precise
meaning of spectral measure). We need
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Theorem 5.1 Fix λ > 0. We have P�[−λ,λ] ≡ 0 on X.

Proof As before, let N be the partial inverse of P and let� be the orthogonal projection
onto Ker P. We have

NP + � = I. (5.1)

From (5.1), we have
NP2�[−λ,λ] = P�[−λ,λ]. (5.2)

From (1.5), (5.2) and notice that

P2�[−λ,λ] : L2(X) → L2(X) is continuous,

we conclude that

P�[−λ,λ] : L2(X) → H2(X) is continuous. (5.3)

Similarly, we can repeat the procedure above and deduce that

P2�[−λ,λ] : L2(X) → H2(X) is continuous. (5.4)

From (5.4), (5.2) and (1.5), we get

P�[−λ,λ] : L2(X) → H4(X) is continuous.

Continuing in this way, we conclude that

P�[−λ,λ] : L2(X) → Hm(X) is continuous,∀m ∈ N0. (5.5)

Note that P�[−λ,λ] = �[−λ,λ]P = (P�[−λ,λ])∗, where (P�[−λ,λ])∗ is the adjoint of
P�[−λ,λ]. By taking adjoint in (5.5), we get

�[−λ,λ]P = P�[−λ,λ] : H−m(X) → L2(X) is continuous,∀m ∈ N0.

Hence,

(P�[−λ,λ])2 = P2�[−λ,λ] : H−m(X) → Hm(X) is continuous,∀m ∈ N0. (5.6)

From (5.6), (5.2) and (1.5), the theorem follows.

We need

Theorem 5.2 For any λ > 0,�[−λ,λ] ≡ � on X.

Proof From (5.1) and Theorem 5.1, we get

��[−λ,λ] ≡ �[−λ,λ] on X. (5.7)

On the other hand, it is clearly that ��[−λ,λ] = �. From this observation and (5.7),
the theorem follows.

Now, we can prove
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Theorem 5.3 Spec P is a discrete subset in R and for every λ ∈ Spec P, λ �= 0, λ is
an eigenvalue of P and the eigenspace

Hλ(P) := {u ∈ Dom P; Pu = λu}

is a finite dimensional subspace of C∞(X).

Proof Since P has L2 closed range, there is a μ > 0 such that Spec P ⊂]
− ∞,−μ]⋃[μ,∞[. Fix λ > μ. Put �[−λ,−μ]⋃[μ,λ] := E([−λ,−μ]⋃[μ, λ]).
Note that

�[−λ,−μ]⋃[μ,λ] = �[−λ,λ] − �[− μ
2 ,

μ
2 ].

From this observation and Theorem 5.2, we see that

�[−λ,−μ]⋃[μ,λ] ≡ 0. (5.8)

We claim that Spec P
⋂{[−λ,−μ]⋃[μ, λ]} is discrete. If not, we can find f j ∈

Rang E([−λ,−μ]⋃[μ, λ]), j = 1, 2, . . ., with ( f j | fk) = δ j,k , j, k = 1, 2, . . ..
Note that

f j = �[−λ,−μ]⋃[μ,λ] f j , j = 1, 2, . . . .

From this observation, (5.8) and Rellich’s theorem, we can find subsequence
{
f js

}∞
s=1,

1 ≤ j1 < j2 < . . ., f js → f in L2(X). Since ( f j | fk) = δ j,k , j, k = 1, 2, . . ., we get
a contradiction. Thus, Spec P

⋂ {[−λ,−μ]⋃[μ, λ]} is discrete. Hence Spec P is a
discrete subset in R.

Let r ∈ Spec P, r �= 0. Since Spec P is discrete, P− r has L2 closed range. If P− r
is injective, then Range (P − r) = L2(X) and

(P − r)−1 : L2(X) → L2(X)

is continuous. We get a contradiction. Hence r is an eigenvalue of Spec P. Put

Hr (P) := {u ∈ Dom P; Pu = ru} .

We can repeat the procedure above and conclude that dim Hr (P) < ∞. Take 0 <

μ0 < λ0 so that r ∈ {[−λ0,−μ0] ⋃[μ0, λ0]}. From Theorem 5.2, we see that

�[−λ0,−μ0]⋃[μ0,λ0] ≡ 0.

Since

Hr (P) = {
�[−λ0,−μ0]⋃[μ0,λ0] f ; f ∈ Hr (P)

}
,

Hr (P) ⊂ C∞(X). The theorem follows.
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