
UNITARY MONODROMY IMPLIES THE SMOOTHNESS

ALONG THE REAL AXIS FOR SOME PAINLEVÉ VI

EQUATION, I

ZHIJIE CHEN, TING-JUNG KUO, AND CHANG-SHOU LIN

Abstract. In this paper, we study the Painlevé VI equation with pa-
rameter ( 9

8
, −1

8
, 1
8
, 3
8
). We prove

(i) An explicit formula to count the number of poles of an algebraic
solution with the monodromy groupDN , whereDN is the dihedral group
of order 2N .

(ii) There are only four solutions without poles in C\ {0, 1}.
(iii) If the monodromy group of the associated linear ODE of a solu-

tion λ (t) is unitary, then λ (t) has no poles in R\ {0, 1}.

1. Introduction

In literature, Painlevé VI equation with four free parameters (α, β, γ, δ)
(PVI(α, β, γ, δ)) can be written as
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.(1.1)

There are two fundamental facts about PVI(α, β, γ, δ) (1.1). The first
one is the Painlevé property which says that both the branch points and
essential singularities of any solution λ (t) of (1.1) are independent of any
particular solution and consist of 0, 1,∞ only. Thus λ(t) is a multi-valued
meromorphic function in C\{0, 1}; naturally it can be lifted to the universal
covering H = {τ | Im τ > 0} of C\{0, 1} through the transformation:

(1.2) t(τ) =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
and λ(t) =

℘(p(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
.

where ℘(z|τ) be the Weierstrass elliptic function with periods 1 and τ .
Throughout the paper, we use the notations ω0 = 0, ω1 = 1, ω2 = τ ,

ω3 = 1 + τ, ek = ek(τ) + ℘(ωk
2 |τ), k = 1, 2, 3 and Λτ = Z + Zτ , where

τ ∈ H. Define Eτ + C/Λτ to be a flat torus in the plane and Eτ [2] + {ωi
2 |

0 ≤ i ≤ 3} + Λτ to be the set consisting of the lattice points and 2-torsion
points in Eτ .
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By the transformation (1.2), p(τ) satisfies the following elliptic form of
PVI

(1.3)
d2p(τ)

dτ2
=
−1

4π2

3∑
k=0

αk℘
′
(
p(τ) +

ωk
2

∣∣∣ τ) ,
where ℘′(z|τ) = d

dz℘(z|τ) and

(1.4) (α0, α1, α2, α3) =
(
α,−β, γ, 1

2 − δ
)
.

See [2, 17] for a proof. As a solution to (1.3), p(τ) is considered as a contin-
uous function from H to C and holomorphic except p(τ) ∈ Eτ [2]. Although
p(τ) has branches points at p(τ) ∈ Eτ [2] \ Λτ , by the Painlevé property,
℘(p(τ)|τ) is a single-valued meromorphic function in H and its poles are
exactly equal to those τ ’s such that p(τ) ∈ Λτ .

Another important feature about (1.1) is that for any solution λ (t), there
associates with a second order Fuchsian ODE defined on CP1, whose regular
singular points are exactly {0, 1, t, λ(t),∞} with λ(t) being an apparent
singularity (cf. [12]) such that the monodromy representation is invariant
under the deformation of t. By using the transformation (1.2), the associated
ODE could be transformed into a new ODE defined on Eτ , a generalized
Lamé equation (GLE) which can be written as follows:

y′′(z) =
[∑3

k=0
nk(nk + 1)℘

(
z +

ωk
2

)
+ 3

4(℘(z + p)(1.5)

+ ℘(z − p)) +A(ζ(z + p)− ζ(z − p)) +B
]
y(z),

where A,B are complex numbers and the parameters are related by

(1.6) αk = 1
2

(
nk + 1

2

)2
for k ∈ {0, 1, 2, 3}.

In (1.5), ζ(z) = ζ(z|τ) + −
∫ z
℘(ξ|τ)dξ is the Weierstrass zeta function.

The function ζ(z) is an odd but not elliptic function. Indeed, ζ(z) satisfies

(1.7) ζ(z + ωk|τ) = ζ(z|τ) + ηk(τ), k = 1, 2, 3,

where ηk(τ) are called the quasi-periods of ζ(z). The GLE (1.5) has regular
singularities at Eτ [2] ∪ ({±p(τ)} + Λτ ). Similar to λ(t), p(τ) is always an
apparent singularity. The monodromy representation of (1.5) is invariant
under the deformation of τ if and only if p(τ) is a solution of (1.3). This
fact might be indirectly proved by the transformation (1.2). In [4], this fact
and the associated Hamiltonian system has been directly derived.

Naturally, this isomonodromic feature proposes the following question:
How the monodromy group of the associated linear ODE effects the solution
λ(t) or p(τ)?

For certain parameters αk, the monodromy representation of the GLE
(1.5) associated with p(τ) is easier to compute than that of the associated
ODE with λ(t). For example, if all nk are integers, then the monodromy rep-
resentation of (1.5) is reduced to a homomorphism from π1(Eτ ) to SL(2,C).
This fact immediately implies that the monodromy group is always abelian,
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a significant reduction. See [5]. Thus, there always exists a common eigen-
function to all the monodromy matrices of the GLE (1.5).

Definition 1.1. Let the parameter (α, β, γ, δ) be given by (1.4) and (1.6)
with nk ∈ Z for all k.

(i) A solution λ(t) of (1.1) or p(τ) of the elliptic form (1.3) is called com-
pletely reducible if the monodromy representation of the associated GLE (1.5)
is completely reducible (i.e. all monodromy matrices can be diagonalized si-
multaneously); otherwise, λ(t) or p(τ) is called non-completely reducible.

(ii) A solution λ(t) or p(τ) is called an unitary solution if the monodromy
group of the associated GLE (1.5) is contained in the unitary group SU(2).

Obviously, any unitary solution is completely reducible. We remark that
an unitary solution is related to the existence of conformal metric with
constant curvature +1 (those metrics are with conic singularties in general).
See [9].

Now we come back to the problem we are concerned above. For PVI(1
8 ,
−1
8 ,

1
8 ,

3
8) (i.e. nk = 0 in (1.6), ∀k = 0, 1, 2, 3, the well-known case studied by

Hitchin [11]), among other things, we proved in [7] the following theorem:

Theorem A. ([7])

(i) PVI (1
8 ,
−1
8 ,

1
8 ,

3
8) has exactly three solutions which are completely re-

ducible and satisfy λ(t) 6∈ {0, 1, t,∞} for any t ∈ C\{0, 1}.
(ii) Any unitary solution λ(t) of PVI (1

8 ,
−1
8 ,

1
8 ,

3
8) has no poles in R\{0, 1}.

By using the Okamoto transformation [18], it is well known that any
solution of PVI(α, β, γ, δ) with parameters given by (1.6) with nk ∈ Z could
be obtained from solution λ(t) of PVI(1

8 ,
−1
8 ,

1
8 ,

3
8) (i.e. nk = 0 for all k).

However, the Okamoto transformation is a rational map of λ(t) and λ′(t). So
obviously, the smoothness of solutions can not be preserved by the Okamoto
transformation. See [7] for discussions of this issue.

In this article, we extend Theorem A (ii) to the case (n0, n1, n2, n3) =
(1, 0, 0, 0).

Theorem 1.2. Let λ(t) be any unitary solution of PVI(9
8 ,
−1
8 ,

1
8 ,

3
8). Then

λ(t) has no poles in R\{0, 1}, namely λ(t) is holomorphic in R\{0, 1}.
As discussed above, Theorem 1.2 can not be obtained from Theorem A

by the Okamoto transformation. Our proof is based on the generalization
of the famous Hitchin theorem for PVI(1

8 ,
−1
8 ,

1
8 ,

3
8) to PVI(9

8 ,
−1
8 ,

1
8 ,

3
8).

Theorem B. ([5]) p(τ) is a completely reducible solution to the elliptic form
of PVI (9

8 ,
−1
8 ,

1
8 ,

3
8) if and only if there exists a fixed pair (r, s) ∈ C2\1

2Z
2

such that

(1.8) ℘(p(τ)|τ) = ℘(α) +
3℘′(α)Z2

r,s +
(
12℘2(α)− g2

)
Zr,s + 3℘(α)℘′(α)

2
(
Z3
r,s − 3℘(α)Zr,s − ℘′(α)

) ,

where α = α(τ) + r + sτ ,

(1.9) Zr,s = Zr,s(τ) + ζ(r + sτ |τ)− rη1(τ)− sη2(τ),
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and g2 = g2(τ) is the coefficent of

(1.10) ℘′(z|τ)2 = 4℘(z|τ)3 − g2(τ)℘(z|τ)− g3(τ).

The formula (1.8) was first obtained by Takemura [20] and also obtained
in [5] by a different argument. We will see that (1.8) plays a fundamental
role for studying the poles of λ(t).

Remark 1.3. Let p(τ) be the solution given by (1.8) and (1.5) be the asso-
ciated ODE with this solution. Then it is proved in [5] that there is a pair of
independent solution yi(z|τ), i = 1, 2, such that their analytic continuation
along path `i satisfy

`∗1 (y1, y2) = (y1, y2)

(
e2πis 0

0 e−2πis

)
,

`∗2 (y1, y2) = (y1, y2)

(
e−2πir 0

0 e2πir

)
,

where (r, s) is the pair in (1.8) and `i, i = 1, 2, are two fundamental cycles
on Eτ with the base point q0 6∈ Eτ [2] ∪ ({±p(τ)} + Λτ ). In this paper,
the solution given by (1.8) is denoted by pr,s(τ) and the corresponding λ(t)
through (1.2) by λr,s(t).

Obviously, λr,s(t) (or pr,s(τ)) is unitary if and only if (r, s) ∈ R2\1
2Z

2.
Furthermore, λr,s(t) is an algebraic solution if and only if (r, s) is a N -
torsion point for some N ∈ N≥3, that is (r, s) ∈ QN where

(1.11) QN +
{(

k1
N ,

k2
N

)∣∣∣ gcd(k1, k2, N) = 1, 0 ≤ k1, k2 ≤ N − 1
}
.

For Painlevé VI equation, all the algebraic solutions have been classified
through the Okamoto transformation. For example, the monodromy group
of the associated linear ODE of an algebraic solution of PVI(α, β, γ, δ) with
parameters given by (1.4) and (1.6) with nk ∈ Z is always a dihedral group
DN of order 2N for some N ∈ N≥3. See [3, 8, 15, 16]. From the classification
of Theorem B, such a λ(t) must be of the form λr,s(t) with (r, s) ∈ QN , N ≥
3. Note that the problem concerning the distribution of poles of Painlevé
VI solution has been addressed in [10].

Let φ(N) is the Euler function defined by

(1.12) φ(N) := #{k ∈ Z| gcd(k,N) = 1, 0 ≤ k < N}.
In the following, we shall apply Theorem B to obtain the formula to count
the number of poles of algebraic solutions of PVI(9

8 ,
−1
8 ,

1
8 ,

3
8).

Theorem 1.4.

(i) If N is odd, then there is only one algebraic solution whose mon-
odromy group1 is the diheral group DN . This algebraic solution is

1In this paper, for convenience, when we say the monodromy group of an algebraic
solution, we always mean the one of the associated linear ODE, but not the one of this
algebraic solution as a multi-valued function.
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has exactly
3|QN |

4
− 3φ(N)

many poles in C\{0, 1}.
(ii) If N is even, there are exactly three algebraic solutions and each of

them has
|QN |

4
−
(
φ(N) + φ

(
N

2

))
many poles in C\{0, 1}.

Remark 1.5. For any solution λ(t), there might be two different branches to
have poles at the same t0. In this case, we count the number of poles at t0 by
2. It is our conjecture that different branches should not have common poles.
See the discussion before the proof of Theorem 1.4 in §3. This conjecture
was proved for PVI(1

8 ,
−1
8 ,

1
8 ,

3
8) in [7].

Finally, we extend Theorem A (i) to PVI(9
8 ,
−1
8 ,

1
8 ,

3
8).

Theorem 1.6. Among all the completely reducible solutions λr,s(t) to PVI(9
8 ,

−1
8 ,

1
8 ,

3
8), there are exactly four solutions which have no poles in C\{0, 1}.

They are λ 1
3
,0(t), λ 1

4
,0(t), λ 1

4
, 1
4
(t) and λ0, 1

4
(t).

The paper is organized as follows: In §2, we introduce Z
(2)
r,s (τ) which is

the denominator of (1.8) and study its zeros. By connecting the zeros of

Z
(2)
r,s (τ) with the poles of λr,s(t) (see Theorem 2.1), we prove Theorem 1.2

in §2. Next, we will count the number of the poles of an algebraic solution
and the explicit formulae are obtained in §3. Finally, by applying Theorem
1.4, we prove Theorem 1.6 in §4.

2. Poles of solutions and zeros of premodular forms

In this section, we are going to prove Theorem 1.2. Define Z
(2)
r,s (τ) to be

the denominator of (1.8), i.e.

(2.1) Z(2)
r,s (τ) + Zr,s(τ)3 − 3℘(r + sτ |τ)Zr,s(τ)− ℘′(r + sτ |τ).

To study the poles of λr,s(t), it is important to study the zeros of Z
(2)
r,s (τ)

for (r, s) ∈ R2\1
2Z

2. It was proved in [7] that

(2.2) Zr,s(τ) = ±Zr′,s′(τ)⇐⇒ (r, s) ≡ ±
(
r′, s′

)
,modZ2,

which implies that

(2.3) Z(2)
r,s (τ) = ±Z(2)

r′,s′(τ)⇐⇒ (r, s) ≡ ±
(
r′, s′

)
modZ2.

From (2.2)-(2.3) and (1.8), we proved in [5] that (the =⇒ part is not trivial)

(2.4) ℘(pr,s(τ)|τ) = ℘(pr′,s′(τ)|τ)⇐⇒ (r, s) ≡ ±
(
r′, s′

)
modZ2.

In particular, we have

(2.5) λr,s(t) = λr′,s′(t)⇐⇒ (r′, s′) ≡ ±(r, s) modZ2.
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By (2.3)-(2.5), it is suitable to restrict (r, s) on the set [0, 1] × [0, 1
2 ]\1

2Z
2.

Define the four open rectangles as follows:

40 := {(r, s) | 0 < r, s < 1
2 , r + s > 1

2},
41 := {(r, s) | 1

2 < r < 1, 0 < s < 1
2 , r + s > 1},

42 := {(r, s) | 1
2 < r < 1, 0 < s < 1

2 , r + s < 1},
43 := {(r, s) | r > 0, s > 0, r + s < 1

2}.

Clearly [0, 1]× [0, 1
2 ] = ∪3

k=04k. Remark that

Z(2)
r,s (τ) ≡ 0 for (r, s) ∈ {(0, 1

2), (1
2 , 0), (1

2 ,
1
2)}+ Z2,

Z(2)
r,s (τ) ≡ ∞ for (r, s) ∈ Z2.

Define

(2.6) F0 := {τ ∈ H | 0 ≤ Re τ ≤ 1, |τ − 1
2 | ≥

1
2}.

It is known (cf. [7]) that F0 is a fundamental domain for Γ0 (2) := {γ =
(aij) ∈ SL(2,Z) | a21 ≡ 0 mod 2}. The following theorem gives us informa-

tion about the zeros of Z
(2)
r,s (τ) and plays an important role to study the

poles of λr,s(t).

Theorem C. ([6]) Let (r, s) ∈ [0, 1] × [0, 1
2 ]\1

2Z
2. Then Z

(2)
r,s (τ) = 0 has a

solution τ in F0 if and only if (r, s) ∈ 41∪42∪43. Furthermore, for any

(r, s) ∈ 41 ∪ 42 ∪ 43, the solution τ ∈ F0 is unqiue and satisfies τ ∈ F̊0.

In particular, Z
(2)
r,s (τ) 6= 0 for any τ ∈ ∂F0 and (r, s) ∈ R2\1

2Z
2.

We will use Theorem C to prove Theorem 1.2. Our proof is based on
the following result to connect the poles of a solution λr,s(t) with zeros of

Z
(2)
r,s (τ).

Theorem 2.1. Fix any (r, s) ∈ C2\1
2Z

2 and τ0 ∈ H. Then pr,s(τ0) = 0 in
Eτ0, or equivalently t0 = t(τ0) 6∈ {0, 1,∞} is a pole of λr,s(t), if and only if

either r + sτ0 ∈ Λτ0 or r + sτ0 6∈ Λτ0 and Z
(2)
r,s (τ0) = 0.

To prove Theorem 2.1, we have to prove that in the formula (1.8), the
numerator and denominator can not vanish simultaneously.

Lemma 2.2. Fix any (r, s) ∈ C2\1
2Z

2 and τ ∈ H. Under the above nota-

tions, if Z
(2)
r,s (τ) = 0, then

3℘′(α)Z2
r,s +

(
12℘2(α)− g2

)
Zr,s + 3℘(α)℘′(α) 6= 0.

Proof. In the following, we denote Zr,s(τ) simply by Z. First we recall the
well-known result

(2.7) g3
2 − 27g2

3 = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2 6= 0.

Assume by contradiction that

(2.8) Z(2)
r,s (τ) = Z3 − 3℘(α)Z − ℘′(α) = 0
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and

(2.9) 3℘′(α)Z2 +
(
12℘2(α)− g2

)
Z + 3℘(α)℘′(α) = 0.

First we claim:

(2.10) Z(τ) 6= 0 and ℘′(α) 6= 0.

If Z(τ) = 0, then (2.8) gives ℘′(α) = 0, namely

(2.11) α = r + sτ ∈ Eτ [2] \ Λτ and Z(τ) = 0.

So we may assume r + sτ = ωk
2 + m + nτ for some (m,n) ∈ Z2 and k ∈

{1, 2, 3}. Consequently,

(r −m) + (s− n) τ − ωk
2

= 0,

(r −m) η1 + (s− n) η2 −
ηk
2

= 0,

which implies (r, s) ∈ 1
2Z

2 because the non-degeneracy of

(
1 τ

η1(τ) η2(τ)

)
,

a contradiction. Similarly, if ℘′(α) = 0, then 12℘2(α) − g2 = 2℘′′(α) 6= 0
and so (2.9) gives Z(τ) = 0, again a contradiction. This proves the claim.

Now we do the Euclidean algorithm for (2.8) and (2.9). Multiplying (2.9)
by Z, (2.8) by 3℘′(α) and adding them together, we obtain

(2.12)
(
12℘2(α)− g2

)
Z2 + 12℘(α)℘′(α)Z + 3℘′(α)2 = 0.

By (2.12), (2.9) and (1.10), we can eliminate Z2 term and obtain

(2.13)
[
12g2℘(α)2 + 36g3℘(α) + g2

2

]
Z = −3℘′(α) [2g2℘(α) + 3g3] .

Consequently, multiplying (2.9) by (12g2℘(α)2 + 36g3℘(α) + g2
2)2 and using

(2.13) lead to (write x = ℘(α) for convenience)

9(4x3 − g2x− g3)(2g2x+ 3g3)2 + x(12g2x
2 + 36g3x+ g2

2)2(2.14)

− (12x2 − g2)(2g2x+ 3g3)(12g2x
2 + 36g3x+ g2

2) = 0.

A straightforward calculation shows that (2.14) is exactly

0 = 3(g3
2 − 27g2

3)(4x3 − g2x− g3) = 3℘′(α)2(g3
2 − 27g2

3),

which contradicts to (2.7) and (2.10). �

Corollary 2.3. For any (r, s) ∈ C2\1
2Z

2, any zero of Z
(2)
r,s (τ) is simple.

Proof. The Painlevé property implies that ℘(pr,s(τ)|τ) is meromorphic in H.
Therefore, this assertion follows from Lemma 2.2 and the fact that any pole
of any solution of PVI(9

8 ,
−1
8 ,

1
8 ,

3
8) must be simple (see e.g. [12, Proposition

1.4.1]). �

Now we could prove Theorem 2.1 by Theorem B.
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Proof of Theorem 2.1. By the expression (1.8) of ℘(pr,s(τ)|τ), we see that

pr,s(τ0) = 0 in Eτ0 implies either r + sτ0 ∈ Λτ0 or Z
(2)
r,s (τ0) = 0.

So it suffices to prove the other direction. If r + sτ0 ∈ Λτ0 , without loss
of generality we may assume α(τ0) = r + sτ0 = 0. By letting α = α(τ) →
α(τ0) = 0 as τ → τ0, we have

(2.15) ℘(α) =
1

α2
+O(α2), ℘′(α) =

−2

α3
+O(α),

(2.16) Zr,s =
1

α

(
1− c0α− c1α

2 +O(α3)
)
,

where

(2.17) c0 + rη1(τ0) + sη2(τ0) = −2πis 6= 0

and

c1 +
r

s
η′1(τ0) + η′2(τ0).

Here r = −sτ0 and the Legendre relation τη1(τ) − η2(τ) = 2πi are used in
(2.17). Then we deduce from (2.1) and (2.15)-(2.17) that

(2.18) Z(2)
r,s (τ) =

3c2
0

α
− (c3

0 − 6c0c1) +O(α),

3℘′(α)Z2
r,s +

(
12℘2(α)− g2

)
Zr,s + 3℘(α)℘′(α)

= −6c2
0

α3
− 12c0c1

α2
+O(α−1),

and so (1.8) gives

(2.19) ℘(pr,s(τ)|τ) = − c0

3α(τ)
+O(1)→∞ as τ → τ0,

which implies pr,s(τ0) = 0 in Eτ0 , namely t0 is a pole of λr,s(t) whenever
r + sτ0 ∈ Λτ0 .

If α(τ0) = r + sτ0 6∈ Λτ0 and Z
(2)
r,s (τ0) = 0, then it follows from (1.8) and

Lemma 2.2 that ℘(pr,s(τ0)|τ0) =∞. �

We need another lemma for the proof of Theorem 1.2.

Lemma 2.4. Let τ ∈ H, τ ′ = γ · τ and (s′, r′) = (s, r) · γ−1 for some

γ ∈ SL(2,Z). Then Z
(2)
r,s (τ) = 0 if and only if Z

(2)
r′,s′(τ

′) = 0. In particular,

Z
(2)
r,s (τ) 6= 0 for any (r, s) ∈ R2\1

2Z
2 and τ ∈ SL(2,Z) · iR+.

Proof. Consider the pair (z, τ) ∈ C×H and z = r + sτ . For any γ =(
a b
c d

)
∈ SL(2,Z), conventionally γ can act on C×H by

γ(z, τ) + (
z

cτ + d
, γ · τ) = (

z

cτ + d
,
aτ + b

cτ + d
).
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Then

(2.20)
z

cτ + d
=
r + sτ

cτ + d
= r′ + s′τ ′, where τ ′ = γ · τ , (s′, r′) = (s, r) · γ−1.

Using

(2.21) ℘
(
r′ + s′τ ′

∣∣ τ ′) = (cτ + d)2 ℘ (r + sτ |τ) ,

we proved in [7] that

(2.22) Zr′,s′(τ
′) = (cτ + d)Zr,s(τ).

Together with (2.21), (2.22) and the fact that g2(τ) is a modular form of
weight 4, we easily derive from (2.1) that

(2.23) Z
(2)
r′,s′(τ

′) = (cτ + d)3Z(2)
r,s (τ)

and

(2.24) ℘
(
pr′,s′(τ

′)|τ ′
)

= (cτ + d)2℘ (pr,s(τ)|τ) .

In particular, Z
(2)
r,s (τ) = 0 if and only if Z

(2)
r′,s′(τ

′) = 0.

Now fix any (r, s) ∈ R2\1
2Z

2. Suppose Z
(2)
r,s (τ0) = 0 for some τ0 ∈

SL(2,Z) · iR+, then τ0 = γ · τ for some τ ∈ iR+ and γ ∈ SL(2,Z). Let

(s′, r′) = (s, r) · γ. Then we have (r′, s′) ∈ R2\1
2Z

2 and (cτ + d)3Z
(2)
r′,s′(τ) =

Z
(2)
r,s (τ0) = 0. But by Theorem C, Z

(2)
r′,s′(τ) 6= 0, a contradiction. �

Proof of Theorem 1.2. Let λ (t) be an unitary solution of PVI(9
8 ,
−1
8 ,

1
8 ,

3
8),

i.e. λ(t) = λr,s(t) for some (r, s) ∈ R2\1
2Z

2. Suppose t0 ∈ R\{0, 1} is a pole
of λ(t). Recall t (τ) in (1.2). A result in the theory of the modular form
says that t (iR+) = (0, 1), t (S · iR+) = (1,+∞) and t (U · iR+) = (−∞, 0)

where S =

(
1 1
0 1

)
and U =

(
1 0
2 1

)
. See e.g. [1, 13]. Thus there exists

τ0 ∈ SL(2,Z) · iR+ such that t0 = t(τ0) and pr,s(τ0) = 0 in Eτ0 . By Theorem

2.1 and r+sτ0 6∈ Λτ0 , Z
(2)
r,s (τ0) = 0, which yields a contradiction with Lemma

2.4. Therefore, λ(t) has no poles in R\{0, 1}. �

3. Poles of Algebraic solutions

In this section, we want to find the number of poles of algebraic solutions.
For PVI(9

8 ,
−1
8 ,

1
8 ,

3
8), it is well known that a solution is algebraic if and only

if its monodromy group is finite, and the monodromy group of an algebraic
solution is always the dihedral group DN of order 2N for some N ∈ N≥3. In
this case, by Theorem B, any branch of this solution must be one of λr,s(t)
where (r, s) ∈ QN , the set of N-torsion points. For the classification and
related subjects of algebraic solutions of Painlevé VI equation, we refer to
[3, 8, 15, 16] and references therein.

To count the number of poles, we have to know how many branches
of an algebraic solution might have. A branch of a solution λ (t) might
be considered a single-valued meromorphic function (still denoted by λ(t))
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restricted on the simply connected domain C\(−∞, 1] or equivalently, the
single-valued meromorphic function ℘(p(τ)|τ) restricted on a fundamental
domain of Γ(2) (because t(τ) is invariant under the action of Γ(2)). Thus,
two solutions λr,s(t) and λr′,s′(t), t ∈ C\(−∞, 1], belong to the same solution
if λr′,s′(t) is the analytic continuation of λr,s(t) along a closed path cross the
axis (−∞, 1]. We note that for any algebraic solution, λr,s(t) has no poles on
R\{0, 1} by Theorem 1.2. Hence whether a branch is considered as defined
on C\{0, 1} or C\(−∞, 1] does not affect our calculation below.

Remark 3.1. We recall Γ(N) is the N -principal congruence subgroup of
SL(2,Z), defined by

Γ(N) := {γ ∈ SL(2,Z)|γ ≡ I2 modN}.

It is known that ek (τ), k = 1, 2, 3, are modular form of weight 2 with respect
to Γ(2). We refer to [13] for the basic theory of modular form.

Proposition 3.2. λr,s (t) and λr′,s′ (t) belong to the same solution of PVI(9
8 ,

−1
8 ,

1
8 ,

3
8) if and only if (s, r) ≡ ±(s′, r′) · γ modZ2 by some γ ∈ Γ(2).

Using (1.8), (2.24), and (2.3)-(2.5), the proof of Proposition 3.2 is the
same as [7, Proposition 4.4], where PVI(1

8 ,
−1
8 ,

1
8 ,

3
8) is studied. The same

result also holds for Picard solutions. See [16, Theorem 1]. So we omit the
details here.

Lemma 3.3. (i) For any N -torsion points (r, s), λr,s(t) belongs to one of
the three solutions λ0, 1

N
(t), λ 1

N
,0(t) and λ 1

N
, 1
N

(t).

(ii) If N is odd, then all the three in (i) belong to the same solution; and
if N is even, then all the three in (i) represent 3 different solutions.

(iii)

(3.1) λ 1
N
,0(1− t) = 1− λ0, 1

N
(t), λ 1

N
, 1
N

(
1

t

)
=
λ0, 1

N
(t)

t
.

Proof. We divide the proof into three steps.

Step 1. Fix an N -torsion point (r, s) = (k1N ,
k2
N ) with 0 ≤ k1, k2 ≤ N − 1

and gcd(k1, k2, N) = 1. We show that λr,s(t) belong to the same solution as
one of {λ0, 1

N
(t), λ 1

N
,0(t), λ 1

N
, 1
N

(t)}. By Proposition 3.2, it suffices to prove

that for some (r′, s′) ∈ {(0, 1
N ), ( 1

N , 0), ( 1
N ,

1
N )},

(3.2) (s, r) ≡ (s′, r′) · γ modZ2 by some γ ∈ Γ(2).

Denote L = gcd(k1, k2) and kj = mjL. Then we have gcd(L,N) = 1 and
gcd(m1,m2) = 1.

Case 1. both m1 and m2 are odd.
Then there exist l1, l2 ∈ Z such that l1m1 + l2m2 = 1. Letting

(3.3) γ1 =

(
l1 −l2

m2 − l1 m1 + l2

)
∈ Γ(2) if l1 odd,
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(3.4) γ1 =

(
m2 + l1 m1 − l2
−l1 l2

)
∈ Γ(2) if l1 even,

we have

(3.5) (s, r) =

(
Lm2

N
,
Lm1

N

)
=

(
L

N
,
L

N

)
· γ1.

If L is odd and N is odd, since gcd(L, 2(L−N)) = 1, there exists d1, d2 ∈ Z
such that d1L+ 2d2(L−N) = 1. Let

(3.6) γ2 =

(
L L−N
−2d2 d1

)
∈ Γ(2),

then ( LN ,
L
N ) ∈ ( 1

N , 0) · γ2 + Z2. Together with (3.5), we see that (3.2) holds

by letting (r′, s′) = (0, 1
N ) and γ = γ2γ1. If L is even and N is odd, since

gcd(2L,L−N) = 1, there exist d̃1, d̃2 ∈ Z such that 2d̃1L+ d̃2(L−N) = 1.
Let

(3.7) γ2 =

(
d̃2 −2d̃1

L L−N

)
∈ Γ(2),

then ( LN ,
L
N ) ∈ (0, 1

N ) · γ2 + Z2, which implies that (3.2) holds by letting

(r′, s′) = ( 1
N , 0) and γ = γ2γ1. If L is odd and N is even, then similarly as

(3.3)-(3.4), there exists

γ2 =

(
a b
c d

)
∈ Γ(2)

such that a+ c = L and b+ d = L−N . Clearly ( LN ,
L
N ) ∈ ( 1

N ,
1
N ) · γ2 + Z2

and so (3.2) holds by letting (r′, s′) = ( 1
N ,

1
N ) and γ = γ2γ1.

Case 2. m1 is even and m2 is odd.
Similarly as (3.6) there exists

γ1 =

(
m2 m1

∗ ∗

)
∈ Γ(2).

Then

(3.8) (s, r) =

(
Lm2

N
,
Lm1

N

)
=

(
L

N
, 0

)
· γ1.

If L is odd and N is even, there exists

γ2 =

(
L N
∗ ∗

)
∈ Γ(2).

Then ( LN , 0) ∈ ( 1
N , 0) · γ2 + Z2, which implies that (3.2) holds by letting

(r′, s′) = (0, 1
N ) and γ = γ2γ1. If L is even and N is odd, similarly as (3.7)

there exists

γ2 =

(
∗ ∗
L N

)
∈ Γ(2).
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Then ( LN , 0) ∈ (0, 1
N ) · γ2 + Z2, which implies that (3.2) holds by letting

(r′, s′) = ( 1
N , 0) and γ = γ2γ1. If L is odd and N is odd, then similarly as

(3.3)-(3.4) there exists

γ2 =

(
a b
c d

)
∈ Γ(2)

such that a+ c = L and b+ d = N . Then ( LN , 0) ∈ ( 1
N ,

1
N ) · γ2 + Z2 and so

(3.2) holds by letting (r′, s′) = ( 1
N ,

1
N ) and γ = γ2γ1.

Case 3. m2 is even and m1 is odd.
The proof is similar to Case 2, so we omit the details. This completes the

proof of Step 1.

Step 2. SupposeN = 2m+1 is odd. By choosing γ = −
(

4m+ 1 2m
2 1

)
∈

Γ(2), we have (
1

N
, 0

)
· γ ≡

(
1

N
,

1

N

)
mod Z2.

Similarly, by choosing γ̃ =

(
1 0

2m 1

)
, we see that(

1

N
,

1

N

)
· γ̃ ≡

(
0,

1

N

)
mod Z2.

Thus when N is odd, all three in (i) belong to the same solution.

Now suppose N = 2m is even. For any γ =

(
a b
c d

)
∈ Γ(2), c is even and

d is odd. We see that
(
0, 1

N

)
· γ =

(
c

2m ,
d

2m

)
. Since d is odd, d

2m 6≡ 0 mod Z
which implies

(
0, 1

N

)
· γ 6≡

(
1
N , 0

)
mod Z2 for any γ ∈ Γ(2). Similarly, any

two of
{(

0, 1
N

)
,
(

1
N , 0

)
,
(

1
N ,

1
N

)}
can not be connected by Γ(2) and mod Z2.

Thus when N is even, all the three in (i) represent 3 different solutions.

Step 3. We prove (3.1).

Let γ =

(
1 −1
0 1

)
and τ ′ = γ · τ = τ − 1. Since ( 1

N ,
1
N ) = ( 1

N , 0) · γ−1, we

see from (2.20) and (2.24) that

℘
(
p 1

N
, 1
N

(τ ′)|τ ′
)

= ℘
(
p0, 1

N
(τ)|τ

)
.

This, together with e1(τ ′) = e1(τ), e2(τ ′) = e3(τ), e3(τ ′) = e2(τ) and (1.2),
implies t(τ ′) = 1/t(τ) and

(3.9) λ 1
N
, 1
N

(t(τ ′)) =
℘
(
p0, 1

N
(τ)|τ

)
− e1(τ)

e3(τ)− e1(τ)
=
λ0, 1

N
(t(τ))

t(τ)
.

This proves the second formula in (3.1). Similarly, by letting γ =

(
0 −1
1 0

)
,

it is easy to prove the first formula in (3.1). �
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Define

(3.10) MN (τ) :=
∏

(r,s)∈QN

Z(2)
r,s (τ).

By (2.23), MN (τ) is a modular form with respect to SL(2,Z) of weight
3|QN |, where |QN | = #QN .

To obtain the number of zeros of MN (τ), we recall the classical formula
for counting zeros of modular forms. See [19] for the proof.

Theorem D. Let f(τ) be a nonzero modular form with respect to SL(2,Z)
of weight k. Then

(3.11)
∑

τ∈H\{i,ρ}

ντ (f) + ν∞(f) +
1

2
νi(f) +

1

3
νρ(f) =

k

12
,

where ρ := eπi/3, ντ (f) denotes the zero order of f at τ and the summation
over τ is performed modulo SL(2,Z) equivalence.

To prove Theorem 1.4, by Theorem D we have to calculate the asymptotics

of Z
(2)
r,s (τ) as Im τ → +∞. Now we consider the fundamental domain F of

SL (2,Z) defined by

F := {τ ∈ H | 0 ≤ Reτ < 1, |τ | ≥ 1, |τ − 1| > 1} ∪
{
ρ = eπi/3

}
.

Denote q = e2πiτ . We recall the q-expansions of ℘(z|τ) (cf. [14, p.46] and
[7, (5.3)]): for |q| < |e2πiz| < |q|−1,

(3.12)
℘(z|τ)

−4π2
=

1

12
+

e2πiz

(1− e2πiz)2
+
∞∑
m=1

∞∑
n=1

nqnm(e2πinz + e−2πinz − 2),

Zr,s(τ) = 2πis− πi1 + e2πiz

1− e2πiz

− 2πi

∞∑
n=1

(
e2πizqn

1− e2πizqn
− e−2πizqn

1− e−2πizqn

)
,(3.13)

where z = r+sτ in (3.13). By using (3.12) and (3.13), we could compute the

asymptotics of Z
(2)
r,s (τ) as Im τ → +∞. The calculation is straightforward

and was done in [6]. So we skip the calculation and state the final result in
the following lemma.

Lemma 3.4. [6] Let r ∈ R and s ∈ [0, 1) and 0 ≤ Re τ ≤ 1. Then as
Im τ → +∞,

(3.14)

(i) lim
Im τ→+∞

Z
(2)
r,s (τ) 6= 0 iff s ∈ (0, 1

2) ∪ (1
2 , 1),

(ii) Z
(2)
r,s (τ) = −48π3 sin(2πr)q +O(q2) if s = 0,

(iii) Z
(2)
r,s (τ) = −12π3 sin(2πr)q1/2 +O(q) if s = 1/2.



14 ZHIJIE CHEN, TING-JUNG KUO, AND CHANG-SHOU LIN

Let φ(N) be the Euler function defined in (1.12) if N is an integer, and
be zero if N is not an integer. Now by applying Theorem D to MN (τ), we
have the following theorem.

Theorem 3.5. For N ≥ 3, the total number P (N) of zeros (counting mul-
tiplicity) of MN (τ) in the fundamental domain F of SL(2,Z) is given by

(3.15) P (N) =
|QN |

4
−
[
φ (N) + φ

(
N

2

)]
.

Proof. First, it is easy to see that |QN |
4 ∈ Z>0 for any N ≥ 3 because

|QN | = N2
∏

p|N, p prime

(
p2 − 1

p2

)
.

Since i ∈ ∂F0, by Theorem C we see that Z
(2)
r,s (i) 6= 0 for any (r, s) ∈ R2\1

2Z
2.

Thus

(3.16) νi(MN (τ)) = 0.

By [6, Theorem 4.2] where Z
(2)
r,s (ρ) 6= 0 for any (r, s) ∈ R2\1

2Z
2 is proved,

we have

(3.17) νρ(MN (τ)) = 0.

Then we deduce from (3.16), (3.17) and (3.11) that

(3.18) P (N) =
∑

τ∈H\{i,ρ}

ντ (MN (τ)) =
|QN |

4
− v∞ (MN (τ)) .

From Lemma 3.4, we see that

v∞ (MN (τ)) = # {1 ≤ k1 < N | gcd (N, k1) = 1}(3.19)

+
1

2
# {1 ≤ k1 < N | gcd (N/2, k1) = 1}

= φ (N) + φ

(
N

2

)
.

Here φ
(
N
2

)
= 0 whenever N is odd. Combining (3.18) and (3.19), we have

P (N) =
|QN |

4
−
[
φ (N) + φ

(
N

2

)]
.

where the summation over τ is performed modulo SL(2,Z) equivalence.
This completes the proof. �

For N = 3, 4, it is easy to see P (N) = 0.

Corollary 3.6. For N = 3, 4 and (r, s) ∈ QN , Z
(2)
r,s (τ) 6= 0 for any τ ∈ H.
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Now, we are going to prove Theorem 1.4. Before the proof, we have
following three discussions:

(i) It is well-known (cf. [1]) that Γ(2) is a normal subgroup of SL(2,Z)

and SL(2,Z)/Γ(2) = {I, S, ST, S2T, TS−1, STS−1} where S =

(
1 1
0 1

)
and

T =

(
0 −1
1 0

)
. So a fundamental domain F2 of Γ(2) can be obtained by F :

(3.20) F2 = F ∪ SF ∪ STF ∪ S2TF ∪ TS−1F ∪ STS−1F.

By a straightforward computation, we have

F2 = {τ ∈ H | 0 ≤ Re τ < 2, |τ − 1
2 | ≥

1
2 ,
∣∣τ − 3

2

∣∣ > 1
2}.

Note that for any τ ∈ F2, t(τ) ∈ R\ {0, 1} if and only if τ ∈ iR+ ∪{τ ∈
H||τ − 1

2 | = 1
2} ∪ {τ ∈ H|Re τ = 1}. More precisely, t (iR+) = (0, 1),

t
(
{τ ∈ H||τ − 1

2 | =
1
2}
)

= (−∞, 0) and t (1 + iR+) = (1,+∞). See [1, 13].

Hence the image of F2\(iR+∪{τ ∈ H||τ − 1
2 | =

1
2}) is C\(−∞, 1]. By (3.20)

and MN (τ) 6= 0 at τ ∈ {i, ρ}, we have

#{τ ∈ F2 |MN (τ) = 0} = 6P (N),

where the RHS is counted by multiplicity.

(ii) If (r, s) ∈ QN , then QN 3 (r′, s′) + (1− r, 1− s) mod Z2 and Z
(2)
r′,s′(τ)

= −Z(2)
r,s (τ). Hence if Z

(2)
r,s (τ0) = 0 then Z

(2)
r′,s′(τ0) = 0. In other words, the

order of each zero of MN (τ) is even. Remark that λr,s(t) ≡ λr′,s′(t) by (2.5).

(iii) By Corollary 2.3, Z
(2)
r,s (τ) has only simple zeros. For two N -torsion

points (r, s) 6≡ ± (r′, s′) modZ2, Z
(2)
r,s (τ) and Z

(2)
r′,s′(τ) might simultaneously

vanish at the same τ0 ∈ F2. But because (2.5) gives λr,s(t) 6≡ λr′,s′(t), either
they belongs to two different algebraic solutions (this might happen if N is
even) or they are two different branches of the same algebraic solution λ(t)
(this must happen if N is odd). In the later case, we count the number of
poles of λ(t) at t0 = t(τ0) as 2 (as multiplicity).

Proof of Theorem 1.4. If N is odd, then for all (r, s) ∈ QN , λr,s(t) belong
to the same one algebraic solution λ(t). By (i), (ii) and the simple zero
property (iii), we obtain

the total number of poles of λ(t) = 6P (N)× 1

2
= 3P (N).

If N is even, then we have three different solutions, namely λ 1
N
,0(t),

λ0, 1
N

(t), λ 1
N
, 1
N

(t). By (3.1), each of them have the same number of branches

and the same number of poles. Let λ(t) be any one of them. Then by (i),
(ii) and (iii), we have

the total number of poles of λ(t) = 6P (N)× 1

2
× 1

3
= P (N).



16 ZHIJIE CHEN, TING-JUNG KUO, AND CHANG-SHOU LIN

This completes the proof. �

4. The proof of Theorem 1.6

In this section, we want to prove Theorem 1.6, namely the following result.

Theorem 4.1. Among all such solutions λr,s(t) of PVI(9
8 ,
−1
8 ,

1
8 ,

3
8), where

(r, s) ∈ C2\1
2Z

2, there are exactly four solutions which have no poles in
C\{0, 1}. They are precisely λ0, 1

3
(t), λ0, 1

4
(t), λ 1

4
,0(t) and λ 1

4
, 1
4
(t).

First we consider the case (r, s) 6∈ R2. Since (r, s) ∈ C2\R2, there are
infinitely many τ0 ∈ H such that r + sτ0 ∈ Λτ0 . The following result is a
direct consequence of Theorem 2.1.

Lemma 4.2. Let (r, s) ∈ C2\R2. Then λr,s(t) has infinitely many poles.

Proof of Theorem 4.1. Let (r, s) ∈ C2\1
2Z

2. By Theorem 2.1 and Corollary
3.6, λr,s(t) has no poles in C \ {0, 1} for (r, s) ∈ Q3∪Q4. Therefore, we only
need to prove that λr,s(t) has poles in C \ {0, 1} whenever (r, s) 6∈ Q3 ∪Q4.
By Lemma 4.2 and (2.5), we only need to consider (r, s) ∈ [0, 1]× [0, 1

2 ]\1
2Z

2.
Then by Theorem 1.4, we see that P (N) > 0 except N = 3, 4. Together
with Theorem C, it is enough for us to consider

(r, s) ∈ 40 ∪ ∪3
k=0∂4k\Q2.

For (r, s) ∈ ∪3
k=0∂4k\Q2, we have {r, s, r+s}∩Q 6= ∅. Taking γ =

(
3 2
4 3

)
∈

Γ(2) and letting (s′, r′) = (s, r) · γ = (4r + 3s, 3r + 2s), we deduce from
(r, s) 6∈ Q2 that ±(r′, s′) 6∈ ∪3

k=0∂4k+Z2. Then by replacing (r′, s′) by some
element in ±(r′, s′) + Z2, we may assume (r′, s′) ∈ ∪3

k=04k. By means of
Proposition 3.2, λr,s(t) and λr′,s′(t) belong to the same solution. Therefore,
we conclude that to prove Theorem 4.1, we only need to prove that λr,s(t)
has poles in C\{0, 1} provided that

(4.1) (r, s) ∈ 40\Q2 = {(r, s) | 0 < r, s < 1
2 , r + s > 1

2}\Q
2.

Fix any (r, s) ∈ 40\Q2. The same argument as (3.9) gives

(4.2) λr+s,s

(
1

t

)
=
λr,s(t)

t
.

Notice that if r + 2s 6= 1, then (r + s, s) ∈ 41 ∪42. Applying Proposition
3.5, it follows that λr+s,s (t) has poles in C\{0, 1} and so does λr,s(t).

So it suffices to consider r = 1 − 2s, which implies s ∈ (1
4 ,

1
2)\Q. If

s ∈ (1
4 ,

3
8), then (r′, s′) + (2− 4s, s) ∈ 41 ∪42, which implies that λr′,s′(t)

has poles in C\{0, 1}. Since

(s′, r′ − 1) = (s, r − 2s) = (s, r) ·
(

1 −2
0 1

)
,

by applying Proposition 3.2 and (2.5), we see that λr,s (t) belong to the same
solution with λr′,s′(t) and so has poles in C\{0, 1}.
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So we may assume r = 1− 2s and s ∈ (3
8 ,

1
2)\Q. Then there exists m ∈ N

such that either

(4.3) 2mr < s < (2m+ 1)r,

or

(4.4) (2m− 1)r < s < 2mr.

Let γ =

(
1 0
−2m 1

)
∈ Γ(2) and (s′, r′) = (s, r) · γ = (s − 2mr, r). If (4.3)

holds, then (r′, s′) = (r, s − 2mr) ∈ 43. If (4.4) holds, then (1 − r′,−s′) =
(1− r, 2mr− s) ∈ 42. In both cases, by means of Proposition 3.5 and (2.5),
we see that λr′,s′(t) has poles in C\{0, 1}. Since Proposition 3.2 says that
λr,s(t) and λr′,s′(t) belong to the same solution, we conclude that λr,s(t) has
poles in C\{0, 1}. The proof is complete. �
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