GENERAL VOLUMES IN THE ORLICZ-BRUNN-MINKOWSKI THEORY
AND A RELATED MINKOWSKI PROBLEM 1
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ABSTRACT. The general volume of a star body, a notion that includes the usual volume,
the ¢th dual volumes, and many previous types of dual mixed volumes, is introduced. A
corresponding new general dual Orlicz curvature measure is defined that specializes to the
(p, q¢)-dual curvature measures introduced recently by Lutwak, Yang, and Zhang. General
variational formulas are established for the general volume of two types of Orlicz linear com-
binations. One of these is applied to the Minkowski problem for the new general dual Orlicz
curvature measure, giving in particular a solution to the Minkowski problem posed by Lut-
wak, Yang, and Zhang for the (p, ¢)-dual curvature measures when p > 0 and ¢ < 0. A dual
Orlicz-Brunn-Minkowski inequality for general volumes is obtained, as well as dual Orlicz-
Minkowski-type inequalities and uniqueness results for star bodies. Finally, a very general
Minkowski-type inequality, involving two Orlicz functions, two convex bodies, and a star body,
is proved, that includes as special cases several others in the literature, in particular one due
to Lutwak, Yang, and Zhang for the (p, ¢)-mixed volume.

1. INTRODUCTION

The classical Brunn-Minkowski theory was developed by Minkowski, Aleksandrov, and
many others into the powerful tool it is today. It focuses on compact convex sets and their or-
thogonal projections and metric properties such as volume and surface area, but has numerous
applications beyond geometry, both within and outside mathematics. In recent decades it has
been significantly extended in various ways. Germinating a seed planted by Firey, Lutwak [18]
brought the L,-Brunn-Minkowski theory to fruition. A second extension, the Orlicz-Brunn-
Minkowski theory, arose from work of Ludwig [15], Ludwig and Reitzner [16], and Lutwak,
Yang, and Zhang [19, 20]. Each theory has a dual counterpart treating star-shaped sets and
their intersections with subspaces, and these also stem from the pioneering work [17] of Lut-
wak. The main ingredients in each theory are a distinguished class of sets, a notion of volume,
and an operation, usually called addition, that combines two or more sets in the class. Each
theory has been described and motivated at length in previous work, so we refer the reader
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to Schneider’s classic treatise [22] and the introductions of the articles [4, 5, 6], and will focus
henceforth on the contributions made in the present paper.

Our work is inspired by the recent groundbreaking work of Huang, Lutwak, Yang, and Zhang
[13] and Lutwak, Yang, and Zhang [21]. In [13], the various known measures that play an
important part in the Brunn-Minkowski theory—the classical area and curvature measures and
their L, counterparts—were joined by new dual curvature measures, and surprising relations
between them were discovered, revealing fresh connections between the classical and dual
Brunn-Minkowski theories. These connections were reinforced in the sequel [21], which defined
the very general L, dual curvature measures that involve both convex and star bodies and two
real parameters p and g. With each measure comes the challenge of solving the corresponding
Minkowski problem, a fundamental endeavor that goes back to the original work of Minkowski
and Aleksandrov.

The present paper focuses on the Orlicz-Brunn-Minkowski theory. Just as Orlicz spaces
generalize L, spaces, the Orlicz theory brings more generality, but presents additional chal-
lenges due to the loss of homogeneity. Here we introduce very general dual Orlicz curvature
measures which specialize to both the L, dual curvature measures in [21] and the dual Orlicz
curvature measures defined in [24, 27]. We state the corresponding Minkowski problem and
present a partial solution, though one general enough to include those from [24, 27] as well as
solving the case p > 0 and ¢ < 0 of the Minkowski problem posed in [21, Problem 8.1]. (After
we proved our result, we learned that Bérdczky and Fodor [2] have solved the case p > 1
and ¢ > 0. The authors of [2] state that Huang and Zhao have also solved the case p > 0
and ¢ < 0 in the unpublicized manuscript [14].) The Minkowski problem in [21, Problem 8.1]
requires finding, for given p, ¢ € R, n-dimensional Banach norm || - ||, and f : S"™' — [0, c0),
an h: S" ! — (0,00) that solves the Monge-Ampere equation

(1) WP ||Vh + he|| T det (V2h + hI) = f

on the unit sphere S"~!, where V and V? are the gradient vector and Hessian matrix of h,
respectively, with respect to an orthonormal frame on S™~!, ¢ is the identity map on S"~!, and
I is the identity matrix. The equation (1) is derived in [21, (5.8), p. 116]; previous Minkowski
problems correspond to taking p = 0 and || - || = | - |, the Euclidean norm (the dual Minkowski
problem from [13]), ¢ =0 and || - || = | - | (the L, Aleksandrov problem), and ¢ = n (the L,
Minkowski problem, which reduces to the classical Minkowski problem when p = 1).

We refer the reader to the introductions of [13, 21] and to [22, Sections 8.2 and 9.2] for
detailed discussions and references to the extensive literature on these problems.

Also introduced here are new generalizations of volume. Let G : (0,00) x S"~! — (0, 00)
be continuous (see Section 2 for definitions and notation). The general dual volume Ve (K) of
a star body K is defined by

Va(K) = . G(px(u),u) du,
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where pg is the radial function of K, giving the distance from the origin to the boundary of
K in the direction u, while the general volume of a convex body K is defined by

Vo(K) = /Sn1 G(hg(u),u)dS(K,u),

where h is the support function and S(K, -) is the surface area measure of K. (Integrals with
respect to the ith area measures S;(K,-), 1 <1i <n — 1, may also be considered.) The novel
feature here is the extra argument v in G this allows Vg (K) and Vi (K) to include not only
the usual volume and variants of it, but also many of the mixed and dual mixed volumes that
have previously been found useful in the literature. The same function G(¢,u) is behind our
general dual Orlicz curvature measures (see Definition 3.1). The present paper focuses mainly
on the dual theory, so from the outset we work with the general dual volume Vg(K) and
obtain variational formulas (necessary for the Minkowski problem) for it. The corresponding
study for Vi(K) and the classical theory is to be carried out in [8]. It should be mentioned
that in this context, Orlicz-Minkowski problems were first investigated by Haberl, Lutwak,
Yang, and Zhang [11].

The general dual Orlicz curvature measures mentioned above arise naturally from the gen-
eral dual volumes and are denoted by Cg 4(K,-), where G : (0,00) x S"! — (0,00) and
¥ :(0,00) = (0,00) are continuous. The corresponding Minkowski problem is:

For which nonzero finite Borel measures p 0n~5”*1 and continuous functions G and v do
there exist T € R and K € K{; such that p =7 Ceqy(K,-)?

In our partial solution, presented in Theorem 6.4 below, the lack of homogeneity necessitates
extra care in the variational method we employ. The problem requires finding, for given G,
Y, and f: S"1 — [0,00), an h : S"! — (0,00) and 7 € R that solve the Monge-Ampere
equation

Th
Yoh

where P(x) = |z|*™"Gy(|z|, 7). Equation (2) is derived before Theorem 6.4 in a brief discussion
where we also show that (2) is more general than (1).

In a third contribution, we prove very general Orlicz inequalities of the Minkowski and
Brunn-Minkowski type which include others in the literature, such as [21, Theorem 7.4], as
special cases. Some general uniqueness theorems are also demonstrated.

The paper is organized as follows. The preliminary Section 2 gives definitions and notation,
as well as the necessary background on two types of Orlicz linear combination. In Section 3, we
define the new general dual volumes and general dual Orlicz curvature measures. Sections 4
and 5 contain our variational formulas. In Section 6, we state our Minkowski problem and
provide a partial solution (see Problem 6.3 and Theorem 6.4). Dual Orlicz-Brunn-Minkowski
inequalities can be found in Section 7 and dual Orlicz-Minkowski inequalities and uniqueness
results are the focus of Section 8.

(2) P(Vh+ ht) det(V?h + hi) = f,
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2. PRELIMINARIES AND BACKGROUND

We use the standard notations o, {ej,...,e,}, and || - || for the origin, the canonical or-
thonormal basis, and a norm, respectively, in R”. The Euclidean norm and inner prod-
uct on R™ are denoted by | - | and (-,-), respectively. Let B" = {z € R" : |z| < 1} and
Sm=1 = {z € R": |x| = 1} be the unit ball and sphere in R". The characteristic function of a
set F is signified by 1g.

We write H* for k-dimensional Hausdorff measure in R®, where k € {1,...,n}. For compact
sets E, we also write V,,(E) = H"(E) for the volume of E. The notation dz means dH*(z)
for the appropriate k = 1,...,n, unless stated otherwise. In particular, integration on S™~!

is usually denoted by du = dH"*(u).

The class of nonempty compact convex sets in R" is written K". We will often work with
ICFO), the set of convex bodies (i.e., compact convex subsets in R" with nonempty interiors)
containing o in their interiors. For the following information about convex sets, we refer the
reader to [10, 22]. The standard metric on K" is the Hausdorff metric §(-,-), which can be
defined by

O(K, L) = [lhi = hellee = sup |hx(u) = hi(u)|

uesSn—1
for K, L € K", where hg : S"' — R is the support function of K € K", given by hg(u) =
sup,cx (u, z) for u € S" . We say that the sequence K7, Ko, ... of sets in K" converges to

K € K" if and only if lim; ,, 6(K;, K) = 0. The Blaschke selection theorem states that every
bounded sequence in K™ has a subsequence that converges to a set in ™. The surface area
measure S(K,-) of a convex body K in R" is defined for Borel sets E C S"~1 by

(3) S(K, B) = H" (v (E),

where v (E) = {z € 0K : vi(x) € E} is the inverse Gauss map of K (see Section 2.2).
Let u be a nonzero finite Borel measure on S"~!. We say that p is not concentrated on any
closed hemisphere if

(4) / (u,v) du(u) >0 forve S
Sn—1

where a; = max{a,0} for a € R. We write |u| = p(S™™1).

As usual, C'(F) denotes the class of continuous functions on E and we shall write C*(FE)
for the strictly positive functions in C'(E). Let Q C S™ ! be a closed set not contained in
any closed hemisphere of S"~!. For each f € CT(Q), one can define a convex body [f], the
Aleksandrov body (or Wulff shape), associated to it, by setting

[f1= (N {z eR": {z,u) < f(w)}.
ues)
In particular, when Q = S" ! and f = hg for K € K", one has
K=hgl= () {zeR":(xu) <hg(u)}.

ueSn—1
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Note that
H(K,u)={z € R": (z,u) = hx(u)}
is the supporting hyperplane of K in the direction u € S*~!.

A set L in R™ is star-shaped at o if o € L and for each x € R"™ \ {o}, the intersection
LNn{cx:c>0}is a (possibly degenerate) compact line segment. For each such L and for
x € R"\ {o}, let

pr(z) =max{c >0:cr € L}.

Then pr : R"\ {0} — R is called the radial function of L. The function p; is homogeneous
of degree —1, that is, py(rz) = r~'pr(z) for z € R™\ {o}. This allows us to consider p;, as a
function on S™!. Let 8™ be the class of star-shaped sets at o in R™ that are bounded Borel
sets and whose radial functions are therefore bounded Borel measurable functions on S™~1.
The class of L € 8" with p;, > 0 is denoted by S} and the class S}, of compact star bodies
comprises those L € S? such that p;, is continuous on S™'. If L € S?, then pp(u)u € L
and pp(z) = 1 for x € L, the boundary of L. The natural metric on 8" is the radial metric
8(-,-), which can be defined by

O(Ly, La) = |lpr, — pProllse = Slslp lpL, (u) — pr,(u)],
ueSn—1

for Ly, Ly € 8™. Consequently, we can define convergence in S™ by lim; .. 0(L;, L) = 0 for
L, Ly, Ly,... € §". Clearly, IC?O) C &2, It follows directly from the relations between the

metrics § and ¢ in [9, Lemma 2.3.2, (2.3.15) and (2.3.16)] that if K, K1, Ko, ... € K, then
K; — K in the Hausdorff metric if and only if K; — K in the radial metric.
If K € IC?D), the polar body K* of K is defined by

K'={zeR": (x,y) <1forye K}.
Then (K*)* = K and (see [22, (1.52), p. 57])
(5) pr(x)hg« () = hg(x)pr-(x) =1 for z € R™\ {o}.

One can define convex bodies associated to radial functions of star bodies. In general, if
Q C S" ! is a closed set not contained in any closed hemisphere of S"~1, and f € CT(Q),
define (f) € K"\, the convex hull of f, by

(o)’
(f) =conv{f(u)u:ueQ}.

The properties of (f) are similar to those of the Aleksandrov body. In particular, taking
Q = 5""1, we have (px) = K for each K € Kf.,. Tt can be checked (see [13, Lemma 2.8]) that

(6) 1= /1)
Throughout the paper, we will need certain classes of functions ¢ : (0,00) — (0,00). Let

Z = {p is continuous and strictly increasing with ¢(1) = 1,¢(0) =0, and p(c0) = oo},
D = {p is continuous and strictly decreasing with ¢(1) =1, ¢(0) = oo, and ¢(c0) = 0},
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where ¢(0) and ¢(0c0) are considered as limits, ¢(0) = lim;_,o+ ¢(t) and @(oc0) = lim;_, @().
Note that the values of p at ¢ = 0, 1, oo are chosen for technical reasons; results may still hold
for other values of ¢ at t = 0,1, co.

For a € RU{—oc}, we also require the following class of functions ¢ : (0,00) — (a, c0):

Ja = {p is continuous and strictly monotonic, inf,~ p(t) = a, and sup,., ¢(t) = oo}.

Note that the log function belongs to J_ o and ZUD C Jp.

Let fo € CH(S™1), let g € C(S™ 1), and let ¢ € J, for some a € RU{—o0}. Then o :
(a,00) = (0,00), and since S"! is compact, we have 0 < ¢ < fo < C for some 0 < ¢ < C. Tt
is then easy to check that for ¢ € R close to 0, one can define f. = f.(fo,9,¢) € CT(S"!) by

(7) fe(w) = o7 ((fo(u)) +g(u)) .

Note that we can apply (7) when fo = hg for some K € K, or when fo = pg for some
K € 8. Sometimes we will use this definition when S"~! is replaced by a closed set Q C S"~*
not contained in any closed hemisphere of S™~!.

The left derivative and right derivative of a real-valued function f are denoted by f/ and f/,
respectively. Whenever we use this notation, we assume that the one-sided derivative exists.

2.1. Orlicz linear combination. Let K, L € IC?O). For ¢ > 0, and either 1,y € Z or
01, p9 € D, define h, € CT(S™1) (implicitly and uniquely) by

(8) 1 <ZI:((;L))) + ey <Z§((Z))) =1 forues" "

Note that h. = h.(K, L, ¢1,p2) may not be a support function of a convex body unless
¢1,p2 € L are convex, in which case h. = hg,, 1, where K +,. L € 8, is an Orlicz linear
combination of K and L (see [5, p. 463]). However, the Aleksandrov body [h.] of h. belongs
to K-

An alternative approach to forming Orlicz linear combinations is as follows. Let K € IC?O),
let g € C(S™1), let p € J, for some a € RU {—o0o}, and let he be defined by (7) with
fo = hk. This approach goes back to Aleksandrov [1] in the case when p(t) = t. Again, the

Aleksandrov body [ﬁs] of /f\LE belongs to IC?O). When g = ¢ ohy and ¢ € T C J is convex,
[he] = KT, ¢ - L, as defined in [5, (10.4), p. 471],

Suppose that K, L € /C?O), that ¢ € 7 is convex, and that K +,. L is defined by (8) with
¢1 = @2 = ¢. Then both K +,. L and K+, ¢ - L belong to K, and coincide when ¢(t) = t”
for some p > 1, but they differ in general (to see this, compare the corresponding different

variational formulas given by [5, (8.11) and (8.12), p. 466] and [5, p. 471]).

It is known (see [5, Lemma 8.2, [12, p. 18], and [23, Lemma 3.2]) that h. — hx and
he — hx uniformly on S"! as £ — 0 and hence, by [22, Lemma 7.5.2], both [h.] and [h.]
converge to K € Kfg,) as ¢ = 0. Part (ii) of the following lemma is proved in [12, (5.38)] for
the case when ¢ € ZU D, but the same proof applies to the more general result stated.
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Lemma 2.1. Let K, L € IC?O).
(i) ([5, Lemma 8.4], [23, Lemma 5.2].) If v1,2 € Z and (¢1);(1) > 0, then
(9) lim he(u) — hg(u) _ hK(/u) o hL(u)>
e—0+ £ (1)(1) hi(u)
uniformly on S™'. For p1,¢s € D, (9) holds when (¢1).(1) < 0, with (p1))(1) replaced by
(1)7(1)-
(ii) (cf. [12, (5.38)].) Let a € RU{—o0}. If ¢ € T, and ¢ is continuous and nonzero on
(0,00), then for g € C(S™1),

i Pe) = hacl) _ g(w)
&0 € ¢ (hi(u))

uniformly on S™1, where he is defined by (7) with fo = hg.

Analogous results hold for radial functions of star bodies. Let K,L € S!,. For € > 0, and
either o1, o € Z or ¢y, ps € D, define p. € CT(S™!) (implicitly and uniquely) by

(10) o1 (pK(“)) + ey <pL(“)) =1 forueS" .

p=(u) p=(u)
Then p. is the radial function of the radial Orlicz linear combination K+,.L of K and L (see
6, (22), p. 822]).

Let a € RU{—o0}. For ¢ € J,, g € C(S"!), and ¢ € R close to 0, define p. € CT(S™1)
by (7) with fo = px. The definitions of both p, and p. can be extended to K, L € ST (or even
L € 8"), but we shall mainly work with star bodies and hence focus on S, . It is known (see
[6, Lemma 5.1], [12, p. 18] (with h replaced by p), and [28, Lemma 3.5]) that p. — px and
p- — pr uniformly on S"! as ¢ — 0. From this and the equivalence between convergence in
the Hausdorf and radial metrics for sets in K7,), one sees that, for each K € Kf,), both (p.)
and (p.) converge to K in either metric.

Lemma 2.2. Let K,L € S, .
(i) ([6, Lemma 5.3]; see also [28, Lemma 4.1].) If v1,02 € Z and (¢1);(1) > 0, then

(1) i P — (W) pr(u) <PL(U))

e-0+ e (0)i(1) ™"\ pxe ()
uniformly on S™'. For 1,9 € D, (11) holds when (¢1).(1) > 0, with (¢1);(1) replaced by
(1)7(1).
(ii) (cf. [12, (5.38)].) Let a € RU{—o0}. If p € T, and ¢’ is continuous and nonzero on
(0,00), then for g € C(S™1),

e0 2 ¢ (px(u))
uniformly on S™™1, where p. is defined by (7) with fo = px.
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2.2. Maps related to a convex body. We recall some terminology and facts from [13,
Section 2.2]. Let K € Kf,,,. Define

vi(E)={ue S :x e H(K,u) for some z € E}
for F C 0K,

zr(E)={r € 0K :x € H(K,u) for some u € E}
for E C S"1, and

ai(F) =vk({px(u)u € 0K : u € E})

for E C S"7!. Let oy C K, nx C S™!, and wx C S™! be the sets where v ({z}), zx({u}),
and a g ({u}), respectively, have two or more elements. Then
(13) H* Hok) =H" (k) = H" ' (wk) = 0.

Elements of S"~ !\ ng are called regular normal vectors of K and reg K = 0K \ ok is the
set of reqular boundary points of K. We write vi(z), vx(u), and ax(u) instead of vy ({z}),
zx({u}), and ax({u}) if z € reg K, u € S" '\ ng, and u € S" ! \ wg, respectively.

Next, we define

oy (E)=A{z/|z| :x € 0K N H(K,u) for some u € E} = {z/|z| :z € zx(F)}

for £ C S™!. In particular, one can define a continuous map o’ (u) = zx(u)/|rx(u)| for
uw € S\ ng. For E C S"', we have a}(F) = ag+(F). Moreover, for H" '-almost all
ue St

(14) e (u) = ak-(u)
and
(15) u € ay(E) if and only if ax(u) € E.

3. GENERAL DUAL VOLUMES AND CURVATURE MEASURES

Let G : (0,00) x S"!' — (0,00) be continuous. (Remark 5.4 addresses the possibility of
allowing G : (0,00) x S"~! — R.) For K € 8", define the general dual volume Vg(K) of K by

(16) V(K = /S  Glox(w),u)du

Our approach will be to obtain results for this rather general set function that yield geomet-
rically interesting consequences for particular functions G.
Let ¢ : R™\ {0} — (0,00) be a continuous function. One special case of interest is when

G = &, where
(17) D(t,u) = /00 P(ru)r™tdr

for t > 0 and u € S™1. Then we define V4(K) = Vi(K), so that

(18) V¢(K)=/Sn1<1>( du-/sn / i drdu:/Rn\K¢(a:)da;,
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where the integral may be infinite. Similarly, taking G = ®, where
t
D(t,u) :/ d(ru)r™tdr
0
for t > 0 and u € S"~', we define V 4(K) = Vo (K), whence

(19 VK) = [ @lpxlu)wdu= [ ol

where again the integral may be infinite. We refer to both V,(K) and V4(K) as a general
dual Orlicz volume of K € 8™. Indeed, if ¢ # 0 and ¢(z) = (|g|/n)|z|7", then

~ 1 VoK), ifqg<0,
V) = [ petuyraa= {1
n Jon V4 (K), ifqg>0,

is the qth dual volume of K; see [3, p. 410]. In particular, when ¢ = n, we have K¢(K) =
Vo (K), the volume of K. More generally, if ¢(x) = (|¢|/n)|z|? " pg(x/|z|)""?, where ¢ # 0
and @) € 8", then

1 B V4(K), ifq<0,
= — q n qd =
3 RO O {MK), I

is the qth dual mized volume of K and @Q; see [3, p. 410].

Other special cases of vg(K ) of interest, the general Orlicz dual mixed volumes \N/dw,(K , L)
and V, (K, g), are given in (45) and (46).

Next, we introduce a new general dual Orlicz curvature measure.

(20) V(K. Q)

Definition 3.1. Let K € K{,), let ¢ : (0,00) — (0,00) be continuous, and let Gy(t,u) =
IG(t,u)/0t be such that u — Gy(pk(u),u) is integrable on S"~!. Define the finite signed
Borel measure Cg (K, -) on S* ! by

(21) Cow(K,E) = % / o) qu/(f(L;)lf(tx(K(g;)w .

for each Borel set E C S"~L. If 1 = 1, we often write Cg(K, -) instead of 5G7¢(K, ).

To see that 5G71/,(K ,+) is indeed a finite signed Borel measure on S™"! note firstly that
5G,¢(K,®) = 0. Since K € K{,) and u — Gi(px(u),u) is integrable, 5G7¢(K,-) is finite.
Let E; C S™' i € N, be disjoint Borel sets. By [13, Lemmas 2.3 and 2.4], o (U;E;) =
Usa’ (E;) and the intersection of any two of these sets has H" !-measure zero. The dominated



10 RICHARD J. GARDNER, DANIEL HUG, WOLFGANG WEIL, SUDAN XING, AND DEPING YE

convergence theorem then implies that

Cou(K,UiE) = %/Ua ((ZLK(C(YZ(S;;’)M du
- Z/ hK éK(S;;U) du= D CoulF B,

SO ég’w(K ,-) is countably additive.

Integrals with respect to 5G,w(K ,-) can be calculated as follows. For any bounded Borel
function g : S" ! — R, we have

@ [ o dCoutrca = [ o) PR

(i (ax (1))
S Mxl e
(23) = o) S o] Gl ) do
where z = z/|z|. (Recall our convention that integration on 0K is denoted by drx =

dH"'(z).) Relation (22) follows immediately from (15), and (23) follows from the fact
that the bi-Lipschitz radial map r : 9K — S™°! given by r(z) = z/|z|, has Jacobian
Jr(z) = {(x,vg(x))|z| ™ for all regular boundary points, and hence for H" !-almost all
x € 0K.

If K is strictly convex, then the gradient Vhg(u) of hx at u € S"! equals the unique
rx(u) € OK with outer unit normal vector u, and Vhg(vi(z)) = z for H" '-almost all
x € OK. Using this and [21, Lemma 2.10], (23) yields

/5 ~g(u) dCl (K, u)

_ 2 u hK—W) )|t u M u
@) = o[ g g s ! G (il ) a0,

The following result could be proved in the same way as [21, Lemma 5.5], using Weil’s
Approximation Lemma. Here we provide an argument which avoids the use of this lemma.

Theorem 3.2. Let K € IC?O), and let G, be as in Definition 3.1. Then the measure-valued
map K — Ca (K, ") is a valuation on K-

Proof. Let K, L € IC?O) be such that K U L € ICE’O). It suffices to show that for any bounded
Borel function g : S"7! — R, we have

(25) I(KNL)+I(KUL) = I(K) + I(L),
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where I(M) = [g,_, g(u) dCq (M, u) for M € K7, The sets KN L, K UL, K, and L can
each be partitioned into three disjoint sets, as follows:

(26) IKNL)= (0K Nint L) U (OLNint K) U (0K NIL),
(27) IKUL)=(0K\L)U(OL\ K)U (0K NOIL),

(28) 0K = (0K Nint L) U (0K \ L) U (0K NJOL),
(29) OL=(0OLNint K)U (0L \ K)U (0K NOoL).

Let T = z/|z|. For H" '-almost all x € (K N L), we have

(30) ze€dKNintL = vkn(z)=vk(zr) and prnn(Z) = pr(Z),

(31) zedlnintK = vgno(zr) =vi(z) and pran(z) = pL(2),

(32) r€0KNIOL = vkgnL(z)=vkg(x)=vr(z) and prnr(Z) = pr(T) = pr(Z),
where the first set of equations in (32) hold for z € reg (K N L) Nreg K Nreg L since K N L C

K, L. Also, for H" !-almost all x € (K U L), we have

(33) r€0K\L = vgu(x)=rvk(r)and prur(Z) = pr(T),

(34) r€0L\K = vgu(x)=vr(z)and prur(Z) = pr(2),

(35) r€0KNIOL = vguL(z)=rvkg(x)=rvr(z)and pxur(T) = pr(Z) = pr(T),

where the first set of equations in (35) hold for x € reg (K U L) Nreg K Nreg L since K, L C
K UL. Now (25) follows easily from (23), by first decomposing the integrations over (K N L)
and O(K U L) into six contributions via (26) and (27), using (30-35), and then recombining
these contributions via (28) and (29). O

Some particular cases of (21) are worthy of mention. Firstly, with G = ® and general 1,
we prefer to write Cy (K, E) instead of Cg (K, E). Then we have

) 1 e
(36) Cqs,w(K,E)—n/a;((E) (o)
and by specializing (22) and (23) we get
; L o),
[ sttt = L[ gtlpntup) 7R

LU ey o)
- n/aKg< o) e d

for any bounded Borel function ¢g : S"~! — R. Here we used
(37) Gil(pr(u),u) = dlpx (wu)pr (u)" .
If we also choose 1 = 1 and write 5¢(K, E) instead of Cy(K, E), we obtain

Col.B) =+ | ol
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the general dual Orlicz curvature measure introduced in [24], and in particular we see that

(39) | oG = 5 [ gtartu)o(rupnonu) du

n

1
. /8 () 6@) v o)

n
as in [24, Lemma 3.1].

Note that when G = @ is given by (17), we have Vg(K) = V4(K) as in (18), in which case
Gi(px(u),u) = —d(px (u)u)prx(u)"! and hence 6’5#}([(, E) = —6’¢7¢(K, E). Comparing (21)
and (22), and using (37), we see that

(39a) — /S"—l g(u) dé’@w(K, w)

[ ot dCa (5.0

Taking ¢(x) = |z|9 " pg(x/|x|)" ", for some Q) € S7, and ¢ € R, and ¥(t) =7, p € R, from
(36) we get Cy (K, E) = Cpo(K,Q, E), where

Coat.QB) = 1 [ (o) o e

o) e
(39Db) /quw(hK(u))dchifﬁ )

n

is the (p, ¢)-dual curvature measure of K relative to () introduced in [21, Definition 4.2]. The
formula [21, (5.1), p. 114] or the preceding discussion show that for any bounded Borel function
g:S" ! = R, we have
~ 1 ~ o
@) [ g Gk Qe = [ gle(w) huclar(u) ? picu)? polu) .
Sn— Sn—

n

4. GENERAL VARIATIONAL FORMULAS FOR RADIAL ORLICZ LINEAR COMBINATIONS

Our main result in this section is the following variational formula for ‘7@ where Gy(t,u) =

OG(t,u) /L.

Theorem 4.1. Let G and Gy be continuous on (0,00) x S™ ! and let K,L € S,
(1) If o1,02 € Z and (p1);(1) > 0, then

VoK) = Vo(K) 1 / C%W»
41 lim = —= u) G u),u) du,
T D Joe s 7\ el ) () Gl )
where K. = K+,.L € 8" has radial function p. given by (10). For ¢y, ¢y € D, (41) holds
when (¢1),.(1) <0, with (v1);(1) replaced by (¢1),.(1).
(i) Let a € RU{—00}. If ¢ € T, and ¢’ is continuous and nonzero on (0,00), then for
g€ (s,

. V(K. —Ve(K) g(u) Gy(px (1), u)
o ‘/ o o) °

u’
e—0 g
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where K. € 82y has radial function p. given by (7) with fy = pk.
Proof. (i) By (16),
(42) lim Va(Ke) — Va(K) — lim G(p:(u),u) — G(px(u),u)

e—0t 5 e—=0t Jgn—1 £

Also, by (11),
G(pf(u)7 u) — G(pK(u)7 u)

du.

pe(u) — pr(u)

e:lif(l;Er £ - Gt (pK<U>, U) ezlif(I)1+ £
B 1 pr(u)
- <@1>;<1>*”2(pf<<u>) prlGilpic. v

where the previous limit is uniform on S™"~!'. Therefore (41) will follow if we show that the
limit and integral in (42) can be interchanged. To this end, assume that ¢, s € Z and
(1);(1) > 0; the proof when ¢y, s € D and (¢1),.(1) < 0 is similar. If p;(u) = pg(u)L:l, it is
easy to see from (10) that px < p. < p; on S"! when € € (0,1). Since G; is continuous on
(0,00) x S™1,

sup{|Gy(t,u)| : pr(u) <t < pi(u), u € S" '} =my < co.
By the mean value theorem and Lemma 2.2(i),

G(pa (u)v u) B G(pK (u)v u)
S

<m2

for 0 < e < 1. Thus we may apply the dominated convergence theorem in (42) to complete
the proof.
(ii) The argument is very similar to that for (i) above. Since

VolRe) = Vo) _ [ S0 -G,

(43) lim

e—0 £ e—0 g

we can use (12) instead of (11) and need only justify interchanging the limit and integral
in (43). To see that this is valid, suppose that ¢ € J, is strictly increasing; the proof is
similar when ¢ is strictly decreasing. Then there exists 9 > 0 such that for € € (—¢&¢,&0) and
u € S™1, we have

0 < ba(w) = 9™ (¢ (prc(w) — coms) < () < 971 (9 (prc(u)) + 2omy) = ba(u) < 0,
where m3 = sup,cgn-1 |g(u)| < oo due to g € C(S™1). Since G, is continuous on (0, 00) x S" 1,
sup{|Gy(t,u)| : by(u) <t < by(u), u € S" '} =my < oco.

By the mean value theorem and Lemma 2.2(ii),

G(ﬁs (u)7 u) — G(pK(u)7 u)

<m5
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for —eg < & < g9. Thus we may apply the dominated convergence theorem in (43) to complete
the proof. 0

Recall that V, and V; are defined by (18) and (19), respectively. Note that when G = @ or
D, Gy(t,u) = +¢(tu)t" ! is continuous on (0, 00) x S"~! because ¢ is assumed to be continuous.
The following result is then a direct consequence of the previous theorem.

Corollary 4.2. Let ¢ : R"\ {o} — (0,00) be a continuous function and let K,L € SY,.
(i) If 1,02 € Z and (1);(1) > 0, then

Vg (K) = Vy(p:)

(44a)

lim

P K (u)u) oo pi(u) () du = { =70 <
gy (PR Jar AP () IAGEAG)

where p. is given by (10), provided ® (or ®, respectively) is continuous. For ¢y, ps € D, (44a)
and (44b) hold when (¢1).(1) < 0, with (¢1);(1) replaced by (p1).(1).

(i) Let a € RU{—00}. If ¢ € J, and ¢ is continuous and nonzero on (0,00), then for all
g€C(S™),

() prc )" iy el
Prlu)u) pgll - e—0 9
o Pl W= Ty 6y S v k)

)

lim
e—0 g

where p. is given by (7) with fo = pk.
Formulas (44a) and (44b) motivate the following definition of the general dual Orlicz mized

volume Vy (K,L). For K,L € S, continuous ¢ : R™\ {o} — (0,00), and continuous
¢ :(0,00) = (0,00), let

V _1 W pr(u) W du
(45) Vooltt 1) =1 [ olprture( 245 ) pitua
Then (44a) and (44b) become
(i) | VoK) = Vlp.)
e . n e—0t €
Pl BT i) V) - V()
n e—07t €

The special case of (44a) and (44b) when ¢ = 1 was proved in [6, Theorem 5.4] (see also [28,
Theorem 4.1]) and the corresponding quantity %W(K , L) was called the Orlicz dual mized
volume.

On the other hand, Corollary 4.2(ii) suggests an alternative definition of the general dual
mixed volume. For all K € S8, g € C(S™!), continuous ¢ : R™\ {0} — (0,00), and
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continuous ¢ : (0,00) — (0, 00), define

(46) Voo (K. 0) = - [ Slox () ol (1) 9w

Then the formulas in Corollary 4.2(ii) can be rewritten as
Vo(K) = Vy(pe)
Vool o) = 477 o

where @o(t) = nt" 1 //(t). In particular, one can define a dual Orlicz mixed volume of K and
L by letting g = ¢(pr), where ¢ : (0,00) — (0, 00) is continuous and L € S, , namely

VoK, D) =2 [ b(pr(w)n) olox (w) ¥(pn(w)) du.

n Sn—1

Note that both ‘N/¢7@(K, L) and V, (K, g) are special cases of Ve (K), corresponding to

setting
Gltu) = %qb(tu) - (”LT(“)) "
G(t,u) = ~o(tu) (1) g(u),

respectively.

5. GENERAL VARIATIONAL FORMULAS FOR ORLICZ LINEAR COMBINATIONS

We shall assume throughout the section that 0 C S"~! is a closed set not contained in any
closed hemisphere of S"~!.

Let hg, po € CT(Q2) and let h. and p. be defined by (7) with fo = hg and fo = po, respectively.
In Lemma 2.2(ii), we may replace px by hg or py to conclude that h. — hg and p. — po
uniformly on €. (In Section 2, h. and p. were denoted by ﬁe and p., but hereafter we omit
the hats for ease of notation.) Hence [h.] — [ho] and (p.) — (po) as € — 0. However, in order
to get a variational formula for the general dual Orlicz volume, we shall need the following
lemma. It was proved for ¢(t) = logt in [13, Lemmas 4.1 and 4.2] and was noted for *, p # 0,
in the proof of [21, Theorem 6.5]. Recall from Section 2.2 that S™ 1\ 1;,,) is the set of regular
normal vectors of (py) € KT,.

Lemma 5.1. Let g € C(2), let po € CT(Q), and let a € RU{—o0}. Suppose that ¢ € T, is
continuously differentiable and such that ¢’ is nonzero on (0,00). For v € S™ '\ 1,

(48) hm ]'Og h(ﬂe) (U) - ]'Og h<PO> (U> _ g(Oé<p0>* (U))

0 £ P0(C(p0)+ (V) ' (Po ()= (V)
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where p. is defined by (7) with fo = po. Moreover, there exist §, mg > 0 such that
(19) 1108 ) (v) — 108 Ay (0)] < mole]
fore € (=6,8) and v € S*L.

Proof. We shall assume that ¢ € J, is strictly increasing, since the case when it is strictly
decreasing is similar. Since g € C'(2), we have m; = sup,.q |g(u)| < co. Then there exists
dp > 0 such that for € € [—dp, 6] and u € Q,

0 <™ (¢ (po(w)) = doma) < pe(u) < =" (¢ (po(u)) + doma)
and inf,cq |¢'(p-(u))] > 0. For u € Q and € € (—do, do), let
H,(¢) = log p(u) = log (¢~ (p(po(u)) + £ g(u))) ,

from which we obtain

Con g(u)
B = e o)

By the mean value theorem, for all u € 2 and ¢ € (—dy, &), we get
Ha(e) — H,(0) = ¢ H(02),
where 6 = 0(u, ) € (0,1). In other words,
g(u)
Poue)e (W) P (Po(ue) (1))

(50) log pe(u) —log po(u) =€

for u € Q and ¢ € (—do, do).
Let v € S™ 1\ ). If € € (=00, o), there is a u. € Q such that for u € Q,

(51) hipoy (V) = (ue,v)pe(ue), Iy (V) = (u, v)pe(u),

Ry (V) = (Ue, V) pipg) (ue), and pipe)(ue) > po(ue).
Moreover, (u.,v) > 0 for € € (—dp, o). Hence, using the equation in (51), the inequality in
(51) with u = u,, and (50) for u = u., we get

log h(pe)<v) — log h(po)(v) < log pa(us) — log pO(“a)
g(ue)
Po(u,e)e (Ue) ' (Po(ue e)e (Ue))
From the equation in (51) with ¢ = 0, the inequality in (51) with u = g, and from (50) with
u = ug, we obtain
log p.y (v) —1og hpy (v) = log ) (v) — log po(uo) — log{uo, v)
> log p=(uo) — log po(uo)
9(uo)

(53) = ¢ :
Po(uo.e)e(U0) ' (Po(uo )= (o))
Exactly as in [13, (4.7), (4.8)], we have ug = a7, (v) = o(p,)~(v) and lim._,ou. = uo. Since

Po)
g is continuous and u. — ug, we get g(u:.) — g(ug) as e — 0. From 6(-) € (0,1) it follows

(52) = ¢
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that 0(-)e — 0 as e — 0. Moreover, pp)e(u:) = ¢ (@(po(ue)) + 0(-)eg(u:)) — po(uo) and,
similarly, pg(.)s(to) = po(ug) as € = 0. Thus we conclude that

1 108545, (v) — log gy (v) _ 9(uo)
=0 € po(uo) ¢ (po(uo))
Substituting uo = a7, ,(v), we obtain (48).

If &y is sufficiently small, then (52) and (53) imply that if v € ™71\ 1, then

g(u)
log hyyy(v) —log hpey (V)| < |e|  sup = molel,
| (o) <p0>( )| weQ, 6€0,1] Pes(u) @'(Pas(u)) ’ ‘

say, for some my < co. From this, we see that (49) holds for v € "'\ 7, and hence, by
(13) and the continuity of support functions, for v € S™~1. O

Lemma 5.2. Let g € C(), let ho € CT(Q), and let a € RU{—o0}. Suppose that ¢ € T, is
continuously differentiable and such that ¢ is nonzero on (0,00). If G and G, are continuous
n (0,00) x S"7! then

s DTl ol (sl ),
Bl : — 2 (ol (0)) )
where h is given by (7) with fo = ho, and for ¢ sufficiently close to 0, k. = 1/h. and

(55) J(&,u) = pieoye (w) Gilpuoy (u), u).

Proof. Let p(t) = p(1/t) for all t € (0,00). Clearly g € J,. Also, for t € (0,00), we have
P (t) = —t72¢/(1/t). Hence P satisfies the conditions for ¢ in Lemma 5.1. It is easy to check

that

fe(u) =77 (@ (ro(u)) + eg(u)),
that is, k. is given by (7) when ¢ and fy are replaced by ¥ and k. By (48), with p. and ¢
replaced by k. and B, respectively, for sufficiently small |e], we obtain, for u € S™ 1\ 7(.,,

lim 10g p(.)+ (1) — 10g pug)- (u) — lim log M.y (u) —10g Aoy (1)

e—0 £ e—0 IS

9oy (1))
Ko (o) (1)) B (Ko (o)~ (1))
K0 (g (1)) G~ ())'

(56) =
90’( 0(fey- ()71
Moreover, comparing (49), there exist 0, mg > 0 such that
(57) | log h(m)(”) — log h(no)(u” < m0|8|
for e € (—6,9) and v € S" L.
Note that
dG(piey+(u), d d
) LAY ) L g () = (o) L g ()
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By our assumptions, there exists 0 < §; < 6 and m; > 0 such that |J(e,u)| < m, for
e € (=01,6;) and u € S"L. Tt follows from (57), (58), and the mean value theorem that, for
e € (—=6;,01) and u € S"1,

‘ G(ﬂ(m)* (u)v u) - G(ﬂ(feo)* (u)v u)

< moms;.

From (6), we know that [h.] = (kc)*, so (ko)* — (ko)* as e — 0. By the dominated convergence
theorem, (56), and (58), we obtain

iy L) Vel _ | oty (W), 1) = Glppegy- (w)0)
e—0 £ e—0 gn—1 £
_ / lim G(ﬂ(m)* (u)v u) - G(ﬁ(no)* (u)7 u) du
gn—1 e—0 £

Uu,

_ 0o} (1)) g () (1))
/S"—l\m 70 ¢ (Ko@) (1)) 1) !

where we have used the fact that H" (1) = 0 by (13). O

KQ)

The next theorem will be used in the proof of Theorem 6.4. It generalizes previous results
of this type, which originated with [13, Theorem 4.5]; see the discussion after Corollary 5.5.

Theorem 5.3. Let g € C(Q), let hy € CT(R2), and let a € RU{—o0}. Suppose that ¢ € T, is
continuously differentiable and such that ¢ is nonzero on (0,00). If G and G, are continuous
n (0,00) x S"7! then

(59) - Va((he) = V(o))

e—0 g

—n [ glu)aCo(lhal. ).
0
where h. is given by (7) with fo = ho, and ¥(t) =t (t).
Proof. Tt follows from [13, p. 364] that there exists a continuous function g : S"~! — R, such
that, for u € S"\ 1.0
9( gy (1) = (Fla)(wg)- (u)-

Using this, kg = 1/ho, the relation (ko)* = [ho] given by (6), (14), (55) with e = 0, H (7o) = 0
from (13), and (22), the formula (54) becomes

T ~Tall) [ o)) paa) il

1111 - /

sty ol () @ (ho(o) (1))
/ (G10) (@po) () prao) (1) Gi(pipo) (), )
gn-1 U (ho(apm,)(w)))

- n/Qg(u) dCoy([ho, ),

du

e—0 g

du
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where we also used the fact that
Rino] (Qngy (1)) = ho(angy(w))  for H™ '-almost all uw € S*71.

To see this, note that for H" *-almost all u € S" !, we have ap(u) = Vi) (ppe)(w)u) and
Piho] (w)u is a regular boundary point of [ho]. The rest is done by the proof of Lemma 7.5.1 in
22, p. 411], which shows that if 2 € O[hg] is a regular boundary point, then A, (Vn(x)) =

U

ho(Ving) (7))

Remark 5.4. It is possible to extend the definition (16) of the general dual volume Vg (K)
by allowing continuous functions G : (0,00) x S"~! — R. In this case, of course, 17@([( ) may
be negative, but the extended definition has the advantage of including fundamental concepts
such as the dual entropy E (K) of K. This is defined by

B() =+ [ lompx(wd

n

corresponding to taking G(t,u) = (1/n)logt in (16). Definition 3.1 of the measure 5@0 and
the integral formulas (22) and (23) remain valid for continuous functions G : (0, 00) x S"~! —
R, as do Theorems 3.2, 4.1, and 5.3, as well as Theorem 5.6 below.

Theorem 5.3 and its extended form indicated in Remark 5.4 may be used to retrieve the
formulas in [21, Theorem 6.5, which in turn generalize those in [13, Corollary 4.8]. To see
this, let K, L € Kf, and let o(t) = t?, p # 0. Setting hg = hx and g = hY, we see from
(7) with fo = hg that [h.] = K¥,¢e- L, the L, linear combination of K and L. Taking
G(t,u) = (1/n)t? po(u)"~?, for some Q € 87, and g # 0, where ¢ > 0 and u € S"~!, we have
Va(K) = V,(K,Q) as in (20). With © = S" ' and ¢(t) = t¢/(t) = pt?, and using (22) and
(40), we obtain

n /Q o(w) dC u([hol, ) = n /S by (K )

= L (et ot

np Jsn-r \hic(ax ()
= 1 b dCy(K. Q)
D Jgn—1
Thus (59) becomes
iy P BRI 8 [ G (.Q. )
e— gn—1

the formula in [21, (6.3), Theorem 6.5] (where +, is denoted by +,; in our usage, the two are
equivalent for p > 1, when h. above is a support function). Next, we take instead ¢(t) = logt
and g = loghy, noting from (7) with fy = ho that [h.] = K¥F¢e - L, the logarithmic linear
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combination of K and L. Then, again with Q = S"~! and 9 (t) = t©/(t) = 1, an argument
similar to that above shows that (59) becomes

o VB Toe - L,Q) ~ V(K. Q)

e—0 g

= q/ log hL(U) déo,q(Ka Q? U),
Sn—1

the formula in [21, (6.4), Theorem 6.5] (where F¢ is denoted by ).
If instead we take G(t,u) = (1/n)log(t/pg(u)) pg(u)", for some Q € S7,, where t > 0 and
u € S, we have

= 1 P (u) n N
Valt) =1 [ 1o (pQ(u)> polw) du = B(K, Q),
the dual mixed entropy of K and @. Then similar computations to those above show that (59)
(now justified via Remark 5.4) yield the variational formulas [21, (6.5) and (6.6), Theorem 6.5]
for E(K,Q).

The following corollary is a direct consequence of the previous theorem with G = ® or @,
and (39a) and (39b) with ¥ (t) = t¢'(t). When ¢(t) = logt, it was proved in [24, Theorem 4.1].

Corollary 5.5. Let g € C(2), let hg € C1(Q), and let a € RU {—o0}. Suppose that ¢ € T,
is continuously differentiable and such that ¢' is nonzero on (0,00). If ¢ : R™\ {0} — (0,00)
and ® (or ®, as appropriate) are continuous, then

n g(u> ~ ) — e—0 I
o J o iy e V(A ~ Vil

where h. is given by (7) with fo = ho.

The following version of Theorem 5.3 for Orlicz linear combination of the form (8) can be

proved in a similar fashion. We omit the proof. Recall that Cg([hy],-) = 6G,¢([h1], -) when
1 =1, as in Definition 3.1.

Theorem 5.6. Let hy,hy € CT(Q) and let 1,02 € T or p1,2 € D. Suppose that for
i =1,2, ¢; is continuously differentiable and such that ¢, is nonzero on (0,00). If G and G,
are continuous on (0,00) x S"7! then

GllD ZVallud _ o (1) i,

lim = —
0+ € o (

where h. is given by (8) with hx and hy, replaced by hy and ho, respectively.

Again, the following corollary is a direct consequence of the previous theorem with G = ®
or @.
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Corollary 5.7. Let hy, hy € CT(Q) and let 1,92 € T or 1, 2 € D. Suppose that fori = 1,2,
i is continuously differentiable and such that o5 is nonzero on (0,00). If ¢ : R"\{o} — (0, 00)
and & (or ®, as appropriate) are continuous, then

-  Vullm)) ~ Va(lh)
n 2lU =~ - e—0t £
w—m/*p(h—w) Aol =" "y ) — v, ()

lim ,
e—0t+ £

where h. is given by (8) with hx and hy, replaced by hy and hs, respectively.

6. MINKOWSKI-TYPE PROBLEMS

This section is dedicated to providing a partial solution to the Orlicz-Minkowski problem
for the measure Cg (K, -).

Lemma 6.1. Let G : (0,00) x S" ! — (0,00) be continuous. If K; € K&, i € N, and
K, — K¢ ICE‘O) as i — 0o, then lim;_, . vg(Ki) = vg(K).

Proof. Since K; — K € ICFO), px; — px uniformly on S"~!. By the continuity of G, we have
lim; oo G(px,(u),u) = G(pr(u),u) and sup{G(pg,(u),u) : i € Nyu € S"1} < oo. It follows
from the dominated convergence theorem that

lim Vg(K;) = lim G(pk,(u),u) du = /s lim G(px, (u), u) du = Vg(K).

1—00 =00 Jon—1 n—1 1—00

O
Proposition 6.2. Let G and G; be continuous on (0,00) x S"71 let ¢ : (0,00) — (0,00) be
continuous, and let K € IC?O). The following statements hold.
(i) The signed measure 6G7¢(K, -) is absolutely continuous with respect to S(K,-).
(ii) If K; € Ky, i €N, and K; — K € K{, as 1 — oo, then Cgﬂp({{i, ) — C’Gw(K,N-) weakly.
(iii) If Gy > 0 on (0,00) x S™! (or Gy < 0 on (0,00) x S"71), then Cq (K, ) (or —Cay(K,-),
respectively) is a nonzero finite Borel measure not concentrated on any closed hemisphere.

Proof. (i) Let E C S™! be a Borel set such that S(K,E) = 0. If g = 1g, the left-hand

side of (22) is Cg (K, E). This equals the expression in (23), in which we observe that since
K € Kf,, for z € 9K both |z[ and (z, vk (z)) = hi(vk(z)) are bounded away from zero and
bounded above, and hence our assumptions imply that

pi(T) Gi(px (2), T) (, vi (r))
(2, vie (x))) |
where 7 = z/|x|. Then from (22) and (23) we conclude, using (3), that

= ¢ < 00,

r€OK

‘ngKE <c / Ydr = cH" (v (E)) = c¢S(K,E) = 0.
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(ii) Let g : S"' — R be continuous and let
pi(u) Gilpx (u), v)

I (u) = glax(u
be the integrand of the right-hand side of (22). Suppose that K; € /C?O), ieN and K; —» K €
IC?O). By [13, Lemma 2.2], ax, — ax and hence, by the continuity of G; and the continuity

of the map (K, u) — hx(u) (see [22, Lemma 1.8.12)), I, — Ix, H" '-almost everywhere on
S™=1. Moreover, our assumptions clearly yield sup{Ig,(u) : i € N,u € S" '} < co. It follows
from (22) and the dominated convergence theorem that

/ g(u) dCo (K, u) — g(u) dCoq (K, u)
Sn—l Sn—l

as i — 00, as required.
(iii) Suppose that G; > 0 on (0,00) x S™!; the case when G; < 0 on (0,00) x S"! is
similar. Let m = min,epx Ji (), where
_ (7)) Gilpk (), 7) (2, vi (2))
JK(QT) = - s
(2, vie(2))) ||
and = z/|z[. Since K € KT,), our assumptions imply that m > 0. By (22) and (23),

/ (u,v) 4 dCq (K, v) = / (u, v (2)) 4 T (2) da
gn—1 oK

x € 0K,

> m [ (u,vg(x))yde=m (u,v)+ dS(K,v) > 0,

oK Sn-1
because S(K,-) satisfies (4). This shows that ég’w(K, -) also satisfies (4). O

In view of Proposition 6.2(iii), one can ask the following Minkowski-type problem for the
signed measure Cg (-, ).

Problem 6.3. For which nonzero finite Borel measures p on S™' and continuous functions
G : (0,00) x S™1 — (0,00) and ¢ : (0,00) — (0,00) do there exist T € R and K € K,y such
that =7 Cgp(K,-)?

It follows immediately from (24), on using [21, (2.2), p. 93 and (3.28), p. 106], that solving

Problem 6.3 requires finding an i : S"~' — (0,00) and 7 € R that solve (in the weak sense)
the Monge-Ampere equation

(61) J = P(Vh+ ) det(V?h + hI) = f.

O
where P(z) = |z|'™"G,(|z|,z) for € R". Here f plays the role of the density function of
the measure p in Problem 6.3 if y is absolutely continuous with respect to spherical Lebesgue
measure. Formally, then, Problem 6.3 is more difficult, since it calls for A in (61) to be the
support function of a convex body and also a solution for measures that may not have a

density function f.
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To see that (61) is more general than (1), note firstly that the homogeneity of the left-
hand side of (1) allows us to set 7 = 1, without loss of generality (if p # ¢, which is true
in the case p > 0, ¢ < 0 of particular interest in the present paper). Let p,q € R and let
Q€S8 Fort>0andue S™!, weset (t) =t? and G(t,u) = (1/¢q)t9pg(u)"~, if g # 0,
and G(t,u) = (logt)pg(u)™, otherwise. (When ¢ < 0, we have G : (0,00) x S"! — R and
Remark 5.4 applies.) Then, using the fact that pg is homogeneous of degree —1, we have
P(z) = pg(x)"9, for ¢ € R and z € R™ \ {o}. Therefore (61) becomes

WP || Vh + by det(V2h + hI) = f,

where || - ||[o = 1/pg is the gauge function of (). Note that || - || is an n-dimensional Banach
norm if () is convex and origin symmetric.

Our contribution to Problem 6.3 is as follows. For the statement and proof of the result,
we define

Y.(v) ={ue S (u,v) > e}
for v e S" ! and e € (0,1).
Theorem 6.4. Let 1 be a nonzero finite Borel measure on S"~! not concentrated on any closed

hemisphere. Let G and Gy be continuous on (0,00) x S™* and let Gy < 0 on (0,00) x S"~1.
Let 0 < g9 < 1 and suppose that for v € S"1,

(62) lim G(t,u)du = o0 and lim G(t,u)du = 0.

t—0+4 260 (v) t—o0 gn—1

Let 1) : (0,00) — (0,00) be continuous and satisfy

(63) [m¢§)

Then there exists K € lC?O) such that

Cop (K,
|M| Ca w(K S”_l)
Proof. Note that the limits in (62) exist, since ¢ — G(t,u) is decreasing. Define

w

(65) >0,
and
(66) a:—/‘ﬁ?dseRU{ﬂm}

Then, by (63), (65), and (66), ¢ € J, is strictly increasing and continuously differentiable
with t¢'(t) = 1(t) for t > 0; the latter equality implies that ¢ is nonzero on (0, 00).
For f € CT(S™1), let
1

(67) F(f) =

o L et duu,
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and for K € Kf,), define F(K) = F(hy). We claim that
(68) a:inf{F(K) Va(K) = |y andKEIC?O)}

is well defined with o € RU {—o00} because there is a K € Kf, with Ve(K) = |u|. To see
this, note that

Ve(rB") = G(r,u) du > / G(r,u)du

Sn—1 Yeg (v)

for any v € S"!. Then (62) yields Vg(rB") — oo as r — 0, and Vg(rB") — 0 as r — .

Since 7 — Vg(rB") is continuous, there is an 7o > 0 such that Vg(rgB") = |u|. It follows
from (68) that « € RU {—o0}.
By (68), there are K; € KT,), ¢ € N, such that Ve(K;) = || and

(69) Zlgglo F(K;) = a.
We aim to show that there is a Ky € Kf,) with ‘7(;([(0) = |u| and F(Ky) = a.

To this end, we first claim that there is an R > 0 such that K C RB", i € N. Suppose on
the contrary that sup;cy R; = 0o, where R; = max,cgn-1 px=(u) = px=(v;), say. By taking a
subsequence, if necessary, we may suppose that v; — vy € S" ! and lim;_,., R; = 0o. There
exists 49 € N such that |v; — vg| < €9/2 whenever i > iy. Hence, if u € ¥ (v9) and i > iy,
then (u,v;) > g¢/2. It follows that for u € ¥ (vg) and ¢ > iy, we have

hics(u) > prer(vi){u, vi) = Riu, vi) > Rigo/2

and therefore
ul = / 1G<pKi(U),U)d“:/ Gl (w) ™ ) du
Sn— Sn—

> / G(hKf(u)_l,u)dUZ/ G2/ (Rizo), u) du — o0
250 (’Uo) ZEO ('UO)

as ¢ — 0o. This contradiction proves our claim.

By the Blaschke selection theorem, we may assume that K — L for some L € K". Suppose
that L ¢ Kf,). Then o € JL, so there exists wy € S™ such that lim;_ b (wo) = hi(wo) =
0. Since |p] > 0 and p is not concentrated on any closed hemisphere, there is an ¢ € (0, 1)
such that p(X.(wg)) > 0. Let v € X (wy). Since

1
0 < pg:(v) < hics (wo) < ghK; (wo) = 0

(v, wp)
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as i — o0, it follows that pg: — 0 uniformly on ¥ (wp). As Ve(K;) = |p| and K € RB™,
using (5), (67), (68), and (69), we obtain

1
@ = B PO =lm gy | e e @)™) dut)
.. 1 _
> liminf — [ ¢ (px:(w)7Y) dp(u) + — @ (1/R) dp(u)
100 ’M| Se (wo) W’ Sn=1\%, (wo)
(e (wo)) u(S" 7\ X (wo))

" lim inf min {¢ (pK;(u)fl) tu € Be(wo) } + M

This is not possible, so L € /C(LO).
Let Ko = L* € lC?O). Then K; — Ky as ¢ — oo in IC?O). Hence, hg, — hg, > 0 uniformly
on S™!. The continuity of ¢ ensures that

¢ (1/R) = 0.

sup{|p(hg,(u))| :i € Nyu € S*'} < oo.
Now it follows from (67), (69), and the dominated convergence theorem that

(70) a = lim F(K;) lim o (h, (u)) dp(u) p(hicy(u)) du(u) = F(Ko).

11— 00 - m Sgn—1 1—00 - m Sn—1

Also, by Lemma 6.1, we have Vg (Ky) = |u], so the aim stated ecarlier has been achieved. It
also follows from (70) that o € R.

We now show that K satisfies (64) with K replaced by Ky. Due to ¢ € J, and f > hp,
one has F(f) > F(hy) = F([f]) for f € CT(S™1). By (70),

(71) F(hi,) = F(Ko) = a = inf{F(f) : Vo([f]) = |u| and f € C*(S" ")}

Let g € C(S™1). For u € S"! and sufficiently small €1,&5 > 0, let he, ., be defined by (7)
with fy and g replaced by hg, and ;g + €, respectively, i.e.,
(72) h81,€2 (u) = (70_1 (Qp(hKo (u)) + Elg(u) + 52) :

Then for sufficiently small ¢, we have

heytee (W) = 071 (p(hey oy (0) + £g(u))
and
heyesre(U) = 070 (P(hey e (w)) +€)-
The properties of ¢ listed after (66) allow us to apply (59), with Q = S™~! and with hy and
he replaced by h., ., and h. 4. ,, respectively, to obtain
) L) — i Velms) = Tolhe )

Oeq e—0 €

= n/ g(u) déG,zp([heh@]v u)
Sn—l

and with g, hy, and h. replaced by 1, h., ., and h., .,+c, respectively, to yield

o ~

(74) a_@VG([hffl,Ez]) = n/sn1 1 d5G7¢<[h€1,€2]7 u) = né@ﬂﬁ([hﬂﬁz]v Snil) 7£ 0.
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Since [h, -,| depends continuously on €1, ¢ and in view of Proposition 6.2(ii), (73) and (74)
show that the gradient of the map (1, 2) — Vi([he, -,]) has rank 1 and depends continuously
on (e1,&5), implying that this map is continuously differentiable. Hence we may apply the
method of Lagrange multipliers to conclude from (71) that there is a constant 7 = 7(g) such
that

0

(75) oo (Flheyes) 708 Ves(hey ) —logluh) | =0

and

(76) O (P, ) + 7108 Vollher ) ~Tos i) | =0,
Oes De2 ez e1=£2=0

By (67) and (72), we have

2 Flhee)|,_, = %(a <>>+alg<u>+s2>du<u>)
1

o =

and

(78) 9 plh. ) [ ) =1

D2y Y e mea=0 || Jgn

Since Vg(Ko) = |p| and (72) gives hog = hi,, (73) and (74) imply that

0 n ~
(79) log Ve ([hey o)) = g9(u) dCq (Ko, u)
8 €1 e1=e2=0 |/J| gn—1
and
(80) D 1og ¥, ([he, 5] = " Oy (Ko, 8™
a - g Va £1,E2 e1=e9=0 - |/L| G 05 .
It follows from (75), (77), and (79) that
(81) / o(u) du(u) = —nr / g(w) dCl (Ko, u)
Snfl Snfl

and from (76), (78), and (80) that

(82) S—T .

n CGA/,(K(), Sn—l)
In particular, we see from (82) that 7 is independent of g. Finally, (81) and (82) show that
(64) holds with K replaced by K. O

We remark that —ég’w(K ,-) is a nonnegative measure since Gy < 0. Note that (62) holds if
limg oy G(t,u) = oo for u € S" ! and lim;_,o, G(¢,u) = 0 for u € 3. (v). This follows from the
monotone convergence theorem, since ¢t — G(t,u) is decreasing. In order to solve Problem 6.3
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when t — G(t,u) is increasing, one needs to use different techniques and we leave it for future
work [7].
When

= 1 (and hence ¢(t) = logt € J_o), the following result was proved in [24,
Theorem 5.1].

Corollary 6.5. Let u be a nonzero finite Borel measure on S™1 not concentrated on any
closed hemisphere. Let ¢ : R™ \ {o} — (0,00) be continuous and such that ® is continuous on
(0,00) x S"7L where @ is defined by (17). Let 0 < ¢ < 1 and suppose that for v € S™ 71,

(83) bl_l)I(I)l+ Vs (C(v,b,c)) = o0,

where C(v,b,c) = {x € R" : |z| > b and (x/|z|,v) > ¢} and V4(-) is defined by (18). Let
¥ :(0,00) = (0,00) be continuous and satisfy (63). Then there exists K € K, such that

w_ Cou(K.)
|:UJ| C(pﬂ/,(K, Sn_l)
Proof. By assumption, ® is continuous on (0, c0) x S"71, and lim;_,, ®(¢,u) = 0 for u € S"~L.

Hence the second condition in (62) holds with G replaced by ®. Clearly, 0®(t,u)/0t =
—¢(tu)t"t < 0. By (83),

0o = lim V4(C(v,b,¢)) = lim / / (ru)r"tdrdu = lim @ (b, u)du.
b—0+ b—0+ b=0+ /5, (v)

Therefore the first condition in (62) also holds with G replaced by ®. Since 55,¢(K ) =
—C~’¢7¢(K ,+), Theorem 6.4 yields the result. O

Another special case arises if y is a discrete measure on S~ ', that is, p = Y ;" | ¢;0,,, where
¢; >0fori=1,...,m, and vq,...,v,, € S" ! are not contained in any closed hemisphere.
Let G and 9 be as in Theorem 6.4. Then there exists a polytope P € IC?O) such that

o Cou(P)

|:u| é(;,d,(P, Sn_l).

To see this, note that Theorem 6.4 ensures the existence of a K € /C(‘O) such that (64) holds.
Since p is discrete, we obtain

éG,w(Ka ) = Z éidvm
=1

where ¢; = 5’G,¢(K, S He;/|lpl < 0 for e = 1,...,m. Proposition 6.2(i) shows that there is a
measurable function g : S"! — (—o0, 0] such that

> () = [E g(u) dS(K, u)
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for Borel sets F C S"'. Hence S(K,-) is a discrete measure and [22, Theorem 4.5.4] implies
that K is a polytope.

7. DuAL ORLICZ-BRUNN-MINKOWSKI INEQUALITIES

Let @, be the set of continuous functions ¢ : [0,00)™ — [0, 00) that are strictly increasing
in each component and such that ¢(0) =0, ¢(e;) =1 for 1 < j < m, and lim,_,, ¢(tz) = 00
for z € [0,00)™ \ {0}. By ¥,, we mean the set of continuous functions ¢ : (0, 00)"™ — (0, c0),
such that for z = (zy,...,2,,) € (0,00)™,

(84) QD(I) = 900(1/x17"'71/xm)
for some @y € ®,,. It is easy to see that if ¢ € WU,,, then ¢ is strictly decreasing in each
component and such that lim; o p(tx) = co and lim;_,, p(tx) = 0 for x € (0, 00)™.

Let Ki,...,K,, € 8" and let ¢ € ®,, UWV,,. Define +,(K1,...,K,) € S, the radial

Orlicz sum of Ky, ..., K,,, to be the star body whose radial function satisfies
(85) gp( pralt) - pra(v) ) ~1
PY (Ki,.., Km)(u) P, (Ki,.., Km)<u)
for u € S"~'. It was proved in [6, Theorem 3.2(v) and (vi)] that if ¢ € ®,,, then
(86) P (K i) (W) > pr; () for uw € s
Together with (84) and (85), this implies that if ¢ € U,,, then
(87) T (Kot (W) < iy (w)  for ue S
For each 0 # ¢ € R and ¢ € ®,, UV,,, let
(88) @q(T) = @(x}/q, /L ,x:,{q> for v = (z1,...,2m) € (0,00)™.

Then (85) is equivalent to

P, (1) ' P, (1) Al
(89) %<<P$¢(Kl ..... Km)(u)) (p;,,(m ~~~~~ Km>(“)> ) o

For t € (0,00) and u € S"71, let

(90) Gyt u) =
The proof of the following result closely follows that of [6, Theorem 4.1].

Theorem 7.1. Let m,n > 2, let p € ,,UV,,, let K1,..., K, € 8", let G : (0,00) x S"~! —
(0,00) be continuous, and let v, and G, be defined by (88) and (90). Suppose that @, is convexr
and either ¢ > 0 and G4(t,-) is increasing, or ¢ < 0 and G(t,-) is decreasing. Then

~ 1/q ~ 1/q
o) 13 <~ V() ) (~  Vo(Ky) )
Va(+o(K, ..., Kp)) Va(+o(Kq, ..o, Kp))
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The reverse inequality holds if instead @, is concave and either ¢ > 0 and G,(t,-) is decreasing,
or g <0 and Gy(t,-) is increasing.

If in addition @, is strictly convex (or convex, as appropriate) and equality holds in (91),
then K, ..., K,, are dilatates of each other.

,,,,,

(92) dp(u) = = : du.

Suppose that ¢ € ®,,, ¢ > 0, and G,(t,) is increasing. By (89) and Jensen’s inequality [6,
Proposition 2.2] applied to the convex function ¢,, similarly to the proof of [6, Theorem 4.1],

we have
q q
pre, (u) Pr,, (1)
1 = / @ e dp(u)
gno1 0 ( (PTW(KI ..... Km)(u)> (le(Kl ..... Km)<u)

pKI(u)q me(u)q
S *”</ e [ d’“‘“”)'

.........

Since ¢ € ®,, and ¢ > 0, ¢, is strictly increasing in each component. According to (86) and
the fact that G,(t,-) is increasing, we have

(94)

-----

for j =1,...,m. Using (92), we obtain

Vo (K;) B 1 o
‘7G(I_¢(K1’ T 7Km)) a ‘7G<I‘¢<K1, Ce ,Km)) /Sn—l G(pKJ< )7 )d
1 / PK; (u)? G(PIW(KI 77777 Km)(u),u)
Va(To(KL, ..., K)) Jso
= [
S

n=1 PI_(Ki,.., Km)(u)q

du

IN
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for j =1,...,m. Since ¢, is strictly increasing in each component and (93) holds, we get

PK; (u)q PEm (u)q
1 > o / du(u), ... ,/ dp(u)
' ( §1-1 DT (i, o) ()1 1 PE (K ) (W)

..........

@({ V() _ VolK) >
T T\ Ve(FoK, . KR)) T  Va(Fo(K - Ko))

~ 1/q ~ 1/q
(95) ~ <~ _ Ve (K1) > ,...,<~ _ ) ’
Va(+o(Ky, ..., Kp)) Va(+o (K, ..., Kp))

which yields (91).

Suppose in addition that ¢, is strictly convex and equality holds in (91). Then equality
holds throughout (95) and hence in (93). Therefore equality holds in Jensen’s inequality as
used above. Since G > 0, the definition (92) of p shows that its support is the whole of
S"=1. Then, exactly as in the proof of [6, Theorem 4.1], we can conclude that K, ..., K,, are
dilatates of each other.

This proves (91) and the implication in case of equality when ¢ € ®,,, ¢ > 0, and G, (¢, ) is
increasing. The other cases are similar, noting that if ¢ € ¥,,, we can use (87) instead of (86),

and if ¢, is concave, Jensen’s inequality [6, Proposition 2.2] yields the reverse of inequality
(93). O

It is possible to state more general versions of Theorem 7.1 that hold when K, ..., K,, € 8™
Indeed, the definition (85) of the radial Orlicz sum can be modified, as in [6, p. 817], so
that it applies when Ki,..., K,, € 8". Then extra assumptions would have to be made in
Theorem 7.1, analogous to the one in [6, Theorem 4.1] that V,(K;) > 0 for some j, but now
also involving the function G . Note that the stronger assumption that K;,..., K, € &, is
still required for the implication in case of equality, as it is in [6, Theorem 4.1].

Under certain circumstances, equality holds in Theorem 7.1 if and only if Ky,..., K, are
dilatates of each other. One such is given in Corollary 7.2, and it is easy to see that this is
true more generally if G is of the form G(¢,u) = tYH (u), where t > 0 and u € S"~!, for some
q # 0 and suitable function H, since equality then holds in (94). However, it does not seem
straightforward to formulate a precise condition and we do not pursue the matter here.

Dual Orlicz-Brunn-Minkowski inequalities for Vi (-), V,(-) and ‘v/qb,so('v -) follow directly from
Theorem 7.1, once the corresponding assumptions are verified. We shall only state the special
case when G(t,u) = t9pg(u)"~9/n for some @ € S?,. Then, for ¢ # 0, we have

) Tal) = [ Gloxwdu= [ ) polu)tdu =T (K. Q)

Sn—1 n

the gth dual mixed volume of K and @, as in (20).
The following result was proved for ¢ = n and @ = B™ in [6, Theorem 4.1].
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Corollary 7.2. Let m,n > 2, let ¢ # 0, let p € &, UV,,, and let Q, K,...,K,, € Se . If
pq 5 convex, then

~ 1/q ~ 1/q
07 134 <~ V(K@) ) (~ V(K Q) )
‘/;1(+50<K17"‘7Km)7c2) ‘/:1(+30(K17aKm)7Q)

If @4 is concave, the inequality is reversed. If instead 4 is strictly convex or strictly concave,
respectively, then equality holds in (91) if and only if K1, ..., K,, are dilatates of each other.

Proof. The required inequalities and the necessity of the equality condition follow immediately
from Theorem 7.1 on noting that Gy(t,u) = pg(u)"~?/n is a constant function of ¢.
Suppose that Ki,..., K, are dilatates of each other, so K; = ¢;K and hence pg, = cipx

for some K € 8§, and ¢; > 0,7 =1,...,m. Let d > 0 be the unique solution of
C1 Cm
98 (-,...,-):1.
(98) v ¥
Comparing (85), we obtain p7_(x, .k, (u) = dpx(u) for u € S™~1 and hence we have

+,(Ki,...,K,) = dK. From (96), we get %(Ki,Q) = cgf/q(K,Q), i = 1,...,m, and
Vo(Fo(Kiy oo Kin), Q) = d1V,(K,Q). Substituting for ¢;, i = 1,...,m, and d from the
latter two equations into (98), we obtain (97) with equality. O

8. DUAL ORLICZ-MINKOWSKI INEQUALITIES AND UNIQUENESS RESULTS

Let K,L,Q € 82, let ¢ # 0, and let ¢ : (0,00) — (0,00) be continuous. It will be
convenient to define

(99 VoK. 1) = [ o () ot el

Note that this is a special case of the general dual Orlicz mixed volume V;, (K, L) defined
in (45), obtained by setting ¢(x) = |29 "pg(x/|z|)""?. When g = n, (99) becomes the dual
Orlicz mixed volume introduced in [6, 28], and when ¢ = n and @@ = B", the following
result yields the dual Orlicz-Minkowski inequality established in [6, Theorem 6.1] and [28,
Theorem 5.1].

Theorem 8.1. Let K,L,Q € S, let ¢ # 0, let ¢ : (0,00) = (0,00) be continuous, and let
0, (t) = @(tY9) fort € (0,00). If @, is convez, then

~ 1/q
” > Vo(L, Q)
(100) Voo (K, L, Q) = Vo(K,Q) ¢ (Vq(K, Q))

The reverse inequality holds if g is concave. If @, is strictly convex or strictly concave,
respectively, equality holds in the above inequalities if and only if K and L are dilatates of
each other.
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Proof. Let ¢ # 0 and let ¢, be convex. By (96), one can define a probability measure fi by

o) pgw
S TR

Jensen’s inequality [6, Proposition 2.2] implies that

Tk Q) = & [ (2 ot (e

- ) [ (25 di
> ([ (249) )

5 pr() po(w)™ " .
_ vqm,c;)soq(/sn_l nTH(K. Q) d)

~ 1/q
= T(K.Q)e (—;((fig))) ,

where the first and the last equalities are due to (99) and (96), respectively.

Suppose that ¢, is strictly convex and equality holds in (100). Then the above proof and
the equality condition for Jensen’s equality show that pr(u)/pk(u) is a constant for fi-almost
all v € S" ! and hence for H" !-almost all u € S™ 1. Since px and p; are continuous,
pr(u)/px(u) is a constant for u € S"! and so K and L are dilatates of each other.

If instead ¢, is concave, the proof is similar since Jensen’s inequality [6, Proposition 2.2]
also reverses. U

Corollary 8.2. Let K,L,Q € 8%, let ¢ # 0, let ¢ : (0,00) — (0,00), and let p,(t) = (tY/9)
fort € (0,00). Suppose that ¢ is either increasing or decreasing, and that p, is either strictly
convex or strictly concave. Then K = L if either

(101) Vi (B, M, Q) _ VoL, M, Q)
Vo(K, Q) Vo(L, Q)

holds for all M € S, or

(102) Vo (M, K, Q) = Vg o(M, L, Q)
holds for all M € S7, .

Proof. Let ¢ # 0 and suppose that (101) holds for all M € S, . Assume that ¢ is increasing
and ¢, is strictly convex; the other three cases can be dealt with similarly. Taking M = K in
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(101), it follows from (20), (99) with L = K, and (100) with K and L interchanged, that

% =~ 1/q
a03) =R %“LK@—¢<§@@v
Vo(K, Q) Vo(L, Q) V,(L,Q)
Since ¢ is increasing, we get
e 1/q
(101) 1> (w)
Vo(L,Q)

Repeating the argument with K and L interchanged yields the reverse inequality. Hence we
get V,(K, Q) = V,(L, @), from which we obtain equality in (103). The equality condition for

(100) implies that L = rK for some r > 0. This together with V,(K,Q) = V,(L,Q) easily
yields K = L.

Now suppose that (102) holds for all M € S?,. Taking M = K and arguing as above, we
get

(105) (1) Vy(K, Q) = VyolK, K, Q) = Vo (K, L,Q) > V(K. Q) <¥$ED

Therefore (104) holds. Interchanging K and L yields the reverse inequality and hence we have
V(K,Q) =V, (L,Q), giving equality in (105). Exactly as above, we conclude that K = L. 0

Corollary 8.3. Let K,L,Q € S?,, let ¢ # 0, let ¢ : (0,00) — (0,00) be continuous, and let
0, (t) = @(tY9) fort € (0,00). If @, is strictly conver or strictly concave and

(106) Vo (K, M, Q) = Vy (L, M, Q)

for all M € S, , then K = L.

Proof. Let ¢ # 0 and let > 0. Replacing K and L by L and «L, respectively, in (99), and
taking (96) into account, we obtain,

ela) = =
Suppose that ¢, is strictly convex; the case when ¢, is strictly concave is similar. Using
(106) with M = aL, (100) implies that

= 1/q
(107) o(a)Vy(L, Q) = Vyo( Ly aL, Q) = Vo (K, aL, Q) > Vy(K, Q) ¢ | a <“~fz((f( ?;))

Let
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Then (107) reads c?¢p(a) > p(ac). When oo = 1, we obtain

(108) (1) > ().

Repeating the argument with K and L interchanged yields ¢ 9p(a) > ¢(ac™t). Setting a = ¢,
we get ¢ 9p(c) > ¢(1) and hence

(109) Ap(1) < (ce).

By (108) and (109), ¢(c) = ¢?¢(1), which means that

. 1/q ~
(p(m)) AR
Vi(K,Q) Vi(K.Q)

Thus equality holds in (107) when o« = 1. By the equality condition for (100), we conclude
that L = rK for some r > 0. That is, K and L are dilatates of each other.

Suppose that L = rK, where r > 0 and r # 1. Let a > 0. Then (96), (99), and (106) with
M = aK yield

(VoK. Q) = VoK, 0K, Q) = Vo (rK, ak, Q) = p(a/r)r! Vy(K, Q).
Consequently, ¢(rs) = rip(s) for s > 0. Equivalently, setting 5 = r? and ¢ = s?, we obtain
0 (Bt) = Bp,(t) for t > 0, where 5 # 1. But then the points (5™, p,(6™)), m € N, all lie

on the line y = ¢(1)x in R?, so ¢, cannot be strictly convex. This contradiction proves that
r =1 and hence K = L. U

Let K,L € K{). We recall from [5, 23] that for ¢ € (0,00) — (0,00), the Orlicz mized
volume V,(K, L) is defined by
1 hL(U)
11 Vo(K,L) =— h dS(K,u).
(110) i n = [ () e ast

The Orlicz-Minkowski inequality [5, Theorem 9.2] (see also [23, Theorem 2]) states that if
¢ € 7 is convex, then

1/n
(111) Vo(K,L) > Vn(K)¢<(“2:L<<IZ;,))) > .

If ¢ is strictly convex, equality in (111) holds if and only if K and L are dilatates of each
other. When ¢(t) = t, we write V,(K,L) = Vi(K, L) and retrieve from (111) Minkowski’s
first inequality

(112) VAi(K, L) > V,(K)"=D/my (DyYn,

Note that (112) actually holds for all K, L € K", with equality if and only if K and L lie in
parallel hyperplanes or are homothetic; see [3, Theorem B.2.1] or [22, Theorem 6.2.1].

Let o € ZUD and let n € N, n > 2. We say that ¢ behaves like t" if there is r > 0,
r # 1, such that p(rt) = r"¢(t) for t > 0. Of course, if p(t) = t", then ¢ behaves like t", but
there is a ¢ € Z U D that behaves like t" such that ¢(t) # t" for some ¢ > 0. To see this,
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let f(t) = t" and define ¢(t) on [1,2], such that (i) ¢ is increasing and strictly convex, (ii)
o(t) = (1) at t = Land ¢ = 2, (i) (1) = f/(1) and @}(2) = F/(2), and (iv) (1) < £(1)
on (1,2). Then define ¢ on [1/2,1] by ¢(t) = ¢(2t)/2" and on [2,4] by p(t) = 2"p(t/2). It
follows that ¢ is increasing and strictly convex on [1/2,1] and on [2,4], p(t) = f(t) at t = 1/2
and ¢ =4, ¢.(1/2) = ¢l(1)/2"7" = f'(1/2), ¢j(4) = 2"7'¢)(2) = f'(4) and ¢(t) < f(t) on
(1/2,1) U (2,4). Moreover, ¢)(t) = ¢.(t) at t = 1 and t = 2, so ¢ is increasing and strictly
convex on [1/2,4]. Continuing inductively, we define ¢ on [1/2™,2™*1] m € N, and hence on
(0,00), so that it is increasing and strictly convex, ¢(t) = t" for t = 1/2™ and t = 2™, m € N,
and @(t/2) = 27"p(t) for t > 0, but ¢ is not identically equal to ™. This construction for
r = 1/2 (or, equivalently, r = 2) can be easily modified for other values of r > 0, r # 1.

The following result can be obtained from (111) and the argument in the proof of Corol-
lary 8.3.

Corollary 8.4. Let K,L € K{,). Suppose that ¢ € T is strictly convex and Vo (K, M) =
Vo(L, M) for all M € K?O). Then K and L are dilatates of each other. Moreover, K = L
unless ¢ behaves like t™.

Note that the restriction in the second statement of the previous theorem is necessary, since
it is evident from (110) that if ¢ behaves like ¢", then for the corresponding r # 1, we have
V(K, M) =V(rK,M) for all M € K.

Let K, L € K, let Q € S, and let p,¢ € R. In [21, (1.13), p. 91], the (p, q)-mized volume

VoK, L, Q) was defined by setting g = A} in (40):

TallL@) = [l Gy (K. Q)

1

= [ malow) () px(w) potu) " du

[ (e () e

Inspired by (113), we can consider the nonlinear Orlicz dual curvature functionals defined by

o Jo (Gt (i) ) et

where ¢, : (0,00) — (0,00) are continuous functions and f € C*(S""!). We can then take
f = hz, to define the (@, v)-mized volume

0= [ o (autenton) () ) v

This is a natural generalization of (113) when ¢ # 0, corresponding to taking o(t) = t9/" and
)(t) = /e

When L € IC?O), the following result provides a common generalization of [5, Theorem 9.2],
[6, Theorem 6.1] (see also [28, Theorem 2]), and [21, Theorem 7.4]. The first corresponds to
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taking K = ) when ¢ there is replaced by ¢ o v, the second corresponds to taking K = L,
and the third is obtained by the choices of ¢ and v given in the previous paragraph. Note
that in the latter case, for the convexity of ¢ and ¢ we then require that 1 < ¢/n < p, which
is precisely the assumption made in [21].

Theorem 8.5. Let K, L € Kf} and let Q € S If ¢, : (0,00) — (0,00) are increasing and
convez, then

" 1/n
(14) VoK L,Q) > ¢ @((g)) v ((g((f())) )) Q)

If o and ¥ are strictly convex, equality holds if and only if K, L, and Q) are dilatates of each
other.

Proof. Setting @ = K and p =1 in [21, (7.6), Proposition 7.2], (113), and (40), we have, for
any ¢ # 0,

‘/i(K,L) - ‘Z,q(KaLaK)
= / hi(u) dél,q(Kv K, u)
S’nfl
(115) - %"K(“)ndu'

We use Jensen’s inequality [6, Proposition 2.2] twice, once with ¢ and once with ¢, Minkowski’s
first inequality (112), and (115) to obtain

S = e lees) (ZZEZS )) po(u)" du
> (g [ (i) (20) st )
- (e e Lo (e o)
= (e (e o et )
- (v ()
= (E5(8))

as required.
Suppose that ¢ and ¢ are strictly convex and that equality holds in (114). Then equal-
ity holds throughout the previous display. As in the proof of [5, Lemma 9.1], equalities in
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Minkowski’s first inequality and in Jensen’s inequality with ¢ implies that K and L are di-
latates of each other. Then equality in Jensen’s inequality with ¢ implies that K and @) are
dilatates of each other. O

We omit the proof of the following corollary, which is again similar to that of Corollary 8.3.

Corollary 8.6. Let K, L € IC(”O), and suppose that @, : (0,00) — (0,00) are increasing and

strictly convex. If Vi, (K, M,Q) = V,ou(L,M,Q) for M = oK, o > 0, Q = K and for
M=aL, a>0,Q =1L, then K and L are dilatates of each other. Moreover, K = L unless
W behaves like t™. If 1 behaves like t" with (rt) = r™)(t), t > 0, for some r > 0, then

Vo (K, M, Q) =V, (rK, M, Q) for all K, M,Q € K, .
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