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Abstract

In this paper, the dual Orlicz curvature measure is proposed and its basic properties are
provided. A variational formula for the dual Orlicz-quermassintegral is established in order to
give a geometric interpretation of the dual Orlicz curvature measure. Based on the established
variational formula, a solution to the dual Orlicz-Minkowski problem regarding the dual Orlicz
curvature measure is provided.
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1 Introduction

Given p ∈ R and a finite nonzero Borel measure µ defined on the unit sphere Sn−1 ⊂ Rn, the Lp
Minkowski problem asks whether there exists a convex body K (i.e., a convex and compact subset
in Rn with nonempty interior) such that µ is the Lp surface area measure of K. The Lp Minkowski
problem is arguably one of the most important problems in convex geometry. Like many other
central objects of interest in convex geometry, such as the Lp affine and geominimal surface areas
and the Lp John ellipsoids (see e.g., [27, 34, 37, 42, 43, 52, 58]), the Lp Minkowski problem for
p ≥ 1 is closely related to optimization problems involving the Lp mixed volume of convex bodies;
this can be seen intuitively from the equality characterization of the Lp Minkowski inequality for
the Lp mixed volume. When p = 1, the Lp Minkowski problem becomes the classical Minkowski
problem which went back to Minkowski [40, 41]. The Lp Minkowski problem was first posed by
Lutwak [33]. Since then, the Lp Minkowski problem attracted a lot of attention and amazing
progress has been made (see e.g., [6, 7, 21, 24, 25, 36, 49, 65, 66, 67]). When p = 0, it becomes
the logarithmic Minkowski problem (see e.g., [2, 4, 45, 46, 47, 64]). Note that solutions to the Lp
Minkowski problem are the key ingredients in the rapidly developing Lp Brunn-Minkowski theory
of convex bodies. For instance, it has been used to establish the sharp affine Sobolev inequalities
[8, 19, 35, 56].

Recently, much effort has been made to develop the nonhomogeneous theory analogous to the
Lp Brunn-Minkowski theory; such a new theory is called the Orlicz-Brunn-Minkowski theory of
convex bodies. This new theory started from the works of Lutwak, Yang and Zhang [38, 39] and
Ludwig [30], and was greatly pushed forward by Gardner, Hug and Weil [14] and independently
by Xi, Jin and Leng [50], due to the discovery of the Orlicz addition of convex bodies. In
particular, the Orlicz mixed volumes of convex bodies have been obtained in [14, 50], which were
used to discover, for instance, the Orlicz affine and geominimal surface areas and the Orlicz-John
ellipsoid [51, 54, 61, 68]. On the other hand, the Orlicz-Minkowski problem can be asked with
the Lp surface area measure (in the Lp Minkowski problem) replaced by the Orlicz surface area
measure. Solutions to the Orlicz-Minkowski problem can be found in [20, 22, 29, 48].

∗Keywords: curvature measure, dual curvature measure, dual Minkowski problem, dual Orlicz-Brunn-Minkowski
theory, Lp Minkowski problem, Orlicz-Brunn-Minkowski theory, Orlicz Minkowski problem.
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Replacing convex bodies and their Lp addition by star bodies and their (Lp) radial addition,
Lutwak [31, 32] developed the beautiful dual (Lp) Brunn-Minkowski theory for star bodies. An
amazing success, among others, of the dual (Lp) Brunn-Minkowski theory is to provide powerful
tools to solve the famous Busemann-Petty problem (see e.g., [10, 11, 12, 16, 28, 55]). Many
notions in the Lp Brunn-Minkowski theory for convex bodies have their dual analogues in the
dual theory (see e.g., [31, 32] or the book [13] written by Gardner for more background and
references). However, it is only very recent that the dual curvature measures, which are dual to
the surface area measures, were discovered in the seminal work [23] by Huang, Lutwak, Yang and
Zhang. Regarding the dual curvature measures, they posed the following dual Minkowski problem
for the q-th dual curvature measure: for q ∈ R and µ a given nonzero finite Borel measure on
Sn−1, can we find a convex body (ideally with the origin in its interior) such that µ is equal to
the q-th dual curvature measure of K? When q = n, the dual Minkowski problem becomes the
logarithmic Minkowski problem. The authors in [23] provided the existence of solutions (i.e.,
origin-symmetric convex bodies) to the dual Minkowski problem with q ∈ (0, n) for even measure
µ. For q < 0, the existence and uniqueness of the solution to the dual Minkowski problem were
given recently in [59] by Zhao. See also [3, 5, 60] for more works on the dual curvature measure
and the related dual Minkowski problem.

It is our main goal in this paper to develop the dual Orlicz curvature measure and provide
solutions to the dual Orlicz-Minkowski problem. The dual Orlicz curvature measure will be
defined similarly to the q-th dual curvature measure, which relies on the linear Orlicz radial
addition of convex bodies (indeed of star bodies) discovered by Gardner, Hug, Weil and Ye [15]
and independently by Zhu, Zhou and Xu [62]. In fact, with the help of the linear Orlicz radial
addition, the authors in [15, 62] obtained the formulas for the dual Orlicz mixed volume of convex
bodies (indeed of star bodies). Note that the dual Orlicz mixed volume plays fundamental role in
the dual Orlicz-Brunn-Minkowski theory for star bodies developed in [15, 62]. In particular, it is
crucial for developing the theory of the dual Orlicz affine and geominimal surface areas [53] and
the Orlicz-Legendre ellipsoids [69]. See e.g., [26, 57, 63] for more works in the rapidly developing
dual Orlicz-Brunn-Minkowski theory.

Let K be a convex body with the origin in its interior and ϕ : (0,∞)→ (0,∞) be a continuous
function. We propose the following definition for the dual Orlicz curvature measure C̃ϕ(K, ·): for
each Borel set η ⊂ Sn−1, let

C̃ϕ(K, η) =
1

n

∫
ααα∗K(η)

ϕ(ρK(u))du,

where ρK is the radial function of K, ααα∗K is the reverse radial Gauss image on Sn−1, and du is
the spherical measure on Sn−1 (see Section 2 for definitions and notations). The dual Orlicz Lϕ
quermassintegral of K, denoted by Ṽϕ(K), is just

Ṽϕ(K) = C̃ϕ(K,Sn−1) =
1

n

∫
Sn−1

ϕ(ρK(u))du.

When ϕ(t) = tq with q ∈ R, one gets the q-th dual curvature measure and the q-th dual
quermassintegral of K [23]. We are interested in the following dual Orlicz-Minkowski problem:
under what conditions on ϕ and a given nonzero finite Borel measure µ on Sn−1, there exist
a constant τ > 0 and a convex body K (ideally with the origin in its interior) such that
µ = τC̃ϕ(K, ·)? When ϕ(t) = tq for 0 6= q ∈ R, this becomes the dual Minkowski problem
for the q-th dual curvature measure posed in [23].

Suppose that ϕ (and its companion φ) satisfies conditions A1)-A3) (see the detailed description
of these conditions in Section 4). Our solution to the dual Orlicz-Minkowski problem is stated and
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proved in Theorem 5.1. Note that the condition on µ in Theorem 5.1 is the minimal requirement
for the solutions to various Minkowski problems. For a nonzero finite Borel measure µ on Sn−1,
let

|µ| =
∫
Sn−1

dµ.

Let a+ = max{a, 0} for each a ∈ R.

Theorem 5.1. Let µ be a nonzero finite Borel measure on Sn−1. Then the following statements
are equivalent:

i) µ is not concentrated in any closed hemisphere, i.e.,∫
Sn−1

〈ξ, θ〉+ dµ(θ) > 0 for all ξ ∈ Sn−1;

ii) there exists a convex body K with the origin in its interior, such that,

µ

|µ|
=
C̃ϕ(K, ·)
Ṽϕ(K)

.

Our paper is organized as follows. Section 2 dedicates to the necessary notations and
background in order to present our results. The definition and properties for the dual Orlicz
curvature measure are given in Section 3. Section 4 aims to establish a variational formula for
the dual Orlicz-quermassintegral, which provides a geometric interpretation for the dual Orlicz
curvature measure. Such a variational formula is the key for our solution to the dual Orlicz-
Minkowski problem. Finally, in Section 5, we present a solution to the dual Orlicz-Minkowski
problem, i.e., Theorem 5.1.

2 Background and Notations

Basic terminologies and well-known facts in convex geometry required for presenting our results
are collected. When talking about the concepts for the dual curvature measures, we manage to
keep our notations as consistent as possible with those in [23].

In Rn, the standard inner product and the usual Euclidean norm are denoted by x · y and |x|,
respectively, for x, y ∈ Rn. The set Bn

2 refers to the unit Euclidean ball in Rn and its boundary,
i.e., the unit sphere in Rn, is denoted by Sn−1. The origin in Rn is denoted by o. For each
x ∈ Rn \ {o}, let x̄ = x/|x| ∈ Sn−1 be the direction vector of x. The Hausdorff measure on Sn−1,
denoted by du, will be called the spherical measure on Sn−1 (see e.g., [9, Theorem 2.49]). For a
set E ⊂ Rn, ∂E means the boundary of E and V (E) denotes the volume of E (if it exists).

A set E ⊂ Rn is convex if λx + (1 − λ)y ∈ E for all x, y ∈ E and λ ∈ [0, 1]. For a compact
and convex set K ⊂ Rn, one can define a sublinear function with positive homogeneity of degree
1, hK : Sn−1 → R, by

hK(u) = max
{
x · u : x ∈ K

}
, for each u ∈ Sn−1.

The function hK is called the support function of K. Define the Hausdorff distance between two
convex and compact sets K,L ⊂ Rn by

dH(K,L) = ‖hK − hL‖∞ = sup
u∈Sn−1

|hK(u)− hL(u)|.
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We say a sequence of convex and compact sets {Ki}∞i=1 in Rn converges to a convex and compact
set K ⊂ Rn with respect to the Hausdorff metric, if limi→∞ dH(Ki,K) = 0. A convex body is a
convex and compact set K ⊂ Rn with nonempty interior. In particular, we work on the set K n

0

which contains all convex bodies with the origin o in their interiors and hence hK > 0 for each
K ∈ K n

0 .
Associated to each convex body K ∈ K n

0 , one can also define the so-called radial function
ρK : Sn−1 → R by

ρK(u) = max
{
λ : λu ∈ K

}
, for each u ∈ Sn−1.

It is easily checked that ρK(u)u ∈ ∂K for all u ∈ Sn−1. Similar to the Hausdorff metric, one can
define the radial metric dρ(·, ·) on K n

0 ; namely for two convex bodies K,L ∈ K n
0 ,

dρ(K,L) = ‖ρK − ρL‖∞ = sup
u∈Sn−1

|ρK(u)− ρL(u)|.

Note that, on K n
0 , the Hausdorff metric is equivalent to the radial metric (a direct consequence

of [17, Lemma 2.3.2]). Two convex bodies K,L ∈ K n
0 are dilates of each other if and only if

hK = λhL (or ρK = λρL) on Sn−1 for some constant λ > 0.
For each K ∈ K n

0 , the set

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}

defines a convex body, called the polar body of K, and clearly K∗ ∈ K n
0 . Regarding the support

and radial functions of K and K∗, one has

ρK · hK∗ = 1 and hK · ρK∗ = 1 on Sn−1.

The bipolar theorem asserts that (K∗)∗ = K for each K ∈ K n
0 . Moreover, if Ki,K ∈ K n

0 such
that Ki → K with respect to the Hausdorff metric, then K∗i → K∗, as well, with respect to the
Hausdorff metric.

Consider the space of continuous functions on Sn−1, denoted by C(Sn−1), with the maximal
norm ‖ · ‖∞. The convergence fi → f with fi, f ∈ C(Sn−1) is in the sense of

lim
i→∞

sup
u∈Sn−1

|fi(u)− f(u)| = lim
i→∞
‖fi − f‖∞ = 0.

The subset of positive functions in C(Sn−1) is denoted by C+(Sn−1). The set Ω ⊂ Sn−1 is always
assumed to be a closed subset that is not contained in any closed hemisphere of Sn−1. The Wulff
shape associated to a continuous function f : Ω → (0,∞), denoted by [f ], is the convex body
with o in its interior such that

[f ] =
⋂
u∈Ω

{x ∈ Rn : x · u ≤ f(u)}.

Clearly h[f ] ≤ f if Ω = Sn−1. Moreover, when f = hK is the support function of a convex
body K ∈ K n

0 , one has [hK ] = K. The convex hull 〈ρ〉 generated by a continuous function
ρ : Ω→ (0,∞) is formulated by

〈ρ〉 = conv
{
ρ(u)u : u ∈ Ω

}
.

It can be checked that 〈ρ〉 ∈ K n
0 (hence h〈ρ〉 > 0), again since Ω is not contained in any closed

hemisphere of Sn−1. Moreover, when ρ = ρK is the radial function of K ∈ K n
0 , then 〈ρK〉 = K.

The following lemma, i.e., [23, Lemma 2.8], is about the relation between the Wulff shape and
the convex hull.
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Lemma 2.1. Let Ω ⊂ Sn−1 be a closed set that is not contained in any closed hemisphere of
Sn−1. For each continuous function f : Ω→ (0,∞), one has

[f ]∗ = 〈1/f〉.

The convergence of the Wulff shapes can be obtained by the convergence of continuous
functions, according to the Aleksandrov’s convergence theorem [1, 44]: if fi, f : Ω → (0,∞)
are continuous functions for all i ≥ 1 such that maxu∈Ω |fi(u) − f(u)| → 0, then [fi] → [f ] with
respect to the Hausdorff metric. Together with Lemma 2.1, the convergence of convex hulls can
also be obtained by the convergence of functions: if ρi, ρ : Ω → (0,∞) are continuous functions
for all i ≥ 1 such that maxu∈Ω |ρi(u)− ρ(u)| → 0, then 〈ρi〉 → 〈ρ〉 with respect to the Hausdorff
metric.

Let K ∈ K n
0 and u ∈ Sn−1. The set H(K,u) =

{
x ∈ Rn : x · u = hK(u)

}
defines the

supporting hyperplane of K at the direction u. For each subset σ ⊂ ∂K, let νννK(σ) ⊂ Sn−1 be
the spherical image of σ, i.e.,

νννK(σ) =
{
u ∈ Sn−1 : x ∈ H(K,u) for some x ∈ σ

}
.

The reverse spherical image xxxK(η) of each η ⊂ Sn−1 is a subset of ∂K defined by

xxxK(η) =
{
x ∈ ∂K : x ∈ H(K,u) for some u ∈ η

}
.

Let ω be a subset of Sn−1. The subset αααK(ω) ⊂ Sn−1 given by

αααK(ω) = νννK({ρK(u)u ∈ ∂K : u ∈ ω})

is called the radial Gauss image of ω. We often write νννK({x}), xxxK({u}) and αααK({u}) by νννK(x),
xxxK(u) and αααK(u), respectively. When νννK(x), xxxK(u) and αααK(u) all contain only one element,
they will be written as νK(x), xK(u) and αK(u), respectively.

For K ∈ K n
0 , define σK ⊂ ∂K, ηK ⊂ Sn−1 and ωK ⊂ Sn−1, respectively, by

σK =
{
x ∈ ∂K : νννK(x) has more than one element

}
;

ηK =
{
v ∈ Sn−1 : xxxK(v) has more than one element

}
;

ωK =
{
v ∈ Sn−1 : αααK(v) has more than one element

}
.

It is well-known that H n−1(σK) = 0 according to [44, p.84], and ηK and ωK have spherical
measure zero according to [44, Theorems 2.2.5 and 2.2.11] or [23, p.339-340]. Hereafter, the
standard notation H n−1

K of K ∈ K n
0 , more often abbreviated by H n−1, is for the (n − 1)-

dimensional Hausdorff measure on ∂K. For all u ∈ Sn−1 \ ωK , one sees that αK(u) =
νK ◦ (ρK(u)u). In particular, αK(x̄) = νK(x) for all x ∈ ∂K such that x̄ ∈ Sn−1 \ ωK . Note
that νK(x), xK(u) and αK(u) are all continuous [23, 44].

For K ∈ K n
0 , let ∂′K = ∂K \ σK . This implies that H n−1(∂′K) > 0. Associated to each

K ∈ K n
0 , the surface area measure S(K, ·) defined on Sn−1 is the measure with the following

property: for any Borel set η ⊂ Sn−1,

S(K, η) = H n−1(ν−1
K (η)).

Moreover, for each continuous function g : Sn−1 → R, one has (see e.g., [23, (2.12)])∫
Sn−1

g(u)dS(K,u) =

∫
∂′K

g(νK(x))dH n−1(x). (2.1)
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For each subset η ⊂ Sn−1, let

ααα∗K(η) =
{
x̄ =

x

|x|
: x ∈ ∂K such that there exists u ∈ η s.t. x ∈ H(K,u)

}
.

The set ααα∗K(η) is called the reverse radial Gauss image of η. Note that

ααα∗K(η) = xxxK(η) =:
{
x̄ =

x

|x|
: x ∈ xxxK(η)

}
⊂ Sn−1.

Let α∗K(u) = xK(u) for each u ∈ Sn−1 \ ηK , and α∗K is called the reverse radial Gauss map of K.
Note that α∗K is continuous. For each η ⊂ Sn−1 and for almost all u ∈ Sn−1 with respect to the
spherical measure, one has (see [23, (2.21)])

u ∈ ααα∗K(η) if and only if αK(u) ∈ η. (2.2)

The following lemma is the combination of [23, Lemmas 2.5 and 2.6].

Lemma 2.2. Let K ∈ K n
0 . For each η ⊂ Sn−1, one has ααα∗K(η) = αααK∗(η). Moreover, for almost

all v ∈ Sn−1 with respect to the spherical measure, one has α∗K(v) = αK∗(v).

The following lemma is the combination of [23, Lemmas 2.1-2.4].

Lemma 2.3. Let K ∈ K n
0 be a convex body with o in its interior.

i) If η ⊂ Sn−1 is a Borel set, then ααα∗K(η) = xxxK(η) ⊂ Sn−1 is spherical measurable.

ii) Let Ki ∈ K n
0 be such that limi→∞Ki = K0 ∈ K n

0 with respect to the Hausdorff metric.
Let ω = ∪∞i=0ωKi be the set (of spherical measure zero) of which all of the αKi are defined.
If ui ∈ Sn−1 \ ω are such that limi→∞ ui = u0 ∈ Sn−1 \ ω, then limi→∞ αKi(ui) = αK0(u0).

iii) If {ηj}∞j=1 is a sequence of subsets of Sn−1, then ααα∗K
(
∪∞j=1 ηj

)
= ∪∞j=1ααα

∗
K(ηj).

iv) If {ηj}∞j=1 is a sequence of pairwise disjoint sets in Sn−1, then {ααα∗K(ηj)\ωK}∞j=1 is pairwise
disjoint as well.

For more background in convex geometry, in particular the notions related to the radial Gauss
map, please see [13, 18, 23, 44].

3 The dual Orlicz curvature measure

Let ϕi : (0,∞) → (0,∞) be strictly increasing continuous functions with limt→0+ ϕi(t) = 0
and limt→∞ ϕi(t) = ∞, i = 1, 2. For ε > 0 and two convex bodies K,L ∈ K n

0 , define
ρK+̃ϕ,εL

: Sn−1 → R+ = {a ∈ R : a > 0} by [15, 62]

ϕ1

(
ρK(u)

ρK+̃ϕ,εL
(u)

)
+ εϕ2

(
ρL(u)

ρK+̃ϕ,εL
(u)

)
= 1 for u ∈ Sn−1. (3.3)

Clearly ρK+̃ϕ,εL
is a continuous function on Sn−1 and K+̃ϕ,εL is called the linear Orlicz radial

addition of K,L ∈ K n
0 . When ϕi : (0,∞) → (0,∞) are strictly decreasing continuous with

limt→0+ ϕi(t) = ∞ and limt→∞ ϕi(t) = 0, i = 1, 2, the function ρK+̃ϕ,εL
can also be defined by
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formula (3.3). If ϕ′1(1), the derivative of ϕ1 at 1, exists and is nonzero, the following variational
formula holds [15, 62] :

ϕ′1(1) lim
ε→0+

V (K+̃ϕ,εL)− V (K)

ε
=

∫
Sn−1

ϕ2

(
ρL(u)

ρK(u)

)
ρK(u)n du.

Motivated by this formula, one can define the dual Orlicz mixed volume of K,L ∈ K n
0 by

Ṽψ(K,L) =
1

n

∫
Sn−1

ψ

(
ρL(u)

ρK(u)

)
ρK(u)n du,

where ψ : (0,∞)→ (0,∞) is a continuous function. In particular,

Ṽψ(K,Bn
2 ) =

1

n

∫
Sn−1

ψ

(
1

ρK(u)

)
ρK(u)n du.

The above definitions and results are stated here only for convex bodies, however they also hold
for more general star sets, see details in [15, 62].

Let φ : (0,∞)→ (0,∞) be a continuous function such that

φ(ρK) = ψ

(
1

ρK

)
ρnK .

We now propose the following definition for the dual Orlicz-quermassintegral of K ∈ K n
0 .

Definition 3.1. Let K ∈ K n
0 and φ : (0,∞)→ (0,∞) be a continuous function. Define the dual

Orlicz-quermassintegral Ṽφ(K) by

Ṽφ(K) =
1

n

∫
Sn−1

φ(ρK(u))du. (3.4)

The continuity of Ṽφ on K n
0 is stated in the following lemma.

Lemma 3.1. Let φ : (0,∞) → (0,∞) be a continuous function. Suppose that the sequence
{Ki}∞i=1 ⊂ K n

0 converges to K ∈ K n
0 with respect to the Hausdorff metric. Then

lim
i→∞

Ṽφ(Ki) = Ṽφ(K).

Proof. The convergence Ki → K with respect to the Hausdorff metric implies that ρKi(u) →
ρK(u) uniformly on Sn−1. As K ∈ K n

0 , there exist constants r,R > 0, such that, for all
u ∈ Sn−1 and for all i = 1, 2, · · · ,

r ≤ ρKi(u), ρK(u) ≤ R.

It follows from the continuity of φ on [r,R] that φ(ρKi) ≤ C for some constant C > 0. The
desired continuity follows immediately from the dominated convergence theorem:

lim
i→∞

Ṽφ(Ki) = lim
i→∞

1

n

∫
Sn−1

φ(ρKi(u)) du =
1

n

∫
Sn−1

φ(ρK(u)) du = Ṽφ(K).
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The dual Orlicz-quermassintegral Ṽφ(·) for convex bodies can be adopted to define its analogue

for functions through the Wulff shape. That is, for each h ∈ C+(Sn−1), we define Ṽφ([h]) to be
the dual Orlicz-quermassintegral of h. Lemma 3.1 and the Aleksandrov’s convergence theorem
yield the continuity of the dual Orlicz-quermassintegral on C+(Sn−1). That is, if hi → h with
hi, h ∈ C+(Sn−1), then

lim
i→∞

Ṽφ([hi]) = Ṽφ([h]).

The dual Orlicz curvature measure is defined as follows.

Definition 3.2. Let K ∈ K n
0 and ϕ : (0,∞) → (0,∞) be a continuous function. The dual

Orlicz curvature measure of K, denoted by C̃ϕ(K, ·), is defined to be the measure such that for
each Borel set η ⊂ Sn−1,

C̃ϕ(K, η) =
1

n

∫
ααα∗K(η)

ϕ(ρK(u)) du =
1

n

∫
Sn−1

1ααα∗K(η)(u)ϕ(ρK(u)) du. (3.5)

Clearly, Ṽϕ(K) = C̃ϕ(K,Sn−1). When ϕ(t) = tq with q ∈ R, for each K ∈ K n
0 , one gets the

q-th dual curvature measure C̃q(K, ·) [23, Definition 3.2]: for each Borel set η ⊂ Sn−1,

C̃q(K, η) =
1

n

∫
ααα∗K(η)

ρqK(u) du =
1

n

∫
Sn−1

1ααα∗K(η)(u)ρqK(u) du.

In Proposition 3.1, we will prove that C̃ϕ(K, ·) is indeed a Borel measure on Sn−1 after we prove
the following useful result. When ϕ(t) = tq for q ∈ R, one gets [23, Lemma 3.3].

Lemma 3.2. Let K ∈ K n
0 and ϕ : (0,∞)→ (0,∞) be a continuous function. For each bounded

Borel function g : Sn−1 → R, one has∫
Sn−1

g(v)dC̃ϕ(K, v) =
1

n

∫
Sn−1

g(αK(u))ϕ(ρK(u))du. (3.6)

Proof. Let g : Sn−1 → R be a bounded Borel function. As explained in [23, p.353], both g and
g ◦ αK are Lebesgue integrable on Sn−1. Since g is bounded, the desired formula (3.6) follows,
by the dominated convergence theorem, if formula (3.6) is proved for simple functions. Consider
the simple function γ =

∑m
i=1 ci1ηi with ci ∈ R and Borel sets ηi ⊂ Sn−1. Then∫

Sn−1

γ(v)dC̃ϕ(K, v) =

∫
Sn−1

m∑
i=1

ci1ηi(v)dC̃ϕ(K, v) =

m∑
i=1

ciC̃ϕ(K, ηi).

It follows from Definition 3.2 and (2.2) that∫
Sn−1

γ(v)dC̃ϕ(K, v) =
1

n

∫
Sn−1

m∑
i=1

ci1ααα∗K(ηi)(u)ϕ(ρK(u))du

=
1

n

∫
Sn−1

m∑
i=1

ci1ηi(αK(u))ϕ(ρK(u))du

=
1

n

∫
Sn−1

γ(αK(u))ϕ(ρK(u))du.

This proves (3.6) for simple functions and hence for all bounded Borel functions g : Sn−1 → R.

We shall need the following result.
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Lemma 3.3. Let ϕ : (0,∞)→ (0,∞) be a continuous function. For each bounded Borel function
g : Sn−1 → R and convex body K ∈ K n

0 , one has∫
Sn−1

g(v) dC̃ϕ(K, v) =
1

n

∫
∂′K

[
x · νK(x)

]
· g(νK(x)) · ϕ(|x|)

|x|n
dH n−1(x). (3.7)

Proof. Recall that x̄ = x
|x| ∈ S

n−1 for all x ∈ ∂K. By letting u = x̄, for each bounded integrable

function f : Sn−1 → R, [23, (2.31)] asserts that∫
Sn−1

f(u)ρK(u)ndu =

∫
∂′K

[
x · νK(x)

]
f(x̄)dH n−1(x). (3.8)

As ρK is positive continuous on Sn−1 and ϕ is continuous, one sees that the function f ·ϕ(ρK)/ρnK
is bounded integrable on Sn−1. Formula (3.8) then implies that∫

Sn−1

f(u)ϕ(ρK(u)) du =

∫
∂′K

[
x · νK(x)

]
· f(x̄) · ϕ(ρK(x̄))

ρnK(x̄)
dH n−1(x)

=

∫
∂′K

[
x · νK(x)

]
· f(x̄) · ϕ(|x|)

|x|n
dH n−1(x).

For each bounded Borel function g : Sn−1 → R, let f = g ◦ αK which is bounded integrable on
Sn−1. Then formula (3.6) implies∫

Sn−1

g(v) dC̃ϕ(K, v) =
1

n

∫
Sn−1

g(αK(u))ϕ(ρK(u)) du

=
1

n

∫
∂′K

[
x · νK(x)

]
· g(αK(x̄)) · ϕ(|x|)

|x|n
dH n−1(x)

=
1

n

∫
∂′K

[
x · νK(x)

]
· g(νK(x)) · ϕ(|x|)

|x|n
dH n−1(x)

as desired.

The dual Orlicz curvature measure has properties similar to those for the q-th dual curvature
measure. In the following proposition, we will prove some of these properties for the dual Orlicz
curvature measure.

Proposition 3.1. Let K ∈ K n
0 and ϕ : (0,∞) → (0,∞) be a continuous function. The dual

Orlicz curvature measure C̃ϕ(K, ·) has the following properties:

i) C̃ϕ(K, ·) is a Borel measure on Sn−1;

ii) C̃ϕ(K, ·) is absolutely continuous with respect to the surface area measure S(K, ·);

iii) If the sequence {Ki}∞i=1 ⊂ K n
0 converges to K with respect to the Hausdorff metric, then

C̃ϕ(Ki, ·)→ C̃ϕ(K, ·) weakly.

Proof. i) It is clear that C̃ϕ(K, ∅) = 0. We only need to prove the countable additivity. Namely,
given a sequence of disjoint Borel sets ηi ⊂ Sn−1, i = 1, 2, · · · , with ηi ∩ ηj = ∅ for i 6= j, the
following formula holds:

C̃ϕ(K,∪∞i=1ηi) =

∞∑
i=1

C̃ϕ(K, ηi).
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To this end, it follows from (3.5) that for each Borel set ηi ⊂ Sn−1, one has

C̃ϕ(K, ηi) =
1

n

∫
ααα∗K(ηi)

ϕ(ρK(u))du.

By Lemma 2.3, the additivity for Lebesgue integral and the fact that the spherical measure of
ωK is zero, one has

C̃ϕ(K,∪∞i=1ηi) =
1

n

∫
ααα∗K(∪∞i=1ηi)

ϕ(ρK(u))du

=
1

n

∫
∪∞i=1ααα

∗
K(ηi)

ϕ(ρK(u))du

=
1

n

∫
∪∞i=1(ααα∗K(ηi)\ωK)

ϕ(ρK(u))du

=
1

n

∞∑
i=1

∫
ααα∗K(ηi)\ωK

ϕ(ρK(u))du

=
1

n

∞∑
i=1

∫
ααα∗K(ηi)

ϕ(ρK(u))du

=

∞∑
i=1

C̃ϕ(K, ηi).

The countable additivity holds and hence C̃ϕ(K, ·) is a Borel measure.

ii) As K ∈ K n
0 and ϕ is continuous, there exists a positive constant C <∞ such that

[x · νK(x)] · ϕ(|x|)
|x|n

≤ nC

for all x ∈ ∂K. Let η ⊂ Sn−1 be such that S(K, η) = 0 and hence H n−1(ν−1
K (η)) = 0. It follows

from (3.7) with g = 111η that

C̃ϕ(K, η) =
1

n

∫
ν−1
K (η)

[x · νK(x)] · ϕ(|x|)
|x|n

dH n−1(x)

≤ C

∫
ν−1
K (η)

dH n−1(x)

= C ·H n−1(ν−1
K (η))

= 0.

That is, C̃ϕ(K, ·) is absolutely continuous with respect to S(K, ·).

iii) Note that ρKi → ρK uniformly and αKi → αK almost everywhere on Sn−1 (see Lemma 2.3),
due to the convergence Ki → K with respect to the Hausdorff metric. Given any continuous
function g : Sn−1 → R, together with the continuity of ϕ, one can find a constant M > 0 such
that for all i = 1, 2, · · · ,

|g(αKi)ϕ(ρKi)| ≤M and |g(αK)ϕ(ρK)| ≤M.
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It follows from (3.6) and the dominated convergence theorem that

lim
i→∞

∫
Sn−1

g(v) dC̃ϕ(Ki, v) = lim
i→∞

1

n

∫
Sn−1

g(αKi(u))ϕ(ρKi(u)) du

=
1

n

∫
Sn−1

g(αK(u))ϕ(ρK(u)) du

=

∫
Sn−1

g(v) dC̃ϕ(K, v).

This shows that C̃ϕ(Ki, ·)→ C̃ϕ(K, ·) weakly.

The following theorem regards to the unique determination of convex bodies by the dual
Orlicz curvature measure. When ϕ(t) = tq with q < 0, one recovers [59, Theorem 5.2], which was
used to prove the uniqueness of the solution to the dual Minkowski problem for negative q. The
techniques used in the proof of [59, Theorem 5.2] (or Theorem 3.1 below) seem not working for
strictly increasing function ϕ.

Theorem 3.1. Suppose that ϕ : (0,∞)→ (0,∞) is a strictly decreasing continuous function. If
K,L ∈ K n

0 satisfy that C̃ϕ(K, ·) = C̃ϕ(L, ·), then K = L.

Proof. Our proof adopts the beautiful techniques from that of [59, Theorem 5.2]. First of all,
assume that K,L ∈ K n

0 are not dilate to each other. Then there exists a constant λ0 > 0 such
that the following sets are nonempty:

η′ = {v ∈ Sn−1 : hK′(v) > hL(v)},
η = {v ∈ Sn−1 : hK′(v) < hL(v)},
η0 = {v ∈ Sn−1 : hK′(v) = hL(v)},

where K ′ = λ0K. It can be easily checked that ααα∗K(ω) = ααα∗K′(ω) for all ω ⊂ Sn−1.
By [59, Lemma 5.1 (d)], the set ααα∗L(η′) has positive spherical measure. Together with the

assumption C̃ϕ(K, ·) = C̃ϕ(L, ·), one has

C̃ϕ(K, η′) = C̃ϕ(L, η′) =
1

n

∫
ααα∗L(η′)

ϕ(ρL(u))du > 0.

This further implies that the set ααα∗K(η′) (and hence ααα∗K′(η
′)) has positive spherical measure.

Together with [59, Lemma 5.1 (a) and (c)] and the fact that ϕ is strictly decreasing, one gets

C̃ϕ(K, η′) =
1

n

∫
ααα∗L(η′)

ϕ(ρL(u))du ≥ 1

n

∫
ααα∗
K′ (η

′)
ϕ(ρL(u))du >

1

n

∫
ααα∗
K′ (η

′)
ϕ(λ0ρK(u))du. (3.9)

Assume that λ0 ≤ 1. Then ϕ(ρK) ≤ ϕ(λ0ρK) on ααα∗K(η′) = ααα∗K′(η
′) as ϕ is strictly decreasing.

Thus, the following inequality holds, which contradicts with (3.9):

C̃ϕ(K, η′) =
1

n

∫
ααα∗K(η′)

ϕ(ρK(u))du ≤ 1

n

∫
ααα∗
K′ (η

′)
ϕ(λ0ρK(u))du.

Hence λ0 > 1 and then ϕ(ρK) > ϕ(λ0ρK) on ααα∗K(η) = ααα∗K′(η), again due to the fact that ϕ is
strictly decreasing. It follows from [59, Lemma 5.1 (d)] that

C̃ϕ(K, η) =
1

n

∫
ααα∗K(η)

ϕ(ρK(u))du >
1

n

∫
ααα∗
K′ (η)

ϕ(λ0ρK(u))du = C̃ϕ(K ′, η) > 0.
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Thus the set ααα∗L(η) has positive spherical measure because

C̃ϕ(K, η) = C̃ϕ(L, η) =
1

n

∫
ααα∗L(η)

ϕ(ρL(u))du > 0.

Again by [59, Lemma 5.1] and the fact that ϕ is strictly decreasing, one has

C̃ϕ(K, η) =
1

n

∫
ααα∗L(η)

ϕ(ρL(u))du

<
1

n

∫
ααα∗L(η)

ϕ(λ0ρK(u))du

<
1

n

∫
ααα∗
K′ (η)

ϕ(ρK(u))du

=
1

n

∫
ααα∗K(η)

ϕ(ρK(u))du

= C̃ϕ(K, η),

which is impossible. This concludes that K and L must be dilates of each other.
Secondly, without loss of generality, assume that K 6= L but L = λK for some constant λ > 1

(otherwise, switching the roles of K and L). It follows from C̃ϕ(K, ·) = C̃ϕ(L, ·) that

1

n

∫
Sn−1

ϕ(ρK(u))du =
1

n

∫
Sn−1

ϕ(ρL(u))du =
1

n

∫
Sn−1

ϕ(λρK(u))du <
1

n

∫
Sn−1

ϕ(ρK(u))du,

where the last inequality follows from the fact that ϕ is strictly decreasing on (0,∞). This is a
contradiction and hence K = L.

4 A variational formula for the dual Orlicz-quermassintegral

Throughout this section, let Ω ⊂ Sn−1 be a closed set that is not contained in any closed
hemisphere, and let h0, g, ρ0 : Ω→ (0,∞) be continuous functions. Denote by η0 = η〈ρ0〉 ⊂ Sn−1

the spherical measure zero set consisting of the complement of the regular normal vectors of 〈ρ0〉.
For each t ∈ (−δ, δ) with δ > 0 a fixed constant, let o(t, ·) : Ω→ (0,∞) be a continuous function
such that limt→0 o(t, ·)/t = 0 uniformly on Ω. Define continuous functions ht, ρt : Ω→ (0,∞) for
each t ∈ (−δ, δ), respectively, by

log ht(v) = log h0(v) + tg(v) + o(t, v),

log ρt(v) = log ρ0(v) + tg(v) + o(t, v), for all v ∈ Ω.

As in Section 2, we use [ht] and 〈ρt〉 to denote the Wulff shape associated to ht and the convex
hull generated by ρt, respectively.

Assume that functions ϕ and φ satisfy the following assumptions:

A1) φ : (0,∞)→ (0,∞) is a strictly decreasing function with

lim
t→0+

φ(t) =∞ and lim
t→∞

φ(t) = 0;

A2) φ′, the derivative of φ, exists and is strictly negative on (0,∞);
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A3) ϕ(t) = −φ′(t)t : (0,∞)→ (0,∞) is continuous; hence

φ(t) =

∫ ∞
t

ϕ(s)

s
ds.

The assumptions limt→0+ φ(t) = ∞ and limt→∞ φ(t) = 0 are mainly for convenience (especially
in Section 5). Our results may still work for general strictly decreasing function φ.

The following lemma is [23, Lemma 4.1], which is essential in the proof of the variational
formula for the dual Orlicz-quermassintegral. Let Ω ⊂ Sn−1 be a closed set that is not contained
in any closed hemisphere, and

log ρt(v) = log ρ0(v) + tg(v) + o(t, v), for all v ∈ Ω.

Lemma 4.1. For all v ∈ Sn−1 \ η0, one has

lim
t→0

log h〈ρt〉(v)− log h〈ρ0〉(v)

t
= g(α∗〈ρ0〉(v)).

Moreover, there exist δ > 0 and M > 0 such that

| log h〈ρt〉(v)− log h〈ρ0〉(v)| ≤M |t|,

for all v ∈ Sn−1 and all t ∈ (−δ, δ).

We now establish the asymptotic behaviour of φ(h−1
〈ρt〉) as t→ 0 based on Lemma 4.1. When

ϕ(t) = tq (0 6= q ∈ R), it becomes [23, Lemma 4.2].

Lemma 4.2. Suppose that ϕ and φ satisfy conditions A1)-A3). For all v ∈ Sn−1\η0, one has

lim
t→0

φ(h−1
〈ρt〉(v))− φ(h−1

〈ρ0〉(v))

t
= ϕ(h−1

〈ρ0〉(v))g(α∗〈ρ0〉(v)).

Moreover, there exist δ > 0 and M > 0 such that

|φ(h−1
〈ρt〉(v))− φ(h−1

〈ρ0〉(v))| ≤M |t|, (4.10)

for all v ∈ Sn−1 and all t ∈ (−δ, δ).

Proof. Recall that ϕ(t) = −φ′(t)t. Lemma 4.1 and the chain rule for derivative yield that for all
v ∈ Sn−1\η0,

lim
t→0

φ(h−1
〈ρt〉(v))− φ(h−1

〈ρ0〉(v))

t
= lim

t→0

φ(exp(− log h〈ρt〉(v)))− φ(exp(− log h〈ρ0〉(v)))

t

= −
φ′(h−1

〈ρ0〉(v))

h〈ρ0〉(v)
· lim
t→0

log h〈ρt〉(v)− log h〈ρ0〉(v)

t

= ϕ(h−1
〈ρ0〉(v)) · g(α∗〈ρ0〉(v)).

It follows from the uniform convergence of h〈ρt〉 → h〈ρ0〉 that {h〈ρt〉} is uniformly bounded from
both sides, namely, there exist constants m0,m1, δ

′ > 0, such that, for each t ∈ (−δ′, δ′),

m0 < h〈ρt〉 < m1 on Sn−1. (4.11)
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Due to the continuity of φ on [1/m1, 1/m0], a constant M1 > 1 can be found so that

0 < φ(h−1
〈ρt〉)/φ(h−1

〈ρ0〉) < M1 on Sn−1.

Note that |s − 1| ≤ M1| log s| for s ∈ (0,M1) (see e.g. [23, p.362]). With s = φ(h−1
〈ρt〉)/φ(h−1

〈ρ0〉),

the following inequality holds on Sn−1:

|φ(h−1
〈ρt〉)− φ(h−1

〈ρ0〉)| ≤ φ(h−1
〈ρ0〉) ·M1 · | log φ(h−1

〈ρt〉)− log φ(h−1
〈ρ0〉)|. (4.12)

Note that on Sn−1, log h〈ρ0〉 ∈ (logm0, logm1) and log h〈ρt〉 ∈ (logm0, logm1) for each
t ∈ (−δ′, δ′). On (log(m0/2), log(2m1)), the function log φ(exp(−s)) is clearly continuous and
differentiable. Due to the continuity of ϕ and φ on [1/m1, 1/m0], there is a constant M2 > 0 such
that for all s ∈ (logm0, logm1),

[
log φ(exp(−s))

]′
=
ϕ(exp(−s))
φ(exp(−s))

≤M2.

It follows from the mean value theorem that for all s, s′ ∈ (logm0, logm1),∣∣ log φ(exp(−s))− log φ(exp(−s′))
∣∣ ≤M2

∣∣s− s′∣∣.
In particular, for all v ∈ Sn−1, with s = log h〈ρt〉(v) and s′ = log h〈ρ0〉(v), one has∣∣ log φ(h−1

〈ρt〉(v))− log φ(h−1
〈ρ0〉(v))

∣∣ ≤M2

∣∣ log h〈ρt〉(v)− log h〈ρ0〉(v)
∣∣. (4.13)

The desired inequality (4.10) follows immediately from (4.12), (4.13) and Lemma 4.1.

The following theorem provides a variational formula for the dual Orlicz-quermassintegral,
which is the key to solve the dual Orlicz-Minkowski problem based on the method of Lagrange
multipliers. When ϕ(t) = tq with 0 6= q ∈ R, one gets the result in [23, Lemma 4.5]. Let Ω ⊂ Sn−1

be a closed set that is not contained in any closed hemisphere, and

log ht(v) = log h0(v) + tg(v) + o(t, v), for all v ∈ Ω.

Theorem 4.1. Suppose that ϕ and φ satisfy conditions A1)-A3). Given two continuous functions
h0 : Ω→ (0,∞) and g : Ω→ R, one has

lim
t→0

Ṽφ([ht])− Ṽφ([h0])

t
= −

∫
Ω
g(u) dC̃ϕ([h0], u), (4.14)

where [ht] is the family of Wulff shapes associated to ht. Moreover,

d

dt
log Ṽφ([ht])

∣∣∣∣
t=0

=
−1

Ṽφ([h0])

∫
Ω
g(u) dC̃ϕ([h0], u). (4.15)

Proof. Let ρ0 : Ω → (0,∞) be a continuous function and 〈ρ0〉 = conv{ρ0(u)u : u ∈ Ω}. It has
been proved that g can be extended to a continuous function ĝ : Sn−1 → R (see [23, p.364]), such
that, for all v ∈ Sn−1 \ η0,

g(α〈ρ0〉∗(v)) = (ĝ1Ω)(α〈ρ0〉∗(v)). (4.16)
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Recall that log ρt(v) = log ρ0(v) + tg(v) + o(t, v) for all v ∈ Ω. It follows from (3.4), Lemma 4.2,
(4.16), Lemmas 2.2 and 3.2 that

lim
t→0

Ṽφ(〈ρt〉∗)− Ṽφ(〈ρ0〉∗)
t

= lim
t→0

1

n

∫
Sn−1

φ(ρ〈ρt〉∗(v))− φ(ρ〈ρ0〉∗(v))

t
dv

= lim
t→0

1

n

∫
Sn−1

φ(h−1
〈ρt〉(v))− φ(h−1

〈ρ0〉(v))

t
dv

=
1

n

∫
Sn−1\η0

lim
t→0

φ(h−1
〈ρt〉(v))− φ(h−1

〈ρ0〉(v))

t
dv

=
1

n

∫
Sn−1\η0

ϕ(h−1
〈ρ0〉(v))g(α∗〈ρ0〉(v)) dv

=
1

n

∫
Sn−1

(ĝ1Ω)(α〈ρ0〉∗(v))ϕ(ρ〈ρ0〉∗(v)) dv

=

∫
Sn−1

(ĝ1Ω)(u) dC̃ϕ(〈ρ0〉∗, u)

=

∫
Ω
g(u) dC̃ϕ(〈ρ0〉∗, u). (4.17)

Let [ht] be the Wulff shape associated to ht with log ht = log h0 + tg + o(t, ·) and κt = 1/ht. It
follows from Lemma 2.1 that [ht] = 〈κt〉∗ with 〈κt〉 the convex hull generated by κt. Note that

log κt = log κ0 − tg − o(t, ·).

The desired formula (4.14) is an immediate consequence of (4.17) with ρt replaced by κt.
Formula (4.15) easily follows from (4.14) and the chain rule for derivative:

d

dt
log Ṽφ([ht])

∣∣∣∣
t=0

=

(
1

Ṽφ([ht])
· d
dt
Ṽφ([ht])

)∣∣∣∣
t=0

=
−1

Ṽφ([h0])

∫
Ω
g(u) dC̃ϕ([h0], u).

Along the same lines to the proofs of Lemma 4.2 and Theorem 4.1, we can prove a variational
formula for the dual Orlicz-quermassintegral with functions ϕ and φ satisfy the following
conditions:

B1): φ : (0,∞)→ (0,∞) is a strictly increasing and continuous function with

lim
t→0+

φ(t) = 0 and lim
t→∞

φ(t) =∞;

B2): φ′, the derivative of φ, exists and is strictly positive on (0,∞);

B3): ϕ(t) = φ′(t)t : (0,∞)→ (0,∞) is a continuous function, and hence

φ(t) =

∫ t

0

ϕ(s)

s
ds.

The assumptions limt→0+ φ(t) = 0 and limt→∞ φ(t) =∞ are mainly for convenience; our results
may still work for general strictly increasing function φ.
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Theorem 4.2. Suppose that ϕ and φ satisfy conditions B1)-B3). Given two continuous functions
h0 : Ω→ (0,∞) and g : Ω→ R, one has

lim
t→0

Ṽφ([ht])− Ṽφ([h0])

t
=

∫
Ω
g(u) dC̃ϕ([h0], u),

where [ht] is the family of Wulff shapes associated to ht. Moreover,

d

dt
log Ṽφ([ht])

∣∣∣∣
t=0

=
1

Ṽφ([h0])

∫
Ω
g(u) dC̃ϕ([h0], u).

5 A solution to the dual Orlicz-Minkowski problem

In this section, we provide a solution to the following dual Orlicz-Minkowski problem: under what
conditions on ϕ and a given nonzero finite Borel measure µ on Sn−1, there exist a constant τ > 0
and a convex body K (ideally with the origin in its interior) such that µ = τC̃ϕ(K, ·)? When
ϕ(t) = tq with 0 6= q ≤ n, this problem has been investigated in [5, 23, 59, 60].

For a nonzero finite Borel measure µ on Sn−1, let

|µ| =
∫
Sn−1

dµ.

Recall that for each K ∈ K n
0 ,

Ṽϕ(K) = C̃ϕ(K,Sn−1) =
1

n

∫
Sn−1

ϕ(ρK(u))du.

Our main result is stated in the following theorem.

Theorem 5.1. Suppose that ϕ and φ satisfy conditions A1)-A3). Let µ be a nonzero finite Borel
measure on Sn−1. Then the following statements are equivalent:

i) µ is not concentrated in any closed hemisphere, i.e.,∫
Sn−1

〈ξ, θ〉+ dµ(θ) > 0 for all ξ ∈ Sn−1;

ii) there exists a convex body K ∈ K n
0 , such that,

µ

|µ|
=
C̃ϕ(K, ·)
Ṽϕ(K)

.

Proof. First, let us prove the easier direction ii)⇒i). Suppose that µ = τC̃ϕ(K, ·) for some convex
body K ∈ K n

0 and

τ =
|µ|

Ṽϕ(K)
> 0.

Note that ϕ is continuous on [rK , RK ], where

0 < rK = min
u∈Sn−1

ρK(u) and RK = max
u∈Sn−1

ρK(u) <∞.
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Hence, there exists a constant C > 0, such that, for all x ∈ ∂K,

[
x · νK(x)

]
· ϕ(|x|)
|x|n

≥ nC.

The surface area measure S(K, ·) of a convex body K ∈ K n
0 is not concentrated in any closed

hemisphere, that is, for any ξ ∈ Sn−1,∫
Sn−1

(ξ · u)+dS(K,u) > 0. (5.18)

Together with Lemma 3.3, (2.1), (5.18) and µ = τC̃ϕ(K, ·), one has, for any ξ ∈ Sn−1,∫
Sn−1

(ξ · v)+ dµ(v) = τ

∫
Sn−1

(ξ · v)+ dC̃ϕ(K, v)

=
τ

n

∫
∂′K

[
(ξ · νK(x))+

]
·
[
x · νK(x)

]
· ϕ(|x|)
|x|n

dH n−1(x)

≥ τC

∫
∂′K

(ξ · νK(x))+ dH
n−1(x)

= τC

∫
Sn−1

(ξ · u)+ dS(K,u)

> 0.

This implies that µ is not concentrated in any closed hemisphere.

Now let us prove the direction i)⇒ii). The proof needs several steps. Let µ be a nonzero finite
Borel measure on Sn−1 such that µ is not concentrated in any closed hemisphere.

Step 1: if {Qi}∞i=1 ⊂ K n
0 and c > 0 is a constant, such that, Ṽφ(Qi) = c, then there exists a

constant R > 0 such that Q∗i ⊂ RBn
2 . Clearly, for any c > 0 given, if we let r0 = φ−1( c

V (Bn2 )),

then Ṽφ(r0B
n
2 ) = c.

To this end, we assume that there are no such constants R such that Q∗i ⊂ RBn
2 . Without

loss of generality, assume that {Q∗i }∞i=1 satisfies RQ∗i →∞ as i→∞, where RQ∗i is the maximum
radius of Q∗i , i.e.,

RQ∗i = ρQ∗i (vi) = max
{
ρQ∗i (v), v ∈ Sn−1

}
.

We can further assume that, due to the compactness of Sn−1, {vi}∞i=1 ⊂ Sn−1 is a convergent
sequence with limit v0 ∈ Sn−1, namely, limi→∞ vi = v0. It is obvious that, for all u ∈ Sn−1,

hQ∗i (u) ≥ (u · vi)+ RQ∗i . (5.19)

Note that the spherical measure is not concentrated in any closed hemisphere. This fact yields
that there exists a constant c0 > 0, such that,∫

Sn−1

(u · v0)+ du ≥ c0.

For all integers j ≥ 1, let

Σj(v0) =

{
u ∈ Sn−1 : (u · v0)+ >

1

j

}
.
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One can check that Σj(v0) forms an increasing nest of sets: Σj(v0) ⊂ Σj+1(v0) for all j ≥ 1.
Moreover, ∪∞j=1Σj(v0) = {u ∈ Sn−1 : (u · v0)+ > 0}. The monotone convergence theorem yields

lim
j→∞

∫
Σj(v0)

(u · v0)+ du =

∫
∪∞j=1Σj(v0)

(u · v0)+ du =

∫
Sn−1

(u · v0)+ du ≥ c0.

Hence, there exists an integer j0 ≥ 1 such that∫
Σj0 (v0)

du ≥
∫

Σj0 (v0)
(u · v0)+ du ≥

c0

2
. (5.20)

For convenience, let G : (0,∞) → (0,∞) be the function given by G(t) = φ
(
t−1
)
. As φ is a

strictly decreasing function with limt→∞ φ(t) = 0 and limt→0+ φ(t) =∞, G is a strictly increasing
function with limt→0+ G(t) = 0 and limt→∞G(t) = ∞. Let M > 0 be a fixed number. Fatou’s
Lemma, (5.19), (5.20), and the fact that G is increasing and continuous imply

lim
i→∞

Ṽφ(Qi) = lim
i→∞

1

n

∫
Sn−1

φ(ρQi(u)) du

= lim
i→∞

1

n

∫
Sn−1

G(hQ∗i (u)) du

≥ lim inf
i→∞

1

n

∫
Sn−1

G(RQ∗i · (u · vi)+) du

≥ lim inf
i→∞

1

n

∫
Sn−1

G(M · (u · vi)+) du

≥ 1

n

∫
Sn−1

G(M · (u · v0)+) du

≥ 1

n

∫
∑
j0

(v0)
G (M/j0) du

≥ G (M/j0) · c0

2n
.

Note that G (M/j0)→∞ as M →∞ and Ṽφ(Qi) = c for all integers i. Together with the above
inequalities, a contradiction, i.e., c ≥ ∞, is obtained. Hence the sequence {Q∗i }∞i=1 is uniformly
bounded, namely, there exists a constant R > 0 such that Q∗i ⊂ RBn

2 .

Step 2: there exists a convex body Q0 ∈ K n
0 such that Ṽφ(Q0) = |µ| and

Φ(Q0) = sup
{

Φ(K) : Ṽφ(K) = |µ| and K ∈ K n
0

}
,

where Φ : K n
0 → R is defined by

Φ(K) = − 1

|µ|

∫
Sn−1

log hK(v)dµ(v). (5.21)

The proof of this step is almost identical to that of [59, Lemma 4.2]. For completeness, we
include a brief proof here. Let {Qi}∞i=1 ⊂ K n

0 be a maximizing sequence such that Ṽφ(Qi) = |µ|
and

lim
i→∞

Φ(Qi) = sup
{

Φ(K) : Ṽφ(K) = |µ| and K ∈ K n
0

}
.
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Note that the above supremum always exists and is finite, due to Q∗i ⊂ RBn
2 for some constant

R > 0 (see Step 1). More precisely, it is an easy consequence of the following fact:

Φ(Qi) = − 1

|µ|

∫
Sn−1

log hQi(v)dµ(v)

=
1

|µ|

∫
Sn−1

log ρQ∗i (v)dµ(v)

≤ logR <∞.

It follows from Step 1 that {Q∗i }∞i=1 is uniformly bounded. The Blaschke selection theorem
implies the existence of a compact convex set Q ⊂ Rn and a subsequence of {Q∗i }∞i=1, which will
not be relabeled, such that, Q∗i → Q. Now we show that o ∈ int(Q). Assume o ∈ ∂Q and then
there exists u0 ∈ Sn−1 such that

lim
i→∞

hQ∗i (u0) = hQ(u0) = 0.

It can be proved that µ(Σδ0(u0)) > 0 and ρQ∗i → 0 uniformly on Σδ0(u0) for some δ0 > 0 (see
details in [59, Lemma 4.2]), where Σδ0(u0) ⊂ Sn−1 is given by

Σδ0(u0) = {v ∈ Sn−1 : v · u0 > δ0}.

Together with (5.21), Ṽφ(Qi) = |µ| and Q∗i ⊂ RBn
2 for all i, one can get

Φ(Qi) ≤
1

|µ|

∫
Σδ0 (u0)

log ρQ∗i (v)dµ(v) +
µ(Sn−1 \ Σδ0(u0))

|µ|
logR

and hence limi→∞Φ(Qi) = −∞, a contradiction. In conclusion, o ∈ int(Q) and Q ∈ K n
0 , which

implies Q0 = Q∗ ∈ K n
0 . Moreover Qi → Q0. The desired claim in Step 2 follows immediately by

the continuity of Φ(·) and Ṽφ(·) (see Lemma 3.1) on K n
0 . That is, Ṽφ(Q0) = limi→∞ Ṽφ(Qi) = |µ|

and
Φ(Q0) = lim

i→∞
Φ(Qi) = sup

{
Φ(K) : Ṽφ(K) = |µ| and K ∈ K n

0

}
.

Step 3: the convex body Q0 found in Step 2 is a solution of the dual Orlicz-Minkowski problem,
that is,

µ

|µ|
=
C̃ϕ(Q0, ·)
Ṽϕ(Q0)

.

To this end, consider the following optimization problem:

sup
{

Φ(f) : Ṽφ([f ]) = |µ| for f ∈ C+(Sn−1)
}
, (5.22)

where the functional Φ : C+(Sn−1)→ R given by

Φ(f) = − 1

|µ|

∫
Sn−1

log f(v)dµ(v). (5.23)

From the definition of the Wulff shape, for all f ∈ C+(Sn−1), one has

Φ(f) ≤ Φ(h[f ]) and Ṽφ([f ]) = Ṽφ(h[f ]).

Hence, it is enough to find maximizers for the optimization problem (5.22) among support
functions of convex bodies in K n

0 . Step 2 implies that hQ0 is a maximizer to (5.22).
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Let g ∈ C(Sn−1) be an arbitrary but fixed continuous function and let δ > 0 be a small
enough constant. Let ht(v) = hQ0(v)etg(v) for t ∈ (−δ, δ) and v ∈ Sn−1. Define the following
functional on C+(Sn−1)

L (t, τ) = Φ(ht)− τ(log Ṽφ([ht])− log |µ|).

As hQ0 is a maximizer to (5.22), it follows from the method of Lagrange multipliers that hQ0

must satisfy the following equation:

∂

∂t
L (t, τ)

∣∣∣∣
t=0

= 0.

By (4.15), (5.23) and Ṽφ(Q0) = |µ|, one gets

0 =
∂

∂t

([
− 1

|µ|

∫
Sn−1

[log hQ0(v) + tg(v)] dµ(v)

]
− τ log Ṽφ([ht]) + τ log |µ|

) ∣∣∣∣
t=0

= − 1

|µ|

∫
Sn−1

g(v) dµ(v) +
τ

Ṽφ(Q0)

∫
Sn−1

g(v) dC̃ϕ(Q0, v)

=
1

|µ|

(
−
∫
Sn−1

g(v) dµ(v) + τ

∫
Sn−1

g(v) dC̃ϕ(Q0, v)

)
.

That is, for all g ∈ C(Sn−1),∫
Sn−1

g(v) dµ(v) = τ

∫
Sn−1

g(v) dC̃ϕ(Q0, v), (5.24)

and hence µ = τC̃ϕ(Q0, ·). The constant τ can be easily calculated by (5.24) with g = 1:

|µ| =
∫
Sn−1

dµ(v) = τ

∫
Sn−1

dC̃ϕ(Q0, v) = τ Ṽϕ(Q0),

which implies

τ =
|µ|

Ṽϕ(Q0)
.

Putting the constant τ into µ = τC̃ϕ(Q0, ·), one gets

µ

|µ|
=
C̃ϕ(Q0, ·)
Ṽϕ(Q0)

and hence Q0 is a solution to the dual Orlicz-Minkowski problem.

Let ϕ(t) = tq for q < 0 and hence φ(t) = −tq/q, which satisfy conditions A1)-A3). By
Theorem 5.1, one can get the following solution to the dual Minkowski problem for negative q,
which has been recently proved in [59] by Zhao.

Corollary 5.1. Suppose that q < 0 and µ is a finite nonzero Borel measure on Sn−1. The
following statements are equivalent:

i) µ is not concentrated in any closed hemisphere, i.e.,∫
Sn−1

〈ξ, θ〉+ dµ(θ) > 0 for all ξ ∈ Sn−1;
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ii) there exists a convex body K ∈ K n
0 , such that, µ = C̃q(K, ·).

Note that Zhao [59, Theorem 5.2] also proved that the solution to the dual Minkowski
problem for negative q must be unique. Due to lack of homogeneity of the function ϕ, to
prove the uniqueness of the solutions in the Orlicz setting seems very intractable. We would
like to mention that there are no arguments regarding the uniqueness of solutions to the Orlicz-
Minkowski problem [20, 22, 29, 48].
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