SZEGO KERNEL ASYMPTOTICS FOR HIGH POWER OF CR LINE BUNDLES
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AND KODAIRA EMBEDDING THEOREMS ON CR MANIFOLDS

CHIN-YU HSIAO

ABSTRACT. Let X be an abstract not necessarily compact orientable CR manifold of dimension
2n — 1, n > 2, and let L* be the k-th tensor power of a CR complex line bundle L over X. Given
g € {0,1,...,n—1}, let D(Q) be the Gaffney extension of Kohn Laplacian for (0,q) forms with

values in L*. For A > 0, let H,(Cq><>\ = E((—o0, A]), where E denotes the spectral measure of El(q>. In

this work, we prove that Hl(cq)<k No Fy, Fkni,)gk*NO F}, No > 1, admit asymptotic expansions with
(q)

respect to k on the non-degenerate part of the characteristic manifold of UJ,",, where F} is some

kind of microlocal cut-off function. Moreover, we show that FkH,(CqLOF* admits a full asymptotic
(q)

expansion with respect to k if ngli has small spectral gap property with respect to F} and Hk <0 is
k-negligible away the diagonal with respect to Fj. By using these asymptotics, we establish almost
Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds
with transversal CR S action.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The problem of local and global embedding CR manifolds is prominent in areas such as complex
analysis, partial differential equations and differential geometry. Consider X a compact CR manifold
of dimension 2n — 1, n > 2. When X is strongly pseudoconvex and dimension of X is greater than
five, a classical theorem of L. Boutet de Monvel [5] asserts that X can be globally CR embedded into
CV, for some N € N. When the Levi form of X has mixed signature, then the space of global CR
functions is finite dimensional (could be even trivial) and moreover many interesting examples live in
the projective space (e.g. the quadric {[z] € CPN 71 |21 + ... 4 |24]2 — [2g41> — ... — |2n]? = 0}).
It is thus natural to consider a setting analogue to the Kodaira embedding theorem and ask if X
can be embedded into the projective space by means of CR sections of a CR line bundle of positive
curvature. For this purpose it is important to study the asymptotic behaviour of the associated Szego
kernel and study if there are a lot of CR sections in high powers of the line bundle. This was initiated
in [15], [17](see also Marinescu [20]).

Other developments recently concerned the Bergman kernel for a high power of a holomorphic line
bundle. The Bergman kernel is the smooth kernel of the orthogonal projection onto the space of
L?-integrable holomorphic sections. The study of the asymptotic behaviour of the Bergman kernel
is an active research subject in complex geometry and is closely related to topics like the structure
of algebraic manifolds, the existence of canonical Kéhler metrics , Berezin-Toeplitz quantization and
equidistribution of zeros of holomorphic sections(see [18]). It is quite interesting to consider CR
analogue of the Bergman kernel asymptotic expansion and to study the influence of the asymptotics
in CR geometry as in the complex case. This direction could become a research area in CR geometry.

The purpose of this work is to completely study the asymptotic behaviour of the Szego kernel
associated to a hypoelliptic operator ng,i with respect to a high power of a CR line bundle. The
difficulty of this problem comes from the presence of positive eigenvalues of the curvature of the line
bundle and negative eigenvalues of the Levi form of X and hence the semi-classical characteristic
manifold of Dl(f,l is always degenerate at some point. This difficulty is also closely related to the fact

that in the global L2-estimates for the d,-operator of Kohn-Hérmander there is a curvature term from
the line bundle as well from the Levi form and, in general, it is very difficult to control the sign of
the total curvature contribution. In this work, we introduce some kind of microlocal cut-off function

F}, and we prove that chqlkao Ey, FkH](equ,NO

degenerate part of the characteristic manifold of Dlgqg, where for A > 0, H§f)<)\ = E((—o00,)]), E is

the spectral measure of Dl()q;. Moreover, we show that FkH,(CqLOF,: admits a full asymptotic expansion

if Dl(f,z has small spectral gap property with respect to Fj and H,(g)<0 is k-negligible away the diagonal

with respect to Fj. By using these asymptotics, we establish almost Kodaira embedding theorems
on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR S' action.
From the analytic view point, this work can be seen as a completely semi-classical study of some kind
of hypoelliptic operators.

We now formulate the main results. We refer to section 3 for some standard notations and termi-
nology used here.

Fy, Ny > 1, admit asymptotic expansions on the non-
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Let (X,T'°X) be a paracompact orientable not necessarily compact CR manifold of dimension
2n — 1, n > 2, with a Hermitian metric (-|-) on CTX such that 719X is orthogonal to 79! X and
(w|v) is real if u, v are real tangent vectors. For every ¢ = 0,1,...,n — 1, the Hermitian metric (- |-)
on CTX induces a Hermitian metric (-|-) on T7*%9X the bundle of (0, q) forms of X. Let (L,h) be
a CR Hermitian line bundle over X, where the Hermitian fiber metric on L is denoted by h%. We
will denote by ¢ the local weights of the Hermitian metric(see (3.5)). For k > 0, let (L, th) be the
k-th tensor power of the line bundle (L,h’). We denote by dvx = dvx () the volume form on X
induced by the fixed Hermitian metric (-|-) on CTX. Then we get natural global L? inner products
(-1)er, (-]-) on QYY(X, L*) and Q09(X) respectively. We denote by Lfqu)(X, LF) and L?O,q) (X)
the completions of QY(X, L*) and QJ(X) with respect to (- | “ )+ and (-] -) respectively. Let

Of) : Dom O < L2 (X, L") — L% (X, L")

be the Gaffney extension of the Kohn Laplacian(see (3.9)). By a result of Gaffney, for every ¢ =
0,1,...,n—1, Déq]i is a positive self-adjoint operator (see Proposition 3.1.2 in Ma-Marinescu [18]).
That is, Déqll is self-adjoint and the spectrum of Dl(,qlz is contained in Ry, ¢ = 0,1,...,n — 1. For a

Borel set B C R we denote by F(B) the spectral projection of D,(f,l corresponding to the set B, where

FE is the spectral measure of Déqlz (see section 2 in Davies [7], for the precise meanings of spectral

projection and spectral measure). For A > 0, we set
H{ (X, LF) :=Ran B((—o0, A]) C L{, (X, L*),

(1.1)
H} (X, L) := Ran E((\, 00)) € Lfy (X, L¥).

For A = 0, we denote

(1.2) H{(X,L*) == H} _o(X, L¥) = Ker O}").
For A >0, let )

Ly« L2 (X, LF) — HY (X, L),

(1.3) (@) 2 k q k
Hk’>)\ : L(O’q)(X,L ) — Hb7>>\(X,L ),

be the orthogonal projections with respect to (- |-), .» and let Hl(g)gx(wv y) € 2'(X xX, (T;O’QX(EQLI;)&
(T;%9X ® LE)) and I | (2,) € /(X x X, (T;%9X @ LE) R (T:%9X @ LE)) denote the distribution

kernels of H,(f)g\ and H,(g)»\ respectively. For A = 0, we denote H,(f) = H,(g)go, HECQ) (x,y) == H,(g)go(x, ).
Let s be a local trivialization of L on an open set D € X, |s|iL = e72%. We assume that Y (q)
holds at each point of D(see Definition 3.2, for the precise meaning of condition Y'(¢)). By the L?

estimates of Kohn (see Folland-Kohn [8] and Chen-Shaw [6]), we see that for every A > 0,
(1.4) L7, (2,y) € C(D x D, (T;%X  L*) R (T;%9X @ LY)).
Let ¥ be the semi-classical characteristic manifold of Dl(f,z on D(see (4.11)). We have

Y = {(2,€) € T"D; € = dwo(x) — 2Im Dpé(2), A € R}

(see Proposition 4.2), where wy € C*°(X,T*X) is the uniquely determined global 1-form(see the
discussion before (3.1)). For x € D, let M2 be the Hermitian quadratic form on 72X given by
Definition 3.4 and let £, be the Levi form at = with respect to wp(see Definition 3.1). Let o denote the
canonical two form on T* D. We can show that o is non-degenerate at p = (p, Aowo(p) —2Im 90 (p)) €
3, p € D, if and only if the Hermitian quadratic form M;f —2XoL,, is non-degenerate(see Theorem 4.5).
From this, it is easy to see that if M;f has ¢ negative and n — 1 — ¢ positive eigenvalues, then o is
degenerate at (p, \wo(p) — 2Im Opp(p)) € %, for some A € R. Fix (n_,ny) € N3, n_ +ny =n—1.
Put
w5 S ={(2, Awo(x) — 2Im Dyp(z)) € T*D[ ) %;

M2 — 2)\L, is non-degenerate of constant signature (n_,n)}.



Let s be a local trivializing section of L on an open subset D € X and |s|iL = e 2% Let
By : QYD) — 2'(D,T**9X) be a k-dependent continuous operator. We write By(z,y) to denote
the distribution kernel of By. By is called k-negligible (on D) if By is smoothing and the kernel
By (z,y) of By satisfies |8§85Bk(x,y)| = O(k=Y) locally uniformly on every compact set in D x D,
for all multi-indices o, 8 and all N € N. Let Cy, : Q0%(D) — 2'(D,T*%4X) be another k-dependent
continuous operator. We write By, = C, mod O(k~>°) (on D) or By(z,y) = Cr(z,y) mod O(k~>°)
(on D) if By — Cy, is k-negligible on D. Let Ay : L%07q)(X, Lk — L%(Lq)(X7 L¥) be a continuous
operator. We define the localized operator (with respect to the trivializing section s) of Ay by

Ags: LY (D) E'(D,T*1X) — L, (D),

(1.6)
u— e FPsTR AL (R k).

We write Ay, =0 mod O(k~>) on D if Ay =0 mod O(k~>°) on D. For A > 0, we write ﬁ,i%)SA,S to

denote the localized operator of H,@SA. We denote f[,(fl = ﬂl(g)go,s’

1.1. Main results: Szego6 kernel asymptotics for lower energy forms and almost Kodaira
embedding Theorems on CR manifolds. One of the main results of this work is the following

Theorem 1.1. With the notations and assumptions used above, let s be a local trivializing section of
L on an open subset D € X and \S\ZL =e 2?. Fizqe{0,1,...,n— 1} and suppose that Y (q) holds
on D. We assume that there exist a A\g € R and xq € D such that Mfo — 2X0Ly, is non-degenerate
of constant signature (n_,ny). We fix Dy @ D, Dy open, and let V be any bounded open set of T*D
with V. C T*D, VX C X/, where ¥ is given by (1.5). Let

k2n—1

(1.7) Iy = @omT [ et*<Tmvn>a(z,n,k)dy mod O(k=>°) at T*Dy (X

be a properly supported classical semi-classical pseudodifferential operator on D of order O from sec-
tions of T**1X to sections of T*1X with a(x,n,k) = 0 if |n| > M, for some large M > 0 and
Supp a(z,n, k) T*Do € V. Let I} be the adjoint of I}, with respect to (-|-). Then for every Ng > 1
and every D' € Dy, o, B € Ng”‘l, there is a constant Cps o g N, > 0 independent of k, such that
6365 ((ﬂi:q)fk*NO ,sj}jxm’ y) - / eiktp(ac,y,s)a(l‘7 Y, S, k’)dS)

)

S CD/@)B,NOk3n+2|[5|+\a|—N0—2 on D' x D/,

050) (BT, s, i) (asw) = ([ 20y, 5. ) ds)

k,<k—Nos

< CD/7a,ﬁ7NUk,3n+2|6|+\a|7N072 on D’ x D/,

where a(x,y,s,k) = g(z,y,s,k) = 0 if ¢ # n_, a(z,y,sk), g(z,y,s,k) € i, (1;Q,T*IX K
T*9X) N C§°(Q, T X R T*9X) are as in (7.71) and (7.72) if ¢ =n_ and

o(r,y,8) € C(Q), Imep(z,y,s) >0, Y(x,y,s) €,

dep(2,y, 8)|z=y = —21m55¢(x) + swo(z), dyp(z,y,5)|s=y = QImgqu(x) — swo(x),
(1.9)

Imp(z,y,s) + g—f(z,y,s) >cle— y|2, ¢ >0 is a constant, V(x,y,s) € Q,
o(z,y,8) =0 and g—‘g(x,y, s) =0 if and only if x = y.
Here
Q:={(x,y,s) € D x D xR; (z, —2Im 9y (x) + swo(z)) € V[ | Z,
(1.10) {(z.y.s) ( p(x) + swo(z)) € V)

(y, —2Im Oy (y) + swo(y)) € VNS, |z — y| < €, for some ¢ > 0}.

We refer the reader to Definition 6.2, Definition 6.3 and Definition 6.1 for the definition of classi-
cal semi-classical pseudodifferential operators and the precise meanings of (1.7) and the Hormander
symbol spaces S} ., and S .

For more properties for the phase ¢, see Theorem 2.1, Theorem 2.2 and Theorem 2.4.
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Basically, Theorem 1.1 says that (ﬂ,&qlk_No Si’;)(x,y), (fkf[;qlk_% si’;)(x,y) are asymptotically
close to the complex Fourier integral operators feik“"(x’y’s)a(x,y, s, k)ds, feik*"(m’yvs)g(x, y, s, k)ds if
Ny large. We will show in section 9 that under certain conditions, (fkf[,(cqif;)(x,y) is a complex

Fourier integral operator feik@<$7y’s)g(x7y, s, k)ds(see Theorem 1.5).

Since Im ¢(x,y, s) + %(z,y,s)‘ >cle — y|2, ¢ > 0 is a constant, we can integrate by parts with

respect to s and conclude that the integral [ eRe@y9)p(z,y, s, k)ds, b(x,y, s, k) € S (1; Q71X K

T*09X) N C§°(Q, T X ®T*%9X), is k-negligible away = = y. Thus, we can take ¢ > 0 in (1.10) to
be any small positive constant.

Definition 1.2. We say that L is positive if for every x € X there is a 7 € R such that the Hermitian
quadratic form M? — 2nL, is positive definite.

In view of Proposition 3.5, we see that Definition 1.2 is well-defined.

Definition 1.3. Let (X,7%°X) be a compact orientable CR manifold of dimension 2n — 1, n > 2.
We say that X can be almost CR embedded into projective space if for every m € Ny and € > 0 there
is an embedding ®. ,, : X — CPY, for some N € N, N > 2, such that

[0 (TH0X) — CT@. . (X) (\ THOCPY|

C™(CPN ,CTCPN)

We recall that a smooth map ® : X — CPY, N € N, N > 2, is a CR embedding if ® is an
embedding and d®(T1°X) = CT®(X) N TH°CPYN.

By using Theorem 1.1, we establish in section 8 the almost Kodaira embedding theorems on CR
manifolds (see Theorem 8.11)

Theorem 1.4. Let (X,T'°X) be a compact orientable CR manifold of dimension 2n — 1, n > 2. If
X admits a positive CR line bundle L over X, then X can be almost CR embedded into projective
space.

It should be mentioned that Theorem 1.4 is in the spirit of the almost symplectic and almost
isometric embedding of compact symplectic manifolds by Borthwick-Uribe [4], Ma-Marinescu [19] and
Shiffman-Zelditch [23]. Especially, in Ma-Marinescu [19] the spectral spaces of the Bochner Laplacian
are used to obtain the embedding.

1.2. Main results: Szegd kernel asymptotics. In view of Theorem 1.1, we see that if Dl(f,z has

spectral gap > k=M for some M > 0, the operator (fkﬁgcqlf,’;)(a:, y) admits a full asymptotic expan-

sion. But in general, it is very difficult to see that if D[()q,z has spectral gap. We then impose some
mild semi-classical local conditions and we show that a certain conjugation of the Szegé projection by
some kind of pseudodifferential operator is a Fourier integral operator under these semi-classical local

conditions. More precisely, we have

Theorem 1.5. With the notations and assumptions used above, let s be a local trivializing section of
L on an open subset D € X and \s\iL =e 2?. Fizqe{0,1,...,n— 1} and suppose that Y (q) holds
on D. We assume that there exist a A\g € R and xq € D such that Mfo — 2X0Ly, is non-degenerate
of constant signature (n_,ny). Let Fy, : L%O,q) (X, LF) — L%O,q) (X, L*) be a continuous operator and

liet Fr: L(Qo’q) (X,LF) — L%O,q) (X, L*) be the Hilbert space adjoint of Fj, with respect to (-|-), .. Let

Fy s and F,js be the localized operators of Fy and F} respectively. We fix Dy € D, Dgy open and let

V be any bounded open set of T*D with V. .C T*D, V(X C Y/, where ¥/ is as in (1.5). Assume that
Fios — Ap = O(k™) : Hpo (D, T°°9X) — HE (D, T*"9X), Vs €Ny,

k2n71

where Ay = Giym=t [et*<e=vm>a(z,n, k)dn mod O(k~>°) at T*Do (X is a classical semi-classical
pseudodifferential operator on D of order 0 from sections of T*%9X to sections of T*%1X with

alxz,n, k) =0if|n| > M, for some large M > 0 and Supp «(x,n, k) (\T*Dg € V. Put Py := FkHECq)F,j
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and let Pk,s be the localized operator of Py. Assume that Dg?,i has O(k~™) small spectral gap on D

with respect to Fy, and Hg]) is k-negligible away the diagonal with respect to Fy, on D. If ¢ # n_, then

Py o(z,y) =0 mod O(k~) on Dy.

If q=n_, then
Py o(z,y) = [ @09 g(x,y,s,k)ds mod O(k~>) on D,
where o(x,y,s) € C®() is as in Theorem 1.1 and

g(x,y,5,k) € S (1, T*HIX RT1X) (| Co° (2, T X R T*9X)
is as in (7.71) and (7.72). Here Q is given by (1.10).

We refer the reader to Definition 9.1 and Definition 9.2 for the precise meanings of ”O(k~"°) small
spectral gap on D with respect to Fi” and ”k-negligible away the diagonal with respect to Fj on D”.

Remark 1.6. With the assumptions and notations used in Theorem 1.5, since we only assume some
local properties of Fy on D, we don’t know what is Fj outside D. In order to get an asymptotic
expansion for the Szegd kernel, we need to assume that H,(f) is k-negligible away the diagonal with
respect to Fy on D. If X is compact and F} is a global classical semi-classical pseudodifferential
operator on X (see Definition 9.3), we can show that(see Proposition 9.4) H,(Cq) is k-negligible away the
diagonal with respect to Fj on every local trivialization D € X. Furthermore, if X is non-compact
and F} is properly supported on D € X, then H,iq) is k-negligible away the diagonal with respect to
F}, on D(see also Proposition 9.4).

Remark 1.7. With the assumptions and notations used in Theorem 1.5, let
{fi e HY(X,L"),..., fo, € H(X,LF)}
be an orthonormal frame of the space HY (X, L¥), where dj, € No|J{oo}. Tt is easy to see that

dy
Py () =Y _[(Fufi)(@)pr, Vo€ D.
j=1

Theorem 1.5 implies that if Dl(f,z has O(k~™) small spectral gap on D with respect to F, and H,(Cq) is
k-negligible away the diagonal with respect to Fy on D, then

Z?’;l \(kaj)(x)ﬁm =0 mod O(k~>) on Dy when g # n_

and
S0 () @)k = 5% kv 7bi(2) mod O(k=) on Dy when g = n_,

where b;(z) € C§°(D), j = 0,1,..., and for every x € Dy, bo(x) = [ go(x,x,s)ds, go(z,y,s) is given
by (7.72).

After proving Theorem 1.4 and Theorem 1.5, we asked the following two questions: When we can
get "true” Kodaira embedding Theorems on CR manifolds? Can we find some non-trivial examples
for Theorem 1.57 In order to answer these questions, let’s study carefully some CR submanifolds of
projective space. We consider CPY =1, N > 4. Let [z] = [21, ..., 2n] be the homogeneous coordinates
of CPVN~1. Put

X o= {lzn o, an] € CPY T A 1P o A [zl 4 At Joma [P+ o+ Aw [an” = 0,

wherem € Nand A\; € R, j=1,...,N. Then, X is a compact CR manifold of dimension 2(N —1)—1
with CR structure T71°X := THOCPVY ! N CTX. Now, we assume that A\; < 0,X2 < 0,...,\,, <0,
Ama1 > 0, A2 > 0,..., Ay > 0, where m > 2, N —m > 2. Then, it is easy to see that the Levi form
has at least one negative and one positive eigenvalues at each point of X. Thus, Y (0) holds at each
point of X. X admits a S! action:

Slx X = X,

i0 0

(1.11) i o
€Y 021,y Zmy Zmats -5 2N) = [€7 21, o, € 2, Zma1, - -+ 28], 0 € [—7, 7]
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Since (21,...,2m) # 0 on X, this St action is well-defined. Let T € C*°(X,TX) be the real vector
field given by

(1.12) Tu = %(u(ewx)ﬂgzo, u € C(X).

It is easy to see that [T, C>°(X,T"°X)] C C°(X,TX) and T(z) T}’ X & TO1 X = CT,. X (we say
that the S1 action is CR and transversal, see Definition 10.1).

Let E — CPN~! be the canonical line bundle with respect to the standard Fubini-Study metric.
Consider L := F|x. Then, it is easy to see that(see section 10.1) L is a T-rigid positive CR line bundle
over (X, TH%X)(see Definition 1.10, for the meaning of ”positive T-rigid CR line bundle”). Thus, we
ask the following question

Question 1.8. Let (X, T%°X) be a compact CR manifold with a transversal CR S! action and let T'
be the global vector field induced by the S' action. If there is a T-rigid positive CR line bundle over
X, then can X be CR embedded into CPYV, for some N € N?

In section 10, we study ” CR manifolds with transversal CR S* actions” and fortunately, we found
that if Y'(¢q) holds and M is non-degenerate of constant signature, then we can always find a contin-
uous operator Fj : L%O,q) (X, LF) — L%qu) (X, L*) such that the assumptions in Theorem 1.5 hold and
by using Theorem 1.5, we solve Question 1.8 completely.

1.3. Main results: Sezgo6 kernel asymptotics and Kodairan embedding Theorems on CR
manifolds with transversal CR S! actions. Let (X,T1°X) be a CR manifold. We assume that
X admits a transversal CR S! action: S! x X — X (see Definition 10.1). We write ¢, 0 < § < 27,
to denote the S' action and we let T' be the global vector field induced by the S! action(see (10.1)).
Note that we don’t assume that the S* action is globally free.

We show in Theorem 10.5 that there is a T-rigid Hermitian metric (- |- ) on CT'X (see Definition 10.2
and Definition 10.3) such that 71X 1L 71X, T 1 (T*°X @ T X), (T |T) =1 and (uv) is real
if u, v are real tangent vectors. Until further notice, we fix a T-rigid Hermitian metric (-|-) on CTX
such that 790X L 791X, T L (T X @T%' X), (T|T)=1and (u|v) is real if u, v are real tangent
vectors.

Let L be a T-rigid CR line bundle over (X, T%°X) with a T-rigid Hermitian fiber metric h* on
L(see Definition 10.7 and Definition 10.8). For k > 0, as before, we shall consider (L*, th) and we
will use the same notations as before. Since L is T-rigid, T is well-defined, for every u € Q%9(X, L¥).
For m € Z, put

(1.13) A%(X,LF) = {u € Q"(X, L*); Tu = imu}

and let A%9(X, L¥) C Lﬁqu)(X, L*) be the completion of A%¢(X, L*) with respect to (-|-),~. For
m € 7, let

(1.14) QW L2 (X, IF) — A%(X, L¥)

be the orthogonal projection with respect to (-|-),.x. Fix § > 0. Take 75(x) € C§°(] — 4,4[),

0<75<land 7 =1on[-3 2] Let Fa(fi) : L?O (X LF) — L%O (X L¥) be the continuous map

given by
Fé,%e) : L%O,q)(Xv Lk) - L%O,q)(X7 Lk)a
m
u= Y Té(?)(Qg?ku)'

mEeZ

(1.15)

One of the main results of this work is the following

Theorem 1.9. Let (X,TY°X) be a compact CR manifold with a transversal CR S action and let
T be the global vector field induced by the S' action. Let L be a T-rigid CR line bundle over X
with a T-rigid Hermitian fiber metric h*. We assume that Y (¢) holds at each point of X and M2 is
non-degenerate of constant signature (n_,ny), for every x € X. Let s be a local trivializing section

of L on an open set D C X, |s|iL =e 2%, Fir Dy € D. Let FJ("Q : L%qu)(X, LFy — L%O’q)(X, L*) be
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the continuous operator given by (1.15) and let Fé(i)’* : L?O oK LF) — L%O o (X L¥) be the adjoint

of Fgﬁg with respect to (-|-),or. Put Py := F§7?H§€q)F§7?’* and let ]f’k”g be the localized operator of Py.
Assume that 6 > 0 is small. If ¢ #n_, then P, s =0 mod O(k™*°) on Dy. If ¢ =n_, then
Py o(z,y) = [ eRe@yS) g(z y, s,k)ds mod O(k~>) on Dy,
where o(x,y,s) € C®() is as in Theorem 1.1 and
g(x,y,5,k) € S (1, T*IX RT9X) (| Co° (2, T X R T*9X),

o0
g(z,y,s,k) ~ Zgj (z,y,s)k" ™7 in She (1; Q,TX K T*O’qX),
j=0

gi(z,y,8) € CP(Q,TIXRTX), j=0,1,2,...,

and for every (z,z,s) € Q, x € Do, go(x,x,s) = (2m) " |det(M$ — 2sL,)| |T5(S)|27T(m’s_’n_), Here Q
is given by (1.10), T(y sn_y is as in Theorem 7.12 and 75 is as in the discussion after (1.14).

Definition 1.10. Let (X,T%°X) be a CR manifold with a transversal CR S* action and let T be
the global vector field induced by the S' action. We say that L is a T-rigid positive CR line bundle
over X if L is a T-rigid CR line bundle over X and there is a T-rigid Hermitian fiber metric h% on L
such that M2 is positive, for every x € X, where ¢ is the local weights of hZ.

By using Theorem 1.9, we can repeat the proof of Theorem 1.4 and establish Kodaira embedding
theorems on CR manifolds with transversal CR S' actions

Theorem 1.11. Let (X, T*°X) be a compact CR manifold with a transversal CR S action and let
T be the global vector field induced by the S' action. If there is a T-rigid positive CR line bundle over
X, then X can be CR embedded into CPN, for some N € N.

In section 11, we also establish Szegé kernel asymptotis on some non-compact CR manifolds (see
Theorem 11.5).

The layout of this paper is as follows. In section 2, we collect some properties for the phase ¢(z, vy, s).
In section 3, we collect some notations, definitions and statements we use throughout. In section 4, we

write down DZ()QZ in a local trivialization and we get the formula for the characteristic manifold for Dl(j ,1

and we prove that the canonical two form o is non-degenerate at p = (p, Aowo(p) — 2Im Jpp(p)) € &
if and only if the Hermitian quadratic form Mg — 2X0L, is non-degenerate(see Theorem 4.5). In
section 5, by using the identity k = e’i’““"( - i%(ei’”“)), we introduce the local operator ng)
defined on some open set of R?” and by using the heat equation method, we establish microlocal
Hodge decomposition theorems for ng). Moreover, we study the phase ¢ carefully and we prove
Theorem 2.1 and Theorem 2.2. In section 6, we reduce the semi-classical analysis of Dl(flz to the
microlocal analysis of ng) and we establish semi-classical Hodge decomposition theorems for Dl(f,i
in non-degenerate part of ¥ and we calculate the leading terms of the asymptotic expansions in

(7.71). We notice that it is possible to consider semi-classical heat equation for ng,z and establish
semi-classical Hodge decomposition theorems for Dg?,z directly. In a further publication, we will study

Kohn Laplacian on a CR manifold with codimension> 2 and the local operator D@ is similar to
some kind of Kohn Laplacian on a CR manifold with codimension 2. Hence, we decide to reduce the
semi-classical analysis of Dl(f,i to the microlocal analysis of ng).
technique introduced in [15] and the semi-classical Hodge decomposition theorems in section 6, we
prove Theorem 1.1. In section 8, by using Theorem 1.1, we establish almost Kodaira embedding
theorems on CR manifolds and therefore we prove Theorem 1.4. It should be mentioned that the
method in section 8 works well in complex case(the complex case is much more simpler than CR
case) and we can give a pure analytic proof of classical Kodaira embedding theorem. In section 9,
we prove Theorem 1.5. In section 10, we introduce and study CR manifolds with transversal CR
St action. We show that there is a T-rigid Hermitian metric (- |-) on CTX (see Theorem 10.5) and
we prove Theorem 1.9. Moreover, by using Theorem 1.9, we can repeat the proof of Theorem 1.4

In section 7, by using the scaling
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and establish Kodaira embedding theorems on CR manifolds with transversal CR S' action. For
simplicity, we only give the outline of the proof of Theorem 1.11. In section 11, by using Hormander’s
L? estimates, we establish the small spectral gap property for El( ,2 with respect to F. 5( » and we prove
Theorem 11.5. Finally, in section 12, by using global theory of complex Fourier mtegral operators of
Melin-Sjostrand [21], we prove Theorem 2.4.

Acknowledgements. Some part of this paper has been carried out when the author was a research
fellow at Universitat zu Koln, Mathematisches Institut. I am grateful to Universitat zu Koln, Mathe-
matisches Institut, for offering excellent working conditions. The methods of microlocal analysis used
in this work are marked by the influence of Professor Johannes Sjéstrand. This paper is dedicated to
him for his retirement.

2. MORE PROPERTIES OF THE PHASE ¢(z,v, S)

In this section, we collect some properties of the phase ¢(z,y, s) for the convenience of the reader.
We can estimate Im (2, y, s) in some local coordinates

Theorem 2.1. With the assumptions and notations used in Theorem 1.1, fit p € D. We take

local coordinates x = (x1,...,%on—1) defined in a small neighbourhood of p so that wo(p) = dxon—_1,
X o TP X = {23;72 aj%j; a;eR,j=1,....2n— 2}. If D is small enough, then there is a

constant ¢ > 0 such that

Imp(z,y,5) > cle’ —y'[>, Y(z,y,s) € Q,
(2.1) L s
Z C( |z2n—1 - y2n—1| + ‘I -y | )7 V(I7y75) € Qv

tmp(a,y,5) + | 2 (2,9,5)

where @' = (21, ..., Ton—2), ¥ = (Y1, Yan—2), | —¢/|* = ngf lz; — y5]°.
In section 5.4, we determine the tangential Hessian of ¢(z,y, s)

Theorem 2.2. With the assumptions and notations used in Theorem 1.1, fiz (p,p,s0) € Q, and let
Z1,59s-++1Zn—1,5, be an orthonormal frame of T}°X warying smoothly with x in a neighbourhood of
p, for which the Hermitian quadratic form M® — 2soL, is diagonalized at p. That is,

M¢(ZJ750( )7Zt,80(p)) - 250‘C ( 1760( )’ Zt,é‘o(p)) = /\j(So)(Sj,t, JSt=1,...,n—1

Assume that M\j(so) <0, j=1,...,n_, Aj(s0) >0, j=n_+1,...,n—1. Let x = (x1,...,%2n-1),
2j = XToj—1 + 1wy, j = 1,...,n — 1, be local coordinates of X defined in some small neighbourhood of
p such that

0

ZIJ(p) = 07 wO(p) = denflg T(p) = _8332 ;

(520 5= 0))

= 20,4, jit=1,...,2n—2,

(2.9) Zjs,(p) = 8—%+z;7']tzt "’ij%—lﬁ—!-()(wﬁ), j=1,...,n—1,
n—1 n—1 n—1
¢(x) = Pron—1 + Z(Oéjzj +5j23 Z e 12t21 + Z azize + ap tZth)
j=1 lt 1 Lt=1
n—1
+ Z(dejxgn_1 +Ej§j1‘2n_1) + O(‘.rgn_1|2) + O(|Ji|3),
j=1

where B € R, Tj1,¢5, 0, phj 1, a5e,dj € C, e = 5, ;0 =1,...,n—1. (This is always possible, see
[2, p.157-160]). We also write y = (y1,...,Y2n—1), W; = Y2j—1 + Y25, j = 1,...,n — 1. Then, in
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some small neighbourhood of (p,p),

(2.3)
(,0(337 Y, 80)
n—1 n—1 i n—1
= =iy aj(z—w) +i Y (% —W;) + so(w2n-1 — Yan—1) — 3 > (aw; + a;0) (252 — wywr)
j=1 j=1 7t=1
i 1=
+ 5 Z (617]' + aj’l)(zﬁl — ijl B} Z (’LSO Ti,j — 75, 1)+ (Fl,j + Tj}ﬂﬁ) (ijl — wjﬁl)
J,l=1 =1
n—1 n—1
+ Z(—iCjﬁ — S()Cj — Z‘dj)(Zjl'anl — Zijgn,l) + Z(Z6-7ﬁ — S()Ej + ’L'dj)(fjl'zn,1 — @jygnfl)
j=1 j=1

. n—1 .
1 _ _ 2 2 3
=5 2 Ni(0) (55 = Zjwy) + 5 Y (o)l 2 = sl + (w2n1 = yen-1)f (2,9, 50) + O((.9) "),
Jj=1 j=1
fece, f(0,0)=0.
Definition 2.3. With the assumptions and notations used in Theorem 1.1, let 1 (x,y, s), p2(z,y, s) €

C>*(9). We assume that o1 (x,y, s) and pa(x,y, s) satisfy (1.9) and (2.1). We say that 1 (z,y, s) and
wa(x,y,s) are equivalent on  if for any

bi(z,y,s,k) € St (1;Q, 701X R T*01X) ﬂ C& (L T*X KT*1X), meZ,
we can find
ba(z,y, 5, k) € Sit, (1;Q, 709X RT*09X) () C5° (Q, 79X BT X)
such that
/eikW(I’y’s)bl (z,y,s,k)ds = /eik“"l(x’y’s)bg(x, Y, S,k)ds mod O(k™°) on D

and vise versa.

Let @1 (z,y,s) € C*°(2). We assume that ¢ (z,y, s) satisfies (1.9) and (2.1). Fix p € D. We take

local coordinates = (z1,...,22,—1) defined in a small neighbourhood of p so that wy(p) = dza,—1,
2n—2 .
T°X T X = {ijl aj%; aj €R,j=1,...,2n— 2}. Put

2n— 2n—1

—2Im Oy p(x Z x)dxj, wo(x ZBJ x)dx;.

We assume that D is a small open neighbourhood of p. In Lemma 5.26, we will show that if D
is small enough then we can find ¢1(z,y,s) € C°(Q) such that @1(x,y,s) satisfies (1.9), (2.1),
852‘2171 (z,y,8)—(a2n—1(y)+8B2n—1(y)) vanishes to infinite order at = y and @1 (x, y, s) and @1 (x,y, s)
are equivalent on 2 in the sense of Definition 2.3. We characterize the phase @(see section 5.3 and
section 12)

Theorem 2.4. With the assumptions and notations used in Theorem 1.1, put p(x,y,s) := —p(y, x, §).
Then, ¢(x,y,s) and p(z,y,s) are equivalent on ) in the sense of Definition 2.3. Moreover, let
v1(z,y,8) € C®(Q). We assume that ¢1(x,y,s) satisfies (1.9) and (2.1). If D is small enough,
then ¢ and @1 are equivalent on Q) in the sense of Definition 2.3 if and only if there are functions
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felC>® ), g, €cC>®(Q),j=0,1,....2n—1,p; € C°(Q), j=1,...,2n— 1, such that

(xay,s) - f(xaya s)%(x,y,s),

R R 0
go(x,y,s) - 901($7y,8) = go(m7y,8)£(w,y,s)7

b 5 0 .
afl(xayvs)_%(xﬂ/vs):gj(xay,s)aif(xvyas)a ]:1723"'72n_1,
J J
oo 0p1 b ‘
_ =D - =1,2,...,2n—1
8yj(:r,y, ) ay; (@,y,5) = p;(,9,8)5-(2,9,8), 7=1,2,...,2n~1,

vanish to infinite order on x = vy, for every (x,y,s) € Q, where p(z,y,s) € C°(Q), ¢1(x,y,s) €
C>(Q) are as in the discussion after Definition 2.3.

3. PRELIMINARIES

3.1. Some standard notations. We shall use the following notations: R is the set of real numbers,
Ry =={zeR;z>0}, N={1,2,...}, No = NU{0}. An element a = (aq,...,0ay) of N will be
called a multiindex, the size of v is: |a| = a3 + - -+ + @, and the length of o is I(a) = n. For m € N,

we write &« € {1,...,m}" if a; € {1,...,m}, j = 1,...,n. We say that a is strictly increasing if
ap < ay < -0 < an. We write 2% = 27" - apn, @ = (11,...,1,), Of = O0F) - 097, Oy = %,
02 = 25 Do = D ... Den, D, = 10, D, = 10, Let z = (21,...,20), 2 = @aj_1 + iwsj, j =
1,...,n, be coordinates of C". We write z* = 2{* --- 2%, 2% =z .- - 20, g‘;‘ =0 =07 02,
0y = 3% = Ml —igl) i =1oom G =02 = 020027, 0z, = 52 = Y52 +ipl),
7=1,...,n.

Let M be a C*° paracompact manifold. We let TM or T(M) and T*M or T*(M) denote the
tangent bundle of M and the cotangent bundle of M respectively. The complexified tangent bundle
of M and the complexified cotangent bundle of M will be denoted by CT'M and CT™*M respectively.
We write (-,-) to denote the pointwise duality between TM and T*M. We extend (-,-) bilinearly
to CTM x CT*M. Let E be a C* vector bundle over M. The fiber of £ at x € M will be denoted
by E,. Let F be another vector bundle over M. We write E X F' to denote the vector bundle over
M x M with fiber over (z,y) € M x M consisting of the linear maps from E, to F},. Let Y C M be an
open set. From now on, the spaces of smooth sections of F over Y and distribution sections of E over
Y will be denoted by C°(Y, E) and 2'(Y, E) respectively. Let &’(Y, E) be the subspace of 2'(Y, F)
whose elements have compact support in Y. For m € R, we let H™(Y, E) denote the Sobolev space
of order m of sections of E over Y. Put

Hig. (Y, E)={ue 2'(Y,E); pu e H"(Y,E),Vp € C5°(Y)},
H™ (Y,E)=H"(Y,E)n&'(Y,E).

comp

Let E and F' be C'*° vector bundles over a paracompact C'* manifold M equipped with a smooth
density of integration. If A : C§°(M, E) — 2'(M, F) is continuous, we write K4(x,y) or A(z,y) to
denote the distribution kernel of A. The following two statements are equivalent

(a) A is continuous: &' (M, E) — C*(M, F),
(b) Kx € C®(M x M,E, R F,).

If A satisfies (a) or (b), we say that A is smoothing. Let B : C§°(M, E) — 2'(M, F) be a continuous
operator. We write A = B if A — B is a smoothing operator. We say that A is properly supported
if Supp K4 C M x M is proper. That is, the two projections: ¢, : (z,y) € SuppKa — = € M,
ty : (x,y) € Supp K4 — y € M are proper (i.e. the inverse images of ¢, and t, of all compact subsets
of M are compact).

Let H(z,y) € 2'(M x M,E, X F,). We write H to denote the unique continuous operator
C°(M,E) — 2'(M, F) with distribution kernel H(x,y). In this work, we identify H with H(z,y).
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3.2. Set up and Terminology. Let (X,T1°X) be a paracompact orientable not necessarily com-
pact CR manifold of dimension 2n — 1, n > 2, where T1°X is a CR structure of X. That is,
T19X is a complex n — 1 dimensional subbundle of the complexified tangent bundle CT X, satisfying
THOX NT%' X = {0}, where T9' X = T1.0X, and [V, V] C V, where V = C*°(X,T10X).

Fix a smooth Hermitian metric (-|-) on CTX so that T1°X is orthogonal to T%'X := T1.0X and
(ul]wv) is real if u, v are real tangent vectors. Then locally there is a real non-vanishing vector field T’
of length one which is pointwise orthogonal to T1:°X @ T%1X. T is unique up to the choice of sign.
For u € CTX, we write |u|® := (u|u). Denote by T*"°X and T*%'X the dual bundles of 70X
and 7% X, respectively. They can be identified with subbundles of the complexified cotangent bundle
CT*X. Define the vector bundle of (0, ) forms by T*%4X := AT*%1X. The Hermitian metric (-|-)
on CTX induces, by duality, a Hermitian metric on CT*X and also on the bundles of (0,q) forms
T*99X, q=0,1,...,n— 1. We shall also denote all these induced metrics by (-|-). For v € T*%9X
we write |v|2 = (v|v), and for any p = 0,1,2,...,n—1, let v/>* : T*®9tPX — T*0-P X be the adjoint
of v/ : T*OPX — T*0P+aX with respect to (-|-). That is, (vAu|g) = (ulv™*g), Yu € T*PX,
g € T*OP+aX. Let D C X be an open set. Let Q2%9(D) denote the space of smooth sections of
T*09X over D and let Q%(D) be the subspace of 2%9(D) whose elements have compact support
in D. Similarly, if F is a vector bundle over D, then we let Q2%9(D, F) denote the space of smooth
sections of T*%9X @ E over D and let QY(D, E) be the subspace of 2%9(D, E) whose elements have
compact support in D.

Locally we can choose an orthonormal frame ws, . . .,w,—1 of the bundle T*1°X. Then @y, ..., Wn_1
is an orthonormal frame of the bundle 7*%1 X. The real (2n—2) form w = i" " w1 AW A- - - AWy 1 ADp—1
is independent of the choice of the orthonormal frame. Thus w is globally defined. Locally there is a
real 1-form wy of length one which is orthogonal to T*0X @ T*%!'X. The form wy is unique up to
the choice of sign. Since X is orientable, there is a nowhere vanishing (2n — 1) form @ on X. Thus,
wp can be specified uniquely by requiring that w Awg = f@Q, where f is a positive function. Therefore
wp, so chosen, is globally defined. We call wg the uniquely determined global real 1-form. We choose
a vector field T so that

(3.1) T =1, (T,w)=—1.

Therefore T is uniquely determined. We call T' the uniquely determined global real vector field. We

have the pointwise orthogonal decompositions:
32) CT*X =T"'OX @ T*9' X @ {\wo; X € C},
' CTX =T"°X @ T™' X @ {\T; A € C}.

We recall

Definition 3.1. For p € X, the Levi form £, is the Hermitian quadratic form on TI}’OX defined as
follows. For any U, V € T)°X, pick U,V € C>*(X,T"°X) such that U(p) = U, V(p) = V. Set

1 _
where [ ,V] =U V —V U denotes the commutator of ¢ and V. Note that £, does not depend of
the choices of U and V.

(3.3) L,(U V)=

Locally there is an orthonormal basis {U1,...,U,—1} of T X with respect to (-|-) such that £,
is diagonal in this basis, £,(U;,U;) = §;,\;(p), where §;; = 1if j =1, §;;, = 0 if j # I. The entries
{M(D), ...y An—1(p)} are called the eigenvalues of the Levi form at p € X with respect to (-|-).

Definition 3.2. Given ¢ € {0,...,n — 1}, the Levi form is said to satisfy condition Y (¢) at p € X,
if £, has at least either max (¢ + 1,n — ¢) eigenvalues of the same sign or min (¢ + 1,n — ¢) pairs of
eigenvalues with opposite signs. Note that the sign of the eigenvalues does not depend on the choice
of the metric (-|-).

Let
(3.4) Oy : V(X)) — QYIH(X)
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be the tangential Cauchy-Riemann operator. We say that a function u € C*°(X) is Cauchy-Riemann
(CR for short) if dpu = 0.

Definition 3.3. Let L be a complex line bundle over X. We say that L is a Cauchy-Riemann (CR)
complex line bundle over X if its transition functions are CR.

From now on, we let (L, h%) be a CR Hermitian line bundle over X, where the Hermitian fiber
metric on L is denoted by h”. We will denote by ¢ the local weights of the Hermitian metric. More
precisely, if s is a local trivializing section of L on an open subset D C X, then the local weight of h*
with respect to s is the function ¢ € C°°(D,R) for which

(3.5) |s(gc)|iL = 2@ reD.

Let LF, k > 0, be the k-th tensor power of the line bundle L. The Hermitian fiber metric on L
induces a Hermitian fiber metric on LF that we shall denote by hL" . 1f s is a local trivializing section of
L then s* is a local trivializing section of L¥. The Hermitian metrics (-|-) on T7*%9X and hL" induce
Hermitian metrics on 7%%9X ® L* ¢ = 0,1,...,n — 1. We shall denote these induced metrics by
(+]+),r. For f € Q%X LF), we denote the pointwise norm \f(x)|iLk = (f(x)| f(x)),or. We write
gb’k to denote the tangential Cauchy-Riemann operator acting on forms with values in L*, defined
locally by:

(3.6) Opge : QVUX, LF) — QVTYX, LF) . Oy p(sFu) := s"Opu,

where s is a local trivialization of L on an open subset D C X and u € Q%9(D). We denote by
dvx = dvx(x) the volume form on X induced by the fixed Hermitian metric (-|-) on CT'X. Then
we get natural global L? inner products (-[-),.«, (-|-) on QYY(X,L*) and Q)?(X) respectively.
We denote by L2 (X, L*) and L? (X) the completions of Q0%(X, L*) and Q7?(X) with respect

(0,9) (0,9)
to (+|-),cx and (-|-) respectively. We extend (-|-),,~ and (-|-) to L% (X,L*) and Lf (X)) in

(0,9)
the standard way respectively. For f € Q%9(X,L*), we denote Hf||}21L;c == (f[f),er. Similarly, for

f € Q%(X), we denote Hf||2 == (f]f). We extend 9, to L%OJ)(X, LF), r=0,1,...,n—1, by
(3.7) o1 : DomByr, C Ly (X, L¥) = Ly 1) (X, L),

where Dom 9,1, = {u € L?o,r)(Xv Lk); Oy pu € L%O,r+1)(X7 L¥)}, where for any u € L%O,r)(X’ LF),

5b7;€u is defined in the sense of distribution. We also write
(3.8) Oy : Dom 5, C LY 1 1y(X, L¥) = LY, (X, L¥)

to denote the Hilbert space adjoint of dj  in the L? space with respect to (- | ok Let nglz denote
the (Gaffney extension) of the Kohn Laplacian given by

(3.9)
Dom Dl(,?,z ={se L%O,q) (X, L*); s € Dom 9y, N DornngC7 Opis € Domgzyk, gz’ks € Domdy 1},

and Dg?gs = gb,kEZJyS + gz’,ﬁb’ks for s € Dom Dg?,z.
We need

Definition 3.4. Let s be a local trivializing section of L on an open subset D C X and ¢ the
corresponding local weight as in (3.5). For p € D, we define the Hermitian quadratic form M;f on
T10X by

P

(3.10) MS(U,V) = <U AV, d(Bpé — Duo) (p)>, U,V e T}OX,

where d is the usual exterior derivative and Oy = 9y ¢.

The definition of Mg) depends on the choice of local trivializations. The following is well-known
(see Proposition 4.2 of [15])
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Proposition 3.5. Let D be another local trivialization with D N D # (. Let 3 be a local trivializing
section of L on D |s(x )\hL = ¢~26(2) (;5 € C’°°(D R), and s = gs on DN D for some non-zero CR
function g. For p € DﬂD we have

Tg Tg

3.11 M¢—M¢+
(3.11) (g .

v
4. SEMI-CLASSICAL ng,z AND THE CHARACTERISTIC MANIFOLD FOR DZ()",Z

As before, let s(x) be a local trivializing of L on some open subset D C X. We have the unitary
identification

C (D, T*"1X) +— C°(D, LF @ T*91X)

u— U= (e?s)fu, u=eF sy
(4.1) Dok = Ok, Osu = e 5750 1 ((e?5)"u),
5: o 5: k> 5:,1@“ = e"“‘bs"“gz,k((e%)ku),

O = O3 Ofu = e s~ O ((e%s)*w).

‘We can check that

(42) 5s,k = 5b + k(5b¢)Aa
(4.3) Dope =0y + k(Bpp)™
and

(4.4) 08 = 8,40 5, + Ds 1 Ds i

Here 8, : C°°(X,T**9t1X) — C°°(X,T**9X) is the formal adjoint of d, with respect to (-|-).

For p € X, we can choose an orthonormal frame e;(z),...,e,_1(z) for T:%!1 X varying smoothly
with  in a neighbourhood of p. Let Z;(x), j = 1,...,n — 1, denote the basis of T2** X, which is dual
to ej(x), j=1,...,n— 1. Let Z7 be the formal adjoint of Z; with respect to (-|-), j=1,...,n—1.
That is, (Z;f | h) = (f | Z;h), f,h € C*°(X). On scalar functions, we have

n—1
Dok =Y _ €} o(Z;+kZ;(9)).
j=1
If f(x)ej, A---Aej, is a typical term in a general (0,q) form, we get

5sk(f( )ejl /\"'/\ejq)

—Z [ +kZ; (b))e ej, N Nej,

q

DT e A A Boes) A A,
t=1

:(n I(Z (f) +kZj(¢))e; )631/\ - Aej,
+<nzl(3bej)/\e?,*)(f(z)ejl A-e- /\ejq)-
=1

So for the given orthonormal frame we have the identification

(4.5) Z(e o (Z; + kZ;(9)) + (Do) e} ")
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and correspondingly
(4.6) D= D¢ 0 (Z) +KZ;(9)) + ¢ (Bres)"™").
We have
= [(e? o (Zj + kZj(9)) + (Bve;) e} ) () o (2] + kZi(¢)) + e (Dper) ™)
(e o (2 +KZu(0) + ) Boee)) (€] © (Z; +KZ;(0)) + Boes) ) )]
-1

= 3" (e 0 (25 + hZ;(0)) (e 0 (ZF + KZu(@)))+ (e o (27 + KZu())

(e;: (Z; + kzj(@))] Y e(Z 4+ kZ(0) +e(ZF + KZ(e) + f

o - [eei o (2, + W22 +KZu()) + 1€ o (Z; + KZu(6))
(zj:_kzj(gb))} +e(Z +kZ(9)) + (2 + KZ(9)) + f
= il(e%? e ted) o (Z) + kZu())(Z; + kZ;(9))

+ Z ejer o Z; + kZi(9), Z¢ + kZ(9)]

J,t=1

+e(Z+kZ(p)) +e(Z* + kZ(¢)) + £,

where €(Z + kZ(¢)) denotes remainder terms of the form )" a;(Z; + kZ;¢) with a; smooth, matrix-
valued and independent of k, for all j, and similarly for e(Z* + kZ(¢)) and f is a smooth function
independent of k.

Note that

(4.8) efer” +e el =04
Combining (4.7) with (4.8), we get the following

Proposition 4.1. With the notations used before, using the identification (4.1), we can identify the
Kohn Laplacian Dé?,l with

ng])g = gs,kgzk + 5:7k587kf

)

= Z(Zf +kZj(9))(Z; + kZ;(¢))
(4.9) A

+ Z epel” o [Z; + kZi(6), Zi + kZ4(9)]
Jyt=1

+e(Z+kZ(P)) +e(Z* +kZ(¢)) + f,

where e(Z + kZ(¢)) denotes remainder terms of the form > a;(Z; + kZ;(¢)) with a; smooth, matriz-
valued and independent of k, for all j, and similarly for e(Z* + kZ(¢)) and f is a smooth function
independent of k.
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We work with some real local coordinates © = (1, ..., z2,—1) defined on D. Let &€ = (&1,...,&n-1)
denote the dual variables of z. Then (z, &) are local coordinates of the cotangent bundle T*D. Let
g;j(z, &) be the semi-classical principal symbol of Z; +kZ;(¢), j =1,...,n—1. Then the semi-classical

principal symbol of ng,)C is given by

n—1
(4.10) Po =Y 7;4;
j=1

The characteristic manifold ¥ of Dg?,l is
= {(xag) € T*Dv ql(x7€) == qn—l(x7£) = ql('rag) = :qn—l(xﬁg) - O} :

From (4.11), we see that py vanishes to second order at ¥. We have the following

(4.11)

Proposition 4.2. We have

(4.12) Y ={(z,8) € T*D; £ = dwo(z) — 2Im Dp¢(z), A € R} .
Proof. For p € D, we may choose local coordinates © = (1, ..., %2, 1) such that z(p) = 0, wo(p) =
NY . 17(z()\%(p)):%mk?j,k:L 2n—1andZ (8:1:28 1+i852)atp,j:

1,...,n—1,where Z;, j = 1,...,n—1, are as in (4.9). Then the principal symbol of Z; is 5 (fgj 1+i€2;5)
at p,j=1,...,n—1. Thus

9 d¢

1. )
(4.13) 45(p,§) = 5i(€2j—1 +i&y;) + 5(3962]__1 (p) +i ax%( ),
j=1,...,n—1. From (4.13), we see that (p,£) € ¥ if and only if
09 09 . 7
(414) 52.7—1 - 81‘2] (p)’ €2J - ax2j_1 (p)7 J= 17 ey n 1
Note that

Y 9 _
Z<2 8:62] 1 +Zaa:i)j (p))(d“ﬁ—lﬂd@j))

Hence
n—1
= B 1 0 09 _
(4.15) Im (Fy6) (p) = g (50- gy, ®)mas + 5 @)y a) ).
From (4.14) and (4.15), the proposition follows. O

Let 0 = d€ Adx denote the canonical two form on T*D. We are therefore interested in whether o is
non-degenerate at p € ¥. We recall that o is non-degenerate at p € ¥ if o(u,v) = 0 for all v € CT,%,
where u € CT, X, then u = 0.

From now on, for any f € C>(T*D,C), we write Hy to denote the Hamilton field of f. That is,
in local symplectic coordinates (z, §),

2n—1
af 9 af 9
H; = g 9 9,
! ; (agj dx; Oz, ag)
For f,g € C(T*D,C), {f,g} denotes the Poisson bracket of f and g. We recall that {f,g} =

Z2n—1(ﬁ dg af 89)
s=1 \9¢, Bz,  Oxg O,
First, we need

Lemma 4.3. For p = (p, \owo(p) — 2Im 0,0 (p)) € X, we have
(4.16) o(Hy,, Hy)lp, =0, jit=1,...,n—1,

(4.17) o(Hg, Hy)lp =0, jt=1,...,n—1,
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and
o(Hg,, Hy,)lp = 2iMLp(Z5, Zi) +i < [Z5, Zi)(p), Do (p) — Dpp(p) >
—i(Z;Zy + Z:Z)d(p), j,t=1,....,n—1,

where Zj, j =1,...,n—1, are as in (4.9) and q; is the semi-classical principal symbol of Z; +kZ;($),
j=1,...,n—1.

(4.18)

Proof. We write p = (p,&p). It is straightforward to see that
(4.19) o(Hy;, Hy)lp = {45, 4} (p) = — < [Z;, Zi)(p), S0 > +ilZ;, Zi]¢(p)-
We have
<Zj, Z)(p), €0 >=<[Zj, Z:)(p), howo (p) — 2Im Dp(p) >
= Xo < [Z;, Zi](p), wo(p) > +i < [Z}, Z:)(p), Dpd(p) — Dp(p) >
Since [Z;, Z;](p) € T)' X, we have

(4.20)

(4.21) <12, Zi](p),wo(p) >=0

and

(4.22) <[Zj, Zi|(p), Ob9(p) >

Thus,

(4.23) <2}, Z)(p), Do (p) — Opd(p) >=< [Zj, Zi)(p), O(p) >= [Zj, Zi)d(p)-

From (4.20), (4.21) and (4.23), we get

<[Zj, Z:)(p), o >=i[Z;, Z:]o(p).
Combining this with (4.19), we get (4.16). The proof of (4.17) is the same.
As (4.19), it is straightforward to see that

(4.24) o(Hg,, Hy)lp = {@;, a0t} (0) =< [Z}, Z)(p), &0 > —i(Z;Z: + Z: Z;)$(p),
where j,t =1,...,n—1. We have
< [7_% Zf](p)a€0 >=< [7]7Zt](p)7)‘0w0(p) - 2Im5b¢(p) >

(4.25) = Xo < [Zj, Ze](p), wo(p) > +i < [Z;, Z:](p), Do (p) — Desb(p) >
=2iMLp(Z5, Z0) +i < [Z5, Zi)(p), Db (p) — Do(p) >
Combining (4.25) with (4.24), (4.18) follows. O

The following is well-known (see Lemma 4.1 in [15])
Lemma 4.4. For any U,V € T,)°X, pick U,V € C=(D,T"°X) that satisfy U(p) = U, V(p) =
Then,
(4.26) MP(U, V) = —([U,V](p),0sd(p) — Ou0(p)) + UV + VU)(p).

Now, we can prove

Theorem 4.5. ¢ is non-degenerate at p = (p, Aowo(p) — 2Im 0y (p)) € X if and only if the Hermitian
quadratic form Mg’ — 2XoL, is non-degenerate.

Proof. Note that

Y= {(m,f) €1"D; ¢j(x,8) =q;(x,€) =0, j=1,...,n— 1}.
Let CT,% and CT,(T*D) be the complexifications of T, and T,(T*D) respectively. Let 7,5+ be
the orthogonal to CT,¥ in CT,(T*D) with respect to the canonical two form o. We notice that
dim(CTpEL = 2n — 2. It is easy to check that

o(v, HQj)|/J =< dqj(p)’v >, o(v, H@)|P =< dqj(p)vv >,

j=1...,n—1, v € CT,(T*D). Thus, if v € CT,%, we get o(Hy,,v)|, = 0, O'(Haj,’l)ﬂp = 0,
j=1,...,n—1. We conclude that H,,,...,H,, ,,Hg ,...,Hg _ is a basis for TPZJ-.
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Now, we assume that M;f’ — 2XoL, is non-degenerate. Let v € (CTpEﬂTpEJ-. We write v =
S e Hy, (p) + BjHg,(p)). Since v € CT,X, we have

j=1
U(V’ th)|p = U(V, HE,,)lP =0,

t=1,...,n—1. In view of (4.16), (4.17), (4.18) and (4.26), we see that

n—1
o Hylp = Y 8 (200L0(Z5, 20) = iM (25, 2))

J=1

= 2iNLp(Y, Zy) — iMP(Y, Zy) = 0,

(4.27)

forallt=1,...,n—1, where Y = 272—11 B;Zji(p) € TZ}’OX. Since —M;f + 2XoL, is non-degenerate,
we get Y = 0. Thus, 8; =0, j =1,...,n— 1. Similarly, we can repeat the process above to show that
a;=0,7=1,...,n—1. We conclude that CT,X) TPEJ- = 0. Hence o is non-degenerate at p.
Conversely, we assume that o is non-degenerate at p. If for some Y € TZ}’OX , we have Mg’(Y, Z)—
2M0L,(Y,Z) = 0 for all Z € T3°X. We write Y = Z;:ll B;Zj(p). As before, we can show that
o(Y02) BiHg,, Hy,)|, = 0and o(X7 2} B;Hy  Hy,)|, =0forallt =1,...,n—1. Thus, 7" 8;H; €
(T,>+)+ = CT,=. Hence, Z;:ll BjHg, € CT,=NT,X*. Since o is non-degenerate at p, we get
B;=0,7=1,...,n—1. Thus, MZ? — 2XoL, is non-degenerate. The theorem follows. O

5. THE HEAT EQUATION FOR THE LOCAL OPERATOT ng)

In this section, we will introduce the local operator D,(gq). The goal of this section is to find a
microlocal partial inverse and an approximate kernel for ng) in some non-degenerate part of the
characteristic manifold of DgQ). In the next section, we will reduce the semi-classical analysis of the

Kohn Laplacian Dl(f,z to the microlocal analysis of the local operator ng).

5.1. Dg‘n and the eikonal equation for DSI). We first introduce some notations. Let € be an open
set in RY and let f, g be positive continuous functions on 2. We write f =< g if for every compact set
K C Q there is a constant cx > 0 such that f < cxg and g < cxf on K.

Let s be a local trivializing section of L on an open subset D € X and |s|5, = ¢ 2?. In this

section, we work with some real local coordinates © = (z1,...,22,—1) defined on D. We write
E=(&,.-,&n—1)0orn = (N,...,N2n—1) to denote the dual coordinates of . We consider the domain
D := D x R. We write & := (x,22,) = (z1,22,...,Z2n—1,T2,) to denote the coordinates of D x R,

where x4, is the coordinate of R. We write £ := (£, £2,,) or 77 := (1, 72,,) to denote the dual coordinates
of &, where &, and 72, denote the dual coordinate of x5,. We shall use the following notations:
oan—1 2n—1 A 2 L2 2
<z >i= 30wy, <@, €= 000 a6y, < @i >i= 30wy, < 2,6 >= 3000 a5
Let 799D be the bundle with fiber

T;O’qﬁ = {u e T;"D, & = (z,22,)}

at & € D. From now on, for every point & = (z,22,) € D, we identify Tgo’qf) with 779X,
Let (-|-) be the Hermitian metric on CT*D given by (£]7) = (£|n) + EonTlan, (&,€),(2,7) €
CT*D. Let Q%4(D) denote the space of smooth sections of T*%4D over D and put Q99(D) :=
Q%4(D)N &'(D, T*9D). Using the identification

0

ku(z) = e~ @2 (—j——

1kTon 0,9
52 (), v 009(D),

we consider the following operators
O, QO*T(ﬁ) — QO’TH(D), 537ku = eiikm"“gs(we““””)7 vu € Q¥7(D),

9, : Q" (D) - Q%" (D), @,

(5.1) —ik®ant1 % (,, kT 0,r+1
s kU =€ 9 (ue™ ) Yu € QVTTH(D),

Q|
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where r = 0,1,...,n — 1 and 0 1, 5:7,% are given by (4.1). From (4.5) and (4.6), it is easy to see that

e 5 8 ga) JAVES
9 =Y () 022 1(68) ) + @) ).

(5.2) -
7= 3 (e 0 (% = Za0) 5, + € Bus))
j=
where Z1,..., 2,1, Z7,...,Z}_, and eq,...,e,_1 are as in Proposition 4.1. Put
(5.3) 09 .= 9,0, + 8.0, : Q¥4(D) — Q%4(D).
From (5.1), we have
(5.4) O = e~ oz g@) (we'koan) vy € Q%9(D),

where Dg?,l is given by (4.4).
Let u(x) € Q0%(D). Note that

k/eiikanu(l’)den _ /Zaa (efik:rgn)u(x)dl?n — /efiszn( — ou (x))den
Tan

8$2n

From this observation and explicit formulas of J; x, gzyk, 9, and 9, (see (4.5), (4.6) and (5.2)), we
conclude that

(5.5) Di?,)c(/e_ik“”u(x)dxgn) = /e_ika"(DgQ)u)(x)dxgn,

for all u(z) € Q94(D).
From (5.2) and (5.3), we can repeat the proof of Proposition 4.1 and conclude that

Proposition 5.1. With the notations used before, we have

=9.0, + 0,0,
0 _ 0
= Z P —iZ;( @)(Zj —ZZj(QS)aTQn)
(5.6) 9 _
+ ;:1 e o2, —i2,(0) 5 — 2 ~iZu(9)5 ]
+e(Z —iZ(d) Y+e(Z* —iZ(9) ) + zero order terms,

O0xan, O0%an,

where e(Z —iZ(p) afz
matriz-valued, for all j, and similarly for e(Z* — iZ(¢) 2

—) denotes remainder terms of the form Yai(Z;—iZ; (d))a_%%) with a; smooth,

OTap )'

In this section, we will study the heat equation 0; + ng). Until further notice, we fix ¢ €
{0,1,...,n — 1}. First, we consider the problem

(5.7) { (@ +0P)u(t,2) =0 in Ry x D,

u(0,2) = v(2).
‘We need

Definition 5.2. Let 0 < ¢; < n—1, ¢; € Ng. We say that a(t, #,7) € C®(RyxT*D, T*0-01 DRT*0-9 )
is quasi-homogeneous of degree j if a(t, &, A\)) = Ma(\t, 2,7) for all A > 0.

Definition 5.3. Let 0 < ¢y < n — 1, 1 € Ng. We say that b(i,7) € C(T*D, T*%9 D K T*99D) is
positively homogeneous of degree j 1f b(Z, A7) = Nb(&,7) for all A > 0.
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Let 0 < ¢ <n-—1, ¢ € Ng. We look for an approximate solution of (5.7) of the form w(¢t, &) =
A(t)v(2),

1

(5.8) AN(E) = oz / /ei(’”(t’i’ﬁ)_<@”7>)a(t,af:,ﬁ)v(g))dg}dﬁ

where formally a(t, &, 9) ~ Y00 a;(t, £,79), a;(t, &,9) € C®(Ry x T*D, T**1 DRT*1D), a;(t, &,7)
is a quasi-homogeneous function of degree —j. The phase (¢, £,7) should solve the eikonal equation

(5.9) { D ipo(a,4) = O(tml™), YN >0,
Pli—g =< T,1 >

with Im ) > 0, where py denotes the principal symbol of 0. From (5.6), we have

n—1
(5.10) Po = 4;dj,
j=1
where ¢; is the principal sympol of Z; — iZj(¢)%7 j=1,...,n—1. The characteristic manifold )y
of 09 is given by
(511)  E={@H T D@8 = = Gur(#:8) = 1(#:8) =+ = T, 1(2,€) = 0.

From (5.11), we see that po vanishes to second order at 3. Let ¢ denote the canonical two form on
T*D. We can repeat the proofs of Proposition 4.2 and Theorem 4.5 with minor changes and conclude
that

Theorem 5.4. We have

(5.12) = {(m € T*D; € = (\wol@) — 2Im Dpe(x)Ean, E2), A € R} .

Moreover, 6 is non-degenerate at p = ((p, Tan), (Mowo(p) — 2Im Dy (p), €2,)) € 3 if and only if the
Hermitian quadratic form fgnMg’ — 2XoL,, is non-degenerate.

Until further notice, we assume that

(5.13) there exist xg € D and A\g € R such that M;fo — 2XoL;, is non-degenerate
) of constant signature (n_,n4) at each point of D.

Let V be a bounded open set of T*D with V C T*D and
(5.14) VATcy,
where ¥’ is given by (1.5). Put
(5.15) U= {(2,€) € T"D: € = (620€,E2n), (2.€) € V20 > 0}
U is a conic open set of T*D and

Uﬂf] c{(&, Dwo(z) — 2Im Dyt () €2, E2n)); Ean MP — 2M\L, is non-degenerate

(5.16)
of constant signature (n_,n4)}.

Since VX € ¥, it is not difficult to see that there is a constant p > 0 such that

(5.17) inf{|\|; A: eigenvalue of £, M? — 2AL,, (2,€) € UND} > péan.

Until further notice, we work in U. Since ¢ is non-degenerate at each point of U () s, (5.9) can be
solved with Im > 0 on U. More precisely, we have the following
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Theorem 5.5. There exists Y(t,2,7) € C°(Ry x U) such that 1(t,%,9) is quasi-homogeneous of
degree 1 and Im1p > 0 and such that (5.9) holds where the error term is uniform on every set of the
form [0,T] x K with T > 0 and K C U compact. Furthermore, ¥ is unique up to a term which is
O(\Imw|N) locally uniformly for every N and

’l/)ta"iaA :<5AU,A>0’I’LE U’
(5.18) (t,,7) Ui "N
da 5 (p— < &, >) =0 on XU
Moreover, we have
- Ul e\ 2 o
519 I t, d t s TAT ,E ; tz O, , E U
(5.19) m(t, &,7) = (17 ‘1+t|n|)( it (2 71 ) &.5)

Theorem 5.6. There exists a function (oo, &,7) € C°(U) with a uniquely determined Taylor ex-
pansion at each point of X (U such that ¥(oco,Z,n) is positively homogeneous of degree 1 and for

N2
every compact set K C U there is a cx > 0 such that Im (oo, Z,7) > ck |7 (dlst ((x,m),E)) ,
ds (P00, 2,0)— < 2,7 >) = 0 on UNE. If A € C(U), X > 0 and \(&,€) < min\;(#,&), for all
(2,€) = (&, Awo(z) — 2Im Opd(x)Ean, E20)) € XU, where \;(#,€) are the eigenvalues of the Hermit-

ian quadratic form &on M$ —2\L,, then the solution ¥ (t, &,7) of (5.9) can be chosen so that for every
compact set K C U and all indices o, B, vy, there is a constant cqa,g~,x > 0 such that

(5.20)

02070] (W(t,&.7) = (00, ,7)| < Cap e D on By x K.

For the proofs of Theorem 5.5 and Theorem 5.6, we refer the reader to Menikoff-Sjostrand [22]
and [14]. Put

(5.21) diag’((UﬂfE) Uﬂz) {xxg €); ( eUﬂz}
We also need the following which is also well-known (see Proposition 3.5 of part I in [14])
Theorem 5.7. The two phases ¥(c0,%,1)— < 9,7 >, —(00, 9,0+ < &, > are equivalent for
classical symbols at every point of diag'((Uﬂi) X (Uﬂi)) in the sense of Melin-Sjostrand [21].
From (5.6), we can check that the principal symbol py has the following property:
(5.22) Po((@, x2n + ), 7)) = po(L, 7)), VaeR.
Fix a € R, we consider
U(t,2,1) 1= U(t, (2,220 + @), 1) — AN
From (5.22), it is not difficult to see that ¥ (, &,7) solves (5.9). From Theorem 5.5, we see that

w(tvi.aﬁ) - 1/’(’5,55, 77) :(w(t’ (l’,l’gn + 05)777) - (LEgn + 0‘)772n)—(¢( 2% ﬁ) 1'27177271)

vanishes to infinite order at £ (U, for all o € R. This means that the Taylor expansions of (¢, &, 1) —
ZTopNon at )y U do not depend on xs,. Thus, 8:c (t,2&,1M) — N2, vanishes to infinite order at X (U.

We conclude that ¢(t, &,7)—(¢(t, (z,0),7) + $2n772n) vanishes to infinite order at 3(U. Since we
only need to consider Taylor expansions at by U, from now on, we assume that

(5.23) Y(t, 2, 10) = (L, (,0),9) + z2nn2n.
Thus,

(524) ¢(OO7 ia 77) = w(OOa (337 0)7 ﬁ) + ZonM2n-
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5.2. The transport equations for DEQ). We let the full symbol of ng) be:

full symbol of 0@ = Zp] (#,€),

where p; (&, €) is positively homogeneous of order 2—j. We apply 8, + w2 formally under the integral
in (5.8) and then introduce the asymptotic expansion of m (ae™) (see page 148 of [21]). Setting

(0 + ng))(aeiw) ~ 0 and regrouping the terms according to the degree of quasi-homogeneity. We
obtain the transport equations

(5.25) { T 0,6 — o(jtmulN), ¥N

T(t, &, 7,01, 03)a; + Rj(t, &, 7, ao, ..., a;_1) = O(|Im "), VN,
Here
apO / 0 PN
T(t 0, = t
( 33777 t7 Zafj xj""l(,xﬂ?)
where
2n
1 82po(@,9}) 0*p(t, &,7)
LA A) = P (4 ’ - y Ya s by
J,t=1
and R; is a linear differential operator acting on ag, a1, ...,a;—1. We note that ¢(¢,Z,79) — g(oco, &, 1)

exponentially fast in the sense of (5.20) and the same is true for the coefficients of R;, for all j.
We pause and introduce some notations. The subprincipal symbol of ng) at (i,é) edis given by

. 2n o

ss(a E NP ? 32250(@5) 0,g 1~ 0,q A

5.26 o(2,&) =p1(2,6) + = 7’A€Tg ’qDﬁT; ap.
(5.26) 03(#,€) = p1(,) 2; 52,02,

Since 3 is dAoubly characteristic, it is well-known that the subprincipal symbol of Dg'I)Ais invariantly
defined on X (see page 83 in Hormander [12]). The fundamental matrix of py at p € X is the linear
map F(p) on T;(T*D) defined by

(5.27) (1, F(p)s) =< t,p;(p)s >, t,s € T,(T*D),
25 ~
NI 89:61( ) ZASQ (p) N & o A .
where py(p) = 9250 éf ) For p € X, let tr F(p) := ) |p |, where +ip; are non-
6.L3§( ) agaé (p)
vanishing eigenvalues of F(p). For p = (&,€) € (U, put
1~ ~
(5.28) inf(p5(p) + itr F(p)) = inf {\; A: eigenvalue of p§(p) + str F(p)}
and set
AS [ A 1~ A * - AS [ A 1~ N
(529) NGR0) + 5 FO) = {u € D G5(5) + 3 Fu=0 )

We return to our situation. We can repeat the proof of Proposition 4.3 in part I of [14] with minor
changes and obtain the following

Theorem 5.8. Let 0 < g1 <n—1, ¢ € Ng. Let ¢j(i,7) € C®U, T*O0DRT*49D), j =0,1,...,
be positively homogeneous functions of degree m — j, m € Z. Then, we can find solutions a;(t, % 77) €
C®Ry x T*D, 700D R T*%4D), j = 0,1,..., of the system (5.25) with a;(0,%&,7) = c;(&,7)
j=0,1,..., where a;(t,&,7) is a quasi-homogeneous function of degree m — j such that a;(t,%,7)
unique Taylor expansions on S, for all j. Furthermore, let X(2,7) € C(U) and (&, 7) < inf(p(&,7)
%tNr F(&,1)), for all (Z,7) € by NU. Then for all indices o, 8,7,j and every compact set K & iﬂ U
there exists a constant ¢ > 0 such that

(5.30) 83839:‘85&]- (t,2,7)| < ce™@D on R, x K.
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Moreover, for every po = (&0,70) € SN U,

lim ag(t, &0, 7o) exists,
t—o00

(5.31) ,
( Jlim ao(t, &, 70))u € N (35 (p) + trF( 5)), Yue T:%D.

We are therefore interested in whether inf(p§(p) + 3 Ltr F(p)) > 0, p € UN 2. We have the following

Theorem 5.9. If ¢ = n_, then for all (&,€) € S\U, we have

(5.32) inf(p5 (2, &) + 5& F(#,6)) =

If g # n_, then there is a constant pg > 0 such that for all (i,é) € 2(] U, we have

Proof. First, we compute the subprincipal symbol p§(p), p € 3. For an operator of the form (Z; -
iZ; (¢)8$LM)(Z —iZ; (qS) ) this subprincipal symbol is given by — 21{@-,6]} and the contribution
from the double sum in (5.6) to the subprincipal symbol of 0% is 1 Z] 1 €je; 0 {d;,q;}, where
G; is the principal symbol of Z; — iZ, (¢)T and {g;,q,} denotes the Poisson bracket of ¢; and §,.

We recall that {4;.q,} = 22” (gg” gi: - gz’s g—gt). We get the subprincipal symbol of O on 3,

ﬁ(g) = Z] 1 21{QJaq]}+Z] t=1¢ /\ /\ : 1{q]aQt} For p - (A’ ()\WQ(J?)—21m5b¢($)£2n,€2n)) € i’ from
the proof of Lemma 4.3, we see that

(5:34) {4, @ }(p) = iMP(Z}, Z0)Ean — 2NLa(Z;, Zo).
Thus,
n—1 1 o
30) =3 —5 (M2, 2)60n - 20£.(7,,7)))
(5.35) 7=1 -
+ 30 ehet (M5, 206 — 2La(Z5, 20 ).
J,t=1

for all p = (&,£) = (&, (\wo(x) — 2Im p(x)é2n, E2n)) € B )

Now, we compute the fundamental matrix F of pg at p € X. From now on, for any f € C°(T*D),
we write H ¢ to denote the Hamilton field of f. We can choose the basis Hy,, ..., H;, _,, HEI’ . ’HE »
for Tpfll-, where TPEAJJ- is the orthogonal to (CTpfl in CT,(T *ﬁ) with respect to canonical two form 6.
Since py = Z;;ll 4;G;, we have Hp, = Z;;l (équj + (jogj). We compute the linearization of H,
at p

Hj, (ﬁ-‘rZ(tquk +SkHEk)) O(t, 8| Ztk{qk7qJ}Hq] +Zsk{qk7qj}H
J)k 7.k
So F(p) is expressed in the basis Hy,, . .. ’H‘?nfUHEl’ o Hy » by
A {tha}(ﬁ) 0
(5.36 F(p) = ( J = . .
: v 0 {@nd))
Again, from (5.34), we see that the non-vanishing eigenvalues of F(p) are
(537) :l:Z)\l(l’, )\, Egn), ey :‘:7)\”_1(13, )\, ggn),

where p = (&, (Awo(z) — 2Im Fp(x)Ean, £2n)) and \j(z, A, €2,), j = 1,...,n — 1, are the eigenvalues of
the Hermitian quadratic form M$&,, — 2)\L,.
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To compute further, fix a point po = ((p, z2n), Awo(p) — 2Im Ipd(p)€an, Ean)) € Uﬂf] and we
may assume that the Hermitian quadratic form §2nM]‘f — 2XL, is diagonalized with respect to Z,;(p),
j=1,...,n—1. Thus,

Z ehep *<M¢ 75, 20)Eam — 20Lp(Z5, Z4) ) Ze/\ A *(M¢ (Z;, Z;)€an — 2A,cp(7j,zj)).
7,t=1
From this, (5.35) and (5.37), we see that on )y (U and on the space of (0, q) forms, p§(p) + %t~r F(p),
p = (&, Awo(x) — 2Im Dy (x)Ean, E2,)) € (U has the eigenvalues

n—1

1 1 1

5 Z |>\j(xv >\,£2n)| - 5 Z )\j(l’, >\7§2n) + 5 Z )‘j(xa )‘7£2n)7 |J| =q
(5.38) = = =

J= (12,0 Jq)s 1< <ja < <jg<n-—1,
where \;(x, A, &25,), 7 = 1,...,n—1, are the eigenvalues of the Hermitian quadratic form M%&, —2AL,.

Note that &2, M — 2)\L, is non-degenerate of constant signature (n_,n. ), for every (&, (Awo(z) —

2Im 0y ()2, €2r)) € B U and there is a constant g > 0 such that |\;(x, A, &2n)| > péon, j =
1,...,n—1, for all (&, (Awo(2) —2Im 8p¢(2)Ean, E2n)) € SN U (see (5.17)). Combining this observation
with (5.38), it is straightforward to see that (5.32) and (5.33) hold. O

Remark 5.10. With the notations and assumptions above, let ¢ = n_ and let
po = ((wo, (sowo(x0) — 2Im Bype(x0)) € V[ Z.

Let Z1,505- -+ Zn—1,5, be an orthonormal frame of 70X varying smoothly with z in a neighbourhood
of p, for which the Hermitian quadratic form M¢ — 2s,L, is diagonalized at z. That is,

Mg(7j750 (xo), Zt730 (33‘0)) — 250£w0( 7,50 (1}0) Zt,SO (ajo)) = )\j(SO)(Sj,t, j,t = 1, e, — 1.

Assume that A\j(sg) < 0, j =1,...,n_. Let e1,5,,...,€n—15, denote the basis of T**!1 X which is
dual to Z1 ,,...,Zn—1,5,- Put

(5.39) N (2o, s0,m-) = {ce1,s)(w0) A+ Aen_ s (m0) € ThIX; c € C}.

From the proof of Theorem 5.9, it is not difficult to see that for every p = ((x,x2,), (£2,.&,E2n)) €
UNZ, € = sowo(x) — 2Im Jp¢(z), we have

(5.40) NG}P) + 5 F(p) = Nz, 50,m).
Put
(5.41) m(U) = {x e D; (#,€) € U, for some £ € R?n} .

From Theroem 5.8 and Theorem 5.9, we get the following

Theorem 5.11. Let 0 < qy <n—1, ¢ € Ny. Let ¢j(#,7) € C®U, T DRT*%4D), j =0,1,...,
be positively homogeneous functions of degree m — j, m € Z. Then, we can find solutions a;(t, & 77) €
C®Ry x T*D, T*%0 D R T*%9D), j = 0,1,..., of the system (5.25) with a;(0,2,7) = ¢;(&,7),
j=0,1,..., where a;(t,Z,7n) is a quasi-homogeneous function of degree m — j, such that ao(t,Z,n)
satisfies (5.31) and for all a, B € N3", 7, j € Ny, every eg > 0 and compact set K @ w(U), there is a
constant ¢ > 0 such that

5.42 87898@(1' t,a,0)| < cefotmnl(1 4 |p))ym == 1BHY on R x (K x RZY)N(UN)).
t Yz J

Furthermore, if ¢ # n_, then for all a, 3 € N2", v, j € Ny, and every compact set K @ w(U), there is
a constant ¢ > 0 such that

(5.43) azagagaj(t,:e,ﬁ)‘ < cem ol (1 )BT on Ry x (K x R N(UNY)),

where o > 0 is a constant as in (5.33).

We introduce some symbol classes
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Definition 5.12. Let g > 0 be a non-negative constant. For 0 < ¢q1,q0 < n—1, ¢1,q2 € Ny and
m € R, we say that a € S]"(Ry x U, T**" DRT*0 D) if a € C*(Ry x U, T**4 DRT**% D) and for
all indices «, 3 € N&", v € Ny, every compact set K € 7(U) and every € > 0, there exists a constant

¢ > 0 such that
0] 0507 alt, &, 7)| < ce!THmenltEmnl (1 |pymt=IBl G e K (3,7) € U

Remark 5.13. Tt is easy to see that we have the following properties:

m & &m cmax(m,l
(a) fae S, be S, thenabe STH a+be ™ ((:f#jz).

(b) If a € S then 8]9207a € S~ 1717
(c) If a; € S,Tj7 J=0,1,2,... and m; \, —00 as j — oo, then there exists a € S} such that
a— 8_1 aj € S’L”, for all v = 1,2,.... Moreover, if S’;OO denotes [,,cg 51" then a is unique

~ eR~p
modulo S’;‘X’.

If a and a; have the properties of (c), we write a ~ Z;io a; in S'ITO
From Theorem 5.11 and the standard Borel construction, we get the following

Theorem 5.14. Let 0 < ¢; <n—1, ¢1 € Ng. Let ¢;(&,7) € C(U, T+ DK T*O*qﬁ), ji=0,1,...,
be positively homogeneous functions of degree m — j, m € Z. We can find solutions a;(t,&,n) €
C=(Ry xU, T**% DRT**9D), j = 0,1,. .. of the system (5.25) with a;(0,%,7) = ¢;(&,7), j = 0,1,.. .,
where a;(t, 1) is a quasi-homogeneous function of degree m — j, such that ao(t,,7) satisfies (5.31)
and a; € Sgl*j(ﬁ+ x U, T*00 D RT*049D), j = 0,1,..., for some p with n >0 if ¢ # n_ and =0
ifq=mn_.

For 0 < g1 <n—1, q €N, let a;(t,2,9) € S7I([Ry x U, T DR T*9D), j = 0,1,..., be
quasi-homogeneous functions of degree m — j, m € Z. Assume that a;(¢,2,7), j = 0,1,..., are the
solutions of the system (5.25). Let a(t, #,7) ~ 3272 a;(t, #,7) in 577(@_5_ x U, T*1 DRT*4D). Put

(0 + 3 (T Da(t, 2, 7)) = eV BEDb(E, £, 7),
where
b(t, &,0) ~ Y32 bi(t,&,9) in SPH2(Ry x U, T**1 DR T*%D),

b; € ,SA'L”*%j (Ry x U, T*O’qlﬁ,T*O’qb), b; is a quasi-homogeneous function of degree m + 2 — 7,
7=0,1,....

Since a;(t, &,7), j = 0,1,..., solve the transport equations (5.25), we have that for all N € N, every
compact set K € m(U), € > 0, and all indices «, 3 € NZ", there exists ¢ > 0 such that

(5.44)

8§8§b‘ < cetmnl (1] 4172 (tmap(t, 2,7)) ™) on Ry x (K x RV (U NE)).

Conversely, if (0; + ng))(eiw(t’i’f’)a(t,56,77)) = WMyt 3, 7) and b satisfies the same kind of
estimates as (5.44), then a;(¢,%,7), j = 0,1, ..., solve the system (5.25) to infinite order at X (U.
From this observation and the particular structure of the problem, we will next show
Theorem 5.15. Let ¢ = n_. Let ¢j(2,7) € C®°U,T*9D R T*%9D), j = 0,1,..., be positively
homogeneous functions of degree m — j, m € Z. We can find solutions a;(t,2,7) € Sy" 7 (R4 x
U, T*O’qﬁﬁT*O’qﬁ), j=0,1,... of the system (5.25), where a;(t,Z,7) is a quasi-homogeneous function
of degree m — j, for each j, with a;(0,2,7) = ¢;(z,7), j =0,1,...,

a;(t, &,1) — a;j(c0, &,7) € SV (Ry x U, T* DR T**ID), j=0,1,2,...,

and for every (&,7) = ((, 20 ), (M2nn; M2n)) € UNE, 1= sowo(x) — 2Im dy¢(z), we have
(5.45) ao (00, &, M)u € N(x,50,n_), Yue Ti"D,

where 1 > 0 is a constant and a;(co,&,1) € C®°(U,T**9D K T*%9D), j = 0,1,..., a;(c0,#,1) is a
positively homogeneous function of degree m — j, for each j.
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Proof. Let a;(t,2 ) S' (@Jr x U, T*%4D ) T*0: D), =0,1,..., be any solutions of the system
(5.25) with @;(0,2,%) = ¢;(2,9), j = 0,1,..., where a;(¢,&,7) is a quasi-homogeneous function of
degree m — j, 7 =0,1,.... Set a(t,&,7) ~ ZJ 0a;(t,Z,n) in 5‘ (Ry x U, T*99D R T*%4D) and put

(s + D) (V2D 2, 7)) = Ot 2, 1),

where

b(t, &,1) ~ Y020 bj(t, &,9) in SPHA(Ry x U, T*1D R T*1D),
Bj € AL"H IRy x U, 709D K T*O’QD) bj is a quasi-homogeneous function of degree m + 2 — j,
j = 0,1,.... Since a;(t,z,7n), j = 0,1,..., solve the transport equations (5.25), b( ,&,7) satisfies
(5.44). Note that we have the interwing properties
(5.46) 9,0 =0ltly,, §.0@ =gl-Yg..

,(ea) = ee, D,(ea) = e,

¢~ Y oc(tdn) in SPTHRy x U,T*%9D R T*091D), d ~ $7°d;(t,2,7) in S5 (Ry x
U, T*04D K T*O’q_lf)), where ¢;(t,&,7) and d;(t,Z,7) are quasi-homogeneous functions of degree
m+1—j,7=0,1,.... From (5.46), we have (J; + ngﬂ))(ewc) =eWe, (O + ng_l))(ewd) =eVf,
where e and f satisfy (5.44). Since e and f satisfy (5.44), we deduce that ¢;, j = 0,1,..., solve
the system (5.25) and dj, j = 0,1,..., solve the system (5.25) too. From Theorem 5.8 and The-
orem 5.11, we see that ¢;(¢,&,7), d;(t,&,1), 7 = 0,1,..., satisfy the same kind of estimates as
(5.43). Now 0@ = 3,9, + 0.0,, s0 ng)(ew'd) = e™g, where g satisfies the same kind of es-
timates as (5.43). From this we see that 0;(e’¥a) = e'¥h, where h has the same properties as
g. Since h = i(0:v)a + J:a and Opp satisfy the same kind of estimates as (5.43), Oia satisfies the
same kind of estimates as (5.43). From the standard Borel construction, we can find a;(t,&,7) €
C®[Ry x U, T*0:4D) &T*O’qf)), Jj=0,1,..., such that a;(t,&,1) —a;(t,&,1) vanishes to infinite order
at each point of f]ﬂU a;(t,&,m) is a quasi-homogeneous function of degree m — j and there is a
p > 0 such that d:a;(t, z,7) € Sm IRy x U, T*99DRT*4D), j = 0,1,.... We conclude that we can
find a;j(c0,z,n) € C"’O(U, T*O’qD X 7+%9D), where a;(cc,#,1) is a positively homogeneous function
of degree m — j, j = 0,1,..., such that a;(¢,&,7) — aj(c0, £,7) € S*L”*j(ﬁ_s_ x U, T*94D X T*O’qD),
0>0,7=012,...

Finally, from Theorem 5.8, (5.31) and (5.40), we obtain (5.45). The theorem follows. O

5.3. Microlocal Hodge decomposition theorems for ng) in U. We use the same notations and
assumptions as before. Fix Dy € D, where Dy is an open set of D. As before, we put Dy := Dy x R.
We need the following which is essentially well-known (see Chapter 5 in part I of [14])

Proposition 5.16. Let > 0 and let b(t,%,7) € S?(@.F x U, T*9DRT*1D), m € R. We assume
that b(t, &,7) = 0 when || < 1 and for every t € Ry, Suppb(t,&,7) T*Do C W, where W C U is

a conic open set with W C U. Take 7(2,7) € C®(T*D), 7 =1 on W, 7 = 0 outside U and T is
positively homogeneous of degree 0. Let x € C$°(R?*™) be equal to 1 near the origin. Put

o0
B.(#.) = / ( / WD =<0y (¢, . 7)) x (en)r (&, 7).
0

For u € Q)(D), we have

lim ( / B.(#,§)u(§)dg) € 2°9(D)

e—0

and the operator

B: QYD) — Q%(D)

u — lim (/Be(iﬁﬁ)u@)dy)

e—0

(5.47)
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is continuous and B has a unique continuous extension:

B:&"(D, T**9D) — D'(D, T*%D)
and B(x,y) € C*™ (ﬁ x D\ diag (D x D), T*%4D K T*04D), where B(Z,7) denotes the distribution
kernel of B.

Let b(t, ,9) € SRy x U, T**4D R T*%9D), ;1 > 0. m € R. We assume that b(t, &,7) = 0 when
4] < 1 and for every t € R, Suppb(t,#,7) ﬂT*ﬁo C W, where W C U is a conic open set with
W CcU. Let

B:QyYD) - Q%(D), &(D,T**9D)— D'(D,T**D)

be the continuous operator given by (5.47). We formally write
B = B(2,9) = /(/ ei(’ﬂmﬁ>*<@ﬂ7>>b(t,ﬁ:,ﬁ)dt)T(;fz,ﬁ)dﬁ.
0
From now on, we identify B with B(Z, ).

Remark 5.17. Let a(t,#,7) € SP(Ry x U, T*%9D R T*4D), m € R. We assume that a(t,z,7) = 0
if [n| < 1 and for every t € R, Suppa(t,aﬁ*,ﬁ)ﬂT*ﬁo C W, where W C U is a conic open set
with W € U and a(t, #,7) — a(oo, 2,79) € SRy x U, T**9D R T**9D), i > 0, where a(oo, #,17) €
C°° (U, T*99D X T*%9D) and Supp a(co, #,7) (VT*Dy C W. Then we can also define

(548)  A(#,9) = / ( / (/D =<052)a 4, 3 ) — /D052 a (00, 7, 7) )t ) (i, 7) iy
0

as an oscillatory integral by the following formula:
o0
Aag) = [ e esm =ity i b, 0, i)alt, 1) + i 2.1))de ) (2. )
0

We notice that (—t) (i (t, &,9)a(t, #,9) + a}(t, &,7)) € ST, > 0.
The oscillatory integral A(Z,§) defines a continuous operator
(D)

A: QYD) — Q¥D), &£(D,T**9D) - D'(D,T**D).

We formally write
A= A(Z,9)

= /(/OO (ez‘(w(t,@ﬁ)—<@,ﬁ>)a(t’567 n) — ei(w(m’i’ﬁ)_<g’ﬁ>)a(oo,i‘,ﬁ))dt)T(@,ﬁ)dﬁ.
0

Let m € R, 0 < p,0 < 1. Let I be a conic open set of T*D. Let S;,ilé(F,T*O’qlA) X T*Ov‘llA)) denote

the Hormander symbol space on I with values in 7*%4 DRT*%4D of order m type (p, §)(see Definition
1.1 of Grigis-Sjostrand [9]) and let S7(T, T*%4 DK T*%4D) denote the space of classical symbols on T
with values in 704 DRT*%4D of order m (see page 35 of Grigis-Sjéstrand [9]). Let B C D be an open
set. Let L', (B, T*%1DRT*%1D) and L} (B, T**4DRT*%4D) denote the space of pseudodifferential

11

operators on B of order m type ( ) from sections of T*99D to sections of T*%9D and the space of

202

classical pseudodifferential operators on B of order m from sections of T*%9D to sections of T*%4D.

The classical result of Calderon and Vaillancourt tells us that for any A € L7 , (B, T*%9D X T*%4D),
272

(5.49) A HS, (B, T*%9D) — HE™(B,T**9D) is continuous, for every s € R.

comp

(See Hérmander [12], for a proof).
We can repeat the proofs of Lemma 5.14, Lemma 5.16 in [14] and obtain the following

Proposition 5.18. Let a(t,z,7) € S5 (R, x U, T*%4D R T*99D), m € R. We assume a(t,z,7) = 0

if Il < 1 and for every t € Ry, Suppa(t,ﬁ:,ﬁ)ﬂT*ﬁo C W, where W C U is a conic open set
with W C U and a(t,2,1) — a(co, &,7) € SL”(RJF x U, T*4D R T*4D), u > 0, where a(co, 2,19) €
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Co° (U, T*99D R T*%4D) and Supp a(co,#,7) (\T*Do € W. Take 7(2,7) € C¥(T*D), 7 =1 on W,
7 =0 outside U and T is positively homogeneous of degree 0. Let

A(2,9)
— ﬁ /(/Ooo (ei(w(t@,ﬁ)*<ﬁ~,ﬁ>)a(t’j, M) — ei(w(m’j’ﬁ)7<g’ﬁ>)a(oo,:fs,ﬁ))dt)ﬂi,f])dﬁ
be the oscillatory integral as in (5.48). Then A € L’;?(ﬁ,T*O”ﬁ X T*%9D) with symbol
o, 7) = /0 - (e 2= <081 ) — 5D =<0 00, 3, 7) i)
in STTHT*D, T*9D R T*04D).

373
We can repeat the proof Proposition 5.18 in [14] and conclude that

Proposition 5.19. Let a(co, #,7) € C®(T*D, T**4D R T*%1D), Supp a(co, &,7) (T*Do € W, be a

classical symbol of order m, where W C U is a conic open set with W C U. Take 7(%,7) € C*®(T*D),

T=10onW, 7 =0 outside U and T 1is positively homogeneous of degree 0. Then

a(i, f) = e Weomm=<en>)q (o6 & 3)r(2,7) € ST (T*D, T*%D R T**1D).
272

We assume that ¢ # n_. Let I = (27)72" ['<#=9:7>¢(i,7j)di) be a classical pseudodifferential
operator on D of order 0 from sections of T*%9D to sections of T*%9D with ¢(2,7) € S (T*D, T**4 DK
T*%49D), Supp ¢(2,7) (T*Do C W, where W C U is a conic open set with W C U. We have

(M) ~ chxn

in the Hérmander symbol space S?yO(T*D,T*O’qD X T*99D), ¢;(2,7) € C®U, T*9D K T*%9D),
Supp¢;(z,7n) C W, j=0,1,..., are positively homogeneous functions of degree —j. Let

aj(t,@,7) € S, I (Ry x U, T DRT**D), j=0,1,...,
where pg > 0 is as inﬁTheorem 5.14%, with ajA(O,i",ﬁ) = ¢i(2,7), 7 = 0,1,.... Let a(t,&,7) ~
Yoo ay(t,2,7) in Sp (Ry x U, T**9D K T*%4D). Choose x € C§°(R®") so that x(77) = 1 when
1] < 1 and x(77) = 0 when || > 2. Take 7(&,7) € C®(T*D), 7 =1 on W, 7 = 0 outside U and 7 is
positively homogeneous of degree 0. Set

(273)2”/(/000 BN =<T0>) g (¢ 3 7) (1 — x(7))7 (&, 7)dt) dA).

We can repeat the proof of Proposition 6.3 in [14] with minor changes and conclude that

(5.50) A(#,9) =

Theorem 5.20. Assume that ¢ # n_. Let I = (2m)~2" [ ¢<#=9:7>¢(3 7)dij be a classical pseudo-
differential operator on D of order O from sections of T*949D to sections of T*949D with c(z,n) €
SO (D, T**9D R T*%4D), Supp c(&,7) N T*Dy C W, where W C U is a conic open set with W C U.
Let A= A(z,y) € LY (D, T*D R T*%9D) be as in (5.50). Then, on Dy,
272
ng) cA=1.
We assume that ¢ = n_. Let I be the classical pseudodifferential operator as in Theorem 5.20. Let
a;j(t,2,7) € Sy (Ry x U, T* DR TID), j=0,1,...,

and a;(o0,,1) € C(U, T*04D K T*O’qﬁ)7 j=20,1,..., be as in Theorem 5.15. We recall that for
some g > 0,

aj(t,#,1) — aj(c0,2,9) € $,7 (R x U, T**DRT*"D), j=0,1,...,
and for every (,79) = (2, ), (M2nn: 2n)) € U N, n = sowo(z) — 2Im J,é(z), we have
(5.51) ao(00, &, f)u € N(x,50,n_), Yuec T;™D.
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Let
(5.52) a(00,,7) ~ ) a;(00,,7)
j=0
in S9 (U, 74D R T**9D). Let
(5.53) a(t,&,n) ~ > a;(t, &,17)
j=0
in SY(R, x U, T*94D R T*94D). We take a(t,#,7) so that for every compact set K C 7(U) and all
indices o, 8 € N2", 7,1 € Ny, there exists ¢ > 0 independent of ¢, such that

(5:549) 0709 (alt, 1) - Zaa (t.2.7)) | < e(1 + i) 1,

where t c Ry, & € K, (2,7) € U, || > 1, and
alt, &,7) — a(oo, &,7) € SYRy x U, T**DRT**D) with 1 > 0.

Choose x € C§°(R?™) so that x(7) = 1 when || < 1 and x(A) = 0 when || > 2. Take 7(%,7) €
C’°°(T*ﬁ), 7 =1o0on W, 7 =0 outside U and 7 is positively homogeneous of degree 0. Set

L 1 o (a7 — <0y AN
Glii) = e /(/O (FWEED=<072) o1, 3, 7)

(5.55)
= 2= <02 g 00, 5, 7)) (1 = X (7)) (&, 7)dt ) di
Put
PN 1 i(1(00,&,7)—<i,A PN N PPN N
(5.56) S(.9) = Gy /e(w( B =<912) g (00, £,9) (1 — X(7))7 (&, 9)dA.

We can repeat the proof of Proposition 6.5 in [14] with minor changes and obtain

Theorem 5.21. We assume that ¢ = n_. Let I = (2n) _Z"fei«i_@ M>c(&,7)dn be a classical
pseudodzﬁer@ntml operator on D of order 0 from sections of T*7 4D to sections of T*% 4D with
c(i,n) € 8%(T*D, T*%9D ’ T*%9D), Supp c(2,7) \T*Dy C W, where W C U is a conic open
set with W C U. Let G = G(&,9) € L%’%(f),T*quf) X T*09D) be as in (5.55) and let S = S(&,7) €

LY (D, T*99D R T*949D) be as in (5.56). Then,
272
S+09DoG=T onDy, O9oS=0 onD.

Now, we study the distribution kernel S(&,4) of S. Fix p € D and assume that D is a small
open neighbourhood of p. We take local coordinates © = (x1,...,22,—1) so that z(p) = 0, wo(p) =
(0,0,...,1) € R~ and

—2Im 0y (p) = (1, .., Qop_2,0) := (o, 0) € R*"L,
Thus, ((p, T2,),€) € 3 if and only if € = (€ona1,E2n00, - . -, EanQan—2, E2n\, E20), A € R. We need

Lemma 5.22. We have
2n—2

det( Oy (00, (p, T2n), ( a A 1))> #0
y Wy 42n ), 1y &2n-2, 7, )
On; Oy git=1
fOT every ((p7 I2n)7 (0417 <., Qop_2, )‘7 1)) elU.
Proof. We first claim that
7 5%Im ¢ A1 2n=2 tive defini
(5.57) (8nj8nt (00, (p, Tan), (a1, ..., Qap_2, A, )))M:1 is positive definite,
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for every ((p, xan), (a1,...,@2n—2,A,1)) € U. We consider Taylor expansion of

Im’(/J(OO, (p’ 1'271)7 (7717 sy M2n—2; )‘7 1))
at ((p7 */I;Qn)a (ala ooy Qi2p 2, >\7 1))
Im¢( (paxQ’n)v(nl)'"77]2n—2a)‘71))
2n 2
0%Im
= 3 > T oo (o) (o, 032 A 1) — ) — )
(5.58) j,tzl 15 9M¢

2n—2

O( Z nj — )%

Here we use the fact that (Imd,y (oo, (p,z2,), (01, ..., @2n—2,A,1)) = 0 (see (5.18)). From Theo-
rem 5.6, it is straightforward to see that

Imw(OQ (p7 x2n)7 (7]17 ey M2n—2, )\7 1)) = |77 - Oé|2 )

for (n1,...,M2n—2) is in some small neighbourhood of (a1,...,a2,-2). From this and (5.58), we
conclude that
9*Im v =2
(007 (py Z‘Qn), (041, <oy, O2p—2, )\7 1) )
<5m3m ) =1
is positive definite. The claim (5.57) follows.
Put A = (g;ﬁ?ﬁ'ﬁ (00, (p, Tan), (1, ..., Qap_2, A, 1)))j ~ =ReA+imA. Let u € C?n=2 If Au=
0, then < (Re A +iIlm A)u,uw >=< (ReA)u,u > +i < (Im A)u,u >= 0. Thus, < (Red)u,u >=<
(Im A)u, @ >= 0. Since Im A is positive definite, we conclude that u = 0. The lemma follows. O
Put
(5.59) —2Im Opp() = (a1(x), ..., a0,_1(2)), wo(z) = (B1(x),...,Han_1(x)), =€ D.
From Lemma 5.22, we may take V' and D small enough so that
821/) 2n—2
det ( (oo,ﬁ:,ﬁ)) #0, Y(&,79)eU
On;Oni, G k=1
and
1
(560) Bgn,l(m) > 57 Ve e D
Set

a(#, 1) := a(oo, &, 7)(1 = x(7))7(2,7).
Since 7(Z,7) = 0 outside U, &(i ) =0 if 1, < 0. We have

7
/ P (00,&,1)—<g,N>) 7% a(&,n)dn

S(&, 9
(5.61)
- / 6zt(w(oo z,(w,1))—<g,(w, 1)>)t2n 1~( #, (tw, t))dwdt,
(277) " Jiso
where 1 = (91,...,Mopn_1) = tw, Moy, = t, w = (w1,...,Wap_1) € R*7L Let wy, 1 = ag,_1(z) +
$Ban—1(z) and put w’ = (wy,...,ws,_2) in (5.61), we get
S(z,9)
1 . a ! ~ !
5 62 _ / it ((00. 8. (w' 02 -1 (2)-+5Ban—1 (2),1)) = <G (w02 -1 (2)+ 8Ban—1 (2).1)>) o
(5.62) (2m)* Jiso

2" Boy1 (2)a(E, (tw', taon—1 () + tsPon—1(z),t))dw'dsdt.
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Note that Bo,—1(z) > %, for every z € D. The stationary phase method of Melin and Sjdstrand (see
page 148 of [21]) then permits us to carry out the w’ integration in (5.62), to get

(5.63) S(a,4) = / @I (5 5 s 1) dsdt

with

(5.64) b(&, 1, 5,t) ~ > bj(&, 5, 5)t"
j=0

in S7(Q2x]0, 00, T;*D R T;*D), Suppb(#, g1, s,t) C Q x Ry, where

Q:={(2,9,5) € D x D x R; (&, (~2Im 0yp(z) + swo(x), 1)) € U (%,

z,
(5.65) _ .
(g, (—2Im Opp(y) + swo(y),1)) € UNX, |Z — §| < €, for some € > 0}

and
Supp bj(£,9,8) C Q, b;(&,3,5) € C(Q,T; " DRT;*D), j=0,1,...,

and ®(z,9,s) € C* (Q) is the corresponding critical value. Since V' is bounded, there is a constant
M > 0 so that |s| < M, for every (Z,9,s) € Q). Since S is a pseudodifferential operator, S(z,9) is
smoothing away the diagonal & = 3. We can take ¢ > 0 in (5.65) to be any small positive constant.
That is, we may assume that ®(Z,9,s) and b;(£,9,s), j = 0,1,..., are supported in some small
neighbourhood of & = .

From (5.24), it is straightforward to see that we can take ®(&, 7, s) so that

(5.66) (2, 1), 8) = won — y2n + (2, ¥, 5), @(@,y,5) € C(Q),
where
(5.67) Q:={(z,y,s) € ? x D x R; (x, —2Im 0pp(x) + swo(x)) € Vﬂ 3,
(y, —2Im 9y p(y) + swo(y)) € VNI, |x — y| < &, for some € > 0}.
Since

duw ((00, 2, (W', a2n—1(7) + sP2n—1(x), 1)) = < g, (W', a20-1(2) + sP2n-1(x),1)) = 0
at & =g, w = (a1(x) + s61(x),...,aon—2(x) + $B2n—2(x)), it follows that when & = ¢, the corre-
sponding critical point is w’ = (e (z) + 861 (), . . ., @2n—2(x) + $B2n,—2(x)) and consequently for every
(Z,2,s) € Q) and every (z,z,s) € Q,

(5.68) o(z,z,8) =0,
(5.69) o (x,2,8) = (1 () + 8B1(2), - . ., a2n—1(2) + 5Pan_1(x)) = —2Im Fpo(x) + swo(z),
(5.70) @ (@, x,5) = 2Im OpP(x) — swo ().
Moreover, from the process above and (5.51), it is easy to see that
(5.71) bo(#,2,8) : T2"9D — N(z,s,n_), V(& i,s)€Q,

where bo(%, 9, s) is as in (5.64).
The following is essentially well-known (see page 147 of [21] or Proposition B.14 of paper I in [13]).

Proposition 5.23. With the notations used above, if D and V are small enough, then there is a
constant ¢ > 0 such that

Imp(z,y,s) > c inf (Imw(oo,i, (W', agp—1(x) + sPan—1(z),1))
(5.72) weh

+ |dur (¢ (00, &, (W', azp—1() + 5Ban—1(2),1))— < G, (W', azp—1(x) + 5P2n—1(z),1) >)|2),
for all (z,y,s) € Q, where A is some open set of the origin in R?*"~2,

From now on, we take D and V small enough so that (5.72) holds. We need
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Theorem 5.24. With the notations used above, there is a constant ¢ > 0 such that

(5.73) Tmg(a,y,5) > cla’ —y/", ¥(x,y,5) €9,
where ¥’ = (z1,...,T2n-2), ¥ = (Y1, -, Y2n—2)-
Moreover, if € > 0 is small enough (¢ is as in (5.65)) then there is a constant ¢y > 0 such that
0
(574) Im L)0(‘%7 Y, S) + ’8;0<$,y7 S) > cl( |m2n71 - y2n71‘ + |:E/ - y,|2)7 V(m,y, S) € Qv
and
(5.75) ®(&,9,s) =0 and 22(2,9,s) = g—f(x,y,s) =0 if and only if x = y.
Proof. From

(00, &, (W', aan_1(x) + 8fan_1(x),1))— < §, (W', a2pn_1(x) + 8B2n_1(x),1) >
=<2 -7, (W, 1(x) + 8B2n_1(x),1) >
+O(Jw' = (a1 (z) + 581(x), ..., 02n2(7) + 5Pan2(2))[")
we can check that
dur (¥(00, 2, (W', agn—1(x) + 5Pap—1(2),1))— < G, (W', azp—1(x) + 5Pap—_1(x),1) >)
=<z —y,dw' > +0(Jw" — (a1(x) + sB1(x),...,a2,—2(x) + sB2n—2(x))|).

Thus, there are constants c1, co > 0 such that

|dur ((00, &, (W', azp—1(2) + 8f2n—1(2),1)) = < §, (W', a2p—1(2) + 8201 (2), 1) >)|2

> e la =y = eaw' — (a1(z) + $B1(2), . .., zn—2(x) + sBan_2(2))|*.
If 4 (2 = y)* > ea |0’ — (1(2) + 5B1(2), ., Q2n—a(®) + 5B20—a(2))|”, then

|dwr ((00, &, (W', a2n—1(2) + sP2n—1(x),1))— < G, (W', azn—1(x) + sB2n—1(x), 1) >)|2
(5.76) e, 2
> i )P
Now, we assume that
(@ —y)* < 27012 w' — (01 (2) + 5B1(2), .., Q2n-2(x) + 582n—2(2))| "

From Theorem 5.6, we have
Im ¢(m, i‘, (U}/, Oézn_l(l‘) + Sﬁzn_l(l‘), 1))
C1C3

(5.77) > c3w — (a1(z) + 8B1(2), ..., a2n_2(z) + 8Pan_2(x ))| 2 E (z' — y/)|2 )

where ¢3 is a positive constant. From (5.76), (5.77) and Proposition 5.23, (5.73) follows.
Now, we prove (5.74). In view of (5.69) and (5.70), we see that p(z,y,s) =< —2Imdyé(z) +
swo(x), 2 —y > +0(jz — y|*). Thus,
2n—1

678 Py =<wl@)e—y > +0(—y) = 32 8ielas =)+ Otk ol

Since fo,—1 () > % for every x € D, we conclude that if € > 0 is small then there are constants co > 0,
c3 > 0, such that

2
Z Co |x2n71 - y2n71| —C3 |(E/ - y/| ) V({E,y,S) € Q

I
‘ag(xvya 3)

Combining this with (5.73), we obtain (5.74).
Finally, from (5.73) and (5.74), it is easy to see that (5.75) holds and the theorem follows. O

From now on, we take £ > 0 small enough so that (5.74) and (5.75) hold.
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RerrALark 5.25. The phase t®(&, §, s) is not positively homogepeous with respect to (s,t). Since t > 0
on {2, we put ®o(Z,9,s,t) :=t®(Z,7, 3), Po(2,9,s,t) € C>(), where
Qo ={(2,9.5,t) € D x D x R x Ry; (&, (~2Im Bpp(2)t + swo(z), 1)) € U2,
(9, (=2Im yp(y)t + swo(y), 1) €U, |& 3] <e}

It is easy to see that ®g is a complex valued phase function in the sense of Melin-Sjostrand(see
Definition 3.5 in [21]). By using the identification t® > ®g, the framework of complex Fourier
integral operators in [21] works well in this non-homogeneous case.

We pause and introduce some notations. Let g(z,y,s) € C*(Q) be a complex valued smooth
function. Assume that g(z,y,s) =0 if and only if z = y. For p € D, put

(5.79)
Ttp,p,s)Hy
2n—1 2n-1, — &g g
=< (at,--+,02n-1,01,...,b2,_1) ECTTF x C" 7 ; (aja o (p,p,s) +b i 5y s (p,p,s)) =0
The tangential Hessian of g(x, vy, s) at (p,p,s) € Q is the bilinear map Hess (g, T p,s)Hg) : T(p,p,s) Hg x

Tipp,s)Hg — C given by
Hess (9, T(p p.s)Hg) : Tpp,s)Hg X Ty p,s)Hg — C,

5.80

(5.80) (u,v) =< ¢"(p,p)u,v >, w,v €T, Hy,
g// g//

where ¢ = [ gi”,”’ g'f’,y ] More precisely, if we put v = (a1,...,a2,_1,b1,...,b2,_1) € C71 x
vz Jyy

C* 1 v=(c1,...,con 1,d1,...,d2,_1) € C?"~1 x C?"~1, then

< g"(p,p)u,v >
2n—1 82 2 2 2

B g g 0%g
Sz_:l(csata e (p,p,8) + ds G (P, 8) + Csbe g — 5 t(p,p, 5) +dsbt78ysayt (p, p, ).

In view of (5.69) and (5.70), it is easy to see that T{, , s H, is spanned by
(5.81) (u,v), (T(p),T(p), uveT’XTI'X.

Let U be an open set in RY. We let € be an almost comlexification of ¢. That is, UC is an open
set in CV with /€ (RN = {. For any smooth function f € C*(U), we write f € C>(U®) to denote
an almost analytic extension of f. (See Chapter 1 of Melin-Sjostrand [21], for the precise meaning of
”almost analytic extension ”). We need

Lemma 5.26. Let v(x,y,s) € C®(Q). We assume that v(z,y,s) satisfies (5.68), (5.69), (5.70),
(5.73) and (5.74). If D is small enough then for every (xo,zo,50) € Q, we can find a function
O(x,y,s) € C°(A), where A C Q is a small neighbourhood of (xo, o, S0), such that O(x,y,s) satisfies
(5.68), (5.69), (5.70), (5.73) and (5.74) -(2,9,8) — (q2n-1(y) + sB2n—1(y)) vanishes to
infinite order at x = y, Hess (v, T(y 5,)Ho) = Hess (U Tizz,0)Hs), V(x,2,5) € A, and tY(Z,7,s) :=
t(zon — yon +v(2,y,s)) and t'i“(ic7 U, 8) := t(zan — yan + 0(x,y, s)) are equivalent for classical symbols
at every point of

diag'((Uﬂi)) UﬂZ ) ﬂ{ (2, &, tds Y (&, &, s), —tdz Y (&, &, 5)) € T*D; (x,2,5) € At > 0}

in the sense of Melin-Sjostrand [21].(Remind that diag’((Uﬂ ) (Uﬂf))) is given by (5.21).)

Proof. We first claim that we can find g(z,y,s) € C°°(A) with g(z,z,s) = s, where A C ) is a small
neighbourhood of (xg, g, S0), such that if we put

Ul(l’, Y, S) = 17(55', y79($a Y, S))
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then 8“1 —(z,y,8) — (@2n—1(y) + 8P2n—1(y)) vanishes to infinite order at = y. We formally set
g(y,% 5= s and 5 T (2,9, 8) = aza—1(y) + sPan—1(y) mod O(jx —y|*). Then,

do v dg
m(z7 Y, g(mv Y, 5)) + &(1’7 Y, g(a:, Y, S))aani (x’ Y, 5)
= aon_1(y) + $Ban—1(y) mod O(|z — y|™).
Thus,
0%*v 925 9
Wnl(‘r’y’g(imy’s)) m(x7yag(x7yas))m(x7y7s)
v 0 o g
5.82 o ., 0
(6:82) 4 G0 (o e s)) 4 G090y 9) 5 (09:9)

o 8&2»,1,1 aﬁ?n 1
O0Yon—1 6y2n 1

Note that W(y v, 9(y,y,8)) = 3g§)y; -(y,y, s) # O(see (5.78)) and

v dv
%(:%ymg(y,yﬂs)) - @(yayvg(y’yvs)) =0.

(y) mod O(lz —y|™).

From this observation and (5.82), we can determine ayag (2,9, 8)|z=y. Continuing in this way, we

lol .
can determine %ya (2,9, 5)|a=y, for every multiindex o = (a1,...,2,-1) € N2” ! By using Borel

construction, the claim follows.
Since agpn—1(y) + $Ban—1(y) is real, we have

ol Tm vy

5.83 Y, 8)|a=y =0,

(>:%5) Gy By e

for every multiindex o = (o, ..., a9,—1) € N(Q)"_l. Moreover, from (5.73), it is straightforward to see
that if D is small enough then,

5.84 &Im vy "™ is positive definite at each point of A

(5.84) <8yj8y,, (x,y,s)|mzy)j’t:1 is positive definite at each point of (z,z,s) € A.

From (5.83) and (5.84), we deduce that for every N > 0, there is a Cy > 0, such that
1 N r2

(5.85) Imwvy(x,y,s) + o e —y|” >Cnl|2" =", Y(z,v,s) € A.
N

From (5.83), (5.85) and the standard Borel construction, we can find 0(z,y,s) € C*°(A) such that
&(z,y, s)—v1(z, y, s) vanishes to infinite order at = = y and Im d(z, y, s) > Co |2/ — v/, V(x, y,5) € A,
where Cy > 0 is a constant. Since 0(z,y, s ) - v1 (x,y, s) vanishes to infinite order at z =y, v(z,y, s)
satisfies (5.68), (5.69), (5.70), (5.74) and 5=°—(2,y,s) — (@2n—1(y) + sP2n—1(y)) vanishes to infinite
order at x = y.

Now, we prove that tY(Z, 9, s) := t(xan — yan +v(2,y, s)) and tY(i, 7, 8) := t(zon — Yon + 0(z,y, s))
are equivalent for classical symbols at every point of

diag’((Uﬂi) x (U i)) N {(ae,:z,tdﬂ(:z,gz, s), —td; Y (2, 4,5)) € T*D; (z,2,5) € A, t > o} .

Fix (&9, 2o, 80) € €, (z,2,5) € A, to > 0 and set

$o = (z0,Tno), 0 € R*™ 1 (20,0,50) € Q,

. N2 S L or, A i
(Z0,&) = (960,750%(%07960780)) = (x(),t()%($0,$(), 50)) G(Uﬂ2> ﬂT D



35

Let W be a small neighbourhood of (Zo, 20, s0) and let Iy be a neighbourhood of ¢y in R;. Put

P o NP, (e on . 20 (20 . (2.
At’:f‘ —{(x,y,t%(x7 7:§/)7t87g(x7y7,§)) E(C x C x C x C ]
YF,3,5) =0 @(5753—0 (3,5,3) e WE,Te IS}
(586) 7ya~ - aag Aa/y7 - Y »Ys 9 0J»
~ x0T ~~ 0T ~ ~ n n n n
A ::{(:E,y,t%(:p,y,g),ta—g(x,y,@) € C*" x C*" x C*" x C;

SO oY ~ ~ ~~ f o~
T(‘%ﬁljag) = 07 F(iﬂgag) = 07(‘%7:079 € W(Cvt S I((S:}
S
From global theory of complex Fourier integral operators of Melin-Sostrand [21], we know that

tf(i‘,g),s) and tY (&, 9, s) are equivalent for classical symbols at (a?o,i‘o,fo, —éo) € diag’((Uﬂf)) X
Un f])) in the sense of Melin-Sjostrand [21] if and only if Aﬁf and Az are equivalent in the sense

that there is a neighbourhood Q of (2, &0, o, —&o) in €27 x C2" x C2" x C2", such that for every
N > 0, we have

dist (2,A%) < Cy 2™, VzeQ[\Ax
(5.87)
dist (21, Ax) < Cn |Imz1|N , Vz1 € QﬂAFf’

where C'y > 0 is independent of z and z1. Put tY1(Z, 9, s) = t(x2n —y2n +v1(2,y, s)). We take almost
analytic extensions of tT, tY and ¢Y; such that

t1(3,5,3) = 11(3.5,5) = W@Fan — o) +10(3. 7. 5),
(5.88) tY(2,9,5) = t X (,5,3) = H(Tan — Jon) + 10(F,7,3),

tY1(2,9,3) = X1(2,9,3) = HT2n — B2n) + 013, 7, ),
and near (Zg, 2o, &o, —éo), we have

(5.89) Ax=A

T Y
where Athvl is defined as in (5.86), (%, 5,5’) eWC te I&. Thus, we only need to prove that At:rr and
Az are equivalent in the sense of (5.87).

Since 0(x,y, s) — v1(z,y, s) vanishes to infinite order at x = y, it is straightforward to see that (see
section 12) there is a neighbourhood @ of (;%0,:%0750, —éo) in C?" x C?" x C2" x C?, such that for

every N > 0 and every z = (5,5,?‘%(%, 5,3),?%(%,5,5}) € QM A, we have

(5.90) dist (z, A=) < CN(|Im @, 7,9 + Red — Re§|N>,

where Cy > 0 is independent of z € (. Moreover, we can repeat the process in section 12 and
conclude that if @ is small enough then there is a constant C7 > 0 independent of z € @ such that
(5.91) [Tm (7,7, 3)| + |[ReZ’ — Rey| < C; |Tm 2|,

for every z = (%,5,?‘3—2(%,5,3’),?%(5,5,@)) € QM Ax. From (5.90) and (5.91), we get the first

formula in (5.87). Similarly, we can repeat the process above and conclude the second formula in
(5.87). Moreover, from the construction above, it is easy to see that

Hess (v, T(g,2,5)Hv) = Hess (0, T(g,2,5)Hs), Y(z,7,5) € A.
The lemma follows. O
Definition 5.27. Let ®1(%,7,5) = Zon — yon + @1(2,1,5) € C®(Q), Do(i,7,5) = Ton — Yon +
wa2(z,y,8) € C®(Q), ,p1(x,y,s), p2(z,y,5) € C®(Q). We assume that ¢; and o satisfy (5.68),

(5.69), (5.70), (5.73) and (5.74). Let (zo,xo,50) € Q. From Lemma 5.26, we know that in some
small neighbourhood A C Q of (zo, o, So), there are ¢1(z,y,s), P2(z,y,s) € C*°(A) such that oq
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and ¢ satisfy (5.68), (5.69), (5.70), (5.73), (5.74) and 85;:1 - (2,y,5) — (02n-1(y) + sB2n—1(y)) and
8557,2_1 (2,y,5) — (a2n-1(y) + 8P2n—1(y)) vanish to infinite order at x = y, Hess (¢1,T(3,0,6)Hyp,) =
Hess (@13T(.'L',(I:,S)H¢1)7 V(I,SC,S) € A, Hess ((P27T(x,x,s)Htp2) = Hess (@%T(z,w,s)Htf%)a V(:c,x,s) €A
and t®1(2,9,5) := t(x2n — yan + ¢1(2,y,5)) and 01 (Z, 7, s) are equivalent for classical symbols at
every point of

diag’((Uﬂi) x (U i)) N {(ae, &, td;®1 (3, 1, 8), —tds @1 (2,3, ) € T*D; (x,2,8) € At > 0}

in the sense of Melin-Sjostrand [21], t®o(Z,7,5) = t(Tan — yon + P2(2,y,5)) and t®y(&,7,s) are
equivalent for classical symbols at every point of
diag'((Uﬂi) < (U i)) N {(:z, &, td; B (2, 7, 8), —tds Bo (2,7, 5)) € T*D; (,2,5) € At > o}

in the sense of Melin-Sjostrand [21]. We say that ¢1(x,y, s) and ps(x,y, s) are equivalent at (xq, g, )
if there are functions f € C*(A’), g; € C*(A'), 7=0,1,....2n—1,p; € C®(A'), j=1,...,2n — 1,
such that

6@1 692’2
g(az,y,s) - f(x7y7s)§(x7yas)a

R R dp1
(Pl(x7y75) - @2(%%5) = 90(30’2%5)@(1’,%3)7

¢ ¢
aixj(xvyas) - aiij(a%y’S) = gj(xvyas)%(xa:%‘g% .7 =12,....2n—-1,

0 0
Tj(x7ya3) - Tg;j(x7ya3) :pj(x7ya8)%(xayas)7 ]: 1a2a-~-a2n_ 17

vanish to infinite order on x = y, for every (z,y,s) € A’, where A’ C A is a small neighbourhood of
(o, 0, 50)-

We have

1(z,y,s) € C*(Q). Assume that

Theorem 5.28. Let ®1 (&, 7, 5) = Zan —Yon +91(x,y,5) € C®(Q), ¢
Z,4,8) and t®1(Z,9,s) are equivalent

1 satisfis (5.68), (5.69), (5.70), (5.73) and (5.74). Then td(
for classical symbols at every point of

diag(U2) x @) N {(@5.6 -6 @.H) e T°D} .
(remind that diag/((Uﬂi]) x (UN i])) is given by (5.21)) in the sense of Melin-Sjostrand [21] if and
only if o(x,y,s) and p1(x,y,s) are equivalent at each point of Q0 in the sense of Definition 5.27.
The proof is straightforward and follows from global theory of complex Fourier integral operators

of Melin-Sjostrand [21]. We put the proof in section 12.
We notice that (oo, &,7)— < ¢, > and t®(Z, 7, s) are equivalent for classical symbols at every

point of diag’ ((U NE)=(UN 2)) N {(i“, #,€,-6); (,6) € T*D} in the sense of Melin-Sjéstrand [21].
Consider

—®(j), &, 5) = T2n — Yon — Py, 7, 5)-
From Theorem 5.7, we see that t®(Z, ¢, s) and —t®(j, 2, s) are equivalent for classical symbols at every
point of diag’((U NZ) x(UN ‘2)) in the sense of Melin-Sjostrand [21]. Note that —5(y, x, s) satisfies
(5.68), (5.69), (5.70), (5.73) and (5.74). From Theorem 5.28, we see that ¢(z,y, s) and —@(y, z, s) are

equivalent at each point of € in the sense of Definition 5.27.
Summing up, we obtain the main result of this section

Theorem 5.29. With the notations and assumptions above. Let S = S(#,9) € LY

) (D, T*D K
272
T*%49D) be as in Theorem 5.21. Then, on D, we have

(5.92) S(z,9) = /eité(i’@’s)b(i,gj,s,t)dsdt
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with
(5.93) &9, s Z by (&, 9, s)t" 7

in S7(Qx]0, 00, T;**D R T;9D), Suppb(i, g, s,t) C 2 x Ry,

(5.94) bo(#,2,8) : To"9D — N(z,s,n_), Y(i,,5) €,

where N (z,s,n_) is given by (5.39),

(5.95) _{(”Z ,9,8) € D x D x R; (&, (~2Im Bpp(z) + swo (), 1)) € U( )%,

(—2m By (y) + swo(y), 1)) € UNE, |& — yl <e, for some e > 0},

Suppb;(#,4,5) C Q, bi(#,4,s) € C®(QT;*DRT;*D), j=0,1,...,

(I)(i,:l),s) = Top — Yon + @(may75)7
o(w,,5) € C2(Q), @={(z,y.5) € Dx DxR; (&5,5) €},

and @(x,y, s) satisfies (5.68), (5.69), (5.70), (5.73) and (5.74). Furthermore, o(x,y,s) and —p(y, z, s)
are equivalent at each point of 2 in the sense of Definition 5.27.

Moreover, the phase t®(&,7,s) can be characterized as follows: Let ®1(Z,9,s) = Xon — Yon +
o1(z,y,s) € C®(Q), p1(x,y,s) € C°(Q). We assume that o, satisfies (5.68), (5.69), (5.70), (5.73)
and (5.74). Then t®(Z, 4, s) and t®1(&, 7, s) are equivalent for classical symbols at every point of

diag' (U2 < U9) N {(@.3,6-9); (2.6 e T°D}

in the sense of Melin-Sjéstrand [21] if and only if (x,y, s) and v1(x,y, s) are equivalent at each point
of Q in the sense of Definition 5.27.

5.4. The tangential Hessian of ¢(x,y, s). In this section, we will calculate the tangential Hessian
of p(x,y,s) and we will use the same notations as before. Let © = (1, ..., z2,—1) be local coordinates
on D. The following is straightforward. We omit the proof.

Proposition 5.30. Let @1 (x,y,5), p2(x,y,s) € C®(Q). We assume that o1 and oo satisfy (5.68),
(5.69), (5.70), (5.73) and (5.74). Then, T(z o )Hy, = Tz 2,5 Hyp,, for every (z,2,5) € Q. Assume
further that @1(x,y, s) and @a2(x,y, s) are equivalent at each point of  in the sense of Definition 5.27.
Then, Hess (01, T(z,0,5)Hy, ) = Hess (02, T(z.0,5)Hy, ), Yz, 2,5) € Q.

In particular, if we put p1(z,y,s) = —p(y,,s) then Hess (¢, T(g,2,6)H,) = Hess (01, T(q,z,)Hpy ),
V(z,z,s) € Q.

From Proposition 5.30, we know that the tangential Hessian of ¢ at (z,z,s) €  is uniquely
determined in the equivalence class of ¢ in the sense of Definition 5.27. In the rest of this section,
we will determine the tangential Hessian of p(z,y,s) at (x,2,s) € Q. Until further notice, we fix
(p,p, s0) € Q. Recall that (see (5.14) and (5.67)) Mg — 2s0L, is non-degenerate of constant signature
(n—,n4). We can repeat the proof of Lemma 8.1 in [14] with minor change and conclude that

Proposition 5.31. Let Z1 4,,...,Zn-1.5, be an orthonormal frame of T>°X wvarying smoothly with
x in a neighbourhood of p, for which the Hermitian quadratic form M? — 2s0L, is diagonalized at p.
That is,

(5.96) MG (Z;.50(D)s Zt,50(P) — 250Lp(Z .50 (D), Zt.5o (P)) = Aj(s0)05, Jit=1,....,n—1.

Assume that X\j(so) <0, j=1,...,n_, Aj(s0) >0,j=n_+1,...,n—1. Let x = (x1,...,T2n-1)
be local coordinates of X defined in some small neighbourhood of p such that z(p) = 0. Let h;(x,§) be
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the principal symbol of Z; 5., j =1,...,n—1. Then in some open neighbourhood W C Q of (p,p, so),
there exist g;(x,y,s) € C*(W), j=1,...,n—1, such that

Ne)

(5.97)

_ , _ 15] .
hj(xv wr(az7y7 50)) + (Zj’so(b)(x) = gj(:v,y, 80)879{:(%% 30) + O(|($7y)|2)’ J=1...,n_,

0 .
h‘j(xv w;(az7y7 50)) + (Zj780¢)(m) = gj(;v,y, 50)87(::(337?47 30) + O(|(m,y)|2), J=n_-+1...,n-1L
Let 71730, .. ,7n_1750 be as in Proposition 5.31. We take local coordinates x = (z1,...,Z2,-1),
Zj = Toj_1+ixa;, j =1,...,n—1, defined in some small neighbourhood of p so that (2.2) hold. From
(2.2), (5.69) and (5.70) it is not difficult to see that

9? 9? .
L4 (p7p780):780(p7p780)207 leu"'72n_27
(5.98) 0s0x; 0s0y;
) 0% 0%
W(Z}JL 50) =1, W(ILP, 50) =-1L

From (5.98), it is easy to see that to determine the tangential Hessian of ¢(z,y,s) at (p,p, so) is
equivalent to determine

(5.99)
8fjaxl (p, P> 50), afjay (P, P, 50); ajjag/l(p’p’SO)’ jl=1,...,2n—2,
2 2 ) ,
8%2;;1 + 6%23/11)(177]7, 50), (3ng$fn1 + angyfnl)(p,p, so), j=1,....2n—2,
2 2 )
(83?%:0_1 8$2nigy2n—1 85%:0_1)(17’1)’ 50)-

From (2.2), (3.3) and (4.26), it is straightforward to check that
Mﬁ(Zj,so (p)a Zl,SQ (p)) = (iTj,l - Z?l,j)ﬁ + ity jvl = 17 cee, = 1a

(5.100) _ 1 _ .
Cp(Zj,so(p)v Zl,so(p)) = _i(Tj,l + Tl,j)a jvl = 11 sy — 1.

Since Mz‘f — 250L, is diagonal in the basis {71’50, ey Zn—1,s }7 we have
(5.101) (iTjJ — Z'?l’j)ﬁ + i+ So(TjJ + ?l,j) = )\j(So)éj’h 5l=1,...,n—1.

We write y = (y1,...,Y2n-1), Wj = Y2j—1 +iy2;, j=1,...,n—1,

0 1, a e, 0 1, 0 ) .
dw; 2 0ys 1 Owy 0w, 2 Wj—lJﬂay?j)’ J=ben =l
From (5.97) and (2.2), we can check that
L Op il _ Oy ) _
_ za—zj(:my, s0) + ; Tj’tztm(x,y, 50) — chxgn,lm(x, Y,s)+ (Zj,5,0)(x)

0 .
= 9;(,9,50) 55 (@,y.50) + O(@.p)*), j=1,...,n-,

(5.102) )
L0 -— Op _
j j L 2n— v Yy Z’s
Z%j (z,y,50) + ;:1 T2t OLom 1 (z,y,50) + iCjTon—1 R (%, y,50) + (Zj,5,0)(x)

0 .
= gj(%%&))yf(%%&)) + O(‘(%?J)F)a J=n_ + ]-7 s — 1.
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From (2.2), (5.98), (5.102) and notice that %(p,p, S0) = So, it is straightforward to see that

82

azg (p,p,s0) = —ia; +ajy), 1<j<n., 1<l<n-1,
J
D%y 92 '
82«'8 (pap780) 8 507 (p,p,so):(), 1§j§n_, 1§l§n_17
(5.103) 32 ‘
P . 7 .
02,07 (P, Py s0) = —isoTj1 + 758 — Qhil, 1<jsn, 1<sisn-1,
32<p 8290
= —ic; — soc; —id;, 1<j<n_
02j0x9n 1 * 8Zj8y2n—1)(p’p’ s0) icjB = soc; —idj, 1<j<m_,
and
0% '
97.07 l(ppaSO)—Z(al,y‘i‘a])), n_+1<53<n-1, 1§l§n_17
J
%o 0%p .
——(p,p,50) = (p,pyso) =0, n_+1<j<n—1, 1<l<n-1,
(5.104) 9z;0w; 0z;0w,
. 5
0z ;02 (p’p’50)715073l+7—“ﬁ+ “117 n-+1<j<n-1, 1<i<n-1,
J
82<p 824)0

070ty | 07,005 1)(p,p,so):iéjﬂfsoéjJrz'aj, n_+1<j<n-1.
7 n— 7 n—

Put ¢i(z,y,s) = —@(y,x,s). In view of Proposition 5.31, we know the Hess (¢, T(, p s)Hp) =
Hess (¢1, T(p,p,s0) Hyy )- From this observation, (5.103) and (5.104), we can check that

& L _ .
a@]awl (p7pa 80) = _Z(al7j + a/j,l)7 1 S ] S n_—, 1 S l S n— 17
0% 0%p
=0, 1<7<n_. 1<][<n—-1
a— 82 (p7p7 ) awjazl (p7p750) ) S)J>n—, SEsn )
32
amjawl(l%pvso):*lso?jl T]lﬂ :u‘_jl7 1S]§TL_7 1Sl§’ﬂ*1,
0? 0? -
— d — d ) (P, p, s0) = —i¢; B + so¢; —idj, 1<j<n_,
0w;0r9,—1  OW;0y2n—1
(5.105) e
2 . .
W(P,Pyso) =i(ar; +ajy), no+1<j<n—-1, 1<I<n-1,
0% 0%
= =0 _+1<j<n—-1, 1<]I<n-1
610]821 (p7p7 80) 6w]321 (p7p7 SO) , n +1< Jsn ’ Stsn )
&y ( ) =1 ﬁ+i +1<5< 1, 1<I1< 1
s 1S0Ti ] — T; — n_ n— n—
aw](?w D, P, S0 074, 7\l 2/-1/],la SJ] > ) >0 > )
0? 9?
( Ld d )(p.p, s0) =ic;B+ soc; +id;, no+1<j<n-—1.

Ow;j0xon—1  Ow;0Yan_1

Fix n_ +1 < j,1 <n—1. We determine af;gzl (p,p,s0). From the fact ¢(z, 2, 8) = 0, we can check
that

D 0% 0% 9%

5.106 9 pso)+ =2 (o prso) + =2 (pp. p30) = 0.

( ) 92,02 (p,ps 50) + 82,0, (p, p, 50) + 3w, 07 (p,p, s0) + w00, (p,p, S0)

From (5.106) and (5.105), we conclude that
%p
0z;0%

(5.107) (p,p,s0) = —i(ar; +ajy), no+1<jl<n-1
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We can repeat the procedure above several times and deduce (we omit the computations)

0% o _ .
%(p,n so) = i(@; +a;1), 1<jl<n_,
O 1S0T T Lo <ji< <
97,07 (p,p,50) = is0Tj1 + T8 + M50 1<j<n_, no+1<1i<n—-1,
0%
= a— W :0; ].SS — _ ].SZS —]_7
8@8@1 (p,p; 50) 1<n n_ + n
82
2 (ppso)=0, no+1<j<n—1, 1<l<n_,
0zj0w;
(5.108) o
Lp y _ —_— . .
&%;0w, (p,p,s0) = iso(1; +T40) + (Tju — 15)B + iy, 1<41<n_,
0%p o _ _ _
W(ZM% so) = —iso(T1; + 150) + (Tj0 — T1)B — iy, no+1<jl<n-1,
(92@ (3'290
= —icj —soc; —idj, no+1<j<n-—1
(6Zj6(1;‘2n71 (92]’63/27171)(p’p7 SO) Zc]ﬂ 5065 g, +1l= J=n )
32<p 8290

s9) = i¢; B — so¢; +id;, 1<j<n_.
azjal‘}n_l + 8Ej8y2n—1)(p’p’ O) j/B 0 ] + 7 _] —

Again, from the fact that Hess (¢, Ty p,s0)H,) = Hess (01, Tip p,so)Hy, ), (5.107) and (5.108), we
can check that

02 o _ .
aﬁg%l (p7p780) :_Z(al,j+aj,l)7 n*"_]- S.%lén_]-v
j
9? . .
aw'(;pwl (pvpa 80) = Z(al,j + aj,l)v 1 S jvl S n—,
j
(5.109) Py ( ) =i g4l 1<j< f1<i<n—1
) S0) = 1S0Tj 1 — T; — 1 n_, n_ n—
awj%l b,D,So 074,1 7,1 2//6],la >7 > ) >0 > ’
0% 0% — = .
(5w 0as T 9w ,0yg, ) 0P 0) = —iEiB 4 sty —idj, no+1<j<n—1,
5 n— 4 n—
0% 0%

' :+ +d,1§§ .
awjax2n71 aw]aan—l)(pp 50) chﬂ SOC‘7 7 g 7 n

Moreover, from ¢(z,z,s) = 0, we conclude that
0% 0%p 0%
O3, | 0xan_10yan—1  Oy3, 4

From (5.103), (5.104), (5.105), (5.107), (5.108), (5.109), (5.110) and (5.99), we completely determine
the tangential Hessian of ¢(x,y, s) at (p,p, Sp). Summing up, we obtain Theorem 2.2.

(5.110) ( )(p, P, s0) = 0.

6. SEMI-CLASSICAL HODGE DECOMPOSITION THEOREMS FOR Dg",l IN SOME NON-DEGENERATE
PART OF X

In this section we apply the results about the Microlocal decomposition for DgQ) previously in
order to describe the semi-classical behaviour of ng,)C in some non-degenerate part of ¥. We pause
and introduce some notations and definitions. We first recall briefly the definition of semi-classical
pseudodifferential operators. We need

Definition 6.1. Let W be an open set in RY. Let S(1; W) = S(1) be the set of a € C>°(W) such
that for every o € NY¥, there exists C,, > 0, such that [0%a(z)| < C, on W. If a = a(z, k) depends
on k €]1,00[, we say that a(z, k) € Sioc (1; W) = Sioc (1) if x(2)a(z, k) uniformly bounded in S(1)
when £ varies in |1, 00[, for any x € C§°(W). For m € R, we put S{”.(1; W) = S[7. (1) = k™ Sioc (1).

c loc
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If a; € S)(1), mj N\, —oo, we say that a ~ Y 72 a; in S7¢(1) if a — j}’zoo a; € S|N0F (1) for every

loc loc loc
Np. For a given sequence a; as above, we can always find such an asymptotic sum a and a is unique
up to an element in S 2°(1) = S, >°(1; W) :=(),, St (1). We say that a(z, k) € 57(1) is a classical
symbol on W of order my if

(6.1) a(x, k) ~ 372 g k™0 az(x) in SP2(1), aj(x) € S (1), §=0,1....
The set of all classical symbols on W of order mg is denoted by S|’¢ , (1) = S}7¢ . (1; W).

Let E be a vector bundle over a smooth paracompact manifold Y. We extend the definitions
above to the space of smooth sections of E over Y in the natural way and we write SJ. (1;Y, E) and
S (1Y, E) to denote the corresponding spaces.

loc ,cl

Let W be an open set in RY and let E and F be complex vector bundles over W with Hermitian
metrics. For any k-dependent continuous function

Fy:HS, (W,E)— H{ (W,F), s,s¢cR,

comp
we write

F, = O(k"™) : H oy (W, E) — Hy o (W, F), ng € Z,
if for any xo, x1 € C§°(W), there is a positive constant ¢ > 0 independent of k, such that
(6.2) IO Fkxa)ully < ck™ flull,, Vu € Hio (W, E),

where ||u||, is the usual Sobolev norm of order s.

A k-dependent continuous operator Ay : C§°(W, E) — 2'(W, F) is called k-negligible (on W) if A
is smoothing and the kernel Ay (z,y) of Ay satisfies |3§‘35Ak(x,y)| = O(k™Y) locally uniformly on
every compact set in W x W, for all multi-indices «, 8 and all N € N. Ay is k-negligible if and only if

Ay =0 HE L (W E) — HEPN (W, F),

loc

for all N,N’ > 0 and s € Z. Let Cy : C§°(W,E) — 2'(W,F) be another k-dependent continuous
operator. We write Ay = Cr mod O(k~°) (on W) or Ag(z,y) = Cx(x,y) mod O(k~°) (on W) if
Ay — C is k-negligible on W.

Definition 6.2. Let W be an open set in RY and let £ and F be complex vector bundles over .
A classical semi-classical pseudodifferential operator on W of order m from sections of F to sections
of F'is a k-dependent continuous operator Ay : C§°(W, E) — C°(W, F) such that the distribution
kernel Ay (z,y) is given by the oscillatory integral

N
Ak(xa y) = (2]:'_‘_)]\]

a(z,y,n.k) € S o (LW x W xRV, ERF).

/eik“*y”a(w?y,n,k)dn mod O(k~%),

We shall identify Ay with Ag(z,y) and it is clearly that Ay has a unique continuous extension
E'(W,E) = 2'(W, F).

Definition 6.3. Let
k.2n—1

jk = W/eik<x_y’n>p($vyﬂ7ak)d7l

be a classical semi-classical pseudodifferential operator on D of order 0 from sections of T*%9X to
sections of T**9X with p(z,y,n,k) € Sf,. o (1; D x D x R**~H T*04X ®T*09X). Let A be an open
set of T*D. We write

2n—1

j-k = @’;)ﬁ feik<z_y’">Q($7ya777 k)dﬁ mod O(k_oo) at Aﬂ 27
where q(z,y,n,k) € S a(l3Dx D x R#n=L T*0a X R T*09 X)), if

k2n71 P 2n—1 ihew e
(27.(.)271_1/6 k< y’n>9(177ya777k)d77+ W /6 k< y’n>5(x,y,7],k)d77 mod O(k ),

where B(z,y,n,k) € S2 . (1; D x D x R?*=1 7*0:4 X ¥ T*0:4X) and there is a small neighbourhood T

loc

of AN X such that 8(z,y,n,k) =0if (z,n) €T.

ikE
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We return to our situation. Let s be a local trivializing section of L on an open subset D C X
and |s|iL = e¢72%. From now on, we assume that there exist a A\ € R and zo € D such that
M2 — 2XoL,, is non-degenerate of constant signature (n_,n; ). We fix Dy € D, Dy open. We work
with some real local coordinates @ = (z1,...,22,—1) defined on D. We write & = (&1,...,82n-1)
orn = (M,-..,Mon—1) to denote the dual coordinates of . We will use the same notations as in
section 5. Note that we write & = (z1,...,Z2,—1,%2,) to denote the local coordinates of D and we
write é =(&1,..,&n—1,%n) or 1= (N1,...,N2n—1,M2n) to denote the dual coordinates of &.

Let x(2n), x1(22n) € C§°(R), x,x1 > 0. We assume that x; = 1 on Suppy. We take x so that
J x(z2n)dza, = 1. Put

(63) Xk(IQn) = 6ikz2nX($2n)-
Let V and U be as in (5.14) and (5.15) respectively. The following is straightforward and follows from

the usual stationary phase formula and therefore we omit the proof.

Proposition 6.4. With the notations before, let ¢ € {0,1,...,n —1}. Let

- k2n—1 "
T = T /ez SEEYNZ 0w, m, k)dn

be a classical semi-classical pseudodifferential operator on D of order 0 from sections of T*%4X to
sections of T**9X with a(x,n, k) € S, 4 (L;T*D, T*4X K T*%4X), a(x,n,k) =0 if |n| > M, for

loc ,cl

some large M > 0, and Supp a(z,n,k)(\T*Dy € V. Then, there is a classical pseudodifferential
operator I = (2m)=2" [e!<2=9:1>¢(2,7)df) on D of order O from sections of T**9D to sections of
709D with c(&,9) € S (T*D, T**9DRT*%9D), Supp c(z,7) (\T*Dy € W, where W C U is a conic
open set with W C U, such that
Iy =1, mod O(k=>°) on D,
where T, is the continuous operator C3°(D, T**1X) — C>(D,T**9X) given by
I : C(D, T*1X) — C=(D, T**X),

ws / e~k ) (29, ) T (xtt) () -

k2n71

Now, we assume that ¢ = n_. Let I, = T [ etF<Tmvn>a(z,n, k)dny be a classical semi-

classical pseudodifferential operator on D of order 0 from sections of T*%9X to sections of T*%9X
with a(z,n,k) € S, (1, T*D, T*%1X R T*%9X), a(z,n, k) = 0 if |n| > M, for some large M > 0,

loc ,cl

and Supp oz, 7, k) () T*Dy € V. Let I be as in Proposition 6.4 and let S € LY , (D, T*4DRT**4D)
272
and G € LY (D, T*%9D K T*%9D) be as in Theorem 5.21. Then, we have
272

(6.4) S+0@DoG=T on Dy, O@0S=0 on D.
Now, we assume that S and G are properly supported. Define
Sy Hi (D, T*X) — H (D, T**X), Vs € Ny,

U — /e_““”"'”xl(xgn)S(Xku)(fc)dacgn.

Let u € Hy (D, T*9X), s € Ng. We have x,u € Hf _(D,T*%9D). Since S € LY , (D, T**9D K

2°2
T*04D), we see that S(xru) € Hi . (D,T**D). From this, it is not difficult to see that

(6.5)

/ e (9,)S (xu)(2)deram € HE, (D, T9X).

Thus, Sk is well-defined. Since S is properly supported, Sy, is properly supported, too. Moreover, from
(6.5) and the fact that S : HS, (D, T*%9D) — Hs (D, T*%9D) is continuous, for every s € R, it

comp comp
is straightforward to check that

_ s\ . *0, s *0,
(6.6) Sk =O(k*) : Hippp (D, T*71X) — Hip, (D, T71X),
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for all s € Np.
Let 8§ : 2/(D, T*%1X) — 2'(D,T*%X) be the formal adjoint of Sy with respect to (-|-). Then
S} is also properly supported. It is not difficult to see that

(Sto)() = / @) S (v x1) () e, € Q29(D),

for all v € Q09(D). From this observation, we can check that
(6.7) S;=0(k%) : H:, (D, T*X) - HS (DT X)), VsecN.

comp comp
From (5.5), we have

0o ( / ey (90) S (k) () dvan) = / e~ (O (x1.9)) (xwu) (2)dzn
(6.8)

_ / e~ (O (x1 %)) (ortn) (2) dzn,

where ¥ € C§°(R), ¥ =1 on Supp x and x; = 1 on Supp X and u € Qg’q(Do). Note that ng)(xls)}') =
0@ (57) — O ((1 = x1)8%). From Theorem 5.21, we know that ({?S is smoothing and the kernel of
S is smoothing away the diagonal. Thus, (1 — x1)SY is smoothing. It follows that DgQ)((l —x1)5X) is
smoothing. We conclude that DgQ)(Xlsi) is smoothing. Let K(&,9) € C* be the distribution kernel
of O (x15X)- From (6.8) and recall the form yy (see (6.3)), we see that the distribution kernel of
Dgi]}i&c is given by

(6.9) (O8) (y) = / e VIR K (&, §)x (yan ) A2 dyen.
For N € N, we have

OGS0 e@n)| = | [ (ig

8y2n

)NG_i(wZn_y%L)k))K(:%a Q)X(an)dandx%z

(6.10)

' .0 .
= ‘/6Z(x2"y2”)k(layz)N(K(ﬂf,y)x(yzn))dyzndwzn :

Thus, (Dg?,lsk)(x, y) = O(k~Y), locally uniformly for all N € N, and similarly for the derivatives. We
deduce that

(6.11) Dg?,)cSk =0 mod O(k™™) on D.

Thus,

(6.12) S0 =0 mod O(k™>) on D.
Define

G : HY (D, T**X) — HEMY(D, T*1X), Vs € Ny,

loc
w— / e~ 31 G (k) (2) .

As above, we can show that G is well-defined. Since G is propeﬂy suppAorted7 Gy is p}roperly sup-
ported, too. Moreover, from (6.13) and the fact that G : HS, (D, T**9D) — H&EL (D, T*%9D) is

(6.13)

comp comp
continuous, for every s € R, it is straightforward to check that

_ s\ . s *0, s+1 %0,
(6.14) Gk = O(k®) : Higpp (D, T"79X) — HZjh, (D, T*1X),

for all s € Np.
Let G; : 2'(D, T**1X) — 2'(D,T*%X) be the formal adjoint of Gy with respect to (-|-). We
can check that

(Gi0)@) = [ Xl (ve'™x0) (@) o, € 247(D),
for all v € Q09(D). Thus, G; : QYY(D) — QY?(D). Moreover, as before, we can show that
(6.15) Gi =O(k%): HS., (D, T**1X) — H:L (D, T*1X), VseN.

comp comp
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Let u € Q9 (Dy). From (5.5), we have

Dsqk(gku) = Dg‘fllo(/e_ik“"le(Xku)den) = /e_“”’z" (ng)lejz)(Xku)(:%)dxgm

)

where ) is as in (6.8). Note that D(q)(lex) = D(q)(Gx) D(q)(( — x1)GX). From (6.4) and
Theorem 5.21, we know that D(Q)G 4+ 8 = I and the kernel of G is smoothing away the diagonal.
Thus, (1 — Xl)GX is smoothing. It follows that ng)(( — x1)GX) is smoothing. We conclude that
0 (x1GX) = (I — S)Y. From this, we get

CG) = [ e (T = 8)00w) @)doan + [ e Flra) @),
= [ e (T = 8)0uan) @)z + [ 7 (1= x0) (T - ) () @z
(6.16) n / 2 B () (#)dian

= (I — Sp)u + /efi}”?"(l - Xl)((ff S)(xku)) (&)dwon

+ / e~ 20 P () () don,

where F' is a smoothing operator. We can repeat the procedure as in (6.8) and conclude that the
operator

u— /67ikw2"F(Xku)(.’%)d1'2n, u e Q99(Dy),
is k-negligible. Similarly, since (1 — Xl)(f — S)x is smoothing, the operator
u— /e_“m’“”(l - Xl)((f— S)(xww))(2)dwe,, ue QYY(Dy),

is also k-negligible. From this observation and note that fk = ], x mod O(k~°°), we obtain

(6.17) 096, + 8. =%, mod O(k™>) on Dy
and hence
(6.18) GiO% +8; =Z; mod O(k™>) on Dy,

where Z7 is the formal adjoint of Z; with respect to (-|-).
We now consider more general situations. We recall Definition 6.3. Let
k.2n—1

ik<z—y,m>
W/e Y1 p(x,y,m, k)dn

be a classical semi-classical pseudodifferential operator on D of order 0 from sections of T*%9X to
sections of T*%9X with p(x,y,n,k) € S a(l3Dx D x R 7*0a X ® T*0:9X). We assume that

I = I, mod O(k=°) at T*Dy (%, where

T =

k2n—1

T ik<z—y,n>

Iy = W/e Y o, m, k)dn
with a(z,n,k) € Sp,, o (LT*D, T*9X K T*%4X), a(z,n, k) = 0 if |5 > M, for some large M > 0
and Supp a(z,n, k) T*Dy € V. We write

Iy =TI+ I} mod O(k™>),
an—l

(2m)2n—1 /6ik<z_y’">ﬁ(% y,m, k)dn,
s
where f3(z,y,n,k) € Sy

e, (LD x D x R**=H T*04X [ T*09X) and there is a small neighbour-
hood T of T*Dy N X such that Blx,y,m, k) = 0if (z,n) € T. Let Gr and Sk be as in (6.13)
and (6.6) respectively. Then, (6.17) and (6.18) hold. Since S(z,y,n,k) = 0 if (x,n) is in some

7l -
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small neighbourhood of T* Dy (%, it is clear that there is a properly supported continuous operator
Gl = O(k*) : Hppp (D, T*%9X) — HEEL (D, T*9X),Vs € No, such that 096} = I} mod O(k~>)
on Dy. Put

(6.19) Ni =G +Gt=0(k*) : HS (D, T*%9X) - H:H (D, T*99X), Vs e N,.

comp comp

Then, we have

N =O0(k%) : HE (D, T*X) — H:HL (D, T*%1X), Vs € N,

(620) comp . Comlp .

Ny = O(k*) : Hippp (D, T*9X) — H3EL (D, T*9X), Vs € Ny,
and
621) DN+ S =2 mod O(k~>) on Dy,

NOY) 4+ 8; =123 mod O(k~>) on Dy,

where N and Z; are the formal adjoints of 7, and N} with respect to (-|-) respectively.
From (6.6), (6.7), (6.11), (6.12), (6.20) and (6.21), we get

Theorem 6.5. Let s be a local trivializing section of L on an open subset D C X and |s|iL =e 2%,
We assume that there exist a A\g € R and xg € D such that Mﬁo —2XoLs, 1s non-degenerate of constant
signature (n_,ny). Let q=n_. We fixt Dy € D, Dy open. Let V be as in (5.14). Let

k2n—1

:Zk = W/eik<wiy’n>p(xvyvnvk)dn

be a classical semi-classical pseudodifferential operator on D of order O from sections of T**9X to
sections of T*%1X with p(x,y,n, k) € S a(l3Dx D x R#n=1 T*0a X M T*09X). We assume that

Iy =7, mod O(k=°) at T*Dy( %,
T k2t ik< >
Iy = ST k)d
(6,22) k (271_)2”_1 /e a(x7777 ) 777
alz,n, k) ~ Ej:O aj(x,n)k_j m Sl%c (1, T*D, T*%1X R T*04X),

aj(z,n) € C=(T*D, T DR T**D), j=0,1,...,

where oz, n, k) € S o (L;T*D,T*9X W T*%9X) with a(z,n,k) = 0 if |n| > M, for some large
M > 0 and Suppa(z,n,k)(\T*Dy € V. Let Sk, Gr and Ny be as in (6.5), (6.13) and (6.19)
respectively. Then,

Si» Sk = O(K®*) : Hypp (D, T*9X) — H,, (D, T9X), Vs € Ny,

(6.23) comp
Gr Gy Nt N = O(K®) : HYpp, (D, T°%9X) — HEEL (D, T*9X), Vs € Ny,
and we have
(6.24) 08k =0 mod O(k™=) on D, SO =0 mod O(k~>) on D,
(6.25) St +0YG =7, mod O(k™>) on Dy,
(6.26) QZDS’],)C +8f=7; mod O(k=>) on Dy,
(6.27) Sk + Dgi’,l./\/';C =7, mod O(k~°) on Dy,
(6.28) N;OY) +.8; =127 mod O(k™) on Dy,

where S}, Gi, N, f,j and f,j are the formal adjoints of Sk, Gi, N, Ty and Iy, with respect to (-|-)
respectively and Di?,)c is given by (4.4).

We notice that Sk, Si, Gk, G5, Nk, N}, are all properly supported on D. We need
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Theorem 6.6. With the notations and assumptions above, let S be as in Theorem 6.5. Then, Sy is
a smoothing operator and the kernel of Sy satisfies

(6.29) Sk(z,y) = /eik“”(’”’y’s)a(x,y,s,k)ds mod O(k™*°) on D

with
a(z,y,s,k) € Sph (LQ,TIX RTOIX) () C5° (Q, T X RT09X),

a(z,y,s,k) ~ Y aj(x,y,s)k" 7 in SpL, (1;Q,T*9X RT*01X),
j=0

a;j(z,y,s) € C° (LT X KT*X), j=0,1,2,...,

ao(w,z,8) : Ti"1X — N(z,s,n_), VY(z,z,5) €9Q,

and o(x,y,s) is as in Theorem 5.29 and (2.3), where N'(x,s,n_) is as in (5.39),

(6.30)

Q :={(z,y,8) € D x D x R; (2, —2Im dp¢(z) + swo(z)) € Vﬂ x,
(y, —2Im 0y (y) + swo(y)) € VO X, |z —y| < &, for some & > 0}.

Proof. Theorem 6.6 essentially follows from the stationary phase formula of Melin-Sjostrand [21].
From the definition (6.5) of S, and Theorem 5.29, we see that the distribution kernel of Sy is given
by

(6.31)
Sk(x,y) = / eiﬂb(j,g’S)7ikw2n+iky2nb(i'v Aa Sat)Xl (xQn)X(yQH)dx2ndtdy2nds mod O(kioo)
t>0

E/ ete @y s) Fil@en—y2n) =R b3 4 s 1) y1 (220 )X (Yon )dTandtdysnds  mod O(k™)
>0

= / e (pl@w o @an=v2)@=D) ki3 5 5 k)Xt (20) X (yon)dTandodysnds  mod O(k~),
>0

where the integrals above are defined as oscillatory integrals and ¢t = ko. Let (o) € C§°(R4) with
v(o) =1 in some small neighbourhood of 1. We introduce the cut-off functions (o) and 1 — (o) in
the integral (6.31):

(6.32) Io(z,y) ::/ eik(‘o(m’%s)”H“”7”2"‘)(071))W(U)kb(@g],37kJ)X1(xgn)x(ygn)dxgndodygnds,
o>0
(6.33)

Ii(x,y) = /> eik(“"("c’y’s)a"'(“"_92")(”_1)) (1 —~4(0)kb(Z, 9, 5, ko) x1(x2n) X (Y2n)drandodyands
a>0

so that Sk(z,vy) = Io(z,y) + L1 (z,y) mod O(k~*°). First, we study I;(z,y). Note that when o # 1,
dys, (0(2, Y, 8)0 + (@2, — Y2 )(0 — 1)) =1 — 0 # 0. Thus, we can integrate by parts and get that I
is smoothing and

(6.34) Ii(xz,y) =0 mod O(k™).

Next, we study the kernel Iy(z,y). From (5.74), we may assume that b(, 7, s, ko) is supported in
some small neighbourhood of & = . We want to apply the stationary phase method of Melin and
Sjostrand (see page 148 of[21]) to carry out the dzs,do integration in (6.32). Put

‘I/(f,?)ﬂf) = @(x>y7 S)U + ($2n - y2n)(0 - 1)
We first notice that d,U(&,9,0)|s=5 = 0 and d,, ¥(£,9,0)|s=1 = 0. Thus, z = y and o = 1 are real

XT2n
critical points. Moreover, we can check that the Hessian of W(%,4,0) at & = ¢, 0 = 1, is given by

U (&, 4,1) vo(@a1) (01
o (&,8,1) O (4,41 )\ 1 0 )

T2nT2n
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Thus, ¥(z, §, o) is a non-degenerate complex valued phase function in the sense of Melin-Sjostrand [21].
Let L
U(2,9,0) = 4(Z,Y,5)0 + (Tan — Yo2n)(0 — 1)
be an almost analytic extension of W(&,§,d), where @(Z,%,s) is an almost analytic extension of
o(x,y,s). Here we fix s. We can check that given yo, and (x,y), T2, = yan — @(2,y,s), & = 1 are the
solutions of B _
ov 0 ov
05 0Ty,

From this and by the stationary phase formula of Melin-Sjostrand [21], we get

=0.

(6.35) To(z,y) = /eik“’(r’y’s)a(x, y,8,k)ds mod O(k™),

where a(x,y, s, k) € S, (1; 0, T 01X X T*O’qX) NCge (Q7 74X X T*O’qX),
a(z,y,s,k) ~ 272 aj(z,y, s)k" 7 in SP(1;Q, 71X R T*09X),

a;(z,y,s) € C(‘)X’(Q,T*O"ZX X T*O"ZX)7 j=0,1,2,..., and

(636) a()(%, Y, S) =27 /EO((xa Yon — @(‘T, Y, S))7 ga S)X(an)21 (y2n - QD('I', Y, 5))dy2n7

where Y1 and Eg are almost analytic extensions of by and x; respectively, by is as in Theorem 5.29.
From (6.36) and notice that x; = 1 on Supp x, ¢(z,z,s) = 0, we deduce that

(637) aO(Ia €Z, 5) =27 /50((35’ Yon, Y, S)X(an)dyZn-

From (5.94) and (6.37), we conclude that

(6.38) ao(x,x,5) : T3 X — N(z,s,n_), Y(z,z,5)€Q.
From (6.34), (6.35) and (6.38), the theorem follows. O
We need

Theorem 6.7. With the notations and assumptions before, we have

SiS, = f*Sk mod O(k~>°) on Dy,
(6.39) i i (k™) 0
SiSr =ZiS; mod O(k™%°) on Dy

and S;;Sy is a smoothing operator and the kernel of S;;Sy, satisfies
(6.40) (SiSk)(x,y) = /eik‘p(z’y’s)g(x,y,s,k)ds mod O(k~°) on Dg

with
g(@,y,s,k) € Sph (LQ,T X RT*OIX) (| C5°(Q, T X BT X),

6an @R~ Dy sk i S (10, TOIX R T0),
|

g;j(z,y,8) € CP(QTIXRTX), j=0,1,2,...,

go(z,z,8) = aj(z, dyo(x, x, 8))ao(z, z,s), Y(z,z,5) € Q,
where f,j is as in (6.22), af(x,n) : T%9X — Tr99X is the adjoint of ag(z,n) with respect to the
Hermitian metric (-|-) on T%9X, ag(x,n) is as in (6.22).
Proof. From (6.26) and (6.28), we have f;Sk = (Q;Di?,)c + 85)S, mod O(k~>) on Dy and Z;S =
(./\/’,;‘Diq,)C +8;)Sr mod O(k~°) on Dy. Since Di?,)csk =0 mod O(k~*°) on D, (6.39) follows.

From Theorem 6.6, (6.39) and the stationary phase formula of Melin-Sjéstrand [21], we get (6.40)
and (6.41). The theorem follows. O
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In the rest of this section, we will compute the leading terms ao(z,x,s) and go(z,z,s) in the
asymptotic expansions (6.30) and (6.41) respectively.

As before, let © = (z1,...,%2,—1) be local coordinates on Dy. We also write y = (y1,...,Y2n-1)
and v = (u1,...,u2n—1). On Dy, we put dvx(z) = m(z)dxidzs ... dxe,—1 = m(z)dx. From (6.29),
we can check that

Si(z,u) = / e~ P (u,z,0) g * (u,z,0,k)do,
o>0

where a*(u,z,0,k) : Tr99X — T7%9X is the adjoint of a(u,z,0,k) : T;%9X — T:%9X with respect

to (-|-). Thus,

(6.42)

(Sf o S)(z,y) = / eik(_w"’z’c’”“’(“’y’s)) a*(u,z,0,k)a(u,y, s, k)m(u)dudods mod O(k™°).
0>0,5s>0

Note that Sj(z,u) and Si(u,y) are k-negligible outside # = u and u = y respectively and du( -

D(u,z,0) + gp(u,y,s)) # 01if 0 # s and (z,y) is in some small neighbourhood of z = y. From this

observation, we conclude that for every € > 0, we have

(6.43)

(Sk © Sk)(z,y)

= / eik(—?(u,x,a)-&-w(u,y,s)) a* (u7 z,0, k:)a(u, Y, s, k’)/.t(a — S
0>0,5s>0

dudod
5 5 s Yym(u)dudods

mod O(k™°),

where 1 € C5°(]—1,1[), p = 1 on [3, 2]. We want to apply the stationary phase method of Melin and
Sjostrand (see page 148 of[21]) to carry out the dudo integration in (6.43). Put

(6.44) 2(u,x,y,0,8) = —p(u,z,0) + (u,y, s).
From (5.68), (5.69), (5.70) and (5.73), it is easy to see that
ImE(uax7y7U? 3) 2 O? duE(uax7y7U7 3)‘u::l::y,0':s = 07 dUE(ua‘ray7avs)|u:(L‘:y,O‘:s = O

Thus, x = y = u, 0 = s, x is real, are real critical points. Now, we will compute the Hessian of = at
x=y=u,oc=s Wewrite Hz(z, s) to denote the Hessian of = at z = y = u, 0 = s. Hz(z,s) has
the following form:

9*E | %= | o) |
aa-aa- U=T=Y,0=S8 808U1 U=T=Y,0=S8 808'U42n_1 U=T=Y,0=S8
9*= | 9’= | . o) |
Ouq 00 1U=T=Y,0=5 Ouy Ouy 1W=T=Y,0=5 Ouy0ug, 1 | U=T=Y,0=5
(6.45) Hz(x,s) = ! ! n
2°E 9’= 2°E
Ousgp 100 |u:x:y,a:s OUzp—10uU1 Iu:x:y,a:s OUzpn—10U2m—1 lu:x:y,o:s

We fix (p,p, s0) € Q, p € Dy. Take local coordinates x = (21,...,Z2,—1) so that (2.2) hold. Tt is easy
to see that

(6.46) m(p) =2""1.
From (2.3), it is straightforward to check that
0%= 9%= 0%=
~ ~ |lu=zx=y=p.oc=s¢p — A =~ |lu=zr=y.0o=8 — +++ — ~ ~ |lu=z=vy,0=s — 07
8080’| y=p,o=s0 8u130‘ v auQn_280| v
9=
7|u:m:y o=s — _15
87.142”,180' 7
(6.47) 0%E 0%E

|u:r:y:p,0:So = |“:I:y:P70:SO =21 |)‘j(50)| ) j = 15 s, 13

0’z
m|u:ﬂ?:y:p,a:so =0 ifj#kand j,k=1,...,2n 2,
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where A1(so), ..., An—1(S0) are as in Theorem 2.2. From (6.47), we see that
[0 0 0 0 0 -1
0 2\ (s0)| 0 0 0 0
0 0 2 A1 (so)| - 0 0 0
(6.48)  H=z(p,s0) = | : : : 5 f
0 0 0 <o 20 [ An—1(s0)] 0 0
0 0 0 0 2 [An_1(s0)] 0
| —1 * * * * *
Thus,
H= , S 1 _
(6.49) det(#) =47 2™ A (s0) I Aa(s0) [ -+ [An—1(s0) |

Since (p,p, so) € § is arbitrary, we conclude that det(%) # 0, for every (x,x,s) € Q. Hence, we

can apply the stationary phase method of Melin and Sjostrand (see page 148 of[21]) to carry out the
dudo integration in (6.43) and obtain

(6.50) (SiSk)(z,y) = /eik“"l(’j’y’s)h(m,%s7k:)ds mod O(k~°)

with

h(z,y,s,k) € S (1, Q, T*IX RT*1X) (O (Q, T X R T*9X),

h(z,y,s, k) ~ Z hj(z,y, $)k™ 7 in S, (1; 0,TX X T*O’qX),
3=0

(6.51)
hj(z,y,s) € Co° (L TIX RTIX), j=0,1,2,...,
H=(z,8)\\"% ,
ho(z, z, s) :(det(%)) ag(z, x, s)ao(x, z, s)m(z), Y(z,z,s) €,
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and
(6.52) v1(z,z,8) =0, dppi(z,z,s) =dyp(z,x,8), dypi(z,z,s) =dye(x,x,s), V(z,z,s) €Q,

Im(pl(xayﬂs) Z 07 v(x7yv5) € Qv

where ag(z,y,s) is as in (6.30) and ajj(z,x,s) : Tr99X — T7%9X is the adjoint of ag(z,z,s) :
T:09X — Tr%9X with respect to (-|-). We need

Lemma 6.8. With the notations above, for every (z,x,s) € ), we have
(6.53) ho(z,z,s) = go(x,x, s),
where go(z,y,s) is as in (6.41).

Proof. Fix (x9,x0,80). Suppose that Reho(zo,z0,s0) # Rego(xo,xo,50). We may assume that
Re ho(zo, x0,50) < Rego(xo,xo,s0). Take g > 0 be a small constant so that Re ho(zg, zo,s) <
Re go (o, x0, ), for every |s — sg| < €9. Let ¥’ and V be as in (1.5) and (5.14) respectively. For every
e > 0, put

e = { (@, swo(x) — 2Im Dpop(x)) € ¥ |s — 50| < €}

S80,€

Let r(z,n) € C5°(V) with r(z,n) 2 0, 7(z,n) = Lon X ., and Suppr(z,n) (X C XX We remind
50,73

S0,€0°
that ¥ is given by (4.11). Consider the classical semi-classical pseudodifferential operator:

k.2n—1 .
R= T /el SEZYIZ () dn.
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From (6.50), (6.51), (6.52), (5.69) and the stationary phase method of Melin and Sjostrand (see page
148 of[21]), we have

(RS Sk)(x, ) ~ Z k7 /ﬂj(x,x, s)ds in Sit, (1;Q, 71X R T*9X),
=0

6.54
(6:54) Vi(z,y,s) € CF(QTOIXKT™X), j=0,1,2,...,

Yoz, z,8) = r(x, swo(x) — 2Im pd(z)) ho(x, z,5), V(z,7,8) € Q.

Similarly, from Theorem 6.7, we conclude that

(RS;Sk) (@, ) ~ Y k™ /gj (z,z,8)ds in S, (1;Q, 79X RT*X),
=0

G(z,y,8) € O (UTOIXRTIX), j=0,1,2,...,

Co(x, 2, 8) = r(x, swo(x) — 2Im Oyd(z))go(z, 7, 8), V(z,z,5) € Q.

(6.55)

From (6.54) and (6.55), we deduce that
(6.56)

/r(wm swo(zo) — 2Im Jpp (o) )Re ho(xo, zo, s)ds = /r(xo, swo(zo) — 2Im 8p¢ (o)) Re go(zo, 7o, 8)ds.

Since Suppr(z,n) (X C X/ we have

50,€0°
/r(xo, swo(zo) — 2Im 9y (x0))Re ho(xo, To, 5)ds
= /| | (29, swo (o) — 2Im Oyé(x0))Re ho(xo, To, 5)ds
s—so|<eo
and
/T(SCO, swo(wg) — 2Im App(x0))Re go(z0, 0, s)ds
= /|— - (o, swo (o) — 2Im dpd(z0))Re go (w0, o, 5)ds.
From this observation and (6.56), we deduce that

/| ‘ r(xo, swo(o) — QImgqu(xo))(Re ho(xo, o, s) — Re go(xo, o, s))ds =0.
s—sp|<€g

Since Re ho(z0, 70, 5) < Rego(xo, o, s), for every |s — so| < €o, and 7(z0, swo(x) — 2Im Fpo(z0)) >
0, 7(x0, swo(xo) — 2Im Jp¢(x0)) is not identically to zero function, we get a contradiction. Thus,
Re ho(z0, 70, 50) = Re go(wo, To, S0)-

We can repeat the procedure above and conclude that Im hg(zg, zo, So) = Im go(zo, zo, So). Since
(20, o, So) is arbitrary, the lemma follows. O

As before, we fix (p,p,s0) € Q and take local coordinates x = (z1,...,z2,—1) so that (2.2) hold.
From (6.46), (6.49), (6.51) Lemma 6.8 and (6.41), we see that

90(p, . 50) = (2m)" A1 (s0)| " Aa(s0)| -+ [Aamr(s0)| " ag (9, 2y s0)a0(p. . 0)

(6.57) -
= ag(pv SOWO(p) — 2Im ab¢(p))a0(papv 80),

where ag(z,n) is as in (6.22) and of(z,n) : T:%9X — T%9X is the adjoint of ag(x,n) with respect
to the Hermitian metric (-|-) on Ty%4X. Let T(psoyn_) T;O"IX — N (p, s0,n_) be the orthogonal
projection with respect to (-|-). In view of (6.30), we know that ag(p,p, so) : T;O"IX — N(p, s0,n_).
From (5.39), we see that dim N (p, so,n_) = 1. From this observation and (6.57), it is straightforward



51

to see that

ao(p, p; s0) =(2m) 7" [A1(50) | 1X2(50)] - - [An—1(50) | T(p,50.m0) (D5 S0w0 () — 2Im Dpp(p)),
9o(p, s s0) =(2m) "™ |A1(s0)] [A2(s0)] -+ - [An—1(50)| X
ag(p, sowo(p) — 2Im Apd(P)) T (p,s0.m_) (P, Sowo (p) — 2Im Dp(p))-

)
)

Summing up, we obtain

Theorem 6.9. With the same same notations and assumptions as in Theorem 6.5, let ag(x,y,s) €
C(Q, T4 X K T*%9X) and go(x,y,s) € C(Q,T*1X R T*9X) be as in (6.30) and (6.41) re-
spectively. Fix (p,p,s0) € Q, p € Dy, and let T(p,son_) T;O’QX — N(p, s0,n_) be the orthogonal
projection with respect to {-|-), where N(p, so,n_) is given by (5.39). Then,

(6.58)
ao(p,p, s0) = (2m)~" ’det (M}? —2s0L)) ! T(p.som_)20(D, Sowo(p) — 2Im By(p)),
go(p’p, 80)
= (2m)™" ‘det (M;f — 250£p) ’ ag(p, sowo(p) — 21m5b¢(p))7r(p,50’n7)ao(p, sowo(p) — 2Im Gy (p)),

where ag(x,n) is as in (6.22), af(x,n) : Tr%9X — Tr%9X is the adjoint of ag(x,n) with respect
to the Hermitian metric (-|-) on T:%9X and |det(M;f —2s0Lp)| = [A1(s0)][A2(50)] - -+ [An—1(s0)]-
Here A1(80),...,A\n—1(80) are eigenvalues of the Hermitian quadratic form Mz‘f — 2s9L,, with respect
to (-|-).

Using Theorem 5.20 and repeating the proof of Theorem 6.5 we conclude that

Theorem 6.10. Let s be a local trivializing section of L on an open subset D C X and \s\iL = e 29,
We assume that there exist a A\g € R and xg € D such that Mfo —2Xo L4, is non-degenerate of constant
signature (n_,ny). Let g #n_. We fit Dy € D, Dy open. Let V be as in (5.14). Let

2 2n—1

Iy = @%ﬁ [et*<Tmvn>a(z,n,k)dy mod O(k=>°) at T*Dy (X
be a classical semi-classical pseudodifferential operator on D of order O from sections of T*9X to
sections of T**9X, where a(x,n, k) € SP.. a(LTD, T*09 X XT*%9X) with a(z,n, k) = 0 if |n| > M,
for some large M > 0 and Suppa(z,n,k)(\T*Do € V. Then, there exists a properly supported
continuous operator

Ne=O0(k®) : HE (D, T*9X) — H:H (D, T*%9X), Vs e Ny,

comp comp

such that
Di?,)cj\fk =7, mod O(k™>)

(@)

on Do, where 01 is given by (4.4).

7. SZEGO KERNEL ASYMPTOTICS FOR LOWER ENERGY FORMS

Let A > 0. We recall that (see (1.1)) Hy _, (X, LF) denote the spectral space of Dl()?,z corresponding

to energy less that A and H,(cq)o\ : L%O q)(X, L*) — H{ _, (X, L") denote the orthogonal projection with
respect to (- [-), k. Fix No > 1. In this section, we will study semi-classical asymptotic expansion of

()
Hk,gk*’\’o‘

7.1. Asymptotic upper bounds. Fix Ny > 1. In this section we will give pointwise upper bounds

for v and 9“u, where u € Hg,gkao (X, Lk).

Let s be a local trivializing section of L on an open subset D C X and \S\EL =e 2% Fixp e D, let
Ui(y),-..,Un—1(y) be an orthonormal frame of Tyl’OX varying smoothly with y in a neighbourhood
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of p, for which the Levi form is diagonal at p. We take local coordinates © = (1, ..., Top—2, Ton_1) =
(2,Ton-1), 2j = T2j—1 + 125, j =1,...,n — 1, defined on a small neighbourhood of p such that
0

z(p) =0, wo(p) =dran—1, T(p)=—

9 )2

O0%an—1

( (p)) =264, jit=1,....2n—2,

0 0 7] 2
7.1 Uy=—— _— i 11— 40 , j=1,...,n—1,
( ) J aZJ ZT] axz CJIQTL 185527171 (|SC‘ ) J n
— n—1
Z ajz] +a oz]zj + Bxon_1+ Z a] tZj2t + aj, tzjzt Z Wi tZ52¢
Jj= Jit=1 Jit=1

O(|2l [e2n-1]) + O(Jwan—1") + O(l2[*),

where 75,8 € R, j =1,....,n =1, ujs,cj 5,050 € C, iy =Ty 5, gt = 1,...,n — 1 (This is always
possible, see [2, p.157-160]). Note that 7,...,7,—1 are eigenvalues of £, with respect to (-|-). We
assume that this local coordinates are defined on D and until further notice, we work with this local
coordinates and we identify D with some open set in R?*~1, Put

n—1 n—1
(7.2) R(x) = R(z,%2n-1) Zajzj + Z 1252,
7,t=1
n—1
(73)  ¢o=0¢— R(x) = R(@) = Bran—1+ Y pj.iZjz + O(|z][w2n-1]) + O(lz2n_1]*) + O(|2|*).
=1

Let (|- )kp and (|- )re, be the inner products on the space QD) defined as follows:

(1o = [ (Fla)e™dux, (F 9o = [ (Flaredos.

where f,g € {}y e denote by , an , koo) the completions o ’ wit
here f ng . We d b (Oq)Dkqﬁ deoﬁq)Dkgb h leti ngqD ith

respect to (| )xe and (- |- )re,, respectively. We have the unitary identification
L. (D ko) 5 Ly (D, k)

(7.4) u — 2k,

u=e 2FRy .

Let EZ’W : Q04+L(D) — Q%9(D) be the formal adjoint of 9, with respect to (-] )rg. Put

=,k

09, = 3,0, + 3,3, : Q%4(D) - Q%1(D).

Let u € Q%9(D, L*). Then there exists @ € Q%9(D) such that u = s*4 and we have Dg?lzu = skD,(,?;d)ﬁ.
In this section, we identify « with & and Dé?% with Dg?,z¢. Note that |[u(0)|* = |a(0)[* e=2k¢©) = |4(0)]>.
Let 0 : Q%9(D) — Q%9+1(D) be the first order partial differential operator given by

By : Q04(D) — Q041 (D),
- £ Q09(D) = 0097 (D)

Dp(e*FPy) = eszgbu, Yu € QY9(D).

Let 51, : Q04F(D) — Q%4(D) be the formal adjoint of 5;, with respect to (|- )re,- It is easy to see
that

(7.6) F (2R By = 2RRF, u, Wu € Q09T (D).

Put

(7.7) B0, = 340 + 0,05 : Q9(D) — Q9(D).
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From (7.5) and (7.6), we have
(7.8) 0§ (5 Fu) = 2RO u, Vu € Q9(D).

Until further notice, we fix ¢ € {0,1,...,n — 1} and we assume that Y (¢) holds at each point of
D. Forr > 0, let D, = {& = (x1,...,22p-1) € R*" " [z| <7, j=1,...,2n—1}. Let F; be the
scaling map: Fy(z,za,-1) = (ﬁ, Z22=1). From now on, we assume that k is large enough so that

Fi(Diogr) C D. Let (ej(x))j=1,. n—1 denote the basis of T:%1X, dual to (Uj(x))jzl,mm_l. Let
J=(j1,--,4q) €{1,...,n — 1} be a multiindex. Define

€J:6j1/\"'/\6jq, 1f1§j1,]2,7jq§n71

Then {e;; J € {1,...,n — 1}%, J strictly increasing} is an orthonormal frame for 7*%9X over D. We
define the scaled bundle F;T*OV‘IX on Diog i to be the bundle whose fiber at © € Diggy, is

10X ::{ Z ajej(ﬁ7m2;;_l);GJEC7VJ€{1,...,n_1}q},

where Z' means that the summation is performed only over strictly increasing multiindices. We take
the Hermitian metric (- |- >FI: on FyT*%X so that at each point € Diog,

{e_](ﬁ , =) J e {1,...,n— 1}, J strictly increasing}

is an orthonormal basis for F;T:%9X. For r > 0, let F;'Q%%(D,.) denote the space of smooth sections
of FrT*%4X over D,. Let FyQ0(D,) be the subspace of F;Q%4(D,) whose elements have compact

support in D,. Given f € Qo’q(Fk(Dlogk)) we write f = ZI fre;. We define the scaled form
[J]=q
Fyf € FrQ%9(Dyog ) by:

- 5 0l SR )

Je{l,...n—1}1

It is well-known (see section 2.2 in [15]) that there is a scaled Laplacian Iﬁg?,z;gk) : FEQ%Y(Digg i) —
F,:QO”(Dlogk) such that
1

o
(7.9) Chits” (Fw) =

Fy (@7 u), Vu € QU(E(Diogr)).

and all the derivatives of the coefficients of the operator Iﬁggg ((:)) are uniformly bounded in & on Dy i

Let D, C Diggi and let VI/',;"’FWO(DT,F,:‘T*O"JX)7 s € Np, denote the Sobolev space of order s of

sections of FyT*9X over D, with respect to the weight e~2*7k® . The Sobolev norm on this space
is given by

2 ! 2 _okFy %
(710)  ull g, = > [ 10z e ) @),

aeNZ" ! |a|<s, JE{1,...,n—1}9

where u = Zf]e{l’m’n_l}q UJEJ(ﬁ, Tnol) € Wik go (Drs FrT*%1X) and m(x)dz is the volume form.

If s =0, we write ”'”kF;qﬁo,Dr to denote Ho||kF;¢0,07DT.

The following is well-known(see section 2.2 in [15])

Proposition 7.1. Let r > 0 with Dy, C Diogy and let s € Ng. Then, there is a constant Cr. g > 0
independent of k and the point p, such that for every u € Q%9 (Diog ),

S
2 2 STORGN T
(7.11) luli b g0, < Crs (1l 0, + D N OS2Vl g ) -
j=1

Moreover, there exist a semi-norm P on C*°(Da,.) and a strictly positive continuous function F :
R — Ry, where P and F only depend on r and s independent of the point p and k, such that if we



54

put
A

= {all the coefficients of ﬁl(f,i’dfk), 51,, 55;7 U;, U], Uj, Uy, gt =1,...,n—1, and kF} ¢y, Fim}
and B = {all the eigenvalues of L,}, then C,. s can be bounded by >, F(P(f))+ >, F(N).

feA \eB
We need
Lemma 7.2. For k large and for every o € Ng"il, there is a constant C, > 0 independent of k and
, 0, ‘ A(@), (k) ym
the point p, such that for all u € Q"4(Diog k) with ”“HkF,:%,Dlogk <1 and ’ Cos ) quFg%,Dlogk <
k=™, VYm € Ny, we have
(7.12) (07u)(0)] < Ca
Proof. Let u € Q% (Diogk)s 1ullpregypry < 1o ‘(E]l()q,z;gk))muH < k™™, ¥m € Ny. By
ke P0rHlog k ’ kE$0,Diog k

using Fourier transform, it is easy to see that (cf. Lemma 2.6 in [15])
(7.13) 1(0zw)O)] < Cllullpr gy mtial., »

for some r > 0, where C' > 0 only depends on the dimension and the size of a. From (7.11), we see
that
n+lal

2 2 = (@).(k)yj
1ullere o,n+1al,D, < Cnn+la\(H“||kF,:¢o,DzT + 2 H(wa )jquF*¢o D )
i=1 i #o,Dar

(7.14) N
< Cr,n+|oz\ (1 + Z kij) < 6&7
j=1

where C,, > 0 is independent of k and the point p. Combining (7.14) with (7.13), (7.12) follows. O

Now, we can prove
Theorem 7.3. For every a € N(Q)"_l, D’ € D, there is a constant Co pr > 0 independent of k, such
that for every u € H} _, _y (X, L*), ulp = s*u, u € Q%9(D), we have
(7.15) (@ (e ) (@)| < Corprk?Ho [ull, Vo€ D,
Remark 7.4. Let s; be another local frame of L on D, |51\2 = e72%1. We have s; = gs for some CR
function g € C(D), g # 0 on D. Let u € Q%9(D, LF). On D, we write u = s*u = s¥0. Then, we
can check that

(7.16) Te~hoL = (g 1/2g—L/2)kemke,

From (7.16), it is easy to see that if 4 satisfies (7.15), then ¥ also satisfies (7.15). Thus, the conclusion
of Theorem 7.3 makes sense.
Proof of Theorem 7.3. We may assume that 0 € D’. Let u € Hg’<k_N0(X, LF), ulp = s*u, u €
Q%4(D). We may assume that Fj(Diogx) C D and consider u|p, (p,, ). Set

B =k~ 2 Fj (e ?*Rq) € FrQ%(Diogr).
We recall that R is given by (7.2). (See also (7.4).) We can check that

(7.17) ||Bk||kF]:¢o,Dlogk < HU”th .

Since u € Hg,gk*No (X, L*), we have H(Dl()qlz)mu

observation, (7.9) and (7.8), we have

|G|

< km™No |lul|, . for all m € N. From this

hL*

1
kF} ¢0,Diog Emtz

1
< T H(Dz(fii)

‘F;;k ((il()q,qu)me_%}%ﬂ) H
(7.18) kF}: ¢0,Diog i

mu] < fmmNo=m |yl

nLk
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From (7.17), (7.18) and Lemma 7.2, it is straightforward to see that for every a € N(Q)"_l,

[ [

FEREO)| <Gk Y (@280 < Cofulln

2n—1
YENG" T, 1yI< el

where C,, > 0, 5a > ( are constants independent of k and the point p. Thus, for every o € NZ", there
is a constant C, > 0 independent of k and the point p, such that

|0 (@e™"))(0)] < Cak ¥ ful] ,pk .

Let xg be another point of D’. We can repeat the procedure above and conclude that for every
o€ Ng"il, there is a Cy(2z9) > 0 independent of k and the point g, such that

(82 (@e™"))(x0)| < Calwo)kEH [lufon .

The theorem follows. O

We pause and introduce some notations. We identify R?"~! with the Heisenberg group H, :=
C" ! xR. Put

n—1

(7.19) Yo(2,0) = Bron_1+ »_ pjaZjz € CF(Hy, R),

ji=1

where § and p;, j,t =1,...,n—1, are as in (7.1). Let (-|-)y, be the inner product on C§°(H,)
defined as follows:

(F19)00 = /H fgedN) . f.g € O (Ha),

where d\(z) = 2" ldxy -+ dwa,_1. For f € C*(H,), we write ||f||i0 = (f1f )y, Let u(z) €
C*(H,). Fix a € N"~!. Assume that 105 ull,, <oo. Put

(7.20) Vo () = (0%u)(x)ePran-1,
Set
n—1
(7.21) Do = Y 1%
jit=1
We have

/ va (z)[* e 220 @ d)(z) < o0.
H'Il

Let us denote by L?(H,,, ®¢) the completion of C§°(H,,) with respect to the norm || - ||¢,, where

lul3, = / e 20 dN(), ue CF(H,).

n

Choose x(z2n—1) € C§°(R) so that x(z2,-1) = 1 when |x2,_1| < 1 and x(22,-1) = 0 when |zo,_1| > 2
and set x;(x2n—1) = x(z2n-1/7), j € N. Let

(7.22) Ua,j(2,m) = / v(x)xj(mgn,l)e_i“"*mdxgn,l e C®(Hy), j=12,....
R

From Parseval’s formula, we have

/ 00,5 (2,m) = Dot (2, 77)|2 6_2¢’“(z)dndv(z)

H’II,

=27 / (@) ? |x;(@an—1) — Xt (@2n_1)|? e 22 @ dndv(z) = 0, j,t — oo,

n
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where dv(z) = 2"~ 1dzy - - - dwo,—o. Thus, there is 9, (2,n) € L*(H,, ®o) such that 0, ;(2,1) = 9a(2,1)
in L2(H,,®q). We call 9(z,7) the Fourier transform of v, (x) with respect to x2,_1. Formally,

D (2,m) :/e_m?"—mva(x)dxgn_l
R

(7.23)
:/e_i“"—m(Bgu)(x)e_ﬁmz"‘lden_l.
R
Put
(7.24) R, := {77 eR; Mg’ —2nL, is positive deﬁnite} .

We can check that
R, := {77 € R; the matrix (/Lj,t)?,t_; - (Tj5j7t)?’t_:11 is positive deﬁnite} :
The following theorem is essentially well-known (see section 2 and section 3 in [15])

Theorem 7.5. With the notations used before, fit Ng > 1. Let {kj};il be a sequence with 0 < k1 <

ko < ky < oo, limy oo ky = 0o, Let fi; € Hy ono (X, LY) with || fi, ||, o, = 1, 5= 1,2,.... On

D, put fk]. = Skfkj, fk]. S COO(D), =12 ... Let Ug; = k;ngj(efzijfkj) S COO(ij(Dlogkj)),
Identify uy; with a function on Hy, by extending it with zero, for each j. Then there is a subsequence
{ukJ} of {ukj} such that ug, converges uniformly with all its derivatives on any compact subset
of Hy to a smooth function uw € C*°(H,) with ||05ul,, < oo, for every o € N2"=1. Moreover, fix

a € N"~ ! and let 04(2,n) € L*(H,,®o) be as in (7.23). Then, for almost everywhere n € R,

(7‘25) \@a(zaﬁﬂ < foz(n)ga(zﬂn)lRp (77)7 Vz € COO((CR)’
where fo(n) is a positive measurable function with [, |fo(n)ldn < C < oo, C > 0 is a constant

independent of the sequence {f;c]. }:‘;1 and the point p, go(z,m) € C°(H,,R,), Ir,(n) =1ifn€Ry,
Ig,(n) = 0 if n ¢ R, and [94(0,n)| 1r,(n) < C1, C1 > 0 is a constant independent of the sequence

{fx, }j‘;l and the point p. Thus, fit z € C" ', [|04(2,m)|dn < co. Furthermore, we have

1 . 1 .
(7.26)  (0%u)(z)e Pr2n-1 = > =1y, (z,m)dn = Py e "2 =19, (z,m)1r, (n)dn, Vz € H,.
m ™
Theorem 7.5 will only be used in section 8.
7.2. Kernel of the spectral function. We first introduce some notations. Let (e1,...,e,—1) be
a smooth local orthonormal frame of T:%1X over an open set D C X. Then (e’ := ej; A--- A
€j,)1<j1<ja<-<jo<n—1 is an orthonormal frame of T;%9X over D. For f € Q%9(D), we may write
!
f= Z frel, with f; = (fle’) € C>(D). We call f; the component of f along e”. Let

Je{1,...,n—1}1
A:Q)9(D) — Q%4(D) be a continuous operator with smooth kernel. We write

(7.27) Aay)= Y d@Ans(aye’y),

1,J€{1,...n—1}2
where Ay ; € C°(D x D) for all strictly increasing I,J € {1,...,n — 1}?, in the sense that

(7.25) e = Y @ [ Ao ),

I,Je{l,...,n—1}1

/

for all u = Z/ uye’ € QD). Let A* be the formal adjoint of A with respect to (-|-). We
Je{l,...,n—1}1
can check that

/
A@y) = Y, e @A] (xy)el (y),
(7.29) I,Je{1,..,n—1}4

Aj j(z,y) = Ay1(y,z) for all strictly increasing I,.J € {1,...,n —1}".
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Let
B:Q%(D) — Q%(D), QYD) — QY(D),

I
Bly)= Y.,  e@Brs(zye(y),
1,Je{l,...n—1}1
where By j(z,y) € C°°(DxD) for all strictly increasing I, J € {1,...,n — 1}?, be a properly supported
smoothing operator. We write
/

(Bo A)(z,y) = > el (z)(Bo A s(x,y)e’ (v)

1,Je{l,...n—1}4

in the sense of (7.28). It is not difficult to see that

(7.30) Bodysmy) = 3 /D B g (2, w) Ay () (1),

Ke{l,...,n—1}1
for all strictly increasing I, J € {1,...,n — 1}%.
Now, we return to our situation. Fix ¢ € {1,2,...,n — 1}. As before, let s be a local trivializing
section of L on an open subset D C X and \s\iL = ¢~2¢. Until further notice, we assume that Y (q)

holds at each point of D. Since Y (q) holds at each point of D, by Kohn’s L? estimates (see [6]), we
have

7L\ (z,y) € C(D x D, (T;%9X © L) ) (T;%1X © LE)),
for every A > 0. Fix A > 0. On D x D, we write

7L (2,y) = s(@)IL7L | (2,)s" ()",

where H,(C?L,NO,S(x,y) is smooth on D x D, so that for z € D, u € Q09(D, L¥),
(7L ) (2) = s(2)* [ T, (2,9)(uly), s* ()" )dvx (y)
X
(7.31)

= s(z)* /X H,(g)g)\vs(;v,y)ﬂ(y)dvx(y), u=s"u, e Q)YD).

For z = y, we can check that HI(C?L)\’S(x,l‘) € O°(D, T*%1X X T*%4X) is independent of the choice
of local frame s. -
As (1.6), we define the localized spectral projection (with respect to the trivializing section s) by

7L, L% (D) () &'(D, T*%1X) — Q%(D),
(7.32) u— e_k‘ﬁs_kH,(C‘f)SA(skekqbu).
That is, if H,(f)g)\(skek‘bu) = s*v on D, then ﬂl(g)gx,s“ = e *¥y. We notice that

(7.33) A9, (2,y) = e HOIIL | (2, )W),

where f[,(g)g)\,s(a:,y) is the kernel of ﬂl(g)gx,s with respect to (-|-) and H,(f)gks(%y) is as in (7.31).

When A = 0, we call fI,(f)SO,S the localized Szegé projection and we set

(7.34) o =1, ..
‘We write
N i A
(7.35) I, (ay) = > @I, (e’ )

I,JE{1,...,n—1}1
in the sense of (7.28), where ﬂ;gql/\_s 17 € C®(Dx D), for all strictly increasing I, J € {1,...,n — 1}%.

Since H,(f)< , is self-adjoint, we have

(7.36) I, e y) =10 (ya),
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for all strictly increasing I,.J € {1 ,n— 1}

Now, we fix Ny > 1. Let {f]} kL C L(o q)( L*) be an orthonormal frame for Hb <k-No (X, LF),
dy, € NoJ{oc}. Note that f;|p € Q¥4(D), j =1,...,ds. For each j, we write
filp = ZI ijj(x)e“’(x), fi.g € C=(D, L*) for all strictly increasing J € {1,...,n — 1}%.

Je{l,...,.n—1}¢
For j = 1,...,dy and strictly increasing J € {1,...,n — 1} we define fj,J € C*(D) and f] € Q%4(D)
by

(7.37) fo=5Fo K= 3 Fu@e ).

Je{l,..,n—1}4

Then, f;|p = skfj, j=1,...,ds, and it is not difficult to see that
(7.38) M, v g (@) ng 1(@) f. (y)e HE@ o),

for all strictly increasing I, J € {1,...,n — 1}. Since f[gf)g)\,s’h] is smooth for every strictly increasing
I,Je{l,...,n—1}, we conclude that for all @ € NZ"~*

_ 2
(7.39) Z?’;l (8§(fje’k¢))(m)‘ converges at each point of x € D.

Similarly, if F : & (D, T**X) — &'(D,T*%9X) is a properly supported continuous operator such
that for all s € Ny,
F:H: _(D,T*X) — H: S0 (D, T7*%9X)

comp comp

is continuous, for some sy € R. Then, we can check that

- 2
(7.40) 2521 ‘(F(fje_m))(x)’ converges at each point of z € D.

Proposition 7.6. With the notations used above, for every a € Ng”fl, D' @ D, there is a constant

Co.pr > 0 independent of k, such that

dy,

(7.41) >

j=1

~ 2
02 (Fie ™) (@)| < Coprk™2e, Ve D,

Proof. Fix a € Ng’“1 and p € D’. We may assume that

dp

>

j=1

@2 G )| 2o

Set

ij (02( fje ) (p)-
\/Z (03 (Fre —k¢>><p>] =

Since Z‘;’;l (0 (fj k)) (p )‘ converges, it is easy to check that

we HY

b, <k~ No(Xva)v HuHth =1.

On D, we write u = s*u, u € Q%9(D). We can check that

(7.42) Z F5(@)(02(Fe7%)) (p).

\/z @2 (Fre o)) =
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In view of Theorem 7.3, we see that (92 (ue™"?))(p)| < Cok3tlel with C, > 0 independent of k and
of the point p. From (7.42), it is straightforward to see that

dy,

|85 (@e ™) (p)| = 4| D

Jj=1

(05 (e ) )| < CaktH1ol.

The proposition follows. O

Now, we assume that there exist a A\g € R and zg € D such that M;fo — 2XoL;, is non-degenerate
of constant signature (n_,ny). Let ¢ =n_. We fix Dy @ D, Dy open. Let V be as in (5.14). Let

2n—1

Iy = (QIZ)W [etk<zmym>a(z,n,k)dy mod O(k~>) at T*Do(X
be a properly supported classical semi-classical pseudodifferential operator on D of order 0 from
sections of T*%9X to sections of T*%9X, where a(x,n,k) € SQ. o (1;T*D, T*%9X ® T*%9X) with
a(z,n,k) = 0if |n| > M, for some large M > 0 and Supp «(z,n, k) (\T*Dy € V. Let S, Nj, be as in
Theorem 6.5. Let Di?l)c be as in (4.4). Then,
DNy + S = Ty, + Hi on 2'(Do, T**9X),
NiOW) + S =2 + Hi on 2'(Do, T*9X),

where Hj, = 0 mod O(k~>°) on Dy, N}, S, Zf and H; are formal adjoints of N, Sk, Zy and Hy
with respect to (|- ) respectively. Now,

(7.43) Ikn,gik Nos = (N;OY — Hf + S )nijk oy =R+ SkH;"Lk vo, 0N &' (Do, T*1X),
where we denote
R=N;OW — HHIE,, .

We write

Ry = > d@PRile.y)e’y)

I,J€{1,...,n—1}4
in the sense of (7.28), where Ry ; € C°°(Dg x Dy) for all strictly increasing I,J € {1,...,n — 1}%.
From (7.38), it is straightforward to see that

RI J x, y Zg], f], —k¢(y)7
(7.44) /
g = W,:Di?,l —H) (e ) @), @)= Y Guel@), j=1,...,d,

Ie{l,...,n—1}2
for all strictly increasing I, .J € {1,...,n — 1}%. From (7.40), we see that for all o € N3" ™1,
Zj’;l |(8§‘§J)(a¢)|2 converges at each point of x € Dy.
To estimate Ry j(z,y), we first need

Lemma 7.7. With the notations and assumptions used above, for every D' € Dy, a € NQ” 1 there

is a constant Co pr > 0 independent of k, such that for all u € Hg<k vo (X, LF), ||u||th =1,

ulp, = s*u, u € N%9(Dy), if we set v(x) = (N* — H})(ue k?), then
|(050)(x)] < Ca,D'k7+2|a|_N°_2, Ve e D'.

Proof. Let u € HY (X, LF), llull,r = 1, ulp, = s*@, @ € Q%4(D). Set B(x) = NyO) (@e ).

b,<k—No
We recall that (see 1(6.23))
(7.45) Ng = 0(k®) : H o, (Do, T*9X) — HPH (Do, T*9X), Vs € Ny.

Let D' € D" @ Dy. By using Fourier transforms, we see that for all z € D', we have
1(020)(@)] < Ca V]l 40y, »
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where C,, only depends on the dimension and the length of o. Here |||, ;,,, denotes the usual Sobolev
norm of order s on D”. From this observation and (7.45), we see that for every N > 0,

(7.46) |(02D)@)] < Cor [Tl oy, < k410 O @ie ) Onk™™

)

n—1+|«al,D"
where C/, > 0, Cn > O are independent of k and u. Let D( wu=f, flp, = skf, f e 0%9(Dg). We
can check that f € H b <k—No (X, L*) and I fllee <K No_ From (4.1), we see that
(7.47) Ol (e 7)) = e *2f.
In view of Theorem 7.3, we know that for all 8 € N(Q)"_l,

OO0 e ow)| = |97 ])| < Cab 17| 1], 0 < CokEHANo o D7,
where Cg > 0 is independent of k. Thus,

(7.48) ng?,l(e*k%) < Gk B Flal=No—1,

n—1+|a|, D" —

where Cy, > 0 is independent of k. Combining (7.48) with (7.46), the lemma follows. O

Lemma 7.8. Let g;(z) € Q%9(Dy), j = 1,...,dy, be as in (7.44). For every D' € Dy, o € N3" 1,
there is a constant C, > 0 z'ndependent of k, such that for all x € D’

Z| aoz~ < C. k,5n+4|a| 2No—4

Proof. Fix a € N3~ ! and p € D’. We may assume that Zd’“_l 1(02g;)(p )? # 0. Set

ij )(029;)( (929;)(p)-
@

(923, (p)I”

Since Z?il |(8§§j)(p)|2 converges, we can check that h € Hg <k-No

(X, L"), [|n]l,.x = 1. On Dy, we
write h = s*h. We can check that

Nk (s?l)c _k¢ \/Z

In view of Lemma 7.7, we see that

o (N (he ™)) ()| =

where C,, > 0 is independent of k and the point p. The lemma follows. O
Now, we can prove

Proposition 7.9. With the notations and assumptions used above, for every D' € Dy, a, 8 € Nﬁ"‘l,
there is a constant Cy g > 0 independent of k, such that

(7.49) (0205 Ry 1) (w,y)| < Co gk F2AFIBIN=2 (g ) € D' x D/,

for all strictly increasing I,J € {1,...,n— 1}, where Ry j(x,y) is as in (7.44).

Proof. Fixp € D’ and J € {1,...,n — 1}7 strictly increasing. Let o, § € N2"~!. We may assume that
S0 (@2 (F e k¢>><p>\2 #0. Put

(7.50) ng 3y (f.76759))(p).

Jz (@5 (e ) w)]
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/

X,L*), |Jull,cc = 1. On Dy, we write v = s*u, u = Z urel. Put
I€{1,..,n—1}2

!/
v = N,C*ng) (ue=k?) = Z vrel € Q%4(D). Tt is not difficult to check that

q
Then, u € Hb,gkao(

V= 3 Zg] (F.167) ().
Vi @6 e )|

where {g]} %k, are as in (7.44). In view of Lemma 7.7, there exists C, > 0 independent of k£ and the
point p such that |[(997)(x)| < Cok= +2lel=No=2 for all z € D’. In particular,

dg,
|(9251)( = 1> (9295.0(@) (05 (Fi.re 7)) (p)
(7.51) \/z @ (Foeto) )|
< C k' +2la‘ No=2 vy e D,
for all strictly increasing I € {1,...,n — 1}?. In view of Proposition 7.6, we see that
r 2
S| @i )| < coprra,
j=1

where Cg > 0 is independent of k and the point p. From this and (7.51), we conclude the existence of
a constant Cy, g > 0 independent of k and the point p with

dy

(0205 R,p) ()| = (| >
j=1

<O, ﬂk3n+2\o¢|+|ﬁ|—No—27

@2 (e ) )| 10277 ()]

for all x € D', all strictly increasing I,.J € {1,...,n — 1}%. The proposition follows. O
Let R* be the formal adjoint R with respect to (-|-). From (7.43), we have

(7.52) 1 Tp = R* + H(‘” Sk.

)
,<k—No,s <k—No,s

We also write
/

(7.53) Rizy)= Y @Ry’ v

1,Je{l,...,n—1}1
in the sense of (7.28), where R} ;(x,y) € C>(DoxDy), for all strictly increasing I, J € {1,...,n — 1}%.
Note that R} ;(z,y) = Ry 1(y,z), for all strictly increasing I,J € {1,...,n —1}?. Combining this
observation with (7.49), we conclude that for every D' € Dy, o, € Ng”_l, there is a constant
Ca.5 > 0 independent of k, such that
(7.54) (0305 R} ) (2, y)| < Co gh® H2PIHII=N=2 "y ) € D' % DY,

for all strictly increasing I,J € {1,...,n — 1}%.
We consider Z;; R*. Note that Z; R* is a smoothing function on D and we write

GR) @y = Y. @@R) () )

I,Je{l,...,n—1}4

in the sense of (7.28), where (Z; R*)r.; € C*(D x D) for all strictly increasing I,.J € {1,...,n — 1}%.
It is easy to see that

(7.55) Iy =O(K°) : H: (D, T*%9X) — HS (D, TX),

comp comp
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for every s € Ny. From (7.55), we can repeat the proof of Proposition 7.9 with minor change and
conclude that

Proposition 7.10. With the notations and assumptions used above, for every D' € Dy, «, 8 € Ng”fl,
there is a constant Cy g > 0 independent of k, such that

7.56 OO (I R*) 1.y (z,y)| < Cp gkPnH21lHIBI=No=2 " y(z vy € D' x D',
x Yy \“k , B
for all strictly increasing I,J € {1,...,n —1}%.

7.3. Szegd kernel asymptotics for lower energy forms. Let A > 0 and let .T1Té17>)\(X7 L*) and

l(7q)> y be asin (1.1) and (1.3) respectively. It is well-known (see section 2 in [7]) that for all A > 0,

(7.57) Liy (X, LF) = HY (X, L*) & H] (X, L¥)
and
(7.58) lull? e < A(ng,gum)hm Yu € Hy (X, L") (| Dom 7).

Let s be a local trivializing section of L on an open subset D C X and \s\iL = e~ 2?. Consider the

localization
7.59) T2+ L) (D)6 (DT04) Ly (D),
u— efkd’s*kﬂgl/\(skemu).

From (7.57), we have the decomposition
(7.60) u= Hl(f)@\ U+ f[,(gl)\wsu, ue QD).

We work with the same notations and assumptions as in section 7.2. Let u € H3 (D, T*04X),
s1 <0, s1 € Z. From (7.60), we have

(7.61) Spu=T10, \, Su+I7 .y, Spu.

From (7.59) and (7.58), we can check that

(7.62) HH >k~te, Sk“H an o (91 (Skaw) Hh o SE OURILE oo (5" (i) pik
< ENo Dé?,z(skek‘b(sku))HhL = N D(q (Sku) H

Here we have used (4.1). In view of Theorem 6.5, we see that Dg?,)CSk =0 mod O(k~°). From this
observation and (7.62), we conclude that

(7.63) i Sp=0(kN): H (D, T*9X) — HY (D, T*"X),

comp

locally uniformly on D, for all N >0, s; € Z, s1 < 0. Since Y (g) holds at each point of D, we can
repeat Kohn’s L? estimates (see [6]) and obtain

Proposition 7.11. Let u € Domek If( )Ju S Domek, for all j = 1,2,..., then u|p €
Q09(D, LF).

Moreover, for every m € Ny and D' @ D" € Dy, there are constants C,, > 0 and n,, € N
independent of k such that

m
(7.64) el < Conk™ (ull pr + D | @R ), ¥ e 09(Do),
j=1

where |||, p, denote the usual Sobolev norm of order s on D" with respect to dvx (x) and ||-|| . denote
the L? norm on D" with respect to dvx ().
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Let u € HSL (D, T*9X), s, <0, 51 € Z. Since s*e*Spu € Q) Y(D, L*), we have

comp
(O (s"e**Su) € DomOfY), Wj=1,2,....
Hence,

(Dl()?,z)j (H,i%)gk,No (skek¢8ku)) = H;qék7N0 ((Dl()?lz)j(skek¢8ku)) € Dom Dl(f,i, Vi=1,2,....

)

Since [ = Hl(g)gk:—No + H;jlk_l\,o on L%Om (X, L*), we conclude that
(O3) (T2 v, ("¢*Sxu)) € Dom %), vj =1,2,....

From this and Proposition 7.11, we conclude that
Hl(g)>k*N0 (s*e*Spu)|p € Q%4(D, L),
(Sru)|p € Q°4(D).

7(a)
Hk,>k_N0,s

Moreover, from (7.64), for every m € Ny and D’ € D" € D, it is straightforward to see that

(7.66)

(7.65)

n
NE

2% v Si

k,>k—No,s

< Gt (|, (Sha0) O ([, s S| )

th)
th>’

D

m,D

.
I
-

n
NE

< Gk (|2 -, o (S50) s (OF) (45 S|

D

.
I
=

IR

< ok ([ v, (S]] +

. m9 | (eFesk () Sku)‘

k,>k

j=1

where C,, > 0 and n,,, € N are constants independent of k. Here we use the facts

O (I, v, [(Sew) = s7H e O (I, (5% Shu))
= sfkefkq&ﬂl(cq;k,,vo ((Dé?,z)j (ek¢sk8ku))

and
(50 (X Spu) = €5 ()7 (Syu),

for all j =1,2,.... From Dg’f}l&c =0 mod O(k~*°), (7.63) and (7.66), we conclude that

9y S =O0kN): H3 o (D, T9X) — H™ (D, T*X),

k, >k~ comp
locally uniformly on D, for all N >0, s; € Z, s1 <0, and m € Ny. Thus,

(7.67) 7, vy (Sk=0 mod O(k™),

Note that S, = f‘[l(j)gkNO,sSk + ﬂgglk%’s&'k. From this observation, (7.52) and (7.67), we deduce that
(7.68) M7, v Tk — R =8 mod O(k™)

on Dy, where R*(x,y) satisfies (7.54). Hence,

(7.69) LI, Tn— TR = 8iSp mod O(k™)

on Dy, where (Z; R*)(x,y) satisfies (7.56). Here we used (6.39).
Summing up, we obtain one of the main results of this work

Theorem 7.12. Let s be a local trivializing section of L on an open subset D C X and \s\iL =e720,
We assume that there exist a \g € R and xo € D such that M;fo —2Xo L4, is non-degenerate of constant
signature (n—,ny). Let ¢ = n_ and assume that Y (q) holds at each point of D. We fix Dy € D, Dy
open. Let V be as in (5.14). Let

k2n71

I = @t [et*<z=yn>a(z,n,k)dy mod O(k~>°) at T*Dy (X
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be a properly supported classical semi-classical pseudodifferential operator on D of order 0 from sections
of T*%9X to sections of T*%1X, where

a(w,m, k) ~ 37 aj(z,n)k™ Jin 8P (1;T*D,T*%1X K T*1X),
aj(z,n) € C®(T*D, T* DR T*D), j=0,1,...,
with a(x,n, k) =0 if |n| > M, for some large M > 0 and Supp a(x,n, k) (\T*Do € V. Then for every

Ny > 1 and every D' € Dy, o, B € NZ"™1, there is a constant Cpr o 5.n, > 0 independent of k, such
that

8208 (A9, T} () — / P a(z,y. s, k)ds)

< CD’,a,ﬁ,NOk3n+2|'8|+‘a|7N072 on D' x D/,

(7.70)
aaaﬁ (( l(~c )Sk—NO,sIk)(‘T7 y) - (/ elkW(w’y7S)g(xﬂ Y, S, k)ds)
<Cpiap N0k3”+2|'@|+‘0‘|_N°_2 on D' x D',
where H](Cq)<k no i the localized spectral projection (7.32), p(z,y,s) € C(Q) is as in Theorem 5.29,
(2.3) and
a(z,y,s,k), g(z,y,s,k) € S (LT IXRTOIX) () C5°(QT*X BTX),
a(z,y, s, k) ~ Z a;(z,y,s)k" 7 in S, (1;Q,T*IX RT*X),
(7.71) 0
g(x,y, s, k) ~ Zgj(x,y, Sk in S, (1;Q, T IX RT*9X),
7=0
aj(z,y,s), g;(z,y,s) € C5° (Q,T*O’qX X T*O"IX)7 j=0,1,2,...,
with
(7.72)
ap(z,x,s) = |det( = 25L4) | (3,5, )0 (@, swo(x) — 2Im Bpp(2)),
go(xa z, S)

=(2m)~" |det(Mgi5 — 23[130)‘ ag(z, swo(x) — 2Im56¢(x))7r(m’s’n7)ao(a?, sowo(z) — 2Im 0y(x)),
for every (z,z,s) € Q, v € Dy, where
Q:={(2,y,5) € D x D x R; (, —2Im () + swo(z)) € V%,
(y, —2Im 90 (y) + swo(y)) € VX, |z —y| <e, for some € > 0},
aj(z,n) : Tr%9X — Tr99X is the adjoint of ag(x,n) with respect to the Hermitian metric {-|-) on
Tr%9X, wigsm ) Ta%9X — N(x,s,n_) is the orthogonal projection with respect to (- |-), N'(x,s,n_)

is given by (5.39), |det(M¢ —2sL,) ’ = A (8)][|A2(8)| - - |[An=1(8)], where A1(8),..., An—1(8) are
eigenvalues of the Hermztum quadratic form M$ — 2sL, with respect to (-|-).

By using Theorem 6.10 and repeat the proof of Theorem 7.12, we deduce

Theorem 7.13. Let s be a local trivializing section of L on an open subset D C X and |3|,21L =e %0,
We assume that there exist a \g € R and xo € D such that M;f’o —2XoLs, 15 non-degenerate of constant
signature (n—,ny). Let ¢ # n_ and assume that Y (q) holds at each point of D. We fix Dy € D, Dy
open. Let V be as in (5.14). Let

k}2n 1

I = BmyET [ etr<Tmvn>a(z,n, k)dy mod O(k=>°) at T*Dy(X

be a properly supported classical semi-classical pseudodifferential operator on D of order O from sections
of T*94X to sections of T*9X, where a(x,n, k) € SO (1;T*D, T*%4X R T*%1X) with a(x,n, k) =0

loc
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if |n| > M, for some large M > 0 and Supp a(x,n,k)(T*Dy € V. Then for every Ny > 1 and every
D' € Dy, o, B € NQn_l there is a constant Cpr o8N, > 0 independent of k, such that

aaaﬁ((ni(cqlk No SI )(x,y))’ < CD’,a,B,NOk3n+2|ﬁ|+‘a|7N072 on D' x D',
(7.73)

ROL (YL sy 24)(0:)] € O30 o 7
where H;flk No g 15 the localized spectral projection (7.32).

8. ALMOST KODAIRA EMBEDDING THEOREMS ON CR MANIFOLDS

In this section, we will use Theorem 7.12 to establish ” Almost Kodaira embedding Theorems on
CR manifolds” (see Definition 1.3). First, we recall Definition 1.2 for the definition of ”positive CR
line bundles”.

In this section, we assume that X is compact, L is positive and condition Y (0) holds at each point
of X. Fix Ny > 2n, Ny large. Let s be a local trivializing section of L on an open subset D C X,
|s|,21L =e 2%, As (1.5), we set

S ={(z, Awo(x) — 2Im Dyp¢(z)) € T*D (| %;

(51 M2 — 2)\L, is positive definite}.

Fix pe D. Let ¢ = (21,...,%2n-1), 2j = Toj—1 + i%25, j = 1,...,n — 1, be local coordinates of X
defined on D such that (7. 1) hold. On D, we write wo(z) = Zjnl 1 BJ( )dx;. We take D small enough
so that Ba,_1(x) > 3, for every xz € D. Let n = (n1,...,M2n—1) denote the dual coordinates of x. Let
R, be as in (7.24) Take P(n) € C° (RP,RJr) with

(8.2) /¢ — oL, )dn > %/R (M;f - QT;Lp)dn.

Let M > 0 be a large constant so that for every (z,n) € T*D if || > 4 then (z,n) ¢ X, where
7=, Nan—2), |7 = ZQ" 2 |n]| . Take Dy C D be a small open neighbourhood of p so that
(8.3) M? —2(n|wo(z))L, is positive definite, for every x € W, every ma,—1 € T, || < M,
where W C D and I' C R,, are small open neighbourhoods of Dy and Supp ) respectively. Put

(8.4) V={(z,n) €eT*D;x € W,nan_1 €T, |1/| < M}.
From (8.3), it is straightforward to see that
(8.5) vz cy.

Take 7, 7 € C§°(D), 7=10n Dy and 71 =1 on Supp7. Let x € C§°(] —1,1]), x =1 on [—%, %]
Let
an—l /|2

(5.5 B = Gzt [ e )n )

It is straightforward to see that 7. satisfies the assumptions in Theorem 6.5. Let
Si(z,y) = /eik‘p(x’y"s)a(x, y,s,k)ds € C*°(D x D)

be as in Theorem 6.5, Theorem 6.6. From (6.58), it is not difficult to see that

(8.7) ao(p,p,s) = (2m)~ " |det(M;f’ - QSLP) ‘ ¥(s)

for all (p,p,s) € Q. We recall that Q is as in Theorem 6.6. Put 2’ = (x1,...,29,-2) and set
712 2n—2

@' = 32570 gl Let

v = /eikw(x’p’s)kz_%a(x,p,s,k)dsx(

ug = s¥e"Pu, € C5°(Dy, LY).

(8.8) (log )2 ' )X (k¥ 220-1) € C5(Dy),
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Here we assume that k is large enough so that Supp vy € Dgy. First, we need

Lemma 8.1. With the assumptions and notations above, for every N > 0 and m > 0, there is a
constant Cn > 0 independent of k and the point p such that

(8.9) Z Sup {

lo| <m,ceNg™ !

A (ENNE)

x

;o €Dy} < Ok,

where Dg?,)c is given by (4.1) and (4.4).
Moreover, there exist C > 1 and kg > 0 independent of k and the point p such that for every k > ko,
we have

1
(8.10) rel < ||uk||th <C.

Proof. Put vy, = [ e*¢@P) k=% q(x,p, s, k)ds € C°(D). In view of (6.24), we see that

(8.11) S Sup {

|| <m,aeNZ" !

92(09) 1 (2))

;T € Do} < 5N,mk_N

for every N > 0, where CN’N,m > 0 is a constant independent of k. Since X is assumed to be compact,
it is straightforward to see that Cy ,, > 0 can be taken to be independent of p. Now, we claim that
for every N > 0 and m > 0, there is a constant C ,,, > 0 independent of k£ and the point p such that

(8.12) Z Sup {|0% (U () — vp(x))|; x € Do} < Crnmk™N.
\a|§m,a€NS"71

Note that

Supp (0x(z) — vi(x)) (| Do C {f € Do; [2'| 2 5755 or |wan—| > %ki%}-

When |z/| > %1(\)}5;, we use the fact kImop(z,p,s) > ckl|2/|> > ¢(logk)?, where ¢ > 0, ¢ > 0
are constants independent of z and s, and conclude that vg(z) — vi(z) = 0 mod O(k~>°). When
|zon—1| > %k‘% we have
R
0s

where ¢; > 0, ¢] > 0 are constants independent of 2 and s. From this we can integrate by parts in s
several times and conclude that vy (z) — vg(z) =0 mod O(k~°°). The claim (8.12) follows.

From (8.11) and (8.12), the claim (8.9) follows.

On D, we write dvx (z) = m(z)dz, m(z) € C°(D). Then, m(0) = 2"~!. Put

> key |Tan_1| > ¢k,

k 72 5
= k n— .
(0) = x(Goyz Pk )
We have
' 2
||uk:||iLk Z/’/ezw(x’p’s)k‘_ga(ﬂc,p, s)ds| Y2(z)m(z)dx
(8.13) ,
:/’/eik‘P(F’:r’p’s)k”a,(F,:ac,p, s)ds| Y2(Fjx)m(Ffz)d,
where Fyz = (\%, Z2o-1). Put
n—1 n—1
ple,p,s) = =i ) ajzi+iy @Z; + s(@an-1 — y2n-1)
j=1 j=1

(8.14)

2n—2

+ D Bia(s)ejw + O|zzar][2']) + O|z20-1]*) + O(Ja*)

jit=1
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and set
2n—2

(8.15) o, s) = @o(r',8) = > Bja(s)ajmy.
jit=1

From (5.73), it is easy to see that
(8.16) Im o (z, ) > cl/[*, V(z,p,s) €,

where ¢ > 0 is a constant independent of (z,p,s) € Q and ¢ can be take to be independent of the
point p. It is easy to see that

(8.17) Supp T(Eyz) C {:c e R L /| < logk, [zan_1| < k%} .
From (8.17), it is straightforward to check that on Supp Y (Fjz),
n—1 n—1
ko(Fia,p,s) = VE(—i Z ozt Z Q;Z;) + sTon—1 + @o(x',s) + 0p(w, s),
(8.18) =1 =t

E~"a(Fiz,p,s) = (2m)™" }det(M;f’ - 25£p) ’ P(s) + 5é(z, s),
m(Fpz) = 2" + 6% (x, 8),
where 69(x, s), 04 (x, s), 0% (x, s) € C* and
(8.19) Sup {|60(x, s)| + |04 (x,8)| + |07 (2, 9)|; (2,p,5) € Q} < Cok ™5 logk,

where Cy > 0 is a constant independent of k£ and the point p. From (8.19) and (8.13), we have
(8.20)

||uk||iLk =1t / ‘/ei‘”’?"1+w°(x/’s)(27r)_"z/}(s) |det (M — 2sL,)| (1 + vi(z,5))ds
where vy (z,s) € C* and

(8.21) Sup {|vk(z,s)|; (z,p,s) € 0} < C1k~5 logk.
Here C7 > 0 is a constant independent of k and the point p. From (8.21), we can check that

2
Y%(Fyz)der,

2
2"_1/‘/eis“"‘ﬁi%(m,’s)(271')‘"1&(3) ’det(M;f - 28/:,,)’ Ive(z, 8)|)ds| Y?(Fiz)d

< Cok™ 5 (log k)2 (log k)2"2ks = Cok~ 7 (logk)* — 0 as k — oo,
where C > 0 is a constant independent of k and the point p. Put

A= 2"—1/
lz|<1

B=2""1! /
R2n—1

From (8.16) and by using integration by parts with respect to s, it is easy to see that B < co. From
this observation, (8.22) and (8.20), we conclude that if k large then

(8.22)

2
dx,

/eisrgn_1+l¢0(z,75) (27m) " "p(s) ’det(Mg) —2sL,))ds

2
dz.

/eisxz'"*ﬁi%(wl’s)(277)‘"1&(5) |det(M;f’ — 2s£p) Dds

A
3 < Jur)? or < 2B.

(8.10) follows. O
Now, we can prove

Theorem 8.2. With the assumptions and notations above, fix Ng >> 1, Ny large. There exists
ko > 0 and Cy > 0 independent of k and the point p such that for every k > kg, there is a puj, €
Hy oo (X, L¥) with ||p|,,cx =1 and

(8.23) |tk (D) s > Cok™
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Proof. Let uj, € C*®(X, L¥) be as in Lemma 8.1. Put u = '

ke, <k—No Uk> up, = (I - 1)

ke, <k No)uk. We

have the orthogonal decomposition
up = ug + u}€
For every m € Ny, we have
2
O™ k| < BN (O™ k)
520 | @k, < K@D it ud),
< BN (@)™ )
From (8.9) and (8.24), we conclude that for every N > 0 and every m € Ny, there is a constant
Cn,m > 0 independent of k£ and the point p such that

Lk —

(8.25) H O™l H < Cymk™V.
From (8.25), we can repeat the proof of Lemma 7.2 with minor changes and obtain that for every
N > 0 there is a constant C'y > 0 independent of k and the point p such that
2 _
(8.26) lup(P)]or < K.

Furthermore, from (8.25) and (8.10), we see that there exist C' > 1 and k¢ > 0 independent of k and
the point p such that for every k > kg, we have

1
&<l <

(X, L*) and ||pgl|, . = 1. Moreover, from (8.25), (8.26) and

(8.27)

0
Put py, = Hu;‘ﬁ Then, pu, € Hb <k—No
(8.27), we deduce that for every N > 0 there is a constant Cy > 0 independent of k& and the point p
such that

1
k@) or — ——5— o (@)]?| < Cnk™N

(] o

From (8.28) and notice that |vgx(p)|”> > C1k™, where C; > 0 is a constant independent of k and the
point p, the theorem follows. O

(8.28)

From now on, we fix Ny > 2n + 1. We assume that k is large enough so that the properties in
Theorem 8.2 hold. Let {fl € Hl(;),gk*No (X, LK), ..., fa, € Hl?,gk*NO (X, Lk)} be an orthonormal frame
of the space Hb <k—No (X, L*). From Theorem 8.2, we deduce

Theorem 8.3. We have

(8.29) Z |fi(@)2in > Cok™, Vz € X,
where Cy > 0 is the constant as in (8.23). In particular, there is a constant ¢y > 0 such that for every

x € X, there exists a jo € {1,2,...,di} such that

(8.30) | fio (@) ]300 > co.

Proof. We only need to prove (8.30). It is well-known (see [15]) that there is a constant C; > 0 such
that

(8.31) dim Hp o~ (X, L¥) = dj, < C1E",
where Cy > 0 is a constant independent of k. From (8.31) and (8.29), we have for every z € X,

CrkSup {If5(@) e 5= 1,20 di |

> dySup {If; ()0 J = 1,2y}

> > 1fi(@)lhn = Cok™
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From this, (8.30) follows. O

Assume that X = Dy D2 J--- Dy, where D; is a small open set of X with the properties as in
the beginning of section 8, for each j. On Dj, let jk,j be the operator as in (8.6). Fix N’ > 1 be a
large constant. The (asymptotic) Kodaira map @y, : X — CP% 1 is given by

Dy, €X — CPVeTL

reEX — [fl(x)a . 'afdk(x)vk_N,fk,lfla .. '7k_N/j’-k,Nfdk] € (C]P)Nk_lv

where Ny, = dj, + Ndj,. In view of (8.30), we see that ®p, j is well-defined as a smooth map from X
to CP%~1. Our next goal is to prove

(8.32)

Theorem 8.4. For k large, the differential map
d‘I)Nmk(l‘) T, X — T¢N0,k($)cpdk71
is injective, for every x € X.

To prove Theorem 8.4, we need some preparations. Fix p € X and let s be a local trivializing
section of L on an open neighbourhood D C X of p. We take local coordinate x = (x1,...,Ton—1),
zj = Toj_1 +ixaj, j=1,...,n—1, and s so that (7.1) hold. Let R(x) = R(z) be as in (7.2). We first
need

Lemma 8.5. With the assumptions and notations above, there exist vi € C§°(D), j=1,...,n, with

1 .
(8.33) GSHMWM <C, j=1,...,n,

for every k, where C' > 0 is a constant independent of k and the point p, and
(8.34) Z Sup { 3;‘(520,11)%@))‘ sxeDj=1,... ,n} < Cnmk™V,

la|<m,aeNZ" !

for every N > 0 and m € Ny, where Cy ., s a constant independent of k and the point p and D( ),
given by (4.1) and (4.4), such that

(8.35) vl(0)=0, j=1,.
(8.36) Oz, (7)) (0) =0, j=1,...,n, t=1,...,n—1,
(8.37) 3., (71N (0) =0 ifj#t, j=1,...,n,t=1,...,n—1,
(8.38) By, (72 F0])(0) =0, j=1,...,n—1,
. 2
(8.39) 10y, (7202 (0)]7 > k72, ‘azj (e—%%;)(o)‘ > ek =1, n-1,

where ¢1 > 0 is a constant independent of k and the point p.

Proof. From Borel construction, it is clearly that we can find z;+8;(z) € C*°(R*" 1), j =1,...,n—1,
and xa,_1 + Bn(z) € C°(R?*"~1) such that
Op(2; + B;(x)) vanishes to infinite order at p, j =1,...,n — 1,

(8.40) _
Op(2n—1 + Bn(z)) vanishes to infinite order at p,

where §;(z) = O(z?), j = 1,...,n. Let vp(z) € C3°(Dy) be as in (8.8). Recall that Dy € D be as
in the discussion after (8.2). Put

(8.41) vi(2) = V(2 + B;(2))op(@) € C3°(Do), j=1,...,n =1,

v () = k(z2n—1 + Pn(x))vr(z) € C5°(Do).

We can repeat the proof of (8.10) with minor changes and deduce (8.33). Moreover, from (8.9), (8.40)

and (5.74), we obtain (8.34). Finally, from the constructions of v and v (z), j = 1,...,n, we get
(8.35), (8.36), (8.37), (8.38) and (8.39). The lemma follows. O

We also need
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Lemma 8.6. With the assumptions and notations above, fit Ng > 2n + 1. There exist
€ Hy cno (X, LF), j=1,...,n,

=1,5=1,...,n, suchthatszeput,uk:s uk on D, j=1,...,n, then

hL*
b

(8.42) 10, (e ERR) ()] > cok™ 2, (azj (63—2’“13175;)(0)‘2 > ekt j=1,...n—1

where co > 0 is a constant independent of k and the point p and for every N > 0 there is a Cy > 0
independent of k and the point p such that

Sup{‘ (e R0 ) (0)|, |0, (e >R ) (0)|, [(1 = 6;.4)0z, (e ") (0)
j=1,...,nt=1,...,n—1} < COyk V.

) )

(8.43) [Ons (7))

Proof. Fix j = 1,...,n. Let vi € C5°(D) be as in Lemma 8.5. Put uj = s e’“% and set B] =
HI(CO)<1€ No u,;, 'yi = - HI(CO)<1€ No )ufc We have the orthogonal decomposition

uj, = B, + 7.
For every m € Ny, we have

D(O) H < kNU D(O) m+1 J X
(8.44) H bk b,k) |’Yk)hL
< KN ((O0) ™ )

From (8.34) and (8.44), we conclude that for every N > 0 and every m € Ny, there is a constant
Cn,m > 0 independent of k£ and the point p such that

(8.45) H( (0)ym JH < Cymk ™.

From (8.45), we can repeat the proof of Lemma 7.2 with minor changes and obtain that for every
N >0 and every a € Ng”_l, there is a constant C o > 0 independent of k and the point p such that

o3 () )] <k,

where 77 = s*3/ on D. Furthermore, from (8.45) and (8.33), we see that there exist C' > 1 and kg > 0
independent of k and the point p such that for every k > kg, we have

(8.46)

(8.47) =< H Bl

hL’“ -

j . . . s

||/3;7ka¢' Then, ), € Hl?,gk*No (X, L*) and HM“HM"' =1. On D, put pj, = s*p. From
h

(8.46) and (8.47), we deduce that for every N > 0 and every a € Ng"~! there is a constant Cy o > 0

independent of k£ and the point p such that

Put ui =

1

. 2 2
(8.48) 9 (e_%Rﬁfc)(p)‘ o (e‘z’“sz)(p)\ < Cnak™™

leil,..
From (8.48) and Lemma 8.5, the lemma follows. O

nL*

From Lemma 8.6 and the Gram-Schmidt process, we deduce

Proposition 8.7. With the assumptions and notations above, fix Ng > 2n + 1. There exist g];
H£<k v (X, LF), G =1,...,n, with (g}, | g}) 00 = 64, 4t =1,...,n, such that if we put gk = s*g]

onD,j=1,...,n, then
102, (e G (O)° > eak™, t=1,...,n—1,

(8.49) 2
|8$2n71 (672]61?52) (O)| > Can+2,
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where co > 0 is a constant independent of k and the point p and for every N > 0 there is a Cy > 0

independent of k and the point p such that
w0y S (0 (IO [0, (HITO 5.0 =1, 1> 1)
. + Sup {| (e **g1) (0)] , |0z, (e **Fgp) (0)|; s =1,....,n—1,t =1,...,n} < Cnk V.

From Proposition 8.7 and some straightforward but elementary linear algebra argument, we obtain
the following(we omit the proof)

Proposition 8.8. With the assumptions and notations above, fit Nog > 2n + 1. Let
gl € HY _wo (X, LY), j=1,....n,

be as in Proposition 8.7. We put

(.51) g; = skgi on D, ] =1,...,n, | | | |

g5 = hi]_l —l—ihij, j=1,...,n, where hij_l =Regj, hij =Img,j=1,...,n

There is a ko > 0 independent of the point p such that for every k > kg, the matriz

6561 (ei2thllc) (P) 8$2 (672th11€) (p) e aﬂﬁzn—l (672th11€) (p)

o Oay (6703 ) () Oy (e7*h3) () - Oy, (e7ERE) (D)
k= . ) , , ’

B, (6721@han) ») O, (e*%ha”) (B) - Oy, (e*%Rhi”) (»)

Hy, R 5 R
18 injective.
From the proofs of Lemma 7.2 and Proposition 7.6, we conclude that

Lemma 8.9. With the assumptions and notations above, firt Ng > 2n + 1. Let

zp = (zh, ., R g = (yp, ..yt €RITE
with limk_)oo(\/EZﬁZIg ‘xi‘ +k |xin_1‘) =0, limk_,oo(\/EZ§ZI2 ‘yi’ +k |yin_l‘) = 0. Then, for

every o = (a1,...,a9,-1) € Ng”_l, B = (P1,...,Bom—1), there are constants Co > 0, Cop > 0
independent of k and the point p such that for every u € HY _, (X, L*) with |ul|,.x =1 we have

(8.52) |6§ (e—ZkRa) (xk)|2 < Cakn+‘a’|+2a2n71
and
(8.53)
— ~ — Dt, B,
3;135 (e*kR(I)JrkR@)H’(S)Sk_NO’S(x,y)efkR(y)JrkR(y)) (xk,yk)’ < Cvocﬁkn+¥+‘—2|+042n71+52n717
where uw = s*u on D, f[g?)gk_NU’s(m,y) is the localized Szegd projection (see (7.32) and (7.38)) and

2n—2 2n—2
o' = Zj:l aj, |8 = Zj:l Bj
Proof of Theorem 8.4. We are going to prove that if k is large then the map
APy, k(7)) : TeX = Ty, () CP*

is injective. Fix p € X and let s be a local trivializing section of L on an open neighbourhood D C X
of p. We take local coordinates x = (z1,...,%2n-1), 2j = T2j_1 +ix2;, j =1,...,n—1, and s so that
(7.1) hold. We shall use the same notations as above. From Theorem 8.3, we may assume that

RG] = e,

where ¢y > 0 is a constant independent of k and the point p. Let gb ..., gp € Hl?<k*N0

(8.54)

(X, LF) be as
in Proposition 8.7. In view of (8.50), we may assume that

(8.55) > ‘(e—%Rgi)(p)‘z < %0



72

Now, we claim that fi,gj,...,g7 are linearly independent over C. If fi,g3,...,g7 are linearly de-

pendent then we have f; = 2?21 Ajgi, where \; € C, j = 1,...,n. Since ||fi[|,.+ = 1, we have
2

> i—1 AT = 1. Thus,

e i (S (Xl < 5

We get a contradiction. Thus, f1, gk, ..., gy are linearly independent. Put

pl = 767%13%, j=1,....n—1,
(8.56) e—2kERf

pk:aij 1+za aij 1*Repk, ak :Impk, j=1...,n—1.
From (8.49), (8.50), Lemma 8.9 and (8.54), it is not difficult to see that
(8.57) 0Pk ()] = k™ =1, 20— 1, [0, ()] > ek,

where ¢ > 0 is a constant independent of k£ and the point p and for every N > 0 there is a Cy > 0
independent of k& and the point p such that

Sup {|0u,, 01 (0)]+]0=.00 ()]s st =1,...,n— 1,5 > 1}
+Sup{|p2(p)|,’8§sp}i(p)| is=1,....n—1,t=1,...,n} <Cyk~ V.

From (8.57), (8.58) and some elementary linear algebra argument, we conclude that there is a ko > 0
independent of the point p such that for every k > kg, the matrix

)

(8.58)

Oz, (€720 )(p)  Dua (e )(p) -+ Ony, ge‘%Rai; ()

PR B A OB R et [ B S Gt 11
k = . . . . 5

8w1 (e_2kRazn_1) (p) 8z2 (e—QkRain) (p) e 81271 (€_2kRa%n) (p)

Aj R R

1
is injective. Hence the differential of the map © € X — (‘}—’;(z), e f ( )) € C™ at p is injective if
k > ko. From this and some elementary linear algebra arguments, we conclude that the differential of
fay

the map z € X — (%(x), () € Cdr at p is injective if k > ko. Theorem 8.4 follows. O

Our last goal in this section is to prove that for k large, the map ®x, x : X — CP%~! is injective.

Theorem 8.10. With the assumptions and notations above, fix Ng > 2n + 1. For k large, the map
Pyt X — CP%*~1 s injective.

Proof. We assume that the claim of the theorem is not true. We can find xy,,yx; € X, zx;, # yr;,
0<ky <hky <---,limj o kj = 00, such that @y, (2x;) = Pk, (Yk, ), for each j. We may suppose
that there are zy, yx € X, Tx # Yk, such that @, ( k) = ®ny.k(yx), for each k. We may assume that
2k > pEX,yp > q€ X, as k — oo. If p# q. Then, for k large, we have dist (zg, yx) > 1dlst( ,q)-

In view of the proof of Theorem 8.2, it is not difficult to see that we can find ug, vy € Hb <k-No (X, Lk)
such that for k large, we have
C
(8.59) lug(zx)[} ok > Cok™, |ug(yn)|oer < 701@
and
2 n 2 CO n
(8.60) |Uk(yk)|th > Cok s ‘vk(xk)|hllk < —k

where Cp > 0 is a constant independent of k. Now, ®n, r(zx) = <I>N07k(yk) implies that

g (i) 2o = 1 fu (i) o oe s Jon(@i) |2 oe = 7 Jon(ye) [Foe

where 1, € Ry, for each k. (8.59) implies that ry > 2, for k large. But (8.60) implies that rj < %, for
k large. We get a contradiction. Thus, we must have p = q.
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Let X = D1 UD2J:-- Dy, where D; is an open set as in the discussion before (8.32). We assume
that p € Dy =: D. Let s be a local trivializing section of L on an open subset D C X of p, |s|iL =29,
Let = (x1,...,%2n—1), 2j = T2j—1 + 1225, j = 1,...,n — 1, be local coordinates of X defined on
D. For simplicity, we assume that (7.1) hold. We shall use the same notations as before. We write
zp = (zh, ..o ERPTL g = (v}, .., p ) € R2L

Case I: limsup,,_, \/EZ?Z? ’x{c - yi‘ =M >0 (M can be 00).

For simplicity, we may assume that
2n—2

(8.61) lim vk Y ’xi - y;’ =M, M €]0,0q).
j=1

k—o0

Now, ®n, k(xk) = Pn, k(yx) implies that we can find a sequence A, € C such that for each k,
(8.62) e MR (zr) = e FU T (yy),
for every uy € Hl?<ero (X, L*), us, = s*u3, on D. We may assume that

(8.63) limsup [Ag| > 1.

k—o00
Let Zj, := Zy.1 be as in (8.6) and (8.32). Let

dg
hy, = ij (Ike—lwfj)(yk) c Hl?,gk*No (X, Lk),

j=1

where f; = s’“]?j on D, j=1,...,dg. On D, we write hy = skﬁk. Then, it is easy to see that

(ﬁfcolk,No ka)(x,yk) = ¢ #*(@), (). From this observation and Theorem 7.12, it is straightforward
to check that
(8.64) e @Ry (2) = /eik“"(’”’y’“’s)a(x,yk, s, k)ds + Ri(z),

where p(z,y,s) € COO(Q) is as in Theorem 7.12, Q is as in the discussion after (7.72), a(z,y, s, k) ~
doisoaj(x,y, s)k" 7 in SE(1;9Q),
(8.65) ao(p,p, s) = (2m) " |det (M — 25L,)| 9(s),

and Ry(z) is a smooth function on D such that for every D’ @ D, there is a constant Cp. independent
of k such that

(8.66) |Ry(x)| < Cp/k3~No=2 < Cpi k™2,
From (8.61), (8.65), (8.66) and (5.73), we have

limsup k™"
k—o0

(8.67) <limsupk™" ( / e tm ey ) g2y yp, s)| ds + Rk(xk))

k—o0

e 1)

< e_CM2(27r)_" / |det (M — 2sL,) | ¥ (s)ds,
where ¢ > 0 is a constant independent of k, and

(8.68) limsup k™"

k—o0

e_k‘b(y’“)ﬁk(yk)‘ = (277)_"/ }det(M;5 - 2s£p)’@/1(s)ds.
From (8.62) and (8.63), we conclude that

limsup k™"
k—o0

From this and (8.67), (8.68), we deduce that

e—cJVI2 (27‘(‘)_" / |det(M1? _ 25£p> ‘ w(s)ds > (277)_n/ ’det(Mg) — 28[:1)) ’ T/J(S)ds.

e ROy () ‘ > limsup k™"
k— o0

e*’“ﬁ(?]k)fﬁk(yk)‘ _
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But this is impossible. We get a contradiction.
Case I1: limsupy,_, o \fZQn 2 ‘zk —yl

=0, limsupy,_, o k [{wo(xk), Yy —xr )| = M >0 (M can

be 00).

For simplicity, we may assume that

(8.69) klgrolok [{wolxk), yp — xr )| = M, M €]0,0].

Now, ®n, k(xr) = Pn, 1 (yx) implies that we can find a sequence A\ € C such that for each k,
(8.70) e RO (1) = e FEWRT (),

for every uy € Hb <k-No (X, LF), up, = s*uy, on D. We may assume that

(8.71) limsup || > 1.

k—o0

>

T=z),y=yi
¢|{wo(xk),yx — xx )|, where ¢ > 0 is a constant independent of k, we can integrate by parts with

respect to s and conclude that

We fist assume that M = oo. Let hi be as above. From the fact that ‘%

limsup ™"
k— o0

67k¢(zk)ﬁk(xk)‘ =0.
But from (8.71), we have

0 =limsupk™"

k—o0

efkd>(zk)ﬁk(xk)‘

> limsup k™"

k—o0

R0 ()| = (2m)” / |det (M2 — 25L,) | ¥(s)

This is impossible. We get a contradiction. Now, we assume that M < co. From (8.64) and (8.66), it
is not difficult to see that

(8.72)

lim £~" e*k‘ﬁ(“)ﬁk(zk)’ = (2m)7 | [ e*Ms

k—oc0

det (Mg - 2sz:p) ’ w(s)ds

< (2m)~ /‘det (Md’ —2sL )

e—/ﬂb(yk)ﬁk (yi)| -

(s)ds = lim k="
k—o00

We get a contradiction.

Case III: lim supy,_, WZ% ’ ’ . yk‘ =0, limsupy,_, o k [(wo(2k), yx — 2k )| = 0.
Let g; :kaj and set g; = s¥g; on D, j =1,2,...,d;. Put
(8.73)
ax(t) = —ko(tzp+(1—t)yr) —kd(yr) o
i _ _
S Gt + (1 — £y ) (g JeE R A=W +RR it (1=0)30) KR ) +hR(0),
j=1

Ar(t) = lax ()],
Bk (t) :e_de)(txk+(1_t)yk)_2k¢(yk) X

d

>

Jj=1

'gj (tfk + (1 . t)yk)efkR(twk+(17t)yk)+k§(twk+(17t)yk)

2 d — 2
S ‘gj(yk)e—m(ymm(yk)
j=1

where ¢t € [0,1] and R is as in (7.2). Put Hi(t) = 2’28 Hj.(t) is a smooth function of ¢ € [0, 1] since
By(t) > 0 for every t € [0,1]. Moreover, we can check that 0 < Hy(t) < 1 and Hg(1) = H(0) = 1.

Thus, for each k, there is a t; € [0,1] such that
(8.74) H'(t),) > 0.
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We now calculate H;/(t). We first calculate A} (¢). In view of Theorem 7.12, it is not difficult to see
that

(8.75) a(t) :/eik*’(mﬁ(l%)ywk’s)efkR(twk+(17t)yk)+k§(tzk+(17t)yk)wﬁ(yk)mR(yk)

a(tey + (1 = t)yr, Yx, 5, k)ds + ex(txg + (1 — ) yr, yr),

where a(z,y, s, k) ~ Z;io k"aj(z,y,s) in SP.(1;9Q), aj(z,y,s) € C(R), j =0,1,..., Qis as in
the discussion after (7.72),

(8.76) ao(p, p,s) = (2m) ™" (s)*

and e s(2,y) is a smooth function on D x D such that for every D’ € D and every o, 3 € N2" ™1,
there is a constant Cps 4 3,6 independent of k such that

(M]f - 2s£p)

(8.77) 0205 €1, 5(2,y)| < Cpr a5k Nom2H2lel+2181,

We can calculate that

(8.78) AL () =2 (1) + o (£)an(t) + @y (Do (D).

From (2.3), (8.75), (8.76) and (8.77), it is straightforward to see that(we omit the computations)
2 e (t)I” + (1) () + T (tr ) (1)
= 2(2m) 2Pt (( / s ‘det (Mg’ — 23£p)

- /82 ‘det(MgJ - 25£p)

()" ds)”
(s)|2ds/ ‘det (Mg5 - 2s£p>

()1 ds ) (|{wo(wn), s = ax))?

(879) 2n—2 921
m j j
— 2(27) 2"k2”+1/ > g opes) e — ) ek — wi)) et (M7 — 252, )| 0(s)[” ds
J,l=1 J
2n—2 2
o(k2)O ( (wolzr), y — = )) )
Since

((/s‘det(Mg3 —28/51,) (s)|? ds)2
/ ‘det(M¢—28£ ) (s)|? ds/‘det( —2sL )

there is a constant C7 > 0 independent of k such that

((/s ‘det(M;f’ 72551,)‘ \1/1(8)|2d$)2
(8.80) _/ ‘det(M¢ —2sL )’ [1(s)] ds/ ’det( —2sL )‘ [(s | ds)<UJQ($k) Yk _-Tk>2

< —Cl ‘<W0(xk)7yk - Tk >|2 :

(s)\2d3> <0,

Moreover, from (5.73), we can check that there is a constant Cy > 0 independent of k such that

2n—2 821111 gp

- [0 Gt tel — el ok foe (117 - 252,)

2n—2

(s))* ds

(8.81)
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From (8.79), (8.80) and (8.81), we deduce that

2n—2

(8.82) limsup k=" (Vk Z ‘xi - yi’ +k {(wo(zr), yx — T, )\)72A§€’(tk) <-C <0,
k—oo N

j=1

where C' > 0 is a constant.
Now, we have
Ap(tr) 5 AL(tr) A (tr) A (tr) (By(tk))?
8.83 W(ty) = S =22 B (ty,) — By (tg) + 2=
(55 #0) = B 2B T T B P T B
From (1.8), it is easy to see that
2n—2 ) ) )
liinsup<(\/% Z ‘xfc - yi’ + k [{wo(zr), yr — 2k )|) X
(8.84) o i=1
/ ! 2
(- LAGIEY Ak(tk)B“(tk) o Ak(tr) (B (t)) )) _o.

BEa) ) B
From (8.84), (8.83) and (8.82), we deduce that

B}(tr)

2n—2
. j j -2
msup(VE 3 [ =52+ k1 (o) o — 50)) B¢ 1)
(8.85) _— e
= limsup(Vk Z zl =yl |+ k[{wolzr), yr — xk>|)_2Bk ) <—-Cy <0,
k— o0 = k(te)
where Cp > 0 is a constant. But from (8.74), we see that
2n—2 ) ) 9
liznsup((\/E Z ‘xff - yi‘ + k [{wo(zr), yr — ax )|) ~Hy (tk) > 0.
We get a contradiction. The theorem follows. O

Summing up, we obtain one of the main results of this work

Theorem 8.11. Let Ny > 2n + 1. Then, for k large, the Kodaira map ®n,r : X — CP%*~1 is an
embedding.

From Theorem 8.11, we deduce Theorem 1.4.

9. ASYMPTOTIC EXPANSION OF THE SZEGO KERNEL

We recall some notations we used before. Let s be a local trivializing section of L on an open subset

DeX and |s, = e 2. Let A : L (X, LF) — LE (X, L¥) be a continuous operator. Let

Ags : Lo, (D) ()& (D, T"1X) — L (D)

be the localized operator (with respect to the trivializing section s) of Ay given by (1.6). We write
A =0 mod O(k~°) on D if Ay s =0 mod O(k~>°) on D. Until further notice, we assume that
Y (¢) holds on D. First, we need

Definition 9.1. Fix ¢ € {0,1,...,n—1}. Let Ay : L%qu) (X, LF) — L%O7q)(X, L*) be a continuous

operator. Let D € X. We say that Dl(jq,i has O(k~™) small spectral gap on D with respect to Ay
if for every D’ € D, there exist constants Cp: > 0, ng,p € N, kg € N, such that for all k¥ > ky and
u € Qg’q(D’,Lk), we have

|4k -1y |, < Corbm NE
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Definition 9.2. Let Ay : Lﬁqu) (X, L*) — L%&q)(X, L*) be a continuous operator. We say that H,(f)

is k-negligible away the diagonal with respect to A on D if for any x, x1 € C§°(D) with x1 =1 on
some neighbourhood of Supp x, we have

(XAk(l - Xl))l’[,(cq) (XAk(l - X1)> =0 mod O(k™°) on D,
where
(XAk(l - Xl)) L2 (X, IF) = L (X, LF)

is the Hilbert space adjoint of x Ax(1 — x1) with respect to (-[-), .

It is easy to see that if H,gq) is k-negligible away the diagonal with respect to Ay on D, then for any
X, X1 € C5°(D) with x1 =1 on some neighborhood of Supp x, we have

(XAk(l - Xl))HECq) =0 mod O(k™) on D.

Definition 9.3. Let Ay, : LY, (X, L*) — L7, (X, L*) be a continuous operator. We say that Ay is a
global classical semi-classical pseudodifferential operator of order m on X if for every local trivializing
section s of L on an open subset D C X, the localized operator Ay ¢ is a classical semi-classical

pseudodifferential operator of order m on D.

Proposition 9.4. Let Ay : L?O 2 (X,LF) — L%o 9 (X, L*) be a global classical semi-classical pseudo-

differential operator on X of order 0. If X is compact and Y (q) holds on X then H,(Cq) 1s k-negligible
away the diagonal with respect to Ay on every local trivialization D € X.
Furthermore, if X is non-compact and Ay, is properly supported on D € X and Y (q) holds on D,

where D is a local trivialization of X, then Hgf) 18 k-negligible away the diagonal with respect to Ay
on D.

Proof. Let s be a local trivializing section of L on a local trivialization D C X. From Theorem 7.3, we
can repeat the proof of Proposition 7.6 with minor change and conclude that for every «, 8 € Ng"il,
and D' € D, there is a constant C, g p- > 0 independent of k such that

(9.1) 900) (ﬁﬁjg(x,y)) < Coppr k™18l on D/ x D
From (9.1) and by using integration by parts, the proposition can be deduced . We omit the details. [
Now, we can prove

Theorem 9.5. Let s be a local trivializing section of L on an open subset D C X and |s|iL =e 2%,
We assume that there exist a A9 € R and zg € D such that Mfo — 2XoL,, is non-degenerate of
constant signature (n_,ny). Let ¢ = n_ and assume that Y (q) holds at each point of D. Let Fy, :

L%O,q) (X,LF) — L%07q)(X, L¥) be a continuous operator and let F} : L(2O,q) (X,LF) — L%qu)(X, LF) be

the Hilbert space adjoint of Fy with respect to (-|-),o». Let Fk,s and Fy, . be the localized operators
of Fy,s and Fy.  respectively. We fix Dy € D, Dg open. Let V' be as in (5.14). Assume that

Fro— Ay =0(k™): HS, (D, T*9X) — H (D, T*9X), Vs e Ny,

comp

where
2n—1

Ay = s [ o, Ky mod O(K=) at T*Dy (13

is a classical semi-classical pseudodifferential operator on D of order 0 from sections of T*®1X to
sections of T*%9X , where

a(z,n, k) ~ ijo aj(z,nk™ in SO (1;T*D, T*09X K T*%1X),
aj(z,n) € C(T*D, T** DR T*D), j=0,1,...,

with a(z,n, k) = 0 if |n| > M, for some large M > 0 and Supp «(x,n,k)(YT*Dy € V. Put Py :=
FkH,(f)F,:‘ and let If’hs be the localized operator of Py. If Dl()?,z has O(k~™) small spectral gap on D
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with respect to Fy, and H;q) is k-negligible away the diagonal with respect to Fy, on D, then
(9.2) Pualay) = [ 450 g(ay,5,K)ds mod O(k™)
on Dg, where p(x,y,s) € C*(Q) is as in Theorem 5.29, (2.3),

glx,y,s,k) € S (L QT*IX RT01X) () Cp° (2, T*09X R T*1X),
(9.3) g(x,y, s, k) ~ Zgj (z,y,8)k" 7 in S, (1; O,T*%X K T*O’qX),

§=0

gi(z,y,8) € C°(Q,TIXRTX), j=0,1,2,...,
and for every (x,xz,s) € Q, x € Dy,
(9 4) go($,l’78)
. =(2m)™" |det(Mf —25L,) | ag(x, swo(x) — 2Im pB(%)) 7 (5,5,n )0 (@, swo(2) — 2Im ().

Q:={(z,y,5) € D x D x R; (z,-2Im 9p¢(z) + swo(z)) € VﬂE,
(y, —2Im 0y (y) + swo(y)) € VN E, |z —y| < &, for some ¢ > 0},

aj(z,n) : Tr%9X — Tr99X is the adjoint of ag(x,n) with respect to the Hermitian metric {-|-) on
Tr09X, T(z,sm_) T;O"JX — N (z, s,n_) is the orthogonal projection with respect to {-|-), N'(z,s,n_)
is given by (5.39),

|det (M7 — 25L4)| = [Ai(s)[ A2(s)] -+ [An=1(s)],

A1(8), .., An_1(s) are eigenvalues of the Hermitian quadratic form M —2soL, with respect to (-|-).

Proof. For simplicity, we assume that Ay is properly supported on D. Take x,x1 € C5°(D) with
x =1 on Dy and x; = 1 on some neighbourhood of Supp x. Put

Gr = xFix1, Hp=xFr(1-x1), Br= FngI), Ry, = Hkﬂfgq),
and let G7, H}} : L%O Nee LF) — L%O,q)(X’ L*) be the Hilbert adjoints of G, and Hy, respectively. Let
CA};S, G‘k,s, PAI;’S, H’km Bk_,s, Rk,s be the localized operators of G}, G, H}, Hi, By, Ry respectively.
Since H,(‘,q) is k-negligible away the diagonal with respect to Fj, on D, it is not difficult to see that
©5) ]5;6’5 = éksﬂéqié,’;s mod O(k~°) on Dy,
. pk)s = Akf[](giAZ mod O(k~°) on Dy,

where A} is the formal adjont of Aj. Let S and Ny be as in Theorem 6.5. Here we let fk = A} in
Theorem 6.5. Let Dg?,)c be as in (4.4). Then,

(9.6) 0N + Sk = Af + by on 9/(Dy, T*09X),

' NGO+ Sp = A+ b on 7'(Do, T9X),

where hy = 0 mod O(k~°), N, S and hj are formal adjoints of N, S and hy with respect to
(-]-) respectively. From (9.6) and notice that D(gl)fﬂ,(f)g = 0, it is not difficult to see that

S;ﬁggi = (Ar + h,’;)ﬁggl on é"’(Do,T*quX),

(9.7) : (
") Sk = I (Af + hy,) on &' (Do, T*9X).
Let u € H{yyp, (Do, T°9X), m < 0, m € Z. We consider

v=s"e*Spu — H](Cq)(skekd’Sku).
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Since Y (¢) holds on D and Sy, is a smoothing operator, we conclude that v € L%07q)(X, LFYNQ%9(D).
Moreover, from (4.1), we have
(9.8) Ofv = she" 0 Syu.
In view of Theorem 6.5, we see that Dg‘f})@&f =0 mod O(k~°). Combining this with (9.8), we obtain

for every p € N,

(9.9) | @] . < Oxph™

hL*

for every N > 0, where Cy,, > 0 is independent of k, v and ||-||,, denotes the usual Sobolev norm
of order m on Dy with respect to (-|-). Moreover, from the explicit formula of the kernel of Sy (see
(6.29)), it is straightforward to see that

(9.10) [ollex < CE"F™ [all,,,

where C' > 0 is a constant independent of £ and u. Note that Dg?,z has O(k~") small spectral gap

on D with respect to Fj, and Hgf)v = 0. From this observation, (9.9) and (9.10), we conclude that
| Froll,ex < Cnk™N [ul|,,,, for every N > 0, where Cy > 0 is independent of k. Thus,

(9.11) Py oSk — BrsSk = O(k™™) : HI2 (Do, T*9X) — L, (Do),

forall N >0, m € Z, m < 0. Since HECQ) is k-negligible away the diagonal with respect to Fj on D
and notice that Hy, ;S =0 mod O(k~°), we conclude that

(9.12) H. oSk — Ry sS,, =0 mod O(k=>°) on Dy
and hence
(9.13) f?‘k,sSk - Bhssk = éhssk — GAk,sﬁ](giSk mod O(k~°) on Dy.

From (9.13) and (9.11), we obtain
GrsSk — G IS, = O(k™N) : HI% L (Do, T09X) — L2 (Do),
ArSy = AdLOS, = O(k™N) : H o (Do, T1X) — L2 (Dy),

comp

(9.14)

forall N >0, m e Z, m <0. Put
Ay =T —i—f,i mod O(k~°) on Dy,

T k2n71 thk<x— —o0

(9.15) Iy = (27‘_)2”_1/6 <PV (@, m, k)dn  mod O(k™>°) on Do,
~ k?nfl "
k= W/e’ STV B(x,y,m, k)dn on D,

where 7, and f,i are properly supported on Dy, S(z,y,n, k) € S&C,Cl(l;T*D,T*O’qX X T*04X)
and there is a small neighbourhood I' of T*Dy (X such that 8(z,y,n, k) = 0 if (z,n) € I'. Since
B(x,y,m, k) =0 if (x,n) near T* Dy and notice that .Ff[,(cql =0 mod O(k~*) on Dy if F is a properly
supported k-negligible operator on Dy, we deduce that féﬁgcqi =0 mod O(k~>°) on Dy. Moreover,
it is not difficult to see that i,iSk =0 mod O(k~*°) on Dy. Combining these with (9.15), we obtain
AkSk = kak mod O(k_oo) on .D()7
(9.16) Akﬂgi = fkf[éql mod O(k~>°) on Dy,
AkSk — Akf[,(;flSk = kak — fkf[,(f)gsk mod O(k_oo) on Do.
From (9.16) and (9.14), we deduce

(9.17) TS — LS, = O(k™N) - HI o (Do, T9X) — L) (Do),

comp
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forall N >0, m € Z, m <0. Take
Y(z,n,k) € Sphe o (LT*D, T*IX RT*IX) ﬂ Co(V, T*%1X K T*01X)
so that y(x,n,k) = 1 on Suppa(z,n, k) T*Dy and let Ty = [ €'<*~¥1>~(z,n,k)dn mod O(k~)

on Dy be a properly supported classical semi-classical pseudodifferential operator on D of order 0
from sections of T*%9X to sections of T*%9X. Since vy(x,n, k) = 1 on Supp a(z,n, k) () T* Do, we have

(9.18) I'wZ =, mod O(k~>) on Dy
and hence
(9.19) kak — fkﬂ;‘fisk = Fk (kak —fkﬁ,(gisk) mod O(kioo) on Do.

Since Suppy(z,n,k) € V, T'y is a smoothing operator and we can check that
(9.20) Ty = O(k%) : HY (Do, T*1X) — H{ . (Do, T*1X),
for every s € Ny. Combining (9.20), (9.19) with (9.17), we deduce that
(9.21) TS — LI!Sk =0 mod O(k™) on D.
From (9.21), (9.16), (9.7) and note that f[,(gihk. =0 mod O(k=), we get
(9.22) AS — ALY A5 =0 mod O(k~) on Dy.

From (9.6), we have ;S = AxSy mod O(k~>°) on Dy. From this, (6.40), (6.58), (9.22) and (9.5),
the theorem follows. O

By using Theorem 6.10 and repeat the proof of Theorem 9.5, we deduce

Theorem 9.6. Let s be a local trivializing section of L on an open subset D C X and |5|}21L =e 29,
We assume that there exist a A9 € R and xog € D such that Mfo — 2XLy, is non-degenerate of
constant signature (n_,ny). Let ¢ # n_ and assume that Y (q) holds at each point of D. Let F}, :

L?O,q) (X,LF) — L%()’q) (X, L*) be a continuous operator and let F} L?O,q) (X, LF) — L%O’q)(X7 LF) be

the Hilbert space adjoint of Fy, with respect to (~|~)th. Let Fk,s and F,;‘G be the localized operators
of Fi..s and F,;"S respectively. We fix Do @ D, Dy open. Let V' be as in (5.14). Assume that

Fro— Ay =0(k™): HS, (D, T*%X) — H*(D,T**X), Vs e Ny,

comp
where

2n—1

Ap = @”;)ﬁ Je*<Tmvn>a(z,n,k)dy mod O(k~>°) at T*Dy (X

is a classical semi-classical pseudodifferential operator on D of order 0 from sections of T*%9X to
sections of T*9X | where

a(z,m,k) ~ 3 _gaj(z,mk™ in S, (L, T*D, T*9X R T*9X),
aj(z,n) € C(T*D, T*** DR T**D), j=0,1,...,

with a(x,n, k) = 0 if |n| > M, for some large M > 0 and Supp a(x,n,k)(T*Dy € V. Put Py :=
Fkﬂéq)F,j and let Pk,S be the localized operator of Py. If Dl(f,i has O(k~™) small spectral gap on D
with respect to Fy, and H,(Cq) is k-negligible away the diagonal with respect to Fy, on D, then

(9.23) Pi.=0 mod O(k™) on Dy.
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10. SEZGO KERNEL ASYMPTOTICS AND KODAIRAN EMBEDDING THEOREMS ON CR MANIFOLDS
WITH TRANSVERSAL CR S! ACTIONS

In this section, we will offer some special classes of CR manifolds and CR line bundles such that
the conditions in Theorem 9.5 hold.

Let (X,T1°X) be a CR manifold. We assume that X admits a S action: S1 x X — X. We write
e, 0 < 0 < 27, to denote the S' action. Let T € C*°(X,TX) be the real vector field given by

= 2 (e a))loo, ue C¥(X).

We call T the global vector field induced by the S' action. Note that we don’t assume that this S*
action is globally free.

(10.1) Tu

Definition 10.1. We say that the S* action e/, 0 < 8 < 27, is CR if
[T,C°(X, T X)] c C=(X,TH°X).
Furthermore, we say that the S' action e, 0 < § < 2, is transversal if for every point = € X,
T(x)eTHX o TO' X = CT, X.

Until further notice, we assume that (X,7%°X) is a CR manifold with a transversal CR S! action
e’ 0 < 6 < 27 and we let T be the global vector field induced by the S! action.
Fix 6y € [0, 27]. Let

de'® : CT, X — CT.i0y, X
denote the differential of the map e*% : X — X.

Definition 10.2. Let U C X be an open set and let V € C>°(U,CT'X) be a vector field on U. We
say that V is T-rigid if

de’V(z) = V(x), Vx e ewOUﬂ U,
for every 0y € [0, 27] with U N U # 0.
We also need

Definition 10.3. Let (- |-) be a Hermitian metric on CT'X. We say that (- |-) is T-rigid if for T-rigid
vector fields V and W on U, where U C X is any open set, we have

(V(z) | W(z)) = (de®V (ex) |de’®W (e'Px)), Vo e U, b < |0,2n].

We are going to show that there exists a T-rigid Hermitian metric on CT'X. We need the following
result due to Baouendi-Rothschild-Treves [1, sectionl]

Theorem 10.4. For every point xo € X, there exists local coordinates x = (z1,...,Ton—1) = (2,0) =
(21, y2n-1,0), zj = xaj_1 +ixej, j=1,...,n—1, 0 = x2,_1, defined in some small neighbourhood
U of xo such that
0
T - %,
10.2
1oz 2,20 4% 0% i1 -
J 6Zj 8Zj 00

where Zj(z), j = 1,...,n—1, form a basis of T*° X, for each x € U, and p(z) € C*(U,R) independent
of 6.

Let « and U be as in Theorem 10.4. We call & canonical coordinates and U canonical coordinate
patch.

Theorem 10.5. There is a T-rigid Hermitian metric (-|-) on CTX such that T*°X 1| TO1X,
T1L(TYX@TOrX), (T|T)=1 and (ulv) is real if u,v are real tangent vectors.
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Proof. Let (-, -) be any Hermitian metric on CTX such that 719X | 701X, T 1 (T*0X @ TO1X),
(T, T)=1and (u,v) = (T, D), for all u,v € CT'X. Let 2 and U be as in Theorem 10.4. On U,
define

27
10.3 Z: | Z,) = de®Z;, de’®z,)do, jt=1,...,n—1,
J J
0

where Z;, j = 1,...,n — 1 are as in (10.2). Since Z;(x), j = 1,...,n — 1, form a basis of T} °X,
for each x € U, On U, (10.3) defines a T-rigid Hermitian metric (-|-) on 71°X. We claim that the

definition above is independent of the choice of canonical coordinates. Let y = (y1,...,y2n—1) = (w,7),
Wi = Y2j—1 + Y25, j =1,...,n — 1, v = ya,_1, be another canonical coordinates on U. Then,
_9
=57
(10.4) : a+a<p()a - 1
== w)=—, j=1,...,n—1,
T Ow; Qw0 J
where Z (y ,n—1, form a basis of T;;° X, for each y € U, and ¢(w) € C*°(U, R) independent

) J
of 4. As( 0. ) onU wedeﬁne
(10.5) (Z;| Zi ;:/ (deZ;, de®®Zy)dh, j,t=1,....,n— 1.
0
On U, (10.5) defines a T-rigid Hermitian metric (-|-); on TH°X. We claim that (-|-); = (-|-).
From (10.4) and (10.2), it is not difficult to see that

w = (wla v 7wn—1) - (Hl(z)7 . 'aHn—l(z)) - H(Z)7 HJ(Z) € COO? V]a

(106) Y= 0+ G(2), Gz)eC™,

where for each j = 1,...,n—1, H;(z) is holomorphic. From (10.2), (10.4) and (10.6), it is not difficult
to see that

n—1
Zj: V,t(x)Zta Cjt ECOO(U)v jatzlv"'7n_17
(10.7) =t
(Cj7t(x))7; | is invertible at every x € U,

Tcjy =0, j,t=1,...,n—1

Let I, A € C*°(U, T X). We write

n—1 n—1

j=1 j=1

(10.8) - -
A= Zly(sc)z] =Y bi(W)Z;, bjb; €CU), j=1,...,n—1

j=1 j=1

From (10.8) and (10.7), we can check that

n—1

ar =Y Gjcjp, t=1,...,n—1,
Jj=1
n—1~

br=» bjcje, t=1,...,n—1,
Jj=1

(10.9)
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Now, by definition,

n—1 o 2
(DIA) = > ajbt/ (de®Z;, de®®Z; )d
0

Jit=1

n—1 .27 n—1 n—1
> b / (de’ (> c;joZs), de* (Y cruu))do
Git=1 0 s=1 u=1

(10.10) n-l n-l = 2 .
=Y Y ¢strudibs / (de"Z, e 7, )df
jit=1s,u=1 0
n—1 27
- Z asby / (deZ, | de’ 7, )do
s,u=1 0
= (T|A).

Here we used (10.7), (10.9) and de®® (3"~ ¢, Zs) = S\ ¢ sde®® Zy, s = 1,...,n—1, since T¢; , = 0,
j,s=1,...,n —1. Thus, (10.3) defines a T-rigid Hermitian metric on 7%°X. We extend (-|-) to a
T-rigid Hermitian metric on CT'X by

(u|v) =Talo), uveT"'X,
TL(TYXaT%X), (T|T)=1.
The theorem follows. O

Until further notice, we fix a T-rigid Hermitian metric (-|-) on CTX such that T%°X 1| T91X,
T1(TYXeTMX), (T|T)=1and (ulv) is real if u,v are real tangent vectors. The Hermitian
metric (-|-) induces, by duality, a Hermitian metric on CT*X and also on the bundles of (0, ¢) forms
T*%9X q=0,1,...,n — 1. As before, we denote all these induced metrics by (-|-).

Definition 10.6. Let U be an open subset of X. A function u € C*°(U) is said to be a T-rigid CR
function on U if Tu = 0 and Zu = 0 for all Z € C>°(U, T*'X).

Definition 10.7. Let L be a CR line bundle over (X,T*%X). We say that L is a T-rigid CR line
bundle over (X, TH%X) if X can be covered with open sets U; with trivializing sections s;, j = 1,2, ...,
such that the corresponding transition functions are T-rigid CR functions.

Until further notice, we assume that L is a T-rigid CR line bundle over (X,T%°X). Then, by
definition, X can be covered with open sets U; with trivializing sections s;, 7 = 1,2,..., such that the
corresponding transition functions are T-rigid CR functions. In this section, when trivializing sections
s are used, we will assume that they are of this special form.

Fix a Hermitian fiber metric h* on L and we will denote by ¢ the local weights of the Hermitian
metric h® as (3.5). Since the transition functions are T-rigid CR functions, we can check that T¢ is
a well-defined global smooth function on X and the Hermitian quadratic form Mg is globally defined
for every x € X (see Definition 3.4 and Proposition 3.5).

Definition 10.8. h” is said to be a T-rigid Hermitian fiber metric on L if T¢ = 0.

Until further notice, we assume that h” is a T-rigid Hermitian fiber metric on L and X is compact.
For k > 0, as before, we shall consider (L, th) and we will use the same notations as before. Since
the transition functions are T-rigid CR functions, Tu is well-defined, for every v € Q%9(X, L*). For
m € Z, put

(10.11) AY(X, LF) = {u € Q(X, L*); Tu = imu}

and let ARY(X, L¥) C L, (X, L*) be the completion of AR9(X, L¥) with respect to (-|-),.x. It is

easy to see that for any m, m’ € Z, m # m/,

(10.12) (u|v), o =0, Yue A%UX, LF),ve A%(X, LF).
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For m € Z, let
(10.13) QW 1 L% (X, LF) — A%(X, L")
be the orthogonal projection with respect to (-|-),.x. Fix 0 > 0. Take 75(x) € C§°(] — 6,0]),

0<7s<land7s=1on[-%, 3] Let Féi) L%O oKX LF) — L%O (X L¥) be the continuous map

given by
(9) . k
F4) .Lﬁqu)(X,L ) = L(0 q)(X L )
(10.14) N 275 (q) w).

It is easy to see that F’ 5(33 is well-defined. Moreover, it is not difficult to see that for every m € Z, we

have

HTQ(q) H :|m|HQ55)k“H oo Y€ Lip (X, LY,
(1015) 2 k
[restul o 9]0 v g2
and
QY QYI(X, LF) — ALY(X,LP),
(10.16) P90 x, ) - | A%X, LR
—k§<m<ké

Since the Hermitian metric (-|-) and hX" are all T-rigid, it is straightforward to see that (see
section 5 in [17])

m,k
DA Fss = Fy Oy on Q09(X, LF),
gb,kQ,(qZ?k = Q(QH)gb ron QUI(X LF) YmeZ, q=0,1,...
By F) = R abk on QO4(X,L*), ¢=0,1,....n—2,
8ka(q) Q(q V3 pon QX IR YmeZ qg=1,....n—1
ab’kF&k = q l)abk on QVU(X, LK), g=1,...,n— 1.

Dé?;i@ff?k =Q\ D(Q) on Q%9(X, LF), Ym € Z,

,TL—2,

(10.17)

)

By using elementary Fourier analysis, it is straightforward to see that for every u € Q%9(X, LF),

N
lim > Qfg)ku — u in C*° Topology,
N

N—oo,p,——
(10.18) .
2
|| ., < lulifar, vN € No.
m=—N
Thus, for every u € L%o ” (X, L),

: (@)
ngnoo ZNQ R — U in L(o 2

m=

(X, LF),

(10.19) ,
e < llullhe, VN € No.

> e,

m=—N

Now, we assume that M? is non-degenerate of constant signature (n_,ny), for every z € X. The
following is essentially follows from Kohn’s L? estimates (see Chen-Shaw [6]). We omit the proof.
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Theorem 10.9. With the assumptions and notations above, let ¢ # n_. For every u € Q%9(X, LF),
we have

2
2
(10.20) ||, + R 1T )| = k2 fulan

where ¢ > 0 is a constant independent of k and w.

From (10.15) and (10.20), we deduce

Theorem 10.10. With the assumptions and notations above, let ¢ £ n_. If § > 0 is small enough,
then for every u € Q%9(X, L¥), we have

10.21 D(Q) F(‘I) 2 > k2 F(Q) 2
(10.21) b,k( 5,k“) Lk Z sk

RLF

where ¢c; > 0 is a constant independent of k and u.

Now, we assume that Y (¢) holds at each point of X. Since X is compact, by the classical result of

Kohn [6, Props. 8.4.8-9], condition Y(¢) implies that I:ll(;’l,z is hypoelliptic, has compact resolvent and

the strong Hodge decomposition holds. Let Spec D,()q,i denote the spectrum of Dl()q,i. Then Spec D,()q,z is

a discrete subset of [0, oo[, Spec Dg?,i is the set of all eigenvalues of Dg?]l. For p € Spec D,()?IL put
(10.22) HY (X,IF) = {u € L3 (X, I%); Ou = ,uu}

and let

(10.23) Y« L3, (X, LF) — HY (X, L")

be the orthogonal projection.
We notice that Hg,M(X, LF)y c Q%9(X, LF), Yu € Spec Dg?; and for every A > 0,

(10.24) Hi (X, L*) =@ HY (X, LF).

pnESpec Déq])c ,0< <A

Theorem 10.11. With the assumptions and notations above, let ¢ =n_. If § > 0 is small enough,
then for every u € Q%9(X, L¥), we have

(10.25) Fg(i)Hff,Lu =0, Vu € Spec Dé?,l, 0 < pu<kd,
and

1
(10.26) |- H,(j))uHth <= (=i e

In particular, if § > 0 is small enough then for every D € X, Dé?,l has O(k="™°) small spectral gap

on D with respect to Fa(gc) in the sense of Definition 9.1.
Proof. Let § > 0 be a small constant. For u € Q%9(X, L¥), we have

(10.27) (I -1 )u = Z H](cq,il,u + Hl(g)>k5“~
peSpec 0P 0<u<ks

We claim that for every u € Spec D,(cq), 0 < pu < ké and every u € Q%9(X, LF),
(10.28) FI0u =0

if § > 0 is small enough. Fix u € Spec D;Cq), 0<p<kdand u € Q%(X,L*). Since ¢+ 1 # n_, from
(10.17) and (10.21), we have

2

)

o 2
(10.29) (S

2 || plat+D) gy (a)
ez ek |[FSV, ul

nLk

where ¢; > 0 is a constant independent of k£ and u. It is easy to see that

Dg?;l)Fé(’i—H)gb’kH,(;{Lu = MF(;(:?_l)gb,kH](gLU-
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Thus,

_ 2 _ 2
(10.30) | E G|, < k262 || FT0, I, )

REF

From (10.29) and (10.30), we conclude that if 6 > 0 is small enough then
F[s()‘g:rl)gb’kﬂgglu = gbkazS(,qk)Hl(gLu = 0.
Similarly, we have
Fé’ifl)é,ikn;jlu = EZ,kFa(fQH;(fLu —0.

Hence,
(10.31) F(Q)H(Q) D(Q)F(Q)H(q) -0

From (10.31), the claim (10.28) follows.
Now, from (10.27) and (10.28), if § > 0 is small enough, then

il =], <

k
(10.32) () <h>L 0@ ()
%S HDb?kagka“’ WLk ko H kq>/c5 bqkuHh =g Hquk pLk
for every u € Q%9(X, L*). From (10.32), (10.26) follows. O

Until further notice, we fix 6 > 0 and we assume that § > 0 is small enough so that (10.25), (10.26)
hold and

(10.33)  M? — 2)\L, is non-degenerate of constant signature, for every A €] — 6,6[ and = € X.

Let D C X be a canonical coordinate patch and let © = (21, ...,Z2,-1) be a canonical coordinates
on D as in Theorem 10.4. We identify D with Wx] — ¢,e[C R*"~1 where W is some open set in
R?"2 and ¢ > 0. Until further notice, we work with canonical coordinates x* = (x1,...,72,_1).
Let n = (m,...,M2n—1) be the dual coordinates of z. Let s be a local trivializing section of L on
D, |5|}2;L = e 2. Let M > 0 be a large constant so that for every (z,n) € T*D if || > & then

(x,n) ¢ 3, where ' = (1,...,M2n—2), |7'| = 22" *|n;1>. Fix Dy € D. Let D’ € D be an open
neighbourhood of Dy. Put

(10.34) V=A{(z,n) eT*D’; |n'| < M, |nan—1| < d}.
Then V C T*D and V(X C ¥/, where X' is given by (1.5). Put

W/eik<“y’”>ﬁ(n2na)dn.

Let é;s be the adjoint of By, , with respect to (-|-). Then,

R k2n—1 .
(10.36) Bl = ot /e2k<””‘y’">m(n2n_1)dn.

(2m)2n—1
It is clearly that
B, =

;s — (2m)2n 1

k2n7 1

J e <E v a e, n, k) mod O(k=) at T* Do ()%

is a classical semi-classical pseudodifferential operator on D of order 0 from sections of T*%9X to
sections of 799X, where

a(z,n, k) ~ 3, _gaj(z,nk™7 in S (1, T*D, T*1X ®T*X),
aj(z,n) € C°(T*D, T***DRT*D), j=0,1,...,

with a(x,n, k) =0 if |n| > M, for some large M > 0 and Supp a(z,n,k)(T*Dy € V.
Let 13'5(275 be the localized operator of F(S(‘Q
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Lemma 10.12. Fé((i)s = Bés + Bk,s on D, where

B =0(k™°) : Hyp (D, T*9X) — Hib (D, T*9X), Vs € N,.
Proof. Let u € Qg’q(D,Lk), u = s*u, u € N%9(D). We also write y = (y1,...,Y2n_1) to denote the
canonical coordinates x. It is easy to see that on D,

. 1 . 4 . .
(10.37) Féi),s“(y) _ % TEZTé(T:)ezmyznl /_Tr e—zmtu(ezt o y’)dt, = QBH(D),
where ¥ = (y1,...,Y2n—2). Fix D’ € D and let x(y2n—1) € C§°(] — 7, 7[) such that x(yan—1) =1 for
every (y,yzn—1) € D'. Let By  : QYY(D') — Q%4(D') be the continuous operator given by

By, : Qp(D') — Q¥9(D"),
1 1<Ton—1—Y2n—1,12n—1> M2n—-1
(10.38) U ngz/tme 7s( )

X (1 — X(ygn_l))eimy%’_l6_imtu(6it e} y/)dthQn_ldan_L

By using integration by parts with respect to n2,_1, it is easy to see that the integral (10.38) is
well-defined. Moreover, we can integrate by parts with respect to 172,—1 and ys,_1 several times and
conclude that

(10.39) By, =0(k™): H: o (D, T*X) — Hi (D, T*"7X), Vs € N,.
Now, we claim that
(10.40) Brs+BE,=E  on QD).

Let u € Q9(D’). From (10.35) and Fourier inversion formula, it is straightforward to see that
(10.41) ’ (2m)? 2= Ji<n k
X X(Y2n-1)e
From (10.41) and (10.38), we have
(Brs + Bi Ju(x)
(10.42) 1

3 — 2n—1 i i ;
— 5 / ez<a:2n—1 y2n717772n71>7_6(77 n )ezmyzn,le zmtu(ezt ° $,)dtd’r}2n_1dy2n_1.
(2m)? 2= Ji<n k

iMmyan—1 ,—imt

€ u(e™ o a')dtdnay—1dyzn—1.

From Fourier inversion formula and notice that for every m € 7Z,

/ezman—le_lan—l'rIZn—ldy2n_1 — 2775771("7271—1)7

where the integral above is defined as an oscillatory integral and ¢, is the Dirac measure at m(see
Chapter 7.2 in Hérmander [11]), (10.42) becomes

1 my i —imt, (it 1
10.4 =5 S m(pemen [ et o ai
(1043) 277,7126:2 & o<
= B3 ul@)

Here we used (10.37).
From (10.43), the claim (10.40) follows. From (10.40) and (10.39), the lemma follows.
O

‘We need

Lemma 10.13. Let D C X be a canonical coordinate patch of X. Then, H,(Cq) 1s k-negligible away the
diagonal with respect to F(;(i) on D.



88

Proof. Let x,x1 € C§°(D), x1 = 1 on some neighbourhood of Suppx. Let u € H{(X,L*) with
llull,.x = 1. In view of Theorem 7.3, we see that there is a constant C' > 0 independent of k and u
such that

(10.44) lu(2)[2,x < CK™, Yz € X.
Let z = (x1,...,%2n-1) = (', 22,—1) be canonical coordinates on D. Put v = (1 — x1)u. It is
straightforward to see that on D,
1 . el
XD = xule) = == / e San kb Ty () (AL e
(10.45) (2m) mez,|m|<2ks ¥ IHIST
x e~ My (e o x)dtdng, — 1 dyan 1.
Let € > 0 be a small constant so that for every (z1,...,Z2,-1) € Supp X, we have
(10.46) (1, ., Tan—2,Y2n-1) € {& € D; x1(x) =1}, Y |yan—1 — Tan—1| < e.
Let ¢ € C3°(] — 1,1[), ¥ = L on [$, ]. Put
(10.47)
1 ; _ Ton—1 — Yon—1 Mn—11 ;
T — 1<T2n—1—Y2n—1,"M2n—-1> 1— 1MY2n—1
W= > [ (1= (LI )y (P )

meZ,|m|<2kd

% e_imtv(eit ° x/)dthanldyznfl’

1 i — Toan—1 — Yon—1 2n—1\ ;
Il (x) = — / e’L<Z2n71 92n717772'n71>,l/}(—)x(x),r§(7)elmy2nfl
(10.48) (2m)? mze:z jtl<n € k

—imt

X e v(e' o ') dtdn,_1dyon 1,
and
(10.49)

IQ(.T) = Z / ei<51?2n717y2n71777271.71>,¢)(M)X($)T6(%)eimy2”,1
2 lt|<n € k

meZ,m|>2kd
x e~ My (e o x)dtdng, 1 dyan 1.

It is clearly that on D,
(10.50) XELD (1= x1)u(z) = Io(z) + Li(z) — Ix(z).

By using integration by parts with respect to 7s,—1 several times and (10.44), we conclude that for
every N > 0 and m € N, there is a constant Cn ,,, > 0 independent of v and k such that

(10.51) 1Zo(@)llem(py < Onmk™™

Similarly, by using integration by parts with respect to ya,_1 several times and (10.44), we conclude
that for every N > 0 and m € N, there is a constant Cy ,,, > 0 independent of v and k such that

(10.52) 122l gy < Cnamk™™

We can check that

(10.53)
1 3 n—1 n— n—

Ii(x) = */GKIZ"“7y2"71’n2"71>1/1(w)>((33)76(TD SYo(a, Yan—1)dnzn—1dyon—1.

27 € k

From (10.46) and (10.53), we deduce that

(10.54) Li(z)=0on D.

From (10.50), (10.51), (10.52) and (10.54), we conclude that for every N > 0 and m € N, there is a
constant CA'N,m > 0 independent of v and k such that

(10.55) HXF(S("Q(l - Xl)u(m)’ < Cymk™.

cm (D)
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From (10.44) and (10.55), it is not difficult to see that

di 2
(10.56) > BN (1 - x1)fi(x) x =0 mod O(k™>) on D,
j=1
where {f1,..., f4, } is an orthonormal basis for H{(X, L*). From (10.56), the lemma follows. O

From Lemma 10.13, Lemma 10.12 and Theorem 10.11, we see that the operator Fg(ffc) : L?O 9 (X,LF) —

L2
(0,9)
sults of this work

(X, L¥) satisfies all the conditions in Theorem 9.5. Summing up, we obtain one of the main re-

Theorem 10.14. Let (X, T*°X) be a compact CR manifold with a transversal CR S* action and
let T be the global vector field induced by the S* action. Let L be a T-rigid CR line bundle over X
with a T-rigid Hermitian fiber metric k. We assume that Y (q) holds at each point of X and M is
non-degenerate of constant signature (n_,ny.), for every x € X. Let s be a local trivializing section
of L on an canonical coordinate patch D C X, |s|iL =e2%. Fir Dy € D. Let Fé(i) : L?O,q) (X, Lk) —
Lf (X, LF) be the continuous operator given by (10.14) and let FJ(’(Q’* P LY (X, LF) — Lf (X, LF)
be the adjoint of Fa(zc) with respect to (-|-),cr. Put P := F(;(,’QH,(cq)F(;(qu)’* and let Pk,s be the localized

operator of Py. If ¢ # n_, then Pk:,s =0 mod O(k™>°) on Dy. If g =n_, then
(10.57) Pralw) = [ 20y, 5. 0)ds mod O(k~)

on Dg, where p(z,y,s) € C*(Q) is as in Theorem 5.29, (2.3),
g(z,y,s,k) € S (L, QT*IX RT01X) (| Cp° (2, 709X R T*1X),

(10.58) g(z,y, s, k) ~ igj (z,y,8)k" 7 in S, (1; QO,T%X K T*O’qX),
3=0

g;i(z,y,s) € C(Q,TIXRT™X), j=0,1,2,...,
and for every (z,x,s) € Q,
(10.59) gO(I’x’f) 2
=(2m) " |det(Mf - 23£w)| 175 ()" T(z,8,m_)-
Here

Q :={(z,9,8) € D x D x R; (2, —2Im dp¢(z) + swo(z)) € VﬂZ,

(y, —2Im 9,0 (y) + swo(y)) € VX, |z — y| < ¢, for some e > 0},
V s given by (10.34), Tz smn_) : T;O"IX — N(z,s,n_) is the orthogonal projection with respect to
(-]), N(z,s,n_) is given by (5.39),
[det(M? — 25£,)] = ()] Pa(3)] - P a(5)]

A1(8), ..., A—1(8) are eigenvalues of the Hermitian quadratic form MY —2soL, with respect to (-|-).

We recall " T-rigid positive CR line bundle” (see Definition 1.10)

Theorem 10.15. Let (X, T1°X) be a compact CR manifold with a transversal CR S action and let
T be the global vector field induced by the S* action. If there is a T-rigid positive CR line bundle over
X, then X can be CR embedded into CPY, for some N € N.

Proof. The proof is essentially the same as the the proof of Theorem 1.4. We only give the outline of
the proof.

Fix p € X. Let ux, € C*(X, L*) be as in Lemma 8.1 and put u) = ‘o

& <h—No Uk- From the proof

Theorem 8.2, we see that ug = u) mod O(k~°) and hence

(10.60) F\u, = F{%u) mod O(k™).
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From (10.25) and (10.17), we see that
(10.61) F%u) € B” (X, L*).

Moreover, from the construction of ug(see (8.8)) and (10.60), it is straightforward to see that there
exist C' > 1 and kg > 0 independent of k£ and the point p such that for every k > kg, we have
1 (@), 0
! < gt <c
(10.62) , .
(ELD @), = GE
From (10.62), we can repeat the procedure in section 8 and conclude that for k large, the Kodaira
map

Py 1 X — CPh!
is well-defined as a smooth map. Here @ is defined as follows. Let fi,..., fq, be orthonormal frame
for HY(X, L¥). For zo € X, let s be a local trivializing section of L on an open neighbourhood D C X

of xg, ‘S(:C)\,Zlm =e 2. On D, put f(z) = Skfj(m), f](a:) € C=(D), j=1,...,dy. Then,
Oy (20) = [f1(20),- - -, fa, (w0)] € CPHL,

Moreover, with similar modifications, we can repeat the proof of Theorem 8.4 and conclude that for
k large, the differential map
AP (x) : To X — Ty () CP™ !
is injective, for every x € X.
Finally, by using Theorem 10.14, we can repeat the proof of Theorem 8.10 and deduce that for k
large, ®;, is injective. O

We now offer some examples of ”T-rigid CR line bundles over CR manifolds with transversal CR
S actions”.

10.1. CR manifolds in projective spaces. We consider CPY =1 N > 4. Let [2] = [21,...,2n] be
the homogeneous coordinates of CPV~1. Put

X = {[21,...,2’1\/] e CPY U A |z + - 4 A 2m|” + At [Zmaa|* + -+ An 2w :0}7

where m € Nand A\; € R, j=1,...,N. Then, X is a compact CR manifold of dimension 2(N —1)—1
with CR structure 710X := THOCPY ! CTX. Now, we assume that A\; < 0, X2 < 0,...,\,, < 0,
Ama1 > 0, g2 > 0,..., Ay > 0, where m > 2, N —m > 2. Then, it is easy to see that the Levi form
has at least one negative and one positive eigenvalues at each point of X. Thus, Y (0) holds at each
point of X. X admits a S' action:

Stx X = X,
(10.63) " " "
€Y 0o [21, . vy Zms Zmgls -y 2N] = (€721, € 2, Zmt1y - - -5 28], 0 € [—m, 7.
Since (21,...,2m) # 0 on X, this S! action is well-defined. Moreover, it is straightforward to check

that this S* action is CR and transversal. Let T be the global vector field induced by the S! action.
Let E — CPM~! be the canonical line bundle with respect to the Fubini-Study metric. For
j=12,...,N, put W; = {[21,...,25] € CPY71; z; £ 0}. Then, E is trivial on W;, j = 1,..., N,

and we can find local trivializing section e; of Eon W, j = 1,..., N, such that forevery j,t =1,..., N,
Py
(10.64) ej(z) = Z—Jet(z) on W; Wi, z=[z1,...,25] € Wi [ |We.
t
Consider L := E|x. Then, L is a CR line bundle over (X,T1°X). It is easy to see that X can
be covered with open sets U; := Wj|x, 7 = 1,2,...,m, with trivializing sections s; = e;|x, j =
1,2,...,m, such that the corresponding transition functions are T-rigid CR functions. Thus, L is a

T-rigid CR line bundle over (X, T1°X). Let h” be the Hermitian fiber metric on L given by

a1 en]?)
= °

— log .
|sj(21,...,zN)|iL =e ( ji=1,...,m.
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It is not difficult to check that A% is well-defined and h% is a T-rigid positive CR line bindle.

10.2. Compact Heisenberg groups. Let Aj,...,A,_1 be given non-zero integers. Let ¥H, =
(C"1 x R)/~, where (z,t) ~ (z,t) if
Z—z=(01,...,an_1) € V2rZ" ! +i2rZ" !,
n—1
t—t—i Z )\j(Zjaj - Ejaj) € 2n.
j=1
We can check that ~ is an equivalence relation and ¥ H,, is a compact manifold of dimension 2n — 1.
The equivalence class of (z,t) € C"! x R is denoted by [(z,t)]. For a given point p = [(z,t)], we
define T,)°¢ H,, to be the space spanned by

{%—l—i)\ﬁj%, j:l,...,n—l}.

It is easy to see that the definition above is independent of the choice of a representative (z,t) for
[(2,t)]. Moreover, we can check that T1¢ H,, is a CR structure. ¢ H,, admits the natural S* action:
e olz,t] = [2,t+0],0 < 0 < 2m. Let T be the global vector field induced by this S action. We can
check that this S action is CR and transversal and T = %. We take a Hermitian metric (-|-) on
the complexified tangent bundle CT'¢ H,, such that

9 -y . 0 9 . é) 9 . _
{T%‘Fl)\jzjm,g_l)\jzja,_m,] = 1,,77,—1}
is an orthonormal basis. The dual basis of the complexified cotangent bundle is
{de s d?j , Wo := —dt + Z;:ll(z)\jzjdz] - Z)\JZszJ),] =1,...,n— 1} .
The Levi form £, of €H, at p € € H, is given by L, = Z;zll Njdz; NdZ;.

Now, we construct a T-rigid CR line bundle L over ¢H,. Let L = (C" ! x R x C)/= where
(2,0,m) = (2,0,n) if

(2,0) ~ (%,0),
n—1 1
7 = nexp( Z 1t (20 + 5 00)),
7,t=1
where a = (a1, ..., 0n_1) =Z—2, thj ¢ = 5, j,t = 1,...,n—1, are given integers. We can check that

= is an equivalence relation and L is a T-rigid CR line bundle over ¢’ H,,. For (z,0,1) € C""! xR x C,
we denote [(z,6,7n)] its equivalence class. It is straightforward to see that the pointwise norm
2 2 n—1 —
H(Zv 07 77)] |hL = |77‘ exp ( - Zj,t:l /”Lj,tzjzt)
is well-defined. In local coordinates (z,8,7n), the weight function of this metric is

n—1

1 -
¢ = ) Z Hjtzjzt-

jit=1
Thus, L is a T-rigid CR line bundle over ¢ H,, with T-rigid Hermitian metric hL. Note that
a3 n—1 ¢ . n—1 ¢ N —
8b = Zj:l dfj A (67% — Z)\ij%), 8[; = Zj:l de N (% + Z)\ij%).

Thus d(0y¢ — Do) = 272:11 wj¢dz; N\ dZy and for any p € € H,,
n—1
Mg =" pjedz; Adz,.
jit=1

Thus, if (,Uj,t)?t_zll is positive definite, then L is a T-rigid positive CR line bundle. From this and

Theorem 10.15, we conclude that

Theorem 10.16. Assume that Ay < 0 and A2 > 0 (then Y (0) holds on €H,). Then, € H, can be
CR embedded into CPYN, for some N € N.
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10.3. Holomorphic line bundles over a complex torus. Let
T, :=C"/(V2rZ" +iV2rZ")

be the flat torus. Let A\ = ()‘jvt)?t:D where \;; = A5, j,t = 1,...,n, are given integers. Let Ly be
the holomorphic line bundle over T;, with curvature the (1,1)-form ©) = Z;‘t:l Ajedzj A dz,. More

precisely, Ly := (C" x C)/, where (z,0) ~ (%, 0) if
Z—z=(0q,...,an) € V2rZ" +iV2rZ", 6§ =exp (Z?,tzl Nz + aja,))0.

We can check that ~ is an equivalence relation and L) is a holomorphic line bundle over T,,. For
[(z,0)] € Ly we define the Hermitian metric by

2 n —
’[(27 9)” = |9‘2 exp(— Zj,t:l Ajit%j%t)

and it is easy to see that this definition is independent of the choice of a representative (z, 8) of [(z, 0)].
We denote by ¢ (z) the weight of this Hermitian fiber metric. Note that %85@5)\ = 0,.
Let L} be the dual bundle of Ly and let ||| L; be the norm of L induced by the Hermitian fiber

metric on Ly. Consider the compact CR manifold of dimension 2n + 1: X = {v € L3; ||11||L§ =1}

this is the boundary of the Grauert tube associated to L. The manifold X is equipped with a
natural S'-action. Locally X can be represented in local holomorphic coordinates (z,7), where 7 is
the fiber coordinate, as the set of all (z,7) such that ||* e2#*(*) = 1. The S'-action on X is given by
e o (z,m) = (z,e%n), € € S, (z,) € X. Let T be the global vector field on X induced by this S*
action. We can check that this S! action is CR and transversal.

Let 7 : L} — T), be the natural projection from L3} onto T},. Let 1 = (Mj,t);t:p where pj: = 4t 5,
j,t=1,...,n, are given integers. Let L, be another holomorphic line bundle over T;, determined by
the constant curvature form ©, = Z;tzl tj.¢dz; A\ dzy as above. The pullback line bundle 7*L,, is a
holomorphic line bundle over L. If we restrict 7*L, on X, then we can check that 7*L,, is a T-rigid
CR line bundle over X.

The Hermitian fiber metric on L, induced by ¢, induces a Hermitian fiber metric on 7*L, that
we shall denote by h™ Lx. We let ¢ to denote the weight of A™ L». The part of X that lies over a
fundamental domain of T,, can be represented in local holomorphic coordinates (z, &), where £ is the
fiber coordinate, as the set of all (z,£) such that r(z, &) == [¢] exp(3_7 =1 AjziZi) — 1 = 0 and the
weight ¢ may be written as ¥(z,£) = %Z?,t:l j+2jZ¢. From this we see that 7*L, is a T-rigid CR
line bundle over X with T-rigid Hermitian fiber metric h™ L». It is straightforward to check that for
any p € X, we have Mg’ = d(Op) — 1)) (P)|rrox = Z;L,tzl widzj Adz,. Thus, if (Mj,t);it_:ll is positive
definite, then L is a T-rigid positive CR line bundle. From this and Theorem 10.15, we conclude that

Theorem 10.17. Assume that the matriz A = (Aj,t)thl has at least one negative and one positive
eigenvalues. Then, X = {v € L}; ||v||L§ =1} can be CR embedded into CPY, for some N € N.

11. SZEGO KERNEL ASYMPTOTICS ON SOME NON-COMPACT CR MANIFOLDS

By using Theorem 9.5, we will establish Szegd kernel asymptotics on some non-compact CR man-
ifolds. Let I' be an open set in C"~!, n > 2. Consider X := I' x R. Let (z,t) be the coordinates
of X, where z = (21,...,2,_1) denote the coordinates of C"~! and ¢ is the coordinate of R. We
write z; = Toj_1 + ixg;, j = 1,...,n — 1. We also write (2,t) = = = (x1,...,%2,-1) and let
n=(n1,...,N2n—1) be the dual variables of z. Let u(z) € C>°(I',R). We define T"°X to be the space
spanned by

o) . O O .
{aTjJrZa*fj% j=1,...,n—1}.

Then (X, T%°X) is a non-compact CR manifold of dimension 2n — 1. We take a Hermitian metric
(-|-) on the complexified tangent bundle CTX such that

{%Haﬂg o e 4o '—1,...,n—1}
J Zj Zj

3
Q
<
Q)
N
N

Q

I
Q)
&
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is an orthonormal basis. The dual basis of the complexified cotangent bundle CT*X is
— n=1l_ .o PO = . s
dzj, dzj, —wo :=dt + 3., (_ZaTdej + ijdzj‘),j =1,...,n—1¢.

The Hermitian metric (-|-) on the CT'X induces Hermitian metrics on the bundle of (0,q) forms
T*%9X q=1,...,n— 1, we shall also denote these Hermitian metrics by (-|-). For V € T*%9X we
write |V|? := (V| V).

The Levi form £, of X at p € X is given by

Let L be the trivial line bundle over X with non-trivial Hermitian fiber metric \1|i L = e 2% where
¢ = ¢(z) € C=(T') is a real valued function. Then, we can check that

9%¢(z)
(11.1) =2 Z 8Z]8Zédz] Adz, p=(z1) € X.

We shall consider the k-th power of L and we will use the same notations as before. Let (-|-), .
be the L? inner product on 0¢(X) given by

(ulv),or :/(u\v>6_2k¢(z)dk(z)dt, u,v € QX),
X

where d\(2)dt = m(z)dx - - - dxon_odt, m(z) € C°°(I'), is the induced volume form. Let ||-||, .+ denote
the corresponding L? norm. Let L7, (X, L*) be the completion of Qg?(X) with respect to (-]-), .
and let

O - Dom OfY) L2, (X, LF) — L3, (X, LF)

be the Gaffney extension of Kohn Laplacian with respect to (-|-),.x (see (3.9)).
11.1. The partial Fourier transform and the operator Fé(i). Let u € Qg’q(X, LF). Put

(11.2) (]-'u)(z,n):/Re_i"tu(z,t)dt.

From Parseval’s formula, we have

| Ful.e = / ((Fu) () 29 A (2)

(11.3) X

= (2m) / lu(z,t)[* e 2K¢E dtdA(z) = (2) [|ul]} n -
X

Thus, we can extend the operator F to Lﬁqu)(X, L*) and

F i Ly (X, L¥) — L, (X, L¥) is continuous,

(11.4)
1Full,oe = V2r lull,oe Y € L3 (X, LF).

For u € L(0 9 (X, L*), we call Fu the partial Fourier transform of u with respect to t.

Fix § > 0. Take 75(z) € C§°(] —6,0[), 0 < 75 < 1 and 75 = 1 on [—3, 3]. We also write 6 to denote

the ¢ variable. Let Fg(i) Q09(X, LF) — Q%4(X, L*) be the operator given by

1 , X
(11.5) F(;("Qu(z,t) = /ez<t—9"’>u(z,9)7’5(%)d77d9 e OU(X, LF), u(z,t) € Q09X LF).

2
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From Parseval’s formula and (11 3), we have

2
ull, o = 12 / ‘ / 0 u(z, 0)7s(L)dndd

(11.6) - 47r2/ ‘/ < (Fu) (2 m)7s () dn
= g/l(fU)(Z,n)\ T&(z)‘ e~ 2k9(2) dnd)(2)

HF(‘Z)

5,k 672’“‘1’(2’ dX\(z)dt

6*2’“#( DA (z)dt

1 — z
< 0 / [(Fu)(z,m)* e~ 2@ dndA(z) = |[u)} or

where u € Q)Y(X, L*). Thus, we can extend F(q) to L?

(0.0)(% Lk) and

(11.7) F‘s(i)( : L%O,q)(X7 L*) — L%O (X LF¥) is continuous,
|EGu] 0 < s s V€ T (%29,

We need

Lemma 11.1. Letu € L%O’q)()(7 L¥). Then,

(11.8) (FEQu)(z,m) = (Fu) (2 n)7s(1),

Proof. Let u; € Q09(X,L*), j =1,2,..., with lim; o [lu; — ul,zx = 0. From (11.7) and (11.4), we
see that

(11.9) FF8u; — FFuin L2) (X, L¥) as j — oo,
From Fourier inversion formula, we have
n .
(11.10) (FFRu;)(z,m) = (Fuy)(zm)ma(3), G=1,....
Note that (Fu;)(z,n)75(%) — (Fu)(z,n)75(3) in L%()yq)(X7 L*) as j — oo. From this observation,
(11.10) and (11.9), we obtain (11.8). O

The following is straightforward. We omit the proofs.

Lemma 11.2. We have
F(;(‘Q 'Domgbk —>Dom5bk, q=0,1,...,n—2,

(11.11) )

q+ 8bk —3bkF5("2 onDom(’?bk, q=0,1,...,n—2,
and
(11.12) FI® =10 FY on L2, (X, LF), ¢=0,1,...,n— 1.

Moreover, for u € C§°(X, L¥), we have
(11.13) 0. ((Fu)(z,n)e™ @) e~ = (Foy yu)(z,1),
where p € C°(I',R) is as in the beginning of section 11

11.2. The small spectral gap property for Dg + With respect to Fa 1+ We pause and introduce

some notations. Let Q%¢(I') be the space of all smooth (0,¢) forms on I' and let Q9(I") be the
subspace of 2%9(T") whose elements have compact support in I'. We take the Hermitian metric (- |-)
on T*%4T the bundle of (0, q) forms of ' so that

{del/\dEjz/\”'/\dqu;lSjl <j2---<jq§n—1}

is an orthonormal basis. Let T € C>(T',R) and let (-|-)y be the L? inner product on Q7¢(T') given
by

(Flode = [(Fl9)e ™M PAe), fug € 9 (D)
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Let L(Qo_q) (T, T) denote the completion of Q0%(T") with respect to the inner product (-|-)y. We write

L3(T,Y) := L%o,o) (T, T). Put
HO(T,Y):={feL*I,Y); 0f =0}.
Now, we return to our situation. We first consider I' = C*~1.
Theorem 11.3. Let I' = C*~ . We assume that there are constants Cy > 1 and €y > 0 such that
n—1 n—1
(11.14) j;l W(z)ijg > Cio ; lwjl*, V(wi,...,wa1) €C™TY 2€C"TY |n] < e,
and

1
(11.15) 0+ () 2 o VIE 2 M, il <o,

where |z|° = Z?;ll |zj|2 and M > 0 is a constant independent of n. Then, for every 0 < § < ey, we
have

2 C 5 2
(11.16) |FQr - H,ﬁo))uHth < [Bosullye . Ve CR(X, LY,

where C' > 0 is a constant independent of k, 6 and wu.
In particular, DI(JOIZ has small spectral gap on X.

Proof. Let u € C§°(X, L*). We consider Fé()ok)(l — H](CO))U. In view of (11.12), we see that F(S(f)) (I -
)u = (I - I FS)u. Put

) (o) = FESI =IO,

From (11.7), (11.4) and (11.8), we see that [ (2, )| e~ 2m(2)=2k¢(2) 4\ (2)dn < 0o and v(z,7) = 0 if
n ¢ Supp 75(3). From Fubini’s Theorem and some elementary real analysis, we know that for every
n € R, v(z,n) is a measurable function of z and for almost every n € R, v(z,n) € L2(C" 1, nu + ko)
and for every z € C" ! wv(z,m) is a measurable function of n and for almost every z € C"71,
J (=, T])|2 dn < co. Moreover, let 8 € L2(C"~1 nu + k@), then the function

£ = [ ol mBae 2 i)
is measurable and f(n) is finite for almost every n € R, f(n) = 0 if n ¢ Supp7s({) and f(n) €
LY(R) N L*(R). We claim that
if § < g, then for almost every n € R, v(z,n) € L?>(C"* !, nu + k¢) and
(0(z,1) | B)pptrg =0, VB € HY(C™ ', + ko).

From the discussion after (11.17), we know that there is a measurable set Ag in R with |Ag| = 0 such
that for every n ¢ Ag, v(z,n) € L>(C"~ !, nu + k¢), where |Ap| denote the Lebesgue measure of Ag.
From (11.15), we see that {z%; o € N~ '} is a basis for HO(C"~!, nu + k¢), for every || < €y, where
€0 is as in (11.15). Let n ¢ Ag. Fix a € Nj~'. We consider

faln) = / oz, e 22K 4 (2),

From the discussion after (11.17), we know that f,(n) € L'(R)(L?*(R). We consider the Fourier
transform

(11.18)

Ful©) = [ e atmdn
of fu(n). Let go € C°(X, L¥), £ =1,2,..., such that
ge — (I — H,(CO))u in L?(X, L*) as £ — oc.
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From (11.4), (11.7) and (11.8), we see that for every £ € R,
(11.19) hm /.7: kgg z,m)Z%e MR =22 =i\ () dn — fo(£).
From (11.8) and Parseval’s formula, we can check that
/fF(s(kgg z,M)Z 6*"“(2)*2’“5('2)e*ignd)\(z)dn

— /]—'gg(z,77)75(%)Eae_"“(z)_%‘z’(z)e_’f"d)\(z)dn
(11.20)
_ /gz(z7t)(/EaTé(g)e—w(z)—i&n—intdn)e—%qﬁ(z)d)\(z)dt

— /(I — H,(CO))u(zJ)(/EO‘T(;(%)e_”“(z)_ign_i”tdn)e_%(b(z)d)\(z)dt as £ — oo.
It is straightforward to check that the function
/zaﬂ;(%)e*"”(z)”gnﬂmdn € Ker 0y 1, ﬂLQ(X, Lk).
Thus,
(11.21) / (1 =11 Yu(z, 1)( / 2“75(%)e*"“(z)*“"*i”tdn)e*%“z)d)\(z)dt = 0.

From (11.21), (11.20) and (11.19), we conclude that for every ¢ € R, fo(¢) = 0. By L? Fourier
inversion formula, we conclude that f,(n) = 0 almost everywhere. Thus, there is a measurable set
Aqy D Ap in R with |A,| = 0 such that for every n ¢ A,,

(v(z,m) 2" )W+k¢ =0.

Put A = UaeNS—l Aq. Then, |[A] = 0. Note that {z*; a € Ng_l} is a basis for HO(C" ™1, nu + ko)
if |n| < €p. From this observation, we conclude that for every n ¢ A,

(v(z,0) | B)pske =0, VB € HY(C" ' nu + k).

The claim (11.18) follows.
Now, we can prove Theorem 11.3. We assume that § < ¢y. Let u € C§°(X, L*¥). From (11.11) and

(11.13), we have
(11.22) gbkaa(? (- 1)u = Fé(,llc)ghku?
(FE By gu) (2,1) = 0 (FFL ) u(z,m)em))em(),

As before, we put v(z,n) :(]:F(;(SC)(I - H,io))u) (z,m)e™(2) and set

GE ((fFa(Sc)(f — 7 )u) (2, n)e"“(z)) = 0:v(z,1) == g(z,7).

It is easy to see that

529(2,77) =0,
(1123) 9(2777) :Oifn¢supp75(%)»
/|g(z,77)|2 6_2”“(z)_2k¢(z)d)\(z) < 00, V1€ Supp Tg(%).
From (11.14), we see that there is a C' > 0 such that
(11.24)
n—1 n
0 (k¢ + np) __k 2 - - n
Z W(z)ijg > ol Z lw;|”, Y(wi,...,w,—1) € C" LzeCtne Supprg(%).

j =1
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From (11.24) and Hérmander’s L? estimates (see Lemma 4.4.1. in Hérmander [10]), we conclude
that for every n € Supp7s(3), we can find a 3,(z) € L%OJ)((C"*I, N7 + k¢) such that

(11.25) 0:6y(2) = g(z,m)
and
(11.26) / |8, (2)|? e~ 212 =2k6(2) g\ () < % / lg(z,m)|? e~ 22 =2k(2) g\ (2).

In view of (11.18), we see that there is a measurable set A in R with Lebesgue measure zero in R such
that for every n ¢ A, v(z,n) L H°(C"~!,nu + k¢). Thus, for every n ¢ A, v(z,n) has the minimum
L? norm with respect to (| )yu+ke of the solutions da = d,v(z,7). From this observation and (11.26),
we conclude that

C [
(11.27) /|v(z,77)|26_2W(Z)_2k¢(2)d)\(2) << / |3zv(z777)’26_2"“(2)_2k¢(z)d)\(z), Vn ¢ A.
Thus,
(11.28) / [u(z,m)|? e~ 2m(2)=2ke(2) g (2)dn < % / ]ézv(z,n)Fe*2W<z>*2k¢<Z>dA(z)dn.
From the definition of v(z,7n), (11.4), (11.22) and (11.7), it is straightforward to see that
2
11.29 v(z,n)|? e 22k g\ (2Vdn = (21) [ |FOT — T )u(z,8)| e 24 gx(2)dt
1 U 8.k k
and

/}gzv(z’n”?efznu(z)fzm(z)d/\(z)dn
_ 2
(11.30) = (27) / ‘F§71,€)8b7ku(z,t)’ e~ 2k g (2)dt

< (2m) / |5b7ku(z,t)]2e‘2k¢(z)d>\(z)dt.

From (11.28), (11.29) and (11.30), we conclude that

2
P =)l

2
= / B (=T uz, )] 0 an(z)r
C [ = 2 okd(s C 5 2
<& [ a0l e o Oan@a = [l
Theorem 11.3 follows. g
Now, we consider I is a bounded strongly pseudoconvex domain in C"~1.
Theorem 11.4. Let T' be a bounded strongly pseudoconvex domain in C"~'. Assume that u,¢ €

~ ~ _ n—1
C>(I',R), where I' is an open neighbourhood of I'. Suppose that (6?-25;@ (z)) , is positive definite
z =1

at each point z of r. If § is small enough then
0 0 2 C — 2 o
(11.31) HF(S(JJ(I . ))uHth < ZPowull e, Vue C5R(X,IF),

where C' > 0 is a constant independent of k, 6 and u.
In particular, Dz(f,);i has small spectral gap on X.

Proof. Let u € C§°(X, L*). We have

1132) By P (1 =11 = FL) 8y o,
(.7:F5(71k)5b7ku) (z,m) = gz(fFé(Sgu(z, n)e”“(z))e_”“(z).
As before, we put v(z,7n) :(}"Fé(gc)([ - H,io))u) (z,m)e™(2) and set

F(FFu(z,m)e™ @) = 8,0(2,n) = g(z,n).



98

Then,

azg(zan) - O7
(11.33) g(z,n) = 0if n ¢ [—kd, kd],

/ g(z,m)|? e~ 2D =22 4)(2) < 00, Vi € [—kb, kb).
-1

n ~
Since ( afi%[ (z)) , is positive definite at each point z of I', if § > 0 is small enough then there is
102677 =1
a C' > 0 such that

n—1 n—1
02 (ke + _ _k n—
(11.34) E gzéia;m(z)ijg > ol g |wj\2, Y(wi,...,w,_1) €C" L zel,ne Supprg(%).
g 0=1 J j=1

We assume that § > 0 is small enough so that (11.34) holds. From (11.34) and Hoérmander’s L?
estimates, we conclude that for every n € [—kd, kd], we can find a 3,(z) € L%, |,(T',nu+ k) such that

(0,1)
(11.35) 026y(2) = g(z,m)
and
(11.36) [ a2 < [ lgtem)? e #oans),

Moreover, since g(z,7) is smooth, it is well-known that (3,(z) can be taken to be dependent smoothly
on n and z (see the proof of Lemma 2.1 in Berndtsson [3]). Put

1 — z) 1
a(z,t) = 7 /57;(2)6 (2 e "Lk k] ().

Since £,(2) is smooth with respect to 7, a(z,t) is well-defined and a(z,t) € C*(X, L*). Moreover,
from (11.4), (11.7), (11.36), (11.32) and Parseval’s formula, we can check that

oo = [ laG e 2 arz)i

g

1 — z)— z
= %/Wn(z)fe 2np(z)—2ko( )dnd)\(z)

C
(2m)k

C —
= (QF)k/‘.FFé(}k)BMu(z,n)

=% [EBaten|

< %/ lgb,ku(zﬁt)f e—2k¢(z)dtd)\(z) = % Hgb,kuHiLk < 00.

2
e 2 dtd)\(2)

1 — z) %
or [ Aol O s )

(11.37) < ey [ lata e 2 dnan )

2
‘ e 2k dnd(z)

e 2R dtd A (2)

Furthermore, it is straightforward to see that
Dy pal(z,t) = %/g(z,n)ei”tl[,ka)ké](n)e*w(Z)dn
(11.38) _ % /FF(;(’I;C)gb,kU(Z, D)ty
= F(s(,lk)gb,ku(z, t).

From (11.37) and (11.38), we conclude that 0y ra(z,t) = F(;(’lk)gbku(z,t) and ||Oé||ibk << Hgb,kuHiLk.

Since (IfH,(fo))Fé(%)u has the minimum L? norm of the solutions of 9y . f = Fé(lk)gbvku(z, t), we conclude
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that
2 C
0 0 0 0
[ =S, = HFg,,g(an,p)uHhL S L e [ [
The theorem follows. O

11.3. Szegd kernel asymptotics on I' x R, where I' = C"~! or I' is a bounded strongly
pseudoconvex domain in C"7!. We fix 0 < §, § is small. Let D € X be any open set. Let
M > 0 be a large constant so that for every (z,n) € T*D if || > & then (z,7) ¢ X, where

7= (m,...,Nan-2), 7| = 22" *In;1*. Fix Dy € D. Let D’ € D be an open neighbourhood of
Do. Put
(11.39) Vi=A{(z,n) € T"D’; [n'| < M, [n2n—1] < 3}

Then V C T*D. Moreover, if § > 0 is small enough, then V(X C X/, where ¥ is given by (1.5). Let
Fé(gc) : L3(X, L*) — L?(X, L*) be as in (11.5) and (11.7). It is clearly that

k,2n 1

Fg(%) = Gzt [et*<z=yn>a(z,n,k)dy mod O(k=>) at T*Do( X
is a classical semi-classical pseudodifferential operator on D of order 0, where
a(x,n, k) ~ 32 _gaj(z,nk™ in Y (1;T*D),
aj(z,n) € C*(T*D), j=0,1,...,
ag(x,1) = 75 (n2n-1),
with a(z,n,k) = 0 if |n| > M, for some large M > 0 and Suppa(z,n,k)(T*Dy € V. Now, we

assume that 90¢ and 99y are uniformly bounded on I, that is, there is a constant Cy > 0 such that

9%
2L (2)| < Co,

and [15], we can show that for every a, 8 € Na" ™!, there is a constant C, 5 > 0 independent of &k such
that

5o 26Z (2 )‘ <Cyp Vzel, jl=1,...,n—1. By using the technique in section 7.1

(11.40)

0205 (¢ MY (@,)eH* D) | < Ca g™ (a,y) € (T x R) x (T x R).

By using (11.40) and integration by parts, it is not difficult to see that H;O) is k-negligible away the
diagonal with respect to F[;( r on ' xR

From the discussion above Theorem 11.3, Theorem 11.4 and Theorem 9.5, we obtain one of the
main results of this work

Theorem 11.5. With the notations above, we assume that T = C"! or ' is a bounded strongly
pseudoconvexr domain in C"~1 and condition Y (0) holds on X. When T' = C"~ !, we assume that
there are constants Coy > 1 and eg > 0 such that

n—1
¢+77M _ 1 2 n—1 n—1
Z 92507 Z2)wWe > Co z:: lw;|®, V(wi,...,wp—1) €CPH, 2€C* 7, |n] < e,

%
< i ol
(Z) < Co, ‘827-825

2
‘ 8¢ ()| <Co, Vzel, j=1,....,n—1,

aZj 0%y

and
1
¢<z)+nu(z>zgolzl2, Yzl > M, |n|<e,

where M > 0 is a constant independent of n. When T is a bounded strongly pseudoconvex domain in

n—1 ~
C™ 1, we assume that p, ¢ € C’OO(F R) and <6Z o (z)) , is positive definite at each point z of T,
Jl=1

where T is an open neighbourhood of T. Let F(;((L) s L3(X, L*) — L2(X, L*) be the continuous operator

given by (11.5) and (11.7) and let Fé(’ok)’ : L3(X, L*) — L%(X, L*) be the adjoint of F(;(,C with respect
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to (+]-),x- Let D @ X be any open set and we fiv any Dy € D. Put Py, := F(S(;QH,?)F(S(:Q’*, If § is

small, then
Py o(z,y) = /eik‘p(m’y’s)g(a:,y,s,k)ds mod O(k~)
on Dg, where p(z,y,s) € C*(Q) is as in Theorem 5.29, (2.3),
g,y k) € St (1,9) () 57 (9),

g(x,y,8, k) ~ Zgj(x, y, 8)k™ 7 in S (1;92),

§=0
gj('rayVS) € C(C;O(Q)a j:071327-"a
and for every (x,xz,s) € Q, x € Dy, x = (21,...,Tan—2) = (2,1),

[rs(s)]”

- Po—sm), \"
_ non—1
go(z,z,8) = (2m)~"2 det( ( 92,07 (z))ﬂ_l)
Q:={(z,y,5) € D x D x R; (z,—2Im 9p¢(z) + swo(x)) € VﬂE
(y, —2Im 90 (y) + swo(y)) € VO X, |z —y| <e, for some € > 0},
V' is given by (11.39),

Here

12. THE PROOF OF THEOREM 5.28
We now prove Theorem 5.28. We will use the same notations and assumptions as section 5.3. Fix
(ii’o,i’o,S()) € Q, to > 0. Put

£o = (20, Tny0);, To € R*L, (0, 70,50) € Q,

o 00 9% N
(Z0,&0) = (Zo,to = (20,20, 50)) = (o, to % — (0, 20, 50)) E(Uﬂz) (7D

From Lemma 5.26, we know that there are @(z,y,s), $1(x,y,s) € C°(A), where A is a small neigh-

bourhood of (3:0,:50,50), such that ¢(z,y,s) and @1(z,y, s) satisty (5.68), (5.69), (5.70), (5.73) and
(5.74) and 5,22 (2, 5) — (@20 1(1) + 58201 ()): 522 (2,9, 5) — (azn-1(y) + 5Ban1(y)) vanish to
infinite order at x = y, and t@(ﬁc,g), s) = t(xan — Yo2n + @(,y,s)) and tP(Z,y,s) are equivalent for
classical symbols at every point of

diag’((Uﬂi) w2 ) ﬂ{ (&, 2,tds®(2, 2, 5), —tds ® (&, %, 8)) € T*D; (z,2,8) € At > 0},

point of
diag’<(Uﬂ ) % (UN 2)) N {(fc,i,td@q)l(:%,g%, s), —tds®: (2,4, 8)) € T*D; (z,2,5) € A, t > 0} .

Let W be a small neighbourhood of (&g, &, s0) and let I be a neighbourhood of ¢y in Ry. Put

Atg ::{(:%Qg@(xyﬂ) 8~(xy“)) € C?" x C x C* x C*;
b7 55 o C C
(7, 9,3) = 0, 9 —(2,9,3) =0,(2,9,5) e WE, T € I§'},
(12.1) - -
~~ 001 ~ ~ ~0Py ~ ~ n n n n
Ag ={@ yﬂfagl(xvy@,taigl(m,y@)ecz x C*" x C*" x C*;
b,

é1(§7§7§) = 07 g(%;ﬁvg} = 07 (%’E]\j,a € WC’;E Ié():}
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From global theory of complex Fourier integral operators of Melin-Sjostrand [21], we know that

t‘i(i,;&, s) and tiﬁ(i, 7, s) are equivalent for classical symbols at (aﬁo,j:o,éo, —éo) € diag/((Uﬂ f)) X

Un i)) in the sense of Melin-Sjostrand [21] if and only if Atg and A;i are equivalent in the sense

1
that there is a neighbourhood @ of (g, %o, &0, —&o) in C?* x C2* x C?" x C?", such that for every
N > 0, we have

dist(z,A;g )< Cn |Imz\N, VzGQﬂA;f),
(12.2) :
diSt(ZhAt}r)) < Cn |Im2’1|N, V21 EQﬂA;{gl,

where C'y > 0 is a constant independent of z and z;.
We first assume that ¢(z,y,s) and ¢1(x,y,s) are equivalent at each point of Q in the sense of
Definition 5.27. We take almost analytic extensions of t® and ¢®; such that

td(z,9,3) = t0(2, 9,3) = H(Tan — Jon) + 10(F, 7, 3),

(12.3) . ~
tq)l(iagag) = tq)l(:iagag) = t(%Zn - an) + t¢1(§7 g7§)

on AC. Here A = A x I, I, is a small open neighbourhood of x, 9. We are going to prove that Atg

and AtTf are equivalent in the sense of (12.2).
1

Since %(z,x, s) #0, %(z,m, s) # O(see (5.78)), from Malgrange preparation theorem

(see Theorem 7.57 in [11]), we have

8/\ /
af (ZC,y,S) = (1'27171 - ﬂ(x 711’5))9(55,?/73)7
a/\ /
(.;il (9573/,3) = (-’1727171 - 51(1' 7ya5))91($,y75)

(12.4)

in some small neighbourhood of (zg, g, o), where 3, 81,9,q1 € C*, B(a',x,s) = p1(a', x,8) = Tap_1,

g(z,z,8) # 0, q1(z,x,s) # 0. We may take A small enough so that (12.4) hold on A. It is easy
to check that %(m,x,s) = g(z,z,s), %(x,a@s) = —g—fj(x’,m,s)g(x,x,s), ji=1,...,2n—2.

From this observation and notice that %(x, x,s) isreal, j =1,...,2n — 1, we conclude that
J

Reg(z,z,s) #0, Img(x,x,s) =0,
(12.5)  omp

o7, (2',2,8) =0, j=1,...,2n—2.

From (12.4), we conclude that for every N > 0, there is a constant Cy > 0 such that for all
(#,7,5) € WF,

92 (%,5.3)— (s — B@.§,3)3(E75.5))

05 SCN |Im(5ag’§)|N’

(12.6)

0Py~ ~ - S s~ .
o @A)~ (s~ HE.5.9)0(E5.9)| < Oy I 7.9

In view of (12.3), we may take A and AC small enough so that on AT, aifjiag # 0, iﬂfi}ia? # 0,
and there are §(z',7,3) € C(A®), 6,(7',7,5) € C®(A®) such that
9

i ey o ODY ey A
(12.7) S (@.6,5.9).5,3) = T2 (@ 0(F.5.9).5,3) = 0 on A°.
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From (12.7) and (12.6), we see that for every N > 0 there is a constant Dy > 0 such that for all
(gl’g7’§) 6 A(C,

03".5.%) = B@.§,%)| < D Im (#,8(.5.5).5.5)" .

(12.8) N
01 5.5) = Bu(@,5.9)| < Dy I (7,01 (. 5.5), 5. 5)|”

Since 22(y/, yon—1,9,5) = 22 (' Y2n-1,9,5) = 0, 01(y',y,8) = 6(y',y,5) = yan—1. Hence there is a
constant Cy > 0 such that for all (z',7,3) € AC,

Tm6(', 5, 5)| < Co([Tm (&, 7, )| + =" = y/]),
Tm 012, 4, 5)| < Co([Im (&', 5, 5)| + [ — /).

From (12.3) and (12.7), we can check that

(12.9)

< ~3 > >
Az =@, yta (&,9,3),1 a~(xy”)
(12.10) Fon1 = 0(F,7,3), Fan = Jon — P(F,0(F,7,3),7,5), (7,9,5) € AT € I5},
- ~c’f 0By = -
A ={(E,8,15=(2,5,9).1 9% = (#,9,9);
527171 = 51(.% 7y7§)7x2n = y2n - @l(glaél(glvgvavgvg)v (%7575) S AC’;E I[(%:}
From Definition 5.27 and (12.4), it is easy to see that

B(x Ivya )—ﬁﬂxﬂy,s), %(m ﬁ(l' Y:8),Y,8) — 501( b’(x’,y,s),y,s),

¢ BE .
(12.11) af (@', B(2",y,5),y,8) — 87%(96'761(36'4/,5),3;,8), j=1....2n-1,
J J
2%

041 .
( 'ﬁx’,y,s),y,s _71:/’61 $/7y?5)7y75a .7:1772”/_1
o @ )- S )

vanish to infinite order at ' = y’. Thus, if AC is small, then for every N > 0, there is a constant
Ex > 0 such that

B, 5,5) - Bu@,5,5)| < En(Im (#,5,5)|" + [Red — Re/|"),
H@ B, 5.5).5:5) - 5@, B(7,5,5).5,5)|

< Ex(Jm (#,5.3)|" + [Re@ — Reg'| "),
(12.12) 0537\ (@, 5.5),5.5) - 05017, 51 (7, 5,9), 5,9

< Ex(Im (@,75,3)" +|Re® — Req|™),
050 B 7.5),7.5) = 05 (&, Br (7, 5,9).59)|

< BEx(Jm (@,7.3)|" + [Re@ — Rey'|"™),

where 95 = (3%, 552—), 5 = (35 r 57— P:romA(12.8), (12.9), (12.10) and (12.12),
we see that there is a small neighbourhood @ of (:fco,ito,fo, fo) in (CQ” x C?" x C?"™ x C?" such
that for all N > 0 and every z € QﬂA 3 7= = (4, y,t (m 9, 5), tay(a: 9,3)), Fan_1 = 0(F,7,5),

xQn*y2n7 (ZL',(S( ayaA)?yaw)awehave

(12.13) dist (2, Az ) < Fy(|Im @, 7,9 + [Re@ — Re7|"),
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where Fiy > 0 is a constant independent of z € (). We claim that if @) is small enough then there is a
constant C7 > 0 independent of z € ) such that
IIm (7, 7,3)° + |Re# — Re7//|* < C; [Im 2|,
(12.14) Y S Y U
Vz = (%yat%(ﬁyaaat%(%%a) € QmA;{i
From Taylor expansion, it is easy to see that

Im (2, 6(2',y, 8), Y, 5)
-
=Im@(z',Red(2,y, )y, s) + M(

' Red(a’,y,5),y,5)Imd(a',y, s) + (Tmd(2’,y, 5)[).
O0%on—1

From this and note that Imd,@(2’',Red(2’, y, 5), v, )|o=y = 0, 6(z',y,8) = yon—1 if y = (', y2n—1),
we see that there is a constant ¢y > 0 such that

~ 1
(1215) Co |$l - y/‘z < Im(ﬁ(x/75(x/7y7 S)vya S)’ =+ |Im5(a:’, Y, 5)| < ; ‘Jf/ - y/‘Q )
0
for all (£, 9, s) in a small neighbourhood of (&g, g0, $0). Thus, if A and A€ are small, then

(12 16) Img%z - Imé(%/ats(%/agag)ygvg)‘ + |1m§27b| + \Im5(§/7ga§)| + IIm (%/737”5)‘
>cy |Re§§' — l{ef[/'/‘2 on A(C,

where ¢; > 0 is a constant.

We consider Taylor expansion of t%‘zii (v,0(y,v,9),y,9) at Ims = 0:

1

to——(, (v, y,5),,8) = t =

(12.17) Oon-a ™ Oz
»?e ., . <2
+t(m(y7(5(y,y,Reg),y7Re§))ZImS+O(|Ims| )

(v, 6y, y,Re3),y,Re3?)

Here we used the fact that g—g(y’, y,Res) = 0 since §(y',y,Res) = yo,—1. Since

b 92d
t— "0y, y,Res),y,Res), t———=(v',d(v,y,Re3),y, R
05, W0y, Res) g, Res), tomm—n(y, 0y, y, Re ), y, Res)
are real and t%(y’, 0(y',y,Re’s),y,Res) # 0, we conclude that there is a constant ¢; > 0 such
that _
Im (t = (y'75(y’7y,§),y,§)) > c1 |Tm s
O0Tan—1

for |Im 3| is small. Thus, if A and AC are small, then

I (T 0%, 8(,5.5), y@))‘

+Cy

(12.18) 0Ty,

T2n—1

‘Im (Fomo (@, 5, 5.5),5.9))

+|Im (&, 9)| + |2’ — /| > 2 [Tm3] on AC,

8902
From (12.9), (12.10), (12.16) and (12.18), the claim (12.14) follows. From (12.14) and (12.13), we
conclude that there is a neighbourhood Q of (&, &9, o, —&o) in C2* x C2" x C?" x C2", such that for

every N, we have dist (z, Atgl) < Cy|mz|N, forall z € QN A;if We can repeat the procedure above

and conclude that there is a neighbourhood @1 of (Zo, Zo, é(), —éo) in C2" x C?" x C?" x C2?”, such that
for every N, we have dist (Zl’A;i;) < Cy |Im zl|N, Vz1 € Qq ﬂAtg . We obtain that t®(&,7, s) and
1

where Cy > 0 and co > 0 are constants. Note that Im (f g&n @, 6(2,9,3), g,?)) =TImt.

td1 (2,4, ) are equivalent for classical symbols at (o, 2o, £o, —Eo) in the sense of Melin-Sjostrand [21].
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Now, we assume that ¢®(z,, s) and t®4 (&, 7, s) are equivalent for classical symbols at each point

of
diag’ (U x U9 N { (@5, -6 (@.6) e T°D} .
From global theory of complex Fourier integral operators of Melin-Sjéstrand [21], we see that A;i; and
Az, are equivalent in the sense of (12.2).
Since ﬁ(m x,s) # 0, %(x,x, s) # 0, we may assume that (12.4) hold on A. We may
take A and A® small enough so that (12.7), (12.8), (12.9) and (12.10) hold on AC. Since 81/6 (x,y,8)—
(avon—1(y) + 5Ban—1(y)) and 22— (x,y, s) — (an_1(y) + 5B2n_1(y)) vanish to infinite order at x =y,

OYan—1
it is straightforward to see that if A is small enough then for every N > 0, every z € AﬂAg,

z = ({,E y’t(’)x (l‘ 4, s ) t?)%(i'a:g,‘s)) € A;$7 Loan—-1 = 6($/7y75), L2n = Yo2n — é(:r’,é(:r’,y,s),yﬁ), there
is a constant ¢y > 0 such that

dist (2, Az ) + I’ — o [Y
> e (106", 9,5) = 010y, 9) | + [$(@', 62"y, 8), 0, 5) = B (@', 612", ), 9, 9)
I(é(xla 5(*7:/73/7 S)u Y, 5) - 51(33/751@/72/7 5)73/, 8)) ’

’d( 282y, 8),y,8) — ¢y (2,61 (x /ayas)vyas))’)'

It is easy to see that there is a constant ¢ > 0 such that for every

(12.19)
+

R N S
z= <x7y7t7($7yas)vt37y($7ya8)) € A;{A;a

Toan—1 = 6(1: Y, 8)7 Ton = Yon — (E(!E/, 6($/u Y, 3)7 Y, S)a
(Z,9,s) is in a small real neighbourhood of (&g, &g, s9), ¢ is in a small real neighbourhood of ¢y, we
have

1
(12.20) Imz| < — |2’ —/|.
Co

From (12.2), (12.8), (12.9), (12.11), (12.19) and (12.20), we see that if A and A are small enough
then for every N > 0, there is a constant By > 0 such that on A,

8(2"y,5) = Bi(a’,y,5)| < By la’ = y/|"

5" By, 8),5.5) = 81 (0 u(a' 9. 5).9,9)| < B o 1"
d3(a, By, 5).9,5) — dur (@', B1 (o), )| < By [a/ —y/
4,5, 8@,y 5),9.5) = dyBr(a', 81y ),y 9)| < By o = y/I”

From (12.4) and (12.21), it is not difficult to see that ¢(z,y, s) and ¢1(z,y, s) are equivalent at each
point of  in the sense of Definition 5.27. Theorem 5.28 follows.

(12.21) v

)
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