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Abstract. In literature, it is known that any solution of Painlevé VI
equation governs the isomonodromic deformation of a second order lin-
ear Fuchsian ODE on CP1. In this paper, we extend this isomonodromy
theory on CP1 to the moduli space of elliptic curves by studying the
isomonodromic deformation of the generalized Lamé equation. Among
other things, we prove that the isomonodromic equation is a new Hamil-
tonian system, which is equivalent to the elliptic form of Painlevé VI
equation for generic parameters. For Painlevé VI equation with some
special parameters, the isomonodromy theory of the generalized Lamé
equation greatly simplifies the computation of the monodromy group in
CP1. This is one of the advantages of the elliptic form.

Résumé: Dans la littérature, il est connu que toute solution de l’équation
de Painlevé VI régit la déformation isomonodromique d’une EDO fuch-
sienne ordinare sur CP1. Dans cet article, nous étendons cette théorie
de isomonodromie sur CP1 à l’espace des modules des courbes ellip-
tiques en étudiant la déformation isomonodromique de l’équation de
Lamé généralisée. Entre autres choses, nous prouvons que l’équation i-
somonodromique est un nouveau système hamiltonien, qui est équivalent
à la forme elliptique de l’équation de Painlevé VI pour des paramètres
génériques. Pour l’équation de Painlevé VI avec certains paramètres
spéciaux, la théorie de isomonodromie de l’équation de Lamé généralisée
simplifie grandement le calcul du groupe de monodromie dans CP1. Ceci
est un des avantages de la forme elliptique.
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1. Introduction

The isomonodromic deformation plays an universal role to connect many
different research areas of mathematics and physics. Our purpose of this pa-
per is to develop an isomonodromy theory for the generalized Lamé equation
on the moduli space of elliptic curves.

1.1. Painlevé VI in elliptic form. Historically, the discovery of Painlevé
equations was originated from the research on complex ODEs from the mid-
dle of 19th century up to early 20th century, led by many famous mathe-
maticians including Painlevé and his school. The aim is to classify those
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nonlinear ODEs whose solutions have the so-called Painlevé property. We
refer the reader to [1, 5, 6, 9, 10, 11, 12, 13, 15, 17, 19, 20, 21, 22, 23, 25, 26]
and references therein for some historic account and the recent develop-
ments. Painlevé VI with four free parameters (α, β, γ, δ) can be written
as
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=
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.(1.1)

In the literature, it is well-known that Painlevé VI (1.1) is closely related
to the isomonodromic deformation of either a 2 × 2 linear ODE system of
first order (under the non-resonant condition, the isomonodromic equation
is known as the Schlesinger system; see [16]) or a second order Fuchsian
ODE (under the non-resonant condition, the isomonodromic equation is a
Hamiltonian system; see [7, 21]). This associated second order Fuchsian
ODE is defined on CP1 and has five regular singular points 0, 1, t, λ(t) and
∞. Among them, λ(t) (as a solution of Painlevé VI) is an apparent sin-
gularity (i.e., non-logarithmic). This isomonodromy theory on CP1 was
first discovered by R. Fuchs [7], and later generalized to the n-dimensional
Garnier system by K. Okamoto [21]. We will briefly review this classical
isomonodromy theory in Section 4.

Throughout the paper, we use the notations ω0 = 0, ω1 = 1, ω2 = τ ,
ω3 = 1 + τ , Λτ = Z + τZ, and Eτ + C/Λτ where τ ∈ H = {τ | Im τ > 0}
(the upper half plane). We also define Eτ [2] +

{
ωi
2 |i = 0, 1, 2, 3

}
to be the

set of 2-torsion points in the flat torus Eτ . From the Painlevé property of
(1.1), any solution λ (t) is a multi-valued meromorphic function in C\ {0, 1}.
To avoid the multi-valueness of λ (t), it is better to lift solutions of (1.1) to
its universal covering. It is known that the universal covering of C\ {0, 1}
is H. Then t and the solution λ (t) can be lifted to τ and p (τ) respectively
through the covering map by

(1.2) t (τ) =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
and λ(t) =

℘(p(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
,

where ℘ (z|τ) is the Weierstrass elliptic function defined by

℘ (z|τ) =
1

z2
+

∑
ω∈Λτ\{0}

[
1

(z − ω)2 −
1

ω2

]
,

and ei = ℘
(
ωi
2 |τ
)
, i = 1, 2, 3. Then p (τ) satisfies the following elliptic form

(1.3)
d2p (τ)

dτ2
=
−1

4π2

3∑
i=0

αi℘
′
(
p (τ) +

ωi
2
|τ
)
,
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where ℘′ (z|τ) = d
dz℘ (z|τ) and

(1.4) (α0, α1, α2, α3) =

(
α,−β, γ, 1

2
− δ
)
.

This elliptic form was already known to Painlevé [24]. For a modern proof,
see [1, 20].

The advantage of (1.3) is that ℘(p(τ)|τ) is single-valued for τ ∈ H, al-
though p(τ) has a branch point at those τ0 such that p(τ0) ∈ Eτ0 [2] (see
e.g. (1.22) below). We take (α0, α1, α2, α3) = (1

8 ,
1
8 ,

1
8 ,

1
8) for an example

to explain it. Painlevé VI with this special parameter has connections with
some geometric problems; see [4, 11]. In the seminal work [11], N. Hitchin
discovered that, for a pair of complex numbers (r, s) ∈ C2\1

2Z
2, p(τ) defined

by the following formula:

(1.5) ℘ (p(τ)|τ) = ℘ (r + sτ |τ) +
℘′ (r + sτ |τ)

2 (ζ (r + sτ |τ)− rη1(τ)− sη2(τ))
,

is a solution to (1.3) with αk = 1
8 for all k. Here ζ (z|τ) + −

∫ z
℘(ξ|τ)dξ is

the Weierstrass zeta function and has the quasi-periods

(1.6) ζ (z + 1|τ) = ζ (z|τ) + η1(τ) and ζ (z + τ |τ) = ζ (z|τ) + η2(τ).

By (1.5), Hitchin could construct an Einstein metric with positive curvature
if r ∈ R and s ∈ iR, and an Einstein metric with negative curvature if
r ∈ iR and s ∈ R. It follows from (1.5) that ℘ (p(τ)|τ) is a single-valued
meromorphic function in H. However, each τ0 with p(τ0) ∈ Eτ0 [2] is a branch
point of order 2 for p(τ).

Motivated from Hitchin’s solutions, we would like to extend the beautiful
formula (1.5) to Painlevé VI with other parameters. But it is not a simple
matter because it invloves complicated derivatives with respect to the moduli
parameter τ . For example, for Hichin’s solutions, it seems not easy to derive
(1.3) with αk = 1

8 for all k directly from the formula (1.5). We want to
provide a systematical way to study this problem. To this goal, the first
step is to develop a theory in the moduli space of tori which is analogous to
the Fuchs-Okamoto theory on CP1. The purpose of this paper is to derive
the Hamiltonian system for the elliptic form (1.3) by developing such an
isomonodromy theory in the moduli space of tori. The key issue is what the
linear Fuchsian equation in tori is such that its isomonodromic deformation
is related to the elliptic form (1.3).

1.2. Generalized Lamé equation. Motivated from our study of the sur-
prising connection of the mean field equation and the elliptic form (1.3) of
Painlevé VI in [4], our choice of the Fuchsian equation is the generalized
Lamé equation defined by (1.11) below. More precisely, let us consider the
following mean field equation

(1.7) ∆u+ eu = 8π

3∑
i=0

nkδωk
2

+ 4π (δp + δ−p) in Eτ ,
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where nk > −1, δ±p and δωk
2

are the Dirac measure at ±p and ωk
2 respec-

tively. By the Liouville theorem, any solution u to equation (1.7) could be
written into the following form:

(1.8) u(z) = log
8|f ′(z)|2

(1 + |f(z)|2)2
,

where f (z) is a meromorphic function in C. Conventionally f (z) is called a
developing map of u. We could see below that there associates a 2nd order
complex ODE reducing from the nonlinear PDE (1.7). Indeed, it follows
from (1.7) that outside Eτ [2] ∪ {±p},(

uzz −
1

2
u2
z

)
z̄

= (uzz̄)z − uzuzz̄ =

(
−1

4
eu
)
z

+
1

4
euuz = 0.

So uzz − 1
2u

2
z is an elliptic function on the torus Eτ with singularties at

Eτ [2] ∪ {±p}. Since the behavior of u is fixed by the RHS of (1.7), for
example, u(z) = 2 log |z− p|+O(1) near p, we could compute explicitly the
dominate term of uzz − 1

2u
2
z near each singular point. Let us further assume

that u(z) is even, i.e., u(z) = u(−z). Then we have

uzz −
1

2
u2
z(1.9)

=− 2

[ ∑3
k=0 nk (nk + 1)℘

(
z + ωk

2

)
+ 3

4 (℘ (z + p) + ℘ (z − p))
+A (ζ (z + p)− ζ (z − p)) +B

]
+− 2I (z) ,

where A,B are two (unknown) complex numbers.
On the other hand, we could deduce from (1.8) that the Schwarzian de-

rivative {f ; z} of f can be expressed by

(1.10) {f ; z} +
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= uzz −
1

2
u2
z = −2I (z) .

From (1.10), we connect the developing maps of an even solution u to (1.7)
with the following generalized Lamé equation

(1.11) y′′(z) = I(z)y(z) in Eτ ,

where the potential I(z) is given by (1.9). In the classical literature, the 2nd
order ODE

(1.12) y′′(z) = (n(n+ 1)℘(z) +B) y(z) in Eτ

is called the Lamé equation, and has been extensively studied since the
19th century, particularly for the case n ∈ Z/2. See [3, 10, 25, 31] and the
references therein. In this paper, we will prove that (1.12) appears as a
limiting equation of (1.11) under some circumstances (see Theorem 1.5).
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From (1.8) and (1.10), any two developing maps fi, i = 1, 2 of the same
solution u must satisfy

f2(z) = α · f1(z) +
af1(z) + b

cf1(z) + d

for some α =

(
a b
c d

)
∈ PSU(2). From here, we could define a projective

monodromy representation ρ : π1(Eτ\(Eτ [2]∪{±p}), q0)→ PSU(2), where
q0 6∈ Eτ [2] ∪ {±p} is a base point. Indeed, any developing map f might be
multi-valued. For any loop ` ∈ π1(Eτ\(Eτ [2] ∪ {±p}), q0), `∗f denotes the
analytic continuation of f along `. Since `∗f is also a developing map of the
same u, there exists ρ(`) ∈ PSU(2) such that `∗f = ρ(`) · f . Thus, the map
` 7→ ρ(`) defines a group homomorphism from π1(Eτ\(Eτ [2]∪ {±p}), q0) to
PSU(2). When nk ∈ N∪{0} for all k, the developing map is a single-valued
meromorphic function defined in C, and {±p} would become apparent sin-
gularties. Thus, the projective monodromy representation would be reduced
to a homomorphism from π1 (Eτ , q0) to PSU(2). This could greatly simplify
the computation of the monodromy group. The deep connection of the mean
field equation (1.7) and the elliptic form (1.3) has been discussed in detail
in [4]. This is our motivation to study the isomonodromic deformation of
the generalized Lamé equation (1.11) in this paper.

1.3. Isomonodromic deformation and Hamiltonian system. We are
now in a position to state our main results. Recall the generalized Lamé
equation (1.11):

(1.13) y′′ =

[ ∑3
k=0 nk (nk + 1)℘

(
z + ωk

2

)
+ 3

4 (℘ (z + p) + ℘ (z − p))
+A (ζ (z + p)− ζ (z − p)) +B

]
y.

Equation (1.13) has no solutions with logarithmic singularity at ωk
2 unless

nk ∈ 1
2 + Z. Therefore, we need to assume the non-resonant condition:

nk 6∈ 1
2 + Z for all k. Observe that the exponent difference of (1.13) at ±p

is 2. Here the singular points ±p are always assumed to be apparent (i.e.,
non-logarithmic). Under this assumption, the coefficients A and B together
satisfy (1.17) below. Our first main result is following.

Theorem 1.1. Let

(1.14) αk =
1

2

(
nk +

1

2

)2

with nk 6∈
1

2
+ Z, k = 0, 1, 2, 3.

Then p (τ) is a solution of the elliptic form (1.3) if and only if there exist
A (τ) and B (τ) such that the generalized Lamé equation (1.13) with apparent
singularities at ±p (τ) preserves the monodromy while τ is deforming.

Our method to prove Theorem 1.1 consists of two steps: the first is to
derive the isomonodromic equation, a Hamiltonian system, in the moduli
space of tori for (1.13) under the non-resonant condition nk 6∈ 1

2 + Z. The
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second is to prove that this isomonodromic equation (the Hamiltonian sys-
tem) is equivalent to the elliptic form (1.3). To describe the isomonodromic
equation for (1.13), we let the Hamiltonian K (p,A, τ) be defined by

K (p,A, τ) =
−i
4π

(B + 2pη1 (τ)A)(1.15)

=
−i
4π

(
A2 + (−ζ (2p|τ) + 2pη1 (τ))A− 3

4℘ (2p|τ)

−
∑3

k=0 nk (nk + 1)℘
(
p+ ωk

2 |τ
) )

.

Consider the Hamiltonian system
(1.16)

dp(τ)
dτ = ∂K(p,A,τ)

∂A = −i
4π (2A− ζ (2p|τ) + 2pη1 (τ))

dA(τ)
dτ = −∂K(p,A,τ)

∂p = i
4π

(
(2℘ (2p|τ) + 2η1 (τ))A− 3

2℘
′ (2p|τ)

−
∑3

k=0 nk (nk + 1)℘′
(
p+ ωk

2 |τ
) )

.

Then our first step leads to the following result:

Theorem 1.2 (=Theorem 2.3). Let nk 6∈ 1
2 + Z, k = 0, 1, 2, 3. Then

(p(τ), A(τ)) satisfies the Hamiltonian system (1.16) if and only if equation
(1.13) with (p(τ), A(τ), B(τ)) preserves the monodromy, where

(1.17) B = A2 − ζ (2p)A− 3

4
℘ (2p)−

3∑
k=0

nk (nk + 1)℘
(
p+

ωk
2

)
.

And the second step is to prove

Theorem 1.3 (=Theorem 2.5). The elliptic form (1.3) is equivalent to the

Hamiltonian system (1.16), where αk = 1
2

(
nk + 1

2

)2
, k = 0, 1, 2, 3.

Clearly Theorem 1.1 follows from Theorems 1.2 and 1.3 directly.

Remark 1.1. In [20], Manin rewrote the elliptic form (1.3) into an obvious
time-dependent Hamiltonian system:

(1.18)
dp (τ)

dτ
=
∂H

∂q
,
dq (τ)

dτ
= −∂H

∂p
,

where

H = H (τ, p, q) +
q2

2
+

1

4π2

3∑
i=0

αi℘
(
p (τ) +

ωi
2
|τ
)
.

However, it is not clear whether the Hamiltonian system (1.18) governs
isomonodromic deformations of any Fuchsian equations in Eτ or not. Dif-
ferent from (1.18), our Hamiltonian system (1.16) governs isomonodromic
deformations of the generalized Lamé equation for generic parameters.

Both Theorems 1.2 and 1.3 are proved in Section 2. It seems that the gen-
eralized Lamé equation (1.13) looks simpler than the corresponding Fuchsian
ODE on CP1, and it is the same for the Hamiltonian system (1.16), com-
pared to the corresponding one on CP1. From the second equation of (1.16),
A (τ) can be integrated so that we have the following theorem:
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Theorem 1.4. Suppose (p(τ), A(τ)) satisfies the Hamiltonian system (1.16).
Define

(1.19) F (τ) + A(τ) +
1

2
(ζ(2p(τ)|τ)− 2ζ(p(τ)|τ)).

Then

F (τ) = θ′1(τ)
2
3 exp

{
i

2π

∫ τ

(2℘(2p(τ̂)|τ̂)− ℘(p(τ̂)|τ̂)) dτ̂

}
×∫ τ − i

4πθ
′
1(τ̂)−

2
3

(∑3
k=0 nk(nk + 1)℘′(p(τ̂) + ωk

2 |τ̂)
)

exp
{

i
2π

∫ τ̂
(2℘(2p(τ ′)|τ ′)− ℘(p(τ ′)|τ ′)) dτ ′

} dτ̂ + c1

(1.20)

for some constant c1 ∈ C, where θ′1(τ) = dϑ1(z;τ)
dz |z=0 and ϑ1 (z; τ) is the odd

theta function defined in (2.30). In particular, for nk = 0,∀k, we have

(1.21) F (τ) = cθ′1(τ)
2
3 exp

{
i

2π

∫ τ

(2℘(2p(τ̂)|τ̂)− ℘(p(τ̂)|τ̂)) dτ̂

}
for some constant c ∈ C\ {0}.

Remark 1.2. Let η(τ) be the Dedekind eta function: η(τ) + q
1
24
∏∞
n=1(1−

qn), where q = e2πiτ for τ ∈ H. Then θ′1(τ) = 2πη3(τ).

The elliptic form (1.3) and our results above could be applied to under-
stand the phenomena of collapsing two singular points ±p(τ) to ωk

2 in the
generalized Lamé equation (1.13). In general, when p(τ) → ωk

2 as τ → τ0,
the generalized Lamé equation might not be well-defined. However, when
p(τ) is a solution of the elliptic form (1.3), by using the behavior of p(τ)
near τ0, the following result shows that the generalized Lamé equation will
converge to the classical Lamé equation (1.12).

Observe that if p(τ) is a solution of the elliptic form (1.3), then p(τ)− ωk
2

is also a solution of (1.3) (maybe with different parameters). Therefore, we
only need to study the case p(τ)→ 0. More precisely, we have:

Theorem 1.5 (=Theorem 3.1). Suppose that nk 6∈ 1
2 + Z, k = 0, 1, 2, 3,

and (1.17) holds. Let (p(τ), A(τ)) be a solution of the Hamiltonian system
(1.16) such that p(τ0) = 0 for some τ0 ∈ H. Then

(1.22) p(τ) = c0(τ − τ0)
1
2 (1 + h̃(τ − τ0) +O(τ − τ0)2) as τ → τ0,

where c2
0 = ±in0+ 1

2
π and h̃ ∈ C is some constant. Moreover, the generalized

Lamé equation (1.13) as τ → τ0 converges to

(1.23) y′′ =

 3∑
j=1

nj (nj + 1)℘
(
z +

ωj
2

)
+m(m+ 1)℘(z) +B0

 y in Eτ0

where

m =

{
n0 + 1 if c2

0 = i
n0+ 1

2
π ,

n0 − 1 if c2
0 = −in0+ 1

2
π ,
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B0 = 2πic2
0

(
4πih̃− η1(τ0)

)
−

3∑
j=1

nj(nj + 1)ej(τ0).

Remark 1.3. (1) Equation (1.23) is an elliptic form of Heun equation,
and the potential of equation (1.23) as the Schrödinger operator is
also called the Treibich-Verdier potential, which has the finite gap
property when nk ∈ N ∪ {0} for all k. See [27, 30].

(2) In Section 4, we will see that the generalized Lamé equation (1.13)
is an elliptic form of the Fuchsian equation (4.1) on CP1; see also
[28], where for the case nk ∈ N ∪ {0} for all k, Takemura obtained
the connection between the generalized Lamé equation (1.13) and
Painlevé VI equation by means of equation (4.1). Equation (4.1)
has five regular singular points (see (4.2)) and can be seen as a
one-parameter deformation of Heun equation. Due to this reason,
equation (4.1) is also called Heun1 equation in [18]. The collapse of
two singular points of Heun1 equation was studied in [29], where µ
is fixed (i.e. independent of λ) during the collapsing process λ →
one of {0, 1, t,∞} (see (4.2)-(4.6) for (t, λ, µ)). Here our study of
p(τ) → ωk

2 is different from those in [29] because we require that
(p(τ), A(τ)) always satisfies the Hamiltonian system (1.16) during
the collapsing process.

Theorem 1.5 will be proven in Section 3. In Section 4, we will give another
application of our isomonodromy theory (see Corollary 4.1). More precisely,
we will establish a one to one correspondence between the generalized Lamé
equation and the Fuchsian equation (4.1) on CP1. Furthermore, we will
prove that if one of them is monodromy preserving then so is the other
one. We remark that all the results above have important applications in
our coming paper [4]. For example, Theorem 1.5 can be used to study the
converge of even solutions of the mean field equation (1.7) as p (τ)→ 0 when
τ → τ0.

We conclude this section by comparing our result Theorem 1.1 with the
paper [17] by Kawai. Define the Fuchsian equation in Eτ by

(1.24) y′′ (z) = q (z) y (z) ,

where

q (z) =L+
m∑
i=0

[
Hiζ (z − ti|τ) +

1

4

(
θ2
i − 1

)
℘ (z − ti|τ)

]
(1.25)

+

m∑
α=0

[
−µαζ (z − bα|τ) +

3

4
℘ (z − bα|τ)

]
with

(1.26)
m∑
i=0

Hi −
m∑
α=0

µα = 0.
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Here L, Hi, ti, θi, µα, bα are complex parameters with t0 = 0. The isomon-
odromic deformation of equation (1.24) was first treated by Okamoto [23]
without varying the underlying elliptic curves and then generalized by I-
wasaki [14] to the case of higher genus. Let R be the space of conjugacy
classes of the monodromy representation of π1((Eτ\S), q0), where S denotes
the set of singular points. Then it was known that R is a complex mani-
fold. It was proved by Iwasaki [14] that there exists a natural symplectic
structure Ω on the space R. In [17], Kawai considered the same Fuchsian
equation (1.24) but allowed the underlying elliptic curves to vary as well.
By using the pull-back principle to the symplectic 2-form Ω, Kawai studied
isomonodromic deformations for equation (1.24) which are described as a
completely integrable Hamiltonian system: for 1 ≤ i ≤ m,

(1.27)
∂bα
∂ti

=

m∑
i=1

∂Hi

∂µα
,
∂bα
∂τ

=
∂H
∂µα

,
∂µα
∂ti

= −
m∑
i=1

∂Hi

∂bα
,
∂µα
∂τ

= − ∂H
∂bα

,

where

H =
1

2πi

[
L+ η1(τ)

(
m∑
α=0

bαµα −
m∑
i=1

tiHi

)]
.

Now considering the simplest case m = 0 and by using (1.26) and t0 = 0,
the potential q(z) takes the simple form (the subscript 0 is dropped for
simplicity)

(1.28) q (z) = L+µζ (z|τ)+
1

4

(
θ2 − 1

)
℘ (z|τ)−µζ (z − b|τ)+

3

4
℘ (z − b|τ) .

Consequently, the Hamiltonian system (1.27) is reduced to

(1.29)


db
dτ = −i

2π [2µ− ζ(b|τ) + bη1] ,

dµ
dτ = i

2π

[
µ℘(b|τ) + µη1 − 1

4(θ2 − 1)℘′(b|τ)
]
.

Furthermore, the Hamiltonian system (1.29) is equivalent to

d2

dτ2

(
b

2

)
= − 1

4π2

3∑
k=0

θ2

32
℘′
(
b

2
+
ωk
2
|τ
)
,

which implies that b
2 satisfies the elliptic form (1.3) with (α0, α1, α2, α3) =

( θ
2

32 ,
θ2

32 ,
θ2

32 ,
θ2

32); see [17, Theorem 3]. It is clear that our potential I (z) is
different from (1.28) except for nk = 0, k = 0, 1, 2, 3 in I (z) and θ = ±2 in
(1.28). Notice that the linear ODE (1.24) with (1.28) only has the apparent
singularity at b. Thus it seems that the monodromy representation for (1.24)
could not be reduced to π1 (Eτ ) when θ 6= ±2. However, when nk ∈ N∪{0}
for all k, the monodromy representation for (1.13) could be simplified. We
remark it is an advantage when we study the elliptic form (1.3) with αk =
1
2

(
nk + 1

2

)2
, k = 0, 1, 2, 3. From Kawai’s result in [17] and ours, it can

be seen that the elliptic form (1.3) governs isomonodromic deformations of
different linear ODEs (e.g. (1.24) with (1.28) and (1.13)). Therefore, it
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is important to choose a suitable linear ODE when generic parameters are
considered.

2. Painlevé VI and Hamiltonian system on the moduli space

In this section, we want to develop an isomonodromy theory on the mod-
uli space of elliptic curves. For this purpose, there are two fundamental
issues needed to be discussed: (i) to derive the Hamiltonian system for the
isomonodromic deformation of the generalized Lamé equation (1.13) with
ni 6∈ 1

2 +Z, i = 0, 1, 2, 3; (ii) to prove the equivalence between the Hamilton-
ian system and the elliptic form (1.3). We remark that the (ii) part holds
true without any condition. Recall the generalized Lamé equation defined
by

(2.1) y′′ = I (z; τ) y,

where

I (z; τ) =

3∑
i=0

ni (ni + 1)℘
(
z +

ωi
2
|τ
)

+
3

4
(℘ (z + p|τ) + ℘ (z − p|τ))

+A (ζ (z + p|τ)− ζ (z − p|τ)) +B,(2.2)

and p (τ) 6∈ Eτ [2]. By replacing ni by −ni − 1 if necessary, we always
assume ni ≥ −1

2 for all i. Remark that, since we assume ni 6∈ 1
2 + Z, the

exponent difference of (2.1) at ωi
2 is 2ni + 1 6∈ 2Z, implying that (2.1) has

no logarithmic singularity at ωi
2 , 0 ≤ i ≤ 3.

For equation (2.1), the necessary and sufficient condition for apparent
singularity at ±p is given by

Lemma 2.1. ±p are apparent singularities of (2.1) iff A and B satisfy

(2.3) B = A2 − ζ (2p)A− 3

4
℘ (2p)−

3∑
i=0

ni (ni + 1)℘
(
p+

ωi
2

)
.

Proof. It suffices to prove this lemma for the point p. Let yi, i = 1, 2, be
two linearly independent solutions to (2.1). Define f + y1

y2
as a ratio of two

independent solutions and v + log f ′. Then

(2.4) {f ; z} = v′′ − 1

2

(
v′
)2

= −2I(z).

It is obvious that (2.1) has no solutions with logarithmic singularity at p iff
f (z) has no logarithmic singularity at p. First we prove the necessary part.
Without loss of generality, we may assume f (z) is holomorphic at p. The
local expansion of f at p is:

f (z) = c0 + c2 (z − p)2 + · · ·,

(2.5) v (z) = log f ′ (z) = log 2c2 + log (z − p) +
∑
j≥1

dj (z − p)j ,
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(2.6) v′ (z) =
1

z − p
+
∑
j≥0

ẽj (z − p)j ,

v′′ (z) =
−1

(z − p)2 +
∑
j≥0

(j + 1) ẽj+1 (z − p)j ,

where ẽj = (j + 1) dj+1. Thus,

v′′ − 1

2

(
v′
)2

=
−1

(z − p)2 +
∑
j≥0

(j + 1) ẽj+1 (z − p)j(2.7)

− 1

2

[ 1

z − p
+
∑
j≥0

ẽj (z − p)j
]2
.

Recalling I(z) in (2.2), we compare both sides of (2.4). The (z − p)−2 terms

match automatically. For the (z − p)−1 term, we get

(2.8) −ẽ0 = 2A.

For the (z − p)0, i.e. the constant term, we have

ẽ1 −
2

2
ẽ1 −

1

2
ẽ2

0(2.9)

=− 2
3∑
i=0

ni (ni + 1)℘
(
p+

ωi
2

)
− 3

2
℘ (2p)− 2Aζ (2p)− 2B.

Then (2.3) follows from (2.8) and (2.9) immediately.
For the sufficient part, if (2.3) holds, then ẽ0 is given by (2.8). By any

choice of ẽ1 and comparing (2.4) and (2.7), ẽj is determined for all j ≥ 2.
Then it follows from (2.5)-(2.6) that f (z) is holomorphic at p. Since its
Schwarzian derivative satisfies (2.4), f is a ratio of two linearly independent
solutions of (2.1). This implies that (2.1) has no solutions with logarithmic
singularity at p, namely p is an apparent singularity. �

2.1. Isomonodromic equation and Hamiltonian system. The 2nd or-
der generalized Lamé equation (2.1) can be written into a 1st order linear
system

(2.10)
d

dz
Y = Q (z; τ)Y in Eτ ,

where

(2.11) Q (z; τ) =

(
0 1

I (z; τ) 0

)
.

The isomonodromic deformation of the generalized Lamé equation (2.1) is
equivalent to the isomonodromic deformation of the linear system (2.10).
Let y1 (z; τ) and y2 (z; τ) be two linearly independent solutions of (2.1),

then Y (z; τ) =

(
y1 (z; τ) y2 (z; τ)
y′1 (z; τ) y′2 (z; τ)

)
is a fundamental system of solutions

to (2.10). In general, Y (z; τ) is multi-valued with respect to z and for each
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τ ∈ H, Y (z; τ) might have branch points at S +
{
±p, ωk2 | k = 0, 1, 2, 3

}
.

The fundamental solution Y (z; τ) is called M -invariant (M stands for mon-
odromy) if there is some q0 ∈ Eτ\S and for any loop ` ∈ π1(Eτ\S, q0), there
exists ρ (`) ∈ SL (2,C) independent of τ such that

`∗Y (z; τ) = Y (z; τ) ρ (`)

holds for z near the base point q0. Here `∗Y (z; τ) denotes the analytic
continuation of Y (z; τ) along `. Let γk ∈ π1(Eτ\S, q0), k = 0, 1, 2, 3,±, be
simple loops which encircle the singularties ωk

2 , k = 0, 1, 2, 3 and ±p once
respectively, and `j ∈ π1(Eτ\S, q0), j = 1, 2, be two fundamental cycles of
Eτ such that its lifting in C is a straight line connecting q0 and q0 + ωj .
We also require these lines do not pass any singularties. Of course, all the
pathes do not intersect with each other except at q0. We note that when τ
varies in a neighborhood of some τ0, γk and `1 can be choosen independent
of τ .

Clearly the monodromy group with respect to Y (z; τ) is generated by
{ρ (`j) , ρ (γk) | j = 1, 2 and k = 0, 1, 2, 3,±}. Thus, Y (z; τ) is M -invariant
if and only if the matrices ρ (`j) , ρ (γk) are independent of τ . Notice that
I (·; τ) is an elliptic function, so we can also treat (2.10) as a equation defined
in C, i.e.,

(2.12)
d

dz
Y = Q (z; τ)Y in C.

Furthermore, we can identify solutions of (2.10) and (2.12) in an obvious
way. For example, after analytic continuation, any solution Y (·; τ) of (2.10)
can be extended to be a solution of (2.12) as a multi-valued matrix function
defined in C (still denote it by Y (·; τ)). In the sequel, we always identify
solutions of (2.10) and (2.12). Then we have the following theorem:

Theorem 2.1. System (2.10) is monodromy preserving as τ deforms if and
only if there exists a single-valued matrix function Ω (z; τ) defined in C×H
satisfying

(2.13)

{
Ω (z + 1; τ) = Ω (z; τ)
Ω (z + τ ; τ) = Ω (z; τ)−Q (z; τ) ,

such that the following Pfaffian system

(2.14)

{
∂
∂zY (z; τ) = Q (z; τ)Y (z; τ)
∂
∂τ Y (z; τ) = Ω (z; τ)Y (z; τ)

in C×H

is completely integrable.

Remark 2.1. The classical isomonodromy theory in C (see e.g. [15, Propo-
sition 3.1.5]) says that system (2.12) is monodromy preserving if and only
if there exists a single-valued matrix function Ω (z; τ) defined in C×H such
that (2.14) is completely integrable. Theorem 2.1 is the counterpart of this
classical theory in the torus Eτ . The property (2.13) comes from the pre-
serving of monodromy matrices ρ (`j), j = 1, 2 during the deformation (see
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from the proof of Theorem 2.1 below). Notice that ρ (`j) can be considered
as connection matrices along the straight line `j connecting q0 and q0 + ωj
for system (2.12).

Notice that system (2.14) is completely integrable if and only if

(2.15)
∂

∂τ
Q (z; τ) =

∂

∂z
Ω (z; τ) + [Ω (z; τ) , Q (z; τ)] , and

(2.16) d(Ω (z; τ) dτ) = [Ω (z; τ) dτ ] ∧ [Ω (z; τ) dτ ] ,

where d denotes the exterior differentiation with respect to τ in (2.16). See
Lemma 3.14 in [15] for the proof. Clearly (2.16) holds automatically since
there is only one deformation parameter. We need the following lemma to
prove Theorem 2.1.

Lemma 2.2. Let Y (z; τ) be an M -invariant fundamental solution of system
(2.10) and define a 2× 2 matrix-valued function Ω (z; τ) in Eτ by

(2.17) Ω (z; τ) =
∂

∂τ
Y · Y −1.

Then Ω (z; τ) can be extended to be a globally defined matrix-valued function
in C×H by analytic continuation (still denote it by Ω (z; τ)). In particular,
(2.17) holds in C×H by considering Y (z; τ) as a solution of system (2.12).

Proof. The proof is the same as that in the classical isomonodromy theory
in C. Indeed, since Y (z; τ) is M -invariant, we have

γ∗kΩ (z; τ) = γ∗k

(
∂

∂τ
Y · Y −1

)
=

∂

∂τ
γ∗kY · γ∗kY −1(2.18)

=
∂

∂τ
(Y ρ (γk)) · ρ (γk)

−1 Y −1

=
∂

∂τ
Y · Y −1 = Ω (z; τ)

for k = 0, 1, 2, 3,±, namely Ω (·; τ) is invariant under the analytic continu-
ation along γk. Thus, Ω (·; τ) is single-valued in any fundamental domain
of Eτ for each τ . Then for each τ ∈ H, we could extend Ω (z; τ) to be a
globally defined matrix-valued function in C by analytic continuation. �

From now on, we consider equation (2.10) defined in C, i.e., (2.12). The
analytic continuation along any curve in C always keep the relation (2.17)
between Y (z; τ) and Ω (z; τ).

Proof of Theorem 2.1. First we prove the necessary part. Let Y (z; τ) be
an M -invariant fundamental solution of system (2.10) and define Ω (z; τ) by
Y (z; τ). By Lemma 2.2, Ω (z; τ) is a single-valued matrix function in C×H
and Y (z; τ) is a solution of (2.14), which implies (2.15). Hence the Pfaffian
system (2.14) is completely integrable.

It suffices to prove that Ω(z; τ) satisfies (2.13). Note that Ω(z; τ) is single-
valued in C×H. Therefore, to prove (2.13), we only need to prove its
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validity in a small neighborhood Uq0 × Vτ0 of some (q0, τ0), where q0 is the
base point. By considering Y (z; τ) as a solution of system (2.12), we see
from Remark 2.1 and Lemma 2.2 that, for (z, τ) ∈ Uq0 × Vτ0 ,

(2.19) Y (z + ωi; τ) = Y (z; τ)ρ (`i) ,

(2.20) Ω (z; τ) =
∂

∂τ
Y (z; τ) · Y (z; τ)−1,

(2.21) Ω (z + ωi; τ) =
∂

∂τ
Y (z + ωi; τ) · Y (z + ωi; τ)−1.

Therefore, (2.19) and (2.21) give

Ω (z + ωi; τ)

=

[
d

dτ
Y (z + ωi; τ)− ∂

∂z
Y (z + ωi; τ)

d

dτ
ωi

]
· Y (z + ωi; τ)−1

=

[
d

dτ
(Y (z; τ) ρ (`i))−

∂

∂z
(Y (z; τ) ρ (`i))

d

dτ
ωi

]
· (Y (z; τ) ρ (`i))

−1 .

Since ρ (`i) , i = 1, 2, are independent of τ, we have

Ω (z + 1; τ) =
d

dτ
Y (z; τ) · Y (z; τ)−1 = Ω (z; τ) ,

and

Ω (z + τ ; τ) =
d

dτ
Y (z; τ) · Y (z; τ)−1 − ∂

∂z
Y (z; τ) · Y (z; τ)−1

= Ω (z; τ)−Q (z; τ) .

This proves (2.13).
Conversely, suppose there exists a single-valued matrix function Ω (z; τ)

in C × H satisfying (2.13) such that (2.14) is completely integrable. Let
Y (z; τ) be a solution of the Pfaffian system (2.14). Then (2.19)-(2.21) hold
and Y (z; τ) satisfies system (2.10) in Eτ . Hence

∂

∂τ
Y (z + ωi; τ) =

d

dτ
Y (z + ωi; τ)− ∂

∂z
Y (z + ωi; τ)

d

dτ
ωi,

which implies

∂

∂τ
Y (z + 1; τ) =

d

dτ
(Y (z; τ) ρ (`1))(2.22)

=
∂

∂τ
Y (z; τ) · ρ (`1) + Y (z; τ)

d

dτ
ρ (`1)

= Ω (z; τ)Y (z; τ) ρ (`1) + Y (z; τ)
d

dτ
ρ (`1)

and
∂

∂τ
Y (z + τ ; τ)(2.23)

=
d

dτ
(Y (z; τ) ρ (`2))− ∂

∂z
(Y (z; τ) ρ (`2))
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=
∂

∂τ
Y (z; τ) · ρ (`2) + Y (z; τ)

d

dτ
ρ (`2)− ∂

∂z
Y (z; τ) · ρ (`2)

= [Ω (z; τ)−Q (z; τ)]Y (z; τ) ρ (`2) + Y (z; τ)
d

dτ
ρ (`2) .

On the other hand, by (2.19) and (2.21), we also have

(2.24)
∂

∂τ
Y (z + ωi; τ) = Ω (z + ωi; τ)Y (z; τ) ρ (`i) .

Then by (2.22), (2.23), (2.24) and (2.13), we have

Y (z; τ)
d

dτ
ρ (`1) = Y (z; τ)

d

dτ
ρ (`2) = 0.

Also, by the same argument as (2.18), we could prove

Y (z; τ)
d

dτ
ρ (γk) = 0, k = 0, 1, 2, 3,±.

Because of detY 6= 0, we conclude that

d

dτ
ρ (`j) =

d

dτ
ρ (γk) = 0.

Thus, Y is an M -invariant solution of (2.10). That is, system (2.10) is
monodromy preserving. This completes the proof. �

Write Ω (z; τ) =

(
Ω11 Ω12

Ω21 Ω22

)
. Since Q (z; τ) has the special form (2.11),

by a straightforward computation, the integrability condition (2.15) is e-
quivalent to

(2.25) Ω′′′12 − 4IΩ′12 − 2I ′Ω12 + 2
∂

∂τ
I = 0 in C×H,

where we denote ′ = ∂
∂z to be the partial derivative with respect to the

variable z. This computation is the same as the case in C (see e.g. [15,
Proposition 3.5.1]), so we omit the details. Then we have the following fun-
damental theorem for isomonodromic deformations of (2.10) in the moduli
space of elliptic curves:

Theorem 2.2. System (2.10) is monodromy preserving as τ deforms if and
only if there exists a single-valued solution Ω12 (z; τ) to (2.25) satisfying

Ω12 (z + 1; τ) = Ω12 (z; τ) ,(2.26)

Ω12 (z + τ ; τ) = Ω12 (z; τ)− 1.

Proof. By Theorem 2.1, it suffices to prove the sufficient part. Suppose there
exists a single-valued solution Ω12 (z; τ) to (2.25) satisfying (2.26). Then we

define Ω (z; τ) =

(
Ω11 Ω12

Ω21 Ω22

)
by setting

Ω11 (z; τ) = −1

2
Ω′12 (z; τ) ,(2.27)

Ω21 (z; τ) = Ω′11 (z; τ) + Ω12 (z; τ) I (z; τ) ,
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Ω22 (z; τ) = Ω′12 (z; τ) + Ω11 (z; τ) .

By (2.25), it is easy to see that Ω (z; τ) satisfies the integrability condition
(2.15) (see e.g. [15, Proposition 3.5.1]), namely (2.14) is completely inte-
grable. Finally, (2.13) follows from (2.26). This completes the proof. �

The first main result of this section is as follows:

Theorem 2.3. Let nk 6∈ 1
2 + Z, k = 0, 1, 2, 3 and p (τ) is an apparent

singular point of the generalized Lamé equation (2.1) with (2.2). Then (2.1)
with (p,A) = (p (τ) , A (τ)) is an isomonodromic deformation with respect to
τ if and only if (p (τ) , A (τ)) satisfies the Hamiltonian system:

(2.28)
dp (τ)

dτ
=
∂K (p,A, τ)

∂A
,
dA (τ)

dτ
= −∂K (p,A, τ)

∂p
,

where

(2.29) K (p,A, τ) =
−i
4π

(
A2 + (−ζ (2p|τ) + 2pη1 (τ))A− 3

4℘ (2p|τ)

−
∑3

k=0 nk (nk + 1)℘
(
p+ ωk

2 |τ
) )

.

To prove Theorem 2.3, we need the following formulae for theta functions
and functions in Weierstrass elliptic function theory.

Lemma 2.3. The following formulae hold:
(i)

∂

∂τ
lnσ (z|τ) =

i

4π

[
℘ (z|τ)− ζ2 (z|τ) + 2η1 (zζ (z|τ)− 1)− 1

12
g2z

2

]
,

(ii)
∂

∂τ
ζ (z|τ) =

i

4π

[
℘′ (z|τ) + 2 (ζ (z|τ)− zη1 (τ))℘ (z|τ)
+2η1ζ (z|τ)− 1

6zg2 (τ)

]
,

(iii)
∂

∂τ
℘ (z|τ) =

−i
4π

[
2 (ζ (z|τ)− zη1 (τ))℘′ (z|τ)
+4 (℘ (z|τ)− η1)℘ (z|τ)− 2

3g2 (τ)

]
,

(iv)

∂

∂τ
℘′ (z|τ) =

−i
4π

[
6 (℘ (z|τ)− η1)℘′ (z|τ)
+ (ζ (z|τ)− zη1 (τ))

(
12℘2 (z|τ)− g2 (τ)

) ] ,
(v)

d

dτ
η1 (τ) =

i

4π

[
2η2

1 −
1

6
g2 (τ)

]
,

(vi)
d

dτ
ln θ′1 (τ) =

3i

4π
η1,

where

g2 (τ) = −4 (e1 (τ) e2 (τ) + e1 (τ) e3 (τ) + e2 (τ) e3 (τ)) ,

θ′1 (τ) +
d

dz
ϑ1 (z; τ) |z=0,

d

dz
lnσ (z|τ) + ζ (z|τ) ,
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(2.30) ϑ1 (z; τ) + −i
∞∑

n=−∞
(−1)ne(n+ 1

2
)2πiτe(2n+1)πiz.

Those formulae in Lemma 2.3 are known in the literature; see e.g. [2] and
references therein for the proofs.

To give a motivation for our proof of Theorem 2.3, we first consider the
simplest case nk = 0, ∀k: Let a1 = r + sτ where (r, s) ∈ C2\1

2Z
2 is a fixed

pair and ±p (τ), A (τ), B (τ) be defined by

(2.31) ζ (a1 (τ) + p (τ)) + ζ (a1 (τ)− p (τ))− 2 (rη1(τ) + sη2(τ)) = 0,

(2.32) A =
1

2
[ζ (p+ a1) + ζ (p− a1)− ζ (2p)] ,

(2.33) B = A2 − ζ (2p)A− 3

4
℘ (2p) ,

respectively. In [4] we could prove that under (2.31)-(2.33), the two functions

y±a1 (z; τ) = e±
z
2

(ζ(a1+p)+ζ(a1−p)) σ (z ∓ a1)

[σ (z + p)σ (z − p)]
1
2

are two linearly independent solutions to the generalized Lamé equation
(2.1) with nk = 0, k = 0, 1, 2, 3, i.e.,

(2.34) y′′ =

[
3

4
(℘ (z + p) + ℘ (z − p)) +A (ζ (z + p)− ζ (z − p)) +B

]
y.

Observe that (2.34) has singularties only at ±p. Thus, the monodromy
representation of (2.34) is a group homomorphism ρ : π1 (Eτ\ {±p} , q0) →
SL (2,C). Then we could also compute the monodromy group of (2.34) with

respect to (ya1 (z; τ) , y−a1 (z; τ))t as following [4]:

(2.35) ρ(γ±)

(
ya1 (z; τ)
y−a1 (z; τ)

)
=

(
−1 0
0 −1

)(
ya1 (z; τ)
y−a1 (z; τ)

)
,

(2.36) ρ(`1)

(
ya1 (z; τ)
y−a1 (z; τ)

)
=

(
e−2πis 0

0 e2πis

)(
ya1 (z; τ)
y−a1 (z; τ)

)
,

(2.37) ρ(`2)

(
ya1 (z; τ)
y−a1 (z; τ)

)
=

(
e2πir 0

0 e−2πir

)(
ya1 (z; τ)
y−a1 (z; τ)

)
.

By (2.33) and Lemma 2.1, ±p (τ) are apparent singularities. Since the pair
(r, s) is fixed, we see from (2.35)-(2.37) that the generalized Lamé equation

(2.34) is monodromy preserving. Thus Y =

(
ya1 (z; τ) y−a1 (z; τ)
y′a1 (z; τ) y′−a1 (z; τ)

)
is an
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M -invariant fundamental solution for the system (2.10). Then by Theorem
2.1, the single-valued matrix Ω (z; τ) could be defined by

Ω (z; τ) =
∂

∂τ
Y · Y −1

=
1

detY

(
∂
∂τ ya1

∂
∂τ y−a1

∂
∂τ y
′
a1

∂
∂τ y
′
−a1

)(
y′−a1 −y−a1
−y′a1 ya1

)
,

which gives us

Ω12 =
ya1

∂
∂τ y−a1 − y−a1

∂
∂τ ya1

ya1y
′
−a1 − y−a1y′a1

=

∂
∂τ ln

ya1
y−a1

∂
∂z ln

ya1
y−a1

=
∂
∂τ ln f (z; τ)
∂
∂z ln f (z; τ)

,

where f +
ya1
y−a1

is given by

f (z; τ) = ez(ζ(a1+p)+ζ(a1−p))σ (z − a1)

σ (z + a1)
.

Using (2.31) and Legendre relation τη1 − η2 = 2πi, we have

(2.38) f (z; τ) = e2za1η1−4πisz σ (z − a1)

σ (z + a1)
.

In order to compute Ω12, we compute ∂
∂τ ln f (z; τ) and ∂

∂z ln f (z; τ), respec-
tively. By Lemma 2.3 and (2.38), we have

∂

∂τ
ln f (z; τ)(2.39)

=2zsη1 + 2za1
dη1

dτ
− (ζ (z − a1|τ) + ζ (z + a1|τ)) s

+
∂

∂τ
lnσ (z − a1|τ)− ∂

∂τ
lnσ (z + a1|τ)

=
i

4π
[ζ (z + a1)− ζ (z − a1)− 2η1a1 + 4πis]

× [ζ (z − a1) + ζ (z + a1)− 2zη1] +
i

4π
[℘ (z − a1)− ℘ (z + a1)] ,

and

(2.40)
∂

∂z
ln f (z; τ) = 2a1η1 − 4πis+ ζ (z − a1)− ζ (z + a1) .

Thus from (2.39), (2.40) and (2.31), we have

Ω12 (z; τ) =− i

4π
[ζ (z − a1) + ζ (z + a1)− 2zη1]

+
i

4π

℘ (z − a1)− ℘ (z + a1)

2a1η1 − 4πis+ ζ (z − a1)− ζ (z + a1)

=− i

4π
[ζ (z − a1) + ζ (z + a1)− 2zη1](2.41)

+
i

4π

℘ (z − a1)− ℘ (z + a1)

ζ (a1 + p) + ζ (a1 − p) + ζ (z − a1)− ζ (z + a1)
.
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From (2.41), we see that ±a1 are not poles of Ω12 (z; τ). In fact, ±p are the
only simple poles and 0 is a zero of Ω12 (z; τ). Furthermore, we have

(2.42) Res
z=±p

Ω12 (z; τ) =
−i
4π
.

By (2.41), it is easy to see that

(2.43) Ω12 (−z; τ) = −Ω12 (z; τ) .

By (2.42), (2.43) and (2.26), Ω12 (z; τ) has a simpler expression as follows:

Ω12 (z; τ) = − i

4π
(ζ (z − p) + ζ (z + p)− 2zη1) .

For the general case, we do not have the explicit expression of the two
linearly independent solutions. But the discussion above motivates us to
find the explicit form of Ω12. For example, we might ask whether there
exists Ω12 satisfying the property (2.43) or not. Thus, we need to study it
via a different way. More precisely, we prove the following theorem:

Theorem 2.4. Under the assumption of Theorem 2.3, suppose the gener-
alized Lamé equation (2.1) with (p,A) = (p (τ) , A (τ)) is an isomonodromic
deformation with respect to τ . Then there exists an M -invariant fundamen-
tal solution Y (z; τ) of system (2.10) such that Ω12 (z; τ) is of the form:

(2.44) Ω12 (z; τ) = − i

4π
(ζ (z − p (τ)) + ζ (z + p (τ))− 2zη1) ,

where Ω12 (z; τ) is the (1,2) component of Ω (z; τ) which is defined by Y (z; τ).

We remark that Theorem 2.4 is a result locally in τ . In the following, we
always assume that V0 is a small neighborhood of τ0 such that p (τ) 6∈ Eτ [2]
and A (τ), B (τ) are finite for τ ∈ V0. First, we study the singularities of
Ω12 (z; τ):

Lemma 2.4. Under the assumption and notations of Theorem 2.3, suppose
Y (z; τ) is an M -invariant fundamental solution of (2.10) with (p,A) =
(p (τ) , A (τ)) and Ω (z; τ) is defined by Y (z; τ). Then

(i) Ω12 (·; τ) is meromorphic in C and holomorphic for all z 6∈ {±p(τ), ωi2 ,
i = 0, 1, 2, 3}+ Λτ .

(ii) If there exist i ∈ {0, 1, 2, 3} and (b1, b2) ∈ Z2 such that ωi
2 + b1 +

b2τ is a pole of Ω12 (·; τ) with order mi, then mi = 2ni, and any
point in ωi

2 + Λτ is also a pole of Ω12 (·; τ) with the same order mi.
Consequently, if Ω12 (·; τ) has a pole at ωi

2 + Λτ , then ni ∈ N.
(iii) Ω12 (·; τ) has poles at {±p}+ Λτ of order at most one.

Proof. (i) Since equation (2.25) has singularities only at {±p (τ) , ωi2 , i =
0, 1, 2, 3}+Λτ , Ω12 (·; τ) is holomorphic for all z 6∈ {±p(τ), ωi2 , i = 0, 1, 2, 3}+
Λτ . On the other hand, if z0 ∈ {±p (τ) , ωi2 , i = 0, 1, 2, 3}+Λτ is a singularity
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of Ω12 (·; τ), then by using (2.17) and the local behavior of Y (·; τ) at z0, it
is easy to prove

Ω12 (z; τ) =
c(τ)

(z − z0)m
(1 + higher order term) near z0

for some c(τ) 6= 0 and m ∈ C. Since Ω12 (·; τ) is single-valued, we conclude
that m ∈ N, namely z0 must be a pole of Ω12 (·; τ). This proves (i).

The proof of (ii) and (iii) are similar, so we only prove (ii) for i = 0.
Without loss of generality, we may assume b1 = b2 = 0. Suppose 0 is a
pole of Ω12 (z; τ) with order m0 ∈ N. By (2.26), it is obvious that for any
(b1, b2) ∈ Z2, b1 + b2τ is also a pole with the same order m0. Suppose

(2.45) Ω12 (z; τ) = z−m0

( ∞∑
k=0

ckz
k

)
=

c0

zm0
+O

(
1

zm0−1

)
near 0,

where c0 6= 0. Then we have

(2.46) Ω′12(z; τ) = −m0
c0

zm0+1
+O

(
1

zm0

)
,

(2.47) Ω′′′12 (z; τ) = −m0 (m0 + 1) (m0 + 2)
c0

zm0+3
+O

(
1

zm0+2

)
,

and

I (z; τ) = n0 (n0 + 1)
1

z2

+

[
3∑
i=1

ni (ni + 1)℘
(ωi

2

)
+

3

2
℘ (p) + 2Aζ (p) +B

]
+O (z)

= n0 (n0 + 1)
1

z2
+D (τ) +O (z) ,(2.48)

where D (τ) is a constant depending on τ . Thus

(2.49) I ′(z; τ) = −2n0 (n0 + 1)
1

z3
+O (1) ,

∂I

∂τ
(z; τ) = O (1) .

Substituting (2.45)-(2.49) into (2.25), we easily obtain

m0 (m0 + 1) (m0 + 2) c0 = 4n0 (n0 + 1) (m0 + 1) c0.

Since n0 ≥ −1
2 , we have m0 = 2n0 ∈ N. Together with the assumption that

n0 6∈ 1
2 + Z, we have n0 ∈ N. This completes the proof. �

For the isomonodromic deformation of the 2nd order Fuchsian equation
(4.1) on CP1, if the non-resonant condition ni 6∈ 1

2 + Z holds, then Ω12 is
independent of the choice of M -invariant fundamental solutions. See [15].
However, the same conclusion is not true in our study of equations defined in
tori; see Remark 2.2 below. The following lemma is to classify the structure
of solutions of (2.25).

Lemma 2.5. Under the assumption and notations of Lemma 2.4. Then
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(i) If Ỹ (z; τ) is another M -invariant fundamental solution of (2.10),

then Ω12 (z; τ)− Ω̃12 (z; τ) is an elliptic function with periods 1 and
τ , and satisfies the following second symmetric product equation of
(2.1):

(2.50) Φ′′′ − 4IΦ′ − 2I ′Φ = 0.

(ii) Let Φ(z; τ) be an elliptic solution of (2.50). For any c ∈ C, define

Ω̃12 (z; τ) by

Ω̃12 (z; τ) + Ω12 (z; τ) + cΦ (z; τ) .

Then there exists an M -invariant fundamental solution Ỹ (z; τ) of

system (2.10) such that Ω̃12 (z; τ) is the (1,2) component of Ω̃ (z; τ)

which is defined by Ỹ (z; τ).

Proof. (i) This follows directly from that Ω12 (z; τ) and Ω̃12 (z; τ) are both
single-valued and satisfy (2.25) and (2.26).

(ii) It is trivial to see that Ω̃12 (z; τ) satisfies (2.25) and (2.26). Moreover,

since both Φ (z; τ) and Ω12 (z; τ) are single-valued, Ω̃12 (z; τ) is single-valued.

By Theorem 2.2, there exists an M -invariant fundamental solution Ỹ (z; τ)

of system (2.10) such that Ω̃ (z; τ) is defined by Ỹ (z; τ). �

Lemma 2.6. Under the assumption and notations of Lemma 2.4. Then
there exists an M -invariant fundamental solution Ỹ (z; τ) such that

Ω̃12 (z; τ) = −Ω12 (−z; τ) .

Proof. Recall that Y (z; τ) =

(
y1 (z; τ) y2 (z; τ)
y′1 (z; τ) y′2 (z; τ)

)
is an M -invariant funda-

mental solution of (2.10) in a neighborhood Uq0 of q0. Then for z ∈ −Uq0 , a
neighborhood of −q0, we define

Ỹ (z; τ) :=

(
y1 (−z; τ) y2 (−z; τ)
−y′1 (−z; τ) −y′2 (−z; τ)

)
.

It is easy to see that Ỹ (z; τ) is a fundamental solution to (2.10) in −Uq0 .

Define Ω̃ (z; τ) by Ỹ (z; τ), then we have

det Ỹ (z; τ) · Ω̃12 (z; τ) = y1 (−z; τ)
∂

∂τ
y2 (−z; τ)− y2 (−z; τ)

∂

∂τ
y1 (−z; τ) ,

and since det Ỹ (z; τ) = −detY (−z; τ), we obtain

(2.51) Ω̃12 (z; τ) = −Ω12 (−z; τ)

for z ∈ −Uq0 . Since Ω12 is globally defined and single-valued, by analytic

continuation, (2.51) holds true globally. Thus, Ω̃12 is globally defined and

single-valued. Moreover, Ω̃12 (z; τ) satisfies (2.25) and (2.26) which implies

that Ỹ (z; τ) is M -invariant. This completes the proof. �
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Proof of Theorem 2.4. Since the generalized Lamé equation (2.1) with (2.2)
is monodromy preserving as τ deforms, by Theorem 2.2 and Lemma 2.4,
there exists a single-valued meromorphic function Ω̂12 (z; τ) satisfying (2.25)
and (2.26). Define Ω12 (z; τ) by

(2.52) Ω12 (z; τ) +
1

2

[
Ω̂12 (z; τ)− Ω̂12 (−z; τ)

]
.

To prove Theorem 2.4, we divide it into three steps:
Step 1. We prove that there exists an M -invariant fundamental solution

Y (z; τ) of system (2.10) such that

(2.53) Ω (z; τ) =
∂

∂τ
Y (z; τ) · Y −1 (z; τ)

and Ω12 (z; τ) is the (1,2) component of Ω (z; τ).
Let

Φ(z; τ) = −1

2

[
Ω̂12 (z; τ) + Ω̂12 (−z; τ)

]
.

By Lemmas 2.6 and 2.5, Φ is an elliptic solution of equation (2.50) and

Ω12 (z; τ) = Ω̂12 (z; τ) + Φ(z; τ).

By Lemma 2.5 (ii), there exists an M -invariant fundamental solution Y (z; τ)
of system (2.10) such that (2.53) holds.

Step 2. We prove that Ω12 (z; τ) is an odd meromorphic function and
only has poles at {±p} + Λτ of order at most one. Furthermore, Ω′12 (z; τ)
is an even elliptic function.

Clearly (2.52) and Lemma 2.4 imply that Ω12 (z; τ) is an odd meromorphic
function. Now we claim that:

(2.54) Ω12 (z; τ) only has poles at {±p}+ Λτ of order at most one.

By Lemma 2.4 (i), Ω12 (z; τ) is holomorphic for all z 6∈ {±p, ωi2 , i = 0, 1, 2, 3}+
Λτ . If Ω12 (z; τ) has a pole at ωi

2 +Λτ , then the order of the pole is 2ni ∈ 2N
by Lemma 2.4 (ii), which yields a contradiction to the fact that Ω12 (z; τ) is
odd and satisfies (2.26).

Step 3. We prove that Ω12 (z; τ) is of the form (2.44):

Ω12 (z; τ) = − i

4π
(ζ (z − p) + ζ (z + p)− 2zη1) .

By Step 2 and (2.54), we know that Ω′12 (z; τ) must be of the following
form

Ω′12 (z; τ) = −C (℘ (z + p) + ℘ (z − p)) +D

for some constants C,D ∈ C. Thus by integration, we get

Ω12 (z; τ) = C (ζ (z + p) + ζ (z − p)) +Dz + E

for some E ∈ C. Since Ω12 (z; τ) is odd, we have E = 0. Furthermore,

Ω12 (z + 1; τ) = Ω12 (z; τ) + 2Cη1 +D,

and
Ω12 (z + τ ; τ) = Ω12 (z; τ) + 2Cη2 +Dτ.
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By (2.13), we have

2Cη1 +D = 0, 2Cη2 +Dτ = −1.

By Legendre relation τη1 − η2 = 2πi, we have

C =
−i
4π

and D =
i

2π
η1,

which implies (2.44). This completes the proof. �

Corollary 2.1. Under the assumption and notations of Lemma 2.4 and
assume ni 6∈ Z for some i ∈ {0, 1, 2, 3}. Then Ω12 (z; τ) is unique, i.e.,
Ω12 (z; τ) is independent of the choice of M -invariant solution Y (z; τ) of
system (2.10).

Proof. For any M -invariant solution Y (z; τ) of system (2.10), by Theo-
rem 2.2, there exists a single-valued function Ω12 (z; τ) satisfying (2.25) and
(2.13). Let

Φ (z; τ) = Ω12 (z; τ) + Ω12 (−z; τ) .

If Φ (z; τ) 6≡ 0, then Φ (z; τ) is an even elliptic solution of (2.50). Without
loss of generality, we may consider the case n1 6∈ Z. Then 2n1 6∈ Z since
n1 6∈ 1

2 + Z. Since the local exponents of (2.50) at ω1
2 are −2n1, 1, 2n1 + 2

and Φ (z; τ) is elliptic, the local exponent of Φ (z; τ) at z = ω1
2 must be

1, i.e., ω1
2 is a simple zero. But again by Φ (z; τ) is even elliptic, we have

Φ′
(
ω1
2 ; τ

)
= 0, which leads to a contradiction. Thus, Φ (z; τ) ≡ 0, i.e.,

Ω12 (z; τ) is odd. Then by Theorem 2.4, Ω12 (z; τ) is of the form (2.44). �

Remark 2.2. When ni ∈ Z for all i = 0, 1, 2, 3, Ω12 (z; τ) might not be
unique. For example, when ni = 0 for all i = 0, 1, 2, 3, we define

Φ (z; τ) + ζ (z + p|τ)− ζ (z − p|τ)− ζ (2p|τ)− 2A,

then Φ (z; τ) is an even elliptic solution of (2.50). So for any c ∈ C,

Ω̃12 (z; τ) +
−i
4π

(ζ (z − p) + ζ (z + p)− 2zη1) + cΦ (z; τ)

satisfies (2.25) and (2.26). By Lemma 2.5, there exists an M -invariant

solution Ỹ (z; τ) such that Ω̃ (z; τ) is defined by Ỹ (z; τ).

Define U (z; τ) by

U (z; τ) + Ω′′′12 (z; τ)− 4I (z; τ) Ω′12 (z; τ)− 2I ′ (z; τ) Ω12 (z; τ) + 2
∂

∂τ
I (z; τ) ,

where Ω12 (z; τ) is given in Theorem 2.4 (2.44), i.e.,

Ω12 (z; τ) = − i

4π
(ζ (z − p) + ζ (z + p)− 2zη1) .

In order to prove Theorem 2.3, we need the following local expansions for
Ω12 (z; τ) and I (z; τ) at p and ωk

2 , k = 0, 1, 2, 3, respectively.

Lemma 2.7. Ω12 (z; τ) and I (z; τ) have local expansions at p and ωk
2 , k =

0, 1, 2, 3 as follows:
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(i) Near p, let u = z − p. Then we have

(2.55) Ω12 (z; τ) =
−i
4π

(
u−1 + (ζ (2p)− 2pη1)− (℘ (2p) + 2η1)u
−1

2℘
′ (2p)u2 − 1

6

( g2
10 + ℘′′ (2p)

)
u3 +O

(
u4
) ) ,

and

(2.56) I (z; τ) =
3

4
u−2 −Au−1 +A2 +H1 (τ)u+H2 (τ)u2 +O

(
u3
)
,

where

(2.57) H1 (τ) =
3∑

k=0

nk (nk + 1)℘′
(
p+

ωk
2

)
+

3

4
℘′ (2p)−A℘ (2p) ,

and

H2 (τ) =
1

2

[
3∑

k=0

nk (nk + 1)℘′′
(
p+

ωk
2

)
+

3

4
℘′′ (2p) +

3

40
g2 −A℘′ (2p)

]
.

(ii) Near ωk
2 , k ∈ {0, 1, 2, 3}, let uk = z − ωk

2 . Then we have

(2.58) Ω12 (z; τ) =
i

4π

[
−
(
ζ
(
ωk
2 + p

)
+ ζ

(
ωk
2 − p

)
− ωkη1

)
+2
(
℘
(
ωk
2 + p

)
+ η1

)
uk +O

(
u3
k

) ]
,

and

(2.59) I (z; τ) = nk (nk + 1)u−2
k + Λk (τ) +O

(
u2
k

)
,

where

Λk (τ) =
3∑
j 6=k

nj (nj + 1)℘

(
ωk + ωj

2

)
+

3

2
℘
(ωk

2
+ p
)

(2.60)

+A (τ)
(
ζ
(ωk

2
+ p
)
− ζ

(ωk
2
− p
))

+B (τ) .

Proof. Recall the following expansions:

(2.61) ζ (u) =
1

u
− g2

60
u3 − g3

140
u5 +O

(
u7
)
,

(2.62) ℘ (u) =
1

u2
+
g2

20
u2 +

g3

28
u4 +O

(
u6
)
.

The proof follows from a direct computation by using (2.61) and (2.62). �

By using Lemma 2.7, we have

Lemma 2.8. U (·; τ) is an even elliptic function and has poles only at ±p
of order at most 3. More precisely, U (z; τ) is expressed as follows:

U (z; τ) =L(τ)
(
℘′ (z − p)− ℘′ (z + p) + ℘′(2p)

)
(2.63)

+M (τ) (℘ (z − p) + ℘ (z + p)− ℘(2p))

+N (τ) (ζ (z − p)− ζ (z + p) + ζ(2p)) + C (τ) ,



HAMILTONIAN SYSTEM FOR THE ELLIPTIC FORM OF PAINLEVÉ VI 25

where the coefficients L (τ), M (τ), N (τ) and C (τ) are given by

(2.64) L (τ) = −1

2

(
3
dp

dτ
+

i

4π
[6A− 3 (ζ (2p)− 2pη1)]

)
,

(2.65) M (τ) = −2A
dp

dτ
+

i

4π

[
−4A2 + 2A (ζ (2p)− 2pη1)

]
,

(2.66) N (τ) = −2
dA

dτ
+

i

4π

[
4A (℘ (2p) + η1)− 3℘′ (2p)

−2
∑3

k=0 nk (nk + 1)℘′
(
p+ ωk

2

) ] ,
C (τ) =4A

dA

dτ
− 2H1 (τ)

dp

dτ
(2.67)

+
i

4π

[
−4A2 (℘ (2p) + 2η1) + 3A℘′ (2p)
+2H1 (τ) (ζ (2p)− 2pη1)

]
.

Here H1 (τ) is given in (2.57).

Proof. Since I (·; τ) is elliptic, we have I (z; τ) = I (z + τ ; τ). Thus

∂

∂τ
I (z; τ) = I ′ (z + τ ; τ) +

∂

∂τ
I (z + τ ; τ)(2.68)

= I ′ (z; τ) +
∂

∂τ
I (z + τ ; τ) .

By using (2.68) and the translation property (2.26) of Ω12 (z; τ), we have

U (z + ωk; τ) = U (z; τ) , k = 1, 2,

that is, U (·; τ) is elliptic. Moreover, since I (·; τ) is even, we have

(2.69)
∂

∂τ
I (z; τ) =

∂

∂τ
I (−z; τ) .

By using (2.69) and Ω12 (·; τ) is odd, we see that U (·; τ) is even.

Next we claim that:

(2.70) U (·; τ) is holomorphic at
ωk
2
, k = 0, 1, 2, 3.

Since the proof is similar, we only give the proof for k = 2. In this case, by
(2.58) and (2.59) in Lemma 2.7, near τ

2 we have

(2.71) Ω12 (z; τ) =
i

4π

[
2πi+ 2

(
℘
(
τ
2 + p

)
+ η1

)
u2 +O

(
u3

2

)]
,

and

(2.72) I (z; τ) = n2 (n2 + 1)u−2
2 + Λ2 (τ) +O

(
u2

2

)
,

Then near τ
2 , we have

(2.73) Ω′12 (z; τ) =
i

4π

[
2
(
℘
(
τ
2 + p

)
+ η1

)
+O

(
u2

2

)]
,

(2.74) I ′ (z; τ) = −2n2 (n2 + 1)u−3
2 +O (u2) ,
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and

(2.75)
∂

∂τ
I (z; τ) = n2 (n2 + 1)u−3

2 +
∂

∂τ
Λ2 (τ) +O (u2) .

By (2.71)-(2.75) and Ω12 (z; τ) is holomorphic at ωk
2 , k = 0, 1, 2, 3, we have

U (z; τ)(2.76)

=Ω′′′12 (z; τ)− 4I (z; τ) Ω′12 (z; τ)− 2I ′ (z; τ) Ω12 (z; τ) + 2
∂

∂τ
I (z; τ)

=Ω′′′12 (z; τ)− 4
[
n2 (n2 + 1)u−2

2 + Λ2 (τ) +O
(
u2

2

)]
×
(
i

4π

)[
2
(
℘
(τ

2
+ p
)

+ η1

)
+O

(
u2

2

)]
− 2

[
−2n2 (n2 + 1)u−3

2 +O (u2)
]

×
(
i

4π

)[
2πi+ 2

(
℘
(τ

2
+ p
)

+ η1

)
u1 +O

(
u3

2

)]
+ 2

[
n2 (n2 + 1)u−3

2 +
∂

∂τ
Λ2 (τ) +O

(
u2

2

)]
.

From (2.76), it is easy to see that the coefficients of u−3
2 , u−2

2 , u−1
2 are all

vanishing which implies that U (z; τ) is holomorphic at τ
2 .

Now we prove U (z; τ) can be written as (2.63). To compute the coeffi-
cients L (τ), M (τ), N (τ) and C (τ), we only need to compute near p. By
(2.55) and (2.56), near p, we have

(2.77) Ω′12 (z; τ) =
−i
4π

(
−u−2 − (℘ (2p) + 2η1)− ℘′ (2p)u
−1

2

( g2
10 + ℘′′ (2p)

)
u2 +O

(
u3
) )

,

(2.78) Ω′′′12 (z; τ) =
−i
4π

(
−6u−4 −

( g2

10
+ ℘′′ (2p)

)
+O (u)

)
,

(2.79) I ′ (z; τ) = −3

2
u−3 +Au−2 +H1 (τ) + 2H2 (τ)u+O

(
u2
)
,

∂

∂τ
I (z; τ) =

3

2

dp

dτ
u−3 −Adp

dτ
u−2 − dA

dτ
u−1(2.80)

+

(
2A

dA

dτ
−H1 (τ)

dp

dτ

)
+O (u) .

By (2.55), (2.56) and (2.77)-(2.80), near p, after computations we have

U (z; τ)(2.81)

=

(
3
dp

dτ
+

i

4π
[6A− 3 (ζ (2p)− 2pη1)]

)
u−3

+

(
−2A

dp

dτ
+

i

4π

[
−4A2 + 2A (ζ (2p)− 2pη1)

])
u−2
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+

(
−2

dA

dτ
+

i

4π

[
4A (℘ (2p) + η1)− 3℘′ (2p)

−2
∑3

k=0 nk (nk + 1)℘′
(
p+ ωk

2

) ])u−1

+

 4AdA
dτ − 2H1 (τ) dpdτ

+ i
4π

[
−4A2 (℘ (2p) + 2η1) + 3A℘′ (2p)
+2H1 (τ) (ζ (2p)− 2pη1)

] +O (u) .

Obviously, (2.81) implies that U (z; τ) has pole at p with order at most 3.
Since U (z; τ) is an even elliptic function, U (z; τ) also has pole at −p with
order at most 3. From here and (2.70), we conclude that U (z; τ) has poles
only at ±p with order at most 3. Moreover, from (2.81), it is easy to see that
the coefficients L (τ), M (τ), N (τ) and C (τ) are given by (2.64)-(2.67). �

Proof of Theorem 2.3. By Theorem 2.2 and Lemma 2.8, the generalized
Lamé equation (2.1) with (p,A) = (p (τ) , A (τ)) is monodromy preserving
as τ deforms if and only if

U (z; τ) = 0,

if and only if

(2.82) L (τ) = M (τ) = N (τ) = C (τ) = 0.

By (2.64)-(2.67), a straightforward computation shows that (2.82) is equiv-
alent to that (p,A) = (p (τ) , A (τ)) satisfies the Hamiltonian system (2.28)
(see (2.83) below). �

2.2. Hamiltonian system and Painlevé VI. Next, we will study the
Hamiltonian structure for the elliptic form (1.3) with αi defined by (1.14).
Our second main theorem is the following:

Theorem 2.5. The elliptic form (1.3) with αk = 1
2

(
nk + 1

2

)2
, k = 0, 1, 2, 3

is equivalent to the Hamiltonian system defined by (2.28) and (2.29).

Proof. Suppose (p (τ) , A (τ)) satisfies the Hamiltonian system (2.28), i.e.,
(2.83)

dp(τ)
dτ = ∂K(p,A,τ)

∂A = −i
4π (2A− ζ (2p|τ) + 2pη1 (τ))

dA(τ)
dτ = −∂K(p,A,τ)

∂p = i
4π

(
(2℘ (2p|τ) + 2η1 (τ))A− 3

2℘
′ (2p|τ)

−
∑3

k=0 nk (nk + 1)℘′
(
p+ ωk

2 |τ
) )

.

Then we compute the second derivative d2p(τ)
dτ2

of p (τ) as follows:

d2p (τ)

dτ2
=
−i
4π

[
2
dA (τ)

dτ
+ 2℘ (2p|τ)

dp (τ)

dτ
− ∂

∂τ
ζ (2p|τ)(2.84)

+2η1 (τ)
dp (τ)

dτ
+ 2p (τ)

dη1 (τ)

dτ

]
.

By Lemma 2.3, we have

(2.85) − ∂

∂τ
ζ (2p|τ) =

−i
4π

[
℘′ (2p|τ) + 2 (ζ (2p|τ)− 2pη1 (τ))℘ (2p|τ)
+2η1ζ (2p|τ)− 1

3pg2 (τ)

]
,
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(2.86) 2p (τ)
dη1 (τ)

dτ
=

i

2π
p (τ)

[
2η2

1 −
1

6
g2 (τ)

]
.

Substituting (2.83), (2.85) and (2.86) into (2.84), we have

d2p (τ)

dτ2
=
−1

4π2

(
℘′ (2p|τ) +

1

2

3∑
k=0

nk (nk + 1)℘′
(
p+

ωk
2
|τ
))

=
−1

4π2

[
1

8

3∑
k=0

℘′
(
p+

ωk
2
|τ
)

+
1

2

3∑
k=0

nk (nk + 1)℘′
(
p+

ωk
2
|τ
)]

(2.87)

=
−1

4π2

3∑
k=0

1

2

(
nk +

1

2

)2

℘′
(
p+

ωk
2
|τ
)
,

implying that p (τ) is a solution of the elliptic form (1.3) with αk = 1
2

(
nk + 1

2

)2
,

k = 0, 1, 2, 3.
Conversely, suppose p (τ) is a solution of the elliptic form (1.3) with αk =

1
2

(
nk + 1

2

)2
, k = 0, 1, 2, 3. We define A (τ) by the first equation of (2.83),

i.e.,

(2.88) A (τ) + 2πi
dp (τ)

dτ
+

1

2
(ζ (2p|τ)− 2pη1 (τ)) .

Then

dA (τ)

dτ
=2πi

d2p (τ)

dτ2
+

1

2

(
−2℘ (2p|τ)

dp (τ)

dτ
+

∂

∂τ
ζ (2p|τ)

)
−
(
η1 (τ)

dp (τ)

dτ
+ p (τ)

dη1 (τ)

dτ

)
,

and by using (2.83), (2.85) and (2.86), we have

dA (τ)

dτ
=
i

4π

[
2 (℘ (2p|τ) + η1 (τ))A− 3

2
℘′ (2p|τ)

−
3∑

k=0

nk (nk + 1)℘′
(
p+

ωk
2
|τ
)]

.

Thus, (p (τ) , A (τ)) is a solution to the Hamiltonian system (2.83). �

Moreover, from (2.83), we could obtain the integral formula for A (τ) in
Theorem 1.4.

Proof of Theorem 1.4. Let us consider F (τ) = A + 1
2 (ζ (2p)− 2ζ (p)) and

compute d
dτ F (τ). By (2.83) and Lemma 2.3, we have

d

dτ
F (τ)

=
dA

dτ
+

1

2

d

dτ
(ζ (2p)− 2ζ (p))
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=
i

4π

(
2 (℘ (2p) + η1 (τ))A− 3

2
℘′ (2p)−

3∑
k=0

nk (nk + 1)℘′(p(τ) +
ωk
2

)

)

− (℘ (2p)− ℘ (p))
dp

dτ
+

1

2

(
∂

∂τ
ζ (2p)− 2

∂

∂τ
ζ (p)

)
=
i

2π
(2℘ (2p)− ℘ (p) + η1)F (τ)− i

4π

3∑
k=0

nk (nk + 1)℘′(p(τ) +
ωk
2

).

Thus,

F (τ)(2.89)

= exp

{
i

2π

∫ τ

(2℘ (2p(τ̂)|τ̂)− ℘ (p(τ̂)|τ̂) + η1(τ̂)) dτ̂

}
· J (τ) ,

where

J (τ) =

∫ τ − i
4π

(∑3
k=0 nk(nk + 1)℘′(p(τ̂) + ωk

2 |τ̂)
)

exp
{

i
2π

∫ τ̂
(2℘(2p(τ ′)|τ ′)− ℘(p(τ ′)|τ ′) + η1 (τ ′)) dτ ′

}dτ̂ + c1

for some constant c1 ∈ C. By Lemma 2.3, we have

(2.90)
3i

4π

∫ τ

η1(τ̂)dτ̂ = ln θ′1(τ).

Then (1.20) follows from (2.89) and (2.90). �

3. Collapse of two singular points

In this section, we study the phenomena of collapsing two singular points
±p(τ) to 0 in the generalized Lamé equation (1.13) when p(τ) is a solution
of the elliptic form (1.3). As an application of Theorems 2.3 and 2.5, it turns
out that the classical Lamé equation

(3.1) y′′(z) = (n(n+ 1)℘(z) +B) y(z) in Eτ

appears as a limiting equation if nk = 0 for k = 1, 2, 3 (see Theorem 3.1
below). First we recall the following classical result.

Theorem A.[15, Proposition 1.4.1] Assume θ4 = n0 + 1
2 6= 0. Then for any

t0 ∈ CP1\{0, 1,∞}, there exist two 1-parameter families of solutions λ(t) of
Painlevé VI (1.1) such that

(3.2) λ(t) =
β

t− t0
+ h+O(t− t0) as t→ t0,

where h ∈ C can be taken arbitrary and

(3.3) β = β(θ4, t0) ∈
{
± t0(t0−1)

θ4

}
.

Furthermore, these two 1-parameter families of solutions give all solutions
of Painlevé VI (1.1) which has a pole at t0.
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In this paper, we always identify the solutions p(τ) and −p(τ) of the
elliptic form (1.3). As a consequence of Theorem A and the transformation
(1.2), we have the following result.

Lemma 3.1. Assume n0 + 1
2 6= 0. Then for any τ0 ∈ H, by the transfor-

mation (1.2) solutions λ(t) in Theorem A give two 1-parameter families of
solutions p(τ) of the elliptic form (1.3) such that

(3.4) p(τ) = c0(τ − τ0)
1
2 (1 + h̃(τ − τ0) +O(τ − τ0)2) as τ → τ0,

where h̃ ∈ C can be taken arbitrary,

(3.5) c2
0 =

 i
n0+ 1

2
π if β = − t0(t0−1)

θ4

−in0+ 1
2

π if β = t0(t0−1)
θ4

,

and t0 = t(τ0). Furthermore, these two 1-parameter families of solutions
give all solutions p(τ) of the elliptic form (1.3) such that p(τ0) = 0.

Proof. It suffices to prove (3.5), which follows readily from

(3.6) t′(τ0) = −i t0(t0 − 1)

π
(e2(τ0)− e1(τ0)) .

Remark that t0 6∈ {0, 1}, so (3.6) implies t′(τ0) 6= 0.
The formula (3.6) is known in the literature. Here we give a proof for the

reader’s convenience. Recalling theta functions ϑ2(τ), ϑ3(τ) and ϑ4(τ), it is
well-known that (cf. see [2] for a reference)

(3.7) e3(τ)− e2(τ) = π2ϑ2(τ)4, e1(τ)− e3(τ) = π2ϑ4(τ)4,

e1(τ)− e2(τ) = π2ϑ3(τ)4,

d

dτ
lnϑ4(τ) =

i

12π

[
3η1(τ)− π2(2ϑ2(τ)4 + ϑ4(τ)4)

]
,

d

dτ
lnϑ3(τ) =

i

12π

[
3η1(τ) + π2(ϑ2(τ)4 − ϑ4(τ)4)

]
.

Therefore, t = ϑ4
4/ϑ

4
3 and then

t′(τ) = 4t

(
d

dτ
lnϑ4 −

d

dτ
lnϑ3

)
= −iπt · ϑ4

2(3.8)

= −iπϑ
4
2ϑ

4
4

ϑ4
3

= −i t(t− 1)

π
(e2 − e1) .

This completes the proof. �

Theorem 3.1. Assume that nk 6∈ Z + 1
2 , k ∈ {0, 1, 2, 3}, and (2.3) hold.

Let (p(τ), A(τ)) be a solution of the Hamiltonian system (4.9) such that
p(τ0) = 0 for some τ0 ∈ H. Then

(3.9) p(τ) = c0(τ − τ0)
1
2 (1 + h̃(τ − τ0) +O(τ − τ0)2) as τ → τ0,
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for some h̃ ∈ C and the generalized Lamé equation (1.13) converges to

(3.10) y′′ =

 3∑
j=1

nj (nj + 1)℘
(
z +

ωj
2

)
+m(m+ 1)℘(z) +B0

 y in Eτ0 ,

where c0 is seen in (3.5),

(3.11) m =

 n0 + 1 if c2
0 = i

n0+ 1
2

π i.e., β = − t0(t0−1)

n0+ 1
2

,

n0 − 1 if c2
0 = −in0+ 1

2
π i.e., β = t0(t0−1)

n0+ 1
2

,

(3.12) B0 = 2πic2
0

(
4πih̃− η1(τ0)

)
−

3∑
j=1

nj(nj + 1)ej(τ0).

Proof. Clearly (3.9) follows from Lemma 3.1, by which we have (write p =
p(τ))

(τ − τ0)
1
2 =

1

c0
p

(
1− 1

c2
0

h̃p2 +O(p4)

)
as τ → τ0.

Consequently,

p′(τ) =
1

2
c0(τ − τ0)−

1
2 [1 + 3h̃(τ − τ0) +O((τ − τ0)2)]

=
c2

0

2p

[
1 +

4

c2
0

h̃p2 +O(p4)

]
as τ → τ0.

This, together with the first equation of the Hamiltonian system (1.16)-
(1.15), gives

A(τ) =
1

2

[
4πip′(τ) + ζ(2p(τ))− 2p(τ)η1(τ)

]
(3.13)

=
πic2

0

p

[
1 +

4

c2
0

h̃p2 +O(p4)

]
+

1

4p
− η1(τ0)p+O(p3)

=
c

p
+ ep+O(p3) as τ → τ0,

where e = 4πih̃− η1(τ0) and

(3.14) c = πic2
0 +

1

4
=

{
−n0 − 1

4 if c2
0 = i

n0+ 1
2

π ,

n0 + 3
4 if c2

0 = −in0+ 1
2

π .

Clearly c satisfies

c2 − c

2
− 3

16
− n0(n0 + 1) = 0.

Consequently, we have

B(τ) =A2 − ζ (2p)A− 3

4
℘ (2p)−

3∑
j=0

nj (nj + 1)℘
(
p+

ωj
2

)
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=

(
c

p
+ ep+O(p3)

)2

−
(

1

2p
+O(p3)

)(
c

p
+ ep+O(p3)

)
−
(

3
16 + n0(n0 + 1)

)
p2

−
3∑
j=1

nj (nj + 1) ej(τ0) +O(p2)

=
4c− 1

2
e−

3∑
j=1

nj (nj + 1) ej(τ0) +O(p2) = B0 +O(p2)

as p = p(τ) → 0 since τ → τ0, where B0 is given by (3.12). Furthermore,
(3.13) implies

A(ζ(z + p)− ζ(z − p)) = A(−2p℘(z) +O(p2))→ −2c℘(z)

uniformly for z bounded away from the lattice points. Therefore, the po-
tential of the generalized Lamé equation (1.13) converges to

3∑
j=1

nj (nj + 1)℘
(
z +

ωj
2

)
+

[
n0(n0 + 1) +

3

2
− 2c

]
℘(z) +B0

uniformly for z bounded away from the lattice points as τ → τ0. Using
(3.14) we easily obtain (3.10)-(3.11). �

4. Correspondence between generalized Lamé equation and
Fuchsian equation

In this section, we want to establish a one to one correspondence be-
tween the generalized Lamé equation (1.13) and a type of Fuchsian equa-
tions on CP1. After the correspondence, naturally we ask the question: Is
the isomonodromic deformation for the generalized Lamé equation in Eτ e-
quivalent to the isomonodromic deformation for the corresponding Fuchsian
equation on CP1? Notice that we establish the correspondence by using

the transformation x = ℘(z)−e1
e2−e1 (see (4.12) below) which is a double cover

from Eτ onto CP1. Hence, it is clear that the isomonodromic deformation
for the Fuchsian equation could imply the the isomonodromic deformation
for the generalized Lamé equation. However, the converse assertion is not

easy at all, because the lifting of a closed loop in CP1 via x = ℘(z)−e1
e2−e1 is not

necessarily a closed loop in Eτ . As an application of Theorems 2.3 and 2.5,
we could give a positive answer.

First we review the Fuchs-Okamoto theory. Consider a second order Fuch-
sian equation defined on CP1 as follows:

(4.1) y′′ + p1 (x) y′ + p2 (x) y = 0,

which has five regular singular points at {t, 0, 1,∞, λ} and pj (x) = pj(x; t,
λ, µ), j = 1, 2, are rational functions in x such that the Riemann scheme of
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(4.1) is

(4.2)

 t 0 1 ∞ λ
0 0 0 α̂ 0
θt θ0 θ1 α̂+ θ∞ 2

 ,

where α̂ is determined by the Fuchsian relation, that is,

α̂ = −1
2 (θt + θ0 + θ1 + θ∞ − 1) .

Throughout this section we always assume that

(4.3) λ 6∈ {0, 1, t} and λ is an apparent singular point.

Since one exponent at any one of 0, 1, λ, t is 0 (see (4.2)), p2(x) has only
simple poles at 0, 1, λ, t. The residue of p1 (x) at x = λ is −1 because
another exponent at x = λ is 2. Define µ and K as follows:

(4.4) µ + Res
x=λ

p2 (x) , K + −Res
x=t

p2 (x) .

By (4.2)-(4.4), we have

(4.5) p1 (x) =
1− θt
x− t

+
1− θ0

x
+

1− θ1

x− 1
− 1

x− λ
,

(4.6) p2 (x) =
κ̂

x (x− 1)
− t (t− 1)K

x (x− 1) (x− t)
+

λ (λ− 1)µ

x (x− 1) (x− λ)
,

where

(4.7) κ̂ = α̂ (α̂+ θ∞) =
1

4

{
(θ0 + θ1 + θt − 1)2 − θ2

∞

}
.

By the condition (4.3), i.e., λ is apparent, K can be expressed explicitly by

(4.8) K (λ, µ, t) =
1

t (t− 1)

 λ (λ− 1) (λ− t)µ2 + κ̂ (λ− t)

−
[
θ0 (λ− 1) (λ− t) + θ1λ (λ− t)
+ (θt − 1)λ (λ− 1)

]
µ

 .

For all details about (4.5)-(4.8), we refer the reader to [15].
Now let t be the deformation parameter, and assume that (4.1) with

(λ (t) , µ (t)) preserves the monodromy representation. In [7, 21], it was
discovered that under the non-resonant condition, (λ (t) , µ (t)) must satisfy
the following Hamiltonian system:

(4.9)
dλ (t)

dt
=
∂K

∂µ
,
dµ (t)

dt
= −∂K

∂λ
.

Indeed, the following theorem was proved in [7, 21].

Theorem B.[7, 21] Suppose that θt, θ0, θ1, θ∞ /∈ Z (i.e. the non-resonant
condition) and λ is an apparent singular point. Then the second order ODE
(4.1) preserves the monodromy as t deforms if and only if (λ (t) , µ (t))
satisfies the Hamiltonian system (4.9).
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It is well-known in the literature that a solution of Painlevé VI (1.1)
can be obtained from the Hamiltonian system (4.9) with the Hamiltonian
K (λ, µ, t) defined in (4.8). Let (λ (t) , µ (t)) be a solution to the Hamiltonian
system (4.9). Then λ (t) satisfies the Painlevé VI (1.1) with parameters

(4.10) (α, β, γ, δ) =
(

1
2θ

2
∞, −1

2θ
2
0,

1
2θ

2
1,

1
2

(
1− θ2

t

))
.

Conversely, if λ (t) is a solution to Painlevé VI (1.1), then we define µ (t)
by the first equation of (4.9), where (θ0, θ1, θt, θ∞) and κ̂ are given by (4.10)
and (4.7), respectively. Consequently, (λ (t) , µ (t)) is a solution to (4.9).
The above facts can be proved directly. For details, we refer the reader to
[8, 15]. Together with this fact and Theorem B, we have

Theorem C. Assume the same hypotheses of Theorem B. Then the second
order ODE (4.1) preserves the monodromy as t deforms if and only if λ(t)
satisfies Painlevé VI (1.1) with parameters (4.10).

Now let us consider the following generalized Lamé equation in Eτ :

(4.11) y′′ =

[ ∑3
i=0 ni (ni + 1)℘

(
z + ωi

2

)
+ 3

4 (℘ (z + p) + ℘ (z − p))
+A (ζ (z + p)− ζ (z − p)) +B

]
y,

and suppose that p is an apparent singularity of (4.11). Then we shall prove
that the generalized Lamé equation (4.11) is 1-1 correspondence to the 2nd
order Fuchsian equation (4.1) with λ being an apparent singularity. To
describe the 1-1 correspondence between (4.1) and (4.11), we set

(4.12) x =
℘ (z)− e1

e2 − e1
and p (x) = 4x (x− 1) (x− t) .

Then we have the following theorem:

Theorem 4.1. Given a generalized Lamé equation (4.11) defined in Eτ .
Suppose p 6∈ Eτ [2] is an apparent singularity of (4.11). Then by using

x = ℘(z)−e1
e2−e1 , there is a corresponding 2nd order Fuchsian equation (4.1)

satisfying (4.2) and (4.3) whose coefficients p1 (x) and p2 (x) are expressed
by (4.5)-(4.8), where

(4.13) t =
e3 − e1

e2 − e1
, λ =

℘ (p)− e1

e2 − e1
,

(4.14) (θ0, θ1, θt, θ∞) =
(
n1 + 1

2 , n2 + 1
2 , n3 + 1

2 , n0 + 1
2

)
,

(4.15) α̂ = −1

2
(1 + n0 + n1 + n2 + n3) ,

(4.16) µ =
2n3 − 1

4 (λ− t)
+

2n2 − 1

4 (λ− 1)
+

2n1 − 1

4λ
+

3

8

p′ (λ)

p (λ)
+
A℘′ (p)

b2p (λ)
,
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K = −2n2n3 − n2 − n3

4 (t− 1)
− 2n1n3 − n1 − n3

4t
− 2n3 − 1

4 (t− λ)
(4.17)

+
1

4t (t− 1)


3
2
λ(λ−1)
(λ−t) −

3
2
℘(p)+e3
e2−e1 + A℘′(p)

(λ−t)(e2−e1)2

+n0(n0+1)e3
e2−e1 + n1(n1+1)e2

e2−e1 + n2(n2+1)e1
e2−e1

−2n3(n3+1)e3
e2−e1 + 2

e2−e1A℘ (p) + B
e2−e1

 .
Conversely, given a 2nd order Fuchsian equation (4.1) satisfying (4.2) and
(4.3), there is a corresponding generalized Lamé equation (4.11) defined in
Eτ where τ,±p, ni are defined by (4.13)-(4.14), the constant A is defined by
solving (4.16), and the constant B is defined by (2.3). In particular, p is an
apparent singularity of (4.11).

Remark 4.1. For the second part of Theorem 4.1, the condition λ 6∈ {0, 1, t}
is equivalent to p 6∈ Eτ [2], which implies ℘′(p) 6= 0. Thus, A is well-defined
via (4.16). The proof of Theorem 4.1 will be given after Corollary 4.1.

Let ρ : π1(Eτ\ (Eτ [2] ∪ {±p}) , q0) → SL (2,C), ρ̃ : π1(CP1\ {0, 1, t,∞},
λ0) → GL (2,C) where λ0 = x (q0) , be the monodromy representations of
the generalized Lamé equation (4.11) and the corresponding Fuchsian equa-
tion (4.1) respectively. Let Y (z) = (y1 (z) , y2 (z)) be a fixed fundamental
solution of (4.11). We denote N and M to be the monodromy group-

s of (4.11) and (4.1) with respect to Y (z) and Ŷ (x) respectively. Here

Ŷ (x) = (ŷ1 (x) , ŷ2 (x)) with ŷj (x) defined by

yj (z) = ψ(x)ŷj (x)

+ (x− λ)−
1
2 x−

n1
2 (x− 1)−

n2
2 (x− t)−

n3
2 ŷj (x) , j = 1, 2,

and x = ℘(z)−e1
e2−e1 is a fundamental solution of equation (4.1); see the proof of

Theorem 4.1 below. Let γ1 ∈ π1 (Eτ\ (Eτ [2] ∪ {±p}) , q0) be a loop which
encircles the singularity ω1

2 once. Then x (γ1) ∈ π1

(
CP1\ {0, 1, t,∞} , λ0

)
.

Since x = ℘(z)−e1
e2−e1 is a double cover, the loop x (γ1) encircles the singularity

0 twice. Thus, x (γ1) = β2 for some β ∈ π1

(
CP1\ {0, 1, t,∞} , λ0

)
. Let

ρ (γ1) = N1 and ρ̃ (β) = M0. Then

Y (z)N1 = γ∗1Y (z) =
(
β2
)∗ (

ψ(x)Ŷ (x)
)

(4.18)

= C
(
β2
)
ψ(x)Ŷ (x)M2

0

= Y (z)C
(
β2
)
M2

0

for some constant C
(
β2
)
∈ C which comes from the analytic continuation

of ψ(x) along β2. From (4.18), we see that N1 = C
(
β2
)
M2

0 . By the same
argument, we know that any element N ∈ N could be written as

(4.19) N = CM1M2
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for some Mi ∈ M, i = 1, 2 and some constant C ∈ C coming from the
gauge transformation ψ(x). In general, N is not a subgroup of M be-
cause of ψ(x). By (4.19), the isomonodromic deformation of (4.1) implies
the isomonodromic deformation of (4.11). However, it is not clear to see
whether the converse assertion is true or not from (4.19). Here we can give
a confirmative answer. In fact, by (1.14), (1.4) and (4.10), we have (4.14)
holds. Since ni 6∈ 1

2 + Z for i ∈ {0, 1, 2, 3}, we have θ0, θ1, θt, θ∞ /∈ Z, i.e.,
non-resonant. Then as a consequence of Theorems 4.1, 1.1 and C, we have

Corollary 4.1. Suppose ni 6∈ 1
2 + Z for i = 0, 1, 2, 3. If the generalized

Lamé equation (4.11) in Eτ preverses the monodromy, then so does the
corresponding Fuchsian equation (4.1) on CP1, and vice versa.

Proof of Theorem 4.1. Let us first consider the generalized Lamé equation
(4.11). By applying

x =
℘ (z)− e1

e2 − e1
, t =

e3 − e1

e2 − e1
, λ =

℘ (p)− e1

e2 − e1
,

and the addition formula

(4.20) ℘ (z + p) + ℘ (z − p) =
℘′ (z)2 + ℘′ (p)2

2 (℘ (z)− ℘ (p))2 − 2℘ (z)− 2℘ (p) ,

the equation (4.11) becomes the following second order Fuchsian equation
defined on CP1:

(4.21) y′′(x) +
1

2

p′ (x)

p (x)
y′(x)− q(x)

p (x)
y(x) = 0,

where p(x) is defined in (4.12), b + e2 − e1 and

q(x) =


n0 (n0 + 1)

(
x+ e1

b

)
+ n1(n1+1)

2

(
p(x)
2x2 − 2x+ 4e1

b

)
+ B

b

+n2(n2+1)
2

(
p(x)

2(x−1)2
− 2x+ 2e3

b

)
+ n3(n3+1)

2

(
p(x)

2(x−t)2 − 2x+ 2e2
b

)
+ 3

4

(
p(x)+p(λ)

2(x−λ)2 − 2x− 2
b (℘ (p) + e1)

)
+A

(
2
b ζ (p)− ℘′(p)

b2(x−λ)

)
 .

Since p is an apparent singularity of (4.11), equation (4.21) has no logarith-
mic solutions at λ. The Riemann scheme of (4.21) is as follows

(4.22)

 0 1 t ∞ λ
−n1

2 −n2
2 −n3

2 −n0
2 −1

2
n1+1

2
n2+1

2
n3+1

2
n0+1

2
3
2

 .

Now consider a gauge transformation y (x) = (x− λ)−
1
2 x−

n1
2 (x−1)−

n2
2 (x−

t)−
n3
2 ŷ (x). Then the Riemann scheme for ŷ (x) is

(4.23)

 0 1 t ∞ λ
0 0 0 α̂ 0

n1 + 1
2 n2 + 1

2 n3 + 1
2 α̂+ n0 + 1

2 2

 ,
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where α̂= −1
2 (1 + n0 + n1 + n2 + n3). Moreover, ŷ (x) satisfies the second

order Fuchsian equation

(4.24) ŷ′′ (x) + p̂1 (x, t) ŷ′ (x) + p̂2 (x, t) ŷ (x) = 0,

where

(4.25) p̂1 (x, t) =
1
2 − n1

x
+

1
2 − n2

x− 1
+

1
2 − n3

x− t
− 1

x− λ
and

p̂2 (x, t) =
3

4 (x− λ)2(4.26)

+
2n1n2 − n1 − n2

4x (x− 1)
+

2n2n3 − n2 − n3

4 (x− 1) (x− t)
+

2n1n3 − n1 − n3

4x (x− t)

+
2n1 − 1

4x (x− λ)
+

2n2 − 1

4 (x− 1) (x− λ)
+

2n3 − 1

4 (x− t) (x− λ)

− 1

p (x)


n0 (n0 + 1)

(
x+ e1

b

)
− n1 (n1 + 1)

(
x+ 2e1

b

)
−n2 (n2 + 1)

(
x− e3

b

)
− n3 (n3 + 1)

(
x− e2

b

)
+3

4

(
p(x)+p(λ)

2(x−λ)2
− 2x− 2℘(p)+e1

b

)
+A

(
2
b ζ (p)− ℘′(p)

b2(x−λ)

)
+ B

b

 .
Since p 6∈ Eτ [2] and equation (4.21) has no logarithmic solutions at λ, it
follows that λ 6∈ {0, 1, t,∞} and λ is an apparent singularity of (4.24). Thus,
p̂2 (x, t) can be written into the form of (4.6) with

(4.27) κ̂ = −1

4
(n0 − n1 − n2 − n3) (1 + n0 + n1 + n2 + n3) ,

µ = Res
x=λ

p̂2 (x, t)(4.28)

=
2n3 − 1

4 (λ− t)
+

2n2 − 1

4 (λ− 1)
+

2n1 − 1

4λ
+

3

8

p′ (λ)

p (λ)
+
A℘′ (p)

b2p (λ)
,

K = −Res
x=t

p̂2 (x, t) = K̃,

where

K̃ + −2n2n3 − n2 − n3

4 (t− 1)
− 2n1n3 − n1 − n3

4t
− 2n3 − 1

4 (t− λ)
(4.29)

+
1

4t (t− 1)


3
2
λ(λ−1)
(λ−t) −

3
2
℘(p)+e3

b + A℘′(p)
(λ−t)b2

+n0(n0+1)e3
b + n1(n1+1)e2

b + n2(n2+1)e1
b

−2n3(n3+1)e3
b + 2

bA℘ (p) + B
b

 .
Since λ is an apparent singularity, we conclude from (4.8) that

(4.30) K̃ =
1

t (t− 1)

 λ (λ− 1) (λ− t)µ2 + κ̂ (λ− t)

−
[
θ0 (λ− 1) (λ− t) + θ1λ (λ− t)
+ (θt − 1)λ (λ− 1)

]
µ

 .
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Conversely, for a given second order Fuchsian equation (4.1) satisfying
(4.2) and (4.3), we know that p1(x), p2(x) and K are given by (4.5)-(4.8),
where

(4.31) κ̂ = α̂ (α̂+ θ∞) .

Define ±p, ni (i = 0, 1, 2, 3), A, and B by

(4.32) λ =
℘ (p)− e1

e2 − e1
,

(4.33) (θ0, θ1, θt, θ∞) =

(
n1 +

1

2
, n2 +

1

2
, n3 +

1

2
, n0 +

1

2

)
,

(4.34) µ =
2n3 − 1

4 (λ− t)
+

2n2 − 1

4 (λ− 1)
+

2n1 − 1

4λ
+

3

8

p′ (λ)

p (λ)
+
A℘′ (p)

b2p (λ)
,

and

(4.35) B = A2 − ζ (2p)A− 3

4
℘ (2p)−

3∑
i=0

ni (ni + 1)℘
(
p+

ωi
2

)
.

Since λ 6∈ {0, 1, t,∞}, p 6∈ Eτ [2]. Thus ℘′ (p) 6= 0 and A is well-defined
by (4.34). In order to obtain the corresponding generalized Lamé equation
(4.11), it suffices to prove that p1 (x, t) and p2 (x, t) can be expressed in the
form of (4.25) and (4.26). By (4.5) and (4.33), it is easy to see that p1 (x, t)
is of the form (4.25). By (4.29) and (4.30), we see that K can be written
into (4.29), so p2 (x, t) can also be expressed in the form of (4.26). Finally,
the assertion that p is an apparent singularity follows from the assumption
that λ is an apparent singularity of (4.1) (or follows from (4.35) and Lemma
2.1). This completes the proof. �
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