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ACCURATE SOLUTION AND GRADIENT COMPUTATION FOR
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COEFFICIENTS∗
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Abstract. A new augmented method is proposed for elliptic interface problems with a piecewise
variable coefficient that has a finite jump across a smooth interface. The main motivation is to get
not only a second order accurate solution but also a second order accurate gradient from each side
of the interface. Key to the new method is introducing the jump in the normal derivative of the
solution as an augmented variable and rewriting the interface problem as a new PDE that consists
of a leading Laplacian operator plus lower order derivative terms near the interface. In this way, the
leading second order derivative jump relations are independent of the jump in the coefficient that
appears only in the lower order terms after the scaling. An upwind type discretization is used for
the finite difference discretization at the irregular grid points on or near the interface so that the
resulting coefficient matrix is an M-matrix. A multigrid solver is used to solve the linear system
of equations, and the GMRES iterative method is used to solve the augmented variable. Second
order convergence for the solution and the gradient from each side of the interface is proved in this
paper. Numerical examples for general elliptic interface problems confirm the theoretical analysis
and efficiency of the new method.
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1. Introduction. In this paper, we develop an efficient numerical method to
solve an elliptic interface problem

∇ · (β(x)∇u(x)) = f(x), x ∈ Ω \ Γ, Ω = Ω+ ∪ Ω−,(1.1)

[u](X) = w(X), [βun](X) = v(X), X ∈ Γ,(1.2)

in one and two space dimensions, where, for example, [u] = [u]Γ(X) = u+(X)−u−(X)
is the difference of the limiting values of u(X) from Ω+ and Ω− sides, respectively,
un = n · ∇u = ∂u

∂n is the normal derivative of solution u(X), and n(X) is the unit
normal direction at a point X on the interface pointing to the Ω+ side; see Figure 1
for an illustration. The domain and the interface are used in Examples 6.2 and 6.3
in section 6. We use x to represent a point in the domain, while X is a point on
the interface Γ. Since a finite difference discretization will be used, we assume that
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Fig. 1. A diagram of a rectangular domain Ω = Ω+ ∪ Ω− with an interface Γ. The coefficient
β(x) has a finite jump across the interface Γ. The interface and domain in this figure are used in
Examples 6.2 and 6.3 in section 6.

f(x) ∈ C(Ω±), β(x) ∈ C1(Ω±), excluding Γ, and that Γ ∈ C2, w ∈ C2(Γ), v ∈ C1(Γ).
All the parameters and ∂β

∂x and ∂β
∂y are assumed to be bounded. For the regularity

requirement of the problem, we also assume that β(x) ≥ β0 > 0 and f(x) ∈ Cν(Ω\Γ)
for a constant ν > 0 so that u(x) ∈ C2+ν(Ω±); see [19, 8]. For the error analysis,
piecewise higher regularity assumptions are needed for the solution; see sections 3 and
5.

Many free boundary and moving interface problems can be modeled by differen-
tial equations involving not only the solution to the governing equations but also the
gradient of the solution at the free boundary or the moving interface from each side.
Such examples include the Stefan problems and crystal growth modeling the interface
between ice and water, in which the velocity of the interface depends on the tempera-
ture of the heat equation and its gradient at the interface (called the Stefan condition)
[12, 45]; the Hele-Shaw flow [30, 32]; the coupling between a Darcy’s system and Stokes
or Navier–Stokes equations [36]; and open and traction problems [46, 50]. The most
expensive part of simulations from our research on those problems is solving one or
more elliptic interface problems, for example, two generalized Helmholtz equations
and one Poisson equation when we solve the two-dimensional (2D) incompressible
Navier–Stokes equations involving interface using the projection method [46]. The
goal of this paper is to present an efficient new finite difference method based on a
uniform Cartesian mesh that not only provides an accurate solution globally but also
an accurate gradient from each side of the interface.

For the elliptic interface problem (1.1)–(1.2), the solution has low global regular-
ity; lower than H1 is w �= 0. Thus, a direct finite difference or finite element method
will not work, or will work poorly. Nevertheless, it is reasonable to assume that the
solution is piecewise smooth excluding the interface. For example, if the coefficient is
a piecewise constant in each subdomain, then the solution in each subdomain is an
analytic function in the interior but has a jump in the solution and/or the normal
derivative due to the source or dipole distribution from the PDE limiting theory [33].
The gradient used in this paper is defined as the liming gradient from each side of the
interface.

Naturally, finite element methods can be, and have been, applied to solve the
interface problem. It is well known that a second order accurate approximation to
the solution of an interface problem with w ≡ 0 and v ≡ 0 can be generated by
the Galerkin finite element method with the standard linear basis functions if the
triangulation is aligned with the interface; that is, a body fitted mesh is used (see,
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572 ZHILIN LI, HAIFENG JI, AND XIAOHONG CHEN

for example, [7, 9, 13, 66]). Some kind of posterior techniques or at least quadratic
elements is needed in order to get a second order accurate gradient from each side of
the interface. The cost in the mesh generation coupled with an unstructured linear
solver is hardly competitive with the algorithm proposed in this paper (in our opinion).

There are also quite a few finite element methods using Cartesian meshes. The
immersed finite element method (IFEM) was developed for one-dimensional (1D) and
2D interface problems in [40] and [44], respectively. Since then, many IFEMs and
analyses have appeared in the literature (see, for example, [14, 25]), with applications
shown in [48, 67]. The IFEM is distinguished from other finite element methods
(FEMs) in terms of degree of freedom and structure of the coefficient matrix, for
example, the extended finite element method (XFEM), in which enrichment functions
are added near the interface [60], and the unfitted FEM based on Nitsche’s method
in [23]. Other related work in this direction can be found in [10, 35, 20, 28] and others.
Note that the methods developed in [29, 31] using a Petrov–Galerkin finite element
discretization in which the nonconforming immersed finite element (IFE) space and
the standard linear finite element space are used as the trial and test functional
spaces, respectively. A partial penalty IFE method was proposed in [49]. Other types
of method are based on a discontinuous Galerkin [65, 53] or a weak Galerkin [62]
method with some penalties. In those methods, some parameters are chosen to achieve
the optimal convergence. In general, discontinuous or weak Galerkin methods are
flexible because there are more choices of the degree of freedom, which in turn implies
these types of methods may be computationally more expensive. These methods
are usually better suited for hyperbolic problems and conservation laws. Another
interesting development is the spectral solution representation technique [4, 5, 6, 3, 34],
which is also based on integral forms. In this technique, the interface problem is
decomposed into two problems, one with zero interface data and the other with zero
exterior boundary data which is solved by introducing an interface space HΓ(Ω) and
constructing an orthogonal basis of this space.

Finite difference methods have also played a very important role in scientific com-
puting and in solving engineering problems. Advantages of finite difference methods
based on Cartesian meshes include simplicity, ease of programming, and their abil-
ity to utilize many existing fast solvers. Note that error estimates from FEMs are
based on integral forms, which may not exactly predict the actual errors near the
interface compared with estimates from finite difference methods that are based on
the pointwise (L∞) norm. Many new finite difference methods based on Cartesian
meshes have been developed for interface problems; see, for example, the ghost fluid
method [51], the matched boundary interface method [70], the kernel free bound-
ary integral method [68], and the virtual node method [27]. The difference potential
method [16, 59] was developed for 1D elliptic and parabolic problems in [1]. In [54],
the difference potential method with second order accuracy in the solution and in
the gradient was developed for elliptic interface problems with variable coefficients
in [15]. The fourth order extension of the method for the elliptic interface problems
was developed in [2].

Most numerical methods for interface problems based on structure meshes are
between first and second order accurate for the solution, but the accuracy for the
gradient is usually one order lower. Note that the gradient recovering techniques,
for example, in [61, 69], usually do not work well for structured meshes because of
the arbitrariness of the interface and the underlying mesh. The mixed finite element
approach and a few other methods that can find an accurate solution and the gradient
simultaneously in the entire domain often lead to a saddle problem and are compu-

D
ow

nl
oa

de
d 

04
/0

4/
18

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCURATE SOLUTION AND GRADIENT COMPUTATION 573

tationally expensive; these methods are not ideal choices if we are only interested
in the accurate gradient near the interface or boundary. The purpose of this paper
is to develop a new method that has a second order accurate solution globally and
a second order accurate gradient at the interface. Note that for Poisson equations
with singular source along an interface, it was proved in [8] that both the computed
solution and the gradient are second order accurate by a factor of log h in the infinity
norm. In [39], an augmented immersed interface method (AIIM) is proposed to solve
the elliptic interface problems with piecewise constant coefficient. Both the solution
and the gradient are shown to be second order accurate for all the examples, which
will be proved in this paper. The method in [39] provided a clue to accurate gradient
computation at the interfaces or boundaries. The method implicitly put the gradient
near the interface as an unknown (augmented variable). While there are quite a few
accurate and consistent numerical methods for interface problems, the stability of
those methods is nevertheless often ignored. In [42], a maximum principle preserving
scheme is proposed for variable discontinuous coefficients. A quadratic optimization
is used to determine the finite difference coefficients at grid points near the interface
so that the coefficient matrix is an M-matrix, which is key to the proof of the conver-
gence of the method. This is another aspect of our method that ensures the coefficient
matrix is an M-matrix.

In this paper, we propose a new approach that can provide a second order solution
globally and a second order accurate gradient only along the interface for a variable
coefficient that has a finite jump along the interface. The method has advantages of
both of the methods in [39] and [42]. The idea is to introduce the jump in the normal
derivative of the solution as an augmented variable. With the augmented variable, the
immersed interface method (IIM) is second order accurate both for the solution and
first order derivatives [8, 58]. By a suitable transform of the PDE, the leading terms
of the second order derivative jump relations needed for the IIM are independent of
the coefficient. The lower order derivative terms at irregular grid points that are on or
near the interface are discretized using an upwinding discretization within the centered
five-point stencil. Thus, the coefficient matrix of the finite difference equations is an
M-matrix without using an optimization procedure in [42]. It has been shown that
the finite difference solution is second order accurate if the augmented variable is also
second order accurate. The augmented variable should be chosen so that the flux
jump condition is satisfied. This leads to a second discretization involving the finite
difference solution and the augmented variable. The GMRES iteration is utilized to
solve the Schur complement for the augmented variable with a new preconditioning
strategy. By using the estimates of the discrete Green function, we have shown that
the augmented variable has second order accuracy and thus is the finite difference
solution.

The rest of the paper is organized as follows. In the next section, we explain the
algorithm in one dimension since it is easy to understand, and we follow this with the
convergence proof. In section 4, we explain the algorithm in two dimensions followed
again by the convergence analysis in section 5. In section 6, we present some 2D
numerical examples. We conclude in the last section.

2. The 1D algorithm. A model interface problem in one dimension has the
form

(2.1)
(βux)x = f(x), x ∈ (a, α) ∪ (α, b),

u(a) = ua, u(b) = ub, [u]α = w, [βux]α = v,
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574 ZHILIN LI, HAIFENG JI, AND XIAOHONG CHEN

where a < α < b is an interface (a point). We assume that conditions for β(x), f(x)
described in the introduction hold with Ω− = (a, α) and Ω+ = (α, b). We will drop
the subscript α in the jump expressions [u]α and [βux]α and simply use [u] and [βux]
if there is no confusion.

Let xi = a + ih be a uniform mesh with h = (b − a)/N and i = 0, 1, . . . , N . We
define q = [ux]α as the augmented variable. Assume that xj ≤ α < xj+1. We call xj

and xj+1 irregular grid points, while others are called regular grid points. The finite
difference scheme at a regular grid point xi, with i �= j and i �= j + 1, can be written
as

βi−1/2 Ui−1 − 2β̄i Ui + βi+1/2 Ui+1

β̄ih2
=

f(xi)

β̄i
,(2.2)

where

βi−1/2 = β(xi − h/2), βi+1/2 = β(xi + h/2), β̄i =
βi−1/2 + βi+1/2

2
.(2.3)

At the irregular grid points xj and xj+1, we use the equivalent differential equation

uxx +
βxux

β
=

f

β
.(2.4)

This is one of the key ideas of the new augmented approach. In this way, we can get
second order derivative jump conditions [uxx] in terms of lower order derivative jump
conditions and derivatives of the solution.

If we know the jump [ux] = q in addition to the original jump conditions [u] and
[βux], then we know the jump relations

(2.5)

[u] = w, [ux] = q,

[uxx] =

[
f

β

]
− β+

x u+
x

β+
+

β−
x u−

x

β− =

[
f

β

]
−
[
βx

β

]
u−
x − β+

x

β+
q.

If βx(xj)/β(xj) ≥ 0, then the finite difference discretization at the irregular grid
point xj can be written as
(2.6)

Uj−1 − 2Uj + Uj+1

h2
+CFD(Uj−1, Uj , Uj+1)+

βx(xj)

β(xj)

(
Uj+1 − Uj

h
+ C

)
=

f(xj)

β(xj)
,

where C is a correction term (see [43]),

C = − [u]

h
− (xj+1 − α)[ux]

h
= −w

h
− (xj+1 − α) q

h
,(2.7)

and CFD(Uj−1, Uj, Uj+1) is part of the finite difference equation,

(2.8)
CFD(Uj−1, Uj , Uj+1) = − [u]

h2
− (xj+1 − α)[ux]

h2
− (xj+1 − α)2[uxx]

2h2

= − w

h2
− (xj+1 − α) q

h2
− (xj+1 − α)2[uxx]

2h2
,

in which [uxx] is discretized by (see (2.5))
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[uxx] =

[
f

β

]
−
[
βx

β

]
u−
x − β+

x

β+
q

≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
f

β

]
− β+

x

β+
q −
[
βx

β

]
Uj − Uj−1

h
if

[
βx

β

]
≤ 0,[

f

β

]
− β+

x

β+
q −
[
βx

β

](
Uj+1 − Uj

h
+ C

)
otherwise.

The case when βx(xj)/β(xj) < 0 can be treated in a similar way. We omit the details.
We can derive a similar finite difference scheme at the irregular grid point xj+1. The
finite difference scheme has the following properties:

• It is consistent. The local truncation errors at regular grid points are O(h2),
and they are O(h) at irregular grids points xj and xj+1.

• The finite difference scheme can be written as

AhU+BQ = F1,(2.9)

where the coefficient matrix Ah is an M-matrix, irreducible, tridiagonal, and
diagonally dominant, U is the column vector formed by the finite difference
solution, B is a column vector with at most two nonzero entries at jth and
(j+1)th locations, and Q is the approximate value of q = [ux]. Note that Ah

is invertible and that the two components of Fj and Fj+1 have been modified.

2.1. Discretization of the flux jump condition. Next we discuss the inter-
polation scheme to approximate the interface condition [βux] = v. First, we rewrite
the jump condition as

(2.10)

[βux] = β+u+
x − β−u−

x = β+(u−
x + q)− β−u−

x

=⇒ β+ − β−

β+
u−
x + q =

v

β+
.

This can be discretized as

(2.11)
β+ − β−

β+

(
γ1Uj−1 + γ2Uj + γ3Uj+1 + C3

)
+ q =

v

β+
,

where γ1, γ2, γ3, and the correction term C3 are determined using the idea of the IIM
so that the interpolation scheme is a second order approximation of (2.10), that is,

β+ − β−

β+

(
γ1u(xj−1) + γ2u(xj) + γ3u(xj+1) + C3

)
+ [ux]− v

β+
= O(h2).

In the matrix-vector form, the above equation can be written as

SU+GQ = F2,(2.12)

where S is a row vector whose sum is zero.
We define the residual of the flux jump condition given an approximation Q as

R(Q) = SU+GQ− F2,(2.13)

which is the discrete form of r(q) = [βux]− v. If we put (2.9) and (2.12) together, we
get

(2.14)

[
Ah B
S G

] [
U
Q

]
=

[
F1

F2

]
.
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Eliminating U in (2.14) gives the Schur complement equation for Q,

(2.15) (G− SA−1
h B)Q = F2 − SA−1

h F1.

Equation (2.15) can be solved if the Schur complement is nonsingular. Once Q is
computed, one can substitute it in (2.9) to solve forU. The cost of computation in this
process is solving linear systems with the form Ahx = b three times, A−1

h F1, A
−1
h BQ,

and finally (2.9). Since matrix Ah is tridiagonal and row diagonally dominant, the
Thomas algorithm is guaranteed to be stable, and the solution can be obtained in
O(N) operations.

3. Convergence analysis of the 1D algorithm. In this section, we show
second order convergence of the solution globally, its first order derivative at the
interface, and the augmented variable of the proposed new method. The proof is
simpler than that of the 2D case but serves the purpose of understanding the tools
used in the proof of the 2D case in section 5.

We use the following notation. We denote the errors as Eu = U − u with Eu
i =

Ui − u(xi) for the solution and Eq = Q − q for the augmented variable, respectively,
where u(xi) is the true solution at xi. We use C to represent a generic error constant.
We start the analysis by assuming that the coefficient β(x) is a piecewise constant,
the domain is (0, 1), and a Dirichlet boundary condition is prescribed at the two end
points for simplicity.

Theorem 3.1. Assume that β(x) is a piecewise constant and u(x) is in piecewise
C4 excluding the interface α. If Q is a second order accurate approximation to q, i.e.,
|Eq| ≤ Ch2, then we also have ‖Eu‖∞ ≤ Ch2.

Proof. Let Tu be the local truncation error of system (2.9), that is,

(3.1) Ahu+Bq = F1 +Tu,

where u is the vector formed by the true solution at the grid points xi, and q is the
jump of the derivative of the solution [ux] across the interface α. Subtracting (3.1)
from (2.9) yields

(3.2) AhE
u = F̃u,

where F̃u = −Tu −BEq. Notice that |Tu
i | ≤ Ch2 and Bi = 0 at regular grid points,

while |Tu
j | ≤ Ch, |Tu

j+1| ≤ Ch and Bj ∼ O( 1h ), Bj+1 ∼ O( 1h ). Since |Eq| ≤ Ch2, we

have F̃u
i ≈ O(h2) at regular points, while F̃u

j ∼ O(h), F̃u
j+1 ∼ O(h). Also when β is

piecewise constant, the matrix Ah can be simplified as

Ah =
1

h2

⎡⎢⎢⎣
−2 1
1 −2 1
. . . . . . . . . . . .

1 −2

⎤⎥⎥⎦ .
From [37], we have

(3.3) (Ah)
−1
ij = hG(xi;xj) =

{
h(xj − 1)xi, i = 1, 2, . . . , j,

h(xi − 1)xj , i = j, j + 1, . . . , N − 1,

where

G(x; x̄) =

{
(x̄− 1)x, x ≤ x̄,

(x− 1)x̄, x ≥ x̄,
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is the Green function, that is, the solution of

Δx G(x; x̄) = δ(x− x̄), 0 < x < 1, 0 < x̄ < 1,

G(0; x̄) = 0, G(1; x̄) = 0.

The global error of u then can be represented as

(3.4) Eu
i = h

N−1∑
j=1

F̃u
j G(xi;xj).

Since 0 ≤ G(xi;xj) ≤ 1, we have the inequality

|Eu
i | ≤

∣∣∣∣∣∣h
N−1∑
j=1

F̃u
j

∣∣∣∣∣∣ ≤ h

⎛⎝|F̃u
j |+ |F̃u

j+1|+
j−1∑
k=1

|F̃k|+
N−1∑

k=j+2

|F̃k|
⎞⎠

∼ h
(
O(h) + (N − 2)O(h2)

) ∼ O(h2),

since N ∼ 1/h. This shows that ‖Eu‖∞ ≤ Ch2, and hence the proof is complete.

Next we show that the Schur complement system is nonsingular.

Theorem 3.2. With the same assumptions as in Theorem 3.1 and β− �= β+,
the coefficient matrix (a number for the 1D problem) of the Schur complement is
nonsingular.

Proof. Note that from (2.9), that is, AhU(Q) + BQ = F1, we have A−1
h BQ =

A−1
h F1 −U(Q), and the Schur complement can be rewritten as(

G− SA−1
h B
)
Q = GQ− SA−1

h BQ = GQ− SA−1
h F1 + SU(Q)

= (SU(Q) +GQ)− (SA−1
h F1 +G · 0)

= (SU(Q) +GQ)− (SU(0) +G · 0)
= R(Q)−R(0).

IfQ �= 0 and β− �= β+, then R(Q) �= R(0). For the 1D problem, we have
(
G−SA−1

h B
)
=(

G− SA−1
h B
)
1 = R(1)−R(0) �= 0.1

Now we are ready to show that the augmented variable Q is also second order
accurate.

Theorem 3.3. With the same assumptions as in Theorem 3.1 and β− �= β+, we
have |Eq| = |Q− q| ≤ Ch2.

Proof. Similarly to the definition of the local truncation error Tu, we define the
local truncation T q of q as

Su+Gq = F2 + T q,(3.5)

where u and q are defined as before. From (2.14), we know that

(3.6)

[
A B
S G

] [
Eu

Eq

]
=

[−Tu

−T q

]
.

1Note that some of the proof is similar to section 6.1.2 of [43].
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578 ZHILIN LI, HAIFENG JI, AND XIAOHONG CHEN

Eliminating Eu, we get the Schur complement system for Eq,

(3.7) (G− SA−1B)Eq = −T q + SA−1Tu.

We already know that (G−SA−1B) is nonsingular and ‖T q‖∞ ≤ Ch2. The key is to
show that ‖SA−1Tu‖∞ ≤ Ch2.

Let b = A−1Tu; from the definition of the Green function in (3.3), we can write

(3.8) bi = h

N−1∑
l=1

Tu
j G(xi;xl).

At first glance, it seems that Eq ∼ O(h) since the interpolation operator ‖S‖∞ ∼ 1/h.
Nevertheless, the following analysis shows that Eq ∼ O(h2) is actually true. Let
Δi = bi − bi−1, i = 2, . . . , N − 1. Then we have (note that both SA−1Tu and S b are
scalars for the 1D problem)

SA−1Tu = S b = Sj−1bj−1 + Sjbj + Sj+1bj+1

= Sj−1(bj −Δj) + Sjbj + Sj+1(bj +Δj+1)

= (Sj−1 + Sj + Sj+1)bj − Sj−1Δj + Sj+1Δj+1

= −Sj−1Δj + Sj+1Δj+1.

Notice the term bj is cancelled out. This is because the interpolation operator is
for the first order derivative of u(x), and the consistency condition requires that
Sj−1 + Sj + Sj+1 = 0. Now what is left to prove is that Δj ∼ Δj+1 ∼ O(h3), which
leads to Eq ∼ h2, since Sj−1 ∼ Sj+1 ∼ O(1/h). The final step of the proof is explained
below.

|Δi| = |bi − bi−1| = h

N−1∑
l=1

|Tu
l | · |G(xi;xl)−G(xi−1;xl)|

≤ h2
N−1∑

l �=j,j+1

|Tu
l |+ h2

(|T u
j + |T u

j+1|
)

from the continuity of G(xi, xl)

≈ O(h3).

This completes the proof.

As the result of Theorems 3.1–3.3, we conclude that the solution U is also second
order approximation to u, which is summarized in the following theorem.

Theorem 3.4. With the same assumptions as in Theorem 3.1, β− �= β+, and β
piecewise constant, ‖Eu‖∞ = ‖U− u‖∞ ≤ Ch2.

Proof. Since the Schur complement matrix is a constant independent of h, |T q| ≤
Ch2, and |SA−1Tu| ≤ Ch2 just proved, from (2.15) we have the conclusion.

We get not only a second order accurate solution and the augmented variable,
but also second order accurate derivatives u−

x and u+
x if the derivative is computed

using the scheme (2.10), that is,

u−
x =

β+

β+ − β−

(
v

β+
− q

)
,(3.9)

assuming that β− �= β+. Since the computed Q is second order accurate, we imme-
diately have the following theorem.
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ACCURATE SOLUTION AND GRADIENT COMPUTATION 579

Table 1

A grid refinement analysis for the Stefan problem at the final time t = 3. The computed
solution, the first order derivative u−

x (α(t)), and the free boundary α(t) all have average second
order convergence.

N ‖u− U‖∞ r |[ux]−Q| r |α−A| r
16 2.3160 × 10−2 3.9232× 10−4 4.0734 × 10−2

32 6.4260 × 10−3 1.8496 3.0046× 10−4 0.3849 1.1473 × 10−2 1.8280
64 1.9403 × 10−3 1.7276 1.2357× 10−5 4.6038 3.5210 × 10−3 1.7042
128 4.8957 × 10−4 1.9867 1.8056× 10−7 6.0967 8.8986 × 10−4 1.9843
256 1.0044 × 10−4 2.2852 7.3479× 10−8 1.2971 1.7986 × 10−4 2.3067

Theorem 3.5. Assume β is two different piecewise constants and U−
x is computed

using the above formula with q being replaced by Q, the computed augmented variable.
Then |U−

x − u−
x | ≤ Ch2, where u−

x = lim
x→α−

du
dx (x).

3.1. An example of the 1D Stefan problem. Our numerical experiments in
one dimension have confirmed our theoretical analysis that both the solutionU ≈ u(x)
and the augmented variable Q ≈ [ux] are second order accurate in the L∞ norm. We
show an example of the 1D Stefan problem (see, for example, [11, 18]), in which the
free boundary α(t) is moving. The governing equations are

∂u

∂t
=

∂2u

∂x2
for 0 < x < α(t), t > 0,

u(x, t) = 0 for x ≥ α(t), t > 0,

where α(t) is subject to the Stefan condition,

dα

dt
(t) = −∂u

∂x
(α(t), t) , α(0) = 0.

The boundary and initial conditions are

∂u

∂x
(0, t) = f(t), u(α(t), t) = 0, u(x, 0) = 0.

The model is from [55]. We use the following exact solution:

u(x, t) = 1− erf
(
x/(2

√
t)
)

erf(ω)
, α(t) = 2ω

√
t,

where erf is the error function and ω is the solution of the transcendental equation√
π ω ·erf(ω)eω2

= 1. The function f(t, α(t)) is determined from the analytic solution.
We use a second order time splitting technique to solve the problem; that is, we

solve the differential equation with α(t) fixed, then update the new location of α(t).
The augmented equation now is the boundary condition at α(t). In Table 1, we show
a grid refinement analysis of the errors in the solution at all grid points, the free
boundary α(t), and the first order derivative u−

x (α(t)) at the final time t = 3. We
use lowercase letters for the analytic solutions and uppercase letters for the computed
solutions. We observe that all of them have average second order convergence.

4. The algorithm for 2D problems. In this section, we present the algorithm
for 2D problems. The key is the modification of the finite difference scheme at irregular
grid points. We first discuss the interface relations using an equivalent representation
of the interface problem.
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580 ZHILIN LI, HAIFENG JI, AND XIAOHONG CHEN

4.1. The jump relations in the local coordinates. As explained in the
introduction, we rewrite the elliptic interface problem near the interface as

Δu+
βx

β
ux +

βy

β
uy =

f

β
,(4.1)

[u]Γ = w, [un]Γ = q,(4.2)

where q(X) is the augmented variable only defined along the interface Γ which should
be chosen such that the flux jump condition

[βun]Γ (X) = v(X)

is satisfied. In this way, the Laplacian term Δu has been separated from β(x, y) which
makes the discretization easier with our proposed augmented method. This is one of
the key ideas of the new method.

From the descriptions in both [38, section 3.1] and [43, section 3.1], we restate
some theoretical results on the reformulated elliptic interface problem (4.1)–(4.2).
Assume that the interface in the parametric form is

Γ =
{
(X(s), Y (s)) , X(s) ∈ C2, Y (s) ∈ C2

}
,(4.3)

where s is a parameter, for example, the arc-length. At a point of the interface (X,Y ),
the local coordinate system in the normal and tangential directions is defined as (see
Figure 2 for an illustration)

(4.4)

{
ξ = (x−X) cos θ + (y − Y ) sin θ,

η = −(x−X) sin θ + (y − Y ) cos θ,

where θ is the angle between the x-axis and the normal direction, pointing to the Ω+

subdomain. Under such a new coordinates system, the interface can be parameterized
as

(4.5) ξ = χ(η) with χ(0) = 0, χ′(0) = 0.

The curvature of the interface at (X,Y ) is χ′′(0).

θ

ξ

η

(xi, yj)

(Xk, Yk)

Fig. 2. A diagram of an irregular grid point (xi, yj), its orthogonal projections on the interface
(Xk , Yk), and the local coordinates at (Xk , Yk) in the normal and tangential directions.
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ACCURATE SOLUTION AND GRADIENT COMPUTATION 581

If we know the jump in the solution [u] = w and the normal derivative [un] = q
(not the original flux jump condition [βun] = v), then we can have the following jump
relations at a point (X,Y ) on the interface which is necessary to derive the accurate
finite difference method.

Theorem 4.1. For the elliptic interface problem (4.1)–(4.2), if we are given [u] =
w and [un] = q, then at the interface the following jump relations hold:

(4.6)

[u] = w, [uη] = w′, [uξ] = q,

[uηη] = −qχ′′ + w′′, [uξη] = w′χ′′ + q′,

[uξξ] = q

(
χ′′ − β+

ξ

β+

)
− w′′ −

[
βξ

β

]
u−
ξ −
[
βη

β

]
u−
η − β+

η

β+
w′ +

[
f

β

]
,

where w′, g′, and w′′ are the first and second order surface derivatives of w and g on
the interface, and are all evaluated at (ξ, η) = (0, 0).

Here we skip the derivation, which is similar to those derived in (3.5) in section 3.1
of [43], assuming that [u] = w and [βun] = v are given. Note also that we can express
the jump conditions in terms of u+, u+

η , and u+
ξ .

Once we have the jump relations in the local coordinates, we can get back the
jump relations in the x- and y-directions according to (9.47) in [43] as follows:

(4.7)

[ux] = [uξ] cos θ − [uη] sin θ, [uy] = [uξ] sin θ + [uη] cos θ,

[uxx] = [uξξ] cos
2 θ − 2[uξη] cos θ sin θ + [uηη] sin

2 θ,

[uyy] = [uξξ] sin
2 θ + 2[uξη] cos θ sin θ + [uηη] cos

2 θ.

4.2. The finite difference scheme for the 2D problem. For simplification,
we use a uniform mesh

xi = a+ ih, i = 0, 1, . . . ,M ; yj = c+ jh, j = 0, 1, . . . , N,(4.8)

assuming Ω = (a, b)× (c, d). The interface Γ is represented by the zero level set of a
Lipschitz continuous function ϕ(x, y), that is,

Γ =
{
(x, y), ϕ(x, y) = 0, (x, y) ∈ Ω

}
.(4.9)

In the neighborhood of the interface, we assume that ϕ(x, y) ∈ C2. In implementation,
the level set function is defined at the grid points as {ϕij} corresponding to ϕ(xi, yj).
At a grid point (xi, yj), we define

ϕmax
ij = max {ϕi−1,j , ϕij , ϕi+1,j , ϕi,j−1, ϕi,j+1} ,(4.10)

ϕmin
ij = min {ϕi−1,j , ϕij , ϕi+1,j , ϕi,j−1, ϕi,j+1} .(4.11)

A grid point (xi, yj) is called regular if ϕmax
ij ϕmin

ij > 0; otherwise it is called irregular.
The set of orthogonal projections (Xk, Yk), k = 1, 2, . . . , Nb, of all irregular grid

points on the interface from a particular side, say Ω+, forms a discretization of the
interface Γ. We refer the reader to section 1.6.4 in [43] on how to find approximate
orthogonal projections. Then the discrete augmented variable Qk of the continuous
q(s) is defined at those orthogonal projections. Given a discrete quantity along the
interface, we can interpolate the quantity at the discrete points to get its value and
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582 ZHILIN LI, HAIFENG JI, AND XIAOHONG CHEN

the tangential derivative anywhere along the interface. For example, assume that
(xi, yj) is an irregular grid point, and the interface cuts the grid line at (x∗

ij , yj)
corresponding to the orthogonal projection Xk = (Xk, Yk). We need to get the values
of Q and its tangential derivative at (x∗

ij , yj). We first reconstruct the interface in

the local coordinates as ξ ≈ Cη2 + Dη3 with error O(η4). We refer the readers
to section 11.1.5 in [43] on how to find C and D. We then approximate Q(η) as
Q(η) = Qk + ω1η + ω2η

2 locally with error O(η3) and Q′(η) = ω1 + 2ω2η with error
O(η2). The coefficients ω1 and ω2 are determined from Q values at the two closest
orthogonal projections.

4.2.1. The finite difference scheme at a regular grid point. At a regular
grid point (xi, yj), the finite difference scheme is the classic conservative one with the
scaling

βi−1/2,jUi−1,j + βi+1/2,jUi+1,j + βi,j−1/2Ui,j−1 + βi,j+1/2Ui,j+1 − β̄ijUi,j

h2β̄ij

=
fij

β̄ij

,(4.12)

where fij = f(xi, yj), βi−1/2,j = β(xi − h/2, yj), and so on, and

β̄ij = βi−1/2,j + βi+1/2,j + βi,j−1/2 + βi,j+1/2.(4.13)

4.2.2. The finite difference scheme at an irregular grid point. We assume
that we know the jump conditions [u] = w and [un] = q, not the original flux jump
condition [βun] = v. This makes it easier to derive accurate and stable finite difference
schemes. At an irregular grid point, we discretize the rewritten equation (4.1) using a
dimension by dimension approach, and an upwinding discretization for the first order
derivative terms.

Let (xi, yj) be an irregular grid point. If the interface does not cut through the
interval (xi−1, xi+1) along the line y = yj, that is, (xi, yj) is regular in the x-direction,
then the finite difference approximation for (βux)x before the scaling is

(βux)x ≈ βi−1/2,jUi−1,j + βi+1/2,jUi+1,j − (βi−1/2,j + βi+1/2,j)Ui,j

h2
.(4.14)

The final finite difference equation will be scaled similarly to those at regular grid
points.

Now assume the interface cuts the grid line y(x) = yj in the interval (xi−1, xi+1),
say at (x∗

ij , yj), with x∗
ij = xi + αx

ij h, 0 ≤ |αx
ij | < 1. Without lost of generality, we

assume that (xi, yj) ∈ Ω−. We discretize the reformulated equation (4.1), that is,

u−
xx + u−

yy +
β−
x u−

x

β− +
β−
y u−

y

β− =
f−

β− ,(4.15)

where f−, β−, . . . are the limiting values at (x∗
ij , yj) from the Ω− side. We use an

upwinding scheme for the first order term β−
x u−

x /β
−, that is,

β−
x u−

x

β− ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β−
x

β−

(
Ui,j − Ui−1,j

h
+

C̃x
ij

h

)
if

β−
x

β− ≤ 0,

β−
x

β−

(
Ui+1,j − Ui,j

h
+

C̄x
ij

h

)
otherwise,

(4.16)

where, for example, C̃x
ij = 0 if (xi−1, yj) ∈ Ω−. Otherwise we have
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ACCURATE SOLUTION AND GRADIENT COMPUTATION 583

C̃x
ij = −

(
[u] + [ux]

(
1− |αx

ij |
)
h
)
, where αx

ij =
x∗
ij − xi

h
;(4.17)

see Lemma 10.6 in [43] for the formulas of the correction, where the jumps again
are defined at (x∗

ij , yj). Similarly, for the second order term uxx, the finite difference
approximation for uxx can be written as

u−
xx(xi, yj) ≈

Ui−1,j − 2Ui,j + Ui+1,j − Cx
ij

h2
,(4.18)

where the correction term Cx
ij is

Cx
ij = [u] + [ux]

(
1− |αx

ij |
)
h+ [uxx]

(1− |αx
ij |)2h2

2
.(4.19)

4.2.3. Approximating [uxx] and [uyy]. Given [u] = w and [un] = q along the
interface, from (4.7) and (4.6) we have

[ux] = cos θ [uξ]− sin θ [uη] = q cos θ − w′ sin θ,

[uy] = sin θ [uξ] + cos θ [uη] = q sin θ + w′ cos θ,

[uxx] = cos2 θ [uξξ]− 2 sin θ cos θ [uξη] + sin2 θ [uηη]

= −2 sin θ cos θ (w′χ′′ + q′) + sin2 θ (−qχ′′ + w′′)

+ cos2 θ

{
q

(
χ′′ − β+

ξ

β+

)
− w′′ − β+

η

β+
w′ +

[
f

β

]

−
[
βξ

β

] (
cos θ u−

x + sin θ u−
y

)− [βη

β

] (− sin θ u−
x + cos θ u−

y

)}
,

[uyy] = sin2 θ [uξξ] + 2 sin θ cos θ [uξη] + cos2 θ [uηη]

= 2 sin θ cos θ (w′χ′′ + q′) + cos2 θ
(
−qχ′′ + w′′

)
+ sin2 θ

{
q

(
χ′′ − β+

ξ

β+

)
− w′′ − β+

η

β+
w′ +

[
f

β

]

−
[
βξ

β

] (
cos θ u−

x + sin θ u−
y

)− [βη

β

] (− sin θu−
x + cos θ u−

y

)}
,

where w′ and q′ are the first order derivatives and w′′ is the second order derivative
along the interface, respectively. In the derivation above, we have used formulas

uξ = ux cos θ + uy sin θ, uy = −ux sin θ + uy cos θ.(4.20)

Most of the terms in [uxx] and [uyy] are computable except terms of u−, u−
x , and u−

y .
Note that these functions are defined on the interface. Using Taylor expansion, we
have u−(X,Y ) = u−(xi, yj) + O(h), u−

x (X,Y ) = u−
x (xi, yj) +O(h), and u−

y (X,Y ) =
u−
y (xi, yj) + O(h). We simply replace u− with Uij and treat u−

x and u−
y using the

upwinding scheme to increase the diagonal dominance of the resulting linear system
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584 ZHILIN LI, HAIFENG JI, AND XIAOHONG CHEN

of finite difference equations. For example, for the terms containing u−
x in [uxx] we use

([
βη

β

]
sin θ−

[
βξ

β

]
cos θ

)
cos2 θ u−

x =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Atmp

(
Ui+1,j − Ui,j

h
+

C̃x
ij

h

)
if Atmp≥0,

Atmp

(
Ui,j − Ui−1,j

h
+

C̄x
ij

h

)
otherwise,

where Atmp =

([
βη

β

]
sin θ −

[
βξ

β

]
cos θ

)
cos2 θ,

and once again, for example, C̃x
ij = 0 if (xi−1, yj) ∈ Ω−. Otherwise,

C̃x
ij = −

(
[u] + [ux]

(
1− |αx

ij |
)
h
)
.(4.21)

The linear system of finite difference equations can be written as

AhU+BQ = F1,(4.22)

where U is the vector formed by the finite difference approximation {Uij} to the
solution {u(xi, yj)}, Q is the vector formed by the discrete augmented variable {Qk}
to the augmented variable { [ ∂u

∂n (Xk, Yk) ] }, F1 is the modified right-hand side, and
B is a sparse matrix corresponding to the correction terms for the [un] term.

Remark 4.2.
• The finite difference stencil is still standard five-point centered. This is dif-

ferent from the maximum principal preserving scheme [42] in which the finite
difference stencil is nine-point.

• Ah is an M-matrix and irreducible, and thus it is invertible. No optimization
is needed compared to that in [42] because we assume that [un] is given
instead of [βun], which makes it easier to discretize the interface problem.
The trade-off is that we also need to solve the augmented variable.

4.3. Discretizing the flux jump condition. At every approximate orthogonal
projection of all irregular grid points on the interface, we use the same least squares
interpolation described in section 4 in [39] to interpolate the flux jump condition
[βun] = v.

At one orthogonal projection Xk = (Xk, Yk) corresponding to an irregular grid
point (xi, yj), the second order accurate least squares interpolation scheme approxi-
mating [βun] = v can be written as∑

|xij−Xk|≤δh

γijUij + Lk (β(x),W,Q,V) = 0,(4.23)

where δh is a parameter of 2h ∼ 3h, Lk stands for a linear relation of its arguments
w(X), q(X), and v(X) in discrete form. The consistency condition requires that∑

|xij−Xk|≤δh

γij = 0.(4.24)

Note that the interpolation coefficients should depend on the index k as well; we omit
them for simplicity of notation.
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ACCURATE SOLUTION AND GRADIENT COMPUTATION 585

In the matrix-vector form, the interpolation at all projections of irregular grid
points from one particular side can be written as

SU+GQ = F2(4.25)

for some sparse matrices S and G. If we put (4.22) and (4.25) together, we get

(4.26)

[
Ah B
S G

] [
U
Q

]
=

[
F1

F2

]
.

Eliminating U in (4.26) gives the Schur complement equation for Q,

(4.27) (G− SA−1
h B)Q = F2 − SA−1

h F1 or Aschur
h Q = Fschur.

We use the GMRES iterative method to solve the Schur complement system and do
not explicitly form the matrices Ah, B, S, G, and Aschur

h . The matrix and vector
multiplication Aschur

h Q needed for the GMRES iteration involves two consecutive
steps: the first step is to solve the interface problem (4.22) given Q, and the second
step is to find the residual of the flux jump condition, that is, R(Q) = [β(X)Un(Q)]−
V. We refer the reader to section 5.1 in [39] for details.

4.4. Computing the gradient on the interface. At one orthogonal projec-
tion Xk corresponding to an irregular grid point (xi, yj), we use a similar (two-sided
SVD) interpolation to approximate the normal derivative at Xk from the Ω− side,

u−
n (Xk) =

∑
|xij−Xk|≤δh

γ̃ij Uij + L̃k (β(x),W,Q,V) ,(4.28)

to get one of u−
n (Xk) or u

+
n (Xk), and then we use q(Xk) to get the other, say u

+
n (Xk) =

q(Xk)+u−
n (Xk). The linear system of equations has the same coefficient matrix as that

in (4.23) for γij ’s, so there is almost no additional cost. The term L̃k (β(x),W,Q,V)
is again a correction term due to the jumps in the involved quantities.

If needed, at a grid point the partial derivatives ux and uy can be calculated using
the standard three-point central finite difference formula with (at an irregular grid
point) or without (at a regular grid point) a correction term. Beale and Layton [8]
showed that the computed derivatives using the IIM are second order accurate in the
L∞ norm at all grid points.

4.5. A new preconditioning strategy. The number of GMRES iterations
grows linearly with the mesh size N if there is no preconditioning technique employed.
The preconditioning technique proposed in [39] works well for a piecewise constant
coefficient but not for a variable coefficient. The idea of a new preconditioning tech-
nique is more like a diagonal preconditioning technique for the Schur complement. At
an orthogonal projection Xk = (Xk, Yk) where the augmented variable is defined, we
use the rescaled residual of the flux jump condition

Rrescaled(Xk) =
β+(Xk)U

+
n (Xk)− β−(Xk)U

−
n (Xk)− v(Xk)

β̄(Xk)
,(4.29)

where β̄(Xk) = (β−(Xk) + β+(Xk))/2, to discretize the flux jump condition.
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586 ZHILIN LI, HAIFENG JI, AND XIAOHONG CHEN

5. Convergence proof for the 2D problems. In this section, we provide
a convergence proof for 2D problems. For simplicity, we assume that a Dirichlet
boundary condition is prescribed along the boundary ∂Ω. We useU and u to represent
the vectors of approximate and exact solutions at grid points; Tu and Eu = U−u are
the vectors of the local truncation errors and the global error. We have Eu|∂Ωh

= 0
for the values at grid points on the boundary. Similarly, we define Tq and Eq = Q−q
as the vectors of the local truncation error and the global error for the augmented
variable. According to the definition, we have

AhU+BQ = F1, AhE
u +BEq = Tu,(5.1)

SU+GQ = F2, SEu +GEq = Tq,(5.2)

where the local truncation error vector Tu is defined as Tu = F1 −Ahu−Bq and so
on.

Lemma 5.1. Assume that u(x) is in piecewise C4(Ω \ Γ) excluding the inter-
face Γ. If the augmented variable is a second order approximation to [ ∂u∂n (X)], that is,
‖Eq‖∞ ≤ Ch2, then the computed solution of the finite difference equations (4.22) is
also second order accurate, that is, ‖E‖∞ ≤ Ch2.

Proof. From the construction of the numerical scheme we know that a component
of BEq is zero at a regular grid point xij and bounded by Ch at an irregular grid
point xij , since ‖Eq‖∞ ≤ Ch2 as one of the conditions in the theorem. Note that
Ah is an M-matrix and AhE

u = −BEq + Tu in which Tu is bounded by Ch2 at
regular grid points and Ch at irregular grid points. From Theorem 3.3 in [43] or the
convergence analysis of IIM in [8], we conclude that the global error is bounded by
Ch2. Also from [57, 58], the partial derivatives using the IIM are also second order
accurate.

The next part is to show that the computed augmented variable is also second
order accurate by a factor of log h. In this case, we first assume that the coefficient is
piecewise constant so that we can apply some theoretical results from [41].

Theorem 5.2. Assume that u(x) is in piecewise C4(Ω\Γ), excluding the interface
Γ, and that the coefficient β(x) is a piecewise constant β− and β+; then the computed
augmented variable is second order accurate by the fact of | log h|, that is, ‖Eq‖∞ ≤
Ch2| log h|.

Proof. From (5.1)–(5.2), we have

(
G− SA−1

h B
)
Eq = −Tq + SA−1

h Tu.(5.3)

Note that solvability of the above linear system is shown in [39]. We first prove that
the right-hand side above is bounded by Ch2. Since the interpolation for the flux
jump condition is second order, we have ‖Tq‖∞ ≤ Ch2. For the second term, from
the interpolation scheme in (4.23), we consider one component and carry out the
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ACCURATE SOLUTION AND GRADIENT COMPUTATION 587

derivation

(5.4)

(
SA−1

h Tu
)
k

=
∑

|xij−Xk|≤δh

γij
(
A−1

h Tu
)
ij

=
∑

|xij−Xk|≤δh

γi,j
∑
l, r

Gh(xlr,xij)h
2 τlr

=
∑
l, r

h2 τlr

⎛⎝ ∑
|xij−Xk|≤δh

γi,jG
h(xlr,xij)

⎞⎠ ,

where Gh(xlr ,xij) is the discrete Green function defined as

Gh (xij ,xlm) =

(
A−1

h elm
1

h2

)
ij

, Gh (∂Ωh,xlm) = 0,(5.5)

where elm is the unit grid function whose values are zero at all grid points except at
xlm = (xl, ym) where its component is elm = 1; see, for example, [21]. Note that in
the neighborhood of |xij −Xk| ≤ δh, the points involved in the interpolation are close
to Xk; we can continue to derive

(
SA−1

h Tu
)
k
=
∑
l, r

h2 τlr

⎛⎝ ∑
|xij−Xk|≤δh

γi,j

(
Gh

I (xlr ,Xk)+h
Gh(xlr ,xij)−Gh

I (xlr ,Xk)

h

)⎞⎠
=
∑
l, r

h2 τlr

⎛⎝ ∑
|xij−Xk|≤δh

γi,jG
h
I (xlr,Xk)

⎞⎠
+
∑
l, r

h3 τlr

⎛⎝ ∑
|xij−Xk|≤δh

γi,j

(
∂Gh

I (xlr,Xk)

∂x

)
+O(h)

⎞⎠
=
∑
l, r

h3 τlr

⎛⎝ ∑
|xij−Xk|≤δh

γi,j

(
∂Gh

I (xlr ,Xk)

∂x

)
+O(h)

⎞⎠ .

The first term in the first line of this equation is zero due to the consistency of the
interpolation scheme for the flux jump condition. We have |τlr | ≤ Ch2 at regular grid

points and |τlr | ≤ Ch at irregular grid points, and from the estimate of
∂Gh

I

∂x in (3.16)
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588 ZHILIN LI, HAIFENG JI, AND XIAOHONG CHEN

in [41] we further derive

∣∣(SA−1
h Tu

)
k

∣∣ ≤∑
l, r

h3 |τlr|
⎛⎝ ∑

|xij−Xk|≤δh

|γij |
(

C

(‖xlr −Xk‖2 + h)

)
+O(h)

⎞⎠
≤
∑

l, r,Ωreg
h

h3 |τlr |
⎛⎝ ∑

|xij−Xk|≤δh

|γij |
(

C

(‖xlr −Xk‖2 + h)

)
+O(h)

⎞⎠
+
∑

l, r,Ωirr
h

h3 |τlr|
⎛⎝ ∑

|xij−Xk|≤δh

|γij |
(

C

(‖xlr −Xk‖2 + h)

)
+O(h)

⎞⎠
≤
∑

l, r,Ωreg
h

h4

⎛⎝ ∑
|xij−Xk|≤δh

(
C

(‖xlr −Xk‖2 + h)

)
+O(h)

⎞⎠
+
∑

l, r,Ωirr
h

h3

⎛⎝ ∑
|xij−Xk|≤δh

(
C

(‖xlr −Xk‖2 + h)

)
+O(h)

⎞⎠
≤ h2

∑
|xij−Xk|≤δh

⎛⎝ ∑
l, r,Ωreg

h

(
C

(‖xlr −Xk‖2 + h)

)
h2 +O(h3)

⎞⎠
+ h2

∑
|xij−Xk|≤δh

⎛⎝ ∑
l, r,Ωirr

h

(
C

(‖xlr −Xk‖2 + h)

)
h+O(h3)

⎞⎠
≤ Ch2| log h|+ Ch2,

where Ωirr
h and Ωreg

h are the sets of all irregular and regular grid points, respectively.
In the derivation above we have used the facts that |γij | ∼ 1/h, |τlr | ≤ Ch2 at regular
grid points and |τlr| ≤ Ch at irregular grid points, respectively. We have also used the
estimate of the Riemann sum for the double integral

∫∫
1/(x2+y2+h)dxdy ≤ C| log h|.

Note also that the total number of regular grid points is O(1/h2), while the total
number of irregular grid points is O(1/h). It has been shown that Schur complement
matrix Aschur

h is nonsingular, and thus we have ‖Aschur
h Eq‖∞ ≤ Ch2| log h|.

We have shown that the right-hand side for the error of the augmented variable
has the order of h2 log h. From section 6.1.2 in [43], we know that the left-hand side
of (5.3) is

Aschur
h Eq =

[
β
∂Ũ

∂n
(Eq)

]
−
[
β
∂Ũ

∂n
(0)

]
,(5.6)

where Ũ(Eq) can be regarded as the solution of the numerical method applied to the
problem

∇ · (β∇ũ) = Tu
I (x); ũ|∂Ω = 0,(5.7)

[ũ]Γ = 0,

[
β
∂ũ

∂n

]
Γ

= Tq
I(X),(5.8)

where Tu
I (x) ∈ C is an interpolation function of Tu on the entire domain, while

Tq
I(X) ∈ C is an interpolation function of Tq along the interface. From the maximum
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ACCURATE SOLUTION AND GRADIENT COMPUTATION 589

principle of elliptic PDEs, we know that |ũ| ≤ Ch2 and |∂ũ±
∂n | ≤ Ch2. Therefore the

second term in (5.6) is bounded by Ch2. Thus, we have

Aschur
h Eq =

[
β
∂Ũ

∂n
(Eq)

]
= β+ ∂Ũ

∂n

+

(Eq)− β− ∂Ũ

∂n

−
(Eq) +O(h2)

= β+Eq − [β]
∂Ũ

∂n

−
(Eq) +O(h2).

Since β is a piecewise constant that has been divided from both sides of the PDE (see
(4.1)), from [8] we know that the solution and the derivative are both second order

accurate when the IIM is applied, which implies that ‖∂Ũ
∂n

−
(Eq)‖∞ ≤ Ch2. We have

already proved that ‖Aschur
h Eq‖∞ ≤ Ch2; this leads to ‖Eq‖∞ ≤ Ch2.

Remark 5.3. In the preconditioning strategy, we can write, for example, equation
(6.24) in [43],

∂Ũ

∂n

−
(Eq) = γ

[
β
∂Ũ

∂n
(Eq)

]
+ FΓ +O(h2),(5.9)

where γ is a constant and FΓ is a vector; then we have

Aschur
h Q =

[
β
∂U

∂n
(Q)

]
−
[
β
∂U

∂n
(0)

]
= β+ ∂U

∂n

+

(Q)− β− ∂U

∂n

−
(Q)−

[
β
∂U

∂n
(0)

]
=
(
β+ − β−γ

)
Q− β−FΓ −

[
β
∂U

∂n
(0)

]
+O(h2),

which means that the Schur complement matrix is nearly a diagonal. This may explain
why the number of the GMRES iterations is independent of the mesh size and the
jump in β. For variable coefficient β(x), with the new preconditioning strategy, we
would have

Aschur
h Q = = D(β̄(x))Q + F̃Γ +O(h2),

whereD(β̄(x)) is a diagonal matrix whose entries are (β+
k −β−

k )/β̄k, β̄k = (β+
k +β−

k )/2.

Remark 5.4. While the proof above is for a piecewise constant coefficient, the
conclusion is also true—at least asymptotically in terms of h—for variable coefficient
β(x) ≥ β0 > 0—assuming that β(x) ∈ C∞(Ω±), since those terms involved are lower
order terms of h. This is because the coefficient matrix Ah(β) = Ah(I + Bh) and
‖Bh‖ → 0 as h → 0, where Ah is the discrete Laplacian. This is another advantage
of using the reformulated PDE.

6. Numerical examples. We present a variety of numerical experiments to
show the performance of the new augmented method for accurate solutions and its
first order gradient at the interface. All the experiments are computed with double
precision and are performed on a desktop computer with a Pentium Dual-Core CPU,
2.59 GHz, and 4GB memory. We also list the CPU time(s) in Tables 2–8. We present
errors in L∞ norms and estimate the convergence order using

r =
1

log 2
log

‖E2h‖∞
‖Eh‖∞ .
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The tolerance of the GMRES iteration is set to be 10−6, and the initial value is set
to be 0 in all computations. In Tables 2–8, “Iter” represents the number of GMRES
iterations, “Nb” the number of control points, “N” the number of the grid lines in
each direction of the rectangular domain, and “CPU(s)” the run time in seconds.

Example 6.1.

(6.1) u(x) =

{
sin(x+ y) in Ω−,

log(x2 + y2) in Ω+,
β(x) =

{
sin(x+ y) + 2 in Ω−,

cos(x+ y) + 2 in Ω+,

where the interface is the zero level set of ϕ(x, y) =
√
x2 + y2−0.5, and Ω = [−1, 1]×

[−1, 1]. The source term is f(x), and the interface jump conditions [u] and [βun] are
derived from the exact solution.

(a)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

xy

(b)

1

0.8

0.6

0.4

0.2

0

-0.2

x

-0.4

-0.6

-0.8

-1-1

-0.5
y

0

0.5

×10-4

1

2

4

6

8

0

Fig. 3. (a) The solution plot of Example 6.1. (b) The error plot of the computed solution. The
error seems to be piecewise smooth as well which is important for accurate gradient computation.

This is an almost arbitrary example with a genuine piecewise smooth nonlinear
solution, and a variable coefficient with a variable discontinuity along the interface.
We present a grid refinement analysis in Table 2. The second column is the maximum
error of the solution, while the third column is the approximate convergence order.
The fourth and sixth columns are the errors of the normal derivatives at the interface
from the Ω− and Ω+ sides, respectively. The fifth and seventh columns show the
approximate convergence order of the computed normal derivative. The eighth column
is the number of GMRES iterations, and the next-to-last column shows orthogonal
projections of irregular grid points from the Ω+ side. The last column is the total
CPU time in seconds. We can observe from Table 2 that the new augmented IIM is
second order accurate in both the solution globally and the gradient at the interface
from each side. The total CPU time also shows that the method is very fast with
the optimal computational complexity (O(N2) log(N2)). We also observe that the
number of GMRES iterations is a constant independent of the mesh size. In Figure
3, we show one mesh plot of the computed solution (left), and the error (right).

Now we use the same solution and interface but with a large jump in the coefficient
along the interface:

(6.2) β(x) =

{
10e10x in Ω−,
sin(x+ y) + 2 in Ω+.
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Table 2

A grid refinement analysis for Example 6.1 with a modest variable jump in the coefficient.

N E(u) r E(u−
n ) r E(u+

n ) r Iter Nb CPU(s)
32 3.1245×10−3 1.5905×10−2 2.1712×10−2 4 48 0.01
64 7.0327×10−4 2.15 4.4752×10−3 1.82 5.5256×10−3 1.97 4 92 0.03
128 1.1565×10−4 2.60 1.1182×10−3 2.00 1.3993×10−3 1.98 4 184 0.11
256 2.7720×10−5 2.06 2.9096×10−4 1.94 3.7998×10−4 1.88 4 364 0.46
512 6.2087×10−6 2.15 7.3489×10−5 1.98 9.8004×10−5 1.95 4 728 2.45

The jump ratio varies from 1 : 10 to 1.45 : 1482 along the interface, a quite dramatic
change. The results are shown in Table 3. We observe that the errors are larger than
those in Table 2. This is due to the variations of the coefficient. Since the rescaled
PDE has the form Δu+ 1

β∇β(x) ·∇u+ · · · , we would expect the error term to contain
βx

β ux and
βy

β uy that are O(1) for Table 2 and O(102) for Table 3 due to the term

10e10x. This is the reason for the difference in the errors. Nevertheless, all the nice
features are the same as those in the previous example.

Table 3

A grid refinement analysis for Example 6.1 with a large variation in the jump ratio of the
coefficient.

N E(u) r E(u−
n ) r E(u+

n ) r Iter Nb CPU(s)
32 6.0115×10−1 3.9014 1.7570 11 48 0.02
64 1.4706×10−1 2.03 8.6974×10−1 2.16 4.2479×10−1 2.04 10 92 0.07
128 4.3411×10−2 1.76 2.5265×10−1 1.78 1.2537×10−1 1.76 10 184 0.27
256 1.1266×10−2 1.94 6.5293×10−2 1.95 3.2493×10−2 1.94 10 364 1.24
512 2.9178×10−3 1.94 1.6916×10−2 1.94 8.4205×10−3 1.94 10 728 7.85

An example with more general jump conditions. There are some applica-
tions in which we may have more general jump conditions. Here we consider an exam-
ple with a more general jump condition, c(X)u+

n −d(X)u−
n = v(X) with c(X) = x2+1,

d(X) = y2 + 1. Our method still can work with the modified augmented equation
(4.25) (now it is c(X)u+

n − d(X)u−
n = v(X)) and different preconditioning techniques.

The convergence analysis may no longer apply directly. In Table 4, we list the grid
refinement analysis which has the same predicted convergence and efficiency.

Table 4

A grid refinement analysis with a different jump condition c(X)u+
n − d(X)u−

n = v(X).

N E(u) r E(u−
n ) r E(u+

n ) r Iter Nb CPU(s)
32 1.0220×10−2 2.4784×10−2 2.5529×10−2 4 48 0.047
64 2.9257×10−3 1.80 6.5909×10−3 1.91 6.2884×10−3 2.02 4 92 0.172
128 7.9724×10−4 1.87 1.7941×10−3 1.87 1.5052×10−3 2.06 4 184 0.578
256 2.0781×10−4 1.93 4.6908×10−4 1.93 3.7353×10−4 2.01 4 364 2.531
512 5.3324×10−5 1.96 1.2033×10−4 1.96 9.5584×10−5 1.96 4 728 10.141
1024 1.3253×10−5 2.00 3.7729×10−5 1.67 3.0206×10−5 1.66 4 1452 44.281

Example 6.2. A general interface example with a piecewise constant coefficient.
This example is from [39]. The interface is the zero level set function

ϕ(x) = r − (0.5 + 0.2 sin(5θ)),(6.3)
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and the true solution is

u(x) =

⎧⎪⎪⎨⎪⎪⎩
r2

β− , x ∈ Ω−,

r4 + C0 log(2r)

β+
, x ∈ Ω+.

(6.4)

The interface is both convex and concave and has relatively large curvature at some
places; see Figure 1. We repeat this example with the new preconditioning technique
with β+ = 1000 and β− = 1 on the domain Ω = [−1, 1] × [−1, 1]. The results
are shown in Table 5 and are almost the same as those of the original fast IIM in
[39]. Once again we observe that both the solution and the gradient are second order
accurate, and the number of GMRES iterations is independent of the mesh size. For
this example, the interface has large curvature at some places. We need a reasonable
fine mesh to resolve the interface.

In Figure 4(a), we plot the computed solution of Example 6.2.

Table 5

A grid refinement analysis for Example 6.2 with a piecewise constant coefficient β+ = 1000
and β− = 1 and a complicated interface.

N E(u) r E(u−
n ) r E(u+

n ) r Iter Nb CPU(s)
32 1.2880×10−1 3.0969 3.0971×10−3 14 78 0.04
64 1.9431×10−1 -0.59 4.0397 -0.38 4.0396×10−3 -0.38 14 154 0.13
128 1.8734×10−2 3.37 4.9723×10−1 3.02 4.9765×10−4 3.02 11 308 0.28
256 2.3009×10−3 3.02 1.2096×10−1 2.03 1.2352×10−4 2.01 10 612 0.99
512 3.6351×10−4 2.66 2.2790×10−2 2.40 2.4786×10−5 2.31 9 1226 21.50

6.1. An example for more general self-adjoint elliptic interface prob-
lems. With some modifications, the method developed in this paper has been
generalized to more general interface problems

∇ · (β(x)∇u(x)) − σ(x)u(x) = f(x).(6.5)

The regularity requirement for the existence of the solution includes additional con-
ditions σ(x) ∈ C(Ω±) and σ(x) ≥ 0. While we still get second order accuracy both
in the solution and the gradient, the coefficient matrix from the modified algorithm
may no longer be an M-matrix. Nevertheless, the number of affected entries is O(1)

compared with total O(1/h2) when σ(x) = 0, that is, Aσ �=0
h = Aσ=0

h (I + Bh) with
‖Bh‖ ≤ Ch2. Thus, we have asymptotically the same order of convergence as that in
the case σ = 0.

Example 6.3. A general example with σ(x) �= 0. We present a more general
example with a nonzero σ(x) term with different interfaces, an ellipse, and a five-star
shaped curve. The true solution and coefficient are

u(x) =

{
− x3 + 2y3 in Ω−,
sin(x+ y) in Ω+,

β(x) =

{
1 + ex+2y in Ω−,
sin(2x− y) + 3 in Ω+,

(6.6)

σ(x) =

{
cos(xy) + 2 in Ω−,

x2 + y2 + 1 in Ω+,
(6.7)

D
ow

nl
oa

de
d 

04
/0

4/
18

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCURATE SOLUTION AND GRADIENT COMPUTATION 593

Table 6

A grid refinement analysis for Example 6.3 for a general elliptic interface problem with the
interface (x/0.6)2 + (y/0.4)2 = 1.

N E(u) r E(u−
n ) r E(u+

n ) r Iter Nb CPU(s)
32 8.4180×10−3 9.0987×10−2 8.0826×10−2 4 48 0.10
64 9.0036×10−4 3.22 2.3473×10−2 1.95 1.9611×10−2 2.04 4 96 0.20
128 1.5842×10−4 2.50 4.1771×10−3 2.49 3.6921×10−3 2.40 4 188 1.60
256 3.7209×10−5 2.09 1.0639×10−3 1.97 9.4238×10−4 1.97 4 372 3.02
512 9.3380×10−6 1.99 3.2952×10−4 1.69 2.4187×10−4 1.96 4 740 15.02

(a)
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Fig. 4. (a) The computed solution plot of Example 6.2. (b) The solution plot of Example 6.3.

where again Ω = [−1, 1] × [−1, 1]. This is a very general example for a self-adjoint
elliptic interface problem with nonlinear solution. We test our method for two different
interfaces.

In Figure 4(b), we plot the computed solution of Example 6.3.
In Table 6, we show a grid refinement analysis for an elliptic interface ϕ(x, y) =

(x/0.6)2+(y/0.4)2−1. We observe once again second order convergence for the global
solution and the gradient at the interface.

In Table 7, we show a grid refinement analysis for a skinny ellipse ϕ(x, y) =
x2+(y/0.25)2− 1 in the domain [−1.5, 1.5]× [−1.5, 1.5]. Once we have the mesh fine
enough to resolve the interface (here N ≥ 64), we observe once again second order
convergence for the global solution and the gradient at the interface, although the
largest error often appears near the tips of the longer axis of the ellipse.

Table 7

A grid refinement analysis for Example 6.3 for a general elliptic interface problem with the
interface x2 + (y/0.25)2 = 1.

N E(u) r E(u−
n ) r E(u+

n ) r Iter Nb CPU(s)
32 8.2459×10−2 1.3352 1.2700 5 44 0.078
64 4.7769×10−2 0.78 8.9448×10−1 0.57 6.7590×10−1 0.90 5 88 0.156
128 6.5830×10−3 2.85 1.6557×10−1 2.43 1.5748×10−1 2.10 5 176 1.250
256 9.2772×10−4 2.82 7.1232×10−2 1.21 4.7413×10−2 1.73 5 352 2.250
512 1.7125×10−4 2.43 1.4364×10−2 2.31 1.1780×10−2 2.00 5 704 19.703
1024 4.5859×10−5 1.90 3.3351×10−3 2.10 2.7234×10−3 2.11 5 1408 77.812

If we increase the aspect ratio of the ellipse further, we can approximate the
situations in which the domain has cracks; see Figure 5, in which we tried to find the
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Fig. 5. Electric potential in a domain containing a thin elliptic object. (a) The conductivity of
the object is large (1 : 1000). (b) The conductivity of the object is small (1000 : 1).

electric potential in a domain containing an approximated crack ϕ(x, y) = (x/0.5)2 +
(y/0.0625)2−1 within the domain [−1, 1]× [−1, 1]. In this case, we have the PDE of
∇· (β∇u) = 0, [u]Γ = 0, and [βun]Γ = 0, where β is the conductivity. The potential is
given at the boundary with high potential on the right. Figure 5(a) is the case with
the ratio β+ : β− = 1 : 1000, while in Figure 5(b) the ratio is β+ : β− = 1000 : 1.
Note that we have tested the code against the analytic solution (6.6) for which we
get the same convergence order. More sophisticated techniques and analysis can be
found in [17, 64, 56, 52, 63].

In Table 8, we show a grid refinement analysis for the five-star interface ϕ(x, y) =
r − (0.5 + 0.2 sin θ) in polar coordinates (r, θ), 0 ≤ θ < 2π. While we still observe
average second order convergence for the global solution and the gradient at the inter-
face, the errors are fluctuated more evenly, though the average convergence rate is the
same compared with the elliptic interface. We do observe that again for complicated
interfaces, we need to resolve the interface for an accurate solution and its gradient.

Table 8

A grid refinement analysis for Example 6.3 for a general elliptic interface problem with a five-
star interface; see Figure 1.

N E(u) r E(u−
n ) r E(u+

n ) r Iter Nb CPU(s)
32 9.7746×10−1 2.8683×101 4.7767 11 78 0.03
64 6.5486×10−2 3.89 1.9417 3.88 3.2336×10−1 3.88 10 154 0.10
128 1.5688×10−2 2.06 6.4504×10−1 1.58 1.0623×10−1 1.60 9 308 0.29
256 1.8890×10−3 3.05 1.6617×10−1 1.95 3.6157×10−2 1.55 9 612 1.07
512 3.8770×10−4 2.28 2.9833×10−2 2.47 6.7852×10−3 2.41 9 1226 19.22

7. Conclusions. In this paper, we proposed a new augmented immersed inter-
face method (AIIM) for general elliptic interface problems with variable coefficients
that have finite jumps across a general interface and nonhomogeneous jump condi-
tions. Not only the computed solution is second order globally, but also its gradient
at the interface from each side of the interface. The method is designed for closed
smooth interfaces, not for open-ended interfaces such as cracks. For closed interfaces
but with corners, the method still can work with possible large errors near the cor-
ners. The convergence of the method has been shown both in one and two dimensions
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under appropriate regularity assumptions and a piecewise constant β(x). For a vari-
able coefficient β(x), the conclusions are still true if h is small enough, that is, in
the asymptotic sense. Whether this can be improved and why the preconditioning
technique works well are two open questions.
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