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ABSTRACT. In this paper, we study the spectrum of the complex Hill
operator L = d2

dx2 + q(x; τ) in L2(R, C) with the Darboux-Treibich-Verdier
potential

q(x; τ) := −
3

∑
k=0

nk(nk + 1)℘
(

x + z0 +
ωk
2 ; τ

)
,

where nk ∈ Z≥0 with max nk ≥ 1 and z0 ∈ C is chosen such that q(x; τ)
has no singularities on R. For any fixed τ ∈ iR>0, we give a necessary
and sufficient condition on (n0, n1, n2, n3) to guarantee that the spectrum
σ(L) is

σ(L) = (−∞, E2g] ∪ [E2g−1, E2g−2] ∪ · · · ∪ [E1, E0], Ej ∈ R,

and hence generalizes Ince’s remarkable result in 1940 for the Lamé po-
tential to the Darboux-Treibich-Verdier potential. We also determine the
number of (anti)periodic eigenvalues in each bounded interval (E2j−1,
E2j−2), which generalizes the recent result in [16] where the Lamé case
n1 = n2 = n3 = 0 was studied.

1. INTRODUCTION

Let τ ∈ H = {τ| Im τ > 0} and Eτ := C/(Z + Zτ) be a flat torus.
Recall that ℘(z) = ℘(z; τ) is the Weierstrass elliptic function with basic
periods ω1 = 1 and ω2 = τ. Denote also ω0 = 0 and ω3 = 1 + τ. In
this paper, we study the Darboux-Treibich-Verdier potential (DTV potential
for short) [10, 26, 27]:

(1.1) qn(z; τ) := −
3

∑
k=0

nk(nk + 1)℘
(
z + ωk

2 ; τ
)

,

where n = (n0, n1, n2, n3) and nk ∈ Z≥0 for all k with maxk nk ≥ 1. If
n1 = n2 = n3 = 0, then qn(z; τ) becomes the classical Lamé potential [18]

qn(z; τ) := −n(n + 1)℘(z; τ), n ∈N.

The DTV potential qn(z; τ) is famous as an algebro-geometric finite-gap
potential associated with the stationary KdV hierarchy. We refer the reader
to [4, 5, 6, 14, 21, 22, 23, 24, 25, 26, 27] and references therein for historical
reviews and subsequent developments. In the literature, a potential q(z) is
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called an algebro-geometric finite-gap potential if there is an odd-order differ-
ential operator

(1.2) P2g+1 =

(
d
dz

)2g+1

+
2g−1

∑
j=0

bj(z)
(

d
dz

)2g−1−j

such that [P2g+1, d2/dz2 + q(z)] = 0, that is, q(z) is a solution of stationary
KdV hierarchy equations (cf. [11, 13]).

For the DTV potential qn(z; τ), we let P2g+1 be the unique operator of
the form (1.2) satisfying [P2g+1, d2/dz2 + qn(z; τ)] = 0 such that its order
2g + 1 is smallest. Then a celebrated theorem of Burchnall and Chaundy [3]
implies the existence of the so-called spectral polynomial Qn(E; τ) of degree
2g + 1 in E associated to qn(z; τ) such that

(1.3) P2
2g+1 = Qn( d2

dz2 + qn(z; τ); τ).

The number g, i.e. the arithmetic genus of the associate hyperelliptic curve
{(E, W)|W2 = Qn(E; τ)}, was computed in [14, 25]: Let mk be the re-
arrangement of nk such that m0 ≥ m1 ≥ m2 ≥ m3, then

(1.4) g =


m0 if ∑ mk is even and m0 + m3 ≥ m1 + m2;
m0+m1+m2−m3

2 if ∑ mk is even and m0 + m3 < m1 + m2;
m0 if ∑ mk is odd and m0 > m1 + m2 + m3;
m0+m1+m2+m3+1

2 if ∑ mk is odd and m0 ≤ m1 + m2 + m3.

Furthermore, it is known (cf. [14, 21, 25]) that the roots of Qn(·; τ) = 0 are
distinct for generic τ ∈H and

(1.5) Qn(E; τ) ∈ R[E] for τ ∈ iR>0.

The spectral polynomial plays an important role in the spectral theory of
the associated Hill operator. In this paper, we study the spectrum σ(L) of
the following Hill operator with potential q(x) = qn(x + z0; τ)

(1.6) L =
d2

dx2 −
3

∑
k=0

nk(nk + 1)℘
(
x + z0 +

ωk
2 ; τ

)
, x ∈ R

in L2(R, C), where z0 ∈ C is chosen such that q(x; τ) has no singularities
on R. We will see from Lemma 3.1 that the spectrum σ(L) is independent
of the choice of z0. The spectral theory of the complex Hill operator has
attracted significant attention and has been studied widely in the literature;
see e.g. [1, 2, 13, 15, 16, 20] and references therein.

Suppose for some τ ∈ iR>0 that all roots of the spectral polynomial
Qn(·; τ) are real and distinct, denoted by E2g < E2g−1 < · · · < E1 < E0,
then we proved in [8, Lemma 3.6] (we will recall it in Lemma 3.2) that the
spectrum σ(L) is

(1.7) σ(L) = (−∞, E2g] ∪ [E2g−1, E2g−2] ∪ · · · ∪ [E1, E0].
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This result was first discovered by Ince in the seminal work [17], where he
proved that (1.7) holds for the Lamé case L = d2

dx2 − n(n + 1)℘(x + ωk
2 ; τ)

with k ∈ {2, 3}. His proof essentially relies on the fact that ℘(x + ωk
2 ; τ)

with k ∈ {2, 3} is real-valued and smooth on R, i.e. the operator is self-
adjoint and hence does not work for the general DTV case.

1.1. Real and distinct roots. In this paper, we study two problems related
to the spectrum σ(L) of the operator L in (1.6). The first one is whether the
spectrum σ(L) for the DTV potential is of the form (1.7) or not, or equivalently,

(Q1): When τ ∈ iR>0, whether are all roots of the spectral polynomial Qn(·; τ)
real and distinct?

For the Lamé case, the answer for (Q1) is Yes as mentioned before. How-
ever, it is not necessarily true for all the DTV potentials; see e.g. [8, Remark
4.2] for a counterexample. Thus further assumptions on nk’s are needed.
See [7, 14, 21] for some sufficient (but not necessary) conditions on nk’s.
Here we introduce two relations:

(1.8)
n1 + n2 − n0 − n3

2
≥ 1, n1 ≥ 1, n2 ≥ 1,

(1.9)
n0 + n3 − n1 − n2

2
≥ 1, n0 ≥ 1, n3 ≥ 1.

Recently, we obtained an almost complete answer to (Q1) in [8].

Theorem A. [8] All the roots of Qn(·; τ) are real and distinct for every τ ∈ iR>0
if and only if n satisfies neither (1.8) nor (1.9).

To emphasize the importance of Theorem A, we mention one application
to the following mean field equation

(1.10) ∆u + eu = 8π
3

∑
k=0

nkδωk
2

, on Eτ,

where δωk
2

is the Dirac measure at ωk
2 . Theorem A is the crucial step to prove

the following non-existence result.

Theorem B. [8] Equation (1.10) has no even solutions for all τ ∈ iR>0 if and
only if n satisfies neither (1.8) nor (1.9).

In this paper, we succeed to delete the condition ”every” in Theorem A
via a new observation, and hence give the complete answer to (Q1). Our
first result is

Theorem 1.1. Let n = (n0, n1, n2, n3), nk ∈ Z≥0 for all k with maxk nk ≥ 1
and τ ∈ iR>0. Then the following hold.

(1) If n satisfies neither (1.8) nor (1.9), then all roots of Qn(·; τ) are real and
distinct, and so the spectrum σ(L) is of the form (1.7).
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(2) If n satisfies either (1.8) or (1.9), then Qn(·; τ) has at least two roots in
C \R, and so the spectrum σ(L) 6⊂ R is still symmetric with respect to
R but not of the form (1.7).

Comparing to Theorem A, the novelty of Theorem 1.1 is that we can
prove that when n satisfies either (1.8) or (1.9), once Qn(·; τ) has at least
two roots in C \ R for some τ ∈ iR>0, then this assertion holds for all
τ ∈ iR>0.

1.2. Location of (anti)periodic eigenvalues. The second problem is to s-
tudy (anti)periodic eigenvalues of L. Recall that E ∈ C is called a periodic
(resp. antiperiodic) eigenvalue of L if Ly = Ey has a nonzero solution y
satisfying y(x + 1) = y(x) (resp. y(x + 1) = −y(x)). It is well known (cf.
[13]) that the operator L in (1.6) has countably many periodic and antiperiod-
ic eigenvalues, which contain all roots of the spectral polynomial Qn(·; τ)
as a proper subset. Denote

(1.11) σp(L) := {E | E is a (anti)periodic eigenvalue of L, Qn(E; τ) 6= 0}.

Clearly σp(L) ⊂ σ(L). Concerning the positions of those E ∈ σp(L), Haese-
Hill et al. [16] proved that

Theorem C. [16] For the Lamé case n1 = n2 = n3 = 0 with τ ∈ iR>0, there
holds

(1.12) σp(L) ∩ (E2j−1, E2j−2) = ∅ ∀ 1 ≤ j ≤ n, i.e. σp(L) ⊂ (−∞, E2n).

Let ∆(E; τ) be the Hill’s discriminant of the operator L in (1.6), then E is
a periodic (resp. antiperiodic) eigenvalue if and only if ∆(E; τ) = 2 (resp.
∆(E; τ) = −2); see Section 2 for a brief overview of this entire function
∆(E; τ). Theorem C indicates that for the Lamé case,

∆(E2j−1; τ)∆(E2j−2; τ) = −4 ∀ 1 ≤ j ≤ n.

This sign information is also important because it is invariant if we consider
the deformation of τ.

We want to generalize Theorem C to the DTV potentials. Assume that n
violates both (1.8) and (1.9), then Theorem 1.1 says that the spectrum σ(L)
is given by (1.7). Suppose n0 = maxk nk ≥ 1. Then it is easy to see that one
of the following hold

(a) either n0 ≥ n1 + n2 + 1 with n3 = 0 or n0 + n3 = n1 + n2;
(b) n0 + n3 = n1 + n2 − 1;
(c) n0 + n3 = n1 + n2 + 1 with n3 ≥ 1.

Recalling (1.4), we obtain

(1.13) g =


n0 in Case (a);
n0 + n3 + 1 in Case (b);
n0 + n3 in Case (c).
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Define a new integer

(1.14) m :=


n0 − n1 in Case (a);
n2 + n3 + 1 in Case (b);
n2 + n3 + 1 in Case (c) with n0 > n2,
n2 + n3 in Case (c) with n0 = n2.

Clearly g ≥ m. Then our next result shows that (1.12) does not necessarily
hold for all the DTV potentials.

Theorem 1.2. Let n satisfy neither (1.8) nor (1.9), and suppose n0 = maxk nk ≥
1 with (g, m) given in (1.13)-(1.14) and τ ∈ iR>0. Then for the operator L in
(1.6), there holds

σp(L) ∩ (E2j−1, E2j−2) = ∅ ∀1 ≤ j ≤ m,

σp(L) ∩ (E2j−1, E2j−2) = one point ∀m + 1 ≤ j ≤ g.

In particular, ∆(E2m−1; τ) = ∆(E2m; τ) = · · · = ∆(E2g; τ) = (−1)m2.

Remark 1.3. The assumption n0 = maxk nk ≥ 1, which is only used to sim-
plify the expressions of (g, m), is not essential for Theorem 1.2. Consider
the case n1 = maxk nk ≥ 1 for example. Since we will prove in Lemma 3.1
below that the spectrum σ(L) is independent of the choice of z0, we can
replace z0 with z0 +

ω1
2 in (1.6) and then the operator L becomes

L̃ =
d2

dx2 −
3

∑
k=0

ñk(ñk + 1)℘
(
x + z0 +

ωk
2 ; τ

)
, x ∈ R,

where ñ = (ñ0, ñ1, ñ2, ñ3) := (n1, n0, n3, n2). Then σ(L) = σ(L̃), σp(L) =

σp(L̃) and ñ satisfies all the assumptions of Theorem 1.2. Thus the conclu-
sion of Theorem 1.2 also holds for n1 = maxk nk with the associated (g, m)
expressed by ñ instead.

For the case n satisfying either (1.8) or (1.9), the spectrum σ(L) is not of
the form (1.7), but it is still very interesting to study the location of (an-
ti)periodic eigenvalues. We expect that the results should be much more
complicated than Theorem 1.2.

This paper is organized as follows. In Section 2, we briefly review the
spectral theory of Hill equation from [13] and apply it to the DTV poten-
tials. In Section 3, we develop further our ideas in [8] to prove Theorem 1.1,
where we prefer to provide all the necessary details to make the paper self-
contained. Theorem 1.2 will be proved in Section 4, where we will apply
some results from [25].

2. SPECTRAL THEORY [13]

In this section, we briefly review the spectral theory of Hill equation with
complex-valued potentials from [13] and apply it to the DTV potential; see
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Theorem 2.A, which will be used frequently in the proofs of Theorems 1.1-
1.2 in Sections 3-4.

Let q(x) is a complex-valued continuous nonconstant periodic function
of period Ω on R. Consider the following Hill equation

(2.1) y′′(x) + q(x)y(x) = Ey(x), x ∈ R.

This equation has received an enormous amount of consideration due to its
ubiquity in applications as well as its structural richness; see e.g. [13, 15]
and references therein for historical reviews.

Let y1(x) and y2(x) be any two linearly independent solutions of (2.1).
Then so do y1(x + Ω) and y2(x + Ω) and hence there is a monodromy ma-
trix M(E) ∈ SL(2, C) such that

(y1(x + Ω), y2(x + Ω)) = (y1(x), y2(x))M(E).

Define the Hill’s discriminant ∆(E) by

(2.2) ∆(E) := trM(E),

which is clearly an invariant of (2.1), i.e. does not depend on the choice
of linearly independent solutions. This entire function ∆(E) encodes all
information of the spectrum σ(L) of the operator L = d2

dx2 + q(x); see e.g.
[15] and references therein. Indeed, we define

(2.3) S := ∆−1([−2, 2]) = {E ∈ C | − 2 ≤ ∆(E) ≤ 2}

to be the conditional stability set of the operator L = d2

dx2 + q(x). Then Rofe-
Beketov [20] proved that S coincides with the spectrum:

(2.4) σ(L) = S = {E ∈ C | − 2 ≤ ∆(E) ≤ 2}.
This important fact will play a key role in this paper.

Clearly E is a (anti)periodic eigenvalue if and only if ∆(E) = ±2. Define

d(E) := ordE(∆(·)2 − 4).

Then it is well known (cf. [19, Section 2.3]) that d(E) equals to the algebraic
multiplicity of (anti)periodic eigenvalues. Let c(E, x, x0) and s(E, x, x0) be the
special fundamental system of solutions of (2.1) satisfying the initial values

c(E, x0, x0) = s′(E, x0, x0) = 1, c′(E, x0, x0) = s(E, x0, x0) = 0.

Then we have

∆(E) = c(E, x0 + Ω, x0) + s′(E, x0 + Ω, x0).

Define
p(E, x0) := ordEs(·, x0 + Ω, x0),

pi(E) := min{p(E, x0) : x0 ∈ R}.
It is known that p(E, x0) is the algebraic multiplicity of a Dirichlet eigen-
value on the interval [x0, x0 + Ω], and pi(E) denotes the immovable part of
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p(E, x0) (cf. [13]). It was proved in [13, Theorem 3.2] that d(E)− 2pi(E) ≥ 0.
Define

(2.5) D(E) := Epi(0) ∏
λ∈C\{0}

(
1− E

λ

)pi(λ) .

Now we consider the operator L in (1.6), i.e. q(x) = q(x; τ) = qn(x +
z0; τ) is the DTV potential, which is smooth on R with period Ω = 1. Ap-
plying the general result [13, Theorem 4.1] to the DTV potential, we obtain

Theorem 2.A. [13, Theorem 4.1] For the DTV potential q(x) = qn(x + z0; τ),
the following hold.

(i) d(E) − 2pi(E) > 0 on a finite set {Ej}m
j=1 for some m ∈ N and d(E) −

2pi(E) = 0 elsewhere, and the associated spectral polynomial Qn(E; τ) satisfies

(2.6) Qn(E; τ) =
m

∏
j=1

(E− Ej)
d(Ej)−2pi(Ej) = C

∆(E)2 − 4
D(E)2 .

Here D(E) is seen in (2.5) and C is some nonzero constant. In particular, 2g+ 1 =
deg Qn(E; τ) = ∑m

j=1(d(Ej)− 2pi(Ej)).
(ii) the spectrum σ(L) = S consists of finitely many bounded simple analytic

arcs σk, 1 ≤ k ≤ g̃ for some g̃ ≤ g and one semi-infinite simple analytic arc σ∞

which tends to −∞ + 〈q〉, with 〈q〉 =
∫ x0+1

x0
q(x)dx, i.e.

σ(L) = S = σ∞ ∪ ∪g̃
k=1σk.

Furthermore, the finite end points of such arcs must be those E ∈ {Ej}m
j=1 with

d(E) = 2pi(E) + ordEQn(·; τ) odd, and there are exactly d(E)’s semi-arcs of
σ(L) meeting at such E.

3. PROOF OF THEOREM 1.1

The purpose of this section is to prove Theorem 1.1. First we briefly ex-
plain why the spectrum σ(L) does not depend on the choice of z0. Consider
the generalized Lamé equation (GLE)

(3.1) y′′(z) =
[ 3

∑
k=0

nk(nk + 1)℘
(
z + ωk

2 ; τ
)
+ E

]
y(z), z ∈ C.

It is known (cf. [14, 21]) that the monodromy representation of GLE (3.1)
is a group homomorphism ρ(·; E) : π1(Eτ) → SL(2, C) and so abelian.
Let `j ∈ π1(Eτ), j = 1, 2, be the two fundamental cycles z → z + ωj and
let ρ(`j; E) denote the monodromy matrix of GLE (3.1) with respect to any
linearly independent solutions (y1, y2), i.e.

(y1(z + ωj), y2(z + ωj)) = (y1(z), y2(z))ρ(`j; E), j = 1, 2.

Define

(3.2) S̃n := {E ∈ C | − 2 ≤ tr ρ(`1; E) ≤ 2}.
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Clearly tr ρ(`1; E) and so S̃n are independent of the choice of (y1, y2).

Lemma 3.1. The spectrum σ(L) of the operator L in (1.6) satisfies σ(L) = S̃n,
i.e. σ(L) is independent of the choice of z0.

Proof. Clearly if (y1(z), y2(z)) is a pair of linearly independent solutions of
GLE (3.1), then (w1(x), w2(x)) := (y1(x + z0), y2(x + z0)) with x ∈ R is a
pair of linearly independent solutions of Lw = Ew. Thus, ρ(`1; E) is also
the monodromy matrix M(E) (defined in Section 2) of Lw = Ew, which
gives ∆(E) = tr ρ(`1; E) and so we obtain the desired identity σ(L) = S̃n

by using (2.4) and (3.2). �

Lemma 3.2. [8, Lemma 3.6] Let τ ∈ iR>0 and suppose Qn(E; τ) has 2g + 1
real distinct zeros, denoted by E2g < E2g−1 < · · · < E1 < E0. Then the spectrum
σ(L) of the operator L in (1.6) satisfies

(3.3) σ(L) = S̃n = (−∞, E2g] ∪ [E2g−1, E2g−2] ∪ · · · ∪ [E1, E0].

Proof. We sketch the proof here for later usage. Though the DTV potential
qn(z; τ) is real-valued for z ∈ R, it has poles at Z and 1

2 + Z. Instead,
q(x; τ) = qn(x + z0; τ) is smooth on R with period Ω = 1 but not necessarily
real-valued. Thus the classic theory can not be applicable to this q(x; τ) to
obtain (3.3) either.

Under our assumptions, by (2.6) in Theorem 2.A-(i) we have

(3.4) d(Ej) := ordEj(∆(·)
2 − 4) = 1 + 2pi(Ej) is odd for all j ∈ [0, 2g].

On the other hand, Theorem 2.A-(ii) says that: The spectrum σ(L) consists
of finitely many bounded spectral arcs σk, 1 ≤ k ≤ g̃ for some g̃ ≤ g and
one semi-infinite arc σ∞ which tends to −∞ + 〈q〉, i.e.

σ(L) = σ∞ ∪ ∪g̃
k=1σk.

Furthermore, the set of the finite end points of such arcs is precisely {Ej}
2g
j=0

because of (3.4), and there are exactly d(Ej) semi-arcs of σ(L) meeting at
each Ej. Together these with the following three facts:

(a) We proved in [8, Lemma 3.5] that S̃n is symmetric with respect to
the real line R if τ ∈ iR>0, so does σ(L) = S̃n by Lemma 3.1;

(b) A classical result (see e.g. [15, Theorem 2.2]) says that C \ σ(L) is
path-connected;

(c) Our assumption gives Ej ∈ R and E2g < E2g−1 < · · · < E1 < E0;

we easily conclude that (i) σ(L) ⊂ R, (ii) d(Ej) = 1 for all j and so (3.3)
holds. Indeed, since (c) says that all finite end points of spectral arcs are
on R, the assertion (i) σ(L) ⊂ R follows immediately from (a)-(b). Conse-
quently, there are at most two semi-arcs of σ(L) meeting at each Ej. This,
together with (3.4), yields the assertion (ii) d(Ej) = 1 for all j, namely there
is exactly one semi-arc of σ(L) ending at Ej, which finally implies (3.3). �
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Lemma 3.3. [8, Lemma 3.7] If

Q(n0,n1,n2,n3)(E; τ) =
2g

∏
j=0

(E− Ej(τ)),

Then

(3.5) Q(n0,n2,n1,n3)(E; −1
τ ) =

2g

∏
j=0

(E− τ2Ej(τ)).

The following result, which is our new observation comparing to [8], is
quite surprising to us. It plays a crucial role in proving Theorem 1.1.

Proposition 3.4. Let τ ∈ iR>0 and suppose all zeros of Qn(E; τ) are real, denoted
by E2g ≤ E2g−1 ≤ · · · ≤ E1 ≤ E0. Then all the zeros are distinct, i.e. Ei 6= Ej for
i 6= j.

Proof. In the following proof, we write S̃n = S̃n(τ) to emphasize its de-
pendence on τ. Note that

Q(n0,n1,n2,n3)(E; τ) =
2g

∏
j=0

(E− Ej), Ej ∈ R.

Then by the same proof as Lemma 3.2, we have

(3.6) S̃ (n0,n1,n2,n3)(τ) = σ(L) = σ∞ ∪ ∪g̃
k=1σk ⊂ R,

where g̃ ≤ g, σ∞ is the only semi-infinite arc which tends to −∞, and the
set of the finite end points of such arcs is precisely those {Ej}0≤j≤2g with

d(Ej) = ordEj Q
(n0,n1,n2,n3)(·; τ) + 2pi(Ej) being odd.

Since there are d(Ej) semi-arcs of S̃ (n0,n1,n2,n3)(τ) meeting at Ej, it follows
from (3.6) that d(Ej) ≤ 2, i.e. pi(Ej) = 0 and

ordEj Q
(n0,n1,n2,n3)(·; τ) = d(Ej) ≤ 2 for all j.

Furthermore,

(3.7) ordEj Q
(n0,n1,n2,n3)(·; τ) = 2

⇐⇒ Ej is an interior point of S̃ (n0,n1,n2,n3)(τ),
and so

(3.8) ∂S̃ (n0,n1,n2,n3)(τ) = {−∞} ∪ {Ej | ordEj Q
(n0,n1,n2,n3)(·; τ) = 1}.

On the other hand, Lemma 3.3 and τ ∈ iR>0 give

Q(n0,n2,n1,n3)(E; −1
τ ) =

2g

∏
j=0

(E− τ2Ej(τ))

with
τ2E0 ≤ τ2E1 ≤ · · · ≤ τ2E2g−1 ≤ τ2E2g.
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Therefore, the same argument as above shows that

(3.9) ordEj Q
(n0,n1,n2,n3)(·; τ) = ordτ2Ej

Q(n0,n2,n1,n3)(·; −1
τ ) = 2

⇐⇒ τ2Ej is an interior point of S̃ (n0,n2,n1,n3)(−1
τ ) ⊂ R,

and so

(3.10) ∂S̃ (n0,n2,n1,n3)(−1
τ ) = {−∞} ∪ {τ2Ej | ordEj Q

(n0,n1,n2,n3)(·; τ) = 1}.

Now we prove by induction that for any 1 ≤ k ≤ 2g, Ek−1 6= Ek.
Suppose E0 = E1, then (3.7) says that E0 /∈ ∂S̃ (n0,n1,n2,n3)(τ), namely there

are Ẽ > E0 and ε > 0 such that [E0 − ε, Ẽ] ⊂ S̃ (n0,n1,n2,n3)(τ) with Ẽ ∈
∂S̃ (n0,n1,n2,n3)(τ). Then (3.8) implies Ẽ ∈ {Ej}

2g
j=0, a contradiction with Ẽ >

E0 = maxj Ej. This proves E0 6= E1.
Assume by induction that for any 1 ≤ i ≤ k, where 1 ≤ k ≤ 2g− 1, we

have Ei−1 6= Ei, i.e.
Ek < Ek−1 < · · · < E1 < E0.

We need to prove Ek > Ek+1. Suppose by contradiction that Ek = Ek+1.
Case 1. k is even.
Then it follows from {Ej|j ≤ k− 1} ⊂ ∂S̃ (n0,n1,n2,n3)(τ) and (3.6) that

[Ek−1, Ek−2] ∪ · · · ∪ [E1, E0] ⊂ S̃ (n0,n1,n2,n3)(τ)

and

E < Ek−1, ∀ E ∈ S̃ (n0,n1,n2,n3)(τ) \ [Ek−1, Ek−2] ∪ · · · ∪ [E1, E0].

So Ek = Ek+1, (3.6) and (3.7) imply that there are Ek < Ẽk < Ek−1 and ε > 0
such that [Ek − ε, Ẽk] ⊂ S̃ (n0,n1,n2,n3)(τ) with Ẽk ∈ ∂S̃ (n0,n1,n2,n3)(τ). Again it
follows from (3.8) that Ẽk ∈ {Ej}

2g
j=0, a contradiction with Ek < Ẽk < Ek−1.

Thus Case 1 is impossible.
Case 2. k is odd.
Then it follows from {−∞} ∪ {τ2Ej|j ≤ k− 1} ⊂ ∂S̃ (n0,n2,n1,n3)(−1

τ ) and
S̃ (n0,n2,n1,n3)(−1

τ ) ⊂ R that

(−∞, τ2E0] ∪ [τ2E1, τ2E2] · · · ∪ [τ2Ek−2, τ2Ek−1] ⊂ S̃ (n0,n2,n1,n3)(−1
τ )

and

E > τ2Ek−1, ∀ E ∈ S̃ (n0,n2,n1,n3)(−1
τ ) \ (−∞, τ2E0] ∪ · · · ∪ [τ2Ek−2, τ2Ek−1].

So Ek = Ek+1 and (3.9) imply that there are Ek < Ẽk < Ek−1 and ε > 0
such that [τ2Ẽk, τ2Ek + ε] ⊂ S̃ (n0,n2,n1,n3)(−1

τ ) with τ2Ẽk ∈ ∂S̃ (n0,n2,n1,n3)(−1
τ ).

But then (3.10) implies Ẽk ∈ {Ej}
2g
j=0, a contradiction with Ek < Ẽk < Ek−1.

Thus Case 2 is impossible.
This proves Ek > Ek+1. By induction we obtain Ei 6= Ej for i 6= j. The

proof is complete. �

Now we can give the proof of Theorem 1.1.
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Proof of Theorem 1.1. Let τ ∈ iR>0. If n satisfies neither (1.8) nor (1.9), then
Theorem A says that all the roots of Qn(E; τ) are real and distinct, and so
the spectrum σ(L) is given by (1.7).

Now suppose n satisfies either (1.8) or (1.9). Recall (1.5) that for τ ∈
iR>0, Qn(E; τ) ∈ R[E], so all its complex roots appear in pairs in C \R, i.e.
if E ∈ C \R is a root, so does its conjugate E. Define

Γ := {τ ∈ iR>0 : Qn(·; τ) has at least two roots in C \R}.
Then Theorem A and Proposition 3.4 imply that Γ 6= ∅. Clearly Γ is open
in iR>0. Furthermore, if τm ∈ Γ such that τm → τ ∈ iR>0 \ Γ as m → ∞,
then the roots of Qn(·; τ) are all real and Qn(·; τ) must have a multiple
root (i.e. the limit of the complex roots Em, Em of Qn(·; τm) is a multiple
root of Qn(·; τ)), a contradiction with Proposition 3.4. This proves that Γ
is also closed in iR>0 and so Γ = iR>0. This also implies that for any
τ ∈ iR>0, σ(L) 6⊂ R because the zero set of Qn(·; τ) is a proper subset of
σ(L). Recalling the fact (a) recalled in the proof of Lemma 3.2, σ(L) is still
symmetric with respect to R. This completes the proof. �

4. LOCATION OF (ANTI)PERIODIC EIGENVALUES

This section is devoted to the proof of Theorem 1.2. For this purpose, we
need to consider the trigonometric limit τ → i∞. It is well known that

℘(z; τ)→ π2

(sin πz)2 − π2

3 , ℘(z + 1
2 ; τ)→ π2

(cos πz)2 − π2

3 ,

℘(z + ωk
2 ; τ)→ −π2

3 , k = 2, 3,

uniformly on compact sets of C \ 1
2 Z as τ → i∞. Define

(4.1) qn
T(z) := −n0(n0 + 1) π2

(sin πz)2 − n1(n1 + 1) π2

(cos πz)2 + Cn
T ,

where

(4.2) Cn
T :=

π2

3

3

∑
k=0

nk(nk + 1).

Then the above argument shows that

qn(z; τ)→ qn
T(z) as τ → i∞.

Fix any z0 ∈ C \R. Then for τ ∈ iR>0 with Im τ > |z0|, both

q(x; τ) := qn(x + z0; τ) and qT(x) := qn
T(x + z0)

are smooth on R with period Ω = 1. Recalling Section 2, we denote the
Hill’s discriminants of

(4.3) Ly(x) = y′′(x) + q(x; τ)y(x) = Ey(x)

and

(4.4) y′′(x) + qT(x)y(x) = Ey(x)
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by ∆(E; τ) and ∆T(E) respectively. Now we apply the following key fac-
t about ∆T(E): Since qn

T(z) can be generated from Cn
T by finite times of

Darboux transformations (see [12, Remark 2.7]), it is known (see e.g. [9,
Remark 1.3]) that ∆T(E) coincides with the Hill’s discriminant of y′′(x) +
Cn

Ty(x) = Ey(x) with respect to the period 1, i.e.

∆T(E) = 2 cos
√

Cn
T − E,

Consequently,

(4.5) ∆−1
T (±2) = {Cn

T − j2π2 | j ∈ Z≥0}.
Lemma 4.1. Under the above notations, we have

(4.6) lim
τ→i∞

∆(E; τ) = ∆T(E) = 2 cos
√

Cn
T − E.

Proof. Let cτ(x; E) and sτ(x; E) (resp. cT(x; E) and sT(x; E)) be the special
fundamental system of solutions of (4.3) (resp. (4.4)) satisfying the initial
values

c(0; E) = s′(0; E) = 1, c′(0; E) = s(0; E) = 0,
then we have

∆(E; τ) = cτ(1; E) + s′τ(1; E), ∆T(E) = cT(1; E) + s′T(1; E).

Together with q(x; τ) → qT(x) uniformly on compact set of R as τ → i∞,
we obtain (4.6). �

Now as in Theorem 1.2, we assume n0 = maxk nk ≥ n1. It is well known
that qn

T(z) in (4.1) is also a solution of the stationary KdV hierarchy with its
spectral polynomial Qn

T(E) given by

Qn
T(E) =(E− Cn

T)
n0−n1

∏
j=1

(E− Cn
T + j2π2)2

·
n0

∏
j=n0−n1+1

(E− Cn
T + (2j− n0 + n1)

2π2)2,(4.7)

where we use notation ∏n0
j=n0−n1+1 ∗ = 1 if n1 = 0. See e.g. [9, Proposition

3.6]. Here we have

Lemma 4.2. Suppose the genus g in (1.4) satisfies g = n0, i.e. deg Qn(E; τ) =
deg Qn

T(E) = 2n0 + 1. Then

(4.8) lim
τ→i∞

Qn(E; τ) = Qn
T(E).

Proof. In [21, 25] Takemura already developed an algorithm of comput-
ing limτ→i∞ Qn(E; τ) by decomposing Qn(E; τ) = ∏3

k=0 Pn
k (E; τ), where

Pn
k (E; τ) is either 1 or the characteristic polynomial of some matrix for each

k; see particularly [25, Appendix B]. In particular, Takemura’s result im-
plies that limτ→i∞ Qn(E; τ) exists and can be computed explicitly for any
given n. Thus (4.8) can be proved by applying Takemura’s algorithm.
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Here we note that (4.8) can be also proved via the theory of the station-
ary KdV hierarchy. Since qn(z; τ) → qn

T(z) as solutions of the stationary
KdV hierarchy, and under our assumption their genus is the same, namely
deg Qn(E; τ) = deg Qn

T(E), then the theory of the stationary KdV hierarchy
(cf. [11]) also implies (4.8) provided limτ→i∞ Qn(E; τ) exists. We sketch the
proof here for the reader’s convenience.

First we review the basic setting on the stationary KdV hierarchy fol-
lowing [11, Chapter 1]. Given a meromorphic function q(z), we define
{ f`(q)}`∈N∪{0} recursively by

(4.9) f0 = 1, f ′` = − 1
4 f (3)`−1 + q f ′`−1 +

1
2 q′ f`−1, ` ∈N.

Explicitly, one finds

f0 = 1, f1 = 1
2 q + c1,

f2 = − 1
8 (q
′′ − 3q2) + c1

1
2 q + c2, etc.

Here {c`}`∈N ⊂ C denote integration constants that naturally arise when
solving (4.9). Subsequently, is will be convenient also to introduce the cor-
responding homogeneous coefficients f̂` denoted by the vanishing of the
integration constants ck for all k:

f̂0 = f0 = 1, f̂` = f`
∣∣
ck=0,k=1,··· ,` , ` ∈N.

Hence,

(4.10) f` =
`

∑
k=0

c`−k f̂k, ` ∈N∪ {0}, where c0 = 1,

and
f̂0 = 1, f̂1 = 1

2 q, f̂2 = − 1
8 (q
′′ − 3q2),

f̂3 = 1
32 (q

(4) − 10qq′′ − 5q′2 + 10q3), etc.

It is known (cf. [11, Theorem D.1]) that f̂` also satisfies (4.9) and

(4.11) f̂`(q) ∈ Q[q, q′, q′′, · · · , q(2`−2)], ` ∈N.

Now consider a second-order differential operator of Schrödinger-type
L = d2

dz2 + q(z) and a 2g + 1-order differential operator

(4.12) P2g+1 =
g

∑
j=0

(
f j

d
dz
− 1

2 f ′j

)
Lg−j, g ∈N∪ {0}.

By the recursion (4.9), a direct computation leads to ([·, ·] the commutator
symbol)

[L, P2g+1] = −2 f ′g+1, g ∈N∪ {0}.
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In particular, (L, P2g+1) represents the celebrated Lax pair of the KdV hier-
archy. Varying g ∈ N ∪ {0}, the stationary KdV hierarchy is then defined
in terms of the vanishing of the commutator of L and P2g+1 by

s-KdVg(q) := [L, P2g+1] = −2 f ′g+1 = 0, g ∈N∪ {0}.

Now for the DTV potential qn(z; τ), there are integration constants {cn
` (τ)}

g
`=1

such that the corresponding Pn
2g+1(τ) = P2g+1 given in (4.10)-(4.12) satisfies

[ d2

dz2 + qn(z; τ), Pn
2g+1(τ)] = 0.

On the other hand, it is known ([11, Appendix D]) that each integration con-
stant cn

` (τ) ∈ Q[E0(τ), · · · , E2g(τ)], where E0(τ), · · · , E2g(τ) denote all the
roots of the spectral polynomial Qn(E; τ). Since limτ→i∞ Qn(E; τ) exists,
we see that cn

` (τ) converges. From here, qn(z; τ) → qn
T(z) and (4.10)-(4.12),

we conclude that

Pn
2g+1 := lim

τ→i∞
Pn

2g+1(τ) =
(

d
dz

)2g+1
+ · · ·

is a well-defined differential operator of order 2g + 1 = 2n0 + 1 and

[ d2

dz2 + qn
T(z), Pn

2g+1] = 0.

Then, as recalled in (1.3), we obtain the following relations

Pn
2g+1(τ)

2 = Qn( d2

dz2 + qn(z; τ); τ),

(Pn
2g+1)

2 = Qn
T(

d2

dz2 + qn
T(z)),

and so (4.8) holds. �

Remark 4.3. Given n = (n0, n1, n2, n3) with nk ∈ Z≥0 and n0 = max nk ≥ 1,
we assume that ∑ nk is odd and define ñ = (l0, l1, l2, l3) by

l0 = (n0 + n1 + n2 + n3 + 1)/2

l1 = max{l̃1,−l̃1 − 1}, l̃1 := (n0 + n1 − n2 − n3 − 1)/2

l2 = max{l̃2,−l̃2 − 1}, l̃2 := (n0 − n1 + n2 − n3 − 1)/2

l3 = max{l̃3,−l̃3 − 1}, l̃3 := (n0 − n1 − n2 + n3 − 1)/2.

Then it was proved by Takemura [25, Section 4] that y′′(z) = [−qn(z; τ) +
E]y(z) and y′′(z) = [−qñ(z; τ) + E]y(z) are isomonodromic (i.e. their mon-
odromy representations are the same) for any (E, τ), which immediate-
ly implies Qn(E; τ) = Qñ(E; τ). Here together with Lemma 3.1, we see
that the spectrum σ(L̃) of L̃ = d2

dx2 + qñ(x + z0; τ) is the same as σ(L) of
L = d2

dx2 + qn(x + z0; τ).

Remark 4.4. From the physical motivation, Takemura [22] studied the holo-
morphic dependence of certain L2-integrable eigenvalues on p = eπiτ as
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power series of p as τ → i∞; see [22] precise statements. In this pa-
per, though we do not need to use the holomorphic dependence of (an-
ti)periodic eigenvalues on p = eπiτ, but some idea of [22] was developed
further in [25] and plays an important role in our proof of Lemma 4.2 and
so in Theorem 1.2.

Now we are in the position to prove Theorem 1.2.

Proof of Theorem 1.2. Let n satisfy neither (1.8) nor (1.9), and n0 = maxk nk ≥
1, namely one of Cases (a)-(c) holds. Since τ = ib with b > 0, it follows from
Theorem A and (2.4) that

Qn(E; τ) =
2g

∏
j=0

(E− Ej(τ))

with E2g(τ) < · · · < E0(τ), and the spectrum σ(Lτ) := σ(L) of Lτ := L =
d2

dx2 + q(x; τ) is given by

σ(Lτ) = {E ∈ C | − 2 ≤ ∆(E; τ) ≤ 2}
= (−∞, E2g(τ)] ∪ [E2g−1(τ), E2g−2(τ)] ∪ · · · ∪ [E1(τ), E0(τ)].(4.13)

Since E is a (anti)periodic eigenvalue of L(τ) if and only if ∆(E; τ) = ±2,
so

(4.14) ∆(Ej(τ); τ) = ±2, ∀j,

σp(Lτ) = {E ∈ C |∆(E; τ) = ±2} \ {Ej(τ), j ∈ [0, 2g]}.
Recalling that ∆(E; τ) is holomorphic in E, so for any 1 ≤ j ≤ g, if

Ẽ ∈ (E2j−1(τ), E2j−2(τ)) is a local minimum point (resp. a local maximum
point) of ∆(·; τ) on (E2j−1(τ), E2j−2(τ)), then

(4.15) ∆(Ẽ; τ) = −2 (resp. ∆(Ẽ; τ) = 2).

Indeed, if Ẽ is a local minimum point of ∆(·; τ) on (E2j−1(τ), E2j−2(τ)) and
∆(Ẽ; τ) ∈ (−2, 2), then d

dE ∆(Ẽ; τ) = 0 and so it follows from

(4.16) ∆(E; τ)− ∆(Ẽ; τ) = a(E− Ẽ)k + o((E− Ẽ)k), a 6= 0, k ≥ 2

and σ(Lτ) = {E ∈ C | − 2 ≤ ∆(E; τ) ≤ 2} that there are 2k ≥ 4 semi-arcs
of σ(Lτ) meeting at Ẽ, a contradiction with (4.13).

Step 1. We consider Case (a).
Then it follows from (1.13)-(1.14) that g = n0 and m = n0− n1. Therefore,

Lemma 4.2 applies and we conclude from (4.7)-(4.8) that

(4.17) lim
τ→i∞

E0(τ) = Cn
T ,

lim
τ→i∞

E2j−1(τ) = lim
τ→i∞

E2j(τ) = Cn
T − j2π2, 1 ≤ j ≤ m,

(4.18) lim
τ→i∞

E2j−1(τ) = lim
τ→i∞

E2j(τ) = Cn
T − (2j−m)2π2, m < j ≤ g.
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Case 1. 1 ≤ j ≤ m. Note that if m = 0, then this case does not happen.
So we assume m ≥ 1.

Since

(4.19) [E2j−1(τ), E2j−2(τ)]→ [Cn
T − j2π2, Cn

T − (j− 1)2π2]

as τ → i∞, we conclude from (4.6) and (4.14) that

∆(E2j−1(τ); τ) = (−1)j2, ∆(E2j−2(τ); τ) = (−1)j−12,

hold for all τ ∈ iR>0 via the continuity of ∆(E, τ) with respect to (E, τ).
Now we claim that for any τ ∈ iR>0,

(4.20) σp(Lτ) ∩ (E2j−1(τ), E2j−2(τ)) = ∅,

namely
∆((E2j−1(τ), E2j−2(τ)); τ) = (−2, 2).

Without loss of generality, we may assume that j is odd (the case that j
is even can be proved in the same way). First we show that (4.20) holds for
b = Im τ large. If not, there exists τk = ibk with bk → +∞ such that

σp(Lτk) ∩ (E2j−1(τk), E2j−2(τk)) 6= ∅.

This together with (4.15) imply the existence of E1,k, E2,k ∈ σp(Lτk) satisfy-
ing

E2j−1(τk) < E1,k < E2,k < E2j−2(τk),

∆(E2j−1(τk); τk) = ∆(E2,k; τk) = −2,

∆(E2j−2(τk); τk) = ∆(E1,k; τk) = 2.
By (4.5), (4.6) and (4.19), we obtain

(4.21) Cn
T − (j− 1)2π2 = lim

k→∞
E1,k ≤ lim

k→∞
E2,k = Cn

T − j2π2,

clearly a contradiction.
Therefore, (4.20) holds for b large. Define

b̃ := inf{b0 > 0 | (4.20) holds for all b > b0}
and suppose b̃ > 0. Then (4.20) holds for all b > b̃. If (4.20) holds for b = b̃,
then the definition of b̃ implies the existence of bk ↑ b̃ such that (4.20) does
not holds for τk = ibk, so the same argument as (4.21) shows E2j−2(ib̃) ≤
E2j−1(ib̃), a contradiction. Hence (4.20) does not hold for τ̃ = ib̃. Again this
implies the existence of Ẽ1, Ẽ2 satisfying

E2j−1(τ̃) < Ẽ1 < Ẽ2 < E2j−2(τ̃),

∆(E2j−1(τ̃); τ̃) = ∆(Ẽ2; τ̃) = −2 < ∆(Ẽ1; τ̃) = 2.

Then for τ = ib with b− b̃ > 0 sufficiently small, ∆(·; τ) has a local max-
imum point Eτ ∈ (E2j−1(τ), Ẽ2). However, (4.15) implies Eτ ∈ σp(Lτ) ∩
(E2j−1(τ), E2j−2(τ)), a contradiction with the definition of b̃.

Therefore, b̃ = 0 and so (4.20) holds for all τ ∈ iR>0.
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Case 2. m + 1 ≤ j ≤ g. Since

[E2j−1(τ), E2j−2(τ)]→
[Cn

T − (2j−m)2π2, Cn
T − (2j− 2−m)2π2]

as τ → i∞, we conclude from (4.6) and (4.14) that

∆(E2j−1(τ); τ) = ∆(E2j−2(τ); τ) = (−1)m2

hold for all τ ∈ iR>0. Then by (4.15), there is a smallest

Ẽ(τ) ∈ σp(Lτ) ∩ (E2j−1(τ), E2j−2(τ))

satisfying ∆(Ẽ(τ); τ) = (−1)m+12. From here and (4.5)-(4.6), we obtain

lim
τ→i∞

Ẽ(τ) = Cn
T − (2j− 1−m)2π2.

Then the same argument as Case 1 shows that

σp(Lτ) ∩ (E2j−1(τ), Ẽ(τ)) = ∅,

σp(Lτ) ∩ (Ẽ(τ), E2j−2(τ)) = ∅.
In conclusion,

σp(Lτ) ∩ (E2j−1(τ), E2j−2(τ)) = {Ẽ(τ)}.
This completes the proof for Case (a).

Step 2. We consider Case (b): n0 + n3 = n1 + n2 − 1.
Then (1.13)-(1.14) says g = n0 + n3 + 1 > n0 and m = n2 + n3 + 1, so

Lemma 4.2 does not apply. However, by Remark 4.3 we have Qn(E; τ) =
Qñ(E; τ), where ñ = (l0, l1, l2, l3) with

l0 = (n0 + n1 + n2 + n3 + 1)/2 = n0 + n3 + 1 = g,

l1 = l̃1 = (n0 + n1 − n2 − n3 − 1)/2 = n0 − n2,

l2 = l̃2 = (n0 − n1 + n2 − n3 − 1)/2 = n0 − n1,

l3 = −l̃3 − 1 = −1− (n0 − n1 − n2 + n3 − 1)/2 = 0.
Clearly (1.4) says that deg Qñ(E; τ) = 2g + 1 = 2l0 + 1 = deg Qñ

T(E) and
m = l0 − l1, so Lemma 4.2 implies

(4.22) lim
τ→i∞

Qn(E; τ) = lim
τ→i∞

Qñ(E; τ) = Qñ
T(E),

namely (4.17)-(4.18) with Cn
T replaced by Cñ

T hold. Then the same proof as
Step 1 yields the desired assertions.

Here we emphasize that Qn
T(E) 6= Qñ

T(E) and limτ→i∞ Qn(E; τ) 6= Qn
T(E)

because their degrees are not the same.
Step 3. We consider Case (c): n0 + n3 = n1 + n2 + 1 and n3 ≥ 1.
Then (1.13)-(1.14) says g = n0 + n3 > n0 and

m =

{
n2 + n3 + 1 if n0 > n2,
n2 + n3 if n0 = n2,
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so Lemma 4.2 does not apply. Again by Remark 4.3 we have Qn(E; τ) =
Qñ(E; τ), where ñ = (l0, l1, l2, l3) with

l0 = (n0 + n1 + n2 + n3 + 1)/2 = n0 + n3 = g,

l̃1 = (n0 + n1 − n2 − n3 − 1)/2 = n0 − n2 − 1,

i.e. l1 = max{l̃1,−1− l̃1} =
{

n0 − n2 − 1 if n0 > n2,
0 if n0 = n2,

l̃2 = (n0 − n1 + n2 − n3 − 1)/2 = n0 − n1 − 1,

i.e. l2 = max{l̃2,−1− l̃2} =
{

n0 − n1 − 1 if n0 > n1,
0 if n0 = n1,

and
l3 = l̃3 = (n0 − n1 − n2 + n3 − 1)/2 = 0.

Again (1.4) says that deg Qñ(E; τ) = 2g + 1 = 2l0 + 1 = deg Qñ
T(E) and

m = l0 − l1, so Lemma 4.2 implies (4.22) and hence (4.17)-(4.18) with Cn
T

replaced by Cñ
T hold. The rest proof is the same as Step 1.

The proof is complete. �
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