
The p-capacitary Orlicz-Hadamard variational formula and

Orlicz-Minkowski problems ∗

Han Hong, Deping Ye and Ning Zhang

Abstract

In this paper, combining the p-capacity for p ∈ (1, n) with the Orlicz addition of convex
domains, we develop the p-capacitary Orlicz-Brunn-Minkowski theory. In particular, the Orlicz
Lφ mixed p-capacity of two convex domains is introduced and its geometric interpretation is
obtained by the p-capacitary Orlicz-Hadamard variational formula. The p-capacitary Orlicz-
Brunn-Minkowski and Orlicz-Minkowski inequalities are established, and the equivalence of
these two inequalities are discussed as well. The p-capacitary Orlicz-Minkowski problem is
proposed and solved under some mild conditions on the involving functions and measures. In
particular, we provide the solutions for the normalized p-capacitary Lq Minkowski problems
with q > 1 for both discrete and general measures.
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1 Introduction

The classical Minkowski problem aims to find the necessary and/or sufficient conditions on a given
finite Borel measure µ defined on the unit sphere Sn−1 ⊂ Rn such that µ is the surface area
measure of a convex body (i.e., a convex and compact subset of Rn with nonempty interior).
Its Lq extension, namely the Lq Minkowski problem [31], has been a central object of interest
in convex geometric analysis for decades and has received extensive considerations (see e.g.,
[9, 10, 21, 23, 32, 41, 50, 51, 52]). Both the classical and Lq Minkowski problems are related
to function ϕ = tq for 0 6= q ∈ R. There are versions of Minkowski problems related to other
functions, for instance, the L0 Minkowski or logarithmic Minkowski problems [5, 7, 38, 39, 40, 49]
and the Orlicz-Minkowski problem [18, 22].

Replacing the surface area measure in the classical Minkowski problem by the p-capacitary
measure for p ∈ (1, n), the following p-capacitary L1 Minkowski problem can be asked and is of
central importance in the development of the p-capacitary Brunn-Minkowski theory: under what
conditions on a given finite Borel measure µ defined on Sn−1, one can find a convex domain (i.e.,
the interior of a convex body) whose p-capacitary measure is equal to µ? When p = 2, this has
been solved in the seminal papers by Jerison [24, 25]. A solution of this problem for p ∈ (1, 2) was
given by Colesanti, Nyström, Salani, Xiao, Yang and Zhang in their remarkable paper [12]. The
normalized (nonlinear) p-capacitary L1 Minkowski problem for all p ∈ (1, n) was recently solved by
Akman, Gong, Hineman, Lewis and Vogel in their groundbreaking paper [1], where the necessary
and sufficient conditions for the finite Borel measure µ being the p-capacitary measure of a convex
domain were provided.

∗Keywords: Brunn-Minkowski inequality, M -addition, Minkowski inequality, Minkowski problem, mixed p-
capacity, Orlicz addition of convex bodies, Orlicz-Brunn-Minkowski theory, Orlicz Minkowski problem, p-capacity.
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In view of the classical Minkowski problem and its various extensions, it is important to
investigate the p-capacitary Lq Minkowski and Orlicz-Minkowski problems. More precisely, we
propose the following question: under what conditions on a given function φ and a given finite
Borel measure µ defined on Sn−1, one can find a convex domain Ω such that the origin o is in its
closure and

µ

φ(hΩ)
= τ · µp(Ω, ·),

where τ > 0 is a constant? Hereafter, µp(Ω, ·) defined on Sn−1 denotes the p-capacitary measure
of Ω, and hΩ denotes the support function of Ω (see Section 2 for notations). When φ = tq−1

for q ∈ R, one gets the following normalized p-capacitary Lq Minkowski problem: under what
conditions on a given finite Borel measure µ defined on Sn−1, one can find a convex domain Ω
such that the origin o is in its closure and

µ · hq−1
Ω · Cp(Ω) = c(n, p, q, µ) · µp(Ω, ·),

where c(n, p, q, µ) > 0 is a constant and Cp(Ω) is the p-capacity of Ω? In Subsection 5.1, we provide
a solution for the above p-capacitary Minkowski problems for discrete measures under some very
limited assumptions on µ: the support of µ is not contained in any closed hemisphere. A solution
of the above p-capacitary Minkowski problems for general measures is provided in Subsection 5.2.

The p-capacitary measure can be derived from an integral related to the p-equilibrium potential
of Ω. Note that the p-equilibrium potential of Ω is the solution of a p-Laplace equation with certain
boundary conditions (see Subsection 2.2 for details). For a convex domain Ω ⊂ Rn, the Poincaré
p-capacity formula [12] asserts that the p-capacity of Ω has the following form:

Cp(Ω) =
p− 1

n− p

∫
Sn−1

hΩ(u) dµp(Ω, u). (1.1)

Although the definition of the p-capacity involves rather complicate partial differential equations,
formula (1.1) suggests that the p-capacity has high resemblance with the volume. For a convex
domain Ω ⊂ Rn, its volume can be calculated by

|Ω| = 1

n

∫
Sn−1

hΩ(u) dS(Ω, u),

with S(Ω, ·) the surface area measure of Ω defined on Sn−1. For instance, the p-capacitary Brunn-
Minkowski inequality asserts that for all convex domains Ω and Ω1, one has

Cp(Ω + Ω1)
1

n−p ≥ Cp(Ω)
1

n−p + Cp(Ω1)
1

n−p , (1.2)

with equality if and only if Ω and Ω1 are homothetic (see [3, 8, 11]). Hereafter

Ω + Ω1 = {x+ y : x ∈ Ω, y ∈ Ω1}

denotes the Minkowski sum of Ω and Ω1. Inequality (1.2) is similar to the classical Brunn-
Minkowski inequality regarding the volume:

|Ω + Ω1|
1
n ≥ |Ω|

1
n + |Ω1|

1
n ,

with equality if and only if Ω and Ω1 are homothetic (see e.g., [14, 37]). Moreover, the p-
capacitary Minkowski inequality (2.13) shares the formula similar to its volume counterpart (see
e.g., [12, 14, 37]).
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Sections 3 and 4 in this paper reveal another surprising similarity between the p-capacity and
the volume regarding the Orlicz additions. We develop the p-capacitary Orlicz-Brunn-Minkowski
theory based on the combination of the Orlicz additions and the p-capacity. The Orlicz additions
were proposed by Gardner, Hug and Weil in [15] and independently by Xi, Jin and Leng in [43], in
order to provide the foundation of the newly initiated Orlicz-Brunn-Minkowski theory for convex
bodies (with respect to volume) starting from the works [33, 34] of Lutwak, Yang and Zhang. The
Orlicz theory is in great demand (see e.g., [47] for some motivations) and is rapidly developing
(see e.g., [4, 6, 19, 30, 42, 44, 45, 46, 53]). In particular, we establish the p-capacitary Orlicz-
Brunn-Minkowski inequality (see Theorem 4.1) and Orlicz-Minkowski inequality (see Theorem
3.2). The p-capacitary Orlicz-Minkowski inequality provides a tight lower bound for Cp,φ(Ω,Ω1),
the Orlicz Lφ mixed p-capacity of Ω,Ω1 ∈ C0 (the collection of all convex domains containing
the origin), in terms of Cp(Ω) and Cp(Ω1). In Theorem 3.1, we prove the p-capacitary Orlicz-
Hadamard variational formula based on a linear Orlicz addition of Ω,Ω1 ∈ C0. This p-capacitary
Orlicz-Hadamard variational formula gives a geometric interpretation of Cp,φ(Ω,Ω1). Section 2 is
for the necessary background and notation. More details could be found in [12, 13, 37]. It is worth
to mention that results in this paper are for the p-capacity related to the p-Laplace equations;
however similar results for the nonlinear A -capacity associated with a nonlinear elliptic partial
differential equation [1] could be obtained as well.

2 Background and Notations

Throughout this paper, n ≥ 2 is a natural number. A subset K ⊂ Rn is convex if λx+(1−λ)y ∈ K
for any x, y ∈ K and λ ∈ [0, 1]. A convex set K ⊂ Rn is a convex body if K is also compact with
nonempty interior. Denote by K0 the set of convex bodies in Rn with the origin in their interiors.
The usual Euclidean norm is written by ‖ · ‖ and the origin of Rn is denoted by o. Let {e1, · · · , en}
be the standard orthonormal basis of Rn. Define λK = {λx : x ∈ K} for λ ∈ R and K ⊂ Rn. For
a convex body K ∈ K0, |K| refers to the volume of K and H n−1 refers to the n− 1 dimensional
Hausdorff measure of ∂K, the boundary of K. For a set E ⊂ Rn, define conv(E), the convex hull
of E, to be the smallest convex set containing E. Let θ⊥ = {x ∈ Rn : 〈x, θ〉 = 0} for θ ∈ Sn−1.

The support function of a convex compact set K containing the origin is the function
hK : Sn−1 → [0,∞) defined by

hK(u) = max
y∈K
〈y, u〉,

where 〈·, ·〉 is the usual inner product on Rn. Hereafter, Sn−1 is the unit sphere of Rn which consists
of all unit vectors in Rn. Note that the support function hK can be extended to Rn \ {o} by

hK(x) = hK(ru) = rhK(u)

for x = ru with u ∈ Sn−1 and r ≥ 0. Clearly hK : Sn−1 → R is sublinear. Any convex body
K ∈ K0 is uniquely characterized by its support function. Two convex bodies K,L ∈ K0 are
said to be dilates of each other if hK = c · hL for some constant c > 0; K and L are said to be
homothetic to each other if K − a dilates L for some a ∈ Rn. On K0, the Hausdorff metric dH(·, ·)
is a natural way to measure the distance of two convex bodies K,L ∈ K0:

dH(K,L) = max
u∈Sn−1

|hK(u)− hL(u)| = ‖hK − hL‖∞.

The Blaschke selection theorem (see e.g., [37]) states that every bounded sequence of convex bodies
has a subsequence that converges to a (possibly degenerated) convex compact set.
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Note that K ∈ K0 can be formulated by the intersection of hyperspaces as follows:

K =
⋂

u∈Sn−1

{
x ∈ Rn : 〈x, u〉 ≤ hK(u)

}
.

By C+(Sn−1) we mean the set of all continuous and positive functions defined on Sn−1. The metric
d(·, ·) on C+(Sn−1) is assumed to be the one induced by the maximal norm: for all f, g ∈ C+(Sn−1),

d(f, g) = ‖f − g‖∞ = max
u∈Sn−1

|f(u)− g(u)|.

Associated to each f ∈ C+(Sn−1), one can define a convex body Kf ∈ K0 (see formula (7.97) in
[37]) by

Kf =
⋂

u∈Sn−1

{
x ∈ Rn : 〈x, u〉 ≤ f(u)

}
.

The convex body Kf is called the Aleksandrov body associated to f ∈ C+(Sn−1). The Aleksandrov
body provides a powerful tool in convex geometry and plays crucial roles in this paper. Here we
list some important properties for the Aleksandrov body which will be used in later context. These
properties and the proofs can be found in section 7.5 in [37]. First of all, if f ∈ C+(Sn−1) is
the support function of a convex body K ∈ K0, then K = Kf . Secondly, for f ∈ C+(Sn−1),
hKf

(u) ≤ f(u) for all u ∈ Sn−1, and hKf
(u) = f(u) almost everywhere with respect to S(Kf , ·),

the surface area measure of Kf defined on Sn−1 (see the proof of Lemma 7.5.1 in [37]). Recall
that S(K, ·) has the following geometric interpretation (see e.g., [37, page 111]): for any Borel set
Σ ⊂ Sn−1,

S(K,Σ) = H n−1{x ∈ ∂K : g(x) ∈ Σ}, (2.3)

where g : ∂K → Sn−1 is the (single-valued) Gauss map of K, that is, g(x) ∈ Sn−1 is the unit
outer normal vector of ∂K at almost everywhere x ∈ ∂K with respect to the (n− 1)-dimensional
Hausdorff measure of ∂K. Furthermore, the convergence of {Kfm}m≥1 in the Hausdorff metric is
guaranteed by the convergence of {fm}m≥1. This is the Aleksandrov’s convergence lemma [2] (see
also [37, Lemma 7.5.2]): if the sequence f1, f2, · · · ∈ C+(Sn−1) converges to f ∈ C+(Sn−1) in the
metric d(·, ·), then Kf1 ,Kf2 , · · · ∈ K0 converges to Kf ∈ K0 with respect to the Hausdorff metric.
For more background on convex geometry, please refer to [37].

2.1 Orlicz addition and the Orlicz-Brunn-Minkowski theory of convex bodies

Let m ≥ 1 be an integer number. Denote by Φm the set of convex functions ϕ : [0,∞)m → [0,∞)
that are increasing in each variable, and satisfy ϕ(o) = 0 and ϕ(ej) = 1 for j = 1, . . . ,m. The
Orlicz Lϕ sum ofK1, · · · ,Km ∈ K0 [16] is the convex body +ϕ(K1, . . . ,Km) whose support function
h+ϕ(K1,...,Km) is defined by the unique positive solution of the following equation:

ϕ

(
hK1(u)

λ
, . . . ,

hKm(u)

λ

)
= 1, for u ∈ Sn−1.

That is, for each fixed u ∈ Sn−1,

ϕ

(
hK1(u)

h+ϕ(K1,...,Km)(u)
, . . . ,

hKm(u)

h+ϕ(K1,...,Km)(u)

)
= 1.

The fact that ϕ ∈ Φm is increasing in each variable implies that, for j = 1, · · · ,m,

Kj ⊂ +ϕ(K1, . . . ,Km). (2.4)
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It is easily checked that if Ki for all 1 < i ≤ m are dilates of K1, then +ϕ(K1, . . . ,Km) is dilate of
K1 as well. The related Orlicz-Brunn-Minkowski inequality has the following form [16]:

ϕ

(
|K1|1/n

|+ϕ (K1, . . . ,Km)|1/n
, . . . ,

|Km|1/n

|+ϕ (K1, . . . ,Km)|1/n

)
≤ 1. (2.5)

The classical Brunn-Minkowski and the Lq Brunn-Minkowski inequalities are associated to
ϕ(x1, · · · , xm) =

∑m
i=1 xi ∈ Φm and ϕ(x1, · · · , xm) =

∑m
i=1 x

q
i ∈ Φm with q > 1, respectively.

In these cases, the Lq sum of K1, · · · ,Km for q ≥ 1 is the convex body K1 +q · · · +q Km whose
support function is formulated by

hqK1+q ···+qKm
= hqK1

+ · · ·+ hqKm
.

When q = 1, we often write K1 + · · ·+Km instead of K1 +1 · · ·+1 Km.
Consider the convex body K +ϕ,ε L ∈ K0 whose support function is given by, for u ∈ Sn−1,

1 = ϕ1

(
hK(u)

hK+ϕ,εL(u)

)
+ εϕ2

(
hL(u)

hK+ϕ,εL(u)

)
, (2.6)

where ε > 0, K,L ∈ K0, and ϕ1, ϕ2 ∈ Φ1. If (ϕ1)′l(1), the left derivative of ϕ1 at t = 1, exists and
is positive, then the Lϕ2 mixed volume of K,L ∈ K0 can be defined by [16, 43, 48]

Vϕ2(K,L) =
(ϕ1)′l(1)

n
· d
dε
|K +ϕ,ε L|

∣∣∣∣
ε=0+

=
1

n

∫
Sn−1

ϕ2

(
hL(u)

hK(u)

)
hK(u)dS(K,u). (2.7)

Together with the Orlicz-Brunn-Minkowski inequality (2.5), one gets the following fundamental
Orlicz-Minkowski inequality: if ϕ ∈ Φ1, then for all K,L ∈ K0,

Vϕ(K,L) ≥ |K| · ϕ
((
|L|
|K|

)1/n)
,

with equality, if in addition ϕ is strictly convex, if and only if K and L are dilates of each other.
The classical Minkowski and the Lq Minkowski inequalities are associated with ϕ = t and ϕ = tq

for q > 1 respectively.
Formula (2.7) was proved in [16, 43] with assumptions ϕ1, ϕ2 ∈ Φ1 (i.e., convex and increasing

functions); however, it can be extended to more general increasing or decreasing functions [48]. To
this end, we work on the following classes of nonnegative continuous functions:

I = {φ : [0,∞)→ [0,∞) such that φ is strictly increasing with φ(1) = 1, φ(0) = 0, φ(∞) =∞},
D = {φ : (0,∞)→ (0,∞) such that φ is strictly decreasing with φ(1) = 1, φ(0) =∞, φ(∞) = 0},

where for simplicity we let φ(0) = limt→0+ φ(t) and φ(∞) = limt→∞ φ(t). Note that results may still
hold if the normalization on φ(0), φ(1) and φ(∞) are replaced by other quantities. The linear Orlicz
addition of hK and hL in formula (2.6) can be defined in the same way for either ϕ1, ϕ2 ∈ I or
ϕ1, ϕ2 ∈ D . Namely, for either ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D , and for ε > 0, define fε : Sn−1 → (0,∞)
the linear Orlicz addition of hK and hL by, for u ∈ Sn−1,

ϕ1

(
hK(u)

fε(u)

)
+ εϕ2

(
hL(u)

fε(u)

)
= 1. (2.8)

See [20] for more details. In general, fε may not be the support function of a convex body; however
fε is the support function of K +ϕ,ε L when ϕ1, ϕ2 ∈ Φ1. It is easily checked that fε ∈ C+(Sn−1)
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for all ε > 0. Moreover, hK ≤ fε if ϕ1, ϕ2 ∈ I and hK ≥ fε if ϕ1, ϕ2 ∈ D . Denote by Kε

the Aleksandrov body associated to fε. The following result [48] extends formula (2.7) to not
necessarily convex functions ϕ1 and ϕ2: if K,L ∈ K0 and ϕ1, ϕ2 ∈ I are such that (ϕ1)′l(1) exists
and is positive, then

Vϕ2(K,L) =
(ϕ1)′l(1)

n
· d
dε
|Kε|

∣∣∣∣
ε=0+

=
1

n

∫
Sn−1

ϕ2

(
hL(u)

hK(u)

)
hK(u)dS(K,u), (2.9)

while if ϕ1, ϕ2 ∈ D such that (ϕ1)′r(1), the right derivative of ϕ1 at t = 1, exists and is nonzero,
then (2.9) holds with (ϕ1)′l(1) replaced by (ϕ1)′r(1).

2.2 The p-capacity

Throughout this paper, the standard notation C∞c (Rn) denotes the set of all infinitely differentiable
functions with compact support in Rn and ∇f denotes the gradient of f . Let n ≥ 2 be an integer
and p ∈ (1, n). The p-capacity of a compact subset E ⊂ Rn, denoted by Cp(E), is defined by

Cp(E) = inf

{∫
Rn

‖∇f‖p dx : f ∈ C∞c (Rn) such that f ≥ 1 on E

}
.

If O ⊂ Rn is an open set, then the p-capacity of O is defined by

Cp(O) = sup
{
Cp(E) : E ⊂ O and E is a compact set in Rn

}
.

For general bounded measurable subset F ⊂ Rn, the p-capacity of F is then defined by

Cp(F ) = inf
{
Cp(O) : F ⊂ O and O is an open set in Rn

}
.

The p-capacity is monotone, that is, if A ⊂ B are two measurable subsets of Rn, then
Cp(A) ≤ Cp(B). It is translation invariant: Cp(F + x0) = Cp(F ) for all x0 ∈ Rn and measurable
subset F ⊂ Rn. Its homogeneous degree is n− p, i.e., for all λ > 0,

Cp(λA) = λn−pCp(A). (2.10)

For K ∈ K0, let int(K) denote its interior. It follows from the monotonicity of the p-capacity that
Cp(int(K)) ≤ Cp(K). On the other hand, for all ε > 0, one sees that

K ⊂ (1 + ε) · int(K).

It follows from the homogenity and the monotonicity of the p-capacity that

Cp(K) ≤ (1 + ε)n−p · Cp(int(K)).

Hence Cp(int(K)) = Cp(K) for all K ∈ K0 by letting ε→ 0+. Please see [13] for more properties.
Following the convention in the literature of p-capacity, in later context we will work on convex

domains containing the origin, i.e., all open subsets Ω ⊂ Rn whose closure Ω ∈ K0. For convenience,
we use C0 to denote the set of all open convex domains containing the origin. Moreover, geometric
notations for Ω ∈ C0, such as the support function and the surface area measure, are considered
to be the ones for its closure, for instance,

hΩ(u) = sup
x∈Ω
〈x, u〉 = hΩ(u) for u ∈ Sn−1.
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There exists the p-capacitary measure of Ω ∈ C0, denoted by µp(Ω, ·), on Sn−1 such that for
any Borel set Σ ⊂ Sn−1 (see e.g., [26, 28, 29]),

µp(Ω,Σ) =

∫
g−1(Σ)

‖∇UΩ‖p dH n−1, (2.11)

where g−1 : Sn−1 → ∂Ω is the inverse Gauss map (i.e., g−1(u) contains all points x ∈ ∂Ω such that
u is an unit outer normal vector of x) and UΩ is the p-equilibrium potential of Ω. Note that UΩ is
the unique solution to the boundary value problem of the following p-Laplace equation

div
(
‖∇U‖p−2∇U

)
= 0 in Rn \ Ω,

U = 1 on ∂Ω,

lim‖x‖→∞ U(x) = 0.

With the help of the p-capacitary measure, the Poincaré p-capacity formula [12] gives

Cp(Ω) =
p− 1

n− p

∫
Sn−1

hΩ(u) dµp(Ω, u).

Lemma 4.1 in [12] asserts that µp(Ωm, ·) converges to µp(Ω, ·) weakly on Sn−1 and hence Cp(Ωm)
converges to Cp(Ω), if Ωm converges to Ω in the Hausdorff metric.

The beautiful Hadamard variational formula for Cp(·) was provided in [12]: for two convex
domains Ω,Ω1 ∈ C0, one has

1

n− p
· dCp(Ω + εΩ1)

dε

∣∣∣∣
ε=0

=
p− 1

n− p

∫
Sn−1

hΩ1(u) dµp(Ω, u) =: Cp(Ω,Ω1), (2.12)

where Cp(Ω,Ω1) is called the mixed p-capacity of Ω and Ω1. By (1.2) and (2.12), one gets the
p-capacitary Minkowski inequality

Cp(Ω,Ω1)n−p ≥ Cp(Ω)n−p−1Cp(Ω1), (2.13)

with equality if and only if Ω and Ω1 are homothetic [12]. It is also well known that the centroid
of µp(Ω, ·) is o, that is, ∫

Sn−1

u dµp(Ω, u) = o.

Moreover, the support of µp(Ω, ·) is not contained in any closed hemisphere, i.e., there exists a
constant c > 0 such that∫

Sn−1

〈θ, u〉+ dµp(Ω, u) > c for each θ ∈ Sn−1, (2.14)

where a+ denotes max{a, 0} for all a ∈ R.
For Ω ∈ C0 and a Borel set Σ ⊂ Sn−1, let

µp(Ω,Σ) =

∫
Σ
dµp(Ω, u) and S(Ω,Σ) =

∫
Σ
dS(Ω, u).

The following lemma is needed to solve the p-capacitary Orlicz-Minkowski problems. See [1] for a
more quantitative argument.
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Lemma 2.1. Let Ω ∈ C0 be a convex domain and 1 < p < n. For a Borel set Σ ⊂ Sn−1, µp(Ω,Σ)
and S(Ω,Σ) either are both strictly positive or are both equal to 0.

Proof. Let us recall Lemma 2.18 in [12]: if Ω is a convex domain such that Ω is contained in the ball
B(o,R) (centered at the origin with radius R), there exists a constant γ = γ(n, p,R) ∈ (0, 1] such
that ‖∇UΩ‖ ≥ γ almost everywhere on ∂Ω (with respect to H n−1). This together with formulas
(2.3) and (2.11) yield that, for all Borel set Σ ⊂ Sn−1,

µp(Ω,Σ) =

∫
g−1(Σ)

‖∇UΩ(x)‖p dH n−1(x) ≥ γp · S(Ω,Σ).

Consequently if µp(Ω,Σ) = 0 then S(Ω,Σ) = 0 and if S(Ω,Σ) > 0 then µp(Ω,Σ) > 0.
On the other hand, assume that S(Ω,Σ) = 0 which imples H n−1(g−1(Σ)) = 0. Together with

formula (2.11) and the fact that ‖∇UΩ‖p is integrable on ∂Ω, one has

µp(Ω,Σ) =

∫
g−1(Σ)

‖∇UΩ(x)‖p dH n−1(x) = 0.

That is, if S(Ω,Σ) = 0 then µp(Ω,Σ) = 0 and if µp(Ω,Σ) > 0 then S(Ω,Σ) > 0.

For f ∈ C+(Sn−1), denote by Ωf the Aleksandrov domain associated to f (i.e., the interior of
the Aleksandrov body associated to f). For Ω ∈ C0 and f ∈ C+(Sn−1), define the mixed p-capacity
of Ω and f by

Cp(Ω, f) =
p− 1

n− p

∫
Sn−1

f(u) dµp(Ω, u). (2.15)

Clearly Cp(Ω, hL) = Cp(Ω, L) and Cp(Ω, hΩ) = Cp(Ω) for all Ω, L ∈ C0. Moreover,

Cp(Ωf ) = Cp(Ωf , f) (2.16)

holds for any f ∈ C+(Sn−1). This is an immediate consequence of Lemma 2.1 (see also [12, (5.11)]).

3 The Orlicz Lφ mixed p-capacity and related Orlicz-Minkowski
inequality

This section is dedicated to prove the p-capacitary Orlicz-Hadamard variational formula and
establish the p-capacitary Orlicz-Minkowski inequality. Let φ : (0,∞) → (0,∞) be a continuous
function. We now define the Orlicz Lφ mixed p-capacity. The mixed p-capacity defined in (2.12)
is related to φ = t.

Definition 3.1. Let Ω,Ω1 ∈ C0 be two convex domains. Define Cp,φ(Ω,Ω1), the Orlicz Lφ mixed
p-capacity of Ω and Ω1, by

Cp,φ(Ω,Ω1) =
p− 1

n− p

∫
Sn−1

φ

(
hΩ1(u)

hΩ(u)

)
hΩ(u) dµp(Ω, u). (3.17)

When Ω and Ω1 are dilates of each other, say Ω1 = λΩ for some λ > 0, one has

Cp,φ(Ω, λΩ) = φ (λ)Cp(Ω). (3.18)
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Let ϕ1 and ϕ2 be either both in I or both in D . For ε > 0, let gε be defined as in (2.8). That
is, for Ω,Ω1 ∈ C0 and for u ∈ Sn−1,

ϕ1

(
hΩ(u)

gε(u)

)
+ εϕ2

(
hΩ1(u)

gε(u)

)
= 1.

Clearly gε ∈ C+(Sn−1). Denote by Ωε ∈ C0 the Aleksandrov domain associated to gε.
The following lemma for convex domains is identical to Lemma 5.1 in [48].

Lemma 3.1. Let Ω,Ω1 ∈ C0 and ϕ1, ϕ2 ∈ I be such that (ϕ1)′l(1) exists and is positive. Then

(ϕ1)′l(1) lim
ε→0+

gε(u)− hΩ(u)

ε
= hΩ(u) · ϕ2

(
hΩ1(u)

hΩ(u)

)
uniformly on Sn−1. (3.19)

For ϕ1, ϕ2 ∈ D , (3.19) holds with (ϕ1)′l(1) replaced by (ϕ1)′r(1).

From Lemma 3.1, one sees that gε converges to hΩ uniformly on Sn−1. According to the
Aleksandrov convergence lemma, Ωε converges to Ω in the Hausdorff metric. We are now ready
to establish the geometric interpretation for the Orlicz Lφ mixed p-capacity. Formula (2.12) is the
special case when ϕ1 = ϕ2 = t.

Theorem 3.1. Let Ω,Ω1 ∈ C0 be two convex domains. Suppose ϕ1, ϕ2 ∈ I such that (ϕ1)′l(1)
exists and is nonzero. Then

Cp,ϕ2(Ω,Ω1) =
(ϕ1)′l(1)

n− p
· lim
ε→0+

Cp(Ωε)− Cp(Ω)

ε
.

With (ϕ1)′l(1) replaced by (ϕ1)′r(1) if (ϕ1)′r(1) exists and is nonzero, one gets the analogous result
for ϕ1, ϕ2 ∈ D .

Proof. The proof of this theorem is similar to analogous results in [12, 16, 18, 43, 48]. A brief proof
is included here for completeness. As Ωε → Ω in the Hausdorff metric, µp(Ωε, ·)→ µp(Ω, ·) weakly
on Sn−1 due to Lemma 4.1 in [12]. Moreover, if hε → h uniformly on Sn−1, then

lim
ε→0+

∫
Sn−1

hε(u) dµp(Ωε, u) =

∫
Sn−1

h(u) dµp(Ω, u).

In particular, it follows from (2.15) and Lemma 3.1 that

(ϕ1)
′
l(1) · lim

ε→0+

Cp(Ωε, gε)− Cp(Ωε, hΩ)

ε
= (ϕ1)

′
l(1) · lim

ε→0+

p− 1

n− p

∫
Sn−1

gε(u)− hΩ(u)

ε
dµp(Ωε, u)

=
p− 1

n− p

∫
Sn−1

hΩ(u)ϕ2

(
hΩ1(u)

hΩ(u)

)
dµp(Ω, u)

= Cp,ϕ2(Ω,Ω1).

Inequality (2.13), formula (2.16), and the continuity of p-capacity yield that

Cp,ϕ2(Ω,Ω1) = (ϕ1)
′
l(1) · lim inf

ε→0+

Cp(Ωε)− Cp(Ωε,Ω)

ε

≤ (ϕ1)
′
l(1) · lim inf

ε→0+

[
Cp(Ωε)

n−p−1
n−p · Cp(Ωε)

1
n−p − Cp(Ω)

1
n−p

ε

]
= (ϕ1)

′
l(1) · Cp(Ω)

n−p−1
n−p · lim inf

ε→0+

Cp(Ωε)
1

n−p − Cp(Ω)
1

n−p

ε
.
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Similarly, as hΩε ≤ gε and Cp(Ω) = Cp(Ω, hΩ), one has

Cp,ϕ2(Ω,Ω1) = (ϕ1)
′
l(1) · lim

ε→0+

p− 1

n− p

∫
Sn−1

gε(u)− hΩ(u)

ε
dµp(Ω, u)

≥ (ϕ1)
′
l(1) · lim sup

ε→0+

Cp(Ω,Ωε)− Cp(Ω)

ε

≥ (ϕ1)
′
l(1) · Cp(Ω)

n−p−1
n−p · lim sup

ε→0+

Cp(Ωε)
1

n−p − Cp(Ω)
1

n−p

ε
.

This concludes that

Cp,ϕ2(Ω,Ω1) = (ϕ1)
′
l(1) · Cp(Ω)

n−p−1
n−p · lim

ε→0+

Cp(Ωε)
1

n−p − Cp(Ω)
1

n−p

ε

=
(ϕ1)′l(1)

n− p
· lim
ε→0+

Cp(Ωε)− Cp(Ω)

ε
,

where the second equality follows from a standard argument by the chain rule.

Let p ∈ (1, n) and q 6= 0 be real numbers. For Ω,Ω1 ∈ C0, define Cp,q(Ω,Ω1), the Lq mixed
p-capacity of Ω and Ω1, by

Cp,q(Ω,Ω1) =
p− 1

n− p

∫
Sn−1

[
hΩ1(u)

]q
dµp,q(Ω, u), (3.20)

where µp,q(Ω, ·) denotes the Lq p-capacitary measure of Ω:

dµp,q(Ω, ·) = h1−q
Ω dµp(Ω, ·).

For ε > 0, let hq,ε =
[
hqΩ + εhqΩ1

]1/q
and Ωhq,ε be the Aleksandrov domain associated to hq,ε. By

letting ϕ1 = ϕ2 = tq for q 6= 0 in Theorem 3.1, one gets the geometric interpretation for Cp,q(·, ·).
Corollary 3.1. Let Ω,Ω1 ∈ C0 and p ∈ (1, n). For all 0 6= q ∈ R, one has

Cp,q(Ω,Ω1) =
q

n− p
· lim
ε→0+

Cp(Ωhq,ε)− Cp(Ω)

ε
.

Regarding the Orlicz Lφ mixed p-capacity, one has the following p-capacitary Orlicz-Minkowski
inequality. When φ = t, one recovers the p-capacitary Minkowski inequality (2.13).

Theorem 3.2. Let Ω,Ω1 ∈ C0 and p ∈ (1, n). Suppose that φ : [0,∞)→ [0,∞) is increasing and
convex. Then

Cp,φ(Ω,Ω1) ≥ Cp(Ω) · φ
((

Cp(Ω1)

Cp(Ω)

) 1
n−p
)
.

If in addition φ is strictly convex, equality holds if and only if Ω and Ω1 are dilates of each other.

Proof. It follows from Jensen’s inequality (see [17]), Cp(Ω) > 0 and the convexity of φ that

Cp,φ(Ω,Ω1) =
p− 1

n− p

∫
Sn−1

φ

(
hΩ1(u)

hΩ(u)

)
hΩ(u) dµp(Ω, u)

≥ Cp(Ω) · φ
(∫

Sn−1

p− 1

n− p
· hΩ1(u)

Cp(Ω)
dµp(Ω, u)

)
= Cp(Ω) · φ

(
Cp,1(Ω,Ω1)

Cp(Ω)

)
≥ Cp(Ω) · φ

((
Cp(Ω1)

Cp(Ω)

) 1
n−p
)

(3.21)
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where the last inequality follows from (2.13) and the fact that φ is increasing.
From (2.10) and (3.18), if Ω and Ω1 are dilates of each other, then clearly

Cp,φ(Ω,Ω1) = Cp(Ω) · φ
((

Cp(Ω1)

Cp(Ω)

) 1
n−p
)
.

On the other hand, if φ is strictly convex, equality holds in (3.21) only if equalities hold in both the
first and the second inequalities of (3.21). For the second one, Ω and Ω1 are homothetic to each
other. That is, there exists r > 0 and x ∈ Rn, such that Ω1 = rΩ + x and hence for all u ∈ Sn−1,

hΩ1(u) = r · hΩ(u) + 〈x, u〉.

As φ is strictly convex, the characterization of equality in Jensen’s inequality implies that

hΩ1(v)

hΩ(v)
=

∫
Sn−1

p− 1

n− p
· hΩ1(u)

Cp(Ω)
dµp(Ω, u)

for µp(Ω, ·)-almost all v ∈ Sn−1. This together with the fact that µp(Ω, ·) has its centroid at the
origin yield 〈x, v〉 = 0 for µp(Ω, ·)-almost all v ∈ Sn−1. As the support of µp(Ω, ·) is not contained
in any closed hemisphere, one has x = 0. That is, Ω and Ω1 are dilates of each other.

An application of the above p-capacitary Orlicz-Minkowski inequality is stated below.

Theorem 3.3. Let φ ∈ Φ1 be strictly increasing and strictly convex. Assume that Ω, Ω̃ ∈ C0 are
two convex domains. Then Ω = Ω̃ if the following equality holds for all Ω1 ∈ C0:

Cp,φ(Ω,Ω1)

Cp(Ω)
=
Cp,φ(Ω̃,Ω1)

Cp(Ω̃)
. (3.22)

Moreover, Ω = Ω̃ also holds if, for any Ω1 ∈ C0,

Cp,φ(Ω1,Ω) = Cp,φ(Ω1, Ω̃). (3.23)

Proof. It follows from equality (3.22) and the p-capacitary Orlicz-Minkowski inequality that

1 =
Cp,φ(Ω,Ω)

Cp(Ω)
=
Cp,φ(Ω̃,Ω)

Cp(Ω̃)
≥ φ

((
Cp(Ω)

Cp(Ω̃)

) 1
n−p
)
. (3.24)

The fact that φ is strictly increasing with φ(1) = 1 and n− p > 0 yield Cp(Ω̃) ≥ Cp(Ω). Similarly,

Cp(Ω̃) ≤ Cp(Ω) and then Cp(Ω̃) = Cp(Ω). Hence, equality holds in inequality (3.24). This can

happen only if Ω and Ω̃ are dilates of each other, due to Theorem 3.2 and the fact that φ is strictly
convex. Combining with the above proved fact Cp(Ω̃) = Cp(Ω), one gets Ω = Ω̃.

Follows along the same lines, Ω = Ω̃ if equality (3.23) holds for any Ω1 ∈ C0.

Note that φ = tq for q > 1 is a strictly convex and strictly increasing function. Theorem 3.2
yields the p-capacitary Lq Minkowski inequality: for Ω,Ω1 ∈ C0, one has

Cp,q(Ω,Ω1) ≥
[
Cp(Ω)

]n−p−q
n−p ·

[
Cp(Ω1)

] q
n−p

with equality if and only if Ω and Ω1 are dilates of each other.
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Corollary 3.2. Let p ∈ (0, n) and q > 1. If Ω, Ω̃ ∈ C0 are such that

µp,q(Ω, ·) = µp,q(Ω̃, ·),

then Ω = Ω̃ if q 6= n− p, and Ω is dilate of Ω̃ if q = n− p.

Proof. Firstly let q > 1 and q 6= n− p. As µp,q(Ω, ·) = µp,q(Ω̃, ·), it follows form (3.20) that, for all
Ω1 ∈ C0,

Cp,q(Ω,Ω1) = Cp,q(Ω̃,Ω1). (3.25)

By letting Ω1 = Ω̃, one has,

Cp,q(Ω, Ω̃) = Cp(Ω̃) ≥
[
Cp(Ω)

]n−p−q
n−p ·

[
Cp(Ω̃)

] q
n−p .

This yields Cp(Ω) ≥ Cp(Ω̃) if q > n − p and Cp(Ω) ≤ Cp(Ω̃) if q < n − p. Similarly, by letting

Ω1 = Ω, one has Cp(Ω) ≤ Cp(Ω̃) if q > n − p and Cp(Ω) ≥ Cp(Ω̃) if q < n − p. In any cases,

Cp(Ω) = Cp(Ω̃). Together with (3.25), Theorem 3.3 yields the desired argument Ω = Ω̃.
Now assume that q = n− p > 1. Then (3.25) yields

Cp,q(Ω, Ω̃) = Cp(Ω̃) ≥
[
Cp(Ω)

]n−p−q
n−p ·

[
Cp(Ω̃)

] q
n−p = Cp(Ω̃).

It follows from Theorem 3.2 that Ω and Ω̃ are dilates of each other.

It is worth to mention that Cp,φ(·, ·) is not homogeneous if φ is not a homogeneous function;

this can be seen from formula (3.18). When φ ∈ I , we can define Ĉp,φ(Ω,Ω1), the homogeneous
Orlicz Lφ mixed p-capacity of Ω,Ω1 ∈ C0, by

Ĉp,φ(Ω,Ω1) = inf

{
η > 0 :

p− 1

n− p

∫
Sn−1

φ

(
hΩ1(u)

η · hΩ(u)

)
hΩ(u) dµp(Ω, u) ≤ Cp(Ω)

}
,

while Ĉp,φ(Ω,Ω1) for φ ∈ D is defined as above with “≤” replaced by “≥”. If φ = tq for q 6= 0,

Ĉp,φ(Ω,Ω1) =

(
Cp,q(Ω,Ω1)

Cp(Ω)

)1/q

.

For all η > 0 and for φ ∈ I , let

g(η) =
p− 1

n− p

∫
Sn−1

φ

(
hΩ1(u)

η · hΩ(u)

)
hΩ(u) dµp(Ω, u).

The fact that φ is monotone increasing yields

φ

(
minu∈Sn−1 hΩ1(u)

η ·maxu∈Sn−1 hΩ(u)

)
≤ g(η)

Cp(Ω)
≤ φ

(
maxu∈Sn−1 hΩ1(u)

η ·minu∈Sn−1 hΩ(u)

)
.

Hence limη→0+ g(η) =∞ and limη→∞ g(η) = 0. It is also easily checked that g is strictly decreasing.
This concludes that if φ ∈ I ,

p− 1

n− p

∫
Sn−1

φ

(
hΩ1(u)

Ĉp,φ(Ω,Ω1) · hΩ(u)

)
hΩ(u) dµp(Ω, u) = Cp(Ω). (3.26)

Following along the same lines, formula (3.26) also holds for φ ∈ D .
The p-capacitary Orlicz-Minkowski inequality for Ĉp,φ(·, ·) is stated in the following result.
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Corollary 3.3. Let φ ∈ I be convex. For all Ω,Ω1 ∈ C0, one has,

Ĉp,φ(Ω,Ω1) ≥
(
Cp(Ω1)

Cp(Ω)

) 1
n−p

. (3.27)

If in addition φ is strictly convex, equality holds if and only if Ω and Ω1 are dilates of each other.

Proof. It follows from formula (3.26) and Jensen’s inequality that

1 =

∫
Sn−1

φ

(
hΩ1(u)

Ĉp,φ(Ω,Ω1) · hΩ(u)

)
· p− 1

n− p
· hΩ(u)

Cp(Ω)
dµp(Ω, u)

≥ φ

(∫
Sn−1

hΩ1(u)

Ĉp,φ(Ω,Ω1)
· p− 1

n− p
· 1

Cp(Ω)
dµp(Ω, u)

)
= φ

(
Cp(Ω,Ω1)

Ĉp,φ(Ω,Ω1) · Cp(Ω)

)
.

As φ(1) = 1 and φ is monotone increasing, one has

Ĉp,φ(Ω,Ω1) ≥ Cp(Ω,Ω1)

Cp(Ω)
≥
(
Cp(Ω1)

Cp(Ω)

) 1
n−p

,

where the second inequality follows from (2.13).
It is easily checked that equality holds in (3.27) if Ω1 is dilate of Ω. Now assume that in addition

φ is strictly convex and equality holds in (3.27). Then equality must hold in (2.13) and hence Ω is
homothetic to Ω1. Following along the same lines in the proof of Theorem 3.2, one obtains that Ω
is dilate of Ω1.

4 The p-capacitary Orlicz-Brunn-Minkowski inequality

This section aims to establish the p-capacitary Orlicz-Brunn-Minkowski inequality (i.e., Theorem
4.1). We also show that the p-capacitary Orlicz-Brunn-Minkowski inequality is equivalent to the
p-capacitary Orlicz-Minkowski inequality (i.e., Theorem 3.2) in some sense. Let m ≥ 2. Recall
that the support function of +ϕ(Ω1, . . . ,Ωm) satisfies the following equation: for any u ∈ Sn−1,

ϕ

(
hΩ1(u)

h+ϕ(Ω1,...,Ωm)(u)
, . . . ,

hΩm(u)

h+ϕ(Ω1,...,Ωm)(u)

)
= 1. (4.28)

Theorem 4.1. Suppose that Ω1, · · · ,Ωm ∈ C0 are convex domains. For all ϕ ∈ Φm, one has

1 ≥ ϕ
((

Cp(Ω1)

Cp(+ϕ(Ω1, · · · ,Ωm))

) 1
n−p

, · · · ,
(

Cp(Ωm)

Cp(+ϕ(Ω1, · · · ,Ωm))

) 1
n−p

)
. (4.29)

If in addition ϕ is strictly convex, equality holds if and only if Ωi are dilates of Ω1 for all
i = 2, 3, · · · ,m.

Proof. Let ϕ ∈ Φm and Ω1, · · · ,Ωm ∈ C0. Recall that Ω1 ⊂ +ϕ(Ω1, . . . ,Ωm) (see (2.4)). The fact
that the p-capacity is monotone increasing yields

Cp(+ϕ(Ω1, . . . ,Ωm)) ≥ Cp(Ω1) > 0.
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Define a probability measure on Sn−1 by

dωp,ϕ(u) =
p− 1

n− p
· 1

Cp(+ϕ(Ω1, . . . ,Ωm))
· h+ϕ(Ω1,...,Ωm)(u) dµp(+ϕ(Ω1, . . . ,Ωm), u).

It follows from formulas (3.17) and (4.28), and Jensen’s inequality (see [17, Proposition 2.2]) that

1 =

∫
Sn−1

ϕ

(
hΩ1(u)

h+ϕ(Ω1,··· ,Ωm)(u)
, · · · , hΩm(u)

h+ϕ(Ω1,··· ,Ωm)(u)

)
dωp,ϕ(u)

≥ ϕ

(∫
Sn−1

hΩ1(u)

h+ϕ(Ω1,··· ,Ωm)(u)
dωp,ϕ(u), · · · ,

∫
Sn−1

hΩm(u)

h+ϕ(Ω1,··· ,Ωm)(u)
dωp,ϕ(u)

)
= ϕ

(
Cp,1(+ϕ(Ω1, · · · ,Ωm),Ω1)

Cp(+ϕ(Ω1, · · · ,Ωm))
, · · · , Cp,1(+ϕ(Ω1, · · · ,Ωm),Ωm)

Cp(+ϕ(Ω1, · · · ,Ωm))

)
≥ ϕ

((
Cp(Ω1)

Cp(+ϕ(Ω1, · · · ,Ωm))

) 1
n−p

, · · · ,
(

Cp(Ωm)

Cp(+ϕ(Ω1, · · · ,Ωm))

) 1
n−p
)
,

where the last inequality follows from inequality (2.13).
Let us now characterize the conditions for equality. In fact, if Ωi are dilates of Ω1 for all

1 < i ≤ m, then +ϕ(Ω1, · · · ,Ωm) is also dilate of Ω1 and the equality clearly holds. Now suppose
that ϕ ∈ Φm is strictly convex. Equality must hold for Jensen’s inequality and hence there exists
a vector z0 ∈ Rm (see [17, Proposition 2.2]) such that(

hΩ1(u)

h+ϕ(Ω1,··· ,Ωm)(u)
, · · · , hΩm(u)

h+ϕ(Ω1,··· ,Ωm)(u)

)
= z0

for ωp,ϕ-almost all u ∈ Sn−1. Moreover, as ϕ ∈ Φm is strictly increasing on each component, one
must have

Cp,1(+ϕ(Ω1, · · · ,Ωm),Ωj)

Cp(+ϕ(Ω1, · · · ,Ωm))
=

(
Cp(Ωj)

Cp(+ϕ(Ω1, · · · ,Ωm))

) 1
n−p

for all j = 1, 2, · · · ,m. The characterization of equality for (2.13) yields that Ωj for j = 1, · · · ,m
are all homothetic to +ϕ(Ω1, · · · ,Ωm). Following the argument similar to that of Theorem 3.2,
one can conclude that Ωi for all j = 1, · · · ,m are dilates of +ϕ(Ω1, · · · ,Ωm), as desired.

If ϕ(x) =
∑m

i=1 xi for x ∈ [0,∞)m, then ϕ ∈ Φm and inequality (4.29) becomes the classical
p-capacitary Brunn-Minkowski inequality (see inequality (1.2)): for Ω1, · · · ,Ωm ∈ C0, one has

Cp(Ω1 + · · ·+ Ωm)
1

n−p ≥ Cp(Ω1)
1

n−p + · · ·+ Cp(Ωm)
1

n−p . (4.30)

From the proof of Theorem 4.1, one sees that equality holds if and only if Ωi is homothetic to
Ωj for all 1 ≤ i < j ≤ m. When ϕ(x) =

∑m
i=1 x

q
j ∈ Φm for q > 1, one gets the p-capacitary

Lq-Brunn-Minkowski inequality: for Ω1, · · · ,Ωm ∈ C0, one has

Cp(Ω1 +q · · ·+q Ωm)
q

n−p ≥ Cp(Ω1)
q

n−p + · · ·+ Cp(Ωm)
q

n−p .

As ϕ(x) =
∑m

i=1 x
q
j for q > 1 is strictly convex, equality holds if and only if Ωi is dilate of Ωj for

all 1 ≤ i < j ≤ m. This has been proved by Zou and Xiong in [54] with a different approach.
Now let us consider the linear Orlicz addition of Ω1, · · · ,Ωm ∈ C0. This is related to

ϕ(x) = α1ϕ1(x1) + · · ·+ αmϕm(xm), x = (x1, · · · , xm) ∈ (0,∞)m, (4.31)

where αj > 0 are constants and ϕj ∈ Φ1 for all j = 1, · · · ,m. Clearly ϕ ∈ Φm and the p-capacitary
Orlicz-Brunn-Minkowski inequality in Theorem 4.1 can be rewritten as the following form.
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Theorem 4.2. Let ϕ be given in (4.31) with αj > 0 constants and ϕj ∈ Φ1 for j = 1, · · · ,m. For
Ω1, · · · ,Ωm ∈ C0, one has

1 ≥
m∑
j=1

αjϕj

((
Cp(Ωj)

Cp(+ϕ(Ω1, · · · ,Ωm))

) 1
n−p
)
. (4.32)

In fact, inequality (4.32) is equivalent to, in some sense, the p-capacitary Orlicz-Minkowski
inequality in Theorem 3.2. Let m = 2, ϕ1, ϕ2 ∈ Φ1, Ω, Ω̃ ∈ C0, α1 = 1 and α2 = ε > 0. In this
case, the linear Orlicz addition of Ω and Ω̃ is denoted by Ω +ϕ,ε Ω̃, whose support function is given
by, for u ∈ Sn−1,

ϕ1

(
hΩ(u)

h
Ω+ϕ,εΩ̃

(u)

)
+ εϕ2

(
h

Ω̃
(u)

h
Ω+ϕ,εΩ̃

(u)

)
= 1.

The p-capacitary Orlicz-Brunn-Minkowski inequality in Theorem 4.2 becomes

1 ≥ ϕ1

((
Cp(Ω)

Cp(Ω +ϕ,ε Ω̃)

) 1
n−p
)

+ εϕ2

((
Cp(Ω̃)

Cp(Ω +ϕ,ε Ω̃)

) 1
n−p
)
,

for all ε > 0. It is equivalent to

1− ϕ−1
1

(
1− εϕ2

((
Cp(Ω̃)

Cp(Ω +ϕ,ε Ω̃)

) 1
n−p
))
≤ 1−

(
Cp(Ω)

Cp(Ω +ϕ,ε Ω̃)

) 1
n−p

. (4.33)

For convenience, let z(ε) be

z(ε) = ϕ−1
1

(
1− εϕ2

((
Cp(Ω̃)

Cp(Ω +ϕ,ε Ω̃)

) 1
n−p
))

.

Then z(ε)→ 1− as ε→ 0+ and

lim
ε→0+

1− z(ε)
ε

= lim
ε→0+

1− z(ε)
1− ϕ1(z(ε))

· lim
ε→0+

ϕ2

((
Cp(Ω̃)

Cp(Ω +ϕ,ε Ω̃)

) 1
n−p
)

=
1

(ϕ1)′l(1)
· ϕ2

((
Cp(Ω̃)

Cp(Ω)

) 1
n−p
)
,

where (ϕ1)′l(1) is assumed to exist and to be nonzero. Together with inequality (4.33), one gets

(ϕ1)′l(1) · lim
ε→0+

1−
(

Cp(Ω)

Cp(Ω+ϕ,εΩ̃)

) 1
n−p

ε
≥ ϕ2

((
Cp(Ω̃)

Cp(Ω)

) 1
n−p
)
.

This together with Theorem 3.1 further imply the p-capacitary Orlicz-Minkowski inequality:

(n− p) · Cp,ϕ2(Ω, Ω̃) = (ϕ1)′l(1) · lim
ε→0+

Cp(Ω +ϕ,ε Ω̃) · lim
ε→0+

1− Cp(Ω)

Cp(Ω+ϕ,εΩ̃)

ε

= (ϕ1)′l(1) · (n− p) · Cp(Ω) · lim
ε→0+

1−
(

Cp(Ω)

Cp(Ω+ϕ,εΩ̃)

) 1
n−p

ε

≥ (n− p) · Cp(Ω) · ϕ2

((
Cp(Ω̃)

Cp(Ω)

) 1
n−p
)
.
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On the other hand, assume that the p-capacitary Orlicz-Minkowski inequality in Theorem 3.2
holds. In particular, for ϕ1, ϕ2 ∈ Φ1 and for Ω, Ω̃ ∈ C0,

Cp,ϕ1(+ϕ(Ω, Ω̃),Ω)

Cp(+ϕ(Ω, Ω̃))
≥ ϕ1

((
Cp(Ω)

Cp(+ϕ(Ω, Ω̃))

) 1
n−p
)
,

Cp,ϕ2(+ϕ(Ω, Ω̃), Ω̃)

Cp(+ϕ(Ω, Ω̃))
≥ ϕ2

((
Cp(Ω̃)

Cp(+ϕ(Ω, Ω̃))

) 1
n−p
)
,

where ϕ = α1ϕ1 + α2ϕ2 with α1, α2 > 0 and ϕ1, ϕ2 ∈ Φ1, and +ϕ(Ω, Ω̃) is the convex domain
whose support function h

+ϕ(Ω,Ω̃)
is given by

1 = α1ϕ1

(
hΩ(u)

h
+ϕ(Ω,Ω̃)

(u)

)
+ α2ϕ2

(
h

Ω̃
(u)

h
+ϕ(Ω,Ω̃)

(u)

)
, for u ∈ Sn−1.

This together with (3.17) lead to inequality (4.32) with m = 2:

1 =
p− 1

n− p
·
∫
Sn−1

[
α1ϕ1

(
hΩ(u)

h
+ϕ(Ω,Ω̃)

(u)

)
+ α2ϕ2

(
h

Ω̃
(u)

h
+ϕ(Ω,Ω̃)

(u)

)]
·
h

+ϕ(Ω,Ω̃)
(u)

Cp(+ϕ(Ω, Ω̃))
· dµp(+ϕ(Ω, Ω̃), u)

= α1 ·
Cp,ϕ1(+ϕ(Ω, Ω̃),Ω)

Cp(+ϕ(Ω, Ω̃))
+ α2 ·

Cp,ϕ2(+ϕ(Ω, Ω̃), Ω̃)

Cp(+ϕ(Ω, Ω̃))

≥ α1 · ϕ1

((
Cp(Ω)

Cp(+ϕ(Ω, Ω̃))

) 1
n−p
)

+ α2 · ϕ2

((
Cp(Ω̃)

Cp(+ϕ(Ω, Ω̃))

) 1
n−p
)
.

The M -addition of convex domains are closely related to the Orlicz addition. For an arbitrary
subset M ⊂ Rm, the M -addition of Ω1, · · · ,Ωm ∈ C0, denoted by ⊕M (Ω1, · · · ,Ωn), is defined by
(see e.g. [15, 16, 35, 36])

⊕M (Ω1, · · · ,Ωm) =

{ m∑
j=1

ajx
j : xj ∈ Ωj and (a1, · · · , am) ∈M

}
.

It is equivalent to the following more convenient formula:

⊕M (Ω1, · · · ,Ωm) = ∪
{
a1Ω1 + · · ·+ amΩm : (a1, a2, · · · , am) ∈M

}
, (4.34)

where a1Ω1 + · · ·+amΩm is the Minkowski addition of ajΩj = {ajxj : xj ∈ Ωj} for j = 1, 2, · · · ,m.
Note that if M is compact, then ⊕M (Ω1, · · · ,Ωm) is again a convex domain. In general, the M -
addition is different from the Orlicz addition. However, when M is a 1-unconditional convex body
in Rm that contains {e1, · · · , em} in its boundary, then the M -addition coincides with the Orlicz
Lϕ addition for some ϕ ∈ Φm. More properties and historical remarks for the M -addition, such as
convexity, GL(n) covariance, homogeneity and monotonicity, can be founded in [15, 16, 35, 36].

Lemma 4.1. If M ⊂ Rm is compact and Ω1, · · · ,Ωm ∈ C0, then for any a = (a1, · · · , am) ∈M ,

Cp
(
⊕M (Ω1, · · · ,Ωm)

) 1
n−p ≥

m∑
i=1

[
|ai| · Cp(Ωi)

1
n−p

]
. (4.35)

If equality holds in (4.35) for some a ∈M with aj 6= 0 for all j = 1, 2, · · · ,m, then Ωi is homothetic
to Ωj for all 1 ≤ i < j ≤ m.
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Proof. Recall that the p-capacity is invariant under affine isometries and has homogeneous degree
n− p (see [13]). Then for all a ∈ R and for all Ω ∈ C0, one has

Cp(aΩ) = |a|n−pCp(Ω).

Note that n− p > 0. It follows from (4.30), (4.34) and the monotonicity of the p-capacity that, for
all a = (a1, · · · , am) ∈M ,

Cp
(
⊕M (Ω1, · · · ,Ωm)

) 1
n−p ≥ Cp

(
a1Ω1 + · · ·+ amΩm

) 1
n−p ≥

m∑
i=1

[
|ai| · Cp(Ωi)

1
n−p

]
.

Assume that equality holds in (4.35) for some a ∈ M with aj 6= 0 for all j = 1, 2, · · · ,m. Then
equality in (4.30) must hold and hence Ωi is homothetic to Ωj for all 1 ≤ i < j ≤ m.

Let e⊥j = {x ∈ Rm : 〈x, ej〉 = 0} for all j = 1, 2, · · · ,m. For a nonzero vector x ∈ Rm and a
convex set E ⊂ Rm, define the support set of E with outer normal vector x to be the set

F (E, x) =

{
y ∈ Rm : 〈x, y〉 = sup

z∈E
〈x, z〉

}
∩ E.

Theorem 4.3. Let M ⊂ Rm be a compact subset and Ω1, · · · ,Ωm ∈ C0. Then

Cp
(
⊕M (Ω1, · · · ,Ωm)

) 1
n−p ≥ hconv(M)

(
Cp(Ω1)

1
n−p , · · · , Cp(Ωm)

1
n−p
)
. (4.36)

If M ∩ F (conv(M), x) 6⊂ ∪mj=1e
⊥
j for all x = (x1, · · · , xm) with all xi > 0 and equality holds in

(4.36), then Ωi is homothetic to Ωj for all 1 ≤ i < j ≤ m.

Proof. It is easily checked that hconv(M)(x) = maxy∈M 〈x, y〉 for all x ∈ Rm. Following (4.35), one
has, as all Cp(Ωi) > 0,

Cp
(
⊕M (Ω1, · · · ,Ωm)

) 1
n−p ≥ max

(a1,··· ,am)∈M

〈(
|a1|, · · · , |am|

)
,
(
Cp(Ω1)

1
n−p , · · · , Cp(Ωm)

1
n−p
)〉

≥ max
(a1,··· ,am)∈M

〈(
a1, · · · , am

)
,
(
Cp(Ω1)

1
n−p , · · · , Cp(Ωm)

1
n−p
)〉

= hconv(M)

(
Cp(Ω1)

1
n−p , · · · , Cp(Ωm)

1
n−p
)
.

Now let us characterize the conditions for equality. Let

x0 =
(
Cp(Ω1)

1
n−p , · · · , Cp(Ωm)

1
n−p
)
.

Assume that equality holds in (4.36). There exists a vector a0 ∈M ∩ F (conv(M), x0) such that

Cp
(
⊕M (Ω1, · · · ,Ωm)

) 1
n−p = max

(a1,··· ,am)∈M

〈(
|a1|, · · · , |am|

)
,
(
Cp(Ω1)

1
n−p , · · · , Cp(Ωm)

1
n−p
)〉

= max
(a1,··· ,am)∈M

〈(
a1, · · · , am

)
,
(
Cp(Ω1)

1
n−p , · · · , Cp(Ωm)

1
n−p
)〉

= hconv(M)(x0) = 〈a0, x0〉.

Note that M ∩ F (conv(M), x0) 6⊂ ∪mj=1e
⊥
j and then all coordinates of a0 must be strictly positive.

As all coordinates of x0 are strictly positive, it follows from the conditions of equality for (4.35)
that Ωi is homothetic to Ωj for all 1 ≤ i < j ≤ m.
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5 The p-capacitary Orlicz-Minkowski problems

For ε ∈ R close to 0, ϕ ∈ D ∪ I , and a continuous function ψ : (0,∞) → (0,∞), consider the
function f̂ε : Sn−1 → (0,∞) defined by

f̂ε(u) = ϕ−1
(
ϕ
(
hΩ(u)

)
+ εψ

(
hΩ1(u)

))
(5.37)

for Ω,Ω1 ∈ C0. Clearly, there exists ε0 > 0 such that f̂ε ∈ C+(Sn−1) for all ε ∈ (−ε0, ε0). Similar
to Lemmas 6 and 7 in [18], if the derivative of ϕ (denoted by ϕ′) exists, and is strictly positive and
continuous on (0,∞), then the following limit is uniform on Sn−1:

lim
ε→0

f̂ε(u)− hΩ(u)

ε
=
ψ (hΩ1(u))

ϕ′ (hΩ(u))
(5.38)

and hence f̂ε converges uniformly to hΩ on Sn−1. For completeness, a brief proof of (5.38) is
presented here. By the chain rule and (ϕ−1)′(a) = 1/ϕ′(ϕ−1(a)), one has, on Sn−1 × (−ε0, ε0),

∂f̂ε
∂ε

∣∣
(u,ε)

=
ψ (hΩ1(u))

ϕ′(f̂ε)
and

∂f̂ε
∂ε

∣∣
(u,0)

=
ψ (hΩ1(u))

ϕ′ (hΩ(u))
.

It can be checked that ∂f̂ε/∂ε is continuous on Sn−1 × (−ε0, ε0). Hence, ∂f̂ε/∂ε is uniformly
continuous, has strictly positive lower bounds, and has finite upper bounds on the compact set
Sn−1 × [−ε0/2, ε0/2]. For every ε ∈ [−ε0/2, ε0/2], it follows from the mean value theorem that∣∣∣∣ f̂ε(u)− hΩ(u)

ε
− ∂f̂ε

∂ε

∣∣
(u,0)

∣∣∣∣ =

∣∣∣∣∂f̂ε∂ε ∣∣(u,ε′) − ∂f̂ε
∂ε

∣∣
(u,0)

∣∣∣∣
for some ε′ ∈ [−ε, ε] ⊂ [−ε0/2, ε0/2]. The uniform convergence of (5.38) then follows from the
uniform continuity of ∂f̂ε/∂ε on Sn−1 × [−ε0/2, ε0/2].

An argument similar to the proof of Theorem 3.1 yields the following result regarding the
asymptotic behavior of Cp(Ωf̂ε

), the p-capacity of the Aleksandrov domain associated to f̂ε. Similar

arguments for the volume can be found in [16, 18].

Proposition 5.1. Let ϕ ∈ I ∪ D be such that ϕ′ exists, and is nowhere zero and continuous on
(0,∞). For Ω,Ω1 ∈ C0, one has

1

n− p
· lim
ε→0

Cp(Ωf̂ε
)− Cp(Ω)

ε
=
p− 1

n− p
·
∫
Sn−1

ψ (hΩ1(u))

ϕ′ (hΩ(u))
dµp(Ω, u).

Remark. Assume that φ = 1/ϕ′ and then

ϕ(t) =

∫ t

0

1

φ(s)
ds. (5.39)

Proposition 5.1 can be rewritten as

1

n− p
· lim
ε→0

Cp(Ωf̂ε
)− Cp(Ω)

ε
=
p− 1

n− p
·
∫
Sn−1

ψ (hΩ1(u)) · φ (hΩ(u)) dµp(Ω, u).

While if ϕ ∈ D and φ = −1/ϕ′, then

ϕ(t) =

∫ ∞
t

1

φ(s)
ds.
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Proposition 5.1 can be rewritten as

1

n− p
· lim
ε→0

Cp(Ω)− Cp(Ωf̂ε
)

ε
=
p− 1

n− p
·
∫
Sn−1

ψ (hΩ1(u)) · φ (hΩ(u)) dµp(Ω, u).

It is not clear whether there are p-capacitary Orlicz-Brunn-Minkowski and Orlicz-Minkowski
inequalities involving the addition defined by (5.37). It is worth to mention that Proposition 5.1
provides a geometric meaning of the measure

µp,φ(Ω, ·) = φ(hΩ) dµp(Ω, ·).

The measure µp,φ(Ω, ·) will be called the Orlicz Lφ p-capacitary measure of Ω. When Ω ∈ C0

and φ : (0,∞) → (0,∞) is a continuous function, φ(hΩ) has strictly positive lower bound and
finite upper bound on Sn−1. This further implies that the support of the measure µp,φ(Ω, ·) is not
contained in any closed hemisphere and by (2.14)∫

Sn−1

〈θ, u〉+ dµp,φ(Ω, u) > 0 for each θ ∈ Sn−1.

Although the p-capacity is translation invariant, one cannot expect to have the centroid of µp,φ(Ω, ·)
at the origin even if φ = t1−q for all q 6= 1 (as the Lq sum is not linear). When φ = t1−q (and hence
ϕ = tq/q) for q 6= 0, one gets the Lq p-capacitary measure of Ω which will be denoted by µp,q(Ω, ·).

It is interesting and important to study the following p-capacitary Orlicz-Minkowski problem:
given a fixed continuous function φ : (0,∞)→ (0,∞) and a finite Borel measure µ on Sn−1, does
there exist a convex domain Ω whose closure Ω contains the origin such that

µ

φ(hΩ)
= τ · µp(Ω, ·) (or µ = τ · µp,φ(Ω, ·) if Ω ∈ C0)

for some positive number τ? When φ = tq−1 for q 6= 0, we are interested in the following normalized
p-capacitary Lq Minkowski problem: given a finite Borel measure µ on Sn−1, does there exist a
convex domain Ω whose closure Ω contains the origin such that

µ · hq−1
Ω = cq ·

µp(Ω, ·)
Cp(Ω)

(or Cp(Ω) · µ = cq · µp,q(Ω, ·) if Ω ∈ C0).

for some positive number cq? The p-capacitary L1 Minkowski problem (i.e., q = 1) has been studied
in [1, 12, 24, 25].

In this section, we will provide a solution for the p-capacitary Orlicz-Minkowski problem as
well as the normalized p-capacitary Lq Minkowski problem for q > 1. Throughout the rest of this
section, unless otherwise stated, let (φ, ϕ) be the pair of functions such that

(A1): the function φ : (0,∞)→ (0,∞) is decreasing and continuous with limt→0+ φ(t) =∞,

(A2): the function ϕ given by (5.39) satisfies ϕ(t) <∞ for all t > 0 and limt→∞ ϕ(t) =∞.

Obviously ϕ is strictly increasing such that ϕ(0) = limt→0+ ϕ(t) = 0 and limt→0+ ϕ′(t) = 0. The
inverse of ϕ, denoted by ϕ−1, exists and is also continuously differentiable on (0,∞). Moreover
(ϕ−1)′(t) = φ(ϕ−1(t)) for all t ∈ (0,∞), ϕ−1(0) = limt→0+ ϕ−1(t) = 0 and limt→∞ ϕ

−1(t) = ∞. It
is easily checked that for all a, b > 0, there are constants t0,M1,M2 > 0, such that, for all t ∈ (0, t0)
(see e.g., [22, Lemma 4.1(iii)]),

M1 ≤ (ϕ−1)′(ϕ(a)− bϕ(t)) ≤M2.
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For convenience, we use ‖f‖ϕ,µ to denote the “Orlicz norm” of f ∈ C(Sn−1), where C(Sn−1)
denotes the set of all continuous functions on Sn−1:

‖f‖ϕ,µ = inf
{
λ > 0 :

∫
Sn−1

ϕ
(f
λ

)
dµ ≤ ϕ(1) ·

∫
Sn−1

dµ
}
,

where (φ, ϕ) satisfies conditions (A1) and (A2). Clearly, ‖f‖ϕ,µ ≤ ‖g‖ϕ,µ if f ≤ g and
‖af‖ϕ,µ = a‖f‖ϕ,µ for all a ≥ 0.

5.1 The p-capacitary Orlicz-Minkowski problem of discrete measures

In this subsection, we provide a solution for the p-capacitary Orlicz-Minkowski problem for discrete
measure µ under the very limit condition: the support of µ is not contained in any closed hemisphere
and either µ({ξ}) = 0 or µ({−ξ}) = 0 for all ξ ∈ Sn−1. For simplicity, we always use P ′ to denote
the interior of a polytope P .

Theorem 5.1. Suppose that (φ, ϕ) satisfies conditions (A1) and (A2). Let µ =
∑m

i=1 λiδui be
such that either µ({ξ}) = 0 or µ({−ξ}) = 0 for all ξ ∈ Sn−1, where λ1, λ2, · · · , λm > 0 are given
constants and {u1, u2, · · · , um} ⊂ Sn−1 are not contained in any closed hemisphere. There exists
a polytope P with the origin in its interior and a constant τ > 0 such that for 1 < p < n,

µ = τ · φ(hP ) · µp(P ′, ·) = τ · µp,φ(P ′, ·) or
µ

φ(hP )
= τ · µp(P ′, ·).

Moreover, ‖hP ‖ϕ,µ = 1 and the constant τ can be calculated by

τ =
ϕ(1) ·

∫
Sn−1 dµ(u)∫

Sn−1 ϕ(hP (u)) dµp,φ(P ′, u)
=

(
p− 1

n− p

)
· 1

Cp(P ′)
·
∫
Sn−1

hP (u)

φ(hP (u))
dµ(u).

In order to prove Theorem 5.1, we need the following lemma. For u ∈ Sn−1 and t ≥ 0, let
H−u,t =

{
y ∈ Rn : 〈u, y〉 ≤ t

}
. Let m > n be an integer and

Rm∗ = {(x1, · · · , xm) : xi ≥ 0} and Rm+ = {(x1, · · · , xm) : xi > 0}.

Define the polytope P (x) for x ∈ Rm+ by P (x) = ∩mi=1H
−
ui,xi with {u1, · · · , um} ⊂ Sn−1. The

following lemma states the differentiability of Cp(P (x)) (see [23, Lemma 3.2] for the volumetric
analogue).

Lemma 5.1. Let p ∈ (1, n). Suppose that the vectors u1, u2, · · · , um ∈ Sn−1 are not contained in
any closed hemisphere. Then Cp(P

′(x)) is differentiable and for 1 ≤ i ≤ m,

∂

∂xi
Cp(P

′(x)) = (p− 1) · µp(P ′(x), {ui}).

Proof. It follows from [12, Theorem 5.2] that for f ∈ C+(Sn−1) and g ∈ C(Sn−1),

dCp(Ωf+εg)

dε

∣∣
ε=0

= (p− 1)

∫
Sn−1

g(u) dµp(Ωf , u),

where Ωf+εg and Ωf are the Aleksandrov domains associated to f + εg and f , respectively. Let
gi ∈ C(Sn−1) for all i = 1, 2, · · · ,m be such that gi(ui) = 1 and gi(uj) = 0 if i 6= j. Let f = hP (x)
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and then hP (x)(uj) = xj for j = 1, 2, · · · ,m. Thus

∂

∂xi
Cp(P

′(x)) = lim
t→0

Cp(P
′(x1, · · · , xi−1, xi + t, xi+1, · · · , xm))− Cp(P ′(x))

t

= lim
t→0

Cp(Ωf+tgi)− Cp(Ωf )

t

= (p− 1)

∫
Sn−1

gi(u) dµp(P
′(x), u)

= (p− 1)

∫
{u1,··· ,um}

gi(u) dµp(P
′(x), u)

= (p− 1) · µp(P ′(x), {ui})

and the desired result is obtained.

Proof of Theorem 5.1. Our proof is based on the techniques in [22, 23]. Let µ =
∑m

i=1 λiδui be
the given finite discrete Borel measure on Sn−1 where λ1, λ2, · · · , λm > 0 are given constants and
{u1, u2, · · · , um} ⊂ Sn−1 are not contained in any closed hemisphere. Let

P (x) =

m⋂
i=1

H−ui,xi (5.40)

for x = (x1, · · · , xm) ∈ Rm∗ . Consider the optimization problem: supx∈M∗ Cp(P (x)) where M∗ is
the compact surface in Rm:

M∗ =
{
x ∈ Rm∗ :

m∑
i=1

λiϕ(xi) = ϕ(1) ·
m∑
i=1

λi

}
.

Note that P (x) for x ∈M∗ defines a compact convex set because {u1, u2, · · · , um} ⊂ Sn−1 are not
contained in any closed hemisphere. In fact, as M∗ is compact, then x ∈ M∗ must have xi < ∞
for all i = 1, · · · ,m. On the other hand, by (5.40) and {u1, · · · , um} positively spans Rn (see [37,
p.411]), P (x) is circumscribed by the hyperplanes Hui,xi = {z ∈ Rn : 〈z, ui〉 = xi} and hence P (x)
for any x ∈ M∗ is bounded. Of course, o ∈ P (x) and xi ≥ hP (x)(ui) for all 1 ≤ i ≤ m and all
x ∈ M∗, with xi = hP (x)(ui) if S(P (x), {ui}) > 0 (and hence µp(P

′(x), {ui}) > 0, due to Lemma
2.1). Moreover, Cp(P (x)) is continuous about x ∈ Rm∗ due to the continuity of the p-capacity and
the continuity of P (x) about x ∈ Rm∗ with respect to the Hausdorff metric (see [37, page 57]). As
M∗ is compact, there exists z ∈M∗ such that

Cp(P (z)) = sup
x∈M∗

Cp(P (x)).

By [1, Proposition 13.2], an argument similar to the one in [1, Section 13.1], where q̂i, E1 and

k(t) in [1] are replaced by zi, P (z) and
∑m

i=1 λiϕ
((

Cp(P (z))
Cp(E1+tE2)

) 1
n−p · (zi+at)

)
, yields that P (z) has

nonempty interior. Of course, o ∈ P (z) and zi ≥ hP (z)(ui) for all 1 ≤ i ≤ m, with zi = hP (z)(ui) if
S(P (z), {ui}) > 0 (and hence µp(P (z), {ui}) > 0, due to Lemma 2.1).

It remains to show that o ∈ P ′(z). To this end, assume that o ∈ ∂P ′(z). For simplicity,
let hi = hP ′(z)(ui) for 1 ≤ i ≤ m. Without loss of generality, let h1 = · · · = hk = 0 and
hk+1, · · · , hm > 0 for some 1 ≤ k < m. The fact that k < m follows from Bn

2 ⊂ P (x0) and

Cp(P
′(z)) ≥ Cp(P ′(x0)) ≥ Cp(Bn

2 ) > 0, (5.41)
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where Bn
2 is the unit open ball in Rn and x0 = (1, 1, · · · , 1) ∈M∗.

In order to get a contradiction with the maximality of Cp(P
′(z)), we need to construct zt ∈M∗

such that Cp(P
′(zt)) > Cp(P

′(z)). For t > 0 small enough, let zt = (zt1, · · · , ztm) ∈M∗ be given by

zti =

{
ϕ−1(ϕ(zi) + ϕ(t)), 1 ≤ i ≤ k
ϕ−1(ϕ(zi)− λϕ(t)), k + 1 ≤ i ≤ m,

where λ = λ1+···+λk
λk+1+···+λm . For k + 1 ≤ i ≤ m, let hti = ϕ−1(ϕ(hi)− λϕ(t)) and then

lim
t→0+

hti − hi
t

= lim
t→0+

(ϕ−1)′(ϕ(hi)− λϕ(t))(−λϕ′(t)) = 0,

hti ≤ ϕ−1(ϕ(zi)− λϕ(t)) = zti ,

where the inequality is due to hi = hP (z)(ui) ≤ zi and the fact that both ϕ and ϕ−1 are strictly
increasing. Similarly t ≤ zti for all 1 ≤ i ≤ k and hence

P t =
( k⋂
i=1

H−ui,t

)⋂( m⋂
i=k+1

H−
ui,hti

)
⊂ P (zt).

Note that (P 0)′ = P ′(z) and o ∈ (P t)′ if t > 0 is small enough. Moreover,

Cp((P
t)′) =

p− 1

n− p
·
(
t

k∑
i=1

µp((P
t)′, {ui}) +

m∑
i=k+1

htiµp((P
t)′, {ui})

)
,

Cp((P
t)′, P ′(z)) =

p− 1

n− p
·

m∑
i=k+1

hiµp((P
t)′, {ui}).

As t → 0+, one has P t → P (z) in the Hausdorff metric and µp((P
t)′, ·) converges to µp(P

′(z), ·)
weakly (see [12, Lemma 4.1]). Moreover,

lim
t→0+

Cp((P
t)′)− Cp((P t)′, P ′(z))

t
=

p− 1

n− p
lim
t→0+

( k∑
i=1

µp((P
t)′, {ui}) +

m∑
i=k+1

hti − hi
t

µp((P
t)′, {ui})

)

=
p− 1

n− p
·
k∑
i=1

µp(P
′(z), {ui}),

which is strictly positive by Lemma 2.1 and the fact that the origin o is contained in at least one
facet. It follows from the Minkowski inequality (2.13) that

0 < lim
t→0+

Cp((P
t)′)− Cp((P t)′, P ′(z))

t

≤ lim inf
t→0+

Cp((P
t)′)− Cp((P t)′)1− 1

n−pCp(P
′(z))

1
n−p

t

= Cp(P
′(z))

1− 1
n−p lim inf

t→0+

Cp((P
t)′)

1
n−p − Cp(P ′(z))

1
n−p

t
.

Together with the fact that P t ⊂ P (zt) for t > 0 small enough, one has

Cp(P
′(z)) < Cp((P

t)′) ≤ Cp(P ′(zt)) holds for some t > 0 small enough.
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This contradicts with the maximality of Cp(P
′(z)) and hence o ∈ P ′(z). Consequently

Cp(P
′(z)) = max

x∈M∗∩Rm
+

Cp(P
′(x)).

Lemma 5.1 and the Lagrange multiplier rule yield

(p− 1) · µp(P ′(z), {ui}) = η · λi
φ(zi)

for all 1 ≤ i ≤ m, (5.42)

m∑
i=1

λiϕ(zi) = ϕ(1) ·
m∑
i=1

λi.

Clearly η > 0, as otherwise µp(P
′(z), {ui}) = 0 and hence S(P ′(z), {ui}) = 0 (due to Lemma 2.1)

for all 1 ≤ i ≤ m. This leads to the volume of P ′(z) equal to 0, which is impossible for a polytope
P (z) with nonempty interior. The positivity of η further yields µp(P

′(z), {ui}) > 0 and hence
zi = hP (z)(ui) for all 1 ≤ i ≤ m. Moreover,

m∑
i=1

λiϕ(hP ′(z)(ui)) = ϕ(1) ·
m∑
i=1

λi and then ‖hP (z)‖ϕ,µ = 1.

On the other hand, the constant η satisfies the following formula

η · ϕ(1) ·
m∑
i=1

λi = η ·
m∑
i=1

[
λi · ϕ(hP ′(z)(ui))

]
= (p− 1) ·

m∑
i=1

[
ϕ(hP ′(z)(ui)) · φ(hP ′(z)(ui)) · µp(P ′(z), {ui})

]
= (p− 1) ·

∫
Sn−1

ϕ(hP ′(z)(u)) dµp,φ(P ′(z), u),

where we have used (5.42). Let

τ =
p− 1

η
=

ϕ(1) ·
∫
Sn−1 dµ(u)∫

Sn−1 ϕ(hP ′(z)(u)) dµp,φ(P ′(z), u)
,

and then (5.42) yields

µ =
m∑
i=1

λiδui = τ ·
m∑
i=1

[
φ(hP ′(z)(ui)) · µp(P ′(z), {ui}) · δui

]
.

Similarly, the constant τ can also be calculated by, due to (5.42),

τ =

(
p− 1

n− p

)
· 1

Cp(P ′)
·
∫
Sn−1

hP ′(u)

φ(hP ′(u))
dµ(u). (5.43)

This completes the proof. �

When ϕ = tq/q with q > 1, then φ = t1−q and (φ, ϕ) satisfies conditions (A1) and (A2). In this
case, the constant τ in Theorem 5.1 can be calculated by

τq =
q ·
∫
Sn−1 dµ(u)∫

Sn−1 h
q
P ′(u) dµp,q(P ′, u)

=
cq

Cp(P ′)
,
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where the constant cq is

cq =

(
p− 1

n− p

)
· q ·

∫
Sn−1

dµ(u). (5.44)

Following immediately from Theorem 5.1, one gets the solution for the normalized p-capacitary Lq
Minkowski problem for discrete measures. The uniqueness is by Theorem 3.3 or Corollary 3.2.

Corollary 5.1. Let µ =
∑m

i=1 λiδui be such that either µ({ξ}) = 0 or µ({−ξ}) = 0 for all ξ ∈ Sn−1,
where λ1, · · · , λm > 0 are given constants and {u1, · · · , um} ⊂ Sn−1 are not contained in any closed
hemisphere. For q > 1 and 1 < p < n, the normalized p-capacitary Lq Minkowski problem has a
unique solution, i.e., there exists a unique polytope P with the origin in its interior, such that,

µ = cq ·
µp,q(P

′, ·)
Cp(P ′)

.

5.2 The p-capacitary Orlicz-Minkowski problem for general measures

In this subsection, we provide a solution for the p-capacitary Orlicz-Minkowski problem for general
measures. When ϕ = t, this has been investigated and solved in [1, 12, 24, 25]. See [22, Theorem
1.2] for the volumetric case. We always use Ω to mean the interior of Ω.

Theorem 5.2. Let (φ, ϕ) satisfy conditions (A1) and (A2). Then the following are equivalent.

i) µ is a nonzero finite Borel measure on Sn−1 whose support is not contained in any closed
hemisphere, i.e., ∫

Sn−1

〈η, θ〉+ dµ(θ) > 0 for all η ∈ Sn−1;

ii) There exist a constant τ > 0 and a convex body Ω containing the origin o, such that, for
1 < p < n

µ

φ(hΩ)
= τ · µp(Ω, ·).

Moreover, if Ω ∈ K0 is a convex body with the origin in its interior, then

µ = τ · φ(hΩ) · µp(Ω, ·) = τ · µp,φ(Ω, ·).

Proof. We first prove i)⇒ ii). Let µ be the given measure satisfying with assumptions in Theorem
5.2. Then there exists a sequence of discrete measures µj defined on Sn−1 satisfying that either

µj({ξ}) = 0 or µj({−ξ}) = 0 for all ξ ∈ Sn−1 and whose supports {uj1, · · · , u
j
mj} are not contained

in closed hemispheres, such that, µj → µ weakly as j → ∞ (see, e.g., the proof of [37, Theorem
7.1.2]). By Theorem 5.1, there are polytopes Pj with the origin in their interiors, such that, for all
j ≥ 1,

µj
φ(hPj )

= τj · µp(P ′j , ·) (5.45)

with τj given by (5.43) as follows:

τj =

(
p− 1

n− p

)
· 1

Cp(P ′j)
·
∫
Sn−1

hPj (u)

φ(hPj (u))
dµj(u).

Moreover, by inequality (5.41), Cp(P
′
j) ≥ Cp(Bn

2 ) for all j ≥ 1.
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The radial function of a compact convex set L ⊂ Rn, denoted by ρL : Sn−1 → [0,∞), is defined
by: for u ∈ Sn−1,

ρL(u) = max{λ > 0 : λu ∈ L}.

For each j = 1, 2, · · · , let rj = max{ρPj (u) : u ∈ Sn−1} be the maximal radius of Pj and vj ∈ Sn−1

be a vector such that rj is obtained. Clearly the line segment [0, rjvj ] ⊂ Pj and hence

rj · 〈u, vj〉+ ≤ hPj (u) for all u ∈ Sn−1.

Note that ‖hPj‖ϕ,µj = 1 and∥∥rj · 〈u, vj〉+∥∥ϕ,µj = rj ·
∥∥〈u, vj〉+∥∥ϕ,µj ≤ 1.

A standard argument (see e.g., [18, Lemma 3], [22, Corollary 3.7], or similar results in [48]), as
the supports of measures µ and µj are not contained in any closed hemisphere, shows that there
exists a constant R > 0 such that rj ≤ R for all j ≥ 1, that is, {Pj}j≥1 is bounded. It follows
from the Blaschke’s selection theorem that there is a subsequence, which will not be relabeled,
{Pj}j≥1 converging to a compact convex set Ω and hPj → hΩ uniformly on Sn−1. Moreover,

0 < Cp(B
n
2 ) ≤ Cp(Ω) <∞ due to the continuity and monotonicity of the p-capacity and Ω ⊂ R·Bn

2 .

Case 1: the interior of Ω is nonempty. In this case, Ω is a convex body containing the origin. Let
τ = limj→∞ τj . By the continuity of the p-capacity, [48, Lemma 4.2], and the uniform continuity
of the function t/φ(t) (whose value at t = 0 is set to be 0 due to limt→0+ t/φ(t) = 0) on any closed
bounded interval [0, b], one has

τ = lim
j→∞

(
p− 1

n− p

)
· 1

Cp(P ′j)
·
∫
Sn−1

hPj (u)

φ(hPj (u))
dµj(u)

=

(
p− 1

n− p

)
· 1

Cp(Ω)
·
∫
Sn−1

hΩ(u)

φ(hΩ(u))
dµ(u).

Together with (5.45) and [12, Lemma 4.1], one has µp(P
′
j , ·) → µp(Ω, ·) weakly and for any

continuous function f : Sn−1 → R,

τ ·
∫
Sn−1

f(u) dµp(Ω, u) = lim
j→∞

τj ·
∫
Sn−1

f(u) dµp(P
′
j , u)

= lim
j→∞

∫
Sn−1

f(u)

φ(hPj (u))
dµj(u)

=

∫
Sn−1

f(u)

φ(hΩ(u))
dµ(u).

Hence, µp(Pj , ·) → µ
φ(hΩ) weakly and µ

φ(hΩ) = τ · µp(Ω, ·) by the uniqueness of the weak limit. Of

course, if Ω ∈ K0, then hΩ is strictly positive on Sn−1 and

µ = τ · φ(hΩ) · µp(Ω, ·) = τ · µp,φ(Ω, ·).

Case 2: the interior of Ω is empty. In this case, without loss of generality, let

Ω ⊆
{

(x1, · · · , xk, 0, · · · , 0) : x1, · · · , xk ∈ R
}

with k the Hausdorff dimension of Ω which is at most n − 1. In fact k > n − p, as otherwise,
Cp(Ω) = 0 which contradicts with Cp(Ω) > 0.
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Recall that hPj → hΩ uniformly on Sn−1 and for all j ≥ 1,

hPj ≤ R on Sn−1,

where R <∞ is the constant given above (i.e., the uniform upper bound of rj). As φ is continuous
and decreasing, one gets φ(hPj (u)) ≥ φ(R) =: M > 0 for all u ∈ Sn−1 and for all j ≥ 1. The
constant τj can be bounded from below by (5.46) as follows:

τj =
ϕ(1) ·

∫
Sn−1 dµj(u)∫

Sn−1 ϕ(hPj (u)) dµp,φ(P ′j , u)

≥
ϕ(1) ·

∫
Sn−1 dµj(u)∫

Sn−1 hPj (u) dµp(P ′j , u)

=
p− 1

n− p
· ϕ(1) ·

∫
Sn−1 dµj(u)

Cp(P ′j)
.

Hence, lim infj→∞ τj ≥ 2τ0, if we let

2τ0 =
p− 1

n− p
· ϕ(1) ·

∫
Sn−1 dµ(u)

Cp(Ω)
> 0. (5.46)

Moreover, (for convenience the Gauss maps of Pj are all denoted by g unless otherwise stated)∫
Sn−1

dµ = lim
j→∞

∫
Sn−1

dµj

= lim
j→∞

τj

∫
Sn−1

φ(hPj (θ)) dµp(P
′
j , θ)

≥ τ0M · lim inf
j→∞

∫
Sn−1

dµp(P
′
j , θ). (5.47)

On the other hand, one has

lim inf
j→∞

∫
Sn−1

dµp(P
′
j , θ) =∞, (5.48)

which was proved in [1, Section 13.2]. In fact, (5.48) follows directly from the combination of
Propositions 13.5 and 13.6 in [1] (by letting f(y) = ‖y‖p for y ∈ Rn) if k = n − 1; while if
n − p < k < n − 1, (5.48) follows directly from [1, (13.49)] and its immediate consequence below
(with µj in [1, (13.49)] replaced by µp(P

′
j , ·)). Combining (5.47), (5.48), and the fact that µ is a

finite measure on Sn−1, one gets a contradiction and hence the interior of Ω cannot be empty. This
completes the proof of i)⇒ ii).

Now we prove ii) ⇒ i). Suppose that there exist a constant τ > 0 and a convex body Ω
containing the origin o, such that, for 1 < p < n

µ

φ(hΩ)
= τ · µp(Ω, ·).

Note that the support of µp(Ω, ·) is not contained in any closed hemisphere and∫
{θ∈Sn−1: hΩ(θ)=0}

dµp(Ω, θ) =

∫
{θ∈Sn−1: hΩ(θ)=0}

1

φ(hΩ(θ))
dµ(θ) = 0,
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where we have used 1
φ(t) |t=0+ = 0 due to φ(t)→∞ as t→ 0+. Then, for any given η ∈ Sn−1,

0 <

∫
Sn−1

〈η, θ〉+ dµp(Ω, θ) = lim
k→∞

∫
{θ∈Sn−1: hΩ(θ)≥1/k}

〈η, θ〉+ dµp(Ω, θ).

Therefore, there exists N0 (depending on η of course) such that for all k ≥ N0,

0 <

∫
{θ∈Sn−1: hΩ(θ)≥1/k}

〈η, θ〉+ dµp(Ω, θ).

This further implies that, for any η ∈ Sn−1,∫
Sn−1

〈η, θ〉+ dµ(θ) ≥
∫
{θ∈Sn−1: hΩ(θ)≥1/N0}

〈η, θ〉+ dµ(θ)

= τ ·
∫
{θ∈Sn−1: hΩ(θ)≥1/N0}

〈η, θ〉+ · φ(hΩ(θ)) dµp(Ω, θ)

≥ τ · m̃φ ·
∫
{θ∈Sn−1: hΩ(θ)≥1/N0}

〈η, θ〉+ dµp(Ω, θ)

> 0,

where we let R = supθ∈Sn−1 hΩ(θ) <∞ be a strictly positive constant and

m̃φ = min

{
φ(t) : t ∈

[ 1

N0
, R
]}
∈ (0,∞).

This completes the proof.

When ϕ = tq/q with q > 1, then φ = t1−q and (φ, ϕ) satisfies conditions (A1) and (A2). The
solution for the normalized p-capacitary Lq Minkowski problem for general measures can be stated
as follows. Let cq be the constant given by (5.44).

Corollary 5.2. Let p ∈ (1, n) and q > 1 be given constants. The following are equivalent.

i) µ is a nonzero finite Borel measure on Sn−1 whose support is not contained in any closed
hemisphere, i.e., ∫

Sn−1

〈η, θ〉+ dµ(θ) > 0 for all η ∈ Sn−1;

ii) The normalized p-capacitary Lq Minkowski problem has a unique solution, i.e., there exists a
unique convex body Ω containing the origin o, such that, for 1 < p < n,

µ · hq−1
Ω = cq ·

µp(Ω, ·)
Cp(Ω)

.

Moreover, if Ω ∈ K0 is a convex body with the origin in its interior, then

µ =
cq · µp,q(Ω, ·)

Cp(Ω)
.

Proof. The direction ii) ⇒ i) follows immediately from Theorem 5.2 by letting φ = t1−q. For
i) ⇒ ii), the existence of a convex body Ω containing the origin o is an immediate consequence
of Theorem 5.2. When Ω ∈ K0, the uniqueness follows from Theorem 3.3 or Corollary 3.2. If the
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origin is not in the interior of Ω, the uniqueness can be proved based on the technique in proving
[18, Lemma 2.1]. We include a self-contained brief proof here for completeness.

Assume that there exist two convex bodies Ω and Ω1 containing the origin such that

µ · hq−1
Ω · Cp(Ω) = cq · µp(Ω, ·) and µ · hq−1

Ω1
· Cp(Ω1) = cq · µp(Ω1, ·).

These formulas yield that(
p− 1

n− p

)
·
∫
Sn−1

hqΩ dµ(u) =

(
p− 1

n− p

)
·
∫
Sn−1

hqΩ1
dµ(u) = cq.

Let Σ = {u ∈ Sn−1 : hΩ(u) > 0} and hence

Cp(Ω) =

(
p− 1

n− p

)
·
∫

Σ
hΩ dµp(Ω, u),

0 = Cp(Ω)

∫
Sn−1\Σ

hq−1
Ω (u) dµ(u) = cq ·

∫
Sn−1\Σ

dµp(Ω, u)

Cp(Ω,Ω1) =

(
p− 1

n− p

)
·
∫

Σ
hΩ1 dµp(Ω, u).

Holder’s inequality implies that

cq =

(
p− 1

n− p

)
·
∫
Sn−1

hqΩ1
dµ(u) ≥

(
p− 1

n− p

)
·
∫

Σ
hqΩ1

dµ(u) ≥ cq ·
(
Cp(Ω,Ω1)

Cp(Ω)

)q
.

Together with the Minkowski inequality (2.13), one gets Cp(Ω) ≥ Cp(Ω1). By switching the roles
of Ω and Ω1, one can also have Cp(Ω) ≤ Cp(Ω1) and Cp(Ω) = Cp(Ω1). Hence, the equality holds
in Minkowski inequality (2.13) and then Ω1 is a translation of Ω, say Ω1 = Ω + a for some a ∈ Rn.

The uniqueness follows if a = 0. To this end, assume that a 6= 0. By the translation invariance
of the measures µp(Ω, ·) and µp(Ω1, ·), one has∫

{u∈Sn−1: 〈a,u〉>0}

[
hq−1

Ω1
(u)− hq−1

Ω (u)
]
dµ = 0.

Note that hΩ1(u) = hΩ(u) + 〈a, u〉 > hΩ(u) for all u ∈ {u ∈ Sn−1 : 〈a, u〉 > 0}. Then∫
{u∈Sn−1: 〈a,u〉>0}

[
hq−1

Ω1
(u)− hq−1

Ω (u)
]
dµ > 0,

which follows from the assumption that the support of µ is not contained in the complement of
{u ∈ Sn−1 : 〈a, u〉 > 0}. This is a contradiction and hence a = 0.
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