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KAHLER-RICCI FLOW WITH UNBOUNDED CURVATURE

By SHAOCHUANG HUANG and LUEN-FAI TAM

Abstract. Let g(t) be a smooth complete solution to the Ricci flow on a noncompact manifold such
that g(0) is Kahler. We prove that if |[Rm(g(t))|4(;) is bounded by a/t for some a > 0, then g(t)
is Kihler for ¢ > 0. We prove that there is a constant a(n) > 0 depending only on n such that the
following is true: Suppose g(t) is a smooth complete solution to the Kahler-Ricci flow on a non-
compact n-dimensional complex manifold such that g(0) has nonnegative holomorphic bisectional
curvature and |[Rm(g(t))[4(¢) < a(n)/t, then g(t) has nonnegative holomorphic bisectional curva-

ture for ¢ > 0. These generalize the results by Wan-Xiong Shi. As applications, we prove that (i) any
complete noncompact Kéhler manifold with nonnegative complex sectional curvature and maximum
volume growth is biholomorphic to C"; and (ii) there is €(n) > 0 depending only on 7 such that if
(M™, go) is a complete noncompact Kihler manifold of complex dimension n with nonnegative holo-
morphic bisectional curvature and maximum volume growth and if (14¢(n))~'h < go < (1+¢(n))h
for some Riemannian metric h with bounded curvature, then M is biholomorphic to C™.

1. Introduction. In [25], Simon proved that there is a constant ¢(n) > 0
depending only on n such that if (M™, go) is a complete n-dimensional Riemannian
manifold and if there is another metric / with curvature bounded by k¢ and

(1+e(n)"'h < go < (1+€(n))h,
then the so-called h-flow has a smooth short time solution g(t) such that
(1.1) [Rm(g(t))]0) < C/t

Here h-flow is exactly the usual Ricci-DeTurck flow. We call it h-flow as in [25]
for emphasizing the background metric h. For the precise definition of h-flow, see
Section 5. The method by Schniirer-Schulze-Simon [21] can be carried over to
construct Ricci flow using the above solution to the A-flow. On the other hand, in
[2], Cabezas-Rivas and Wilking proved that if (M, gg) is a complete noncompact
Riemannian manifold with nonnegative complex sectional curvature, and if the
volume of geodesic ball B(z, 1) of radius 1 with center at x is uniformly bounded
below away from 0, then the Ricci flow has a smooth complete short time solution
with nonnegative complex sectional curvature so that (1.1) holds. Recall that a
Riemannian manifold is said to have nonnegative complex sectional curvature if
R(X,Y,Y,X) >0 for any vectors X,Y in the complexified tangent bundle.
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It is natural to ask the following:

QUESTION. Suppose qo is Kdhler. Are the above solutions g(t) to the Ricci
flow also Kdhler fort > 0?

It is well known that if M is compact or if the flow has bounded curvature, the
answer to the above question is yes by [11, 24]. On the other hand, the case where
the curvature of gy may be unbounded has also been studied before. It was proved
by Yang and Zheng [28] that for a U (n)-invariant initial Kéhler metric on C", the
solution constructed by Cabezas-Rivas and Wilking is Kéhler for ¢ > 0, under some
additional technical conditions. In this paper, we want to prove the following:

THEOREM 1.1. If (M™,qo) is a complete noncompact Kdihler manifold with

complex dimension n and if g(t) is a smooth complete solution to the Ricci flow on
M x[0,7T], T > 0, with g(0) = go such that

[Rm(g(t))]y0) <

for some a > 0, then ¢(t) is Kahler for all 0 <t <T.

This gives an affirmative answer to the above question. The result is related to
previous works on the existence of Kahler-Ricci flows without curvature bound,
see [3, 4, 10, 28] for example.

We may apply the theorem to the uniformization conjecture by Yau [29] which
states that a complete noncompact Kéahler manifold with positive holomorphic bi-
sectional curvature is biholomorphic to C". A previous result by Chau and the
second author [5] says that the conjecture is true if the Kahler manifold has maxi-
mum volume growth and has bounded curvature, see also [6, 17]. Combining this
with the above theorem, we have:

COROLLARY 1.1. Let (M™,qgo) be a complete noncompact Kdhler manifold
with complex dimension n and nonnegative complex sectional curvature. Suppose
M™ has maximum volume growth. Then M™ is biholomorphic to C™.

For Kahler surface (n = 2), sectional curvature being nonnegative is equiv-
alent to complex sectional curvature being nonnegative [30]. Hence in particular,
any complete noncompact Kahler surface with nonnegative sectional curvature and
maximum volume growth is biholomorphic to C2. We should mention that recently
Liu [15, 14] proves that a complete noncompact Kahler manifold with nonnegative
holomorphic bisectional curvature and maximum volume growth is diffeomorphic
to the Euclidean space and is biholomorphic to an affine algebraic variety, gener-
alizing a result of Mok [17]. Moreover, if the volume of geodesic balls are close
to the Euclidean balls with same radii or if the complex dimension is less than or
equal to 3, then the manifold is biholomorphic to C".
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By Theorem 1.1, we know that from the solution to the h-flow constructed by
Simon [25] one can construct a solution to the Kahler-Ricci flow if g is Kahler. In
view of the conjecture of Yau, we would like to know whether the nonnegativity
of holomorphic bisectional curvature will be preserved by the solution g(t) to the
Kahler-Ricci flow. The second result in this paper is the following:

THEOREM 1.2. There is 0 < a(n) < 1 depending only on n such that if
g(t) is a smooth complete solution to the Kdhler-Ricci flow on M x [0,T] with
sup,c s |[Rm(z,t)| < ¢ and if g(0) has nonnegative holomorphic bisectional
curvature, where M is an n-dimensional noncompact complex manifold, then g(t)
also has nonnegative holomorphic bisectional curvature for all t € [0,T].

We should mention that in [28], Yang and Zheng proved that the nonnega-
tivity of bisectional curvature is preserved under the Kihler-Ricci flow for U (n)-
invariant solution on C" without any condition on the bound of the curvature.

Following exactly the same method as in [25], one can prove that for any a > 0,
if €(n,a) > 0 is small in the result of Simon, then curvature of the solution to the
h-flow will be bounded by a/t. However, given the results in [25], one may also
obtain this estimate using an interpolation inequality by Schnurer-Schulze-Simon
[22]. The authors would like to thank the referee for pointing out this fact.

Hence as a corollary to Theorem 1.2, using [5] again, we have:

COROLLARY 1.2. There exists €(n) > 0 depending only on n such that if
(M™,go) is a complete noncompact Kdihler manifold of complex dimension n with
nonnegative holomorphic bisectional curvature and maximum volume growth, and
if there is a Riemannian metric h on M with bounded curvature satisfying (1 +
e(n))"'h < go < (14 €(n))h, then M is biholomorphic to C™.

By a result of Xu [27], we also have the following corollary which says that
the condition that the curvature is bounded in the uniformization result in [5] can
be relaxed to the condition that the curvature is bounded in some integral sense.
Namely, we have:

COROLLARY 1.3. Let (M™,qo) be a complete noncompact Kdhler manifold
of complex dimension n > 2 with nonnegative holomorphic bisectional curvature
and maximum volume growth. Suppose there is o > 0 and there is C' > 0 such that

1
1 / P
|Rm|p> <C
<Vz(7’o) Ba (o)

for some p > n for all x € M. Then M is biholomorphic to C".

The paper is organized as follows: In Section 2, we prove a maximum principle
and apply it in Section 3 to prove Theorem 1.1. In Section 4, we prove Theorem 1.2.
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In Section 5, we will construct solutions to the Kahler-Ricci flow with nonnegative
holomorphic bisectional curvature through the h-flow.

Acknowledgments. The second author would like to thank Albert Chau for
some useful discussions and for bringing our attention to the results in [27]. The
authors would also like to thank the referee for some useful suggestions so that the
proofs of Lemmas 5.1 and 5.2 can be greatly simplified.

Added in proof. For more recent results on Yau’s conjecture, see [13, 16].

2. A maximum principle. In this section, we will prove a maximum prin-
ciple, which will be used in the proof of Theorem 1.1.

Let (M™,go) be a complete noncompact Riemannian manifold. Let g(¢) be a
smooth complete solution to the Ricci flow on M x [0,T], T > 0 with g(0) = go,
ie.,

gg = —2Ric, on M x [O,T];
@1 ot
9(0) = go.

Let ' and T be the Christoffel symbols of g(t) and § = g(T) respectively. Let
A=T—T.Then Ais a (1,2) tensor. In the following, lower case c,c;,c;,... will
denote positive constants depending only on n.

LEMMA 2.1. With the above notation and assumptions, suppose the curva-
ture satisfies |Rm(g(t))|y) < at™! for some positive constant a. Then there is a
constant ¢ = c¢(n) > 0, such that

(1)
T —Cca _ < t < T ca _
(;> g_g<»_(;> 5

(ii) [VRm| < Ct=3 for some constant C = C (n,a) > 0 depending only on
n,a;
(1)

Ay < Ct7re,

for some constant C' = C(n,T,a) > 0 depending only on n,T and a.

Proof. (i) follows from the Ricci flow equation.
(i1) is a result in [23], see also [9, Theorem 7.1].
To prove (iii), in local coordinates:

0

aAZ = —gkl (VZ‘Rﬂ + VjRil — VlRij) .
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At a point where g;; = d;; such that g;; = \;0;;, by (i) and (ii), we have

9 —cia :
7 14B] < cueer vRiel; 1)

< Oyt 73] Al

for some constants C'},C> depending only on n,7,a and ¢y, c; depending only on
n. From this the result follows. (]

Under the assumption of the lemma, since g(7") is complete and the curvature
of g = g(T) is bounded by a/T, we can find a smooth function p on M such that

@22 dglw,xo)+1< pla) < C'(dg(w,a0) + 1), [Vplg+[Voply <,

where V is covariant derivative with respect to g and C’ > 0 is a constant depending
onn and a/T, see [24, 26].

LEMMA 2.2. With the same assumptions and notation as in the previous
lemma, p(x) satisfies

\Vp| < Oyt
and
[Ap| < Cot 270

where C, C depend only on n,T,a and ¢ > 0 depends only on n. Here V and A
are the covariant derivative and Laplacian of g(t) respectively.

Proof. The first inequality follows from Lemma 2.1(i). To estimate Ap, at a
point where g;; = d;; and g;; is diagonalized, we have

|Ap—Ap| = (gisz-Vjp —39VV,p
9" <Vivj - Vﬁj) P‘ + ‘ (97 —g") Vﬁjﬂ‘
< |g” Al pr| + Cst~ 1

g 04.[:7 % —Ca

<

for some constants C5, Cy depending only on n,7T’, a, and ¢y, ¢, depending only on
n. By the estimates of Ap, the second result follows. U

LEMMA 2.3. Let (M™,g) be a complete noncompact Riemannian manifold
with dimension n and let g(t) be a smooth complete solution to the Ricci flow on
M x [0,T), T > 0 with g(0) = go such that the curvature satisfies |Rm| < at~"' for
some a > Q.
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Let f > 0 be a smooth function on M x [0,T] such that

@)
0 a
(a - A) <l

(i) &L,y =0 forall k> 0;
(iil) supyeps f(2,t) < Ct~!, for some positive integer | for some constant C.

Then f =0 on M x [0,T].

Proof. We may assume that 7" < 1. In fact, if we can prove that f = 0 on
M % [0,T1] where T} = min{1,7'}, then it is easy to see that f =0 on M x [0,7]
because f and the curvature of g(¢) are uniformly bounded on M x [T},T].

Let p € M be a fixed point, and let d(x,t) be the distance between p,x with
respect to ¢g(t). By [19] (see also [8, Chapter 18]), for all 7, if d(x,t) > ro, then

3} _q 1
- — > —
(2.3) T d(z,t) — Ad(z,t) > —Cy (t ro+ 7“0>

in the barrier sense, for some Cp = Cy(n,a) depending only on n and a. Here

0- . d(z,t) —d(x,t—h)
(2.4) ad(m,t) = I}gg}f " .

The inequality (2.3) means that for any € > 0, there is a function o(y) near x such
that o(z) = d(z,t), o(y) > d(y,t) near x, such that o is C? and

. = - > — ) -
(2.5) T d(z,t)—Ao(z) > —Cy <t ro+ 7“0> €

1

In the following, we always take e =7~ 2.
Let f be as in the lemma. First we want to prove that for any integer £ > a
there is a constant 3;, such that

(2.6) sup f(x,t) < Byt*.
rzeM

Let F =t % f, then

0 k—a
. — <-2_"r<o.
2.7) <8t A>F_ ; F<O0

Let 1 > ¢ > 0 be a smooth function on [0,0) such that

1, if0<s<1,;
MQ_{Q ifs>02,
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and such that —C; < ¢’ <0, |¢"| < C for some C} > 0. Let ® = ¢™, where
m > 2 will be chosen later. Then ® =1 on [0,1] and ® =0 on [2,00), 1 > & > 0,
—C(m)®? < P’ <0, || < C(m)P?, where C(m) > 0 depends on m and C',
andg=1-— %

Forany r >> 1, let W(z, ) = &(42) Let

T

6(t) = exp(—at'7),

where a > 0, 0 < 8 < 1 will be chosen later.
We claim that one can choose m, a and 3 such that for all » >> 1

H(x,t)=0()¥(a,t)F < 1

on M x [0,T].If the claim is true, then we have that F' is bounded. Hence f(x,t) <
By tF.

First note that W(x,¢) has compact support in M x [0,7]. By assumption (ii)
and the fact f is smooth, we conclude that H (z,t) is continuous on M x [0,T].
Moreover, by (ii) again, H (z,0) = 0. Suppose H (z,t) attains a positive maximum
at (xo,to) for some xo € M, ty > 0. Suppose d(zg,ty) < 7, then there is a neigh-
borhood U of  and § > 0 such that d(x,t) < r for z € U and |t —to| < ¢. For such
(z,t), H(z,t) =6(t)F(z,t). Since H(xo,tp) is a local maximum, we have

0
<|=-A|H
0—<m )

0
—0'F —— A |F
6 +9<at )

<0F
<0

which is a contradiction.
1
Hence we must have d(xo,tp) > 7. If r >> 1, then r > T'2, and at (z9,tp),

0— _
Eh:tod(az,t) - AtOO'(IL’) 2 —C()to N

=

1
by taking ro = ;. Here Cp > 0 is a constant depending on n and a, o () is a barrier
function near .

Let U(z) = ®(22)), and let

T

H(z,t) = 0(t)¥(2)F(z,t)

which is defined near x for all ¢t. Moreover,

H (xg,t0) = H(x0,t0)
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and

H(x,ty) < H(z,1t9)

near zo because o(z) > d(z,to) near zo and ® < 0. Hence H (z,t) has a local
maximum at (xo,%p) as a function of z. So we have

(2.8) VH(:L’(), t()) =0
and

(2.9) Ag(l‘o,to) < 0.
At (20, t0),

0>A (e(t)@(a;)F(x,t))

= OUAF +0FAV +20(VF,VT)
~ T2
@10 — OTAF +0F <1<1>’Aa+i2<1>”|va|2> EPYINATS
r T \\/
1 1 2 97
> 0DAF +0F [ ~®'Ao+ —d"|Vo|* | — S0—F
r r2 rz @

where we have used the fact that o(x) > d(x,to) near x¢ and o(xg) = d(xg,to) so
that |Vo ()| < 1. ® and the derivatives ®’ and ®” are evaluated at M.
On the other hand,

H(x(),t()) — H(IL’(),to — h)

0 <liminf

h—0+ h
-y to—h)+¥ t
=9’WF+9\y§F+9Fliminf (0.0 — h) + W (o, 0),
ot h—0" h
Now
d 7t _h d ,t
_‘I/(aj‘(),to—h)—l—\lf(xo’to) — —(I)( (xO TO ))—|—<I>( (IL‘(; 0))

- %@’(5)((1(:130,250) —d(z0,t0 — h)),

for some £ between %d(:ro,to —h) and %d(a:o,to) which implies

—W(ao,to— h) + (o, —W (o, to — h) + (o,
liminf — (20t = 1) + (0, to) < limsup (wo,to — h) + ¥ (o, t0)
h—0t h B0t h

1_,0_
= ;‘I)/ad(ﬂcoﬁﬂt:to
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because ®' < 0, where @' is evaluated at 1d(z, o). In the following, C; will de-
note positive constants independent of «, 5. Combining the above inequality with
(2.10), we have at (xo,tp):

9 1,0
<@ — o=
0<PQF+0D 7 F+OF &' = d(xo,t0)
9"

1 1 2
—OUVAF —-0F _CI)/AU+—(I),,|VO"2 +=60—F
r r? r: P
1
<HDF+(C, <t02CI>q+cI>2q1> OF
< —a(1-B)t, 00 F
L 1 o
+ 50 [to zto(l q)(k+l)(q>F)q+t0 1 2(1 q)(k+z)(q)F)2q1]

= [— a1 = A)ig 0P + Caty > (@) <<1>F>2“>]

where ®, &' ®” are evaluated at d(xg,to)/r. Now first choose m large enough
depending only on k, 1 so that  +2(1—gq)(k+1) = 3 < 1. Then choose « such that
a(1 =) > 2Cy. Then one can see that we must have ®F' < 1. Hence H =P F < 1
at the maximum point of H (z,t). This completes the proof of the claim.

Next, let F =t~%f. Then
0
——A)F<0.
(5i-2) =

Let p be the function in Lemma 2.2, we have
|Ap| < Cst™°

for some b > 1. Let n(x,t) = p(x) exp(%t“b). Note that n(x,0) = 0.

0 2Cs |- .
<E - A) 7 = exp <mtl b> (2C5t bp— Ap)

2
> Cst Yexp <%tlb>

> 0.

where we have used the fact that p > 1. Since F < Cgt? in M x [0,T]. In particular
it is bounded. Then for any € > 0

(%—A) (F—en—et) <O0.

There is t; > 0 depending only on ¢, Cg such that F'— et < 0 for t <t¢;. Fort > ¢,
F' — en < 0 outside some compact set. Hence if F'— en — et > 0 somewhere, then
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there exist xg € M, tg > 0 such that F' — en — et attains maximum. But this is
impossible. So F'—en—et < 0. Let e — 0, we have F' = 0. O

3. Preservation of the Kihler condition. In this section, we want to prove
Theorem 1.1 and give some applications. Recall Theorem 1.1 as follows:

THEOREM 3.1. If (M™,qo) is a complete noncompact Kdhler manifold with

complex dimension n and if g(t) is a smooth complete solution to the Ricci flow
(2.1) on M x[0,T], T > 0, with g(0) = gy such that

[Rm(g(t))]y0) < 7

for some a > 0, then g(t) is Kdhler forall 0 <t <T.

We will use the setup as in [24, Section 5]. Let Tec M =T M ®p C be the com-
plexification of T M, where T M is the real tangent bundle. Similarly, let 7o M =
Ty M ®g C, where Ti; M is the real cotangent bundle. Let z = {z!,2%,...,2"} be
a local holomorphic coordinate on M, and

{Zk I pv

zF e R,zFt" e R, k=1,2,...,n.

In the following:
e i.j,k,l,...denote the indices corresponding to real vectors or real covectors;
e «,3,7,0,... denote the indices corresponding to holomorphic vectors or
holomorphic covectors,
e A, B,C,D,...denote both o, 3,v,6,... and &, 3,%,6,....
Extend g;;(t), Rijni(t) etc. C-linearly to the complexified bundles. We have:

9AB =9ap, Rascp =Rigep-
In our convention, R = R(ej,ez,ez,e1) is the sectional curvature of the two-
plane spanned by orthonormal pair ey, e;. R 4pcp has the same symmetry as 12,5
and it satisfies the Bianchi identities.
Let g4B := (¢7")45, it means g Bgpc = 5(‘%, and let

Rap =9°PRacpn

on M x [0,T]. Then we have

0
(3.1) 91948 = —2RaB
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and
—R
57 FABCD
(32) =ORapep— 29""9“" RpapaRrncD
—2¢" M RpacpRrene +295F ¢“" RpaceRreup
—¢""(RepcpRra+ RapcpRrp + RapepRrc + RapceRrp)

on M x [0,T], see [24].
We begin with the following lemma:

LEMMA 3.1. Let (M, go) be a Kihler manifold, and g(t) be a smooth solution
to the Ricci flow with g(0) = go. In the above set up, we have

ak
wRABwh:o =0

at each point of M for all k > 0 and for all A, B,~,6.

Proof. Let p € M with holomorphic local coordinate z. In the following, all
computations are at (z,0) unless we have emphasis otherwise. We will prove the
lemma by induction. Consider the following statement:

( ok
Hl(k) . %RAB"@ =0
ak
Hy(k): HE9AB = 0 if A, B are of the same type
ak
Hs(k): %RAB =0 if A, B are of the same type
ak
H(k) S Hy(k) WFEB =0 unless A, B,C are of the same type
ak
Hs(k‘) . WRAB-WS;E =0
ak
Hﬁ(k) : ﬁRAByé;EF =0
ak
H7(k‘) . WARAB’W; =0.

Here we denote covariant derivative with respect to g(t) by “;” and the partial

derivative by “,”. If H;(k) are true for all : = 1,...,7, we will say that H (k) holds.
As usual:

1
FgB = —QCD(

5 9AD,B+9DB.A—JAB.D) -
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We first consider the case that & = 0. Since the initial metric is Kahler, it is easy to
see that H(0) holds. Now we assume H (7) holds for all i = 0,1,2,... k. We want
to show H (k+ 1) holds. We first see that

oktl
o1 ltaBys

k
O BRaps) = Y 2 )0 n(Reanc)y(Resns)y

= o
m4n+p+q=~k
0<m,n,p,q<k

- Z 2(" ) m(g“ ) n(REacs)p(REBHA )q

m+n+pt+qg=k
0<m,n,p,q<k

+ > 20"l n(Reacy)p(RrBHs)q

m+n+p+q==k
0<m,n,p,q<k

— > @ mRar)nReprs)p— Y (7 )m(Ber)n(Rapss)

m-+n+p==k m+n+p=~k
0<m,n,p<k 0<m,n,p<k
= > @R Rases)y— Y (97 )m(Rsp)n(Rapye)p.
mtn+p=k m+n+p=k
0<m,n,p<k 0<m,n,p<k

Here (), = 25 (-).

Suppose (gap)p =0 att =0 if A, B are of the same type for p =0,1,...,k,
then it is also true that (gAB)p = 0if A, B are of the same type for p =0,1,... k.
On the other hand, in the R.H.S. of the above equality, the derivative of each term
with respect to ¢ is only up to order k, by the induction hypothesis, H;(k+ 1) holds.
Now

0
—_— = —2
57948 Ry,

it is easy to see that H,(k + 1) holds because H3(k) holds.

Since
8k+1 .
i1 ftas = Y (0P m(Racp)n,
m-+n=k-+1
0<m,n<k+1

and since that H(k + 1) and H,(k+ 1) hold, we conclude that H3(k + 1) holds.
Here we have used the symmetries of R 4pcp.
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Since

8k+l N N
STl AR > (@")m(Bapat Raps— Ragp),

m+n=Fk
0<m,n<k

- Z (97 )m (RBEr;A T Raz5— RAB;c‘r)n’
m—+n=Fk
0<m,n<k

by the induction hypothesis. If A = 7, then each term on the R.H.S. is zero by the
induction hypothesis. If A =+, then

(R,Ba;y)n = (R867'y)7’b - (FEaREB)n - (F%RE&)m

so it vanishes because n < k. On the other hand,

_ .CD _ _
Rﬂ/c‘r;B - Rﬂ/B;c‘r =g (R"/CD&;B - RWCDB;E;)
CD
=9 (R"/CD&;B + Rﬂ/C&D;B + Rﬂ/CBEr;D)
CD
=4 R'yCB_Er;D‘

So

(Rvé;B - Rvﬁ;é)n =0
for n < k by the induction hypothesis. Thus,

8l<:+1

Otk+1 FZB =0

att=0.Since 'G5 =T%, and '{; = F%B’ it is easy to see that H4(k+ 1) holds.
Next,
Rapys.e = Rapys.p — TG aReps — TS pRAGHs
—I gfyRABGé —T%sRapc-

By H(k+1), we have

oF+1 okl

WRABMS,E‘ = <WRABV6> . =0.
Since H (i) and Hy(7) are true for 0 < i < k+ 1, Hs(k+ 1) is true. Since H(i),
H,(i) and Hs(i) are true for 0 <i < k+ 1, He(k+ 1) is true. Finally Hg(7) is true

for 0 <14 < k+ 1 implies that H7(k + 1) holds. Therefore, H (k + 1) holds. O

Now we use the Uhlenbeck’s trick to simplify the evolution equation of the
complex curvature tensor. We pick an abstract vector bundle V' over M which is
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isomorphic to Tc M and denote the isomorphism ug : V' — T M. We take {e4 :=
Uy ! (c’?ziA)} as a basis of V. We also consider the metric h on V' given by h := ugo.
We let ug evolute by

%u(t) = Ricou(t),

u(0) = uyp.
In local coordinate, we have

0
au’é = ¢"“Ropug,

u(0) = o3.
Consider metric h(t) :=u*(t)g(t) on V for each ¢t € [0,T]. It is easy to see that
h fo

%h(t) = 0 for all ¢, so h(t) = h for all . We use u(t) to pull the curvature tensor
on Tc M back to V:

Rm(ea,ep,ec,ep):= R(u(ea),ulen),ulec),u(ep)).

In local coordinate, we have

5 E.F. .G H
Rapcp = RerarU ugUucup

on M x [0,T]. One can also check that

hap=hap, Rapcp=Ripep-

Define a connection on V' in the following: For any smooth section £ on V,
XeleM,

D& =u"" (Vi (u(€))).

One can check that D*h = 0 and D'u = 0. We define /\ acting on any tensor on V'
by

A= g"F Dy DY
Then by (3.2), the evolution equation of R is:

o . .
(3.3) aRABCD =ARapcp — 2hEFhGHREABGRFHC'D

—2hPF R RpaapReprc + 20 W Ry aco Reprp

where h4B = (h~1)AB,
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LEMMA 3.2. With the above notations, we have

k
WRAB-WS =0
att =0 forall A, B and ~,9.
Proof. Note that we have:
8_Z§AB% = () m (up)n(u$)p(uf)g(Rerem)r-
ot

m+n+ptg+r=k
0<m,n,p,q,r<k

ak

By Lemma 3.1, in order to prove the lemma, it is sufficient to prove that

and 2ru$ = 0 for all k for all a, S at t = 0.
Recall that

u%‘zO

0
aué = ¢"“Ropug,
um(0) = 4.

Hence ug =0 and uf = 0. By induction, Lemma 3.1, and the fact that u3(0) = 67,

one can prove that show g—;ug =0and g—;ug‘ = 0 for all k. This completes the
proof of the lemma. U

Proof of Theorem 3.1. As in [24], define a smooth function ¢ on M x [0,7]
by
£ BC 1 1,07 T > SIENC G 1,01 1) >,
a4 p(2,t) = B WP W R Rogos Rezs+ O WO R 5 s Re o
’ A C 1,76 1,07 15 > I G 1,01 1 »
+ RO BB Ry g5 Regsn + WSRO WThOTR 5 s Re .

One can check ¢ is well defined (independent of coordinate changes on M) and is
nonnegative. The evolution equation of ¢ is (See [24]):

0 - - - - =
(3.5) (E - A) o= Reper*Rauap * RaBys — 29EFRAB76;ERABW5F-

As the real case, define the norm of the complex curvature tensor by:

|RaBcp(t) |§(t) =g gPr Y ePHR s pcp REFGH.

Then we have

|Rapep(t)| = [Rijr(t)| <

| Q
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on M x [0,T] by assumption. By the definition of R BCD, We also have:

a

|Rapep(t)| = |Rapep(t)] < T

Combining with (3.5), we have

0 C
Z _ < 21
<8t A)*O— t 7

on M x [0,T] for some constant C',. Moreover,
¢ <|Rapop(t)|* <a’/t.

On the other hand, by (3.4), Lemma 3.2 and the fact that & is independent of ¢, we
conclude that at ¢t =0,

ak
¥ =0

for all k. By Lemma 2.3, we conclude that ¢ =0 on M x [0,T]. As in [24], we
conclude that g(¢) is Kahler for all ¢ > 0. O

COROLLARY 3.1. Let (M™,qgo) be a complete noncompact Kdihler manifold
of complex dimension n with nonnegative complex sectional curvature. Suppose

pienz\g{Vp(lﬂ peEM}=uvy>0.

where V(1) is the volume of the geodesic ball with radius 1 and center at p with
respect to go. Then there is T > 0 depending only on n,vq such that the Kdhler-
Ricci flow has a smooth complete solution on M x [0, T with initial data g(0) = go
and such that g(t) has nonnegative complex sectional curvature. Moreover the
curvature satisfies:

c
[Rm(g(1) |y < 5
where c is a constant depending only on n., vy.

Proof. The corollary follows immediately from the result of Cabezas-Rivas
and Wilking [2], and Theorem 3.1. ]

COROLLARY 3.2. Let (M™,qo) be a complete noncompact Kdihler manifold
with complex dimension n and nonnegative complex sectional curvature. Suppose
M™ has maximum volume growth. Then M™ is biholomorphic to C™.

Proof. By volume comparison, we have

plgﬁ{n(m peM}=uw>0.
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Let g(t) be the solution to the Kiahler-Ricci flow on M x [0,7] obtained as in
Corollary 3.1. Then for all ¢ > 0, g(¢) has nonnegative complex sectional curvature
and the curvature of g(¢) is bounded. We want to prove that g(¢) has maximum
volume growth.

Let p € M and let 7 > 0 be fixed. Let §(s) = r2g(r%s), 0 < s < r~2T. Then
G(s) is a solution to the Kihler-Ricci flow with initial data §(0) = r~2go. Since the
sectional curvature of §(s) is nonnegative, as in [2], using a result of [20], one can
prove that:

Vi(d(s),1) = Vi (r—2g0,1) = Vp((s),1) = V5 (3(0), 1) > —cps

where V,(h, 1) denotes the volume of the geodesic ball with radius 1 and center at
p with respect to h and ¢, is a positive constant depending only on n. Now

v9 >0

Vo(g0.7)
-2 0
Vp(r—“go,1) :% >
because go has maximum volume growth. Hence there is 19 > 0 such that if > r,
then

T72nvzn(g(7a28)’r) = V},(g(s), 1) > C

for some constant C'| independent of s and r for all 0 < s < r—2T. Fix ty > 0, and
let s be such that r2s = t(. Then s < r2T'. So we have

r2Vo(g(to),r) = C

if r is large enough. That is, g(¢y) has maximum volume growth. By [5], we con-
clude that M is biholomorphic to C™. O

4. Preservation of non-negativity of holomorphic bisectional curvature.
Let (M™, go) be a complete noncompact Kihler manifold with complex dimension
n. We want to study the preservation of non-negativity of holomorphic bisectional
curvature under Kahler-Ricci flow, without assuming the curvature is bounded in
space and time.

Let us first define a quadratic form for any (0,4)-tensor 7" on T M with a
metric g by

n
Q(T)(X7X7Y>Y) = Z (|TX[LZ/Y|2 - |TXﬁYI7|2 +TXX'V[LT;LDYY)
w,r=1

n
= Re(TxpT,xyvy + TyaTx 5 ,5)
pn=1

for all X,Y € TA°M, where T,5 5 = T(ea.85,¢1,25), Tnz = g"°T,5,5 and
{er,...,en} is a unitary frame with respect to the metric of g, T,y =
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T(X,éu,e,,Y) etc. Here T is a tensor has the following properties:

forall X,Y,Z,W € T2"M.
Let g(t) be a solution to the Kahler-Ricci flow:

0

oides = ~Hap-

Recall the evolution equation for holomorphic bisectional curvature: (See [7,
Corollary 2.82])

; o o
<& - A) R(X,X,Y,¥) = Q(R)(X.X.Y,Y)

forall X,Y € T(é’OM. Here A is with respect to g(t).
Next define a (0,4)-tensor B on Tc M (with a metric g) by:

B(E,F,G,H)=g(FE,F)g(G,H)+g(E,H)g(F,Q)

forall E,F,G,H € Tc M.

LEMMA 4.1. In the above notation, Q(B)(X,X,Y,Y) <0 for all X,Y €
TLOM.
C

Proof.
n
Q(B)(X>X7Y>Y) = Z (|BX[LVY|2_ |BXﬂY17|2+BXXV[LBuDYY)

=1

n
—Y "Re(Bx;B,xyy + ByaBxx,y)
pn=1

Let {e1,...,en} be aunitary frame. X =7 | X¥e,, > 1| Y =YVe,.
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We compute it term by term:

n

n
2
> BxuylP =D (9xa9,5 + 9xv9mw) - (9% .95 + Iy Iur)
pyv=1 pv=1

= (XM +gxygm) (XYY + 95y 0u0)
p,v=1
= | XPIYP + (n+2)[g(X,Y),

n n
> Bxuvol’ = (9xug0v + 9x095v) - (930907 + 9%09,57)
=1 p,v=1
n
= ) (XMYV 4+ XY (XYY 4+ XYY
p,v=1
=2|XPIY P +2[g(X, V)P,

n
> BxsuaBuoyy = (9xx9vi + 9x09%,) - (9uo9yy + 95 95v)
pyr=1

= (X Pgup+ X' X") - (guo|Y P+ YHY")
= (n+2)|XPIY P +19(X, V)P,

n n

_ kl o
ZBXﬂBuXYY = ZQ BkalBMXYY
p=1 p=1

n
=Y BxwiBusvy
pyv=1
n

= > (9xagvr +9x09) - (95,97 y + 9%y 9u7)
pyv=1

n
= > (X" + X" g) - (X9yy +V"gxy)
pyv=1
= (n+ DIXPY P+ (n+1)]g(X,Y)%
Similarly, we have
n
ZBYﬂBXXuY = (n+ DIXPIY]P+ (n+1)]g(X, V)%
p=1
Therefore,

QB)(X, X,Y.Y) = ~(n+ (| XPIY] +]g(X,Y)P) <0. .

We are ready to prove Theorem 1.2:
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THEOREM 4.1. There is 0 < a(n) < 1 depending only on n such that if
g(t) is a smooth complete solution to the Kdhler-Ricci flow on M x [0,T] with
sup,c s |Rm(z,t)| < ¢ and if g(0) has nonnegative holomorphic bisectional
curvature, where M is an n-dimensional noncompact complex manifold, then g(t)
also has nonnegative holomorphic bisectional curvature for all t € [0,T.

Proof. The theorem is known to be true if the curvature is uniformly bounded
on space and time [24]. Since g(¢) has bounded curvature on M x [r,T] for all
7 > 0, it is sufficient to prove that g(¢) has nonnegative bisectional curvature on
M x [0, 7] for some 7 > 0. Hence we may assume that 7' < 1.

In the following, lower case ¢y, ¢;, ... will denote constants depending only on
n.

a

Since g(T') has curvature bounded by 7 and is complete, as in Lemma 2.2,
there is a smooth function p defined on M such that

(1+dr(z,p)) < p(x) < Di(1+dr(z,p))

(4.1) S —
|Vp|+|V p| < Dy,

for some constant D; depending only on n and gy, where dp(x,p) is the distance
function with respect to g7 from a fixed point p € M and V is the covariant deriv-
ative with respect to gr.

Suppose |[Rm(g())|y(;) < a/t, where a is to be determined later depending
only on n. By Lemma 2.2, we have

(4.2) IVp| < Dyt—@

for some constant 1D, depending only on n, gp. Here and below, V is the covariant
derivative of ¢(t) and hence is time dependent. We may get a better estimate for
Ap = Agyy)p than that in Lemma 2.2. Choose a normal coordinate with respect to
g(T') which also diagonalizes g(t) with eigenvalues \,. Then

n
3 1,2 _
(4.3) 101 =19 pogl <D AV pl < Dyt

a=1

by Lemma 2.1.
Let ¢ be a smooth cut-off function from R to [0, 1] such that

I, <1
and |¢'| +|¢"| < D', ¢’ <0. Let ® = ¢™, where m > 4 is an integer to be deter-
mined later. Then
0>®" >-D(m)®?% |®"| < D(m)d?

for some positive constant D(m) depending only on D’ and m, where ¢ =1 — %
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Let U(z) = <I>(”(f)) on M for r > 1. Note that ¥ depends on r.
Then we have

1 D
(4.4) VU < —D(m)e|Vp| < 2wt
by (4.2), and
(45) AV] < 10" |[VpP+ Lo/ ap) < Dapea
T T T

by (4.3), where D, is a constant depending only on n, g, m.
For any ¢ > 0, we define a tensor A on M x (0,T]: For vectors X, Y, Z, W €
Te(M),

AX,)Y,Z,W) =t 2V (2)R(X,Y,Z,W) +eB(X,Y, Z,W)

where R is the curvature tensor of g(¢) and B is evaluated with respect to g(t).
Define the following function on M x (0,7]:

H(x,t) = inf { Ay gyy(a,0) | |X], = [V], = 1, X.Y € TLOM}.

Here |- |; is the norm with respect to g(t).

To show the theorem, it suffices to show for all » > 1, H(x,t) > 0 for all
x and for all ¢+ > 0. Since ¥ has compact support and B(X, X,Y,Y) > 1 for all
| X |¢ = |Y|; = 1, there is a compact set K € M such that

H(xz,t)>0
on (M \ K) x (0,T1]. On the other hand, we claim that there is 7y > 0 such that
H(xz,t)>0

on K x (0,7p). Let {ej,ez,...,e,} be a unitary frame near a compact neighbor-
hood U of a point zy € K with respect to go. Then at each point « € U,

RanyS(xat) = Ragvg(x,()) +tFE

where |E| is uniformly bounded on U x [0,T]. Since g(¢) is uniformly equivalent
to g(0) on U, for any X,Y € Ty"*(M) for (z,t) € U x [0, 7],

for some constant Ds > 0 where we have used the fact that gy has nonnegative
holomorphic bisectional curvature. Since g(t) and gy are uniformly equivalent in
K, and K is compact, we conclude that

R(X7X>KY) > _D6t
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on K x [0,T] for some constant Dy for all X,Y € Tp"*(M) with | X|, = |Y], = 1.
Since B(X,X,Y,Y) > 1, itis easy to see the claim is true. To summarize, we have
proved that there is a compact set & and there is 7 > 0, such that H(z,t) > 0 on
M\ K x (0,T] and K x (0,7p).

Now we argue by contradiction. Suppose H (z,t) < 0 for some ¢ > 0. Then
we must have x € K and t > Ty. Hence we can find zg € K, tyg > 1y and a
neighborhood V' of z¢ such that H(xo,tp) =0, H(x,t) >0 for z € V, t < 1,
H (x0,t) > 0 for t < to. This implies that there exist Xy, Yy € Té; DM with norm
|X0|g(t0) = |Yb|g(to) = 1 such that

Ax, %ovo¥, (To,t0) = 0.

Then we extend X, Y} near z by parallel translation with respect to g(t¢) to vector
fields X, Yy such that they are independent of time and

Agito) Xo = Bg(t) Yo =0,

at xg.

Denote h(z,t) := Aio)?o%%(x’t)' At (xo,to), we have h(xp,tp) = 0 and
h(z,t) > 0forx € V, t <tg, h(zo,t) > 0 for t <ty by the definition of H.

Hence at (g, o),

(4.6)
0
>(=-n
0—<m >h
— 10U <<—§t —A> R> (Xo, Ko, Yo, Vo) — ty ? R(Xo, Xo, Yo, Vo) AU

_1 ~ = ~ = 1 -3 - -
- 2t() . <VR(X07XO7K)7K))7V\II> - Et() 2\IIR(X(),X(),K),YE))
- E(AB)(X()?XO»YE%YE)) +5( - RiC(XO>XO) - RIC(YE%YE))
- RiC(XO7 Y/b)g(XOa Yb) - RiC(XO7 K))g(X(% Y/b))

_1 _ _ 1l ea - -
> t, 2 WQ(R)(Xo, Xo, Y0, Yo) — Dar ™'ty > " WI| R(Xo, Xo, Y0, Y0)|
1 _3 - - _ 1 ~ = ~ =
- Et() : ‘IlR(X()aXOaYE)aYE)) - 035at61 - 2t() : <VR(X(),X(),YE),K)),V‘I’>,
where we have used (4.5) and the fact that AB = 0. On the other hand, at (x¢, o)
0=Vh
_1 ~ < ~ =<
—1,°V (R(XO,XO,YO,YO)\P>

1 = . = ) )
=ty [WVR(X, Xo, Y, Vo) + R(Xo, £, Yo, Yo) VY]
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where we have used the fact that Vg = 0 and VX, = VY, =0 at (zo,to). Hence
(4.6) implies

_1 _ -
0 > t() Z‘IIQ(R)(X()aXOva)H))

—1ca > > —
4.7) — Dyr 'ty > | R(Xo, X0, Yo, Yo)| (W9 + W21

1 2 _ _ ~
— 510 2 R(Xo, Xo, Yo, Yo) — c3eaty !

where we have used (4.4) and D7 > 0 is a constant depending only on g7,n,m. On
the other hand, by the null-vector condition [18, Proposition 1.1] (see also [1]), we
have

Q(A)(Xo, Xo, Yo, Yp) > 0.
By a direct computation, one can see that
Q(A) = ;' W2Q(R) +£2Q(B) + 1y *WeR* B,
and we have

% ¥, = — _3

0 < t; " W2Q(R) (X, Xo, Yo, Vo) +£2Q(B)(Xo, Xo, Yo, Vo) + cseWat, *
- _ _3
S tal‘lle(R)(X()aXOaYbaYb) +CSE\IICLtO 2

where we have used Lemma 4.1 and cs is a constant depending only on n. That is

1

(48) \IIQ(R)(X()vXOva?Yb) > _CSE(H(:(;7

where we have used the fact that h(xg,to) = 0 which implies W(xg,to) > 0.
Combining this with (4.7), we have

1 - -
0> —(c3+cs)eaty ' — D'ty | R(Xo, Xo, Yo, Yo)| (T + 0277 1)
4.9) 1 3 i} ;
_Et() 2\IJR(X07X07YE)7YE))'

Since h(xo,tg) = 0, we also have

_ _ 1 _ _
qj($07t0)R(XO>XO7H)7}/b) = _t(z)EB(X()vXOvavyb)'
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Hence at (x0,19), (4.9) implies, if 0 < a < 1, then

0> —(e3+cs)ea
2Dy | R( X, Ko, Yo, Vo) W2 %to’ 20 R(Xo, Xo, Yo, Vo)
> —(c3+cs)ea
2D 2 R(Xo, Xo, Yo, Yo) P19 et B(Xo, Xo, Yo, Yo) 24!
+32B(Xo, o, Yo, )

1
> —(e3+cs5)ea— Dgr’lszqflt(of + 3¢

because 0 <V <1,g=1-— % <1, m >4, where Dg > 0 is a constant depending
only on gr,n,m. Here

1 1
a25—04a—2(1—Q)+§(2q—1):3q_c4a_2'

Hence if c4a < % and a < 1, then a depends only on n and 3¢ — cqa —2 > 0,
provided m is large enough. If a,m are chosen satisfying these conditions, then we
have

1
0> —(e3+cs)ea— Dgr—1g2a-1 4 €

If a also satisfies a(c3 +¢s5) < %, then we have a contradiction if r is large enough.
Hence if

1 1
O<a<min{1,§c41,§(63+cs)1}7

then g(t) will have nonnegative holomorphic bisectional curvature. This completes
the proof of the theorem. U

As an application, we have the following:

COROLLARY 4.1. Let (M",go) is a complete noncompact Kdiihler manifold
with complex dimension n > 2, nonnegative holomorphic bisectional curvature
and maximum volume growth. Suppose there is ro > 0 and there is C' > 0 such that

1
1 / P
|Rm|p> <C
<Vz(7’0) By (r0)

for some p > n forall t € M. Then M is biholomorphic to C".
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Proof. By [27], the Ricci flow with initial data gy has a smooth complete short
time solution g(¢) so that the curvature has the following bound:

IRm(g(t)| <Ct >

for some constant C'. Since 7 < 1, by Theorems 3.1 and 4.1, g(t) is Kéhler and
has bounded nonnegative bisectional curvature for ¢ > 0. Since % < 1itis easy to
see that g(t) is uniformly equivalent to go. Hence g(t) also has maximum volume
growth. By [5], M is biholomorphic to C". O

5. Producing Kihler-Ricci flow through h-flow. We want to produce so-
lutions to the Kahler-Ricci flow using solutions to the so-called h-flow by M. Si-
mon [25]. Let us recall the set up and some results in [25]. Let M™ be a smooth
manifold, and let g and h be two Riemannian metrics on M. For a constant § > 1,
h is said to be J close to g if

6 'h<g<éh.

Let g(t) be a smooth family of metrics on M x [0,T], T > 0. g(¢) is said to be a
solution to the h-flow, if g(t) satisfies the following DeTurck flow, see [23, 25]:

0 .
(5.1) Egij = —2R1Cij +VZ"G+V]'V;,
where
Vi = gi9™ (T3, = "T4),

and Ffd, hfil are the Christoffel symbols of ¢(t) and h respectively, and V is the
covariant derivative with respect to g(t).

In order to emphasize the background metric h, we call it h-flow as in [25]. We
are only interested in the case that M is noncompact and g is complete.

In [25], Simon obtained the following:

THEOREM 5.1. [Simon] There exists €(n) > 0 depending only on n such that
if (M™, go) is a smooth n-dimensional complete noncompact Riemannian manifold
and there is a smooth Riemannian metric h on M with sup,. 5, |V Rm(h)| < k; for
all i and if h is (1+€(n)) close to gy, then the h-flow (5.1) has a smooth solution
g(t) on M x [0, T] with initial value g(0) = go such that

i Ci
sup [Vig (1) <
zeM

forall i and g(t) is (14 2¢) close to h for all t, where T'(n,ky) > 0 depends only
onn and kg, C; depends only on n,ky, ..., k;. Here and in the following, V and |- |
are with respect to h.
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As in [21], using solution to the h-flow, one may construct a smooth complete
solution g(t) to the Ricci flow with initial metric go. Moreover, the curvature of g(t)
is bounded by C'/t. By Theorem 3.1, we conclude that g(¢) is a Kédhler-Ricci flow
if go is Kahler. However, motivated by the uniformization conjecture of Yau [29],
we also want to prove that if gy has nonnegative holomorphic bisectional curvature
then g(t) also has nonnegative holomorphic bisectional curvature. To achieve this
goal, we want to apply Theorem 4.1. To apply the theorem, the constant C' in the
curvature bound C'/t must be small enough. If €(n) is small enough, then C' will be
small. This basically follows from the proof of Theorem 5.1. (See [25]) One may
also obtain this fact by using Theorem 5.1 together with an interpolation result in
[22] as follows:

LEMMA 5.1. Let (M™,h) be a complete noncompact Riemannian manifold
such that |VIRm(h)| < k;, 0 <i <3 with Y7 o k; < 1. For any o > 0 there is a
constant b(n,c) > 0 depending only on n and « such that b < e€(n) where €(n) is
the constant in Theorem 5.1, and such that if g(t) is the solution to the h-flow on
M x [0,T], T < 1, obtained in Theorem 5.1 with g(0) = go satisfies (1+b)~"'h <
9o < (14+b)h, then

i 2 (@ :
Vgt < (%)
fori=1,2forallt e (0,T).

Proof. Let 0 < b < €(n) be fixed to be determined later and let g(t) be the
solution to the h-flow as in the theorem on M x [0,7T’], with T < 1. We assume that
e(n) <1.

Let p € M, by the assumptions on V:Rm(h), exp,, is a local diffeomorphism
on B(2¢;) = {z € T,(M)| |z| < 2¢;}. Here and below ¢; will denote a constant
depending only on n. By pulling back h, g(t) via exp,, in order to prove the claim
at p, we may consider ¢(t) and h as metrics on B(2¢;). In the normal coordinates
ml,. ..,2™, by [12, Corollary 4.11], we have

1 i ¢ n
SIE? < hij€'e? <2¢f, forg eR™;

(5.2) ‘Df ”

< ¢, foralli,y,

where h;; = h(%, %) and 8 = (B1,...,5,) is a multi-index with || < 3 and
D, = 8;;. Denote D« simply by Dy. Let g;; = g(aii , %) which can be con-
sidered as functions in B(2¢;). Then by (5.2), in B(2¢;), we have

IVE(g—h)| < e <|D(k)(9— Mo+ [Vi(g— h)l) ;

DB (g—h)lo < 2 (IV’“(Q— W+ V(g - h)l) ;

1<k
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for 0 < k <3, where | - | is the norm of tensors with respect to h,

1

IDP(g—m)o=| DD (D(gi; —hij))?

|B]=k i.j

with (g;; — h;;) being considered as functions. Note that for i > 1, Vi(g—h) = V'g.
Fix T'> ¢ > 0 and denote g(t) by g. Let 1 > 71 > 0 be a smooth function on
B(2¢;) such that 7 = 1 on B(c;) and is zero outside B(3¢;) and such that \857”
is bounded by a constant depending only on n for all 3, with |5| < 3 because c¢;
depends only on n.
For fixed 4,7, k, let ¢ = n(g;; — hi;). By the interpolation result [22, Lemma
A.5], we have

|Dyo*(p) <32 sup |¢|- sup [DPg.
B(2¢) B(2¢)

Hence by (5.2), (5.3) and Theorem 5.1,
IVal*(p) = V(g —h)|?

=|D(g—h)[3(p)
<cs sup |g—h|- sup |[DPg|

B(ZC]) B(261)
<y sup |g—h[- sup (|V?g|+|Vg[+|g—hl)
B(ZC]) B(261)
1
< c<b-—
=~ Cs t7

because Zfzoki <1,0<t<1,b<e(n)and (1+2b)"'h < g<(1+2b)h. Since
p is arbitrary, we have:

1
5.4) sup|Vg|2 <ecsb-—.
M t

Next we want to estimate |V2g|(p). As before for fixed i,7,k,l, and ¢ =
1(gij — hij),

|Di.Di(gi; — hiz))*(p)

= DDyl (p)
<32 sup [Dg|- sup [DP)g]
B(2¢y) B(2¢y)

< ¢ sjl\zp(\Vg\ +]g—h|)- sup (IVg|+|V?g|+ Vgl +|g—hl) .
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By Theorem 5.1, (5.3) and (5.4), we have
1
(5.5) V2912 (p) < e7Vb- -

By (5.4) and (5.5), we conclude that the lemma is true. ]

LEMMA 5.2. For any « > 0, there exists €(n,a) > 0 depending only on n
and « such that if (M"™,go) is a complete noncompact Riemannian manifold with
real dimension n and if gy is (1 + e(n,«)) close to a Riemannian metric h with
curvature bounded by ko, then there is a smooth complete Ricci flow g(t) defined
on M x [0,T] with initial value g(0) = go, where T > 0 depends only on n,ky.
Moreover, the curvature of g(t) satisfies:

[Rm(g(t))l) < 7

on M x [0,T].

Proof. First we remark that by [23], there is a solution to the Ricci flow with
initial data h with bounded curvature in space and time. Moreover, for ¢ > 0 all
order of derivatives of the curvature tensor for a fixed ¢ > 0 are uniformly bounded,
the solution exists in a time interval depending only on n, ko, and the bounds of
the derivatives of the curvature tensor for a fixed ¢ > 0 depend only on n, kg, and ¢.
Hence without lost of generality, we may assume that W(i)f{\rﬁ\h < k; < oo for all
7 > 0. Here and in the following V is the covariant derivative with respect to h and
Rm is the curvature tensor of / and | - |5 is the norm relative to h.

Note that if h is 1 + € close to gg, then Ah is also 1 + € close to Agy for any
A > 0. Moreover, if g(t) is a solution to the Ricci flow with initial data g, then
Ag(A~11) is a solution to the Ricci flow with initial data Agg, and if s = At, then

[Rm(g(1))lg) = AIRM(AGA™")) rg(r-1)-

Hence we may assume that ko + &k + ky + k3 < 1.

Suppose €(n,a) < €(n) is small enough, depending only on n, a, where €(n)
is the constant in Theorem 5.1, then the solution §(t¢), ¢ € [0,7’] for some 7" > 0
depending only on n, «, to the h-flow obtained in Theorem 5.1 with initial metric
go satisfies

(5.6) [Rm(3(t))lg0) < 7

by Lemma 5.1 and the fact that

(5.7) [RM(5(0) g0 < e1 (IRl + [Va(0)} + [V25(0)] )
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where Rm is the curvature tensor of h, V is the covariant derivative of h, and ¢; is
a constant depending only on n.

In order to find the Ricci flow, we proceed as in [21]. We only need to solve
the following ODE at each point x € M, ¢ € [0,T]:

|
5
8
=

I

|
5
8
=
\.PF
~—

(5.9) dt

where W is the time-dependent smooth vector field given by
W) = " (6) (T = T,

Here Fé- ; and fz .. are the Christoffel symbols of g(t) and h respectively. If solution
exists, then g(t) = (¢(t))*(g(¢)) is the required solution to the Ricci flow, see [25]
for example.

To solve (5.8), let 25 € (25, be an increasing sequence of open sets which
exhaust M. Let ns be smooth functions with 0 <7, <1, ns =11in Qg and 5, =0
outside 24, 1. Let W = n;W which is smooth with compact support. Hence

d

(5.9) 2195 (@:1) = =Wl (2,1),1)

vs(z,0) =2z

has solution for all z € M and t € [0,7]. Now |W];, < c2/+/t by Theorem 5.1, we
conclude that

dn(, ps(x,1)) < Cy

for some C for all x € M, ¢t € [0,T] and for all s =1,2,3,.... Let K be any
compact set. Then for s large enough ¢4 (x,t) € Qg forall x € K, t € [0,T]. Hence
for s large enough, for such x € K,

%gps(m,t) = —W((Ps(m7t)7t)

vs(z,0) = x.
By the uniqueness of solutions of ODE, we have pg(x,t) = pgy1(x,t) for all s

large enough, = € K, t € [0,T]. From this it is easy to see that (5.8) has solution
on [0,7]. This completes the proof of the lemma. O
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Now we can prove the main result of this section:

THEOREM 5.2. There exists €(2n) > 0 depending only on n such that if
(M™,qo) is a complete noncompact Kdihler manifold with complex dimension n
and if there is a smooth Riemannian metric h with curvature bounded by ky on M
such that g is (14 €(n)) close h, then there is a smooth complete Kdihler-Ricci
flow g(t) defined on M x [0, T] with initial value g(0) = go, where T > 0 depends
only on n, ko. Moreover, the curvature of g(t) satisfies:

Q@
[Ren(g(t)) g <

where o = a(n) is the constant in Theorem 4.1. If in addition, gy has nonnegative
holomorphic bisectional curvature, then g(t) has nonnegative holomorphic bisec-
tional curvature for all t € [0,T].

Proof. The results follow from Lemma 5.2 and Theorems 3.1 and 4.1. O

COROLLARY 5.1. Let €(2n) be as in Theorem 5.2. Suppose (M™, go) is a com-
plete noncompact Kdihler manifold of complex dimension n with nonnegative holo-
morphic bisectional curvature and maximum volume growth. Suppose there is a
Riemannian metric h on M with bounded curvature which is 1+ ¢(2n) close to go.
Then M is biholomorphic to C".

Proof. Let g(t) be the solution to the Kéhler-Ricci flow obtained in Theorem
5.2. Then for t > 0, g(t) is Kéhler with bounded nonnegative holomorphic bisec-
tional curvature. We claim that g(¢) has maximum volume growth. Let o € M be
fixed. Let g(t) be the solution to the h-flow as in the proof of Lemma 5.2 and ¢
be the solution to (5.8). Then g(¢) has nonnegative Ricci curvature because g(t)
has nonnegative Ricci curvature. Since §(t) is uniformly equivalent to go, §(t) has
maximum volume growth. Hence ¢(¢) also has maximum volume growth. There-
fore, M is biholomorphic to C" by the result of [5]. O
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