
Kähler-Ricci flow with unbounded curvature 
Shaochuang Huang, Luen-Fai Tam

American Journal of Mathematics, Volume 140, Number 1, February 2018,
pp. 189-220 (Article)

Published by Johns Hopkins University Press
DOI:

For additional information about this article

Access provided by Tsinghua University Library (29 Apr 2018 09:02 GMT)

https://doi.org/10.1353/ajm.2018.0003

https://muse.jhu.edu/article/683727/summary

https://doi.org/10.1353/ajm.2018.0003
https://muse.jhu.edu/article/683727/summary


KÄHLER-RICCI FLOW WITH UNBOUNDED CURVATURE

By SHAOCHUANG HUANG and LUEN-FAI TAM

Abstract. Let g(t) be a smooth complete solution to the Ricci flow on a noncompact manifold such
that g(0) is Kähler. We prove that if |Rm(g(t))|g(t) is bounded by a/t for some a > 0, then g(t)
is Kähler for t > 0. We prove that there is a constant a(n) > 0 depending only on n such that the
following is true: Suppose g(t) is a smooth complete solution to the Kähler-Ricci flow on a non-
compact n-dimensional complex manifold such that g(0) has nonnegative holomorphic bisectional
curvature and |Rm(g(t))|g(t) ≤ a(n)/t, then g(t) has nonnegative holomorphic bisectional curva-
ture for t > 0. These generalize the results by Wan-Xiong Shi. As applications, we prove that (i) any
complete noncompact Kähler manifold with nonnegative complex sectional curvature and maximum
volume growth is biholomorphic to C

n; and (ii) there is ε(n)> 0 depending only on n such that if
(Mn,g0) is a complete noncompact Kähler manifold of complex dimension nwith nonnegative holo-
morphic bisectional curvature and maximum volume growth and if (1+ε(n))−1h≤ g0 ≤ (1+ε(n))h
for some Riemannian metric h with bounded curvature, then M is biholomorphic to C

n.

1. Introduction. In [25], Simon proved that there is a constant ε(n) > 0
depending only on n such that if (Mn,g0) is a complete n-dimensional Riemannian
manifold and if there is another metric h with curvature bounded by k0 and

(1+ ε(n))−1h≤ g0 ≤ (1+ ε(n))h,

then the so-called h-flow has a smooth short time solution g(t) such that

|Rm(g(t))|g(t) ≤C/t.(1.1)

Here h-flow is exactly the usual Ricci-DeTurck flow. We call it h-flow as in [25]
for emphasizing the background metric h. For the precise definition of h-flow, see
Section 5. The method by Schnürer-Schulze-Simon [21] can be carried over to
construct Ricci flow using the above solution to the h-flow. On the other hand, in
[2], Cabezas-Rivas and Wilking proved that if (M,g0) is a complete noncompact
Riemannian manifold with nonnegative complex sectional curvature, and if the
volume of geodesic ball B(x,1) of radius 1 with center at x is uniformly bounded
below away from 0, then the Ricci flow has a smooth complete short time solution
with nonnegative complex sectional curvature so that (1.1) holds. Recall that a
Riemannian manifold is said to have nonnegative complex sectional curvature if
R(X,Y, Ȳ ,X̄)≥ 0 for any vectors X,Y in the complexified tangent bundle.
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It is natural to ask the following:

QUESTION. Suppose g0 is Kähler. Are the above solutions g(t) to the Ricci
flow also Kähler for t > 0?

It is well known that if M is compact or if the flow has bounded curvature, the
answer to the above question is yes by [11, 24]. On the other hand, the case where
the curvature of g0 may be unbounded has also been studied before. It was proved
by Yang and Zheng [28] that for a U(n)-invariant initial Kähler metric on C

n, the
solution constructed by Cabezas-Rivas and Wilking is Kähler for t > 0, under some
additional technical conditions. In this paper, we want to prove the following:

THEOREM 1.1. If (Mn,g0) is a complete noncompact Kähler manifold with
complex dimension n and if g(t) is a smooth complete solution to the Ricci flow on
M × [0,T ], T > 0, with g(0) = g0 such that

|Rm(g(t))|g(t) ≤
a

t

for some a > 0, then g(t) is Kähler for all 0≤ t≤ T .

This gives an affirmative answer to the above question. The result is related to
previous works on the existence of Kähler-Ricci flows without curvature bound,
see [3, 4, 10, 28] for example.

We may apply the theorem to the uniformization conjecture by Yau [29] which
states that a complete noncompact Kähler manifold with positive holomorphic bi-
sectional curvature is biholomorphic to C

n. A previous result by Chau and the
second author [5] says that the conjecture is true if the Kähler manifold has maxi-
mum volume growth and has bounded curvature, see also [6, 17]. Combining this
with the above theorem, we have:

COROLLARY 1.1. Let (Mn,g0) be a complete noncompact Kähler manifold
with complex dimension n and nonnegative complex sectional curvature. Suppose
Mn has maximum volume growth. Then Mn is biholomorphic to C

n.

For Kähler surface (n = 2), sectional curvature being nonnegative is equiv-
alent to complex sectional curvature being nonnegative [30]. Hence in particular,
any complete noncompact Kähler surface with nonnegative sectional curvature and
maximum volume growth is biholomorphic to C

2. We should mention that recently
Liu [15, 14] proves that a complete noncompact Kähler manifold with nonnegative
holomorphic bisectional curvature and maximum volume growth is diffeomorphic
to the Euclidean space and is biholomorphic to an affine algebraic variety, gener-
alizing a result of Mok [17]. Moreover, if the volume of geodesic balls are close
to the Euclidean balls with same radii or if the complex dimension is less than or
equal to 3, then the manifold is biholomorphic to C

n.
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By Theorem 1.1, we know that from the solution to the h-flow constructed by
Simon [25] one can construct a solution to the Kähler-Ricci flow if g0 is Kähler. In
view of the conjecture of Yau, we would like to know whether the nonnegativity
of holomorphic bisectional curvature will be preserved by the solution g(t) to the
Kähler-Ricci flow. The second result in this paper is the following:

THEOREM 1.2. There is 0 < a(n) < 1 depending only on n such that if
g(t) is a smooth complete solution to the Kähler-Ricci flow on M × [0,T ] with
supx∈M |Rm(x,t)| ≤ a

t and if g(0) has nonnegative holomorphic bisectional
curvature, where M is an n-dimensional noncompact complex manifold, then g(t)
also has nonnegative holomorphic bisectional curvature for all t ∈ [0,T ].

We should mention that in [28], Yang and Zheng proved that the nonnega-
tivity of bisectional curvature is preserved under the Kähler-Ricci flow for U(n)-
invariant solution on C

n without any condition on the bound of the curvature.
Following exactly the same method as in [25], one can prove that for any a> 0,

if ε(n,a) > 0 is small in the result of Simon, then curvature of the solution to the
h-flow will be bounded by a/t. However, given the results in [25], one may also
obtain this estimate using an interpolation inequality by Schnürer-Schulze-Simon
[22]. The authors would like to thank the referee for pointing out this fact.

Hence as a corollary to Theorem 1.2, using [5] again, we have:

COROLLARY 1.2. There exists ε(n) > 0 depending only on n such that if
(Mn,g0) is a complete noncompact Kähler manifold of complex dimension n with
nonnegative holomorphic bisectional curvature and maximum volume growth, and
if there is a Riemannian metric h on M with bounded curvature satisfying (1+
ε(n))−1h≤ g0 ≤ (1+ ε(n))h, then M is biholomorphic to C

n.

By a result of Xu [27], we also have the following corollary which says that
the condition that the curvature is bounded in the uniformization result in [5] can
be relaxed to the condition that the curvature is bounded in some integral sense.
Namely, we have:

COROLLARY 1.3. Let (Mn,g0) be a complete noncompact Kähler manifold
of complex dimension n ≥ 2 with nonnegative holomorphic bisectional curvature
and maximum volume growth. Suppose there is r0 > 0 and there is C > 0 such that

(
1

Vx(r0)

∫

Bx(r0)
|Rm |p

) 1
p

≤ C

for some p > n for all x ∈M . Then M is biholomorphic to C
n.

The paper is organized as follows: In Section 2, we prove a maximum principle
and apply it in Section 3 to prove Theorem 1.1. In Section 4, we prove Theorem 1.2.
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In Section 5, we will construct solutions to the Kähler-Ricci flow with nonnegative
holomorphic bisectional curvature through the h-flow.

Acknowledgments. The second author would like to thank Albert Chau for
some useful discussions and for bringing our attention to the results in [27]. The
authors would also like to thank the referee for some useful suggestions so that the
proofs of Lemmas 5.1 and 5.2 can be greatly simplified.

Added in proof. For more recent results on Yau’s conjecture, see [13, 16].

2. A maximum principle. In this section, we will prove a maximum prin-
ciple, which will be used in the proof of Theorem 1.1.

Let (Mn,g0) be a complete noncompact Riemannian manifold. Let g(t) be a
smooth complete solution to the Ricci flow on M × [0,T ], T > 0 with g(0) = g0,
i.e.,

⎧
⎪⎨

⎪⎩

∂

∂t
g =−2Ric, on M × [0,T ];

g(0) = g0.

(2.1)

Let Γ and Γ̄ be the Christoffel symbols of g(t) and ḡ = g(T ) respectively. Let
A= Γ− Γ̄. Then A is a (1,2) tensor. In the following, lower case c,c1, c2, . . . will
denote positive constants depending only on n.

LEMMA 2.1. With the above notation and assumptions, suppose the curva-
ture satisfies |Rm(g(t))|g(t) ≤ at−1 for some positive constant a. Then there is a
constant c= c(n)> 0, such that

(i)
(
T

t

)−ca
ḡ ≤ g(t)≤

(
T

t

)ca
ḡ;

(ii) |∇Rm | ≤ Ct− 3
2 for some constant C = C(n,a) > 0 depending only on

n,a;
(iii)

|A|ḡ ≤ Ct− 1
2−ca,

for some constant C = C(n,T,a)> 0 depending only on n,T and a.

Proof. (i) follows from the Ricci flow equation.
(ii) is a result in [23], see also [9, Theorem 7.1].
To prove (iii), in local coordinates:

∂

∂t
Akij =−gkl

(
∇iRjl+∇jRil−∇lRij

)
.
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At a point where ḡij = δij such that gij = λiδij , by (i) and (ii), we have
∣∣
∣∣
∂

∂t
|A|2ḡ
∣∣
∣∣≤C1t

−c1a|∇Ric |ḡ|A|ḡ

≤C2t
−c2a− 3

2 |A|ḡ
for some constants C1,C2 depending only on n,T,a and c1, c2 depending only on
n. From this the result follows. �

Under the assumption of the lemma, since g(T ) is complete and the curvature
of ḡ = g(T ) is bounded by a/T , we can find a smooth function ρ on M such that

dḡ(x,x0)+1≤ ρ(x)≤ C ′(dḡ(x,x0)+1), |∇ρ|ḡ+ |∇2
ρ|ḡ ≤C ′,(2.2)

where ∇ is covariant derivative with respect to ḡ and C ′> 0 is a constant depending
on n and a/T , see [24, 26].

LEMMA 2.2. With the same assumptions and notation as in the previous
lemma, ρ(x) satisfies

|∇ρ| ≤ C1t
−ca

and

|Δρ| ≤ C2t
− 1

2−ca

where C1, C2 depend only on n,T,a and c > 0 depends only on n. Here ∇ and Δ

are the covariant derivative and Laplacian of g(t) respectively.

Proof. The first inequality follows from Lemma 2.1(i). To estimate Δρ, at a
point where ḡij = δij and gij is diagonalized, we have

∣∣Δρ−Δρ
∣∣=
∣
∣∣gij∇i∇jρ− ḡij∇i∇jρ

∣
∣∣

≤
∣
∣∣gij
(

∇i∇j−∇i∇j

)
ρ
∣
∣∣+
∣
∣∣
(
gij − ḡij)∇i∇jρ

∣
∣∣

≤ |gijAkijρk|+C3t
−c1a

≤ C4t
− 1

2−c2a

for some constants C3, C4 depending only on n,T,a, and c1, c2 depending only on
n. By the estimates of Δρ, the second result follows. �

LEMMA 2.3. Let (Mn,g) be a complete noncompact Riemannian manifold
with dimension n and let g(t) be a smooth complete solution to the Ricci flow on
M× [0,T ], T > 0 with g(0) = g0 such that the curvature satisfies |Rm | ≤ at−1 for
some a > 0.
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Let f ≥ 0 be a smooth function on M × [0,T ] such that
(i)

(
∂

∂t
−Δ

)
f ≤ a

t
f ;

(ii) ∂kf
∂tk

∣∣
t=0 = 0 for all k ≥ 0;

(iii) supx∈M f(x,t)≤ Ct−l, for some positive integer l for some constant C .
Then f ≡ 0 on M × [0,T ].

Proof. We may assume that T ≤ 1. In fact, if we can prove that f ≡ 0 on
M × [0,T1] where T1 = min{1,T}, then it is easy to see that f ≡ 0 on M × [0,T ]
because f and the curvature of g(t) are uniformly bounded on M × [T1,T ].

Let p ∈M be a fixed point, and let d(x,t) be the distance between p,x with
respect to g(t). By [19] (see also [8, Chapter 18]), for all r0, if d(x,t)> r0, then

∂−
∂t
d(x,t)−Δd(x,t)≥−C0

(
t−1r0 +

1
r0

)
(2.3)

in the barrier sense, for some C0 = C0(n,a) depending only on n and a. Here

∂−
∂t
d(x,t) = liminf

h→0+

d(x,t)−d(x,t−h)
h

.(2.4)

The inequality (2.3) means that for any ε > 0, there is a function σ(y) near x such
that σ(x) = d(x,t), σ(y)≥ d(y,t) near x, such that σ is C2 and

∂−
∂t
d(x,t)−Δσ(x)≥−C0

(
t−1r0 +

1
r0

)
− ε.(2.5)

In the following, we always take ε= T−
1
2 .

Let f be as in the lemma. First we want to prove that for any integer k > a

there is a constant Bk such that

sup
x∈M

f(x,t)≤Bktk.(2.6)

Let F = t−kf , then
(
∂

∂t
−Δ

)
F ≤−k−a

t
F ≤ 0.(2.7)

Let 1≥ φ≥ 0 be a smooth function on [0,∞) such that

φ(s) =

{
1, if 0≤ s≤ 1;

0, if s≥ 2,
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and such that −C1 ≤ φ′ ≤ 0, |φ′′| ≤ C1 for some C1 > 0. Let Φ = φm, where
m> 2 will be chosen later. Then Φ = 1 on [0,1] and Φ = 0 on [2,∞), 1 ≥ Φ ≥ 0,
−C(m)Φq ≤ Φ′ ≤ 0, |Φ′′| ≤ C(m)Φq, where C(m) > 0 depends on m and C1,
and q = 1− 2

m .

For any r >> 1, let Ψ(x,t) = Φ(d(x,t)r ). Let

θ(t) = exp(−αt1−β),

where α > 0, 0 < β < 1 will be chosen later.
We claim that one can choose m, α and β such that for all r >> 1

H(x,t) = θ(t)Ψ(x,t)F ≤ 1

onM× [0,T ]. If the claim is true, then we have that F is bounded. Hence f(x,t)≤
Bkt

k.
First note that Ψ(x,t) has compact support in M × [0,T ]. By assumption (ii)

and the fact f is smooth, we conclude that H(x,t) is continuous on M × [0,T ].
Moreover, by (ii) again, H(x,0) = 0. Suppose H(x,t) attains a positive maximum
at (x0, t0) for some x0 ∈M , t0 > 0. Suppose d(x0, t0) < r, then there is a neigh-
borhood U of x and δ > 0 such that d(x,t)< r for x∈U and |t− t0|< δ. For such
(x,t), H(x,t) = θ(t)F (x,t). Since H(x0, t0) is a local maximum, we have

0≤
(
∂

∂t
−Δ

)
H

= θ′F + θ

(
∂

∂t
−Δ

)
F

≤ θ′F
< 0

which is a contradiction.
Hence we must have d(x0, t0)≥ r. If r >> 1, then r ≥ T 1

2 , and at (x0, t0),

∂−
∂t
|t=t0d(x,t)−�t0σ(x)≥−C0t

− 1
2

0 ,

by taking r0 = t
1
2
0 . Here C0 > 0 is a constant depending on n and a, σ(x) is a barrier

function near x0.
Let Ψ̃(x) = Φ(σ(x)r ), and let

H̃(x,t) = θ(t)Ψ̃(x)F (x,t)

which is defined near x0 for all t. Moreover,

H̃(x0, t0) =H(x0, t0)
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and

H̃(x,t0)≤H(x,t0)

near x0 because σ(x) ≥ d(x,t0) near x0 and Φ′ ≤ 0. Hence H̃(x,t0) has a local
maximum at (x0, t0) as a function of x. So we have

∇H̃(x0, t0) = 0(2.8)

and

ΔH̃(x0, t0)≤ 0.(2.9)

At (x0, t0),

0≥Δ
(
θ(t)Ψ̃(x)F (x,t)

)

= θΨ̃ΔF + θFΔΨ̃+2θ〈∇F,∇Ψ̃〉

= θΨ̃ΔF + θF

(
1
r
Φ′Δσ+

1
r2Φ

′′|∇σ|2
)
−2θ

|∇Ψ̃|2
Ψ̃

F

≥ θΦΔF + θF

(
1
r
Φ′Δσ+

1
r2Φ

′′|∇σ|2
)
− 2
r2 θ

Φ′2

Φ
F

(2.10)

where we have used the fact that σ(x)≥ d(x,t0) near x0 and σ(x0) = d(x0, t0) so
that |∇σ(x0)| ≤ 1. Φ and the derivatives Φ′ and Φ′′ are evaluated at d(x0,t0)

r .
On the other hand,

0≤ liminf
h→0+

H(x0, t0)−H(x0, t0−h)
h

= θ′ΨF + θΨ
∂

∂t
F + θF liminf

h→0+

−Ψ(x0, t0−h)+Ψ(x0, t0)

h
.

Now

−Ψ(x0, t0−h)+Ψ(x0, t0) =−Φ(d(x0, t0−h)
r

)+Φ(
d(x0, t0)

r
)

=
1
r
Φ′(ξ)(d(x0, t0)−d(x0, t0−h)),

for some ξ between 1
rd(x0, t0−h) and 1

rd(x0, t0) which implies

liminf
h→0+

−Ψ(x0, t0−h)+Ψ(x0, t0)

h
≤ limsup

h→0+

−Ψ(x0, t0−h)+Ψ(x0, t0)

h

=
1
r
Φ′
∂−
∂t
d(x0, t)|t=t0
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because Φ′ ≤ 0, where Φ′ is evaluated at 1
rd(x0, t0). In the following, Ci will de-

note positive constants independent of α,β. Combining the above inequality with
(2.10), we have at (x0, t0):

0≤ θ′ΦF + θΦ
∂

∂t
F + θF

1
r
Φ′
∂−
∂t
d(x0, t0)

− θΨΔF − θF
(

1
r
Φ′Δσ+

1
r2Φ

′′|∇σ|2
)
+

2
r2 θ

Φ′2

Φ
F

≤ θ′ΦF +C2

(
t
− 1

2
0 Φq+Φ2q−1

)
θF

≤−α(1−β)t−β0 θΦF

+C3θ

[
t
− 1

2
0 t

−(1−q)(k+l)
0 (ΦF )q+ t

− 1
2

0 t
−2(1−q)(k+l)
0 (ΦF )2q−1

]

≤ θ
[
−α(1−β)t−β0 ΦF +C4t

− 1
2−2(1−q)(k+l)

0

(
(ΦF )q+(ΦF )2q−1)

]

where Φ,Φ′,Φ′′ are evaluated at d(x0, t0)/r. Now first choose m large enough
depending only on k, l so that 1

2 +2(1−q)(k+ l) = β < 1. Then choose α such that
α(1−β)> 2C4. Then one can see that we must have ΦF ≤ 1. HenceH = θΦF ≤ 1
at the maximum point of H(x,t). This completes the proof of the claim.

Next, let F = t−af . Then
(
∂

∂t
−Δ

)
F ≤ 0.

Let ρ be the function in Lemma 2.2, we have

|Δρ| ≤ C5t
−b

for some b > 1. Let η(x,t) = ρ(x)exp( 2C5
1−bt

1−b). Note that η(x,0) = 0.

(
∂

∂t
−Δ

)
η = exp

(
2C5

1− bt
1−b
)
(
2C5t

−bρ−Δρ
)

≥ C5t
−b exp

(
2C5

1− bt
1−b
)

> 0.

where we have used the fact that ρ≥ 1. Since F ≤C6t
2 in M× [0,T ]. In particular

it is bounded. Then for any ε > 0
(
∂

∂t
−Δ

)
(F − εη− εt)< 0.

There is t1 > 0 depending only on ε,C6 such that F − εt < 0 for t≤ t1. For t≥ t1,
F − εη < 0 outside some compact set. Hence if F − εη− εt > 0 somewhere, then
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there exist x0 ∈ M , t0 > 0 such that F − εη− εt attains maximum. But this is
impossible. So F − εη− εt≤ 0. Let ε→ 0, we have F = 0. �

3. Preservation of the Kähler condition. In this section, we want to prove
Theorem 1.1 and give some applications. Recall Theorem 1.1 as follows:

THEOREM 3.1. If (Mn,g0) is a complete noncompact Kähler manifold with
complex dimension n and if g(t) is a smooth complete solution to the Ricci flow
(2.1) on M × [0,T ], T > 0, with g(0) = g0 such that

|Rm(g(t))|g(t) ≤
a

t

for some a > 0, then g(t) is Kähler for all 0≤ t≤ T .

We will use the setup as in [24, Section 5]. Let TCM = TRM⊗RC be the com-
plexification of TRM , where TRM is the real tangent bundle. Similarly, let T ∗

C
M =

T ∗
R
M ⊗R C, where T ∗

R
M is the real cotangent bundle. Let z = {z1,z2, . . . ,zn} be

a local holomorphic coordinate on M , and

{
zk = xk+

√−1xk+n

xk ∈ R,xk+n ∈ R, k = 1,2, . . . ,n.

In the following:
• i,j,k, l, . . . denote the indices corresponding to real vectors or real covectors;
• α,β,γ,δ, . . . denote the indices corresponding to holomorphic vectors or

holomorphic covectors,
• A,B,C,D,. . . denote both α,β,γ,δ, . . . and ᾱ, β̄, γ̄, δ̄, . . ..

Extend gij(t), Rijkl(t) etc. C-linearly to the complexified bundles. We have:

gAB = gĀB̄ , RABCD =RĀB̄C̄D̄.

In our convention, R1221 = R(e1,e2,e2,e1) is the sectional curvature of the two-
plane spanned by orthonormal pair e1,e2.RABCD has the same symmetry as Rijkl
and it satisfies the Bianchi identities.

Let gAB := (g−1)AB , it means gABgBC = δAC , and let

RAB = gCDRACDB

on M × [0,T ]. Then we have

∂

∂t
gAB =−2RAB(3.1)
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and

∂

∂t
RABCD

=�RABCD−2gEF gGHREABGRFHCD

−2gEF gGHREAGDRFBHC +2gEF gGHREAGCRFBHD

− gEF (REBCDRFA+RAECDRFB+RABEDRFC +RABCERFD)

(3.2)

on M × [0,T ], see [24].
We begin with the following lemma:

LEMMA 3.1. Let (M,g0) be a Kähler manifold, and g(t) be a smooth solution
to the Ricci flow with g(0) = g0. In the above set up, we have

∂k

∂tk
RABγδ |t=0 = 0

at each point of M for all k ≥ 0 and for all A,B,γ,δ.

Proof. Let p ∈M with holomorphic local coordinate z. In the following, all
computations are at (z,0) unless we have emphasis otherwise. We will prove the
lemma by induction. Consider the following statement:

H(k)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(k) :
∂k

∂tk
RABγδ = 0

H2(k) :
∂k

∂tk
gAB = 0 if A,B are of the same type

H3(k) :
∂k

∂tk
RAB = 0 if A,B are of the same type

H4(k) :
∂k

∂tk
ΓCAB = 0 unless A,B,C are of the same type

H5(k) :
∂k

∂tk
RABγδ;E = 0

H6(k) :
∂k

∂tk
RABγδ;EF = 0

H7(k) :
∂k

∂tk
�RABγδ = 0.

Here we denote covariant derivative with respect to g(t) by “;” and the partial
derivative by “,”. If Hi(k) are true for all i= 1, . . . ,7, we will say that H(k) holds.
As usual:

ΓCAB =
1
2
gCD (gAD,B+ gDB,A− gAB,D) .
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We first consider the case that k = 0. Since the initial metric is Kähler, it is easy to
see that H(0) holds. Now we assume H(i) holds for all i= 0,1,2, . . . ,k. We want
to show H(k+1) holds. We first see that

∂k+1

∂tk+1RABγδ

=
∂k

∂tk
(�RABγδ)−

∑

m+n+p+q=k
0≤m,n,p,q≤k

2(gEF )m(g
GH)n(REABG)p(RFHγδ)q

−
∑

m+n+p+q=k
0≤m,n,p,q≤k

2(gEF )m(g
GH)n(REAGδ)p(RFBHγ)q

+
∑

m+n+p+q=k
0≤m,n,p,q≤k

2(gEF )m(g
GH)n(REAGγ)p(RFBHδ)q

−
∑

m+n+p=k
0≤m,n,p≤k

(gEF )m(RAF )n(REBγδ)p−
∑

m+n+p=k
0≤m,n,p≤k

(gEF )m(RBF )n(RAEγδ)p

−
∑

m+n+p=k
0≤m,n,p≤k

(gEF )m(RγF )n(RABEδ)p−
∑

m+n+p=k
0≤m,n,p≤k

(gEF )m(RδF )n(RABγE)p.

Here ( ·)p = ∂p

∂tp ( ·).
Suppose (gAB)p = 0 at t = 0 if A,B are of the same type for p = 0,1, . . . ,k,

then it is also true that (gAB)p = 0 if A,B are of the same type for p= 0,1, . . . ,k.
On the other hand, in the R.H.S. of the above equality, the derivative of each term
with respect to t is only up to order k, by the induction hypothesis, H1(k+1) holds.
Now

∂

∂t
gAB =−2RAB ,

it is easy to see that H2(k+1) holds because H3(k) holds.
Since

∂k+1

∂tk+1Rαβ =
∑

m+n=k+1
0≤m,n≤k+1

(gCD)m(RαCDβ)n,

and since that H1(k+ 1) and H2(k+ 1) hold, we conclude that H3(k+ 1) holds.
Here we have used the symmetries of RABCD .
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Since

∂k+1

∂tk+1Γ
α
Aβ̄ =−

∑

m+n=k
0≤m,n≤k

(gαD)m
(
Rβ̄D;A+RAD;β̄−RAβ̄;D

)
n

=−
∑

m+n=k
0≤m,n≤k

(gασ̄)m
(
Rβ̄σ̄;A+RAσ̄;β̄−RAβ̄;σ̄

)
n
,

by the induction hypothesis. If A= γ̄, then each term on the R.H.S. is zero by the
induction hypothesis. If A= γ, then

(Rβ̄σ̄;γ)n = (Rβ̄σ̄,γ)n− (ΓEγσ̄REβ̄)n− (ΓEγβ̄REσ̄)n,

so it vanishes because n≤ k. On the other hand,

Rγσ̄;β̄−Rγβ̄;σ̄ = gCD(RγCDσ̄;β̄−RγCDβ̄;σ̄)

= gCD(RγCDσ̄;β̄+RγCσ̄D;β̄+RγCβ̄σ̄;D)

= gCDRγCβ̄σ̄;D.

So

(
Rγσ̄;β̄−Rγβ̄;σ̄

)
n
= 0

for n≤ k by the induction hypothesis. Thus,

∂k+1

∂tk+1Γ
α
Aβ̄ = 0

at t= 0. Since ΓCAB =ΓCBA and ΓCAB =ΓC̄
ĀB̄

, it is easy to see that H4(k+1) holds.
Next,

RABγδ;E =RABγδ,E −ΓGEARGBγδ−ΓGEBRAGγδ

−ΓGEγRABGδ−ΓGEδRABγG.

By H1(k+1), we have

∂k+1

∂tk+1RABγδ,E =

(
∂k+1

∂tk+1RABγδ

)

E

= 0.

Since H1(i) and H4(i) are true for 0 ≤ i ≤ k+ 1, H5(k+ 1) is true. Since H1(i),
H4(i) and H5(i) are true for 0≤ i≤ k+1, H6(k+1) is true. Finally H6(i) is true
for 0≤ i≤ k+1 implies that H7(k+1) holds. Therefore, H(k+1) holds. �

Now we use the Uhlenbeck’s trick to simplify the evolution equation of the
complex curvature tensor. We pick an abstract vector bundle V over M which is
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isomorphic to TCM and denote the isomorphism u0 : V → TCM . We take {eA :=
u−1

0 ( ∂
∂zA

)} as a basis of V . We also consider the metric h on V given by h := u∗0g0.
We let u0 evolute by

⎧
⎨

⎩

∂

∂t
u(t) = Ric◦u(t),
u(0) = u0.

In local coordinate, we have
⎧
⎪⎨

⎪⎩

∂

∂t
uAB = gACRCDu

D
B ,

uAB(0) = δAB .

Consider metric h(t) := u∗(t)g(t) on V for each t ∈ [0,T ]. It is easy to see that
∂
∂th(t) ≡ 0 for all t, so h(t) ≡ h for all t. We use u(t) to pull the curvature tensor
on TCM back to V :

R̃m(eA,eB ,eC ,eD) :=R(u(eA),u(eB),u(eC),u(eD)).

In local coordinate, we have

R̃ABCD =REFGHu
E
Au

F
Bu

G
Cu

H
D

on M × [0,T ]. One can also check that

hAB = hĀB̄ , R̃ABCD = R̃ĀB̄C̄D̄.

Define a connection on V in the following: For any smooth section ξ on V ,
X ∈ TCM ,

Dt
Xξ = u−1(∇t

X(u(ξ))).

One can check that Dth= 0 and Dtu= 0. We define� acting on any tensor on V
by

� := gEFDt
ED

t
F .

Then by (3.2), the evolution equation of R̃ is:

∂

∂t
R̃ABCD =�R̃ABCD−2hEFhGHREABGRFHCD

−2hEFhGHR̃EAGDR̃FBHC +2hEFhGHR̃EAGCR̃FBHD
(3.3)

where hAB = (h−1)AB .
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LEMMA 3.2. With the above notations, we have

∂k

∂tk
R̃ABγδ = 0

at t= 0 for all A,B and γ,δ.

Proof. Note that we have:

∂k

∂tk
R̃ABγδ =

∑

m+n+p+q+r=k
0≤m,n,p,q,r≤k

(uEA)m(u
F
B)n(u

G
γ )p(u

H
δ )q(REFGH)r.

By Lemma 3.1, in order to prove the lemma, it is sufficient to prove that ∂k

∂tk
uα
β̄
= 0

and ∂k

∂tk
uᾱβ = 0 for all k for all α,β at t= 0.

Recall that
⎧
⎪⎨

⎪⎩

∂

∂t
uAB = gACRCDu

D
B ,

uAB(0) = δAB .

Hence uα
β̄
= 0 and uᾱβ = 0. By induction, Lemma 3.1, and the fact that uAB(0) = δAB ,

one can prove that show ∂k

∂tk
uα
β̄
= 0 and ∂k

∂tk
uᾱβ = 0 for all k. This completes the

proof of the lemma. �

Proof of Theorem 3.1. As in [24], define a smooth function ϕ on M × [0,T ]
by

ϕ(z,t) = hαξ̄hβζ̄hγσ̄hδη̄R̃αβγδR̃ξ̄ζ̄σ̄η̄+h
ᾱξhβ̄ζhγσ̄hδη̄R̃ᾱβ̄γδR̃ξζσ̄η̄

+hᾱξhβζ̄hγσ̄hδη̄R̃ᾱβγδR̃ξζ̄σ̄η̄+h
αξ̄hβ̄ζhγσ̄hδη̄R̃αβ̄γδR̃ξ̄ζσ̄η̄.

(3.4)

One can check ϕ is well defined (independent of coordinate changes on M ) and is
nonnegative. The evolution equation of ϕ is (See [24]):

(
∂

∂t
−�

)
ϕ= R̃CDEF ∗ R̃GHαβ ∗ R̃ABγδ−2gEF R̃ABγδ;ER̃ABγδF .(3.5)

As the real case, define the norm of the complex curvature tensor by:

|RABCD(t)|2g(t) = gAEgBF gCGgDHRABCDREFGH .

Then we have

|RABCD(t)|= |Rijkl(t)| ≤ a

t
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on M × [0,T ] by assumption. By the definition of R̃ABCD , we also have:

|R̃ABCD(t)|= |RABCD(t)| ≤ a

t
.

Combining with (3.5), we have
(
∂

∂t
−�

)
ϕ≤ C1

t
ϕ

on M × [0,T ] for some constant C1. Moreover,

ϕ≤ |R̃ABCD(t)|2 ≤ a2/t2.

On the other hand, by (3.4), Lemma 3.2 and the fact that h is independent of t, we
conclude that at t= 0,

∂k

∂tk
ϕ= 0,

for all k. By Lemma 2.3, we conclude that ϕ ≡ 0 on M × [0,T ]. As in [24], we
conclude that g(t) is Kähler for all t > 0. �

COROLLARY 3.1. Let (Mn,g0) be a complete noncompact Kähler manifold
of complex dimension n with nonnegative complex sectional curvature. Suppose

inf
p∈M
{Vp(1)| p ∈M}= v0 > 0.

where Vp(1) is the volume of the geodesic ball with radius 1 and center at p with
respect to g0. Then there is T > 0 depending only on n,v0 such that the Kähler-
Ricci flow has a smooth complete solution on M× [0,T ] with initial data g(0) = g0

and such that g(t) has nonnegative complex sectional curvature. Moreover the
curvature satisfies:

|Rm(g(t))|g(t) ≤
c

t

where c is a constant depending only on n,v0.

Proof. The corollary follows immediately from the result of Cabezas-Rivas
and Wilking [2], and Theorem 3.1. �

COROLLARY 3.2. Let (Mn,g0) be a complete noncompact Kähler manifold
with complex dimension n and nonnegative complex sectional curvature. Suppose
Mn has maximum volume growth. Then Mn is biholomorphic to C

n.

Proof. By volume comparison, we have

inf
p∈M
{Vp(1)| p ∈M}= v0 > 0.
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Let g(t) be the solution to the Kähler-Ricci flow on M × [0,T ] obtained as in
Corollary 3.1. Then for all t > 0, g(t) has nonnegative complex sectional curvature
and the curvature of g(t) is bounded. We want to prove that g(t) has maximum
volume growth.

Let p ∈M and let r > 0 be fixed. Let g̃(s) = r−2g(r2s), 0 ≤ s ≤ r−2T . Then
g̃(s) is a solution to the Kähler-Ricci flow with initial data g̃(0) = r−2g0. Since the
sectional curvature of g̃(s) is nonnegative, as in [2], using a result of [20], one can
prove that:

Vp(g̃(s),1)−Vp(r−2g0,1) = Vp(g̃(s),1)−Vp(g̃(0),1) ≥−cns
where Vp(h,1) denotes the volume of the geodesic ball with radius 1 and center at
p with respect to h and cn is a positive constant depending only on n. Now

Vp(r
−2g0,1) =

Vp(g0,r)

r2n ≥ v0 > 0

because g0 has maximum volume growth. Hence there is r0 > 0 such that if r≥ r0,
then

r−2nVp(g(r
2s),r) = Vp(g̃(s),1)≥ C1

for some constant C1 independent of s and r for all 0≤ s≤ r−2T . Fix t0 > 0, and
let s be such that r2s= t0. Then s≤ r−2T . So we have

r−2nVp(g(t0),r)≥ C1

if r is large enough. That is, g(t0) has maximum volume growth. By [5], we con-
clude that M is biholomorphic to C

n. �

4. Preservation of non-negativity of holomorphic bisectional curvature.
Let (Mn,g0) be a complete noncompact Kähler manifold with complex dimension
n. We want to study the preservation of non-negativity of holomorphic bisectional
curvature under Kähler-Ricci flow, without assuming the curvature is bounded in
space and time.

Let us first define a quadratic form for any (0,4)-tensor T on TCM with a
metric g by

Q(T )(X,X̄,Y, Ȳ ) :=
n∑

μ,ν=1

(|TXμ̄νȲ |2−|TXμ̄Y ν̄ |2 +TXX̄νμ̄Tμν̄Y Ȳ )

−
n∑

μ=1

Re(TXμ̄TμX̄Y Ȳ +TY μ̄TXX̄μȲ )

for all X,Y ∈ T 1,0
C
M , where Tαβ̄γδ̄ = T (eα, ēβ ,eγ , ēδ), Tαβ̄ = gγδ̄Tαβ̄γδ̄ and

{e1, . . . ,en} is a unitary frame with respect to the metric of g, TXμ̄νȲ =
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T (X,ēμ,eν , Ȳ ) etc. Here T is a tensor has the following properties:

T (A,B,C,D) = T (Ā, B̄, C̄, D̄);

T (A,B,C,D) = T (C,D,A,B) = T (B,A,D,C)

for all A,B,C,D ∈ TCM and

T (X,Ȳ ,Z,W̄ ) = T (X,W̄ ,Z, Ȳ )

for all X,Y,Z,W ∈ T 1,0
C
M .

Let g(t) be a solution to the Kähler-Ricci flow:

∂

∂t
gαβ̄ =−Rαβ̄.

Recall the evolution equation for holomorphic bisectional curvature: (See [7,
Corollary 2.82])

(
∂

∂t
−�

)
R(X,X̄,Y, Ȳ ) =Q(R)(X,X̄,Y, Ȳ )

for all X,Y ∈ T 1,0
C
M . Here� is with respect to g(t).

Next define a (0,4)-tensor B on TCM (with a metric g) by:

B(E,F,G,H) = g(E,F )g(G,H)+ g(E,H)g(F,G)

for all E,F,G,H ∈ TCM .

LEMMA 4.1. In the above notation, Q(B)(X,X̄,Y, Ȳ ) ≤ 0 for all X,Y ∈
T 1,0
C
M .

Proof.

Q(B)(X,X̄,Y, Ȳ ) =

n∑

μ,ν=1

(|BXμ̄νȲ |2−|BXμ̄Y ν̄ |2 +BXX̄νμ̄Bμν̄Y Ȳ )

−
n∑

μ=1

Re(BXμ̄BμX̄Y Ȳ +BY μ̄BXX̄μȲ )

Let {e1, . . . ,en} be a unitary frame. X =
∑n

μ=1X
μeμ,

∑n
μ=1Y = Y μeμ.
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We compute it term by term:

n∑

μ,ν=1

|BXμ̄νȲ |2 =
n∑

μ,ν=1

(gXμ̄gνȲ + gXȲ gμ̄ν) · (gX̄μgν̄Y + gX̄Y gμν̄)

=

n∑

μ,ν=1

(XμȲ ν + gXȲ gμ̄ν) · (X̄μY ν+ gX̄Y gμν̄)

= |X|2|Y |2 +(n+2)|g(X̄,Y )|2,
n∑

μ,ν=1

|BXμ̄Y ν̄ |2 =
n∑

μ,ν=1

(gXμ̄gν̄Y + gXν̄gμ̄Y ) · (gX̄μgνȲ + gX̄νgμȲ )

=

n∑

μ,ν=1

(XμY ν +XνY μ) · (X̄μȲ ν+ X̄ν Ȳ μ)

= 2|X|2|Y |2 +2|g(X̄,Y )|2,
n∑

μ,ν=1

BXX̄νμ̄Bμν̄Y Ȳ = (gXX̄gνμ̄+ gXν̄gX̄ν) · (gμν̄gY Ȳ + gμȲ gν̄Y )

= (|X|2gνμ̄+XμX̄ν) · (gμν̄ |Y |2 + Ȳ μY ν)

= (n+2)|X|2|Y |2 + |g(X̄,Y )|2,
n∑

μ=1

BXμ̄BμX̄Y Ȳ =

n∑

μ=1

gkl̄BXμ̄kl̄BμX̄Y Ȳ

=
n∑

μ,ν=1

BXμ̄νν̄BμX̄Y Ȳ

=
n∑

μ,ν=1

(gXμ̄gνν̄ + gXν̄gμ̄ν) · (gX̄μgȲ Y + gX̄Y gμȲ )

=

n∑

μ,ν=1

(Xμgνν̄ +X
νgμ̄ν) · (X̄μgY Ȳ + Ȳ μgX̄Y )

= (n+1)|X|2|Y |2 +(n+1)|g(X̄,Y )|2.

Similarly, we have

n∑

μ=1

BY μ̄BXX̄μȲ = (n+1)|X|2|Y |2 +(n+1)|g(X̄,Y )|2.

Therefore,

Q(B)(X,X̄,Y, Ȳ ) =−(n+1)(|X|2|Y |2 + |g(X̄,Y )|2)≤ 0. �

We are ready to prove Theorem 1.2:
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THEOREM 4.1. There is 0 < a(n) < 1 depending only on n such that if
g(t) is a smooth complete solution to the Kähler-Ricci flow on M × [0,T ] with
supx∈M |Rm(x,t)| ≤ a

t and if g(0) has nonnegative holomorphic bisectional
curvature, where M is an n-dimensional noncompact complex manifold, then g(t)
also has nonnegative holomorphic bisectional curvature for all t ∈ [0,T ].

Proof. The theorem is known to be true if the curvature is uniformly bounded
on space and time [24]. Since g(t) has bounded curvature on M × [τ,T ] for all
τ > 0, it is sufficient to prove that g(t) has nonnegative bisectional curvature on
M × [0, τ ] for some τ > 0. Hence we may assume that T ≤ 1.

In the following, lower case c1, c2, . . . will denote constants depending only on
n.

Since g(T ) has curvature bounded by a
T and is complete, as in Lemma 2.2,

there is a smooth function ρ defined on M such that

(1+dT (x,p))≤ ρ(x)≤D1(1+dT (x,p))

|∇ρ|+ |∇2
ρ| ≤D1,

(4.1)

for some constant D1 depending only on n and gT , where dT (x,p) is the distance
function with respect to gT from a fixed point p ∈M and ∇ is the covariant deriv-
ative with respect to gT .

Suppose |Rm(g(t))|g(t) ≤ a/t, where a is to be determined later depending
only on n. By Lemma 2.2, we have

|∇ρ| ≤D2t
−c1a(4.2)

for some constant D2 depending only on n,gT . Here and below, ∇ is the covariant
derivative of g(t) and hence is time dependent. We may get a better estimate for
Δρ=Δg(t)ρ than that in Lemma 2.2. Choose a normal coordinate with respect to
g(T ) which also diagonalizes g(t) with eigenvalues λα. Then

|�ρ|= |gαβ̄ραβ̄ | ≤
n∑

α=1

λ−1
α |∇

2
ρ| ≤D3t

−c2a,(4.3)

by Lemma 2.1.
Let φ be a smooth cut-off function from R to [0,1] such that

φ(x) =

{
1, x≤ 1
0, x≥ 2

and |φ′|+ |φ′′| ≤D′, φ′ ≤ 0. Let Φ = φm, where m> 4 is an integer to be deter-
mined later. Then

0≥Φ′ ≥ −D(m)Φq; |Φ′′| ≤D(m)Φq

for some positive constant D(m) depending only on D′ and m, where q = 1− 2
m .
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Let Ψ(x) = Φ(ρ(x)r ) on M for r ≥ 1. Note that Ψ depends on r.
Then we have

|∇Ψ| ≤ 1
r
D(m)Ψq|∇ρ| ≤ D4

r
Ψqt−c1a(4.4)

by (4.2), and

|�Ψ| ≤ 1
r2 |Φ′′||∇ρ|2 +

1
r
|Φ′�ρ| ≤ D4

r
Ψqt−c2a(4.5)

by (4.3), where D4 is a constant depending only on n,gT ,m.
For any ε > 0, we define a tensor A on M × (0,T ]: For vectors X,Y,Z,W ∈

TC(M),

A(X,Y,Z,W ) = t−
1
2Ψ(x)R(X,Y,Z,W )+ εB(X,Y,Z,W )

where R is the curvature tensor of g(t) and B is evaluated with respect to g(t).
Define the following function on M × (0,T ]:

H(x,t) = inf
{
AXX̄Y Ȳ (x,t) | |X|t = |Y |t = 1, X,Y ∈ T (1,0)

x M
}
.

Here | · |t is the norm with respect to g(t).
To show the theorem, it suffices to show for all r � 1, H(x,t) ≥ 0 for all

x and for all t > 0. Since Ψ has compact support and B(X,X̄,Y, Ȳ ) ≥ 1 for all
|X|t = |Y |t = 1, there is a compact set K ∈M such that

H(x,t)> 0

on (M \K)× (0,T ]. On the other hand, we claim that there is T0 > 0 such that

H(x,t)> 0

on K × (0,T0). Let {e1,e2, . . . ,en} be a unitary frame near a compact neighbor-
hood U of a point x0 ∈K with respect to g0. Then at each point x ∈ U ,

Rαβ̄γδ̄(x,t) =Rαβ̄γδ̄(x,0)+ tE

where |E| is uniformly bounded on U × [0,T ]. Since g(t) is uniformly equivalent
to g(0) on U , for any X,Y ∈ T 1,0

x (M) for (x,t) ∈ U × [0,T ],

R(X,X̄,Y, Ȳ )≥−D5t|X|20|Y |20
for some constant D5 > 0 where we have used the fact that g0 has nonnegative
holomorphic bisectional curvature. Since g(t) and g0 are uniformly equivalent in
K, and K is compact, we conclude that

R(X,X̄,Y, Ȳ )≥−D6t
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on K× [0,T ] for some constant D6 for all X,Y ∈ T 1,0
x (M) with |X|t = |Y |t = 1.

Since B(X,X̄,Y, Ȳ )≥ 1, it is easy to see the claim is true. To summarize, we have
proved that there is a compact set K and there is T0 > 0, such that H(x,t) > 0 on
M \K× (0,T ] and K× (0,T0).

Now we argue by contradiction. Suppose H(x,t) < 0 for some t > 0. Then
we must have x ∈ K and t ≥ T0. Hence we can find x0 ∈ K, t0 ≥ T0 and a
neighborhood V of x0 such that H(x0, t0) = 0, H(x,t) ≥ 0 for x ∈ V , t ≤ t0,

H(x0, t) > 0 for t < t0. This implies that there exist X0,Y0 ∈ T (1,0)
x0 M with norm

|X0|g(t0) = |Y0|g(t0) = 1 such that

AX0X̄0Y0Ȳ0
(x0, t0) = 0.

Then we extendX0,Y0 near x0 by parallel translation with respect to g(t0) to vector
fields X̃0, Ỹ0 such that they are independent of time and

Δg(t0)X̃0 =Δg(t0)Ỹ0 = 0,

at x0.
Denote h(x,t) := A

X̃0
¯̃
X0Ỹ0

¯̃
Y0
(x,t). At (x0, t0), we have h(x0, t0) = 0 and

h(x,t)≥ 0 for x ∈ V , t≤ t0, h(x0, t)> 0 for t < t0 by the definition of H .
Hence at (x0, t0),

0≥
(
∂

∂t
−�

)
h

= t
− 1

2
0 Ψ

((
∂

∂t
−Δ

)
R

)
(X0, X̄0,Y0, Ȳ0)− t−

1
2

0 R(X0, X̄0,Y0, Ȳ0)ΔΨ

−2t
− 1

2
0 〈∇R(X̃0,

¯̃
X0, Ỹ0,

¯̃
Y0),∇Ψ〉− 1

2
t
− 3

2
0 ΨR(X0, X̄0,Y0, Ȳ0)

− ε(ΔB)(X0, X̄0,Y0, Ȳ0)+ ε
(−Ric(X0, X̄0)−Ric(Y0, Ȳ0)

−Ric(X0, Ȳ0)g(X̄0,Y0)−Ric(X̄0,Y0)g(X0, Ȳ0)
)

≥ t−
1
2

0 ΨQ(R)(X0, X̄0,Y0, Ȳ0)−D4r
−1t
− 1

2−c2a
0 Ψq|R(X0, X̄0,Y0, Ȳ0)|

− 1
2
t
− 3

2
0 ΨR(X0, X̄0,Y0, Ȳ0)− c3εat

−1
0 −2t

− 1
2

0 〈∇R(X̃0,
¯̃
X0, Ỹ0,

¯̃
Y0),∇Ψ〉,

(4.6)

where we have used (4.5) and the fact that ΔB = 0. On the other hand, at (x0, t0)

0 = ∇h

= t
− 1

2
0 ∇

(
R(X̃0,

¯̃
X0, Ỹ0,

¯̃
Y0)Ψ

)

= t
− 1

2
0

[
Ψ∇R(X̃0,

¯̃
X0, Ỹ0,

¯̃
Y0)+R(X0, X̄0,Y0, Ȳ0)∇Ψ

]
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where we have used the fact that ∇g = 0 and ∇X̃0 = ∇Ỹ0 = 0 at (x0, t0). Hence
(4.6) implies

0≥ t−
1
2

0 ΨQ(R)(X0, X̄0,Y0, Ȳ0)

−D7r
−1t
− 1

2−c4a
0 |R(X0, X̄0,Y0, Ȳ0)|

(
Ψq+Ψ2q−1)

− 1
2
t
− 3

2
0 ΨR(X0, X̄0,Y0, Ȳ0)− c3εat

−1
0

(4.7)

where we have used (4.4) and D7 > 0 is a constant depending only on gT ,n,m. On
the other hand, by the null-vector condition [18, Proposition 1.1] (see also [1]), we
have

Q(A)(X0, X̄0,Y0, Ȳ0)≥ 0.

By a direct computation, one can see that

Q(A) = t−1
0 Ψ2Q(R)+ ε2Q(B)+ t

− 1
2

0 ΨεR∗B,

and we have

0≤ t−1
0 Ψ2Q(R)(X0, X̄0,Y0, Ȳ0)+ ε

2Q(B)(X0, X̄0,Y0, Ȳ0)+ c5εΨat
− 3

2
0

≤ t−1
0 Ψ2Q(R)(X0, X̄0,Y0, Ȳ0)+ c5εΨat

− 3
2

0

where we have used Lemma 4.1 and c5 is a constant depending only on n. That is

ΨQ(R)(X0, X̄0,Y0, Ȳ0)≥−c5εat
− 1

2
0(4.8)

where we have used the fact that h(x0, t0) = 0 which implies Ψ(x0, t0)> 0.
Combining this with (4.7), we have

0≥−(c3 + c5)εat
−1
0 −D7r

−1t
− 1

2−c4a
0 |R(X0, X̄0,Y0, Ȳ0)|

(
Ψq+Ψ2q−1)

− 1
2
t
− 3

2
0 ΨR(X0, X̄0,Y0, Ȳ0).

(4.9)

Since h(x0, t0) = 0, we also have

Ψ(x0, t0)R(X0, X̄0,Y0, Ȳ0) =−t
1
2
0 εB(X0, X̄0,Y0, Ȳ0).
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Hence at (x0, t0), (4.9) implies, if 0 < a < 1, then

0≥−(c3 + c5)εa

−2D7r
−1t

1
2−c4a
0 |R(X0, X̄0,Y0, Ȳ0)|Ψ2q−1− 1

2
t
− 1

2
0 ΨR(X0, X̄0,Y0, Ȳ0)

≥−(c3 + c5)εa

−2D7r
−1t

1
2−c4a
0 |R(X0, X̄0,Y0, Ȳ0)|2(1−q) |εt

1
2
0B(X0, X̄0,Y0, Ȳ0)|2q−1

+
1
2
εB(X0, X̄0,Y0, Ȳ0)

≥−(c3 + c5)εa−D8r
−1ε2q−1tα0 +

1
2
ε

because 0≤Ψ≤ 1, q = 1− 2
m < 1, m> 4, where D8 > 0 is a constant depending

only on gT ,n,m. Here

α=
1
2
− c4a−2(1− q)+ 1

2
(2q−1) = 3q− c4a−2.

Hence if c4a <
1
2 and a < 1, then a depends only on n and 3q− c4a− 2 > 0,

provided m is large enough. If a,m are chosen satisfying these conditions, then we
have

0≥−(c3 + c5)εa−D8r
−1ε2q−1 +

1
2
ε.

If a also satisfies a(c3 + c5)<
1
2 , then we have a contradiction if r is large enough.

Hence if

0 < a <min

{
1,

1
2
c−1

4 ,
1
2
(c3 + c5)

−1
}
,

then g(t) will have nonnegative holomorphic bisectional curvature. This completes
the proof of the theorem. �

As an application, we have the following:

COROLLARY 4.1. Let (Mn,g0) is a complete noncompact Kähler manifold
with complex dimension n ≥ 2, nonnegative holomorphic bisectional curvature
and maximum volume growth. Suppose there is r0 > 0 and there is C > 0 such that

(
1

Vx(r0)

∫

Bx(r0)
|Rm |p

) 1
p

≤ C

for some p > n for all x ∈M . Then M is biholomorphic to C
n.
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Proof. By [27], the Ricci flow with initial data g0 has a smooth complete short
time solution g(t) so that the curvature has the following bound:

|Rm(g(t))| ≤ Ct−n
p

for some constant C . Since n
p < 1, by Theorems 3.1 and 4.1, g(t) is Kähler and

has bounded nonnegative bisectional curvature for t > 0. Since n
p < 1 it is easy to

see that g(t) is uniformly equivalent to g0. Hence g(t) also has maximum volume
growth. By [5], M is biholomorphic to C

n. �

5. Producing Kähler-Ricci flow through h-flow. We want to produce so-
lutions to the Kähler-Ricci flow using solutions to the so-called h-flow by M. Si-
mon [25]. Let us recall the set up and some results in [25]. Let Mn be a smooth
manifold, and let g and h be two Riemannian metrics on M . For a constant δ > 1,
h is said to be δ close to g if

δ−1h≤ g ≤ δh.

Let g(t) be a smooth family of metrics on M × [0,T ], T > 0. g(t) is said to be a
solution to the h-flow, if g(t) satisfies the following DeTurck flow, see [23, 25]:

∂

∂t
gij =−2Ricij+∇iVj+∇jVi,(5.1)

where

Vi = gijg
kl(Γjkl− hΓjkl),

and Γikl,
hΓikl are the Christoffel symbols of g(t) and h respectively, and ∇ is the

covariant derivative with respect to g(t).
In order to emphasize the background metric h, we call it h-flow as in [25]. We

are only interested in the case that M is noncompact and g is complete.
In [25], Simon obtained the following:

THEOREM 5.1. [Simon] There exists ε(n)> 0 depending only on n such that
if (Mn,g0) is a smooth n-dimensional complete noncompact Riemannian manifold
and there is a smooth Riemannian metric h on M with supx∈M |∇iRm(h)| ≤ ki for
all i and if h is (1+ ε(n)) close to g0, then the h-flow (5.1) has a smooth solution
g(t) on M × [0,T ] with initial value g(0) = g0 such that

sup
x∈M
|∇ig(t)|2 ≤ Ci

ti

for all i and g(t) is (1+ 2ε) close to h for all t, where T (n,k0)> 0 depends only
on n and k0, Ci depends only on n,k0, . . . ,ki. Here and in the following, ∇ and | · |
are with respect to h.
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As in [21], using solution to the h-flow, one may construct a smooth complete
solution g(t) to the Ricci flow with initial metric g0. Moreover, the curvature of g(t)
is bounded by C/t. By Theorem 3.1, we conclude that g(t) is a Kähler-Ricci flow
if g0 is Kähler. However, motivated by the uniformization conjecture of Yau [29],
we also want to prove that if g0 has nonnegative holomorphic bisectional curvature
then g(t) also has nonnegative holomorphic bisectional curvature. To achieve this
goal, we want to apply Theorem 4.1. To apply the theorem, the constant C in the
curvature bound C/t must be small enough. If ε(n) is small enough, then C will be
small. This basically follows from the proof of Theorem 5.1. (See [25]) One may
also obtain this fact by using Theorem 5.1 together with an interpolation result in
[22] as follows:

LEMMA 5.1. Let (Mn,h) be a complete noncompact Riemannian manifold
such that |∇iRm(h)| ≤ ki, 0 ≤ i ≤ 3 with

∑3
i=0ki ≤ 1. For any α > 0 there is a

constant b(n,α) > 0 depending only on n and α such that b ≤ ε(n) where ε(n) is
the constant in Theorem 5.1, and such that if g(t) is the solution to the h-flow on
M × [0,T ], T ≤ 1, obtained in Theorem 5.1 with g(0) = g0 satisfies (1+ b)−1h ≤
g0 ≤ (1+ b)h, then

|∇ig(t)|2 ≤
(α
t

)i

for i= 1,2 for all t ∈ (0,T ].

Proof. Let 0 < b ≤ ε(n) be fixed to be determined later and let g(t) be the
solution to the h-flow as in the theorem onM× [0,T ], with T ≤ 1. We assume that
ε(n)≤ 1.

Let p ∈M , by the assumptions on ∇iRm(h), expp is a local diffeomorphism
on B(2c1) = {x ∈ Tp(M)| |x| < 2c1}. Here and below ci will denote a constant
depending only on n. By pulling back h,g(t) via expp, in order to prove the claim
at p, we may consider g(t) and h as metrics on B(2c1). In the normal coordinates
x1, . . . ,xn, by [12, Corollary 4.11], we have

⎧
⎨

⎩

1
2
|ξ|2 ≤ hijξiξj ≤ 2|ξ|2, for ξ ∈R

n;
∣∣
∣Dβ

xhij

∣∣
∣≤ c2, for all i,j,

(5.2)

where hij = h( ∂
∂xi
, ∂
∂xj

) and β = (β1, . . . ,βn) is a multi-index with |β| ≤ 3 and
Dxk = ∂

∂xk
. Denote Dxk simply by Dk. Let gij = g( ∂

∂xi
, ∂
∂xj

) which can be con-
sidered as functions in B(2c1). Then by (5.2), in B(2c1), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|∇k(g−h)| ≤ c2

(

|D(k)(g−h)|0 +
∑

i<k

|∇i(g−h)|
)

;

|D(k)(g−h)|0 ≤ c2

(

|∇k(g−h)|+
∑

i<k

|∇i(g−h)|
)

;

(5.3)
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for 0≤ k ≤ 3, where | · | is the norm of tensors with respect to h,

|D(k)(g−h)|0 =
⎛

⎝
∑

|β|=k

∑

i,j

(Dβ(gij −hij))2

⎞

⎠

1
2

with (gij−hij) being considered as functions. Note that for i≥ 1, ∇i(g−h) =∇ig.
Fix T ≥ t > 0 and denote g(t) by g. Let 1 ≥ η ≥ 0 be a smooth function on

B(2c1) such that η = 1 on B(c1) and is zero outside B(3
2c1) and such that |∂βxη|

is bounded by a constant depending only on n for all β, with |β| ≤ 3 because c1

depends only on n.
For fixed i,j,k, let φ = η(gij −hij). By the interpolation result [22, Lemma

A.5], we have

|Dkφ|2(p)≤ 32 sup
B(2c1)

|φ| · sup
B(2c1)

|D(2)φ|.

Hence by (5.2), (5.3) and Theorem 5.1,

|∇g|2(p) = |∇(g−h)|2
= |D(g−h)|20(p)
≤ c3 sup

B(2c1)

|g−h| · sup
B(2c1)

|D(2)φ|

≤ c4 sup
B(2c1)

|g−h| · sup
B(2c1)

(|∇2g|+ |∇g|+ |g−h|)

≤ c5b · 1
t
,

because
∑3

i=0ki ≤ 1, 0< t≤ 1, b≤ ε(n) and (1+2b)−1h≤ g ≤ (1+2b)h. Since
p is arbitrary, we have:

sup
M
|∇g|2 ≤ c5b · 1

t
.(5.4)

Next we want to estimate |∇2g|(p). As before for fixed i,j,k, l, and φ =

η(gij −hij),

|DkDl(gij −hij)|2(p)
= |DkDlφ|2(p)
≤ 32 sup

B(2c1)

|Dφ| · sup
B(2c1)

|D(3)φ|

≤ c6 sup
M

(|∇g|+ |g−h|) · sup
M

(|∇3g|+ |∇2g|+ |∇g|+ |g−h|) .
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By Theorem 5.1, (5.3) and (5.4), we have

|∇2g|2(p)≤ c7

√
b · 1
t2
.(5.5)

By (5.4) and (5.5), we conclude that the lemma is true. �

LEMMA 5.2. For any α > 0, there exists ε(n,α) > 0 depending only on n

and α such that if (Mn,g0) is a complete noncompact Riemannian manifold with
real dimension n and if g0 is (1+ ε(n,α)) close to a Riemannian metric h with
curvature bounded by k0, then there is a smooth complete Ricci flow g(t) defined
on M × [0,T ] with initial value g(0) = g0, where T > 0 depends only on n,k0.
Moreover, the curvature of g(t) satisfies:

|Rm(g(t))|g(t) ≤
α

t

on M × [0,T ].

Proof. First we remark that by [23], there is a solution to the Ricci flow with
initial data h with bounded curvature in space and time. Moreover, for t > 0 all
order of derivatives of the curvature tensor for a fixed t > 0 are uniformly bounded,
the solution exists in a time interval depending only on n, k0, and the bounds of
the derivatives of the curvature tensor for a fixed t > 0 depend only on n, k0, and t.
Hence without lost of generality, we may assume that |∇̃(i)R̃m|h ≤ ki < ∞ for all
i≥ 0. Here and in the following ∇̃ is the covariant derivative with respect to h and
R̃m is the curvature tensor of h and | · |h is the norm relative to h.

Note that if h is 1+ ε close to g0, then λh is also 1+ ε close to λg0 for any
λ > 0. Moreover, if g(t) is a solution to the Ricci flow with initial data g0, then
λg(λ−1t) is a solution to the Ricci flow with initial data λg0, and if s= λt, then

|Rm(g(t))|g(t) = λ|Rm(λg(λ−1s))|λg(λ−1s).

Hence we may assume that k0 +k1 +k2 +k3 ≤ 1.
Suppose ε(n,α) < ε(n) is small enough, depending only on n, α, where ε(n)

is the constant in Theorem 5.1, then the solution ḡ(t), t ∈ [0,T ] for some T > 0
depending only on n, α, to the h-flow obtained in Theorem 5.1 with initial metric
g0 satisfies

|Rm(ḡ(t))|ḡ(t) ≤
α

t
(5.6)

by Lemma 5.1 and the fact that

|Rm(ḡ(t))|ḡ(t) ≤ c1

(
|R̃m|h+ |∇̃ḡ(t)|2h+ |∇̃2ḡ(t)|h

)
(5.7)
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where R̃m is the curvature tensor of h, ∇̃ is the covariant derivative of h, and c1 is
a constant depending only on n.

In order to find the Ricci flow, we proceed as in [21]. We only need to solve
the following ODE at each point x ∈M , t ∈ [0,T ]:

⎧
⎨

⎩

d

dt
ϕ(x,t) =−W (ϕ(x,t), t)

ϕ(x,0) = x
(5.8)

where W is the time-dependent smooth vector field given by

W i(t) = ḡjk(t)(Γijk− Γ̃ijk).

Here Γijk and Γ̃ijk are the Christoffel symbols of g(t) and h respectively. If solution
exists, then g(t) = (φ(t))∗(ḡ(t)) is the required solution to the Ricci flow, see [25]
for example.

To solve (5.8), let Ωs � Ωs+1 be an increasing sequence of open sets which
exhaust M . Let ηs be smooth functions with 0 ≤ ηs ≤ 1, ηs = 1 in Ωs and ηs = 0
outside Ωs+1. Let Ws = ηsW which is smooth with compact support. Hence

⎧
⎨

⎩

d

dt
ϕs(x,t) =−Ws(ϕs(x,t), t)

ϕs(x,0) = x
(5.9)

has solution for all x ∈M and t ∈ [0,T ]. Now |Ws|h ≤ c2/
√
t by Theorem 5.1, we

conclude that

dh(x,ϕs(x,t))≤ C1

for some C1 for all x ∈M , t ∈ [0,T ] and for all s = 1,2,3, . . .. Let K be any
compact set. Then for s large enough ϕs(x,t) ∈Ωs for all x ∈K , t ∈ [0,T ]. Hence
for s large enough, for such x ∈K,

⎧
⎨

⎩

d

dt
ϕs(x,t) =−W (ϕs(x,t), t)

ϕs(x,0) = x.

By the uniqueness of solutions of ODE, we have ϕs(x,t) = ϕs+1(x,t) for all s
large enough, x ∈K, t ∈ [0,T ]. From this it is easy to see that (5.8) has solution
on [0,T ]. This completes the proof of the lemma. �
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Now we can prove the main result of this section:

THEOREM 5.2. There exists ε(2n) > 0 depending only on n such that if
(Mn,g0) is a complete noncompact Kähler manifold with complex dimension n

and if there is a smooth Riemannian metric h with curvature bounded by k0 on M
such that g0 is (1+ ε(n)) close h, then there is a smooth complete Kähler-Ricci
flow g(t) defined on M × [0,T ] with initial value g(0) = g0, where T > 0 depends
only on n, k0. Moreover, the curvature of g(t) satisfies:

|Rm(g(t))|g(t) ≤
α

t

where α= α(n) is the constant in Theorem 4.1. If in addition, g0 has nonnegative
holomorphic bisectional curvature, then g(t) has nonnegative holomorphic bisec-
tional curvature for all t ∈ [0,T ].

Proof. The results follow from Lemma 5.2 and Theorems 3.1 and 4.1. �

COROLLARY 5.1. Let ε(2n) be as in Theorem 5.2. Suppose (Mn,g0) is a com-
plete noncompact Kähler manifold of complex dimension n with nonnegative holo-
morphic bisectional curvature and maximum volume growth. Suppose there is a
Riemannian metric h on M with bounded curvature which is 1+ ε(2n) close to g0.
Then M is biholomorphic to C

n.

Proof. Let g(t) be the solution to the Kähler-Ricci flow obtained in Theorem
5.2. Then for t > 0, g(t) is Kähler with bounded nonnegative holomorphic bisec-
tional curvature. We claim that g(t) has maximum volume growth. Let x0 ∈M be
fixed. Let ḡ(t) be the solution to the h-flow as in the proof of Lemma 5.2 and ϕ
be the solution to (5.8). Then ḡ(t) has nonnegative Ricci curvature because g(t)
has nonnegative Ricci curvature. Since ḡ(t) is uniformly equivalent to g0, ḡ(t) has
maximum volume growth. Hence g(t) also has maximum volume growth. There-
fore, M is biholomorphic to C

n by the result of [5]. �
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