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ABSTRACT. In this paper, we show that as τ →
√
−1∞, any zero of

the Lamé function converges to either ∞ or a finite point p satisfying
Re p = 1

2 and e2πip being an algebraic number. Our proof is based on
studying a special family of simply-periodic KdV potentials with period
1, i.e. algebro-geometric simply-periodic solutions of the KdV hierarchy.
We show that except the pole 0, all other poles of such KdV potential-
s locate on the line Re z = 1

2 . We also compute explicitly the eigenvalue
set of the corresponding L2[0, 1] eigenvalue problem for such KdV poten-
tials, thus extends Takemura’s works [26, 27]. Our main idea is to apply
the classification result for simply-periodic KdV potentials by Gesztesy,
Unterkofler and Weikard [11] and the Darboux transformation.

1. INTRODUCTION

In this paper, we study two problems related to algebro-geometric solu-
tions of the KdV hierarchy. The first problem is about the asymptotics of
the classical Lamé equation

(1.1) y′′(z) = [`(`+ 1)℘(z; τ)− E]y(z), ` ∈N,

as τ → i∞. Here τ ∈ iR>0 and ℘(z; τ) := ℘(z; Λτ) is the Weierstrass ℘-
function with respect to Λτ = Z + Zτ. We refer the reader to the classic
texts [15, 33] and recent works [3, 13, 20, 21] for more introduction of (1.1).

In the seminal paper [16], Ince proved that the Lamé potential q(z; τ) =
`(`+ 1)℘(z; τ) is a finite-gap potential. In the literature, a smooth periodic
function q(x), x ∈ R, is called a finite-gap potential if the set σb(L) of L =
−d2/dx2 + q(x) satisfies

(1.2) σb(L) = [E0, E1] ∪ [E2, E3] ∪ · · · ∪ [E2g,+∞)

with E0 < E1 < · · · < E2g, where σb(L) is the spectrum of bounded bands,
that is,

E ∈ σb(L)⇐⇒ There is a solution of (L− E) f (x) = 0(1.3)
which is bounded on the whole real axis.

It is well-known that a finite-gap potential is an algebro-geometric solution
of the KdV hierarchy. A potential q(z) is called an algebro-geometric solution
of the KdV hierarchy or simply a KdV potential if there is a monic odd-order
differential operator P such that the commutator [P,−d2/dz2 + q(z)] = 0;
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see Section 2 for a brief review. Under the condition that q(z) is smooth
periodic and real-valued on R, it is known (see e.g. [10]) that q(z) is a
finite-gap potential if and only if it is a KdV potential.

For the Lamé potential, it follows from [16] that there are

(1.4) E0(τ) < E1(τ) < · · · < E2`(τ)

such that for q(x) = `(` + 1)℘(x + ωk
2 ; τ), k ∈ {2, 3} where ω2 = τ,

ω3 = 1 + τ, the corresponding σb(L) is of the form (1.2) with g = `. The
polynomial Q(E; τ) := ∏2`

j=0(E − Ej(τ)) is called the spectral polynomial of
the Lamé potential. Fix 0 ≤ k ≤ 2`. It is classical (cf. [33]) that there exists
a unique a = a(τ) := {a1, · · · , a`} ⊂ Eτ \ {0} such that a ≡ −a mod Λτ

and the classical Hermite-Halphen ansatz

ya(z; τ) := e∑`
j=1 ζ(aj;τ)z ∏`

j=1 σ(z− aj; τ)

σ(z; τ)`

is a solution of (1.1) with E = Ek(τ). Here ζ(z; τ) and σ(z; τ) are the asso-
ciated Weierstrass functions of ℘(z; τ) and Eτ = C/Λτ is a flat torus. This
ya(z; τ) is known as the Lamé function in the literature.

In this paper, we study the asymptotics of the zeros of the Lamé function
as τ → i∞. Our first result is

Theorem 1.1. Fix 1 ≤ k ≤ ` and consider the Lamé function ya(z; τ) at E ∈
{E2k−1(τ), E2k(τ)} with its zero set

a = a(τ) = {a1(τ), · · · , a`(τ)} ⊂ Eτ \ {0}, Re aj ∈ [0, 1], ∀j.

Then as τ → i∞, the followings hold.
(1) There are k zeros aj(τ)’s converging to infinity;
(2) The other `− k zeros aj(τ)’s converge to `− k distinct points pj’s which

satisfy that Re pj =
1
2 and e2πipj is an algebraic number for any j.

Our basic idea of proving Theorem 1.1 comes from the well-known fact:

`(`+ 1) lim
τ→i∞

℘(z; τ) = `(`+ 1)
(

π2

(sin πz)2 − π2

3

)
=: q0(z) + e0,

where e0 := −π2

3 `(`+ 1) and q0(z) := `(`+ 1) π2

(sin πz)2 is also a KdV poten-

tial. From here we will see in Section 6 that E2k−1(τ), E2k(τ)→ e0 + k2π2 as
τ → i∞. Noting that q0(

1
2 + ix) = `(`+ 1) π2

(cosh x)2 , we will see in Section 4
that Im pj’s are the zeros of eigenfunctions of the negative spectrum of the
following Schrodinger equation

(1.5) −y′′(x)− `(`+ 1)π2

[cosh(πx)]2
y(x) = λy(x).

It is known that the negative part of the spectrum is discrete and finite,
which consists of simple eigenvalues

(1.6) λj = −(`− j)2π2, 0 ≤ j ≤ `− 1.
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The classical proof of this statement is to transform (1.5) to the hypergeo-
metric equation; see e.g. [18, p.73-74]. In Section 4 of this paper, we will
give a new proof of (1.6) via the KdV theory, thus it also works for a large
family of simply-periodic KdV potentials of the form

q(z) =g(g + 1)P̃(z) + m(m + 1)P̃(z− 1
2 )(1.7)

+
r

∑
j=1

mj(mj + 1)(P̃(z− pj) + P̃(z + pj)),

with 0 ≤ m, mj ≤ g− 1,

where we denote

(1.8) P̃(z) := π2[sin(πz)]−2

for convenience. In this paper, a simply-periodic KdV potential q(z) of the
form (1.7) is called strict if its associated spectral polynomial is of degree
2g + 1. We will briefly review this notion for all kinds of KdV potentials
in Section 2. By applying the classification result of simply-periodic KdV
potentials by Gesztesy, Unterkofler and Weikard [11], we will prove in Sec-
tion 3 that any simply-periodic KdV potential with its basic period 1 and
its spectral polynomial of degree 2g + 1 is isospectral to a strict simply-
periodic KdV potential q(z) of the form (1.7).

Remark that for a strict KdV potential q(z) given by (1.7), it follows from
Theorem 3.2 below from [11] that there are 1 ≤ n1 < · · · < ng satisfying
gcd(n1, · · · , ng) = 1 and

g

∑
j=1

nj =
g(g + 1) + m(m + 1)

2
+

r

∑
j=1

mj(mj + 1)

such that the spectral polynomial of q(z) is given by

(1.9) Qq,2g+1(E) = E
g

∏
j=1

(E− n2
j π2)2.

See Sections 3-4 for more details. Here we have the following characteri-
zation of the poles pj’s. For an algebraic number α, any other root of its
minimial polynomial f (x) ∈ Q[x] is called a conjugate of α.

Theorem 1.2. Let q(z) be a strict KdV potential given by (1.7) with its spectral
polynomial given by (1.9). Then we have

(1) for any 1 ≤ j ≤ r, e2πipj is an algebraic number. Moreover, any conjugate
of e2πipj belongs to {e±2π jpk |1 ≤ k ≤ r}.

(2) for any 1 ≤ k ≤ g, any root p of the Baker-Akhiezer function ψ(Pk, z, z0)
of q(z) at Pk = (n2

kπ2, 0) satisfies that e2πip is an algebraic number.

The notion of the Baker-Akhiezer function in Theorem 1.2 will be re-
viewed in Section 2.
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Remark 1.3. For any KdV potential q(z) of the form (1.7), we take any b ∈ R

such that q(z) has no poles on R + ib and denote q̂(x) = q(x + ib). Then
the spectrum σb(L) of bounded bands for L = −d2/dx2 + q̂(x) satisfies

(1.10) σb(L) = [0,+∞).

This easily follows from the two facts: (i) By applying the Darboux transfor-
mations via the Baker-Akhiezer functions to q(z) finitely many times, we
obtain the constant potential q̃(z) = 0; See [11] or Section 3 of this paper.
(ii) The Hill’s discriminant ∆(E) (i.e. the trace of the monodromy matrix
of y′′(z) = [q(z) − E]y(z) with respect to z → z + 1) is invariant under
the Darboux transformation via the Baker-Akhiezer function. In particular,
the Hill’s discriminant ∆(E) of q(z) is the same as the one of the constant
potential q̃(z) = 0, which implies (1.10) and

{E |∆(E) = ±2} = {π2n2 | n ∈ Z≥0}.
Remark 1.3 shows that the spectrum information obtained from the Hill’s

discriminant ∆(E) can not distinguish the potentials. In this paper, we s-
tudy another type of eigenvalue problem which was already studied by
Takemura [26, 27, 29]. Let q(z) be a strict KdV potential given by (1.7) such
that pj /∈ R for all j. We will see in Remark 4.3 that q(x) is real-valued for
x ∈ [0, 1]. Clearly q(x) has singularities at 0, 1 (and 1

2 if m ≥ 1) on [0, 1].
Consider the following eigenvalue problem which is of particular physical
interest:

(1.11)

{
−ϕ′′(x) + q(x)ϕ(x) = λϕ(x), x ∈ [0, 1],
ϕ(x) ∈ L2[0, 1], i.e.

∫ 1
0 |ϕ(x)|2dx < ∞.

Here ”physical interest” means that the eigenfunction is contained in an
appropriate Hilbert space, which is often the L2 space (cf. [27]). We will
see that ϕ(x) ∈ L2[0, 1] is equivalent to ϕ(0) = ϕ(1) = 0 (and ϕ( 1

2 ) = 0 if
m ≥ 1). Clearly this eigenvalue problem depends on the potential q(z).

Our second problem is to find all the eigenvalues λ’s such that (1.11) has
a solution. The special case mj = 0 for all j, i.e.

q(z) =g(g + 1)P̃(z) + m(m + 1)P̃(z− 1
2 ),(1.12)

=g(g + 1)π2[sin πz]−2 + m(m + 1)π2[cos πz]−2, 0 ≤ m < g,

was already considered by Takemura [26, 27, 29]. Like the case m = 0, this
q(z) is a limit of the following Treibich-Verdier potential [31] (which is well
known as new elliptic KdV potentials besides the Lamé potential)

g(g + 1)℘(z; τ) + m(m + 1)℘(z− 1
2 ; τ)(1.13)

+ [g(g + 1) + m(m + 1)]π2

3 .

The complete set of eigenvalues of (1.11) with q(z) being (1.12) are given by
(see e.g. [26, Section 5] for m ≥ 1 and [29, Section 3] for m = 0)

(1.14) {π2(g + 1 + k)2 | k ∈ Z≥0} if m = 0,
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(1.15) {π2(g + m + 2 + 2k)2 | k ∈ Z≥0} if m ≥ 1.

Since q(z) in (1.12) has only two singularities 0, 1
2 mod Z, the proof in

[26, 29] is to transform (1.11) to hypergeometric equations via gauge trans-
formations, but this method can not work for general q(z) given by (1.7).

In this paper, we develop a unified approach to solve the eigenvalue
problem (1.11) for a special family of KdV potentials given by (1.7) including
(1.12). Our third result of this paper is as follows, which generalizes (1.14)-
(1.15) to a large family of KdV potentials.

Theorem 1.4. Let q(z) be a strict simply-periodic KdV potential of the form (1.7)
with its spectral polynomial given by (1.9). Suppose that

(1.16) ±pj /∈ R for all 1 ≤ j ≤ r if r ≥ 1.

Then the following hold.
(1) If m = 0, then the set

Θ0 :=
{

π2n2∣∣ n ∈N \ {n1, · · · , ng}
}

gives all the eigenvalues of the eigenvalue problem (1.11). Furthermore,
the eigenfunction y(x) of the eigenvalue π2n2 satisfies y( 1

2 ) = 0 if and
only if n− g is even.

(2) If m ≥ 1, then the eigenvalue set is given by

Θm :=

{
π2
(

g + m + 2− 2
r

∑
j=1

mj + 2k
)2
∣∣∣∣∣ k ∈ Z≥0,

k >
r

∑
j=1

mj − g+m+2
2

}
\ {n2

1π2, · · · , n2
gπ2}.

Remark 1.5. Remark that q(z) given by (1.12) satisfies all assumptions of
Theorem 1.4. A more precise statement of Theorem 1.4 will be given in
Sections 4-5, where we will give infinitely many new examples of potentials
q(z) of the form (1.7) satisfying all assumptions of Theorem 1.4, and the
exact values of the corresponding n1, · · · , ng will also be given. We believe
that Theorem 1.4 should have important applications.

The rest of this paper is organized as follows. As we will see that the
notion of strict KdV potentials plays an essential role in our proof. Thus in
Section 2, we first review the KdV hierarchy in general setting and then in-
troduce the notion of strict KdV potentials. Some important properties for
strict KdV potentials are also collected. We also review the basic theory con-
cerning the Darboux transformation of the KdV potentials from [7, 9] for
later usage. In Section 3, we introduce Gesztesy, Unterkofler and Weikard’s
classification result [11] for simply-periodic KdV potentials and apply it to
prove the existence of strict simply-periodic KdV potentials. Theorem 1.2
will be proved as a consequence. In Section 4, we show that the poles of
some special strict simply-periodic KdV potentials locate on Re z = 1

2 . As
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applications, Theorem 1.4 will be proved in Section 5, and Theorem 1.1 will
be proved in Section 6.

2. PRELIMINARIES

2.1. The KdV hierarchy. In this section, we review basic facts on the sta-
tionary KdV hierarchy following [10, Chapter 1]. Assuming q(z) meromor-
phic in C, we define { f`(z)}`∈N∪{0} recursively by

(2.1) f0 = 1, f ′` = − 1
4 f (3)`−1 + q f ′`−1 +

1
2 q′ f`−1, ` ∈N.

Explicitly, one finds
f0 = 1, f1 = 1

2 q + c1,

f2 = − 1
8 (q
′′ − 3q2) + c1

1
2 q + c2, etc.

Here {c`}`∈N ⊂ C denote integration constants that naturally arise when
solving (2.1). Consider a second-order differential operator of Schrödinger-
type

L = − d2

dz2 + q(z)

and a (2g + 1)-order differential operator

P2g+1 =
g

∑
j=0

(
f j

d
dz
− 1

2 f ′j

)
Lg−j, g ∈N∪ {0}.

By the recursion (2.1), a direct computation leads to ([·, ·] the commutator
symbol)

[L, P2g+1] = −2 f ′g+1, g ∈N∪ {0}.
In particular, (L, P2g+1) represents the celebrated Lax pair [19] of the Kd-
V hierarchy. Varying g ∈ N ∪ {0}, the stationary KdV hierarchy is then
defined in terms of the vanishing of the commutator of L and P2g+1 by

(2.2) s-KdVg(q) = [L, P2g+1] = −2 f ′g+1 = 0, g ∈N∪ {0}.
For example,

s-KdV0(q) = −q′ = 0,

s-KdV1(q) = 1
4 q(3) − 3

2 qq′ + c1(−q′) = 0, etc.,
represent the first few equations of the stationary KdV hierarchy. By defi-
nition, the set of solutions of (2.2), with g ranging in N ∪ {0} and c` in C,
represents the class of algebro-geometric KdV solutions. As in [10, 11], it will
be convenient to abbreviate algebro-geometric stationary KdV solutions q
simply as KdV potentials. It was shown by Segal and Wilson [24, Theorem
6.10] that any KdV potential which is smooth in some real interval can be
extended to a meromorphic function on C.

The KdV potentials play an important role for the study of the KdV e-
quation itself and have been widely studied in the literature. We refer the
reader to Gesztesy and Holden’s text [10] for a complete introduction and
detailed references for this topic. There are three kinds of KdV potentials
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that have received great interest: rational, simply-periodic, and elliptic KdV
potentials; see e.g. [1, 5, 6, 8, 11, 12, 17, 22, 24, 25, 26, 27, 30, 31, 32] and ref-
erences therein. Remark that in [8], Etingof and Rains also studied higher
order differential operators Lm = ∂m + a2(z)∂m−2 + · · ·+ am(z) with m ≥ 3
which are algebraically integrable (i.e. there is a nonzero differential opera-
tor P of order relatively prime to Lm such that [Lm, P] = 0). Such kinds of
problems were first studied by Burchnall and Chaundy [2].

Next, we introduce a monic polynomial Φg = Φq,g of degree g with
respect to the spectral parameter E ∈ C by

(2.3) Φg(z; E) = Φq,g(z; E) :=
g

∑
`=0

fg−`E`, g ∈N∪ {0}.

The recursive relation (2.1) and (2.2) together imply that Φq,g solves

(2.4) Φ′′′ − 4(q− E)Φ′ − 2q′Φ = 0.

Consequently,

(2.5) Qq,2g+1(E) := 1
2 Φq,gΦ′′q,g − 1

4 Φ′2q,g − (q− E)Φ2
q,g

is a monic polynomial in E of degree 2g + 1 which is independent of z.
Since [L, P2g+1] = 0 implies P2

2g+1φ = −Qq,2g+1(E)φ for any Lφ = Eφ, we
conclude that

(2.6) Fg(L, iP2g+1) := −P2
2g+1 −Qq,2g+1(L) = 0,

a celebrated theorem by Burchnall and Chaundy [2]. Equation (2.6) leads
naturally to the hyperelliptic curve Kg of (arithmetic) genus g:

(2.7) Kg : Fg(E, C) = C2 −Qq,2g+1(E) = 0.

Remark 2.1. (1) As mentioned in [10, Remark 1.5], if q(z) satisfies one s-
tationary KdV equation s-KdVg(q) = 0 for some g, then it also satisfies
s-KdVp(q) = 0 for any p > g. In fact, (2.2) says that s-KdVg(q) = 0 is e-
quivalent to fg+1 = dg+1 for some constant dg+1 ∈ C. By replacing fg+1 by
fg+1 − dg+1, we may assume fg+1 = 0. Consequently, (2.1) and (2.2) yield
s-KdVg+1(q) = −2 f ′g+2 = 0.

(2) In this paper, we say q is a genus g KdV potential if g is the smallest
integer such that s-KdVg(q) = 0, i.e. s-KdVg−1(q) 6= 0 for any choices
of integration constants ck’s. For a genus g KdV potential q(z), the corre-
sponding Qq,2g+1(E) is called its spectral polynomial.

Now we recall the notion of the Baker-Akhiezer function, the common
eigenfunction of L and P2g+1. Let q(z) be a genus g KdV potential and
Kg given in (2.7) be its associate hyperelliptic curve. The one-point com-
pactification of Kg by joining P∞, the point at infinity, is still denoted by
Kg. A general point P ∈ Kg \ P∞ will be denoted by P = (E, C), where
Fg(E, C) = C2 −Qq,2g+1(E) = 0. We also define the involution ∗ on Kg by

∗ : Kg → Kg, P = (E, C) 7→ P∗ = (E,−C), P∗∞ = P∞.
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Recalling Φg(z; E) in (2.3), we define the following fundamental meromor-
phic function φ(P, z) by

(2.8) φ(P, z) :=
iC(P) + 1

2 Φ′g(z; E)
Φg(z; E)

, P = (E, C) ∈ Kg, z ∈ C,

where C(P) denotes the meromorphic function on Kg obtained upon slov-
ing C2 = Q2g+1(E) with P = (E, C). Then the stationary Baker-Akhiezer
function ψ(P, z, z0) on Kg \ {P∞} is defined by

(2.9) ψ(P, z, z0) := exp
(∫ z

z0

φ(P, ξ)dξ

)
, P = (E, C) ∈ Kg \ {P∞}, z, z0 ∈ C,

where the integral path is chosen a smooth non-selfintersecting path from
z0 to z which avoids singularities of φ(P, z). It is known (cf. [9, Lemma 2.1])
that

(2.10) ψ′′(P, z, z0) = [q(z)− E]ψ(P, z, z0),

(2.11) φ(P, z) =
ψ′(P, z, z0)

ψ(P, z, z0)
, φ′(P, z) = q(z)− E− φ(P, z)2,

(2.12) ψ(P, z, z0)ψ(P∗, z, z0) =
Φg(z; E)
Φg(z0; E)

,

(2.13) W(ψ(P, z, z0), ψ(P∗, z, z0)) =
2iC(P)

Φg(z0; E)
,

where ′ = d
dz and W( f , g) = f ′g− f g′ denotes the Wronskian of f , g. Re-

mark that different choices of z0 give the same solution of the linear equa-
tion (2.10) up to multiplying a constant. The following well-known result
shows that the Baker-Akhiezer function ψ(P, ·, z0) is meromorphic in C.

Theorem 2.2. (cf. [24] or [32, Theorem 1]) Let q(z) be a KdV potential. Then

(1) Any pole z0 of q(z) is a regular singular point of

(2.14) y′′(z) = [q(z)− E]y′′(z).

The principal part of the Laurent expansion of q(z) near z0 is given by
k(k+1)
(z−z0)2 for some k ∈N. In particular, the residue of q(z) at z0 is 0.

(2) For any E ∈ C, all solutions of (2.14) are meromorphic in C.

Remark that in the case when the hyperelliptic curve associated with
q(z) is non-singular, Theorem 2.2 also follows from Its and Matveev [17].
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2.2. Strict KdV potentials. In this section, we introduce the notion of strict
KdV potentials and collect important properties from our another work [4]
joint with Kuo.

Let q(z) be a genus g ≥ 1 KdV potential with {pi}i∈I 6= ∅ being the set
of poles of q(z). Since q(z) is meromorphic, any pole is isolated in {pi}i∈I
and the index set I is countable. Fix any pole pi of q(z). By Theorem 2.2,
the Laurent expansion of q(z) at z = pi is written as

(2.15) q(z) =
∞

∑
j=0

bj(z− pi)
j−2,

with

(2.16) b0 = ni(ni + 1) for some ni ∈N, b1 = 0.

Definition 2.3. We call that a genus g ≥ 1 KdV potential is a strict KdV potential
if the pole set {pi}i∈I 6= ∅ and the corresponding Ig := {j ∈ I|nj = g} 6= ∅.

The typical example of strict KdV potentials is the Lamé potential n(n +
1)℘(z; Λ), n ∈ N, which is a genus n strict KdV potential. We can give the
following characterization of strict KdV potentials in [4].

Theorem 2.4. [4] Let q(z) be a genus g ≥ 1 strict KdV potential with Ig defined
as above. By changing variable z → z + pi we can always assume 0 ∈ {pi}i∈Ig .
Then q(z) is even. More precisely, one of the following holds:

(1) {pi}i∈Ig = {0} and q(z)− g(g+1)
z2 is an even function. Furthermore, the

leading term n(n+1)
(z−p)2 of q(z) at any pole p 6= 0 (if exists) satisfies n < g.

(2) there is ω ∈ C \ {0} such that {pi}i∈Ig = Zω, and

q(z)− g(g + 1) π2

ω2 [sin(πz/ω)]−2

is an even and simply-periodic function with period ω. Furthermore, the
leading term n(n+1)

(z−p)2 of q(z) at any pole p /∈ Zω (if exists) satisfies n < g.
(3) there are ω1, ω2 satisfying Im(ω2/ω1) > 0 such that {pi}i∈Ig = Zω1 +

Zω2 =: Λ, and

q(z) =g(g + 1)℘(z; Λ) +
3

∑
k=1

mk(mk + 1)℘(z− ωk
2 ; Λ)

+
N

∑
j=1

nj(nj + 1)[℘(z− pj; Λ) + ℘(z + pj; Λ)] + E

is even and elliptic with respect to Λ. Here E ∈ C, ω3 = ω1 + ω2 and
mk ∈ [0, g− 1] for all k = 1, 2, 3; N ≥ 0 and if N > 0, then 2pj /∈ Λ,
1 ≤ nj < g for all j and pi 6≡ ±pj mod Λ for any i 6= j.

It is well-known that KdV potentials are not unique with respect to the
spectral polynomial. For example, 6℘(z; Λ) and 2℘(z; Λ)+ 2℘(z− ω1

2 ; Λ)+
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2℘(z− ω2
2 ; Λ) are both genus 2 KdV potentials and their spectral polynomi-

als are the same; see e.g. [28]. Remark that 6℘(z; Λ) is a strict KdV potential
while the latter is not. Here we recall the uniqueness result of strict KdV
potentials (up to a translation) in a given isospectral set of KdV potentials
(i.e. a set consisting of those KdV potentials such that their associate spec-
tral polynomials are the same). This is another important property of strict
KdV potentials.

Theorem 2.5. [4] Let q1(z), q2(z) be both genus g ≥ 1 strict KdV potential-
s. If their corresponding spectral polynomials Qq1,2g+1(E) = Qq2,2g+1(E), then
q1(z) = q2(z + z0) for some z0 ∈ C.

We emphasize that the above results hold for all kinds of KdV potentials.
In [4] Theorems 2.4-2.5 are applied to classify genus 1 KdV potentials. Here
they will be applied to simply-periodic KdV potentials in Sections 3-5.

2.3. The Darboux transformation. In this section, we recall the important
property of the well-known Darboux transformation for the KdV hierarchy
from [7, 9].

Theorem 2.6. [7, 9] Suppose q(z) is a genus g KdV potential with the associate
spectral polynomial Qq,2g+1(E). For any P0 = (E0, C0) ∈ Kg \ {P∞}, we let y(z)
be any solution of

(2.17) y′′(z) = [q(z)− E0]y(z)

and define a new potential q̃(z) via the Darboux transformation

(2.18) q̃(z) := q(z)− 2
(

y′(z)
y(z)

)′
.

Then the followings hold.
(1) If y(z) is not a Baker-Akhiezer function of (2.17), then q̃(z) is a genus

g + 1 KdV potential with the associate spectral polynomial Qq̃,2g+3(E) =
(E− E0)2Qq,2g+1(E).

(2) If y(z) = ψ(P0, z, z0) is the Baker-Akhiezer function and E0 is not a mul-
tiple zero of Qq,2g+1(E), then q̃(z) is a genus g KdV potential isospectral
to q(z).

(3) If y(z) = ψ(P0, z, z0) is the Baker-Akhiezer function and E0 is a multiple
zero of Qq,2g+1(E), then q̃(z) is a genus g − 1 KdV potential with the
associate spectral polynomial Qq̃,2g−1(E) = (E− E0)−2Qq,2g+1(E).

The Darboux transformations have many applications; see e.g. [14] and
references therein. For example, they can be applied to study algebraical-
ly integrable differential operators. Such idea was originally introduced
by Burchnall and Chaundy [2] and later used in e.g. [23] and references
therein.

Now we study the relation between poles of q(z) and q̃(z) for later usage.
Let {pi}i∈I be the set of poles of q(z) as in Section 2.2. By (2.15)-(2.16), we
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have that at z = pi

(2.19) q(z) =
ni(ni + 1)
(z− pi)2 + O(1) for some ni ∈N, ∀i.

Proposition 2.7. Suppose q(z) is a KdV potential with the pole set {pi}i∈I and
(2.19). For any E0 ∈ C, we let y(z) be any solution of

y′′(z) = [q(z)− E0]y(z)

with its zero set { p̂i}i∈I′ and q̃(z) be the new KdV potential defined by (2.18).
Then the pole set { p̃j}j∈J of q̃(z) is a subset of {pi}i∈I ∪ { p̂i}i∈I′ . More precisely,

(1) if p̃j = pi0 ∈ {pi}i∈I ∩ { p̂i}i∈I′ , then at p̃j = pi0 we have

(2.20) q̃(z) =
(ni0 + 1)(ni0 + 2)

(z− pi0)
2 + O(1);

(2) if p̃j = pi0 ∈ {pi}i∈I \ { p̂i}i∈I′ , then at p̃j = pi0 we have

(2.21) q̃(z) =
(ni0 − 1)ni0
(z− pi0)

2 + O(1);

(3) if p̃j = p̂i0 ∈ { p̂i}i∈I′ \ {pi}i∈I , then at p̃j = p̂i0 we have

(2.22) q̃(z) =
2

(z− p̂i0)
2 + O(1).

Proof. The first assertion is trivial. Note from (2.19) that the local exponent
of any solution y(z) at pi is either −ni or ni + 1.

(1) If p̃j = pi0 ∈ {pi}i∈I ∩ { p̂i}i∈I′ , then pi0 is a zero of y(z) with multi-
plicity ni0 + 1, i.e. y(z) = c(z− pi0)

ni0+1(1 + O(z− pi0)). Inserting this and
(2.19) into (2.18), we immediately obtain (2.20).

(2) If p̃j = pi0 ∈ {pi}i∈I \ { p̂i}i∈I′ , then pi0 is a pole of y(z) with order ni0 ,
i.e. y(z) = c(z− pi0)

−ni0 (1 + O(z− pi0)). This implies (2.21).
(3) If p̃j = p̂i0 ∈ { p̂i}i∈I′ \ {pi}i∈I , then q(z) is holomorphic at p̂i0 and so

p̂i0 is a simple zero of y(z). This implies (2.22). �

3. EXISTENCE OF STRICT SIMPLY-PERIODIC KDV POTENTIALS

In this section we will prove Theorem 1.2. Let ω ∈ C∗ = C \ {0}. A
meromorphic simply-periodic function q(z) with period ω which is bound-
ed as | Im(z/ω)| → ∞ has only finite many poles in the period strip

(3.1) Sω := {z ∈ C | 0 ≤ Re(z/ω) < 1}.

As in [11], we call such functions bounded near the ends of the period strip Sω.
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From now on, we only consider simply-periodic KdV potentials bound-
ed near the ends of the period strip Sω, which is known to be of the form

q(z) =
M

∑
j=1

mj(mj + 1)P(z− pj) + E0, mj ∈N,(3.2)

=2
N

∑
i=1
P(z− pi) + E0,

where pj1 6≡ pj2 mod Zω for any 1 ≤ j1 < j2 ≤ M,

N :=
1
2

M

∑
i=1

mi(mi + 1),

and
P(z) := π2

ω2 ([sin(πz/ω)]−2 − 1
3 ) =

1
z2 + O(z2) near 0.

See e.g. [11, Theorem 2.5]. Remark that P(z) is the limit of the Weierstrass
℘-function ℘(z; Λ) with respect to the lattice Λ := Zω + Zω2 as ω2

ω → i∞.
This section is devoted to studying the existence and further properties

of strict simply-periodic KdV potentials. In particular, Theorem 1.2 will be
proved as a consequence. Clearly not every simply-periodic KdV potential
is necessarily strict. The first result of this section is

Theorem 3.1. Let q(z) be any genus g ≥ 1 simply-periodic KdV potential,
bounded near the ends of the period strip Sω. Then there is a strict genus g
simply-periodic KdV potential q̃(z), bounded near the ends of the period strip
Sω, such that q̃(z) is isospectral to q(z), i.e. their associate spectral polynomi-
als Qq̃,2g+1(E) = Qq,2g+1(E).

We will give two different proofs of Theorem 3.1. To this goal, we need to
apply the beautiful classification result of simply-periodic KdV potentials
by Gesztesy, Unterkofler and Weikard [11]. As in [11], we define the sets

Ng := {(n1, · · · , ng) ∈Ng | n1 < n2 < · · · < ng, gcd(n1, · · · , ng) = 1}
and

N :=
∞⋃

g=1

Ng.

For n = (n1, · · · , ng) ∈ N we denote the number of its components by
#(n) = g. For n = (n1, · · · , ng) ∈ Ng and v = (v1, · · · , vg) ∈ C∗g, we recall
the g× g matrix T(n, v, u) defined in [11] by

(3.3) T(n, v, u) :=
(

nk−1
l [vlunl − (−1)k]

)
1≤k,l≤g

and the corresponding polynomial τN(n, v, u) of degree N := ∑
g
i=1 ni in u

by

(3.4) τN(n, v, u) := (−1)bg/2c det T(n, v, u)
ϑ(n1, · · · , ng)

.
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Here bxc denotes the greatest integer n such that n ≤ x, and

ϑ(n1, · · · , ng) := ∏
k<l

(nl − nk).

Then it was proved in [11, Lemma 3.10] that

(3.5) τN(n, v, u) =
N

∑
k=0

rk(v)uk,

with

rk(v) =
1

∑
σ1=0,··· ,σg=0

σ1n1+···+σgng=k

ϑ((−1)σ1 n1, · · · , (−1)σg ng)

ϑ(n1, · · · , ng)
vσg

1 · · · v
σg
g , 0 ≤ k ≤ N.

In particular, r0(v) = 1 and rN(v) = (−1)bg/2cv1 · · · vg. The following in-
teresting result concerning the classification of simply-periodic KdV poten-
tials was proved in [11].

Theorem 3.2. [11, Theorem 3.14]
(1) The set

S =
{

q(z) = e0 − 2[ln(τN(n, v, e
2πiz

ω ))]′′
∣∣e0 ∈ C, n ∈ Ng, v ∈ C∗g, g ∈N0

}
(3.6)

is precisely the set of simply-periodic KdV potentials of period ω, bounded
near the ends of the period strips Sω.

(2) For any

(3.7) q(z) ∈ S(g, n, e0) :=
{

q(z) = e0 − 2[ln(τN(n, v, e
2πiz

ω ))]′′
∣∣v ∈ C∗g

}
,

q(z) is of genus g and its spectral polynomial is

Qq,2g+1(E) = (E− e0)
g

∏
i=1

(E− ei)
2, where ei = e0 + n2

i
π2

ω2 .

Namely, all potentials in S(g, n, e0) are isospectral.
(3) By rewriting q(z) in the form of (3.2):

q(z) =e0 − 2[ln(τN(n, v, e
2πiz

ω ))]′′

=
M

∑
j=1

mj(mj + 1)P(z− pj) + E0, mj ∈N,(3.8)

there hold

(3.9) τN(n, v, u) = rN(v)
M

∏
j=1

(
u− e2πipj/ω

) mj(mj+1)
2

and
g

∑
i=1

ni = N =
1
2

M

∑
j=1

mj(mj + 1).
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Remark 3.3. Note that τN(n, v, u) is also well-defined for gcd(n1, · · · , ng) ≥
2. In Theorem 3.2, the condition gcd(n1, · · · , ng) = 1 is to guarantee that ω
is the basic period of q(z). For n = (n1, · · · , ng) with 1 ≤ n1 < n2 < · · · <
ng and d := gcd(n1, · · · , ng) ≥ 2,

q(z) := e0 − 2[ln(τN(n, v, e
2πiz

ω ))]′′

is still a genus g simply-periodic KdV potential of period ω, bounded near
the ends of the period strips Sω, but the basic period of q(z) is actually
ω/d. Indeed, by defining n′ := (n′1, · · · , n′g) with n′i = ni/d and N′ :=
∑ n′i = N/d, we have gcd(n′1, · · · , n′g) = 1 and it follows from (3.5) that
τN(n, v, u) = τN′(n′, v, ud), so

q(z) = e0 − 2[ln(τN(n, v, e
2πiz

ω ))]′′ = e0 − 2[ln(τN′(n′, v, e
2πiz
ω/d ))]′′.

Note from Theorem 2.4 that mj ≤ g for all j in (3.8). Recall that q(z) is
strict if mj = g for some j. Now we can give the first proof of Theorem 3.1.

The first proof of Theorem 3.1. Let v∗ = (−1, · · · ,−1), i.e. vj = −1 for all
1 ≤ j ≤ g. We will prove that this v∗ gives rise to a strict KdV potential in
S(g, n, e0) for any g ≥ 1, n ∈ Ng and e0 ∈ C.

Step 1. We claim that for any g ≥ 1 and any n = (n1, · · · , ng) with
1 ≤ n1 < n2 < · · · < ng,

(3.10) u = 1 is a root of τN(n, v∗, u) with multiplicity g(g+1)
2 .

We prove this claim by induction on g. The case g = 1 is trivial since

τN(n, v∗, u) = 1− un1 .

Suppose that (3.10) holds for g = k− 1 for some k ≥ 2. We want to prove it
for g = k and any n = (n1, · · · , nk) with 1 ≤ n1 < n2 < · · · < nk.

Let nl = (n1, · · · , nl−1, nl+1, · · · , nk) and Nl = N − nl = ∑k
j=1 nj − nl for

any 1 ≤ l ≤ k. Then #(nl) = k− 1 and so our assumption implies

(u− 1)
(k−1)k

2

∣∣∣τNl (nl , v∗, u), ∀l,

i.e.

(u− 1)
(k−1)k

2

∣∣∣det(T(nl , v∗, u)), ∀l.

Case 1. k is odd. Then the k-th row of the matrix T(n, v∗, u) is

(nk−1
1 (1− un1), · · · , nk−1

k (1− unk)).

Consequently, computing det(T(n, v∗, u)) by expanding along the k-th row
leads to

det(T(n, v∗, u)) =
k

∑
l=1

(−1)k+lnk−1
l (1− unl )det(T(nl , v∗, u))
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and so

(3.11) (u− 1)
(k−1)k

2 +1
∣∣∣det(T(n, v∗, u)).

Let t ≥ (k−1)k
2 + 1 be the largest integer such that

(u− 1)t
∣∣∣det(T(n, v∗, u)), i.e. (u− 1)t

∣∣∣τN(n, v∗, u).

Since Theorem 3.2 and Remark 3.3 yield that q(z) := −2[ln(τN(n, v∗, e
2πiz

ω ))]′′

is a genus k KdV potential, we see from (3.8)-(3.9) that t = m(m+1)
2 for some

integer 1 ≤ m ≤ k and so t = k(k+1)
2 . This proves (3.10) for g = k.

Case 2. k is even. Then the (k− 1)-th row of the matrix T(n, v∗, u) is

(nk−2
1 (1− un1), · · · , nk−2

k (1− unk))

and the k-th row is

−(nk−1
1 (1 + un1), · · · , nk−1

k (1 + unk)).

Note that

(u− 1)
∣∣∣ (nk−1

l (1 + unl ) + 2
u−1 × nk−2

l (1− unl )
)

, ∀l.

To compute det(T(n, v∗, u)), we add −2
u−1 multiplying the (k− 1)-th row to

the k-th row first, and then expand along the new k-th row, which again
implies (3.11). The rest argument is the same as Case 1. This proves (3.10).

Step 2. We prove the existence of strict KdV potentials.
Let q(z) be any genus g ≥ 1 simply-periodic KdV potential, bounded n-

ear the ends of the period strip Sω. Then Theorem 3.2 implies the existence
of n ∈ Ng and e0 ∈ C such that q(z) ∈ S(g, n, e0). Let

q̃(z) := e0 − 2[ln(τN(n, v∗, e
2πiz

ω ))]′′.

Then q̃(z) is also a genus g simply-periodic KdV potential, bounded near
the ends of the period strip Sω, and is isospectral to q(z). Furthermore,
(3.10) and (3.8)-(3.9) imply that

(3.12) q̃(z) = g(g + 1)P(z) +
M′

∑
i=1

mi(mi + 1)P(z− pi) + E0,

where pi /∈ Zω and mi ≤ g for all i if M′ ≥ 1. Thus q̃(z) is a strict genus
g KdV potential. Theorems 2.4 and 2.5 indicate that this q̃(z) is even and
actually unique in S(g, n, e0) up to a translation. Furthermore, Theorem
2.4 implies mi < g for all i if M′ ≥ 1, because if mi = g for some i, then
Theorem 2.4-(2) shows that the basic period of q̃(z) is ω/k for some k ≥ 2,
a contradiction to that the basic period of q̃(z) is ω. In conclusion,

q̃(z) =g(g + 1)P(z) + m(m + 1)P(z− ω
2 )(3.13)

+
r

∑
j=1

mj(mj + 1)(P(z− pj) + P(z + pj)) + E0,
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where 0 ≤ m ≤ g− 1 and if r ≥ 1, then 1 ≤ mj ≤ g− 1, pj 6≡ 0, ω
2 ,±pj′

mod Zω for any j 6= j′. The proof is complete. �

Remark 3.4. Clearly τN(n, v∗, u) ∈ Q[u], i.e. any root of τN(n, v∗, u) is
an algebraic number. Therefore, in contrast to generic KdV potentials in
S(g, n, e0), the location of any pole pj for the strict KdV potential q̃(z) in
(3.13) can not be arbitrary; it turns out that e2πipj/ω is an algebraic number
and any conjugate of e2πipj/ω belongs to {e±2πipk/ω|1 ≤ k ≤ r}. We will
prove that for a special class of n’s, all poles pj’s of q̃(z) locate on the line
Re z = 1

2 ; see Theorem 4.2.

Remark 3.5. Fix any g ≥ 1 and let ng := (1, 2, · · · , g). Then τN(ng, v∗, u) is a

polynomial of degree g(g+1)
2 in u and so the first proof of Theorem 3.1 gives

τN(ng, v∗, u) = (1− u)g(g+1)/2,

i.e.

e0 − 2[ln(τN(ng, v∗, e
2πiz

ω ))]′′ = g(g + 1) π2

ω2 [sin(πz/ω)]−2 + e0

= g(g + 1)P(z) + g(g + 1) π2

3ω2 + e0.

This is the well-known genus g simply-periodic KdV potential as a limit of
the Lamé potential g(g+ 1)℘(z; Λ)+ g(g+ 1) π2

3ω2 + e0 with Λ = Zω +Zω2

and ω2
ω →

√
−1∞. Together with Theorem 3.2, the spectral polynomial is

Q2g+1(E) = (E− e0)
g

∏
j=1

(E− e0 − j2 π2

ω2 )
2.

This formula was proved via different ideas in the literature; see e.g. [26,
Proposition 4.1].

Consider another typical genus g simply-periodic KdV potential

qg,m(z) :=g(g + 1) π2

ω2 [sin πz
ω ]−2(3.14)

+ m(m + 1) π2

ω2 [sin(π(z− ω
2 )

ω )]−2 + e0, 1 ≤ m < g.

Like the case m = 0, qg,m(z) is a limit of the Treibich-Verdier potential [31]

g(g + 1)℘(z; Λ) + m(m + 1)℘(z− ω
2 ; Λ)(3.15)

+ [g(g + 1) + m(m + 1)] π2

3ω2 + e0.

See e.g. [26, 27], where Takemura also computed the spectral polynomial
of qg,m(z) as a limit of the corresponding one of (3.15); see [26, Proposition
4.1]. Here we can give a different approach to compute it. By Theorem 3.2,
it is suffices to determine what the n of (3.14) is. Define ng,m ∈ Ng by

(3.16) ng,m := (1, 2, · · · , g−m, g−m + 2, g−m + 4, · · · , g−m + 2m).

Clearly #(ng,m) = g and the sum of all elements of ng,m is g(g+1)
2 + m(m+1)

2 .
Recall S(g, n, e0) and τN(n, v, u) in Theorem 3.2.
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Proposition 3.6. Let qg,m(z) and ng,m be given by (3.14) and (3.16). Then
qg,m(z) ∈ S(g, ng,m, e0), i.e. the spectral polynomial of qg,m(z) is

Qqg,m,2g+1(E) =(E− e0)
g−m

∏
j=1

(E− e0 − j2 π2

ω2 )
2

·
m

∏
j=1

(E− e0 − (g−m + 2j)2 π2

ω2 )
2.

In particular,

(3.17) τN(ng,m, v∗, u) = (1− u)g(g+1)/2(1 + u)m(m+1)/2.

To give the second proof of Theorem 3.1 and a new proof of Proposition
3.6, we need to use the Darboux transformation recalled in Section 2.

Let q(z) be a genus g simply-periodic KdV potential, bounded near the
ends of the period strip Sω. Then it follows from (3.2) that there is e0 ∈ C

such that

(3.18) q(z) = e0 + O(e−2π| Im( z
ω )|) as Sω 3 z→ ∞,

|q(k)(z)| v e−2π| Im( z
ω )| → 0 as Sω 3 z→ ∞, ∀k ≥ 1.

Consequently, we see from the definition (2.3) of Φg(z; E) that Φg(z; E) is
also simply-periodic with period ω, bounded near the ends of the period
strip Sω and

(3.19) lim
Sω3z→∞

Φg(z; E) = Eg + d1Eg−1 + ·+ dg =:
g

∏
i=1

(E− ei),

or more precisely,

(3.20) Φg(z; E)−
g

∏
i=1

(E− ei) = O(e−2π| Im( z
ω )|)→ 0 as Sω 3 z→ ∞.

These, together with (2.5), easily imply

(3.21) Qq,2g+1(E) = (E− e0)
g

∏
i=1

(E− ei)
2.

Remark that Theorem 3.2 shows that ei 6= ej for any i 6= j.

Lemma 3.7. Fix any E ∈ C. Let y(z) be a solution of

(3.22) y′′(z) = [q(z)− E]y(z), P = (E, C),
such that y(z + ω) = cy(z) for some c ∈ C. Then the new KdV potential q̃(z)
given by the Darboux transformation

q̃(z) := q(z)− 2
(

y′(z)
y(z)

)′
is also a simply-periodic KdV potential, bounded near the ends of the period strip
Sω, i.e. q̃(z) ∈ S , where S is given in Theorem 3.2.
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Proof. Clearly y(z + ω) = cy(z) implies that q̃(z) is simply-periodic with
period ω. Note that the fundamental system of solutions of

y′′(z) = (e0 − E)y(z)

is

(3.23) e(e0−E)1/2z, e−(e0−E)1/2z if e0 − E 6= 0; 1, z if e0 − E = 0.

By (3.18), the leading term of y(z) as Sω 3 z → ∞ is a multiple of some
function in (3.23). From here, it is easy to see that y′(z)/y(z) is bounded as
Sω 3 z→ ∞ and so does (y′(z)/y(z))′ by using(

y′(z)
y(z)

)′
= y′′(z)

y(z) +
(

y′(z)
y(z)

)2
= q(z)− E +

(
y′(z)
y(z)

)2
.

This proves that q̃(z) is bounded as Sω 3 z→ ∞, i.e. q̃(z) ∈ S . �

Now consider the Baker-Akhiezer function ψ(P, z, z0) of q(z), which is a
solution of (3.22) by (2.10). Since

ψ′(P, z, z0)

ψ(P, z, z0)
= φ(P, z) =

iC(P) + 1
2 Φ′g(z; E)

Φg(z; E)

is simply-periodic with period ω, we see hat

ψ(P, z + ω, z0) = cψ(P, z, z0) for some c ∈ C.

Therefore, Lemma 3.7 shows that the new KdV potential

(3.24) q̃(z) := q(z)− 2
(

ψ′(P, z, z0)

ψ(P, z, z0)

)′
= q(z)− 2φ′(P, z)

is also a simply-periodic KdV potential, bounded near the ends of the pe-
riod strip Sω, i.e. q̃(z) ∈ S . Remark that for E ∈ {ei}

g
i=1, we have C(P)2 =

Qq,2g+1(E) = 0 and so ψ(P, z, z0) = ψ(P∗, z, z0). Then (2.12) and (3.19) yield

(3.25) ψ(P, z, z0) =

√
Φg(z; E)
Φg(z0; E)

→ 0 as Sω 3 z→ ∞.

Our second proof of Theorem 3.1 relies on the following observation.

Lemma 3.8. Let q(z) be a genus g ≥ 2 simply-periodic KdV potential, bounded
near the ends of the period strip Sω, with its spectral polynomial Qq,2g+1(E) given
by (3.21). If q(z) is strict, then for any 1 ≤ k ≤ g,

(3.26) q̃(z) := q(z)− 2
(

ψ′(P, z, z0)

ψ(P, z, z0)

)′
= q(z)− 2φ′(P, z), P = (ek, 0)

is a strict genus g− 1 simply-periodic KdV potential, bounded near the ends of the
period strip Sω, with its spectral polynomial

Qq̃,2g−1(E) = (E− e0)
g

∏
j=1, 6=k

(E− ej)
2.
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Proof. Since ek is a double root of Qq,2g+1(E), by Theorem 2.6 and Lemma
3.7, we obtain all the desired assertions except that q̃(z) is strict. Since q(z)
is strict, there is a pole p of q(z) such that

q(z) =
g(g + 1)
(z− p)2 + O(1) at p.

Consequently, Proposition 2.7 implies that p is also a pole of q̃(z) and either

(3.27) q̃(z) =
(g + 1)(g + 2)

(z− p)2 + O(1) at p

(if p is zero of ψ(P, z, z0) with multiplicity g + 1) or

(3.28) q̃(z) =
(g− 1)g
(z− p)2 + O(1) at p

(if p is a pole of ψ(P, z, z0) with order g). Since q̃(z) is of genus g− 1, (3.27)
is impossible by Theorem 2.4. So (3.28) holds, which just says that q̃(z) is a
strict genus g− 1 KdV potential. �

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. Let q(z) be a strict genus g KdV potential given by
(1.7). The assertion (1) follows from Remark 3.4. For the assertion (2),
we note from Proposition 2.7 that any zero of the Baker-Akhiezer function
ψ(Pk, z, z0) is a pole of the new potential q̃(z) defined in (3.26). Since Lem-
ma 3.8 shows that q̃(z) = (g − 1)gP̃(z) + · · · is a strict genus g − 1 KdV
potential, the assertion (2) follows from the assertion (1). �

We conclude this section by giving the second proof of Theorem 3.1 and
our new proof of Proposition 3.6.

The second proof of Theorem 3.1. Let q(z) be any genus g ≥ 1 simply-periodic
KdV potential, bounded near the ends of the period strip Sω. Then Theo-
rem 3.2 implies the existence of n = (n1, n2, · · · , ng) ∈ Ng and e0 ∈ C such
that q(z) ∈ S(g, n, e0), i.e. the spectral polynomial is

Qq,2g+1(E) = (E− e0)
g

∏
i=1

(E− ei)
2, where ei = e0 + n2

i
π2

ω2 .

Recall 1 ≤ n1 < · · · < ng and gcd(n1, · · · , ng) = 1. So ` := ng ≥ g.
Consider

q0(z) :=`(`+ 1) π2

ω2 [sin(πz/ω)]−2 + e0(3.29)

=`(`+ 1)P(z) + e0 + `(`+ 1) π2

3ω2 .

It is known (see e.g. Remark 3.5) that q0(z) is a strict genus ` simply-
periodic KdV potential with its spectral polynomial

Qq0,2`+1(E) = (E− e0)
`

∏
j=1

(E− e0 − j2 π2

ω2 )
2.
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Clearly {n1, · · · , ng} ⊂ {1, · · · , `}. If g = `, then we are done since q0(z)
is isospectral to q(z). So we consider the case g < ` and denote

{1, · · · , `} \ {n1, · · · , ng} = {ng+1, · · · , n`}.

Then

Qq0,2`+1(E) = Qq,2g+1(E)×
`

∏
h=g+1

(E− e0 − n2
h

π2

ω2 )
2.

Applying Lemma 3.8 to q0(z) at P = (e0 + n2
g+1

π2

ω2 , 0), we obtain that

q1(z) := q0(z)− 2φ′(P, z)

is a strict genus ` − 1 simply-periodic KdV potential, bounded near the
ends of the period strip Sω, with its spectral polynomial

Qq1,2`−1(E) = (E− e0)
`

∏
j=1, 6=ng+1

(E− e0 − j2 π2

ω2 )
2.

Again we can apply Lemma 3.8 to q1(z) to eliminating the term j = ng+2

(i.e. (E− e0 − n2
g+2

π2

ω2 )
2) from Qq1,2`−1(E). In conclusion, we can apply this

process `− g times, by eliminating the terms j = ng+1, · · · , n` one by one
from Qq0,2`+1(E), to obtain a strict genus g simply-periodic KdV potential
q̃(z), which is bounded near the ends of the period strip Sω and isospectral
to q(z). This completes the proof. �

Proof of Proposition 3.6. Fix any ` ≥ 3. We will prove by induction that for
any k ∈N satisfying 1 ≤ k < `/2,

(3.30) q`−k,k(z) ∈ S(`− k, n`−k,k, e0).

Clearly qg,m(z) ∈ S(g, ng,m, e0) follows from (3.30) by letting ` = g + m and
k = m.

Note from (3.16) that

(3.31) n`−k,k = (1, 2, · · · , `− 2k, `− 2k + 2, `− 2k + 4, · · · , `− 2, `).

In particular,
n`−1,1 = (1, 2, · · · , `− 2, `).

Recalling the genus ` potential q0(z) defined in (3.29), we apply the same
argument as the second proof of Theorem 3.1: We apply Lemma 3.8 to ob-
tain that

q1(z) :=q0(z)− 2
(

ψ′(P, z, z0)

ψ(P, z, z0)

)′
, where P = (e0 + (`− 1)2 π2

ω2 , 0)

=(`− 1)` π2

ω2 [sin πz
ω ]−2 + 2

t

∑
j=1

π2

ω2 [sin(π(z−pj)
ω )]−2 + e0,(3.32)
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is a strict genus ` − 1 simply-periodic KdV potential, bounded near the
ends of the period strip Sω, with its spectral polynomial

Qq1,2`−1(E) = (E− e0)
`

∏
j=1, 6=`−1

(E− e0 − j2 π2

ω2 )
2.

Here the second equality of (3.32) follows from Lemma 3.8 and (3.2), and
{pj}t

j=1 are the zero set of ψ(P, z, z0) satisfying pj 6= 0 for all j. Remark
that (3.18) and (3.21) imply that the constant term e0 is preserved in (3.32).
Clearly q1(z) ∈ S(`− 1, n`−1,1, e0), so Theorem 3.2 implies

(`− 1)`
2

+ t =
`

∑
j=1, 6=`−1

j =
(`− 1)`

2
+ 1,

i.e. t = 1. Since Theorem 2.4 says that q1(z) is even, we conclude that
q1 = ω

2 , i.e. q1(z) = q`−1,1(z). This proves (3.30) for k = 1.
Suppose (3.30) holds for some 1 ≤ k < `

2 − 1. We want to prove

(3.33) q`−k−1,k+1(z) ∈ S(`− k− 1, n`−k−1,k+1, e0).

By our assumption, for the genus `− k KdV potential

q`−k,k(z) =(`− k)(`− k + 1) π2

ω2 [sin πz
ω ]−2(3.34)

+ k(k + 1) π2

ω2 [sin(π(z− ω
2 )

ω )]−2 + e0,

its spectral polynomial is

Qq`−k,k ,2`−2k+1(E) =(E− e0)
`−2k

∏
j=1

(E− e0 − j2 π2

ω2 )
2

·
k

∏
j=1

(E− e0 − (`− 2k + 2j)2 π2

ω2 )
2.

Again we apply Lemma 3.8 to q`−k,k(z) and obtain that

qk+1(z)(3.35)

:=q`−k,k(z)− 2
(

ψ′(P, z, z0)

ψ(P, z, z0)

)′
where P = (e0 + (`− 2k− 1)2 π2

ω2 , 0)

=(`− k− 1)(`− k) π2

ω2 [sin πz
ω ]−2

+ k̃(k̃ + 1) π2

ω2 [sin(π(z− ω
2 )

ω )]−2 + 2
t

∑
j=1

π2

ω2 [sin(π(z−pj)
ω )]−2 + e0,

with

(3.36) pj /∈ {0, ω
2 }+ Zω ∀1 ≤ j ≤ t,



22 ZHIJIE CHEN AND CHANG-SHOU LIN

is a strict genus `− k− 1 simply-periodic KdV potential, bounded near the
ends of the period strip Sω, with its spectral polynomial

Qqk+1,2`−2k−1(E) =
Qq`−k,k ,2`−2k+1(E)

(E− e0 − (`− 2k− 1)2 π2

ω2 )2

=(E− e0)
`−2k−2

∏
j=1

(E− e0 − j2 π2

ω2 )
2

·
k+1

∏
j=1

(E− e0 − (`− 2k− 2 + 2j)2 π2

ω2 )
2.

From here and (3.31) that

n`−k−1,k+1 = (1, 2, · · · , `− 2k− 2, `− 2k, · · · , `− 2, `),

we have qk+1(z) ∈ S(`− k− 1, n`−k−1,k+1, e0), so Theorem 3.2 implies

(`−k−1)(`−k)
2 + k̃(k̃+1)

2 + t =
`−2k−2

∑
j=1

j +
k+1

∑
j=1

(`− 2k− 2 + 2j)

= (`−k−1)(`−k)
2 + (k+1)(k+2)

2 .

On the other hand, we see from Proposition 2.7 that k̃ ∈ {k− 1, k + 1}. If
k̃ = k− 1, then t = 2k + 1 and Proposition 2.7 shows that pi 6= pj for any
i 6= j. However, Theorem 2.4 says that qk+1(z) is even, i.e.

{p1, · · · , p2k+1} ≡ {−p1, · · · ,−p2k+1} mod Zω,

which contradicts with (3.36). Therefore, we have k̃ = k + 1, i.e. t = 0 and
so qk+1(z) = q`−k−1,k+1(z). This proves (3.33).

In conclusion, we have proved by induction that (3.30) holds for all 1 ≤
k < `/2. Therefore, qg,m(z) ∈ S(g, ng,m, e0). In particular, the first proof of
Theorem 3.1 implies

qg,m(z) = e0 − 2[ln(τN(ng,m, v∗, e
2πiz

ω ))]′′,

and hence (3.17) follows from (3.9). This completes the proof. �

4. SPECTRUM OF STRICT SIMPLY-PERIODIC KDV POTENTIALS ALONG
Re z = a

In this section, we always consider the normalized case ω = 1 and prove
Theorem 4.2, which plays a crucial role in our proof of Theorem 1.1.

Recall the potential q0(z) defined by (3.29) with e0 = 0:

q0(z) := `(`+ 1)π2[sin(πz)]−2 = `(`+ 1)P̃(z),(4.1)
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where P̃(z) is defined in (1.8). Comparing to P(z), the advantage of P̃(z)
is that limIm z→∞ P̃(z) = 0. The spectral polynomial of q0(z) is

Qq0,2`+1(E) = E
`

∏
j=1

(E− j2π2)2.

Lemma 4.1. Fix any 1 ≤ k ≤ ` and consider the Baker-Akhiezer function
ψ(Pk, z, z0) of q0(z) at Pk := (k2π2, 0). Then ψ(Pk, z, z0) has exactly `− k zeros
p1, · · · , p`−k in S1.

Proof. Fix 1 ≤ k ≤ ` and consider

(4.2) qk(z) := q0(z)− 2
(

ψ′(Pk, z, z0)

ψ(Pk, z, z0)

)′
,

which is a strict genus `− 1 simply-periodic KdV potential, bounded near
the ends of the period strip

S1 = {z ∈ C | 0 ≤ Re z < 1},
with its spectral polynomial

(4.3) Qqk ,2`−1(E) = E
`

∏
j=1, 6=k

(E− j2π2)2.

As in the proof of Theorem 3.6, we have

(4.4) qk(z) = (`− 1)`P̃(z) + 2
t

∑
j=1
P̃(z− pj),

and pj ∈ S1 \ {0} is a zero of the Baker-Akhiezer function ψ(Pk, z, z0) by
the definition (4.2) of qk(z). Since any zero of ψ(Pk, z, z0) is simple, we have

pi 6= pj, ∀i 6= j, if t > 0.

To determine t, we denote nk = (1, · · · , k− 1, k + 1, · · · , `). Then Theorem
3.2 and (4.3) imply qk(z) ∈ S(`− 1, nk, 0) and so

t =
`

∑
j=1, 6=k

j− (`− 1)`
2

= `− k.

Indeed, since qk(z) is strict, it follows from the first proof of Theorem 3.1
that

qk(z) = −2[ln(τNk(nk, v∗, e2πiz)]′′, where Nk =
`(`+1)

2 − k,

which leads to

τNk(nk, v∗, u) = rNk(v
∗)(u− 1)

(`−1)`
2

`−k

∏
j=1

(u− e2πipj).

In conclusion, ψ(Pk, z, z0) has exactly `− k zeros p1, · · · , p`−k in S1. �
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The following result determines the location of these zeros, which indi-
cates that all zeros of the polynomial τNk(nk, v∗, u) except 1 are simple and
negative. This result plays a crucial role in our proof of Theorem 1.1.

Theorem 4.2. Under the above notations, all the zeros p1, · · · , p`−k of the Baker–
Akhiezer function ψ(Pk, z, z0) lie on the line Re z = 1

2 . In particular, by renaming
p1, · · · , p`−k if necessary, the following holds.

(1) If t = `− k is even, then

(4.5) qk(z) = (`− 1)`P̃(z) + 2

`−k
2

∑
j=1

(P̃(z− pj) + P̃(z + pj)),

where pj =
1
2 + i Im pj with Im pj 6= 0 for all j.

(2) If t = `− k is odd, then

(4.6) qk(z) = (`− 1)`P̃(z) + 2P̃(z− 1
2 ) + 2

`−k−1
2

∑
j=1

(P̃(z− pj) + P̃(z + pj)),

where pj =
1
2 + i Im pj with Im pj 6= 0 for all j.

Proof. Let z = 1
2 + ix with x ∈ R. Then

q0(
1
2 + ix) = `(`+ 1)π2[sin(π( 1

2 + ix))]−2 =
`(`+ 1)π2

[cosh(πx)]2
.

Consider the spectrum of the following Schrödinger equation

(4.7) −y′′(x)− `(`+ 1)π2

[cosh(πx)]2
y(x) = λy(x).

Clearly the positive part of the spectrum is continuous because the poten-
tial converges to 0 as x → ∞; while we will prove in Proposition 4.4 that
the negative part of the spectrum is discrete and finite, which consists of
simple eigenvalues

(4.8) λj = −(`− j)2π2, 0 ≤ j ≤ `− 1.

Recalling that

ψ′′(P`−j, z, z0) = [q0(z)− (`− j)2π2]ψ(P`−j, z, z0), ∀0 ≤ j ≤ `− 1,

we define

ηj(x) := ψ(P`−j, 1
2 + ix, z0), x ∈ R, ∀0 ≤ j ≤ `− 1.

then we have: (1) ηj(x) has at most j zeros on R because ψ(P`−j, z, z0) has
exactly j zeros in S1; (2) limx→∞ ηj(x) = 0 by (3.25); (3) ηj(x) solves (4.7)
with λ = λj = −(` − j)2π2. In particular, (2)-(3) imply that ηj(x) is pre-
cisely the eigenfunction of (4.7) with respect to the simple eigenvalue λj.
Since λ0 < λ1 < · · · < λ`−1, it is standard to conclude from (1) and the
Sturm comparison principle that ηj(x) has precisely j zeros on R for any
0 ≤ j ≤ `− 1, i.e. all the zeros p1, · · · , pj of the Baker–Akhiezer function
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ψ(P`−j, z, z0) lie on the line Re z = 1
2 . The proof is complete by noting from

Theorem 2.4 that qk(z) is even since it is strict. �

Now we want to prove (4.8) for general strict simply-periodic KdV po-
tentials. Given any g ≥ 2 and n = (n1, · · · , ng) ∈ Ng, we consider

q(z) = qg,n(z) := −2[ln(τN(n, v∗, e2πiz))]′′.

It follows from the first proof of Theorem 3.1 that q(z) is a strict genus g
simply-periodic KdV potential with basic period ω = 1, and has the fol-
lowing form

qg,n(z) =g(g + 1)P̃(z) + m(m + 1)P̃(z− 1
2 )(4.9)

+
r

∑
j=1

mj(mj + 1)(P̃(z− pj) + P̃(z + pj)),

with

(4.10) N =
g

∑
j=1

nj =
g(g + 1) + m(m + 1)

2
+

r

∑
j=1

mj(mj + 1),

where 0 ≤ m ≤ g− 1 and if r ≥ 1, we have 1 ≤ mj ≤ g− 1, pj 6≡ 0, 1
2 ,±pj′

mod Z for any j 6= j′. Here we used (3.18) to see that there is no constant
term in (4.9). Besides, the spectral polynomial is

(4.11) Qqg,n,2g+1(E) = E
g

∏
j=1

(E− n2
j π2)2.

Remark 4.3. Since

τN(n, v∗, u) =(1− u)
g(g+1)

2 (1 + u)
m(m+1)

2

·
r

∏
j=1

[(e2πipj − u)(e−2πipj − u)]
mj(mj+1)

2 ∈ Q[u],

so e∓2πi p̄j = e±2πipj are also roots of τN(n, v∗, u) with multiplicity mj(mj+1)
2 .

That is if p̄j 6≡ ±pj mod Z, then there is k 6= j such that p̄j ≡ ±pk mod Z.
From here and (4.9) we conclude that qg,n(z) = qg,n(z̄) and so

qg,n(z) ∈ R∪∞ for z = x ∈ R.

Proposition 4.4. Under the above notations, we fix any a ∈ R such that qg,n(z)
has no poles on the line a + iR. Then the negative part of the spectrum of the
following Schrödinger equation

(4.12) −y′′(x)− qg,n(a + ix)y(x) = λy(x),

is discrete and finite, which consists of simple eigenvalues

λj = −n2
g−jπ

2, 0 ≤ j ≤ g− 1.
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Proof. Step 1. Suppose λ < 0 belongs to the negative part of the spectrum
of (4.12) with the corresponding eigenfunction ϕ(x) ∈ L∞(R, C) (Indeed
ϕ(x) ∈ L2(R, C); see Step 2). Then there is a solution y(z) of

(4.13) y′′(z) = [qg,n(z) + λ]y(z), z ∈ C

such that ϕ(x) = y(a + ix). We claim λ = −n2
j π2 for some 1 ≤ j ≤ g.

Suppose by contradiction that λ 6= −n2
j π2 for any 1 ≤ j ≤ g, i.e.

Qqg,n,2g+1(−λ) 6= 0. Denote P = (−λ, C). Then the Baker-Akhiezer func-
tions ψ(P, z, z0) and ψ(P∗, z, z0) of (4.13) are linearly independent, so

(4.14) y(z) = c1ψ(P, z, z0) + c2ψ(P∗, z, z0) for some (c1, c2) 6= (0, 0).

Without loss of generality, we may assume c1 6= 0.
Since q(z) is even, so does Φq,g(z). It follows that

(4.15) ψ(P∗, z, z0) = ψ(P,−z, z0) up to a multiplying constant.

Since limIm z→∞ q(z) = 0, as in Lemma 3.7 we see that the leading term of
ψ(P, z, z0) as Im z → ±∞ is a multiple of one of ei

√
−λz and e−i

√
−λz. By

λ < 0, (4.15) and the linear independence of ψ(P, z, z0) and ψ(P∗, z, z0), it
is easy to see that

lim
Im z→+∞

ψ(P, z, z0) = lim
Im z→−∞

ψ(P∗, z, z0) = A,

lim
Im z→−∞

ψ(P, z, z0) = lim
Im z→+∞

ψ(P∗, z, z0) = B,

with {A, B} = {0, ∞}. Without loss of generality we may assume A = ∞
and B = 0. Then (4.14) with c1 6= 0 implies that ϕ(x) = y(a + ix) → ∞ as
x → +∞, a contradiction with ϕ(x) ∈ L∞(R, C). This proves λ = −n2

j π2

for some 1 ≤ j ≤ g.
Step 2. Suppose λ = −n2

j π2 for some 1 ≤ j ≤ g. Letting ϕ(x) =

ψ(P, a + ix, z0) with P = (−n2
j π2, 0), we easily conclude from (3.20), (3.21)

and (3.25) that limx→∞ ϕ(x) = 0 and indeed ϕ(x) ∈ L∞(R, C) ∩ L2(R, C).
This shows that λ = −n2

j π2 belongs to the negative part of the spectrum of
(4.12). This completes the proof. �

5. SPECTRUM OF STRICT SIMPLY-PERIODIC KDV POTENTIALS ALONG [0, 1]

In this section, we study the eigenvalue problem for the potentials (4.5)-
(4.6) in Theorem 4.2 and prove Theorem 1.4. Consider the eigenvalue prob-
lem

(5.1)

{
−ϕ′′(x) + q(x)ϕ(x) = λϕ(x), x ∈ [0, 1],
ϕ(x) ∈ L2[0, 1], i.e.

∫ 1
0 |ϕ(x)|2dx < ∞.

where q(x + 1) = q(x) and λ is the eigenvalue. As mentioned in Section 1,
when q(z) is given by (3.14) with ω = 1:

q(z) = g(g + 1)P̃(z) + m(m + 1)P̃(z− 1
2 ), 0 ≤ m < g,(5.2)
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the set
{π2(g + 1 + k)2 | k ∈ Z≥0} if m = 0,

{π2(g + m + 2 + 2k)2 | k ∈ Z≥0} if m ≥ 1,

gives all the eigenvalues of (5.1), but the proof can not work for the poten-
tials (4.5)-(4.6) in Theorem 4.2.

In this paper, we develop a unified approach to solve the eigenvalue
problem (5.1) for a family of potentials including (5.2) and (4.5)-(4.6). Under
the above notations, we define

(5.3) Ξ := {qg,n(z)|g ≥ 2, n ∈ Ng, pj /∈ R for all j in (4.9) if r ≥ 1}.

That is for any qg,n(z) ∈ Ξ, qg,n(x) has at most singularities 0, 1, 1
2 on [0, 1].

Clearly this is equivalent to that except ±1, any other zero uj = e±2πipj of
τN(n, v∗, u) satisfies |uj| 6= 1.

Remark 5.1. Clearly the potentials given in (5.2) and (4.5)-(4.6) belong to Ξ,
so Ξ 6= ∅. Given small g ≥ 2 and n = (n1, · · · , ng) ∈ Ng, since all zeros
of τN(n, v∗, u) can be computed (via mathematica for instance), it is easy to
check whether qg,n(z) ∈ Ξ or not. Here is a new example. We let g = 3 and
n = (1, 4, 5), i.e. N = 10. Then a direct computation leads to

τ10(n, v∗, u) = (1− u)6(1 + 7
2 u + 6u2 + 7

2 u3 + u4)

= (1− u)6(u− u0)(u− 1
u0
)(u− u0)(u− 1

u0
),

where u0 +
1
u0

= − 7
4 ± i

√
15
4 /∈ [−2, 2], i.e. |u0| 6= 1. So this qg,n(z) ∈ Ξ.

Our following theorem shows that the eigenvalue set of (5.1) with q(x) =
qg,n(x) is precisely {π2n2 | n ∈N \ {1, 4, 5}}.

Theorem 5.2 (=Theorem 1.4). Let g ≥ 2, n ∈ Ng such that qg,n(z) given by
(4.9) satisfies qg,n(z) ∈ Ξ, where Ξ is defined in (5.3).

(1) If m = 0, then the set

Θ0 :=
{

π2n2∣∣ n ∈N \ {n1, · · · , ng}
}

gives all the eigenvalues of the eigenvalue problem (5.1) with q(x) =
qg,n(x). Furthermore, the eigenfunction y(x) of the eigenvalue π2n2 sat-
isfies y( 1

2 ) = 0 if and only if n− g is even.
(2) If m ≥ 1, then the eigenvalue set is given by

Θm :=

{
π2
(

g + m + 2− 2
r

∑
j=1

mj + 2k
)2
∣∣∣∣∣ k ∈ Z≥0,

k >
r

∑
j=1

mj − g+m+2
2

}
\ {n2

1π2, · · · , n2
gπ2}.
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Proof. Recall (4.11) that the spectral polynomial of qg,n(z) is

Qqg,n,2g+1(E) = E
g

∏
j=1

(E− n2
j π2)2.

Since qg,n(z) ∈ Ξ, qg,n(x) has singularities precisely at 0, 1 (and also at 1
2 if

m ≥ 1) on [0, 1].
Step 1. We assume that E0 is an eigenvalue of the eigenvalue problem

(5.1) with q(x) = qg,n(x). We want to prove E0 ∈ Θm.
Let ϕ(x) ∈ L2[0, 1] be the corresponding eigenfunction. Then there is a

solution y(z) of

(5.4) y′′(z) = [qg,n(z)− E0]y(z), z ∈ C

such that y(x) = ϕ(x) for x ∈ [0, 1], i.e. y(x) ∈ L2[0, 1]. Since the local
exponent of y(z) at 0, 1 is either −g or g + 1, and the local exponent of y(z)
at 1/2 is either −m or m + 1, we see from y(x) ∈ L2[0, 1] that

the local exponent of y(z) at 0, 1 must be g + 1; and(5.5)

if m ≥ 1, then the local exponent of y(z) at 1/2 must be m + 1.

From here and y(· + 1) is also a solution of (5.4) with the local exponent
g + 1 at 0, we have

(5.6) y(z + 1) = cy(z) for some constant c.

Then it follows from Lemma 3.7 that

q̃(z) := qg,n(z)− 2
(

y′(z)
y(z)

)′
is also a simply-periodic KdV potential with period 1, bounded near the
ends of the period strip S1, i.e. q̃(z) ∈ S . Furthermore, we see from Propo-
sition 2.7 and (5.5) that q̃(z) contains the term (g + 1)(g + 2)P̃(z), so its
genus is at least g + 1. Together with Theorem 2.6, we conclude that q̃(z)
is a strict genus g + 1 simply-periodic KdV potential with its spectral poly-
nomial

(5.7) Qq̃,2g+3(E) = (E− E0)
2E

g

∏
j=1

(E− n2
j π2)2.

Then Theorem 3.2 says that there is ng+1 ∈N \ {n1, · · · , ng} such that E0 =

π2n2
g+1. More precisely, by letting n∗ = (ñ1, · · · , ñg+1) ∈ Ng+1 such that

{ñ1, · · · , ñg+1} = {n1, · · · , ng, ng+1}, ñk < ñk+1 ∀k,

we have that q̃(z) = e0 − 2[ln(τN+ng+1(n
∗, v∗, e2πiz))]′′ is the unique strict

KdV potential (up to translation) in S(g + 1, n∗, e0) for some e0. Further-
more, Theorem 3.2 and (5.7) yield e0 = 0, so

q̃(z) = −2[ln(τN+ng+1(n
∗, v∗, e2πiz))]′′ = qg+1,n∗(z).

Remark that for m = 0, we already proved E0 = π2n2
g+1 ∈ Θ0.
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Now we consider the case m ≥ 1. Together with (4.9), (5.5) and Proposi-
tion 2.7, we have

q̃(z) =(g + 1)(g + 2)P̃(z) + (m + 1)(m + 2)P̃(z− 1
2 )

+
r

∑
j=1

m̃j(m̃j + 1)(P̃(z− pj) + P̃(z + pj))

+ 2
t

∑
j=1

(P̃(z− p̃j) + P̃(z + p̃j)),

where m̃j ∈ {mj − 1, mj + 1} by Proposition 2.7, and p̃j 6≡ 0, 1
2 ,±pi for any

j, i if t > 0. Consequently
g+1

∑
j=1

nj =
g(g + 1) + m(m + 1)

2
+

r

∑
j=1

mj(mj + 1) + ng+1

=
(g + 1)(g + 2) + (m + 1)(m + 2)

2
+

r

∑
j=1

m̃j(m̃j + 1) + 2t,

i.e.

ng+1 = g + m + 2 + 2t +
r

∑
j=1

[m̃j(m̃j + 1)−mj(mj + 1)].

Since ng+1 > 0, t ≥ 0 and

m̃j(m̃j + 1)−mj(mj + 1) =

{
−2mj if m̃j = mj − 1,
2(mj + 1) if m̃j = mj + 1,

we see that ng+1 = g + m + 2− 2 ∑r
j=1 mj + 2k for some k ∈ Z≥0 and k >

∑r
j=1 mj − g+m+2

2 . This proves E0 = π2n2
g+1 ∈ Θm.

Step 2. Take any ng+1 ∈ N \ {n1, · · · , ng} such that E0 := π2n2
g+1 ∈ Θm.

We want to show that E0 is an eigenvalue of the eigenvalue problem (5.1)
with q(x) = qg,n(x).

Define n∗ ∈ Ng+1 as in Step 1 and consider the strict genus g + 1 poten-
tial

qg+1,n∗(z) := −2[ln(τN+ng+1(n
∗, v∗, e2πiz))]′′,

which contains the term (g+ 1)(g+ 2)P̃(z) (see e.g. (4.9) with g, n replaced
by g + 1, n∗). Its spectral polynomial

Qqg+1,n∗ ,2g+3(E) = E
g+1

∏
j=1

(E− n2
j π2)2.

Now consider the Baker-Akhiezer function ψ(P0, z, z0) of qg+1,n∗(z) with
P0 := (n2

g+1π2, 0) = (E0, 0). By Lemma 3.8, we see that

(5.8) q0(z) := qg+1,n∗(z)− 2
(

ψ′(P0, z, z0)

ψ(P0, z, z0)

)′
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is a strict genus g simply-periodic KdV potential containing the term g(g +
1)P̃(z), with its spectral polynomial

Qq0,2g+1(E) = E
g

∏
j=1

(E− n2
j π2)2 = Qqg,n,2g+1(E).

Then Theorem 2.5 shows that q0(z) = qg,n(z). Note from the proof of Lem-
ma 3.8 that 0, 1 are both poles of ψ(P0, z, z0) with order g + 1. Define

y(z) :=
1

ψ(P0, z, z0)
.

Then

(5.9) 0, 1 are both zeros of y(z) with multiplicity g + 1.

Furthermore, ψ′′(P0, z, z0) = [qg+1,n∗(z)− E0]ψ(P0, z, z0) implies that y(z) is
a solution of (5.4) and

(5.10) qg+1,n∗(z) = qg,n(z)− 2
(

y′(z)
y(z)

)′
.

By the expression (4.9) of qg,n(z) and Proposition 2.7, we deduce from (5.10)
that

qg+1,n∗(z) =(g + 1)(g + 2)P̃(z) + m̃(m̃ + 1)P̃(z− 1
2 )

+
r

∑
j=1

m̃j(m̃j + 1)(P̃(z− pj) + P̃(z + pj))

+ 2
t

∑
j=1

(P̃(z− p̃j) + P̃(z + p̃j)),

where m̃ ∈ {m − 1, m + 1}, m̃j ∈ {mj − 1, mj + 1}, and p̃j 6≡ 0, 1
2 ,±pi for

any j, i if t > 0.
First we consider m = 0. Then we see from (5.9) that y(x) ∈ L2[0, 1]

and so E0 is an eigenvalue with eigenfunction y(x). Note m̃ ∈ {−1, 1} or
equivalently m̃ ∈ {0, 1}. Clearly y(1/2) = 0 if and only if 1/2 is a pole of
ψ(P0, z, z0) if and only if m̃ = 1, i.e.

g(g + 1)
2

+
r

∑
j=1

mj(mj + 1) + ng+1

=
g+1

∑
j=1

nj =
(g + 1)(g + 2)

2
+ 1 +

r

∑
j=1

m̃j(m̃j + 1) + 2t.

So ng+1− g is even. Similarly, y(1/2) 6= 0 if and only if m̃ = 0, which easily
implies that ng+1 − g is odd. This proves the assertion (1).
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Now we consider the case m ≥ 1. Then ng+1 = g + m + 2− 2 ∑r
j=1 mj +

2k > 0 for some k ∈ Z≥0. Suppose m̃ = m− 1, then

g(g + 1) + m(m + 1)
2

+
r

∑
j=1

mj(mj + 1) + g + m + 2− 2
r

∑
j=1

mj + 2k

=
g+1

∑
j=1

nj =
(g + 1)(g + 2) + (m− 1)m

2
+

r

∑
j=1

m̃j(m̃j + 1) + 2t,

i.e.

1 = 2t− 2k− 2m +
r

∑
j=1

[m̃j(m̃j + 1)−mj(mj + 1) + 2mj],

a contradiction. Thus m̃ = m+ 1, which implies that 1
2 is a zero of y(z) with

multiplicity m+ 1. Together with (5.9), we conclude that y(x) ∈ L2[0, 1] and
so E0 is an eigenvalue with eigenfunction y(x).

The proof is complete. �

Remark 5.3. The above proof shows that 1/y(z) is a Baker-Akhiezer func-
tion of qg+1,n∗(z), but we see from Theorem 2.6 that the eigenfunction y(z)
itself is not a Baker-Akhiezer function of qg,n(z) (otherwise the genus of
qg+1,n∗(z) is at most g, a contradiction). Consequently, we must have c =
±1 in (5.6), i.e. y(z + 1) = ±y(z), and so solutions of (5.4) are all periodic
or all anti-periodic.

6. APPLICATION TO LAMÉ FUNCTIONS

In this section, we apply Theorem 4.2 to the classical Lamé equation

(6.1) y′′(z) = [`(`+ 1)℘(z; τ)− E]y(z), ` ∈N

and give the proof of Theorem 1.1. Here ℘(z; τ) := ℘(z; Λτ) with Λτ =
Z + Zτ and τ ∈ iR>0. We recall some classical results (see e.g. [3, 13, 33]).

(i). The spectral polynomial of q(z; τ) = `(`+ 1)℘(z; τ) is given by

Qq,2`+1(E; τ) =
2`

∏
j=0

(E− Ej(τ)),

with E0(τ) < E1(τ) < · · · < E2`(τ).
(ii). Let Eτ = C/Λτ be a flat torus. For any E ∈ C, there exists a unique

pair ±a = ±a(E, τ) := ±{a1, · · · , a`} ⊂ Eτ \ {0} satisfying ai 6≡ aj mod
Λτ for i 6= j such that the classical Hermite-Halphen ansatz

y±a(z; τ) := e±∑`
j=1 ζ(aj;τ)z ∏`

j=1 σ(z∓ aj; τ)

σ(z; τ)`

are solutions of (6.1) with

E = −(2`− 1)
`

∑
j=1

℘(aj; τ).
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Here ζ(z; τ) and σ(z; τ) are the associated Weierstrass functions of ℘(z; τ).
Indeed, y±a(z; τ) are the Baker-Akhiezer functions ψ(P, z, z0), ψ(P∗, z, z0) of
(6.1) up to multiplying constants. In particular,

(6.2) a,−a are the zero sets of ψ(P, z, z0), ψ(P∗, z, z0) respectively.

(iii). For E /∈ {Ej(τ)}2`
j=0, we have a ∩ −a = ∅. Consequently, ya(z; τ)

and y−a(z; τ) are linearly independent.
(iv). For E ∈ {Ej(τ)}2`

j=0, we have a = −a, i.e. ya(z; τ) = (−1)ny−a(z; τ)

and ψ(P, z, z0) = ψ(P∗, z, z0). In this case, ya(z; τ) is known as the Lamé
function in the literature.

In this section, we study the asymptotics of the zeros of the Lamé func-
tion as τ → i∞. Recalling the simply-periodic KdV potential q0(z) given in
(4.1), it is well known that

lim
τ→i∞

q(z; τ) = `(`+ 1) lim
τ→i∞

℘(z; τ) = `(`+ 1)
(

π2

(sin πz)2 − π2

3

)
= q0(z) + e0 =: q1(z),

where e0 := −π2

3 `(`+ 1). Clearly the spectral polynomial of q1(z) is

Qq1,2`+1(E) = Qq0,2`+1(E− e0) = (E− e0)
`

∏
j=1

(E− e0 − j2π2)2.

Consider the corresponding Φq,`(z; E) of q(z; τ) defined in (2.3), which
solves

Φ′′′ − 4(q(z; τ)− E)Φ′ − 2q′(z; τ)Φ = 0.

It was proved in [3, Theorem 7.3 (i)] that

Φq,`(z; E) = E` +
`−1

∑
j=0

f`−j(q)Ej ∈ Q[g2(τ), g3(τ),℘(z; τ)][E],

where g2(τ), g3(τ) are well-known invariants of the elliptic curve Eτ, which
satisfy

lim
τ→i∞

g2(τ) =
4
3 π4, lim

τ→i∞
g3(τ) =

8
27 π6.

Hence,

(6.3) Φ1(z; E) := lim
τ→i∞

Φq,`(z; E) = E` + · · ·

is a well-defined monic polynomial of degree ` in E and solves

Φ′′′ − 4(q1(z)− E)Φ′ − 2q′1(z)Φ = 0,

namely Φ1(z; E) is the corresponding Φq1,`(z; E) of q1(z) defined in (2.3)
and so

lim
τ→i∞

Qq,2`+1(E; τ) = lim
τ→i∞

2`

∏
j=0

(E− Ej(τ))
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= Qq1,2`+1(E) = (E− e0)
`

∏
j=1

(E− e0 − j2π2)2.

That is, E0(τ)→ e0 and

(6.4) lim
τ→i∞

E2k−1(τ) = lim
τ→i∞

E2k(τ) = e0 + k2π2, 1 ≤ k ≤ `.

Fix 1 ≤ k ≤ ` and consider the Baker-Akhiezer function ψ(Pk(τ), z, z0) of
the Lamé potential q(z; τ) at Pk(τ) ∈ {(E2k−1(τ), 0), (E2k(τ), 0)}. Then (6.4)
implies that

lim
τ→i∞

Φq,`(z; E2k−1(τ)) = lim
τ→i∞

Φq,`(z; E2k(τ)) = Φq1,`(z; e0 + k2π2)

and so
lim

τ→i∞
ψ(Pk(τ), z, z0) = ψ(Pk, z, z0),

where ψ(Pk, z, z0) is the Baker-Akhiezer function of q1(z) at Pk = (e0 +
k2π2, 0) or equivalently, the Baker-Akhiezer function of q0(z) at (k2π2, 0).
These, together with (6.2), Theorem 4.2 and Remark 3.4, immediately imply
Theorem 1.1, i.e. the following result.

Theorem 6.1 (=Theorem 1.1). Fix 1 ≤ k ≤ ` and consider the Lamé function
ya(z; τ) at E ∈ {E2k−1(τ), E2k(τ)} with its zero set

a = a(E, τ) = {a1(τ), · · · , a`(τ)} ⊂ Eτ \ {0}, Re aj ∈ [0, 1], ∀j.

Then as τ → i∞, there are k zeros aj(τ)’s converging to infinity, and the other
`− k zeros aj(τ)’s converges to `− k distinct points pj’s which satisfy Re pj =

1
2

and e2πipj is an algebraic number.
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