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Abstract

The behavior and the location of singular points of a solution to
Painlevé VI equation could encode important geometric proper-
ties. For example, Hitchin’s formula indicates that singular points
of algebraic solutions are exactly the zeros of Eisenstein series of
weight one. In this paper, we study the problem: How many sin-
gular points of a solution A(t) to the Painlevé VI equation with pa-
rameter (§, 5, &, 3) might have in C\ {0,1}? Here to € C\{0,1}
is called a singular point of A(t) if A(to) € {0, 1,9, 00}. Based on
Hitchin’s formula, we explore the connection of this problem with
Green function and the Eisenstein series of weight one. Among
other things, we prove:

(i) There are only three solutions which have no singular points
in C\{0,1}. (ii) For a special type of solutions (called real solutions
here), any branch of a solution has at most two singular points
(in particular, at most one pole) in C\ {0,1}. (iii) Any Riccati
solution has singular points in C\ {0, 1}. (iv) For each N > 5 and
N # 6, we calculate the number of the real j-values of zeros of the
Eisenstein series € (7; k1, k2) of weight one, where (ki, ko) runs
over [0, N — 1) with ged(kq, ko, N) = 1.

The geometry of the critical points of the Green function on a
flat torus E,, as 7 varies in the moduli M/, plays a fundamental
role in our analysis of the Painlevé VI equation. In particular,
the conjectures raised in [23] on the shape of the domain Q5 C
My, which consists of tori whose Green function has extra pair of
critical points, are completely solved here.
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1. Introduction

1.1. Painlevé property. In the literature, a nonlinear differential equa-
tion in one complex variable is said to possess the Painlevé property if
its solutions have neither movable branch points nor movable essential
singularities. For the class of second order differential equations

(1.1) N(t)=F(t,\XN), teCP,

where F(t,\,\) is meromorphic in ¢ and rational in both A and X,
Painlevé (later completed by Gambier, [12, 31]) obtained the clas-
sification of those nonlinear ODEs which possess the Painlevé prop-
erty. They showed that there were fifty canonical equations of the
form (1.1) with this property, up to Mobius transformations. Fur-
thermore, of these fifty equations, forty-four are either integrable in
terms of previously known functions (such as elliptic functions), equiv-
alent to linear equations, or are reduced to one of six new nonlin-
ear ODEs which define new transcendental functions (see eg. [18]).
These six nonlinear ODEs are called Painlevé equations. Among them,
Painlevé VI is often considered to be the master equation, because oth-
ers can be obtained from Painlevé VI by the confluence. Due to its
connection with many different disciplines in mathematics and physics,
Painlevé VI has been extensively studied in the past several decades. See
1, 3, 8,10, 11, 13, 14, 16, 21, 26, 27, 29, 30, 37] and the references
therein.
Painlevé VI (PVI) is written as

Er 111 NN 1 d
a2 2\\N  A—1 X—t dt t t—1 XN—t/) dt

AA=1D(A—1) t—1 5t(t—1)
2t — 1) (A-12 (A= t)Q] ’

where «, 3,7,0 are four complex constants. From (1.2), the Painlevé
property says that any solution A(¢) is a multi-valued meromorphic func-
tion in C\{0, 1}. To avoid the multi-valueness of A(¢), it is better to lift
solutions of (1.2) to its universal covering. It is known that the universal
covering of C\{0, 1} is the upper half plane H = {7 | Im7 > 0}. Then ¢
and the solution A(t) can be lifted through the covering map 7+ ¢ by

_e3(1) —ei(r) _ pp(r)|7) —e(r)
(1.3) t(r) = —62(7) ()’ At) = ea(7) —er(r)

(1.2)

t
|:Oé+5)\2+’)/
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where p(2) = p(z|7) is the Weierstrass elliptic function defined by
1 1 1
(1.4) p(2|T) == 2T Z ((z—w)Q - u}2> ;
weA\{0}

and A; := {m + n7|m,n € Z} is the lattice generated by w; = 1
and wy = 7. Also w3 = 1+ 7 and ¢;(7) = p(%|7) for i = 1,2,3.
Consequently, p(7) satisfies the following elliptic form of PVI:

d*p( s
(1.5) dT = Zazp +%7),
where wy = 0 and
(16) (050,051,052?053) = (Oé, _ﬁ”y’ % - 6) :

This elliptic form was first discovered by Painlevé [32]. For more recent
derivations of it, see [1, 27].

1.2. Hitchin solutions. In this paper, we consider the special case
a; =4 for 0<i<3,ie,

d?p( .
(1‘7) d7'2 3271‘2 Z p %|T) ’
which is the elliptic form of PVI1 -1 1 3. Equation (1.7) has connec-
8’88’8

tions with some geometric problems. The well-known example is related
to the construction of Einstein metrics in four dimension; see [16]. In
the seminal work [16], Hitchin obtained his famous formula to express
a solution p(7) of (1.7) with some complex parameters r, s:

@ (r+ st|7)
2(¢(r + s7I7) = (rmu(7) + sm2(7)))
Here n;(7) = ZC( L|7), i = 1,2, are quasi-periods of the Weierstrass zeta
functlon C(z]T) = = [7 p(&|T)dE.

y (1.8), he could construct an Einstein metric with positive cur-
Vature if r € R and s € iR, and an Einstein metric with negative
curvature if r € /R and s € R. He also obtained an Einstein metric with
zero curvature, but the corresponding solution of (1.7) is given by an-
other formula other than (1.8). Indeed, this corresponds to the Riccati
solutions of (1.7); see §3.

For simplicity, we denote p, (1) (equivalently, A, 4(t) via (1.3)) to be
the solution of (1.7) with the expression (1.8). It is obvious that if

(’l“, 5) € %ZQ = {(O’O)a (07%)’ (%’0 2’ 2 }+ZQ

then either ((r+s7|7)— (rn1(7)+sn2(7)) = o0 or {(r+s7|7)— (rni(7)+
sn2(7)) = 0 in H. Hence for any complex pair (r,s) ¢ 1Z2, p, (1) is
always a solution to (1.7), or equivalently, A, (t) is a (multi-valued)

(1.8) p(p(r)|T) = p(r + s7|T) +
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solution to PVI(1 SIFEN We say that two solutions A\, s(t) and Ay g ()

give (or belong to) “the same solution if A g (t) is the analytic continu-
ation of A\ s(t) along some closed loop in (C\{O 1}. In §4, we will prove
that A, and A,/ ¢ give the same solution to PVI( 121138 if and only

87 8 78’8
if (s',7") = (s,7) - v mod Z? for some matrix

veTl(2)={ye€ SL(2,Z) | vy = I mod 2}.

In this paper, we are mainly concerned with the question of smooth-

ness of solutions to PVI( 1 o113, and the location of its singular points.
’"8 78’8

Notice that for a solution A(t) and a point ¢ty € C\{0, 1}, the RHS of
Painlevé VI (1.2) has a singularity at (t9, A(¢p)) provided that A(tg) €
{0,1,t9,00}. Therefore, in this paper, we say A(t) is smooth at to if
A(to) € {0,1,t0,00}. Furthermore, a singular point to € C\{0,1} is
called of type 0 (1,2,3 respectively) if A(to) = oo (A(tg) =0, 1,to respec-
tively ).

We take PVI(070’07 1y as an initial example for our discussion, because

it can be transformed to PVI(1 113y of our concern by a Backlund

58 38
transformation (cf. [30]). In the literature, the Backlund transforma-
tion plays a very useful role in the study of Painlevé VI; for example, for
finding the algebraic solutions, see [11, 28, 26]. Conventionally, solu-

tions of PVI(O 0,0, the so-called Picard solutions, can be expressed in
" ’2

terms of Gauss hypergeometric functions. It was first found by Picard

[33]. Let

(1.9) wi(t) =—irF (3,111 -1),  w(t)=7F(,1,1;t)

be two linearly independent solutions of the Gauss hypergeometric equa-

tion

(1.10) t(1— )" (t) + (1 — 2t)w'(t) — Jw(t) = 0.

Then Picard solution of PVI o 1) can be expressed as (cf. [13, 28])
1 72

(1.11) Avrwn (t) = p(r1w1 () + vawa(t) | wi(t),wa(t)) + %

for some (1, v2) & 372, where p(-|w1 (t), w2(t)) is the Weierstrass elliptic

function with periods wi () and wa(t). The lifting of X,,WQ (t) by (1.3) is
given by Py, 1, (7) = v1 + o7, which of course is a solution of the elliptic

form of PVI(0 0,0,1): % =0. So 5\,,171,2 (t) has another expression:
9 b 72
(112) oy (t) = AL 127D 1)

ex(1) — ex(7)
which implies that A, ,,(t) is smooth for all ¢ € C\{0,1} if and only

if (11,v2) € R*\1Z2. Then the Bicklund transformation takes Aoy (1)
into solution )\T,s( ) of PVI, ) with (r,s) = (v1,12). See e.g. [6,

1 -113
8778’88
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Appendix A] for a rigorous proof of this fact and (1.12). Thus, in the
elliptic form the Bécklund transformation seems comparably simple.

It is surprising to us that after the Béacklund transformation from
PVI(O,O,O,%) to PVI(% =113y, PVI( has only three solutions which

are smooth in C\{0,1}.

Theorem 1.1. There are only three solutions A(t) to PV(
such that X(t) is smooth for allt € C\{0,1}. They are precisely
)\07%@) and )\%%(t).

1-113)
878 78’8

"

)

1
8

o0,

o m\

Theorem 1.1 shows that the Backlund transformation does not pre-
serve the smoothness of solutions. Thus, Theorem 1.1 can not be proved
by applying Picard solutions and the Béacklund transformation. We re-
mark that the Backlund transformation is complicated due to not only
the complicated form of birational maps between solutions but also the
fact that it transforms a pair of solutions of the Hamiltonian system
(equivalently, the pair (A(¢), \'(t))), but not the solution A(¢) only.

To prove Theorem 1.1, we start from the formula (1.8). Of course,
(1.8) does not give the complete set of solutions to (1.7). The missing
ones are solutions obtained from Riccati equations. For such Riccati
solutions, we have some expressions like (1.8). By employing these ex-
pressions, we will prove in §6 that any Riccati solution has singularities
in C\{0,1}. Hence our strategy for the proof of Theorem 1.1 is to study
the smoothness of A, (t) for any complex pair (r,s) ¢ 17Z2.

From (1.8), it is easy to see that if (r,s) is not a real pair, then
Ars(t) always possesses a singularity t9 ¢ {0,1,00} (indeed, infinitely
many singularities), because there always exist infinitely many 7o € H
such that r + s7p is a lattice point of the torus E;, := C/A,,. So for
the proof of Theorem 1.1 we could restrict ourselves to consider only
(r,s) € R®\1Z?. In this case, we introduce the Green function and the

Hecke form to study it.
1.3. Green function and Hecke form. Let G(z|7) be the Green

function on the torus E,:

{ AG(Z\T) = 00(2) — 7 In By,

(1.13) Jg G(zlr)dz AdZ =0,

where 0 is the Dirac measure at 0 and |E;| is the area of the torus E;.
We recall the analytic description of G(z|7) in [23]. Recall the theta
function 9 := 1, where

= 1o . ‘
191 (z; 7') E— Z (_1)n€(n+§)27rm—e(2n+1)mz‘

Then the Green function is given by

m z)?
(1.14) G(z|r) = —%log [9(z; 1) + (;Imi' +C(7),
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where C(7) is a constant so that fETG = 0. Recall that (1) =
2¢(%|7), i = 1,2, are quasi-periods of ((z|7). Using (log¥). = ((z)—n12
and the Legendre relation njws — now; = 27i, we have

(1.15) —4n G (2[7) = ((2]7) = rm(T) — sma(7),

where z = r + s7 with 7,s € R. As mentioned before, {(r + s7|7) —
rm (1) — sn2(7) = 0 in H whenever (r,s) € £Z2 \ Z2. Thus for (r,s) €
R?*\172, (1.15) shows that r + s7 is a non half-period critical point of
G(z|7) (we call such critical point a nontrivial critical point) if and only
if {(r + s7|7) — rm1(7) — sma2(7) = 0. Naturally, we ask the question:
How many nontrivial critical points might G(z|T) have? Note that the
nontrivial critical points must appear in pair because G(z|7) is an even
function in z. This question was answered in the following surprising
result:

Theorem A. [23] For any torus E;, G(z|T) has at most one pair of
nontrivial critical points.

Theorem B. [24] Suppose that G(z|T) has one pair of nontrivial crit-
ical points. Then the three half-periods are all saddle points of G(z|),
i.e., the Hessian satisfies det D*G(“%|7) <0 for k=1,2,3. !

For any (r,s) € R*\1Z?, we define Z = Z, ; by
(1.16) Zys(1) == C((r + s7|T) —rmi (1) — sma(1), V7 € H.
Clearly Z,, is a holomorphic function in H. If (r,s) is an N-torsion
point, i.e., (r,s) = (%,%) with 0 < kj,ky < N and ged(ky, ko, N) =
1, it was proved by Hecke in [15] that Z,4(7) is a modular form of
weight 1 with respect to I'(V) = { A € SL(2,Z) | A = I (mod N) }.
This modular form is called the Hecke form in [22]. Indeed, it is the
Eisenstein series of weight 1 with characteric (r,s) if (r,s) is an N-

torsion point. Following [34, p.59], the Eisenstein series of weight 1 is
defined by

€Y (7, 5k, ko) := (Im7)* > (mr +n) Ymr +n| %,

(m,n)

where (m,n) runs over Z? under the condition 0 # (m,n) = (ki, k2)
mod N. It is known that &) (7, s; k1, ks) is a meromorphic function in
the s-plane and holomorphic at s = 0. Set & (7; k1, k) := &N (7,0; k1, k2).
By using the Fourier expansions of both Z, (1) and & (7; k1, ka) (see
[34, p.59] and [9, p.139]), we have
(1.17) Zys(T) = NEY (11 k1, ko), if (r,8) = (&, %2) mod 1.
!Theorem B is used in the proof of Theorem 1.2 (ii) to be stated later. After
establishing Theorem 1.2, we have a stronger version of Theorem B: det DQG(WT’“\T)

< 0 for k =1,2,3 if G(z|7) has one pair of nontrivial critical points; see Proposition
6.2 in §6.
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Hence, (1.15) yields that G(z|mp) has a critical N-torsion point %—i—%m
with N > 3 if and only if &N (10;ky,ke) = 0.

Now we see the connection of the Hecke form with the solution p; s(7)
(or A\rs(t)) of (1.7): Z, s(7) appears in the denominator of the RHS of
(1.8). When (r, s) € R?\3Z?, the formula (1.8) implies that ¢, is a type
0 singularity, i.e., Ay s(t9) = oo if and only if Z, s(19) = 0, tg = t(19), or
equivalently, the Green function G(z|79) has a nontrivial critical point
7+ s79. By Theorem A, it means that G(z|ry) have exactly five critical
points in the torus Er;: <, %2, %* and &(r+ s79). This connection and
(1.8) together with the Painlevé property say that the Eisenstein series
&N (7; k1, k2) of weight 1 has only simple zeros; see Theorem 4.1. The
simplicity of zeros was also proved by Dahmen [7] as a consequence of
his counting formula of algebraic integral Lamé equations by the method
of dessins d’enfants. In §7 we will discuss the position and the number
of those zeros of &V (9; k1, k2).

Recall the group action of SL(2,7Z) on the upper half plane H:

, ar +b _<a b

T:/}/.T:iCT—i_d’ c d>€SL(2,Z)

Then we have the transformation law (see (4.4) in §4):
(1.18) Zw (1) = (c1 +d) Z,5(T) where (s',7) = (s,7) -y 1.

From here, we see that G(z|7’) has five critical points whenever G(z|7)
has five critical points. Let M; := H/SL(2,Z) and

Q5 := {7 € M | G(z|7) has five critical points},
Q3 := {7 € M | G(z|7) has three critical points}.

Then we have Q3 U Q5 = My by Theorem A. Moreover, from the proof
of Theorem A in [23], we know that Q5 C M is open and 23 is closed.
In this paper we determine the geometry of 23 and (25 as conjectured
in [23]:

Theorem 1.2 (Geometry of Q3 and 25).

(i) Both Q5 and Q3 = Q3 U {oo} are simply connected in My = S
(i) C = 905 = 0Q3 = St. C\{oo} = R is smooth. It consists of
points T so that some half-period is a degenerate critical point of

G(z|7).

The proof is given in §5 and §6. We actually prove a stronger result
on 0€25: For any 7 € 0{25, there is only one half period whose Hessian
det D2G vanishes.

Theorem 1.1 is clearly closely related to the following question: What
is the set of pairs (r,s) such that Z, (T) has no zeros? We should write
an alternative form of (i) in Theorem 1.2 to answer this question. We
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Degenerate curve
forw_3/2 /

| Degenerate curve
\ forw_2/2

08|

/ S VDegener
<3 forw_1

Figure 1. The lifted domain Q5 C Fy of Q5 is the do-
main bounded by the 3 curves corresponding to the loci
of degenerate critical points.

note that the following two statements hold:

(1.19) Zys(T) = £ 2 o(1) == (r,5) = £(r',s') (mod Z?),

(1.20) Ms(T) = Ao o (T) <= (r,8) = £(+',8')  (mod Z?).

The statement (1.19) is trivial while (1.20) was proved in [6]. From both
(1.19) and (1.20), we could assume (r, s) € [0,1] x [0, 3]\1Z2. Then (i) of
Theorem 1.2 can be stated more precisely. For this purpose, we consider

(1.21) Fy={r€H|0<Rer <1, |r—3>1}

It is elementary to prove that Fy is a fundamental domain for I'g(2)
(c.f. Remark 5.1). Notice that Fp is one half of the fundamental domain
of I'(2). The following theorem will imply (i) of Theorem 1.2.
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Theorem 1.3. Let (r,s) € [0,1] x [0, 3]\3Z%. Then Z, 4(7) = 0 has
a solution T € Fy if and only if

(r,s) € Do :={(r,s) |0<r,s< %, r+s5>3}
Moreover, the solution T € Fy is unique for any (r,s) € Ng.

We will see that Theorem 1.1 is a consequence of the non-existence
part of Theorem 1.3 in §5. Indeed, the existence part of Theorem 1.3
has applications as well; see the next subsection, where we will discuss
the singular points of a real solution A(t).

1.4. Real solution. It is well known that Painlevé VI governs the
isomonodromic deformations of some linear ODE. In the elliptic form
it is convenient to choose the ODE to be a generalized Lamé equation
(c.f. (2.4)). A solution A(t) of PVI1 -1 1 3y is called a real solution if

its associated monodromy of the gerferzliszgd Lamé equation is unitary.
In [6] it was proved that a solution A(t) is a real solution if and only
if A(t) = A\.s(t) for some (r,s) € R*\3Z% We call such a solution of
PVI( 12118y real because any solution with unitary monodromy repre-
sentation must come from blowup solutions of the mean field equation;
see [6]. We remark that real solutions do not mean ”real-valued solu-
tions along the real-azis of t”. Indeed, for (1.7) there are no real-valued
solutions; see the discussion in Appendix A.

The reasons we are studying real solutions are: (i) any algebraic
solution is a real solution; (ii) any real solution is smooth for t € R\{0, 1}
(see [6]); (iii) any real solution has no essential singularity even at 0,1

and oo (see Appendix A).

It is known (see §2) that t(7) = % maps any fundamental do-
main of I'(2) one-to-one and onto C\ {0, 1}. Then by the transformation
(1.3), we see that any solution A(¢(7)) is single-valued and meromorphic
whenever 7 is restricted on a fundamental domain of IT'(2). In this pa-
per, a branch of a solution A(t) to (1.2) means a solution A\(¢(7)) defined
for 7 in a fundamental domain of T'(2) (e.g. F5 given by (2.1)).

Recall a singular point to ¢ {0, 1, 00} of A\(¢) means A(to) € {0, 1,9, 00}.
Denote C1 = {t| Im¢ = 0}. Then for real solutions we have:

Theorem 1.4. Suppose A(t) is a real solution. Then any branch
of A(t) has at most two singular points in C\ {0,1}, and they must
be different type singular points if the branch has exactly two singular
points. Furthermore, the set
(1.22)

00— {t e C_ |t is a type O singular point of some real solution}

1s open and simply connected and 89(,0) consists of three smooth curves
connecting 0,1, 00 respectively.
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REMARK 1.5. Theorem 1.4 shows that for each k£ € {0,1,2,3}, any
branch of a real solution has at most one type k singular point in
C\{0,1}. Theorem 1.4 will be proved in §6, where we will see that, the

curve of 8(2(,0) connecting oo and 0 (resp. connecting 1 and oo, connect-
ing 0 and 1) is the image of the degenerate curve of - (resp. %, %)
of Green function G(z|7) in Fy under the map ¢(7). Similarly, we can
define

(1.23)
ng) :={t € C4 | tis a type k singular point of some real solution}.

Then % = 0@ and 0 = 0 = (¢t € 09} for k € {1,2,3},
and any real solution is smooth in (C\(Q(_O) UQS?) U{0, 1}), which consists

of three connected components that contain (—o0,0), (0,1) and (1, +o00)
respectively. See the proof in §6.

1.5. Algebraic solution. A solution A(t) to PVI is called an algebraic
solution if there is a polynomial h € C[t, z| such that h(t, A(t)) = 0. It is
equivalent to that A(¢) has only a finite number of branches. By our clas-
sification theorem for (1.7), A(t) is an algebraic solution of PVI 1 —1 1

87 8 8’8

if and only if A\(t) = A\, s(¢) for some (r,s) € Qn with N > 3, where

(1.24) Q= { (% %2) ‘ ged(ki, ko, N) = 1,0 < k1, ks < N — 1}

is the set of N-torsion points of exact order N. The classification of
the algebraic solutions for PVI(1 113y could be deduced from the

AR
Bécklund transformation and Picard solutions, as shown in [28]. It

is therefore natural to ask the following question:

Is any singular point to of an algebraic solution A(t) an algebraic
number? Is the lifting o of to a transcendental number?

The first question is equivalent to asking whether the j-value of any
zero of &V (7; k1, ko) is an algebraic number. Here j(7) is the classical
modular function, the j-invariant of 7, under the action by SL(2,Z);
see (1.25) below.

This question can be answered easily from the aspect of Painlevé VI or
from the g-expansion principle in the theory of modular forms (c.f. [20]).
It is well known from the addition theorem of g function that there is a
polynomial ¥y € Z[z,y, g2, g3] such that if (z,y) is an N-torsion point
of the elliptic curve y? = 423 — gox — g3, then Wy (z,y) = 0. The degree
of Uy is N2271, and y appears only with odd powers in ¥y (z,y) if N
is even; y appears only with even powers in ¥y (x,y) if NV is odd. See
[17, p.272].

Now we come back to (1.9) and (1.11). Suppose that A(t) = 5\,,1,1,2 (t)
is a solution of PVI(070707 1, where (v1,12) is an N-torsion point. Then

by the above result and the formulae for é; := p(w’“T(t)kul (t),wa(t)) (here
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w3 = wy + we, see [28]):

. 1+t 1+t t+1
61:_7) 1_77 3_t_7)
3 3 3

we see that there is a polynomial P € Q[t, z] such that

P(t,\(t)) = 0.

This polynomial seems too complicated to be computed in general. By
the Backlund transformation, we conclude that for any algebraic solu-
tion A(t), there is a polynomial P € QIt, z| such that P(t,A(t)) = 0.
Hence any singular point ¢ of A must be a root of a polynomial with
integral coefficients, which implies that ¢ is an algebraic number.

Let ¢t = t(7). Recall the classical modular function j(7) of SL(2,Z):

. g2(1)° g2(7)?
1.25 T) = 1728 = 1728 ,
( ) J( ) 92(7_)3 _ 2793(7-)2 A(T)
where go(7) and g3(7) are the coefficients of the elliptic curve E,: y? =
423 — go(T)x — g3(7), and the relation between t(7) and j(7) is

(t2 —t+1)3
t2(t —1)°
So if ¢(7) is algebraic, then j(7) is algebraic.

Another way to see it is to use a general principle from the theory
of modular forms. Since all the coefficients of the Fourier expansion of
Z, s(T) are algebraic numbers, {j(7) | Z, (1) = 0} are algebraic by the
so-called g-expansion principle (c.f. [20]). However, we can prove more.
Let us consider

= ] %

(r,s)EQN
This is a modular form of weight |Q x| := #Q N with respect to SL(2,7Z).
For N > 5, m := % € N and A((N>)§,3 is invariant under SL(2,7Z).
Observe that

(1.26) j =256

_Zlfr,O(T) if s=0,
(1.27) Zrs(T) = —Zp1-s(t) if r=0,
_Zlfr,lfs(T) it r#0,s#0,
which implies that any zero of Z ( )S;? must be doubled. Since i(ﬁ 32;)

has no poles in H, we conclude that
Z(N) (7)
A(T)2m
for some monic polynomial £y of j and nonzero constant Co,,. If NV is

odd, then Z(y)(o0) # 0. Hence <(N3§,,3 has poles of order 2m at 7 = oo,

(1.28) = Cam (In())?
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equivalently, ¢ (7) is a polynomial of degree m = %. If N is even,
then Iy := degfn < m. In any case, we have

Z(wy(7) = ComA(r)*" 2 H(Ga(7)*, A(7))?,

where H(X,Y) is a homogeneous polynomial of X,Y and G4(r) =
92(7)/60 is the classical Eisenstein series of weight 4. By using the ¢-
expansion of Z, (1), we can prove that ¢y (j) has rational coefficients.

Theorem 1.6. For any N > 5 with N # 6, the monic polynomial
In(j) determined by (1.28) has rational coefficients and satisfies
(i) for any zero jo of {n(j), there is an algebraic solution A, s(t),
(r,s) € Qn, such that jo = j(10), where to = t(19) satisfies
Ars(to) = 0o. Conversely, for any algebraic solution A, 4(t), (r,s) €
QnN, if A s(to) = 0o for some ty = t(19), then jo = j(70) is a zero
of {n(j)-
(ii) €n(j) has distinct roots.
(iii) for any N1 # Na, In,(j) and Ln,(j) have no common zeros.
(iv)

lQn| .
(1.29) deg Oy = ﬁ Zfl Njés odd,
S - p(5) if N s even,

where o(+) is the Euler function.

Recall the elementary formulae

(1.30)

i 1(-8) o T (-Y)

p|N, p prime p|N, p prime
Denote the j-value set of zeros of Zy(7) by
J(N) :={j(r) | Zrs(1) =0 for some (r,s) € Qn}.

If N = 3, then |Qn| = 8 and Z()(7) =const-G4(7)?. Thus the zero

T=p:=e3 and J(3) = {0}. By Theorem 1.1 and Lemma 5.2, we see
that J(4) = J(6) = 0. For N > 5, J(N) is just the zero set of ¢x(j).
Note that formula (1.29) also holds for N = 6, which gives degfs = 0,
s0 £(j) is a non-zero constant. This also proves J(6) = (.

The computation of {5 seems to be difficult in general. However,
by applying PVI, it is considerably easier for small N. Here are some
examples:

(L31)  JE) = {0} J(5) = {337}, J(8) = {250},

(1.32) J(7) = {%(—333009 + 175519\/5)} :
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For N =9, the polynomial is

86191391040000000 ,  19885648112869441536

la(i _.:3
00) =0" + —ogTr638671875 0 | 7RS15638671875
 7205712225604271603712

78815638671875
So J(9) = {a,b,b}, where a € R and b ¢ R. Numerically,

(1.33) a~186.3, b~ —639.9+ 285.0 x v/—1.

It seems that except for N = 3, all elements in J(N) are not algebraic
integers. If this would be true, then by a classical result of Siegal and
Schneider, all 7 such that A(¢(7)) = oo for an algebraic solution A(t) are
transcendental. A natural question is how to determine their location
in the fundamental domain F' of SL(2,7Z), where

(1.34) F={r€H|0<Rer <1, |7|>1, |r—1|>1}U{p=e7}.

The above examples show that there is at least one zero of ¢x(j) of
where the corresponding 7 is on the circular arc {7 € H | || = 1}.
Define

Jy ={(r,s)€Qn|2r+s=1and ; <s<1i},
Ji={(r,s)eQn|2r+s=1and 0<s < i}

Then we have the following interesting result.

Theorem 1.7. For any N > 5 with N # 6, {x(j) has exactly #J3,
real zeros in (0,1728) and exactly #Jy real zeros in (—00,0). Further-
more, {n(j) has no zeros in {0} U [1728, 4+00).

Notice that in the fundamental domain F' of SL(2,Z), the corre-
sponding 7 of any positive zero of ¢x(j) is on the circular arc {7 € F
| |7] = 1}; while the corresponding 7 of any negative zero of y(j) is
on the line {r € F' | Rer = }. We can use (1.31)-(1.33) to check the
validity of Theorem 1.7 for small values of N. For example,

I ={G. 5 S5 =0 T ={G D) 7 ={G Dk

F={@GD) I =0 I =G5 Iy =0

The proof of Theorems 1.6 and 1.7 will be given in §7. In §8 we will give
some further remarks about Theorems 1.4 and 1.7. Finally, Appendix
A is denoted to the asymptotics of real solutions at {0, 1,00}, which are
needed in the computation of £x (7).
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2. Painlevé VI: Overviews

In this section, we start with the discussion of Painlevé VI (1.2):

EA L1 LN AN 1 d)
a2 2\\ A—1 X—t dt t t—1 N—t/) dt
AMA—1)(A—1) t—1 t(t—l)]

! 5
2 1) [‘”5%”@—1)2 o2

It is well-known that (1.2) possesses the Painlevé property, which says

that any solution A\(¢) has no branch points and no essential singularities
at any t € C\{0,1}.

2.1. Multi-valueness via single-valueness. The Painlevé property
implies that although a solution A(¢) is multi-valued in C, A(¢) is a single-
valued meromorphic function if ¢ is restricted in Cy = {z = z + iyly =
0}. That means if A(¢) is analytically continued along a closed curve
t =t(e), t(0) =t(1), in C; (or C_), then A(¢(0)) = A(£(1)).

Due to the multi-valueness of a solution of (1.2), it is convenient to
lift solutions and the equation to the universal covering. The universal
covering space of C\{0,1} is the upper half plane H. The covering map
t(r) is given in (1.3), by which, Painlevé VI (1.2) is transformed into
the elliptic form (1.5).

It is elementary that ¢(7) is invariant under the action of v € I'(2),
where

I'2)={A e SL(2,Z)| A = I, mod 2}.
That is ¢(7) = t(7') if and only if 7/ = v -7 = g:ig for some v =
a b

d
Let H* = HU Q, where QQ is the set of rational numbers. Then it is
well known that H*/I'(2) = CP! with three cusp point oo, 0,1 which
are mapped to 1,0,00 by t(7) respectively. As the consequence of the
isomorphism, we have

) € I'(2). Indeed t(7) is the principal modular function of I'(2).

t
t'(7) = %(7) #0, VreH,

namely the transformation ¢(7) is locally one-to-one. Therefore, t(7)
maps any fundamental domain of I'(2) one-to-one onto C \ {0, 1}, and
any solution A(#(7)) is single-valued and meromorphic whenever 7 is
restricted in a fundamental domain of I'(2). As pointed out in §1,
throughout this article, a branch of a solution A\(t) always means a
solution A(¢(7)) defined for 7 in a fundamental domain of T'(2).
The fundamental domain Fy of I'(2) is
2}

(21) FQ:{T’0§R67—<27 ’T_%’2%7 ’T_%’>l
) < e3(1) <

When 7 € iR", ex(7) are real-valued and satisfies ea(7
e1(7) (see e.g. [6]). From here, it is easy to see that t(iRT) = (0,1),
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where ¢(ico) = 1 and ¢(i0) = 0. Here we have used lim,_ o €2(7) =
lim; 00 e3(7) = —%2 (see §6). Furthermore, we could deduce from
above that for any 7 € I, ¢(7) € R if and only if 7 € iRt U {7 €
H||r—3=3}u{reH]| Rer =1}.

By the formula (1.8), we see that p(p(7)|7) is always a single-valued
meromorphic function defined in H. However, as a solution of (1.7), p(7)
has a branch point at those 7 such that p(r) € E;[2], where E,[2] :=
{%#10 < k < 3} is the set of 2-torsion points in E;. The single-valueness
of p(p(7)|r) is one of the advantages of the elliptic form.

Recalling (1.21) and (2.1), Fp is a half part of F,. Then it is not
difficult to prove that the transformation ¢(7) maps the interior of Fy
onto the lower half plane C_, and ¢(7) maps F»\Fy onto C,; see §6.
Hence it is convenient to use 7 € Fy when a branch of solution A(t) with
t € C\ {0,1} is discussed. Different branches of A(t) can be obtained
from (1.8) by considering 7 in another fundamental domain of I'(2).
2.2. Isomonodromic deformation. It is well known that Painlevé
VI governs the isomonodromic deformation of some linear ODE. See
[19] in this aspect. For the elliptic form (1.5), it was shown in [5] that
it is convenient to use the so-called generalized Lamé equation (GLE):

+p(z—p)) + A(C(z+p) =((z—p)) + B
Suppose n; ¢ %—l—Z. Then p(7) is a solution of (1.5) if and only if there
exist A(T) and B(7) such that GLE (2.2) preserves the monodromy as
7 deforms. The formula to connect parameters of (1.5) and (2.2) is:

(2.3) aj=3(m;+1)?% j=0,1,2,3
See [5] for the proof. The advantage to employ GLE (2.2) is that for
some cases, the monodromy representation is easier to describe. For

example, let us consider n; = 0 for all j. Then the elliptic form of PVI
is (1.7), and GLE is

24) ¥ =[§(p(z+p) +p(z = p)) + AC(z +p) = ¢(z = p)) + Bly.
For any p ¢ E.[2], £p are the singular points of (2.4) with local ex-
ponents —% and % We always assume that +p are apparent singu-
larities. If (r,s) € CQ\%ZZ and p(7) = prs(7) is the solution given
by (1.8), then we proved in [6] that the monodromy representation
p:m(E\{£p}, q) — SL(2,C) of GLE (2.4) is generated by

6727”'5 0 e?ﬂ'ir 0
IO(’Y:I:) = _IZa p(ﬁl) = < 0 627ris ) ) P(EZ) = < 0 —2mir ) )

Y.

e

where ¢p is a base point, v+ € w1 (E-\{£p}, qo) encircles £p once and
01 2 € m(E-\{£p}, qo) are two fundamental circles of the torus E; such
that yy- = ¢; lﬁflfgfl. In particular, the monodromy representation
p is completely reducible.
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2.3. Béacklund transformation. In [30], Okamoto constructed the
so-called Béacklund transformations between solutions of Painlevé VI
with different parameters. Indeed, this transformation is a birational
transformation between the solutions of the corresponding Hamilton-
ian system, or equivalently, a birational transformation of (\(¢), N'(¢))
together. Since A(t) and N (t) are algebraically independent generally
(otherwise, Painlevé equation would be reduced to a first order ODE),
the Backlund transformation is not a birational transformation of the
solution A(¢) only.

For example, it is known that a solution A(t) of PVI( 1-11 3 can be
8’ 8 8’8

obtained from a solution A(t) of PV 0,0, 1 by the following Béacklund
transformation (cf. [36, transformation sz in p.723]):

(25)  A(R) =A®) + 2;@) at) = t(tzg(l;ill_)&(:)l)-

As mentioned in the Introduction, for PVI(()’O?O’ 1, all its solutions are
Picard solutions:

t+1
37
where (v1,12) € C*\3Z? and wi2(t) are given by (1.9). See [28, 13].
In principle, Hitchin’s formula (1.8) could be obtained from Picard so-
lution (2.6) via (2.5), as mentioned by [28] and some other references.

(26)  A() = Auyan(t) = p(vin (t) + vawa(t) | wit),wa(t)) +

However, the computation of X (t) via (2.6) is actually very difficult, and
in practice, it is not easy at all to obtain Hitchin’s formula from Picard
solution (This is why we can not find a rigorous derivation of Hitchin’s
formula from Picard solution in the literature). In a previous paper [6],
we gave a rigorous derivation from Hitchin’s formula to Picard solution.

In the literature, researchers often restrict the study of Painlevé VI
to special parameters via Béacklund transformations. This leaves the
impression that the theory for different parameters may be much the
same. However, this turns out not to be completely true in general.
For example, the expression (1.12) shows that ;\(t) is smooth for all
t € C\{0,1} if and only if (v1,15) € R*\3Z% But this assertion is
obviously false for PVI( 12113y

However, the Béacklund transformation is useful to discuss branch
points and essential singularities, which are preserved under the Backlund
transformation in general. For the discussion of branch points for real
solutions, please see Appendix A.

3. Riccati solutions

First we review the classification theorem of solutions to the ellip-
tic form (1.7) due to the associated monodromy representation of GLE



GREEN FUNCTION AND PAINLEVE VI EQUATION 17

(2.4). Clearly solutions expressed in (1.8) does not contain all the so-
lutions. Indeed, we have the following classification theorem proved in
[6]. In this article, when we talk about the monodromy representation,
we always mean the one of GLE (2.4).

Theorem C. ([6]) Suppose p(T) is a solution to the elliptic form
(1.7). Then the followings hold:

(i) The monodromy representation is completely reducible if and only
if there exists (r,s) € C2\3Z2 such that o(p(T)|7) is given by
(1.8).

(ii) The monodromy representation is not completely reducible if and
only if
1) ap=2eDDoalm , aln Zaln
ea(1) — e (1) ea(T) — e1(7)

satisfies one of the following four Riccati equations:

dr 1

(3.2) i _mw — 2\ + 1),
(3.3) % _ 2t(t1_1)(x2 — oA+ 1),
(3.4) (e G!

(3.5) dX ! (A2 42(t — 1A —1).

dt  2t(t—1)

It is known that Riccati equations can be transformed into second
order linear equations (such as the Gauss hypergeometric equation).
Hence, this classification shows that once the associated monodromy
representation is not completely reducible, then solution A(¢) can be
expressed in terms of previously known functions, i.e., it does not define
new transcendental functions.

Now we discuss the solutions of these four Riccati equations, and the
results in this section will be used to prove Theorem 1.1 in §5. In [6] it
was proved that these Riccati solutions can be parameterized by CP!.

Theorem D. ([6]) Let A\c(t) = %.

(i) Ac(t) solves the Riccati equation (3.2) if and only if there exists

constant C € CP' such that

m(r) = Cm(r)

(3.6) plpc(n)It) = ——5—
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(ii) For C € CP', we let
_ex(Cm(r) —ma(7) + (£ —262)(C — 1)
(3'7) {{J(pc(T)’T) - C771(T) — 772(7_) ¥ €k(C _ 7_)
Then Ac(t) satisfies the Ricatti equation (3.3) ifk =1, (3.4) ifk =

2, (3.5) if k = 3. Furthermore, such \c(t) give all the solutions
of these three Riccati equations.

REMARK 3.1. The formula (3.6) was previously obtained in [16, 35]
and (3.7) was obtained in [35], where there does not contain the relation
between A¢(t) and Riccati equations. For (3.6), it is easy to see that
if InC > 0, then Ac(t) has singularities (at least a pole) in C\{0,1}.
However, it is not so obvious to see whether A\¢(¢) has singularities or
not if ImC < 0. In §6, we will exploit formulae (3.6) and (3.7) to
prove that any solution of the four Riccati equations has singularities

in C\{0, 1}.
A simple observation is that C'= oo in (3.6) gives that
_m(r) +e(r)
ea(7) — ex(7)
1115 Since Aoo(t), Aoo(t) — 1 and Ao (t) —t can

-1
88’8
have only simple zeros (cf. [19, Proposition 1.4.1]), a direct consequence
is

(3.8) Aoo(t) =

is a solution of PVI(

Theorem 3.2. For fized k € {1,2,3}, the followings hold:
(i) Any zero of m(7) + ex(T) must be simple.

(i)
69 L) +en(r) ) # o for any 7 € .

es (1)+7ex(T)
(i) e

Proof. Recall

is a locally one-to-one map from H to CU {oo}.

t=t(r) = M'
ea(7) —ex(7)

Since /(1) # 0 for all 7 € H, the assertion (i) follows readily from the
fact that Aso(t) (for k = 1), Aoo(t) — 1 (for k = 2) and Ao (t) — ¢ (for
k = 3) can have only simple zeros.

For the assertion (ii), we note from the Legendre relation and (3.6)
that .
m(r) +ei(r) — 2%

ea(7) — ex(7)

Fix any 79 € H. If 7y is a simple zero of 1, + ey, then d%((m +
1)) |r=r, = 00. So it suffices to consider the case 11 (7o) + e1(70) # O.

Ao(t) = —
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Then by letting
2mi
m (7o) + e1(r0)’
we see that tg = t(7p) is a zero of A¢(t). Since A¢(t) has only simple
zeros, we have

C=r—

d 271
d7<m+w1—7_c>pmh%a

This, together with n1(79) + e1(70) — Tfiic = 0, easily implies d%((nl +

1) Y)|r=r, # 5=. This proves (3.9) for k = 1. Similarly, by considering
Ac(t) —1 and Ac(t) —t, we can prove (3.9) for k = 2,3. This proves the
assertion (ii).

Finally, using the Legendre relation leads to

no(T) + Ter(r) o 2mi
m(r) + ex(7) m(r) +ex(r)
Therefore, % is locally one-to-one. q.e.d.

REMARK 3.3. In §6, we will see that the Hessian of the Green function
G(z|r) at z =% = %:

dmmGQﬂz—aﬂmmCﬂﬂ+”ﬂﬂ>

m(r) + ei(7)

for some C(7) > 0, provided that 7(7) + e1(7) # 0. The local one-
n2(r)+Tei(r)
m (1) +ei(r)
where the half-period %' is a degenerate critical point of G(z|7). See

§6. Furthermore, we will prove a stronger result that 71(7) + e1(7) has
only one zero in any fundamental domain of I'(2); see Theorem 6.6.

to-one of the map is important for studying the curve in H

For solution pc(7) of the Riccati equations given in Theorem D, we
let 7/ =~-7and C' =~-C for v € SL(2,Z). By using (4.2)-(4.3) (see
§4) and the formula of @ (po(7)|7), it is easy to prove

(3.10) plpcr (7)) = (e + d)*p (pe(7)IT) -

Remark that per(7') solves the same Riccati equation as po(7) for all
v € SL(2,Z) if and only if po(7) satisfies the first Riccati equation
(3.2). If po(r) satisfies one of the other three equations (3.3)-(3.5),
then por(7') solves the same equation as po(7) provided v € T'(2) (use
(4.8) in §4). Then we have the following result, which can be proved by
the same argument of Proposition 4.4 in §4, so we omit the details of
the proof here.

Proposition 3.4. Let A\¢(t) and A¢/(t) solve the same one of the
four Riccati equations (3.2)-(3.5). Then they give the same solution to
PVI(1 113 if and only if C' =~ -C for some v € T'(2).

8

11
81788
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We conclude this section by a remark. In [28], Mazzocco classified
solutions of PVI (5, 1) /2,0,0.1) (write PVI,, for convenience) for p €

2 + Z. Notice that PVI1 is precisely PVI(OOO 1y and PVI, can be
transformed to PVL via Backlund transformatlons Mazzocco proved
for u € +Z and p 7& 5, 8ay ji = 1 for instance, PVI - S has two types of

solutlons one is so-called Picard type solutions, Wthh is obtained from
Picard solutions (2.6) via Bécklund transformatlons the other one is
so-called Chazy solutions, such as

X(t) _ %{[wg + vwi + 2t(wh + vw )2 — 4t(wh, + Vw/1)2}2
(w2 + vwr ) (wh + vw))[2(t — 1) (wh + vw]) + w2 + vwi]ws + vwi + 2z (wh + vw)]

(where v € C), which will turn to be the singular solutions Ag(t) =
0,1,¢ or co of PVI: via Backlund transformations. Here together with

2
Theorem C and our argument in §2, in principle, solutions of the four
Riccati equations could be obtained from Chazy solutions of PVI-1 via

2
Béacklund transformations, but the process would be too complicated to
be computed.

4. Completely reducible solutions

4.1. Simple zeros of Hecke form. By Theorem C in §3, any solution
A(t) of PVL1 -1 1 3y with a completely reducible monodromy represen-
8’ 8 78’8

tation can be expressed by (3.1):

N - 2O =) | et —a)

62(7')—61(7') 62(7’)—61(7’)7

where p(p(7)|7) is given by (1.8) with some (r,s) € C*\1Z?. From
(1.8), we have the following application of the Painlevé property.

Theorem 4.1. Suppose (r,s) € (CQ\%Z2 is a pair of complex con-
stants. Then the Hecke form Z, (1) = ((r + s7|T) — (rm1(7) + sn2(T1))
has only simple zeros.

Proof. First, we note that the situations r+s7 € E;[2] and Z, 4(7) =
0 can not occur simultaneously. If not, then there are 79 and m,n €
Z such that r + s7o = m + n7y + %, where w is any lattice points
{0, w1, w2, ws = wi+wsa}, and also ((r+s19) = rn1(70)+512(70). Without
loss of generality, we might assume w = w;. The other cases can be
proved similarly.

The second identity also implies

3m(10) = (%) = ¢ ((r —m) + (s — n)7o)
= ((r 4+ st9) — mn1(m0) — nn2(70)
= (r—m)m (7o) + (s — n)na2(70).
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Therefore, we have

(r—=m=—3)+(s—n)r =0,

which implies r —m — % = 0 and s = n because matrix < 1 4 >
m(r) n2(7)

is non-degenerate for any 7 due to the Legendre relation. Obviously it
contradicts to the assumption (r, s) & $Z>.

Now suppose Z,(19) = 0, which implies p(p(r9)) = oo by (1.8)
because ¢'(r + s79) # 0. Consider the transformation 79 — tg via
(3.1). Then by the Painlevé property, we know that A(¢) has a pole at
t =tp ¢ {0,1,00}. By substituting the local expansion of A(¢) at t = g
into (1.2), it is easy to prove that the order of pole at ¢ = tg is 1, which

implies the zero of Z, 5 at 7 = 79 is simple. q.e.d.
REMARK 4.2. If (r,s) is an N-torsion point, i.e., (r,s) = (%, %2) for

positive integers k;, N > 3 and gcd(kq, k2, N) = 1, then the function
Zy.s(7) is a modular form of weight 1 with respect to the modular group
I'(N). In this case, Theorem 4.1 was proved in [7], where the method
of dessins d’enfants was used. For a real pair of (r,s), we will give an
alternative proof in §5.

Since a; = % for 0 < ¢ < 3, it is easy to see that for 1 < k£ < 3,

Wi

p(7) + % is also a solution of the elliptic form (1.7) provided that p(7)
is a solution of (1.7). Then we have the following result, which will be
used in §5.

Proposition 4.3. Given (r,s) € C?\ 3Z?, we define
(r—3.5) i k=1,

(41) (Tkvsk) = (7’,8 - %) Zf k=2,
(r—3,s—3) if k=3.

Then prs(T) + 5 = £pry s, (7) in Er.

Proof. It was proved in [6] that (1.8) is equivalent to

C(r+ 87+ pps(7)) + (1 + 7 = prs(7)) = 2(rm(7) + sma2(7)) = 0.
Form here, we easily obtain

Cr + s+ (Pr,s(7) + 58)) + C(re + sk — (Prys(7) + %55))
= 2(rpm (1) + spm2(7)) = 0,
and so
p(pr,s(1) + F7)
o (1, + skT|7T)

2(C(rw + sIT) — (rEm (1) + sm2(7)))

=p(ry + sg7|7) +

:p(pﬁmsk (T)|T)
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This completes the proof. q.e.d.

We call a solution to (1.5) a real solution if the monodromy group of

its associated GLE (2.2) is contained in SU(2). For the case a;j = ,

p(7) is a real solution if and only if it is given by (1.8) for some real pair
(r,s) € R2\1Z2.

4.2. Modularity. In this subsection we study the modularity property
of solutions to PVI1 -1 1 3). Consider the pair (z,7) € Cx H and

8278 8’8

z =1+ s7. For any v = <CCL Z

on Cx Hby v(z,7) = (Fg,7 7) = (g Z‘;st) Then
CTi 7= Z:—j; ' 4 s'7', where 7/ = -7 and (s',7) = (s,7) -y

) € SL(2,Z), conventionally v can act

Using
42) o (CTid T'> = (cr+d)P?p(elr), = 2‘:2,
we derive
(gl ) = e+ e,
and so

() 12(7)
(4.3) (77? / > (et +d)y - (77?(7)> .
Set (r, 8)-(1m(7), 72( T—?“m( )+sm2(7). Then (', 8')-(m1 (7), m2(7")) " =
(er +d)(r,s) - (m(7 ) n2(7))" and so
(44) Zr’,s’ (T,) = (CT + d)Zrys(T).
Together (4.2) and (4.4), we obtain

(4.5) p( '8! (T/)’T/) = (em + d)2@ (prs(T)|T) = 9 (167:"84(—76)1

/

where (' + s'7/,7') = v(r 4+ s7,7). Indeed, by a direct calculation, we

Prs(T) g a function of 7/ is a solution of the elliptic

cT+d
form (1.7) since p,s(7) is a solution of (1.7). Particularly, pl;,—:(—;) =

+p, ¢ (7") mod A,s. Recall that A, s(t) is the corresponding solution of
(1.2), namely

could prove that

P(pr,s(7)[7) — ex(7)
ea(7) —e1(r)

Then the above argument yields the following result.

(4.6) Ars(t) =

Proposition 4.4. X\, (t) and A\, ¢ (t) belong to the same solution of
PVI if and only if (s,7) = (s',7') -ymod Z? by some v € T (2).

1 =113)
8788’8
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Proof. For the sufficient part, assume (s,r) = (s/,7) - ymod Z? by
some v € I (2). Recall from [6, Lemma 4.6] that
47)  pprs(1)I7) = 0 (p75(7)|7) <= (r,5) = £(7,3) (mod Z?),
which implies that all elements in 4(r, s) + Z? give precisely the same
solution A, 5(t). Hence we may assume (s,r) = (s',7') - v by replacing
(s,7) with some element in (s,r) + Z? if necessary. Let {; C H be a
path starting from any fixed point 79 to 7, = v - 79. Then ¢ := t({p)
€ m (CPM\{0, 1, 00}, t0), where ¢ (1) = % and tg = t(19). Let
U C H be a small neighborhood of 7y and denote V' = ¢(U). Since
P(pr s (T)|7) — e1(7)

ea(1) —e1(7)

so the analytic continuation £*\,s o (t) of A\ ¢ (t) along ¢ satisfies

)‘r’,s’ (t) = TeU,

Ay (1) = 2O (DT —ealyem) -y
’ a7 7) —er(7-7)
On the other hand, (s,r) = (s/,7') - v gives (r' + §'7',7') = v(r + s7,7),
a b
d

(4.8) ej(vy-7) = (e +d)%e;(7), j=1,2,3.
Then it follows from (4.5) and (4.8) that

where 7/ = v - 7. Moreover, v = > e I'(2) gives

) = p(pr s (v 7))y -7) —eily-7)
e2(y-7) —ei(y-7)
9(prs(7)|T) — e1(r)

= S T = e b)), TEU,

(4.9) )\71751 (t(7 T

namely
(4.10) Ars (t) = f*)\r/,s/ (t), teV.

Conversely, assume that A, s (t) and A\,v o (t) represent different branches
of the same solution in a small neighborhood V of to € CP'\{0,1, cc}.
Then there is £ € 71 (CP'\{0, 1, 00}, to) such that (4.10) holds. Fix any
70 € H such that ¢y = ¢ (r9) and let 1 (¢) C H denote the lifting path
e3(r)—ei(r)
ea(1)—e1(7)
Denote its ending point by 7). Then ¢(7)) = to = ¢(7), which implies
Z € I'(2). Let U be a neighborhood
of 19 such that ¢(U) C V. Then (4.6) and (4.10) give (4.9). Define
(8,7) :== (&',7") - v, then (' + §'7',7") = ~(F + $7,7), where 7/ =~ - 7,
and so (4.5) gives

(4.11) oo, (v 7|y - 7) = (er + d)* p(prs(7)|7).

of ¢ under the map ¢ (1) = such that its starting point is 7.

T, = v - 7o for some v =
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Substituting (4.11) and (4.8) into (4.9) leads to

©(prs(T)|7) = @ (pra(7)|7), T €U.

Again by (4.7) we obtain (r, s) = (7, §) mod Z2, namely (s,7) = (s',7/)-
(£7) mod Z? where +v € T'(2). q.e.d.

Define for any N-torsion point (r,s) = (%17 %2) €Qn.
L) = {veSL2,Z)|(s,r) -7 = =£(s,T) modZQ} )

Then p(prs(7)|7) is a modular form of weight 2 with respect to T'(,. 4
in the sense

p(pr,s(r)|7') = (er + d)? p(prs(T)I7), Vv € Ty ).

For example, if » = 0, then
Ui = {’Y = (Z Z) € SL(Q,Z)’ b=0,a= ilmodN} )

5. Geometry of (5

In this and the next sections, our main purpose is to prove Theorems
1.1-1.4. In these two sections, we mainly consider 7 € Fy, where Fy C H
is the fundamental domain for I'g(2) defined by

(5.1) FO::{TGH’OSRGTSI,’T—%‘Z%}.

REMARK 5.1. Recall that
a b
To(N) = {v— ( d) e SL(2,2)

It is well known that the modular curve Xo(N) = H/T'((IV) parametrizes
the pair (E,C) of an elliptic curve E together with a cyclic subgroup
C C Ewith |C| = N. For N = p being a prime, [SL(2,Z) : I'y(p)] = p+1
and a fundamental domain for I'y(p) is given by

F=FUSF)UST(F)U---USTP }(F),

c=0 (mod N)}

1 01
for SL(2,Z).
For N = p = 2, X((2) parametrizes (E,q) with ¢ a half period. An
alternative choice of fundamental domain is Fy = FUTS(F)U(TS)?(F)
(notice that (T'S)? = —Id and T'S fixes p = e™/3).

Recall the Hecke form
Zrs(1) = ((r + s7[7) — (rma(7) + sm2(7)),

which is doubly periodic in (r,s) € R2. It is related to the Green
function on E; via Z, 4(17) = —470,G(r + s7|T).

where S = (0 _01>, T = (1 1) and F is any fundamental domain
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Recall also the ¢ expansion for ¢ with ¢ := e>™":
1+ e27riz
C(zlT) =m(T)z — mm
(52) 271'12 n 6727rizqn
— 2m Z ( - - >
1— €2mz n 1— e—27mzqn

(This can be deduced form the Jacobi triple product formula for theta
function ¥ and the relation between 9 and o, see e.g. [38].)

We use the Legendre relation m7 — 12 = 274 and the above ¢ expan-
sion to compute the ¢ expansion for Z:

1+ e27riz
1 _ e27riz

2mz n e—27rzzqn
— 2m E 5 - 5 ,
—e mz n 1—e— mzqn

where z = 1 4 s7. See also [9, 15].
For fixed s € [0,1), (5.3) then implies that

Zys(T) = 2mis — mi
(5.3)

2mi(s —3) if s#0,

T—00 T cot T if s=0.

(5.4) lim Z, (1) = {

By the periodicity, the limit is a discontinuous linear function with
discontinuity at s € Z.

To compute the limit as 7 — 0, we use the transformation 7 — S-7 =
—1/7, and (4.4) yields

(5.5) Zrs(=1)7) =T7Z_5,(T),
and for r € (0,1),

(6  Znalr) = 2 ()= T (4~

as 7 — 0. For r = 0, a contribution 7 cot ws/T appears as the dominant
term instead. For other r, the value is determined by periodicity.

It is also easy to see that under the translation 7 — T -7 =7+ 1,
(4.4) yields
(5.7) Zys(T+1) = Zpyss(7),

and for r + s € (0,1),

r+o(1))

271
(5:8)  Zrs(1) = Zrios(r=1) = —— (3 = (r+9) +o(1))
as 7 — 1. For r+s = 0, the dominant term is replaced by w cot ws/(7 —
1). For general r 4 s, the value is again determined by periodicity.
We will analyze the structure of the solutions 7 € Fy for Z, 4(7) =0
by varying (r,s). Since half periods are trivial solutions for all 7, we
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Figure 2. Fy = FUTS(F)U(TS)*(F).

exclude those cases by assuming that r, s are not half integers in our
discussion.

For the proof of Theorems 1.2 and 1.3, we need the following result
about the critical points of the Green function G(z|7) if 7 € 0F). Recall
that for 7 € 9Fy N H, E. is conformally equivalent to rectangular tori.

Theorem E. [23] If E; is a rectangular torus, then G(z|7) has only

three critical points, i.e, the three half-periods %¢, k =1,2,3.

Using our language, Theorem E just says that for any (r, s) € R2\%Z2,
Zys(T) # 0 for 7 € 0Fy N H. Based on this, the idea of our analysis is
to make use of the argument principle along the curve 0Fp to analyze
the number of zeros of Z, ; in Fp.

We start with a simple yet important observation:

Lemma 5.2. For any 7 € H,

(i) ¢(3wr + qw2) # 3m + 172

(i) C(Fw1 + gwa) # tm + gm2-
(iii) ¢(Bwi + gwa) # 2m + 3np.
In particular, solution A\, s(t) ofPVI(
(rs) e {(3 1) (G 5) (5 )}

Proof. We will use the addition formula

113
8’8’8

) has no poles provided that

1
87

— = (24 u) + (2 —u) — 2¢(2).
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05—

Figure 3. Triangle region A\ describing all r, s coordi-
nates of p(7). The upper one third is bijective to Q5 C
M.

For (i), we choose z = 1(3w; + w2) = 2w + ws and u = ws. Then

C(z—u) = ((3w1) = $m and ((z+u) = (w1 + 3wa2) = n1 + 37. Hence
(o + Gw2) = Gm + §m) = C(2) = 5L +u) + (2 — )
S @’(%fl + iw2)1 L0,
2 p(gw1 + gw2) — p(gws)

This proves (i).
For (ii), we choose z = %(wl +wy) = %w;; and u = éwg. Then

0% P (b + C(—buon) — 2€(husy)
() —p(u) 72 ‘ ¢
= =3(C(gw1 + gwa) — M — §72)-
This proves (ii).
For (iii), we choose z = fwi + $ws and u = Jwy. Then ¢'(2) # 0 and

0 # ((5wr + gw2) + ((5w2) — 2¢(3w1 + 3w2)
= ((—zw1 — 3w2) + (m 4+ 1m2) + 372 — 2¢(Fw1 + Fw2)
= —3(C(5w1 + 3w2) — 3 — 372)-
This proves (iii). q.e.d.
Now we are in the position to prove Theorem 1.3.

Proof of Theorem 1.3. We separate the proof into three steps.

Step 1. We will show that Z, ;(7) has no solutions if (r,s) & 2.
Indeed, if s,r,r + s # %, then (5.4), (5.6) and (5.8) imply that

Zrs(T) /0 asT— 00,0,1
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respectively. Furthermore, the pole order at 7 = 0,1 is unchanged
among such (r, s)’s.

Thus an extended version of the argument principle shows that the
number of zero of Z, 4(7) is constant in the region

Ag:={(r,s)|r>0,s>0,r+s<i}

By Lemma (5.2) (i), Z1/6,1/6(7) has no solutions. Since (g, 3) € As,
this implies that Z, s(7) has no solutions for any (r,s) € As.
Similarly Z, s(7) has no solutions for (r,s) € O, where

O:={(t,s) |3 <t<land0<s< 3}
This follows from Lemma (5.2) (i) and the fact that (2,1) € O.

Step 2. Z, ;(7) has no solutions if (r,s) & Ap.

Indeed, it follows easily form the argument principle in complex anal-
ysis that the points (7, s) such that Z, s(7) has only finite solutions form
an open set. In particular, by Step 1, for (r,s) € OU Ags, the function
Zys(T) either has no solutions or has infinite solutions (which corre-
sponds to the trivial case r, s € %Z and Z, s =0).

Step 3. In order to conclude the proof of the theorem, by the
same reasoning as in Step 1 we only need to establish the existence
and uniqueness of solution Z,s(7) = 0 in 7 € Fy for one special point
(r,s) € Ag. For this purpose we take (r,s) = (3,1) € Ag.

By an easy symmetry argument (c.f. [23]), Z1 1(7) =0 for 7 = p:=

3’3
e™/3. Conversely we will prove that p € Fp is the unique zero of Z 11
and it is a simple zero. The following argument motivated by [15, 2] is
the only place where the theory of modular forms is used.

Recall

/
Z () =11 Zy 12 (7),
where the product is over all pairs (k1, k2) with 0 < k1, ky < 2 and with
ged(ky, k2,3) = 1. In this case it simply means (ki, k2) # (0,0). There
are 8 factors in the product and in fact Z(3) is a modular function of

weight 8 with respect to the full modular group SL(2,Z). The counting
formula for the zeros of Z3) then reads as

Voo (Z(3)) + %Vz’(Z(:a)) + %VP(Z(?;)) + > wl(Za) = 1%-
PF00,5,p
Since Z%%(p) = Zgg(p) = 0, we have v,(Z(3)) > 2. The counting
formula then implies that v,(Z(3)) = 2 and all the other terms vanish.
Hence 7 = p is a simple (and unique) zero for Z 11 (1) (as well as for

Z2 2(71)).
3’3
The proof of the theorem is complete. q.e.d.
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Corollary 5.3. The set Q5 C M is an “unbounded” simply con-
nected domain.

Proof. Let Qs be the lifting of Q5 in Fyp, i.e.,
Qs = {7 € Fy | G(z|7) has five critical points}.

Theorem 1.3 establishes a continuous map ¢ : (r,s) — 7 from Ay onto
Q5. The map ¢ is one to one due to the uniqueness theorem of extra
pair of nontrivial critical points of Green function G; see Theorem A
in §1. Being the continuous image of a simply connected domain /g
under a one to one continuous function ¢ on R2, Q5 must also be a
simply connected domain. (This is the classic result on “Invariance of
Domain” proved in algebraic topology. In the current case it follows
easily from the inverse function theorem since ¢ is differentiable.)

It is also proven in [23] that the domain Q5 contains the vertical line
1 +4b for b > by where b € (1/2,/3/2), hence it is unbounded.

The corresponding statement for {25 follows from the obvious Zs iden-
tification. q.e.d.

Define
Ap={(rs)|s<r<l,0<s<ir+s>1},
Ng={(r,s)|3<r<1,0<s<ir+s<l1}

Corollary 5.4. Let (r,s) € [0,1] x [0, 3]\3Z%. Then
(i) Ars(t) = oo (equivalently, prs(T7) = 0) has a solution t = t(r) with
T € Fy if and only if (r,s) € Ng.
(i) Ars(t) =0 (equivalently, p, s(7) = %) has a solution t = t(1) with
T € Fy if and only if (r,s) € Ay.
(iii) Ars(t) =1 (equivalently, prs(T) = “¢) has a solution t = t(T) with
T € Fy if and only if (r,s) € Na.
(iv) Ars(t) =t (equivalently, p,s(T) = %) has a solution t = t(T) with
T € Fy if and only if (r,s) € As.
Proof. Noting from (1.8) that p, (7) = 0in E; if and only if Z, (1) =

0, this corollary follows readily from Theorem 1.3, Proposition 4.3 and
(4.7). q.e.d.

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose A(t) is smooth for all ¢ € C\{0,1}. We
will prove in Corollary 6.7 (see §6) that any Riccati solution has singu-
larities in C\{0,1}. Therefore, A(t) = A, s(t) for some (r,s) € [0,1) x
0, 1N

First we claim (r,s) € Q2. By Corollary 5.4, we must have (r,s) €
Up_y0Ak. Recalling from (4.9) that for any v € I'(2),

(5.9) Aot (E(T)) = Ars(t(y - 7)), whenever (s, r") = (s,7) 7,
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L4 by

Figure 4. The dotted region is the lifted domain Qs C
Fy. The lower boundary curve C; 3 % + b1% consists of
7 with %wl being a degenerate critical point of G. The
upper left (resp. right) boundary is C3 (resp. Cs) respec-
tively.

we see that A,/ o(t) is also smooth for all £ € C\{0, 1}, namely
+(r',s') € Us_ 0 + Z2 for any v € T'(2) and (s,7') = (s,7) - 7.

Taking v = <i ;), we conclude that {r,s,r + s} NQ # 0 and {4r +

35,31 + 25, 7r + 5s} N Q # ), which implies (r, s) € Q2.

Once (r,s) € Q?, it is straightforward to check that if for some N >
3 there are no N-torsion points contained in U,?;:OAk, then N = 4.
Thus (r,s) must be a 4-torsion point. By Proposition 4.4, it is easy
to check that /\1 0 and /\1 2 give the same solution; )\0 1 and )\2 1 give
the same solutlon )\1 1 and )\3 1 give the same solutlon Therefore
{)\1 0 A 1 )\1 1} glves all the solutions that are smooth in C \ {0,1}.

The proof is complete q.e.d.

6. Geometry of 0

Even though Qs, the lifting of Q5 in Fy, is a simply connected domain,
its boundary may still possibly be ill-behaved. The purpose in this
section is to show that this is not the case.

For i =1,2,3 we put
(6.1)

Ci(Fy) :== {1 € Fy | tw; is a degenerate critical point of G(z|7)}.

It is known that all the half period points %wi’s are non-degenerate
critical points of G(z|7) if 7 € 0Fy . Hence C;(Fy) N OFy = O for all i.
When no confusion may possibly arise, we will drop the dependence on
Fy and simply write C;.
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The first main result of this section is

Theorem 6.1. (1) For each i, C; is a smooth connected curve.
(2) ,
0% =J_ G
We first derive the equation for C;, and then extend the discussion in

[23] for rhombus tori to the general cases. To compute the Hessian of
G(z|r) at $w;, we recall that for 7 = a + bi, z = z + iy,

(6.2) ArG, = —(log¥), — 27rz'%,

where ¥ denotes the theta function 9;. Then
277Gy = —Re (log¥) ..,
271G ey = +1m (log v)..,

(6.3)
27
21Gyy = +Re(log9)., + 5
and the Hessian H is given by
H = det D*G
-1 9  2m
(6.4) == <|(log 9)2:|? + S Re (log ﬁ)zz)
—1 T2 w
= g ([t )=+ 5[ - 55).
The relation to the Weierstrass elliptic functions is linked by
(6.5) (log¥).(2) = ¢(2) — m=.
For z = %wi we have then
(6.6) (log ¥) .2 (5wi) = —p(gwi) —m = —(e; +m).

For our discussion, using the SL(2,Z) action (see (6.13) below) we only
need to work on the case i = 1. At the critical point z = %, we have
clearly (by (6.2) and (6.5))

(6.7) (log ). (4:7) = 0.
Recall the heat equation for theta function
¥y, = 4w,
It allows us to transform the Hessian into deformations in 7. Then
(6.8) (log )., = 4mi(log), — (log¥)>.
At 2z = § we get (log?).. = 4mi(log?);, and (6.4) becomes

2
H(3;7) = ~4|(log9)-[* + 7 1m (log 9),

-1 ‘
= @(l — 4bi(log¥), — 11> — 1).

(6.9)
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That is, the curve Cj is the inverse image of the unit circle centered at
¢ = 1 under the analytic (but not holomorphic) map Fy — C:

b
= ;(61 + ).

To proceed, we need to calculate (log¥)., at z = 1. By (6.8), (6.7)
and (6.5),

(6.10) T & := —4bi(log V) (3;7)

4mi(log 9)rr = (log¥)..r + 2(log ). (log ).~
= (4mi) ! ((log 9). + (log9)3)
= (4mi) ' (= 9" (3) +2(log ¥)2.),
which implies that
¢"(3)

2 _
(6.11) (log9)rr — 2(log¥); = 16n2

#0
since (%) = (e1 — e2)(e1 — e3).

If (log¥)-(3;7) = 0, then (logd),, # 0 and V, H(3;7) # 0 since

0H [da = >Tm (log ).

OH /0 — %Re (1og ).

In particular C7 is smooth near such 7.
If (log ¥)-(3;7) # 0, we may write

2 ) 1
H = —|(log 9), [*Im (2r + (1og19)7>

and C is defined by Im f = 0 where

1
(6.12) fry=21+ ———+—.
(log 19)7(%; T)
We compute

(log?)r~ (log ), — 2(log V)2

I o — _ T
F =2 og0y2 gz 7"
Since ol f ol f
mj _ / m _ /
g~ S o~ Rel

we conclude again that C is smooth near such .

Hence C; are smooth curves for i = 1,2, 3.

To characterize 8Q5, we first show that C; N Q5 = 0. If not, say
C; N Qs is a (not necessarily connected) smooth curve in the open set
Qs. Let 79 € C; N Q5. Either (log¥)-(2;70) = 0 or Im f(rp) = 0.
Since (log®),(3;7) has only discrete zeros (it is non-constant since
(log ¥)-r # 0 over the zeros), we may choose 7 so that (log¥),(3;70) #

0. Since Q5 is open, there is a neighborhood U of 7y inside Q5 such that
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(log¥)-(3;7) # 0 for all 7 € U. Thus, f(3;7) is a holomorphic function
in U.

By Theorem B, z = 1 is a saddle point of G(z|r) for all 7 € U. Thus
H(7) < 0 for all 7 € U; this is equivalent to that Im f > 0 over U.
But Im f is a harmonic function on U and Im f(7p) = 0, the maximal
principle implies that Im f(7) = 0 on U and f(7) is a constant, which
leads to a contradiction. Thus C; N Q5 = 0 for all 4.

Similar argument applies to the open set Qg, the interior of 3, where
z =1 is known to be a minimal point and H > 0 (c.f. [23]). Again the
maximum principle implies C; N Qg = () for all 4.

Hence we have proved the following result:

Proposition 6.2. 9Q5 = 9Q3 = U?:l Ci. In particular, for T €
Q5 U Q3, all the half period points are non-degenerate critical points.

Proof of Theorem 6.1. It remains to show that C; is connected for each
i. Since 8(25 = U§:1 C; and Qg, is simply connected, C; can not bound
any bounded domain. (We note that this can not be proved by the
maximal principle as we have done above since f might have singularities
on the boundary of this bounded domain. Instead, the contradiction is
draw from the unboundedness and simply connectedness of Q5.)

It thus suffices to show that at each cusp (i.e. 0,1, 00), C; has at most
one component near a neighborhood of them.

It is known that as Im 7 — 400, 21 (1) —e1(7) = 0 and ey (1) — 272
Thus (6.9)-(6.10) yield that

Cin{reFy|Imt>R}=10

for large R. Since (] is symmetric with respect to the line Rert = %,

it suffices to show that C1 N {7 € Fy | |7] < dp} is a smooth curve for
small 6y > 0.
It is readily checked that the Hessian of G satisfies

(6.13) H((cr +d)z;7) = |er + d|*H(z;7'),

where
ar +b

et +d’

')’:(CCL Z)ESL(2,Z), r'=~.-7=

Let v = 1 _1>, i.e. 7/ = (r —1)/7. Then v maps Fy onto Fy with

1 0
v(00) = 0. By (6.13) we have

(6.14) H(gi7) = r'"H(3(1 = 7');7') = |[r|*H(5(1 + 7'); 7).

Therefore the degeneracy curve (1 is mapped to the degeneracy curve
C35 and it suffices to show that Cs N {r € Fy | Im7 > R} is a smooth
curve for large R.

In doing so, we use the following ¢ = €7

expansion for p(z|7):
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Proposition 6.3. [22, p.46] For |q| < |e*™*| < 1/|q|, we have

@(Z | 7—) 1 627r7;z 27rmz —2minz
DL T LSS g _9).

2 _ 2
(271) 12 (1 — e?™2) vt

By substituting z = % + %7‘, we have e2™"% = (—1)"¢"/2. After
rearranging terms and simplifications, we get

2 (S
(6.15) e3(r) = —% — 8y ((—1)” oood- > d)q%.
n=1 deN,n/d odd deN,n/d even

By integrating the ¢ expansion in Proposition 6.3, we get a second ¢
expansion for {(z|7) which does not involve 71 (7) (c.f. (5.2)):

Corollary 6.4.

((z|r) _ 2miz 1 +1
2mi 12 1 —e2miz 2
(616) e nqn 2minz __ e 2mwinz
A
+ mzZl_qn—l- 1—q
n=1 n=1
By substituting z = % e?™inz — (—1)" we get
2 OO n
T nq
6.17 = — — 8r? .
(6.17) mn =5 -8

Thus for 7 = a + b,
e3(7) 4+ ni (1) = 872%™ (1 + O(e™™)).
By (6.4) and (6.6), it is easy to see that H(iws;7) = 0 if and only if
(a,b) satisfies
cosma = 4drbe (1 + O(b™1)).
This implies that near oo the curve Cs is (smooth and) connected.
The proof is complete. q.e.d.

REMARK 6.5. Similarly, for z = , €™ = —1, Proposition 6.3 leads

to
el(r) = — + 1672 Z ( Z d)q”.

n=1 0<d|n,d odd
It had been shown in [23] that along the line 7 = % +ib, e1 N %WQ,
—m /" 0and e + 11 S r? as b — +oo.

Recalling (6.4) and (6.6), we have
1 2mi
H(“%: 7)) = ——— 21 - ).
( 2 7T) 47T2b‘ek(7_) + 771(7_)| m <T Ek(T) + 771(7_))

In the following, we use H(%%;7) to determine the location of zeros of
ex(T) + n1(7). Note that if ex(7) +n1(7) # 0, then H(“¢;7) = 0 if and
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only if Im (7 — m) = 0. Theorem 3.2 says that ex(7)+n1(7) has
only simple zeros, which can also be obtained by (6.11) as well.

Clearly ex(7) + n1(7) is not a modular form. However, any zero of
ex(T) + m(7) lies on the curve H(“¥;7) = 0. Recall that H(=;7) =0
is the degenerate curve of % as a critical point of G(z|7). Since E. is
conformally equivalent to E, if 7/ = ~ - 7 for some v € SL(2,7Z), but
transforms H(“%;7) = 0 to another degenerate curve H(%;7') =0 (by
(6.13)). Therefore, without loss of generality, we may assume k = 1.
Then by (6.10), it is equivalent to determine the location of zeros of
(log ¥)-(3;7).

From (6.13), if v € T'9(2) = {y € SL(2,Z) | ¢ = 0 (mod 2)}, the
image of C(Fyp) is mapped to C(Fp) for another fundamental domain

F} :=~(Fp). For example, if y = TS~!T2571 = (; _i), ie.

I —
TET T Ty Ty

then F{ is the domain bounded by 3 half circles:

Fo={reH||lr—3|<3lr—3l>5 17— >}

Noting that the curve {r | |7 — | = 3} is invariant under v, the curves

C1(Fy), C1(Fy) bound a simply connected domain D in
FOUF(;:{TGHH)SReTgl, |7'7%| > 1 |T*%‘ 2%},
where D NR = {0,1}. Since T'x(2) = I'(2) U~T(2), Fy U F} is also a
fundamental domain of I'(2) (different from (2.1)). Note that for any
7 € D, the half period % is a minimum point of G(z|7) in E;, and
Theorem 6.1 yields that % is actually a non-degenerate critical point of

G(z|T).
Thus, the map x = f(7) = 27 + (log¥);! maps C;(Fo) U C1(F)) to
the real axis. By [23, Theorem 1.6],

(6.18) Ci(Fp)N{r | ReT = %}:{%—i—ibl},

where by € (%, @) is the unique zero of the increasing function in b
27

(619) e +m — ?

along the vertical line 3 4 4b. Similarly, C1(F}) N {r | Rer = 3} =
{2 +ibo} where by € (0,1) is the unique zero of the increasing function
e1 +m along % +1b. Then

471 2bs 2w
1, . 1, .
=+1ib) = 2(5 +1b) — =1+ ( + ——).
f(2 Z) (2 Z) er+m er+m aTmn b

In particular, f(3 +ib1) =1, f(3 +iby) = 1 —ico and f maps D to the
lower half plane C_ = {k | Imx < 0} in a locally one-to-one manner,
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because for any 7 € D, the half period % is a non-degenerate minimum
point. The local one-to-one is due to Theorem 3.2. Then f is actually
one to one over D onto C_ UR U {oo}.

Since (log¥),(3;7) — oo when 7 € C1(Fp) U C1(F}) tends to the
boundary point 0 (resp. 1), we have by (6.12) that f(7) — 0 (resp. 2).
Therefore f maps C1(Fp) and Ci(F}) onto [0,2] and R U {oo}\(0,2)
respectively. Then f(7) = oo has only one solution 7 = % + ibg.

Therefore we have proved the following theorem:

Theorem 6.6. The function (log¥)-(3;7) has a unique zero 7y €
Fo U Fj. It takes the form 1y = % + ibg where 0 < by < % is the unique
1

zero for ey +m1 along the vertical line Ret = 3.

Remark that although (log¥),(3;7) is not a modular form, the curve
C1(Fp) U C1(F}), the degenerate curve of $wy in Fyy U Fy, is invariant
under I'(2), a fact coming from the invariance of the Green function
under SL(2,Z) action and that fw; is preserved under I'(2).

As a consequence, we are in a position to prove the following result
about Riccati solutions.

Corollary 6.7. Any solution of the four Riccati equations (3.2)-(3.5)
has singularities in C\ {0, 1}.

Proof. For k € {1,2,3}, we define

Ter(T) + n2(1) 27
T)i=——— =7
MO =@ e~ @ me)
Clearly fi(7) = % f(7), where f is defined in (6.12). Then the proof of
Theorem 6.6 shows that fi is one-to-one from D onto C_ URU {oo}

and f1(0) =0, f1(1) = 1. Remark that D\{0,1} C H, so

(6:200  f1(P\{0,1}) = C- URU{eo}\{0,1} C fi(H).

Step 1. Let A¢(t) be any solution of the Riccati equation (3.2). We
show that Ac(t) has singularities in C\{0, 1}.

If C € H, we let 79 = C. By the Legendre relation mon;(79) —n2(10) =
271, we easily deduce from (3.6) that ¢(79) is a pole of A¢.

It suffices to consider C € C_ URU {oo}. First we assume C ¢
{0,1}. Then (6.20) shows the existence of 7p € D\{0,1} C H such that
fi(19) = C, which is equivalent to

~ n2(70) — Cm(7o)

p(pc(10)T0) = o = e1(70).

Therefore, Ac(t(70)) = 0, i.e., t(70) is a type 1 singularity of Ac.
Before we consider the final case C' € {0, 1}, we prove that

(6.21) C_ UR\{—1}Cfo(H),
(6.22) C_ URU {oo}\{0, 3}C f3(H).
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LetT’:fy-T:T_—flandC’:7~C=57,Cl, where v = STS =

<_11 _01> Using (4.2) it is easy to see t(7') = t(tT()T_l. Let Ac(t)

and Acr(t) be solutions of the Riccati equation (3.2).Then by (3.10), we
easily obtain

o) = ety =~ AT,

For any C € C_ UR U {0o}\{0, 3}, we have C' € C_ UR U {o0}\{0, 1},

which implies the existence of 79 € H such that Acv( t(t‘r(OT)Ozl) = 0. Con-
sequently, Ac(t(10)) = t(70), i.e., p(pc(70)|70) = e3(1p). This, together
with (3.6), gives f3(79) = C. This proves (6.22). To prove (6.21), we let

=8 717==and (' =S5 -C= . Thent(r')=1—1t(r) and
Acr(1=t(7)) = A (t(7")) = 1 = Ac(t(7)).

From here, we can prove (6.21) similarly.

Now for C' € {0,1}, (6.21) shows the existence of 79 € H such that
fa(m0) = C, which is equivalent to Ac(t(79)) = 1. Thus, Ac has a type
2 singularity at ¢(7p). This completes the proof of Step 1.

Step 2. Let A(t) be any solution of the three Riccati equations (3.3)-
(3.5). We show that A(t) has singularities in C\{0, 1}.
For A(t) satisfying (3.3), we define
< t

A(t) :== O3

Then a straightforward computation shows that A(t) solves (3.2). Since
Step 1 shows that A(¢) has singularities in C\{0,1}, so does A(t).
For A(t) satisfying (3.4), we define
< A(t) —t
Alt) = .
(t) A(t) —1

Again \(t) solves (3.2), which implies that A(t) has singularities in

C\{0,1}.
For A(t) satisfying (3.5), we define

At) == t:\\((?) :1

Again A(t) solves (3.2), so A(t) has singularities in C\{0,1}.
The proof is complete. q.e.d.

REMARK 6.8. There is another way to prove Step 2 of Corollary 6.7.
That is, we can exploit the formula (3.7) and (6.20)-(6.22) to show that
Ac(t) has singularities just as done in Step 1. We leave the details to
the reader.
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We conclude this section by giving the proof of Theorem 1.4. Recall
the fundamental domain Fy of I'(2) defined in (2.1) and Fy of T'g(2)
defined in (5.1). As mentioned in Subsection 2.1, first we prove the
following

Lemma 6.9. The map t(1) = % maps the interior of Fy

onto the lower half plane C_, and maps F3\Fy onto C,.

Proof. Note that t(iR*) = (0,1) (see e.g. [6]). Using t(T'-7) = ﬁ
and t(ST~1.7) = 1—% (see e.g. Propositions A.2 and A.3 in Appendix
A), we obtain t(1 4+ iR") = (1,+o00) and t({r e H | |7 — 3| = 3}) =
(—00,0). That is, t(7) maps Fp N H onto R\{0, 1}.

Recalling p = €5 € Fy, we claim t(p) € C_. Indeed, By [23, (2.10)]
we have

p(zlp) = P*0(p2lp),
by which, it is easy to see that e3(p) = p?e1(p) and ez(p) = p~2e1(p) =
pte1(p). Hence,

2
pr—1 1
tp)=—7F7——=p=-(1-V3) eC_.
() =G =r=3501-Vi)e
Now this lemma follows readily from the fact that ¢(7) is one-to-one
from F» onto C\{0,1}. q.e.d.

Proof of Theorem 1.4. Suppose A(t) is a real solution. Then there exists
(r,s) € [0,1] x [0,3] \ 3Z* such that A(t) = A 4(t). The goal is to
prove that any branch of A, 4(¢) has at most one singular point in both
C_\{0,1} and C... For this purpose, it suffices to consider the F, branch
(i.e., the branch corresponding to 7 € Fy) when a branch of A, 4(t) in
C\ {0,1} is discussed. By (5.9) (or (4.9)), for any other branch of the
same real solution A\, 4(t) in C\ {0,1}, which can be obtained from (1.8)
by considering 7 in another fundamental domain of I'(2), its restriction
in C_\{0,1} (resp. in C, ) is just the restriction in C_\ {0,1} (resp.
in C1) of the Fy branch of a "new” real solution A ¢(t). Therefore, we
only need to prove this theorem for the F5 branch.

Step 1. We consider 7 € Fy. Applying Corollary 5.4 and Lemma
6.9, we see that the F branch of A, s(¢) has at most one singular point
in C_ \ {0,1} = t(Fp). More precisely, this F» branch of A, s(¢) has no
singularities in R\ {0, 1} = t(0FyNH) (see also [6]); if (r,s) € U}_,0A,
then it has no singularities in C_ either; while for & € {0, 1,2, 3}, it has
only a type k singularity in C_ if and only if (r,s) € Ag. Recalling that
Qj is the lifting of Q25 in F, we have

Qs = {7 € Fy | G(z|r) has five critical points}
= {1 € Fy| Z.s(r) = 0 for some (r,s) € [0,1] x [0, 3]\ 12?}
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={r e Fy| Z s(r) =0 for some (r,s) € No}.
This, together with the definition (1.22) of Q(_O), easily implies

QY =t ({r € Fy | Zps(r) = 0 for some (1,5) € Lo}) = H(Os).
(0)

Therefore, we conclude from Theorem 6.1 that Q°

(0)

connected and 9" consists of three smooth curves connecting 0, 1, co
respectively; they are precisely t(C;(Fp)) for i = 1,2, 3, where C;(Fp) is
defined in (6.1).

Now we recall Q) defined in (1.23) and fix k € {1,2,3}. It follows
from Proposition 4.3, (4.7) and Corollary 5.4 that

is open and simply

oW = =t({r € Fy | prs(r) = % for some (r,s) € [0,1] x [0, 3]\ 1Z°})
=t ({7 € Fy | pry5.(1) = 0 for some (r,s) € [0,1] x [0, 3]\ 1Z*})
=t({r € Fy | prs(r) =0 for some (r,s) € [0,1] x [0, 3]\ 3Z*})
=t({reFy| Z s(1) =0 for some (r,s) € No})

09,

Step 2. We consider 7 € Fo \ Fy. Then 7/ =T"' .7 =7 -1 € F,.
By (A.11), we have t(7) = 1/t(7’) and

) = 2T,

where (r1,s1) € [0,1] x [0, 2]\3Z? is given by (A.10):

_ (r+s,8) if r+s<1,
(6.23) (r1,51) ‘_{ (r+s—1,s) if r+s>1.

Therefore, by the result of Step 1, we conclude that the Fy branch of
Ars(t) has at most one singular point in C; = ¢(F3 \ Fp) and ng) =
Q(f) ={teC,|tte Q(,O)} (see (1.23) for the definition of ng))

In conclusion, the F» branch of A, 4(¢) has at most two singular points
in C\ {0,1}. If it has two singular points, then one is in C4 and the
other one is in C_. Furthermore, they are the same type 0 (resp. type
1) singular points if and only if both (r,s) and (71, s1) given by (6.23)
belong to Ag (resp. A\1); while they are the same type 2 (resp. type
3) if and only if (r,s) € Ay and (r1,s1) € Ag (resp. (r,s) € Ag and
(r1,s1) € Ag). Therefore, it is easy to see from the definition of Ay and
(6.23) that these two singular points can not be the same type. Finally,

any real solution is smooth in C\ (Q(O) U Q U {0,1}).
The proof is complete. q.e.d.
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7. Algebraic solutions and Eisenstein series of weight one

In this section, we study the monic polynomial ¢y (j) defined in (1.28)
and prove Theorems 1.6 and 1.7. In the following we always assume
N > 5.

Lemma 7.1.

deg (y = M if N is odd,
N u so(5) if N is even.

Proof. Recalling ¢ = ¢>™7 we use the g-expansions (cf. [17, p.193]):
+o00
(71) A(T) — (27.‘.)12(] H(]- _ qn)24
1
(7.2) 4(1) = = + 744 + 1968844 + 21493760g° + - - -
q

Let 7 = ib with b 1 400, then ¢ = ¢72™ | 0. By (A.3), (A.6), (A.7) in
Appendix A and (1.27), we have for (r,s) € Qx that, as b T 400,
2mi(s — 3) + O(¢*) if s # {0, 3},
(7.3) Zps(1) = meotwr+O(q) if s=0,
4 sin(27rr)q% +0(q) if s=3.
First we assume that N is odd. Then r,;s # %, which implies that
Z(ny(T) converges to a monzero constant as b T +o0o. Substituting
(7.1) and (7.2) into (1.28) and computing the leading term, we obtain
degly =m = %.
Now we consider that N is even. Then the number of (r, ) in Qn
is 290(%), which implies from (7.3) that Zn)(7) ~ qw(%) as b 1 +oo0.
Again by (7.1), (7.2) and (1.28), we obtain deg {y = m — (5. q.e.d.

Lemma 7.2. The constant Cayy, and all the coefficients of {n(j) are
rational numbers. In particular, all zeros of {n(j) are algebraic numbers.

Proof. Denote a = e*™/N. Then for any (r,s) = (&, %) € Qu,

. k.
e2mi(rtst) — gkigs — aquWQ. Recalling the g-expansion (5.3) of Z, 5, we
have
Zr,s(T) k = k
7.4 : =25 — (1 1g® 1g®
(ra) 2 mas— (14 dhg) Y (g

l

_Zii< kugntsyl _ (q=k1gn— 3)>7Zfs7é0
Zr;(T)ET): 11‘21“ 222( krgnyl — 7k1qn)l).

n=1 [=1

I
o
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Therefore,

N =Ry YORS e
(r,s)EQN n=1

where Rj(a) are rational functions of a with integer coefficients. Here
by (1.28) and (7.1)-(7.2) we know that there are no terms of ¢ with
fractional powers in (7.5). Define

Py:={keN|1<k<N-1, ged(k,N)=1}.

Fix any k£ € Py. Then for any (r,s) = (k—]\},%) € Qn, we also have
ged(kky, ko, N) = 1. Denote r' = kr — [kr] € [0,1), then (r',s) € Qn
and aV = 1 gives 2™ +s7) — (a*)*1¢°. Thus, repeating the argument

of (7.4)-(7.5) leads to

Zy,s(T) _ k - ky n
(r,s)eQn n=1

Since (', s) takes over all elements in @ whenever (7, s) does, we con-
clude that

Z(n)(7) Zo o(T) - o
(i) || —( H@ — = Rola )+Zan(a )q", Vk € Py.
r,8)EQN n=

Comparing this with (7.5), we have for any j > 0 that R;(a) = R;(a"),
Vk € Py, which implies that R;(a) are rational numbers.

Recall |Qy| = 24m and 9~ = 1. Tt follows from (1.28), (7.1) and

(7.5) that all the coefficients of the g-expansion of Ca, (€x(5))? = i(?)g;)

are rational numbers. This, together with (7.2), easily implies that Co,,
and all the coefficients of ¢y (j) are rational numbers. This completes
the proof. q.e.d.

Motivated by (1.27), we define

r<%if3:0; 3<%if'r:0; }

(7.6) Qﬁvz{(T,S)EQN s<Tifr#0,5#0

Clearly |Qy| = |@Qn|/2. We are now in the position to prove Theorem
1.6. Recall the fundamental domain F' of SL(2,Z) defined in (1.34).

Proof of Theorem 1.6. The assertion (i) follows readily from the fact
that for (r,s) € R?\ 3Z2, A, 4(tg) = oo for some ty = t(7p) if and only
if Z, s(10) = 0. So it suffices to prove (ii) and (iii).

(ii) Assume by contradiction that jo = j(79), 70 € F, is a multiple zero
of {5 (7). Then by (1.28) and (1.27), there exist at least two (75, s;) € Q'y
such that Z,, s, (79) = 0 for i = 1,2. The definition (7.6) of Q' implies
that r1 + s170 # £(r2 + s279) in the torus E;,. Thus, G(z|rp) has
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two pairs of nontrivial critical points +(r1 4+ s179) and £(re + s270), a
contradiction with Theorem A.

(iii) Suppose that for some Ny # Na, £n,(j) and ¢, (j) has a common
zero jo = j(10), 70 € F. Then there exists (r;,s;) € Q’Ni such that
Zr,.s;(10) = 0 for i = 1,2. Clearly r1 + s179 # %(r2 + s270) in the torus
E.,, again we obtain a contradiction.

The proof is complete. q.e.d.

To give the proof of Theorem 1.7, we exploit the following result in

[23]. Recall from (6.19) that b; € (3, @) is the unique zero of the

increasing function e; + n; — 27” in b where 7 is along the vertical line
3 +ib.

Theorem F. [23, Lemma 6.4 and Theorem 6.7] For any b > by,
G(z|r) with 7 = 1 + b has a critical point of the form § + iy(b) with

y(b) € (0,3).
Recalling from (6.18) that 7 = %—i— iby € 05, where Qs is the

lifting of Q5 in Fy, so G(z|r1) has only three critical points 1, 2 and
471 Therefore, y(b) | 0 as b | by. Write the critical point 3 -+ iy(b) =

r(b) 4+ s(b)7, then

b
a1 2w +s) =1, s =LY ¢ (0,1), lim s(b) =0.
b b—>b1
Lemma 7.3. As a function of b € (b1, +00), s(b) is strictly increas-

ing. Furthermore, s(@) = % and limp_, s(b) = 3.

Proof. 1t was shown in [23] that if 7 = p = e, then G(z|7) has a

critical point at HTT, which gives s(@) = %

If s(b) is not strictly increasing, then there exist bz > by > by such
that s(be) = s(bg). Clearly (7.7) gives r(ba) = r(bs3) and (r,s) :=
(T(bQ),S(bQ)) € Ng. Write 7, = %—F iby, for k = 2,3, then 7, € Fy
by (5.1). Since G(z|7) has a critical point at r+ s7y, so Z, s(7) has two
zeros To, T3 € Fy, which contradicts to Theorem 1.3.

Finally, we prove limy_,, s(b) = % Suppose limy o, s(b) = § < %
Define a function K : (0,1) x Fy — C by K(s,7) := Z%#(T). Since
(%, 5) € Ap, Theorem 1.3 shows that there is a unique 7 € Fj such that
K(s5,7) = 0. Furthermore, Theorem 4.1 gives %—5(5, 7) # 0. Then by the
implicit function theorem, there exists a function 7(s) for s € (S—e, 5+¢)

such that 7(5) = 7 and K(s,7) =0 for s € (5§ —¢,5+ ¢) if and only if

T = 7(s), where € > 0 is small. Thus Theorem F implies 7(s) = 1 + ib
for s € (§—€,5) and b T 400 as s T §, which is a contradiction with
7(s) — 7. This completes the proof. q.e.d.

Now we can give the proof of Theorem 1.7.
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Proof of Theorem 1.7. Let j = j(19) € J(N), 10 € F, be a real zero of
¢n(j). Since J(3) = {0}, the same proof as Theorem 1.6-(iii) shows that
j(10) # 0. Recall that in F, j(7) maps {ib | b > 1} onto [1728, +00);
maps {7 € F | |7| = 1} onto [0,1728]; maps {3 + ib|b > @} onto
(—00,0). Since Theorem E says that Z, (1) # 0 for any (r, s) € R*\ 172
and 7 € iR", we deduce from Theorem 1.6-(i) that £x(j) has no zeros
in [1728, +00). Thus, j(m) € (—o0,0) U (0, 1728).

Step 1. We prove that £x(j) has #Jy zeros in (—00,0).

Assume that j(79) € (—00,0), 790 € F, is a zero of {y(j). Then
70 € {3+ib|b > é} and there exists (r, s) € Q'y such that Z, s(9) = 0.
Write 19 = % + ib with b > § Then Theorem F, Lemma 7.3 and
(7.7) imply that Zr(B),s(IB)(TO) =0and < s(b) < 1. Since (r,s),
(r(b), s(b)) € [0,1) x [0, 1] and G(z|7o) has at most one pair of nontrivial
critical points +(r + s75), we conclude that (r,s) = (r(b),s(b)), ie.,
(r,s) € Jy.

Conversely, given (r,s) € Jy, by Theorem F, Lemma 7.3 and (7.7),
there exists b € (§,+oo) such that s = s(b), namely G(z|7) with
7 = 1 +ib has a critical point at r + s7. Thus Z,4(7) = 0 and then
J(T) € (—00,0) is a zero of £y (j).

For any two different (rg,s2),(r3,s3) € Jy, we have sy # s3, say
s9 < s3. Then there exist bg > by > by such that s = s(by) for k = 2, 3.
Write 75, = 3 + ibg. Then by > by implies j(72) > j(73), so j(72) # j(73)
are two different zeros of ¢ (j) in (—o0,0). This proves the one-to-one
correspondence between elements of Jy and negative zeros of {y(j).
Therefore, £ (j) has exactly #Jy zeros in (—o0,0).

Step 2. We prove that £y (j) has #.J5; zeros in (0, 1728).
Assume that j(m) € (0,1728), 70 € F, is a zero of {n(j). Then

(7)-

ThenT’:%ifT:i,T’:TifT:e%,and
re{reF||rl=1}—=7e{l+ib|i<b<L}.

Furthermore, j(7') = j(7), which gives that j maps {3 +ib | 1 < b < @}
onto [0, 1728] with j() = 1728 andj(e%i) = 0. Therefore, 7 € {3+ib
|3<b< ?} and there exists (r, s) € Q'y such that Z, (7)) = 0. Since
it was shown in [23] that G(z|r) has only three critical points 3, 7
and HTT if 7 = %—i—ib with % < b < by, we see that 7, = %4—@5

with by < b < @ Then Theorem F, Lemma 7.3 and (7.7) imply that
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Z,(b).5(b) (75) =0 and 0 < 5(b) < 1. Similarly as in Step 1, we conclude
that (r,s) = (r(b), s(b)), i.e., (,5) € Jx.

Conversely, given (r,s) € Jy, there exists b € (bl,é) such that
s = s(b), namely G(z|7) with 7 = J + b has a critical point at r + s7.
Thus Z, 4(7) = 0 and then j(7) € (0,1728) is a zero of {n(j).

Finally, we can prove that any two different points in th correspond
to two different positive zeros of ¢x(j) as in Step 1. Therefore, ¢x(j)
has exactly #.J5 zeros in (0,1728).

The proof is complete. q.e.d.

In the rest of this section, we give a generic approach to compute
In(j) for small N. Fix N > 5 with N # 6. Recalling that J(/V) is the
zero set of £ (j), we denote

J(N) = {jr | 1 <k < degln}.
Instead of considering the product like Z(y)(7), we consider the sum-
mation of A, s(t) with (r,s) € Q) (see (7.6)), because (4.7) implies
that )\T,S(t) = Al—r,l—s(t> if r,S 7& 0, )\O,s(t) = )\O,l—s(t) and )\T’o(t) =
A—r0(t). Define

(78) )= 3 Asm=5 3 A0,

(r,s)€Qy (r,s)EQN
Clearly Proposition 4.4 implies that yx(¢) is meromorphic and single-
valued in CU {oo}. Furthermore, Propositions A.1 and A.2 yield that
yn(t) is holomorphic at ¢ = 0,1 (i.e., neither 0 nor 1 is a pole), and
Proposition A.3 shows that yy(t) is at most linear growth at ¢t = oo.
Therefore, yn(t) is a rational function. Note from (A.9) that

Ars(t) =1—Xss(1 —1t),

where (7,35) € @)y is determined by (r,s) via (A.8). Since (7,3) take
over all elements of @'y, whenever (r, s) does, we obtain

(7.9) yn(t) = [Qn| —yn (1 —1).
Similarly, by (A.10) and (A.11), we have
(7.10) yn(t) = tyn(3)-

On the other hand, it is known (see [19, Proposition 1.4.1] or the
proof of Theorem 4.1) that poles of any solution of PVI(%’%%’%) must
be simple poles. Moreover, similarly as the proof of Theorem 1.6-(ii),
we see that for any two different (ry,s;) € Q'y, k = 1,2, A\ s, (¢(7))
and A, s, (t(7)) have no common poles as functions of 7. Therefore,
to = t(70) is a pole of yn(t) if and only if there exists a (r,s) € Qy
such that to is a pole of A\rs(t) ((r,s) is uniquely determined by 7o,
ie., if tg = t(71) with 7 # 79, then (7, s) might be different, because by
Proposition 4.4, (r, s) will permute in @'y after the analytic continuation
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along a path connecting 79 and 71 although yy(t) remains invariant).
Furthermore, tg is a simple pole with

(7.11) Resyn(t) = Res A, 5(t) = —2to(to — 1).
t=to t=to

Here the second equality in (7.11) was proved in [16].
From (7.9)-(7.10), we see that if ¢y is pole of yn(t), then any of

— 1 1 1
(7.12) E(to) = {to, L—to, £, 1— £, A, totgl}

is also a pole of yy(t). This, together with Theorem 1.6-(i), implies
that all elements in Z(¢y) give the same j-value j(to) € J(IV) via (1.26).
For ji € J(N), since ji ¢ {0,1728} by Theorem 1.7, there are exactly
six different t’s which satisfies j(¢t) = jr. We fix a ¢t € C such that
j(tx) = jk, then E(t) gives precisely these six different ¢’s. Therefore,
we conclude that

deg N
U =)
k=1
gives precisely all the poles of yx(t).
From the above argument, we have

deg N 2a
(7.13) - > Z 2a@=1) 44 p,
k=1 ac=

where C, D are two constants that can be easily determined. Indeed,
by (7.12), 3 4e=(t,) @ = 3, which implies

deg N
yn(0)=2 > > (a—1)+ D =D —6degly.
k=1 a€Z(ty)

First we assume that N is odd. Then s < 1 for any (r,s) € QY.
By Proposition A.1, we have yn (1) = |Q’y|. This, together with (7.9)-
(7.10), gives yn(0) = 0 and yn(t) = o(t) as t — oco. Therefore, C' = 0

and D = 6degly = M , namely

deng
2 —1

-y § ale=1) 198 i N oda.
t—a 4

k=1 ac=

Now we consider that NN is even. Then the number of (r, 2) in @ N is

(%), and Proposition A.1 gives yn (1) = |Qy|=2¢(5), yn (0) = 20(5)
and yn(t) = 2p(F)t + O(1) as t — oco. Therefore, C = 2¢p(F) and

D =6degln + 2@(5) = @ — @(%), namely
deg N

2 -1)
Z Z a(a 2(,0(%)154— [@n1_ 2¢0(%), if N even.

k=1 a€Z(tg)
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We turn back to the problem of computing J(N). The key observa-
tion is that the coefficients of the Taylor expression of yn(t) att =0 are
expressed in terms of ji € J(N). For example, we use ZaéE(tk) “Tfl =3
to obtain

deg{n a—1
un(0)=2 % > ———+C=6degly +C;
k=1 aEE(tk)

we use the following formula, which is obtained from (7.12) and (1.26):

L asl g @t
a€E(ty) a* ti(tk_ b? 256°
to obtain
deg N deg N .
Ko=1Y ¥ losy <3_;;6>.
k=1 acZ(t}) k=1

Similarly, a direct computation gives

deg ln ]
700) = 12 32k ),
0 =12 3 (3-2):

)

deg {n j j 2
" —4 _ Jk _9 _Jk 12
yn (0) = 48 ; [(3 256> <3 256) *

and so on. Thus, if deglny = 1 (such as N = 5,8), then J(N) can
be computed from y (0). If deg¢ny = 2 (such as N = 7), then J(N)
can be computed from y%,(0) and y4/(0). In general, J(N) should be

determined by y](\?l) (0) with 1 < I < degln. On the other hand, by
exploiting the same argument as Proposition A.1 in Appendix A, we
can compute the Taylor expansion of yn(¢) at ¢ = 1 up to the term
(t—1)29e8N (which can be done by using Mathematica). Consequently,
by using (7.9) we obtain the Taylor expansion of yx(¢) at t = 0 up to
the term t?9°8¢~ from which we can compute J(N) as explained above.
Once J(N) is determined, all poles of yn(t) (or equivalently, poles of
Ars(t) with (r,s) € Q) can be computed via (1.26).

By exploiting the above approach, we computed for the cases N =
5,7,8,9 and obtained (1.31)-(1.33). We take N = 7 as an example.

EXAMPLE 7.4. Let N = 7, then deg {7 = 2. By using Mathematica,
the Taylor expansion of y7(t) at t = 0 is

19243064 , = 9621532 5  536777924542148 ,

2).
703125 703125 27 x 7031252 +0()

yr(t) = 12t +
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Hence,
2 .
Ik 19243064
4 - | =——
Z (3 256> 703125 ’

2 . . 2
Jk Jk 536777924542148
2> (8- ) —2(3-22 12
Pt [( 256> < 256> *

27 x 7031252
From here, a straightforward computation gives

212.37001 . 2% .571787
32. 57 J— 37 .57 7

(5) = 5% — (1 + j2)j + Juja = 5° +
and so J(7) is given by (1.32).

8. Further discussion

In this final section, we make some further remarks about the results
proved in this paper.
First we turn back to Step 2 in the proof of Theorem 1.7 in §7. Denote

jo :=j(3 +ib1) € (0,1728),

because 1 < by < @ and j maps {3 + ib | $<b< @} one-to-one
onto [0, 1728] with j(1$*) = 1728 and j(es) = 0. Since G(z|7) has only
three critical points %, 5 and HTT if 7= % + b with % < b < by, we see
that Z,s(3 + ib) # 0 for any (r,s) € R*\3Z? and § < b < by, which
implies that ¢y (j) has no zeros in [jo,1728]. Therefore, Theorem 1.7
can be restated in a sharper form: ¢y (j) has no zeros in {0} U [jo, +00)
and has ezactly #J5; zeros in (0, jo).

For each prime N > 5, we define (ry,sy) := (45, +). Clearly
(ry,sn) € J]'\?. The proof of Theorem 1.7 shows that Z, s, (7) has a
Zero % + iby with by | by as N 1 400. Therefore, £x(j) has a positive
Zero jy = j(% + iby) which satisfies jy T jo as N T 4+o00. Even though
jn is an algebraic number for each prime IV, we still do not know whether
jo is an algebraic number or not. This question seems very difficult and
remains open.

We conjecture that the polynomial ¢n(j) is irreducible in Q[j] and
moreover Q[j]/(¢n(j)) is a Galois extension of Q. Once this conjecture
can be proved, all the zeros of /x(j) should not be algebraic integers
provided N > 5, which implies that all the corresponding 7 are tran-
scendental.

Now let us turn to Theorem 1.4. Recall from Lemma 6.9 that t(iR™) =
(0,1), t(1 +4R*) = (1,+00) and t({r € H||r — 3| = 4}) = (—00,0).
Clearly

C_\ QY = Uy UU» UU3 Ut(Ch) UH(Cs) U(Cs),
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where U; (resp. Us, Us) is the domain bounded by (—o0, 0] and the curve
t(Ch) (resp. by [1, +00) and t(C2), by [0, 1] and ¢(C3)) (these can be seen
from Figures 2 and 4). Let D; C Fy be the domain bounded by C; and
{r e H||r— | = 3}, then t(D;) = U;. Recalling the domain D defined
in the proof of Theorem 6.6, clearly D; UCy € D\ {0,1}. Then Step 1
of the proof of Corollary 6.7 shows that for any to = t(7) € Uy Ut(Ch)
with 79 € D1 U C4, we have A¢(tg) = 0, i.e., to is a type 1 singularity
of A\¢, where C' = fi(19) and A¢ is a solution of the Riccati equation
(3.2). Therefore, each element in Uy Ut(Ch) is a type 1 singularity of
some solution of the Riccati equation (3.2).

We can prove analogous results for UsUt(Cy) and UsUt(Cs). Recalling

(6.13)-(6.14), we let v = (} _01), ie. 7/ = (7 —1)/7. Then v maps Fj
onto Fy and
re{reH||r -1 =1} < 7 eiR".

Furthermore, (6.14) implies that v maps C; onto C3. Denote D3 C Fy
to be the domain bounded by C3 and iR" (see Figure 4). Then it is
easy to see that t(D3) = Uz and

(8.1) T€D1U01<:>T/€D3U03.

Let C' = ~-C = (C—1)/C. Similarly as Step 1 of the proof of Corollary
5.4, we can prove t(7') = 1/(1 — t(7)) and

CAclt(n) =1 Ae(t(r)

)\C/(t(T/)) - t(T) 1 - t(T) 1 + t(T,)’

namely ¢(7') € Us U t(C3) is a type 3 singular point of A¢r provided
that ¢(7) € Uy Ut(Cq) is a type 1 singular point of Ac. Therefore,
we have proved that each element in Us U t(Cs) is a type 3 singularity
of some solution of the Riccati equation (3.2). Similarly, by letting
v = (_01 1), ie. 7 = 1/(1 — 7), which maps {7 € H||r — %] = %}
onto 1+ iR™, we can prove that each element in Uy Ut(Cs) is a type 2
singularity of some solution of the Riccati equation (3.2).

Finally, we make a remark about Theorem C in §3. Let Mg denote
the solution space of the elliptic form (1.7), and M¢ denote the solution
space of PVI1 -1 1 3). Define (r,s) ~ (7,35) if (r,s) = £(7, §) mod 72

1
8’ 8’8’8

Then by Theorem C and Propositions 3.4, 4.4 and (4.7), we have
Mp = ((C*\3Z?%) / ~) U four copies of CP',
and

Mc = ((C2\%ZQ)/(~ UT'(2))) U four copies of CP/T(2).
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Appendix A. Asymptotics of real solutions at {0, 1,00}

In this appendix, we prove the following asymptotic behaviors for
real solutions at branch points, which are needed in §7. See [13] for
asymptotics of solutions to Painlevé VI with generic parameters. As
before, we may assume A(t) = A,.(¢) for some (r,s) € [0,1)x[0, 3]\ $Z2.
First we consider ¢ — 1. The covering map ¢ = ¢(7) has infinitely many
branches over (0, 1). For our purpose we only need to consider 7 € iR™.

Proposition A.1. Suppose thatt = t(1), 7 € iR and A(t) = A s(t)

is a real solution with (r,s) € [0,1) x [0, 3] \ 3Z2, then the followings
hold:

(i) if s €(0,3), then

T 2s
(A1) At) =1+ Sse” <H> FO((1—t)+(1—t)%) ast? L

2s —1 16
(ii) if s = 0, then
At) = 1+%+O((t—1)2) ast 1.
(iii) if s =%, then
A1) = ~1 4 1 (cos(2mr) —2) (1 = 1) + O((t = 1)%) as 111

Proof. By t(1) = % we have that if 7 = ib with b € R, then

€ (0,1) and ¢ 1 1 as b — +oo. To compute the limit, we recall the
formula for p(z|7) in Proposition 6.3: if ¢ = ¢*™™ and \q\ < €™ <

lg/~*, then
(A.2)
7T2 5 27rzz 2 ) i
Ty Tinz —2minz _ 9 )
p(z"]—) 3 T (627r7,z_ +Z 1_q Te )

Now we put z = r+s7 = r+ibs with (r,s) € [0,1)x[0, 3]. Then e 2™ =
lq| < |e¥™%| = e=2™b < |q|~!. We consider three cases separately.
Case 1. 0<5<%.
In this case, by (A.2) and (5.3) we have

2
{p(?" + 37_‘7_) _ _% _ 47r2627ri7“6—27rbs +0 <627r(s—1)b) 7
p/(r + ST|T) — _87T37;€27rir6—27rbs + 0(627r(s—1)b +€—47‘l’bs)7

(A.3) Zy.s(ib) = 7i (25 — 1) + O(e~2™9),
as b — +o00. Since

o (r + s7|7)

olprs(r)ir) =l s7lr) + P,
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we have
72 8s

o(pr,s(1)|7) = — 3 951

+0 (e27r(s_1)b + 6_47Tb8) as b — +o0.

2627rz7‘€—27rbs

On the other hand, by letting 2z = %, o3 H‘TT in (A.2) respectively, we

easily obtain the following expansions for e;(7) (see (6.15) and Remark
6.5 or [34, p.70]):

2 2% k m 2% 4
61(7):T+167T > ard”, 62(7):*3*877 > arg?,
k=1 k=1
T > k
e3(T) = 3 8 Z(_l)kakq§7
k=1

where aj = Eo<d\k d odd @- From here, we easily deduce

(A.4) t—1= M — 16T +0 (e_27rb> ’
ea(7) — ex(7)
and
At)— 1= o(pr.s(T)|7) — ea(T)
e2(7) — e1(7)
(A5) — %627”'7‘67271”1)5 + O (efﬂ'b 4 6747rbs)
as b — 400, which implies (A.1) by using (A.4).
Case 2. s =0.
In this case, as b — +00, we have
72 2
p(r|r) = —— + —5—— + 167 sin’(zr)e >™ + O(e~*™),
3 sin®(nr)
_ 9.3
o' (rlr) = ——— cot(mr) + 1673 sin(27rr)e_2”b + 0(6_47“’)’
sin®(7rr)
(A.6) Zy0(ib) = 7 cot(mr) + 4 sin(27r)e "2 4 O(e~47),

2

p(pr,0(7)|7') = _% + 872 (1 + 4Sin2(7'r7‘)) e—27rb + 0(8_47rb)7

and so, as t 1 1,

Mt) —1=—8e ™ 4+ 16(3 — 2sin®(7r))e 2™ + O(e~3™)

= % +0((t —1)*).
1

Case 3. s = 5
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In this case, we note that [e?™?| = e™™ = |ge=2™%|. As b — +o00, a
straightforward computation gives
2
T m 2
p(r+3|7) =— 3 8m* cos(27r)e

—mbh
+ 872 (1 — 2cos(4nr)) e 2™ 4 O(e 3™,
o (r+3r) = 1672 sin(27r)e ™™ + 6472 sin(4nr)e 2™ 4 O(e73),
(A7) Zr’% (ib) = 4 sin(2nr)e” ™ 4 4 sin(dnr)e 2 + O(e3),

5 2
p(pr,% (7_)|7—) = l + 471'2 COS(27rr)e_7rb + O(G_QWb)7

3
and so, as t 1 1,
At) + 1= (8 — dcos(2rr)) e ™ + O(e2™)

1
=1 (cos(2mr) —2) (t — 1) + O((t — 1)?).
This completes the proof. q.e.d.

Proposition A.2. Suppose that t = t(7), 7 € iRT and A(t) = A\, 5(¢)
is a real solution with (r,s) € [0,1) x [0,4]\ 3Z2, then the followings
hold:

(i) if r ¢ {0, %}, then

At) = _ e <t>2s +O(t+t"%) ast 0
25—1 \ 16 ’
where
(s,1—7r) if re[i 1),
(A.8) (7,8) =< (L—s,7) if re [0, $),s>0,

(0,7) if 1€10,3),s=
(ii) ¢f r =0, then

Mw:%+ow)%tuy
(iii) if r =1, then

At) =2+ % (cos(2ms) —2)t +O(t?) ast 0.

Proof. Let 7/ = S = —Land (s,7') = (s,r) - S7' = (-r,s). By
using (4.5), e1(7') = ( ), ea(7') = 7'261(7') and e3(7') = T2e3(7), we
obtain

_ oprs(M)IT) —ei(r) _ pprs (7)) — ea(7')
B Al =200 —am — 7 el —al@)

= _>\r ,s’ (t( )) + 1= —Ar175/(1 — t(T)) + 1
= —)\,:,g(l — t(T)) + 1,
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where (7,3) € £(r’, s')+7Z? is given by (A.8), namely § = min{r,1—7} €
[0, %} Now our assertion follows readily from Proposition A.1. q.e.d.

To give the asymptotic behavior as t T +o00, we remark that ¢(7) €
(1,400) provided T € 1 +iR™, see the proof of the following result.

Proposition A.3. Suppose that t = t(7), 7 € 1 + iR and \(t) =
Ar,s(t) s a real solution with (r,s) € [0,1) x [0, 3]\ 3Z*. Define
 (r+s,8) if r+s<1,
(A-10) (1, 1) '_{ (r+s—1,s) if r+s>1.
Then the followings hold:
(i) if r1 € {0, 5}, then
geZM'f

A = 225 1)

(166)' % + O(1 + t'7%%) as t T +o0,

where

(s1,1—r1) if m € (3,1),
(7,8) =< (1—s1,m1) if r1€(0,3),5 >0,
(0,71) if 1 €(0,5),s1 =0.

(i) if 1 = 0, then
At) = % +0@1t™) ast?t 4.
(iif) if r1 = 3, then
A(t) =2t + % (cos(2ms1) —2) +O(t™1) ast 1 +o0.

Proof. Let 7/ =T~ !.7 =7 —1€R*". Then e1(7') = e1(7), e2(7') =
es(7) and e3(7') = ea(7), which implies t(7) = t(l,) € (1,400). Define
(s',7") = (s,r) -yt = (s,r + s). By using (4.5

e have

) w
(A.ll) )\Ts<t(7—)) _ @(pr,s(T)‘T) — 61(7') _ p(pr’,s’(T/)h/) _ 61(7")

e2() — e1(7) e3(1) —e1(7')
_ A (UT) Ny ()L
- t(T’) t( ))‘7’ ;S (t< ) )

= t(T))‘n,sl (ﬁ) )

where (rq,s1) € (r',s') + Z? is given by (A.10). Consequently, this
proposition follows readily from Proposition A.2. q.e.d.

As pointed out in §1, no solution is real-valued along the real-axis.
To see it, we first classify all solutions A, 4(t) which are real-valued along
t(r) € (0,1) with 7 € iR™.
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Proposition A.4. Let t = t(r), T € iR" and (r,s) € C*\1Z2. Then
Ars(t(T)) is real-valued along T € iR if and only if either r € R,
s € %Z +itRorseR, re %Z +iR. In particular, for such a solution
Ars(t(7)), it is smooth for t(T) € (0,1) if and only if it is also a real
solution.

Proof. Since 7 € iRT, it is easy to see from the definition (1.4) of

p(2) that p(z) = p(2), ¢'(2) = ©'(2) and ((z) = ((2). In particular,
ej(t) € R, m(7) € R and na(7) € iR. Clearly A, 4(t(7)) is real-valued
for 7 € iR™ if and only if p(p, (7)) is real-valued for 7 € {R*, which is
equivalent to

o(pr,s(1)) = p(prs(T))

o) Ve

=p(r+ )+2({(7“—1—57)—7‘771(7)_5772(7))

P @' (r — 57)

= o( )+ 2(¢(r — 57) — () + 3m2(7))
(A.12) = p(pr—s(7)) forall € iRT.

Together with (4.7), we conclude that A, 4(¢(7)) is real-valued for 7 €
iR* if and only if (r,s) = £(7, —5) mod Z2. This proves the first asser-
tion.

For the second assertion, we recall [6, Theorem 1.6] where we proved
that any real solution A, s(¢) has no singularities in R\{0, 1}, i.e., A, s(t) &
{0,1,¢,00} for all t € R\{0, 1}, so the sufficient part holds. For the nec-
essary part, it suffices to prove r, s € R. If not, without loss of generality,
we may assume Ims £ 0. Then r € R and s € %Z + 1R. Clearly there
exists 7p € iRT such that r + sy € {0, %7’0} + A;,, by which we have
Ars(t(10)) € {1, 00}, namely A, (t(7)) has a singularity t(m) € (0,1), a
contradiction with the assumption that A, ¢(¢(7)) is smooth in (0,1).
q.e.d.

REMARK A.5. From Propositions A.1,A.2 and A.4, we see that for
any real solution A, 5(¢(7)) which is real-valued along 7 € iR*, its ana-
lytic continuation to the line 1+ iR* (i.e. ¢(7) € (1,400)) or to the arc
{reH||r— 3| =3} (ie. t(r) € (—00,0)) turns out not real-valued. It
is easy to see that any other solution can not be real-valued along the
real-axis either, because it has at least a branch point at one of {0, 1,00}
by Propositions 3.4 and 4.4.

The following result seems an interesting consequence of our smooth-
ness result.

Proposition A.6. Let t =t(r), 7 € iRT and (r,s) € [0,1) x [0, 5] \
%Zz. Then
(A.13) 0<t<Ap(t)<l, 0<Aos(t)<t<l,
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AT,%(t) <0, )\%’s(t) > 1.

In particular, Ao(t) and Ao s(t) are both one-to-one from (0,1) onto
(0,1).

Proof. By Proposition A.4 and the assumption, Ao, Ao,s, A

n
7néad

A1, are all real-valued for 7 € iRT. To prove (A.13), we use again that
2 b
any real solution A, 4(t) satisfies A, s(t) & {0, 1,¢, 00} for all t € R\{0, 1}.
Together this with Propositions A.1 and A.2, (A.13) follows readily.
It suffices to prove the one-to-one for A, o(t). The proof for g 4(t) is

similar and we omit the details. Recall from Propositions A.1, A.2 and
(A.13) that

li = li =1 1.

tlfél Aro(t) =0, tlTI{l Aro(t) , < Aolt) <
Suppose A o(t) is not one-to-one, then there is a critical point ¢y € (0, 1)
such that A} o(to) = 0 and \/((to) < 0, which implies from Painlevé VI
(1.2) that

1 1 1 1—1o 3 to(l—to) >0
8 B8A(to)> 8(A(to)—1)2 8(A(to) —t0)2 ~

Thus, to < A(tp)? and 1 —tg < (A(tg) — 1)%, which imply 2A(¢9)(A(to) —
1) > 0, a contradiction to 0 < A(tp) < 1.
This completes the proof. q.e.d.
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