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1. Introduction

In quantum mechanics, Heisenberg’s uncertainty principle says that the more pre-
cisely the position of some particle is determined, the less precisely its momentum can 
be known. This uncertainty principle is a fundamental result in quantum mechanics. 
By using the Shannon entropy of the measurement, entropic uncertainty principles were 
established, which strengthen and generalize Heisenberg’s uncertainty principle. The 
phenomenon of “uncertainty” also appears in mathematics. In Harmonic Analysis, var-
ious uncertainty principles are found by mathematicians such as Hardy’s uncertainty 
principle [14], Hirschman’s uncertainty principle [15] etc. In information theory, Donoho 
and Stark [11] introduced an uncertainty principle. They proved that a signal may be 
reconstructed with a few samples. This idea was further developed by Candes, Romberg 
and Tao [9] in the theory of compressed sensing.

The classical uncertainty principles deal with functions on an abelian group and its 
dual. A natural question is to ask whether there exist uncertainty principles for a non-
abelian group. Recently the uncertainty principle of finite groups [13], compact groups 
[1] and Kac algebras (C∗ Hopf algebras or quantum groups in von Neumann algebraic 
setting) [8] were discussed from different perspectives. It is natural to consider the un-
certainty principles of Kac algebras due to the existence of a proper pair of observables. 
There is a one to one correspondence between Kac algebras and a special family of 
subfactors, namely irreducible depth-2 subfactors [29]. Subfactors naturally provide vec-
tor spaces with two or more observables. In this paper, we are going to talk about the 
uncertainty principles of subfactors.

Modern subfactor theory was initiated by Jones. Subfactors generalize the symmetries 
of groups and their duals. The index of a subfactor generalizes the order of a group. All 
possible indices of subfactors,

{4 cos2 π

n
, n = 3, 4, · · · } ∪ [4,∞],

were found by Jones in his remarkable rigidity result [18]. A deep theorem of Popa 
[26] showed that the standard invariant, a Z2 graded filtered algebra, is a complete 
invariant of finite depth subfactors of the hyperfinite factor of type II1. There are three 
axiomatizations of the standard invariant: Ocneanu’s paragroups [24]; Popa’s standard 
λ-lattices [27]; Jones’ subfactor planar algebras [17].

In terms of paragroups, the n-box space of the standard invariant of a (finite index, 
finite depth, irreducible) subfactor consists of linear sums of certain length-2n loops 
of a bipartite graph, the principal graph of the subfactor. The Fourier transform of 
paragroups was introduced by Ocneanu [24] as the 1-click rotation of loops. It generalizes 
the Fourier transform of finite groups. Note that the Fourier transform of the n-box space 
has periodicity 2n. Up to an anti-isomorphism, the n-box space admits n∗-algebraic 
structures and a proper n-tuple of observables. We will prove the uncertainty principles 
of n-box spaces. In particular, if we start with a subfactor arising from an outer action 



266 C. Jiang et al. / Journal of Functional Analysis 270 (2016) 264–311
of a finite abelian group, then we will recover the group and its dual from the 2-box 
spaces of the standard invariant of the subfactor. Moreover, the classical uncertainty 
principles of a finite abelian group will be recovered from those of 2-box spaces. Hence 
the uncertainty principles of 2-box spaces are our main interest.

For 2-box spaces, we will prove the Hausdorff–Young inequality, Young’s inequality, 
the Hirschman–Beckner uncertainty principle and the Donoho–Stark uncertainty princi-
ple and characterize the minimizers of the uncertainty principles. By using the minimizer, 
we prove Hardy’s uncertainty principle. Our proof of the Hausdorff–Young inequality also 
works for n-box spaces and more general cases, such as Popa’s λ-lattices, modular ten-
sor categories, etc. The uncertainty principles follow directly from the Hausdorff–Young 
inequality. So far we could not find Young’s inequality for Kac algebras in the literature. 
Our characterization of the minimizers of the uncertainty principles is new for finite 
groups. The proofs of these results benefit a lot from the analytic and the categorial per-
spectives of subfactor planar algebras. We could not find an alternative proof without 
the knowledge of subfactor planar algebras.

The minimizers of the uncertainty principles of finite abelian groups are given by trans-
lations and modulations of indicator functions of its subgroups [11,25]. Unlike abelian 
groups, the 2-box space forms a noncommutative algebra in general. This makes ex-
tra difficulties to characterize the minimizers of the uncertainty principles. Fortunately 
Bisch and Jones introduced biprojections [3,5] in subfactors which generalize the indi-
cator functions of subgroups. We will introduce a notion of bi-shifts of biprojections in 
terms of subfactor planar algebras as an equivalent characterization of the minimizers. 
Furthermore, we will prove that a bi-shift of a biprojection is uniquely determined by 
the supports of itself and its Fourier transform. We would like to see the application of 
this result in signal recovery.

It will be interesting to understand the uncertainty principle of infinite index subfac-
tors. But the Fourier transform is not clear in general. We would like to refer to [6,12,20]
for some known results of infinite index subfactors and [22] for locally compact quantum 
groups. There is no canonical choice of the measurement in general. Connes’ spatial the-
ory [7] should be involved. These will lead us to the world of Abstract Harmonic Analysis 
and Noncommutative Geometry.

This paper is organized as follows. In Section 2, we briefly introduce classical un-
certainty principles, subfactors and our main results. In Section 3, we review subfactor 
planar algebras and some notations, such as the Fourier transform, Wenzl’s formula, the 
local relation, etc. In Section 4, we find the Hausdorff–Young inequality and Young’s 
inequality for irreducible subfactor planar algebras. In Section 5, we show the Donoho–
Stark and the Hirschman–Beckner uncertainty principles for irreducible subfactor planar 
algebras. In Section 6, we show that the two uncertainty principles found in the last sec-
tion have the same minimizers and determine the minimizers in terms of biprojections. 
We also show Hardy’s uncertainty principle by using the minimizers. In Section 7, we 
generalize the first two uncertainty principles to general cases. In Sections 8 and 9, we 
show some applications of our uncertainty principles for groups and group actions.
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2. Overview

In 1927, Heisenberg discovered the uncertainty principle

ΔxΔp ≥ �

2 ,

where x is the position of a particle, p is its momentum, � is the reduced Planck constant. 
It has a mathematical fomulation

(
∞∫

−∞

x2|f(x)|2dx)(
∞∫

−∞

ξ2|f̂(ξ)|2dξ) ≥ ‖f‖4
2

16π2 ,

where f̂(ξ) =
∞∫

−∞

f(x)e−2πixξdx.

In 1957, Hirschman [15] proved a stronger uncertainty principle for the Schwartz space 
on R,

Hs(|f |2) + Hs(|f̂ |2) ≥ 0, ‖f‖2 = 1,

where Hs is the Shannon Entropy Hs(|f2|) = − 

∞∫
−∞

|f |2 log |f |2dx. He conjectured that

Hs(|f |2) + Hs(|f̂ |2) ≥ log e

2 , ‖f‖2 = 1.

This was proved by Beckner [2] in 1975.
In 1989, Donoho and Stark [11] established an uncertainty principle for finite cyclic 

groups Zn. Suppose f is a nonzero function on Zn and f̂ is its Fourier transform,

f̂(k) =
n−1∑
j=0

f(j)e2πijk/n.

The support of f is denoted by supp(f) = {x ∈ Zn : f(x) �= 0}. Then

|supp(f)||supp(f̂)| ≥ n. (1)

They proved that the equality of (1) holds if and only if f = c 
∑

h∈H χ(h)δh+k, where 
c is a nonzero constant, H is a subgroup of Zn, χ is a character of Zn, k is an element 
in Zn, and δh+k is the Dirac function at h + k.

In 1990, K. Smith [28] generalized the Donoho–Stark uncertainty principle to finite 
abelian groups.
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In 2004, Özaydm and Przebinda [25] generalized the Hirschman–Beckner uncertainty 
principle and the Donoho–Stark uncertainty principle to abelian groups. They charac-
terized all minimizers of the uncertainty principles and noticed that the minimizers of 
two uncertainty principles coincide.

In 2008, Alagic and Russell [1] generalized the Donoho–Stark uncertainty principles 
to compact groups.

In 2005, Tao [30] proved a stronger uncertainty principle for the cyclic group Zp, 
p prime.

In 1933, Hardy [14] proves an uncertainty principle for real line R. If

|f(x)| ≤ Ce−πax2
, |f̂(ξ)| ≤ C ′e−πξ2/a,

for a measurable function f on R and some constants C, C ′, a > 0, then

f is a scalar multiple of e−πax2
.

In this paper, we discuss the uncertainty principles for finite index subfactors which 
cover the case for finite groups and finite dimensional Kac algebras. We prove the 
Haussdorff–Young inequality (see Theorem 4.8), Young’s inequality (see Theorem 4.13), 
the Hirschman–Beckner uncertainty principle (see Theorem 5.5), the Donoho–Stark un-
certainty principle (see Theorem 5.2), and characterize the minimizers of the uncertainty 
principles (see Theorem 6.4,6.13). By using the minimizers, we prove the Hardy’s uncer-
tainty principle (see Corollary 6.17)

In order to state the results, let us review some basic concepts and notations in 
subfactor theory. Suppose N ⊂ M is an irreducible subfactor of type II1 with finite index, 
denoted as [M : N ], and δ =

√
[M : N ]. Let L2(M) be the Gelfand–Naimark–Segal 

representation of M derived from the unique trace of M. The Jones projection e1 ∈
B(L2(M)) is the projection onto the subspace L2(N ) of L2(M). Then we have the 
Jones basic construction N ⊂ M ⊂ M1, where M1 = (M ∪ {e1})′′.

Repeating the Jones basic construction, we have the Jones tower

e1 e2 e3
N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · ·

Taking the higher relative commutants, we have the standard invariant of the subfactor

N ′ ∩N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ N ′ ∩M2 ⊂ · · ·
∪ ∪ ∪

M′ ∩M ⊂ M′ ∩M1 ⊂ M′ ∩M2 ⊂ · · ·

Jones introduced subfactor planar algebras as an axiomatization of the standard 
invariant. The subfactor planar algebra associated with the subfactor N ⊂ M is a 
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collection of Z2 graded vector spaces {Pn,±}n∈N∪{0} with actions labeled by planar tan-
gles. Precisely Pn,+ = N ′ ∩ Mn−1, Pn,− = M′ ∩ Mn, called the n-box space of the 
subfactor planar algebras. An element in the n-box space is called an n-box. The action 
of a planar tangle is a composition of elementary operations of the standard invariant, 
such as multiplications, inclusions and conditional expectations.

If M = N �G, for an outer action a finite abelian group G, then the index [M : N ]
is the order of the group |G|. We have the Jones tower

N ⊂ N �G ⊂ N �G� Ĝ ⊂ N �G� Ĝ�G ⊂ · · ·

and the standard invariant

C ⊂ C ⊂ L(Ĝ) ⊂ L(Ĝ�G) ⊂ · · ·
∪ ∪ ∪
C ⊂ C ⊂ L(G) ⊂ · · ·

The 2-box spaces of the standard invariant (M′∩M2 and N ′∩M1) recover the group 
G and its dual Ĝ. Hence the uncertainty principles of 2-box spaces are our main interest. 
Moreover, the 3-box space N ′ ∩M2 naturally provides an algebra to consider G and Ĝ
simultaneously.

There is an (unnormalized) trace of the 2-box space, denoted by tr2. For a 2-box x, 
its p-norm is given by

‖x‖p = tr2(|x|p)
1
p , p ≥ 1.

The Fourier transform F was introduced by Ocneanu. In terms of planar algebras, it 
is a 1-click rotation diagrammatically.

We have the Hausdorff–Young inequality for a 2-box x (see Theorem 4.8),

‖F(x)‖p ≤
(

1
δ

)1− 2
p

‖x‖q, 2 ≤ p ≤ ∞,
1
p

+ 1
q

= 1.

Recall that δ is the square root of the index.
The Hausdorff–Young inequality becomes non-trivial for subfactor planar algebras, 

since the Fourier transform is no longer an integral. When p = ∞, we will apply the 
local relation, see relation (3), and the C∗ structure of the 3-box space to give a cate-
gorial proof. When p = 2, the spherical isotopy of subfactor planar algebras implies the 
Plancherel’s formula of the Fourier transform,

‖F(x)‖2 = ‖x‖2.

With the help of the interpolation theorem [21], we obtain the general case.
Applying a similar method in the 4-box space, we obtain Young’s inequality for 2-boxes 

x and y (see Theorem 4.13),
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‖x ∗ y‖r ≤ ‖x‖p‖y‖q
δ

,
1
p

+ 1
q

= 1
r

+ 1.

For the group case, δ x ∗ y is the convolution of functions of the group.
By the Hausdorff–Young inequality in subfactor planar algebras, we are able to give 

the following uncertainty principles.

Main Theorem 1. (See Theorems 5.2, 5.5.) Suppose x is a nonzero 2-box in an irreducible 
subfactor planar algebra. Then we have the Hirschman–Beckner uncertainty principle,

H(|x|2) + H(|F(x)|2) ≥ ‖x‖2
2(2 log δ − 4 log ‖x‖2),

where H(·) is the von Neumann entropy, H(|x|2) = −tr2(|x|2 log |x|2); and the Donoho–
Stark uncertainty principle,

S(x)S(F(x)) ≥ δ2,

where S(x) is the trace of the range projection of x.

Taking the derivative of the Hausdorff–Young inequality with respect to p at p = 2, 
we derive the Hirschman–Beckner uncertainty principle. By the concavity of −t log t, 
we have logS(x) ≥ logH(|x|2), when ‖x‖2 = 1. Then we obtain the Donoho–Stark 
uncertainty principle.

We apply the noncommutative version of Özaydm and Przebinda [25] to show the 
minimizers of the two uncertainty principles coincide. To characterize the minimizers 
of Donoho–Stark uncertainty principle, we apply the noncommutative version of Tao’s 
proof in [30]. We show that the minimizers are extremal bi-partial isometries (see Defi-
nition 6.1 and Theorem 6.4). Extremal bi-partial isometries are convenient to work with 
theoretically, but not convenient to construct.

Recall that the minimizer of uncertainty principles of finite abelian groups is given by 
a nonzero constant multiple of a translation and a modulation of the indicator function 
of its subgroup. The original technique for finite abelian groups is not enough to give 
this kind of characterization for the 2-box space, because the 2-box space may not be a 
commutative algebra and there is no translation or modulation to shift the minimizer 
to a good position. Fortunately Bisch and Jones introduced biprojections [3,5] which 
generalized the indicator functions of subgroups. We expect to construct minimizers 
with the knowledge of biprojections. We prove that an extremal bi-partial isometry x is 
uniquely determined by the range projections of x and its Fourier transform F(x) (see 
Theorem 6.16). Moreover, two range projections are shifts of a pair of biprojections (see 
Definition 6.5), a generalization of the translation or the modulation of the indicator 
function of a subgroup. To construct such an extremal bi-partial isometry, we introduce 
the notion of a bi-shift of a biprojection (see Definition 6.6), a generalization of a transla-
tion and a modulation of the indicator function of a subgroup. Bi-shifts of biprojections 
are easy to construct.
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Main Theorem 2. (See Theorems 6.4, 6.13 and Proposition 6.10.) For a nonzero 2-box 
x in an irreducible subfactor planar algebra, the following statements are equivalent:

(1) S(x)S(F(x)) = δ2;
(2) H(|x|2) + H(|F(x)|2) = ‖x‖2

2(2 log δ − 4 log ‖x‖2);
(3) x is an extremal bi-partial isometry;
(3′) x is a partial isometry and F−1(x) is extremal;
(4) x is a bi-shift of a biprojection,

As a corollary, we obtain a new characterization of biprojections.

Corollary 2.1. (See Corollary 6.14.) For a nonzero 2-box x in an irreducible subfactor 
planar algebra. If x and F(x) are positive operators and S(x)S(F(x)) = δ2, then x is a 
biprojection.

Then by using the minimizers, we have Hardy’s uncertainty principle

Main Theorem 3. (See Corollary 6.17.) Suppose a 2-box w is a minimizer for the 
(Hirschman–Beckner/Donoho–Stark) uncertainty principle. For a 2-box x and constants 
C, C ′, if

|x| ≤ C|w|, |F(x)| ≤ C ′|F(w)|,

then x is a scalar multiple of w.

As mentioned above, we have the uncertainty principle for 2-boxes of an irreducible 
subfactor planar algebra. The irreducibility is not necessary, in Section 7, we have the 
uncertainty principle for 2-boxes of arbitrary subfactor planar algebra. Moreover, we 
obtain the uncertainty principles for n-boxes.

Main Theorem 4. (See Theorem 7.6.) For a nonzero n-box x in an irreducible subfactor 
planar algebra, we have

n−1∑
k=0

H(|Fk(x)|2) ≥ ‖x‖2
2(n log δ − 2n log ‖x‖2);

n−1∏
k=0

S(Fk(x)) ≥ δn.

The equalities can be achieved on a special n-box.
When the subfactor planar algebra is the group subfactor planar algebra associated 

with a finite group G, we will have the uncertainty principle for G. It will recover the 
classical uncertainty principle when G is abelian. Moreover, its minimizers are given as 
follows.
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Proposition 2.2. (See Proposition 8.1.) Suppose G is a finite group. Take a subgroup H, 
a one dimensional representation χ of H, an element g ∈ G, a nonzero constant c ∈ C. 
Then

x = c
∑
h∈H

χ(h)hg

is a bi-shift of a biprojection. Conversely any bi-shift of a biprojection is of this form.

Let a group G act on a finite set S. The fixed point algebra of the spin model associated 
with S under the group action of G is a subfactor planar algebra. The 2-box space of 
this subfactor planar algebra consists of S × S matrices which commute with the action 
of G. We may apply all the results above to these S×S matrices. For example, we have 
an inequality for the Hadamand product ◦ as follows.

Corollary 2.3. (See Corollary 9.1.) If A, B are two S × S matrices commuting with a 
group action of G on S, then

‖A ◦B‖r ≤ 1
n2

0
‖A‖p‖B‖q,

where 1
p + 1

q = 1
r + 1 and n0 is the minimal cardinality of G-orbits of S.

In particular, when S = G and the action is the group multiplication, we will recover 
the group subfactor planar algebra and related results.

We would like to emphasize the importance of irreducibility of subfactors while study-
ing its Fourier analysis, although our method also works without this condition. (It even 
works for planar algebras with multiple kinds of regions and strings.) Non-irreducibility 
changes the constants in the inequalities and uncertainty principles. (See Section 7 for 
more details.)

We also consider the maximum of sum of entropies in the Hirschman–Beckner un-
certainty principle. If there exists a biunitary in a subfactor planar algebra, then the 
maximizer is a biunitary and biunitaries are maximizers. But the subfactor planar alge-
bra may not have any biunitary.

3. Preliminaries

3.1. Planar algebras

We refer the reader to [19] for the definition of subfactor planar algebras. Now let us 
recall some notations in planar algebras.

Notation 3.1. In planar tangles, we use a thick string with a number n to indicate n
parallel strings.
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Suppose P is a subfactor planar algebra, then the n-box space Pn,± forms a C∗

algebra. For a, b ∈ Pn,±, the product of a and b is ab = . The adjoint 

operation ∗ is a vertical reflection. The unnormalized Markov trace trn of the n-box 

space is given by the tangle . It induces a positive definite inner product of 

n-boxes

〈a, b〉 = trn(b∗a).

Note that dim(P0,±) = 1, then P0,± is isomorphic to C as a field. The sphericality 
of the planar algebra means

as a scalar in C, for any x ∈ P1,±.
Note that P0,± is isomorphic to C, the (shaded or unshaded) empty diagram can 

be identified as the number 1 in C. The value of a (shaded or unshaded) closed string 

is δ, the square root of the index. Moreover, δ−1 in Pn,+, denoted by en−1, for 

n ≥ 2, is the sequences of Jones projections. The filtered algebra generated by Jones 
projections is the smallest subfactor planar algebra, well known as the Temperley–Lieb 
algebra, denoted by TL(δ).

The Fourier transform from Pn,± to Pn,∓ is the 1-click rotation

.

The Fourier transform and inverse Fourier transform has the following relation.

Proposition 3.2. For any x in Pn,±, we have F−1(x∗) = (F(x))∗.

For an n-box x, its contragredient, denoted by x, is defined as its 180◦ rotation, i.e. 
Fn(x).
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If a, b ∈ P2,±, then the pull back of the product of P2,∓ by the Fourier transform 
gives another product of 2-boxes, called the coproduct, denoted by a ∗ b, and F(a ∗ b) =
F(b)F(a); F−1(a ∗ b) = F−1(a)F−1(b). The corresponding tangle is as follows

a ∗ b = .

We collect some properties of coproduct in the following proposition and lemmas.

Proposition 3.3 (Schur Product Theorem). Let P be a subfactor planar algebra. If a, b
are positive operators in P2,±, then a ∗ b is positive.

Proof. This is Theorem 4.1 in [23]. �
Lemma 3.4. Let P be a subfactor planar algebra and a, b, c ∈ P2,±. Then

tr2((a ∗ b)c) = tr2((b ∗ c)a) = tr2((c ∗ a)b)
= tr2((c ∗ b)a) = tr2((a ∗ c)b) = tr2((b ∗ a)c).

Proof. This is Lemma 4.6 in [23]. �
Lemma 3.5. For x, y ∈ P2,±, we have R(x ∗ y) ≤ R(R(x) ∗ R(y)), where R(·) is the 
range projection of the variable.

Proof. This is equivalent to Lemma 4.7 in [23]. �
Notation 3.6. When the tangle is written as a box and the dollar sign is on the left side, 
we may omit the boundary and the dollar sign.

Definition 3.7. (See [3,5].) For an irreducible subfactor planar algebra P, a projection 
Q ∈ P2,± is called a biprojection if F(Q) is a multiple of a projection.

It is shown that there is a one to one correspondence between biprojections and 
intermediate subfactors (see [3,5]). If the subfactor is the group subfactor N ⊂ N �G, 
for an outer action of the group G on the factor N of type II1, then each intermediate 
subfactor is N �H, for some subgroup H of G. Let P be the subfactor planar algebra of 
the subfactor N ⊂ N �G, then the corresponding biprojection in P2,+ is the indicator 
function of H.

Definition 3.8. Let P be a subfactor planar algebra. A biunitary U in P2,± is a unitary 
element in P2,± such that F(U) is unitary.
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3.2. Wenzl’s formula and the local relation

Suppose P is a subfactor planar algebra, In+1,± is the two sided ideal of Pn+1,±
generated by the Jones projection en, and Pn+1,±/In+1,± is its orthogonal complement 
in Pn+1,±, then Pn+1,± = In+1,± ⊕ Pn+1,±/In+1,±. Let sn+1 be the support of 
Pn+1,±/In+1,±.

If P is Temperley–Lieb (with δ2 ≥ 4), then sn is called the nth Jones–Wenzl projec-
tion. The following relation is called Wenzl’s formula [31],

= trn−1(sn−1)
trn(sn) + .

It tells how a minimal projection is decomposed after adding one string to the right.
In general, suppose P is a minimal projection in Pn,±/In,±. Note that Pn+1,± =

In+1,±⊕Pn+1,±/In+1,±. When P is included in Pn+1,±, it is decomposed as a sum of 
two projections P = Pold +Pnew, such that Pold ∈ In+1,± and Pnew ∈ Pn+1,±/In+1,±. 
By the definition of sn+1, we have Pnew = sn+1P . Now let us construct Pold. Let v be the 
depth n point in the principal graph corresponding to P , V be the central support of P . 
Suppose vi, 1 ≤ i ≤ m, are the depth (n −1) points adjacent to v, the multiplicity of the 
edge between vi and v is m(i), and Qi is a minimal projection in Pn−1,± corresponding 
to vi. For each i, take partial isometries {Uij}m(i)

j=1 in Pn,±, such that U∗
ijUij = P , 

∀1 ≤ j ≤ m(i), and 
∑m(i)

j=1 UijU
∗
ij = QiV . It is easy to check that trn−1(Qi)

trn(P ) is a 

subprojection of P , and they are mutually orthogonal for all i, j. By Frobenius reciprocity, 
their sum is Pold . Then the general Wenzl’s formula is

=
m∑
i=1

n(i)∑
j=1

trn−1(Qi)
trn(P ) + sn+1 . (2)

Adding a cap to the left, we have the local relation

=
m∑
i=1

n(i)∑
j=1

trn−1(Qi)
trn(P ) + . (3)
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3.3. The rank-one decomposition

We would like to introduce a decomposition of an element in a finite dimensional 
C∗-algebra. Suppose A is a finite dimensional C∗-algebra and x is an element in A. Let 
x = v|x| be the polar decomposition of x, where |x| = (x∗x)1/2, v is the unique partial 
isometry from the range of x∗ onto the range of x. Let |x| =

∑
j λjpj be a decomposition 

of |x| such that λj ≥ 0 and pj are minimal projections in A. Then x can be uniquely 
written as 

∑
j λjvpj =

∑
j λjvj subject to the decomposition of |x| as above, where 

vj = vpj is a rank-one partial isometry. We will say this unique decomposition of x
subject to a decomposition of |x| as the rank-one decomposition of x.

4. Inequalities

In this section, P is an irreducible subfactor planar algebra. We will prove the 
Hausdorff–Young inequality and Young’s inequality for P.

Definition 4.1. For x in P2,±, we define its p-norm, 1 ≤ p < ∞, as

‖x‖p = tr2((x∗x)p/2)1/p = tr2(|x|p)1/p;
‖x‖∞ = ‖x‖,

the operator norm of x.

Note that P2,± are finite dimensional C∗ algebras, so all the topologies induced by 
‖ · ‖p, 1 ≤ p ≤ ∞, are identical to its norm topology.

Remark. The Fourier transforms F and F−1 are continuous.

Proposition 4.2. For any x in P2,± and 1 ≤ p ≤ ∞, we have

‖x‖p = ‖|x|‖p = ‖x∗‖p = ‖x‖p.

Proof. We omit its proof here. �
Proposition 4.3 (Hölder’s inequality). For any x, y, z in P2,±, we have

(1) |tr2(xy)| ≤ ‖x‖p‖y‖q, where 1 ≤ p ≤ ∞, 1
p + 1

q = 1.
(2) |tr2(xyz)| ≤ ‖x‖p‖y‖q‖z‖r, where 1 ≤ p, q ≤ ∞, 1

p + 1
q + 1

r = 1.
(3) ‖xy‖r ≤ ‖x‖p‖y‖q, where 1 ≤ p, q, r ≤ ∞, 1

r = 1
p + 1

q .

We will use the first inequality frequently.

Proof. The proof can be found in [32]. �
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Proposition 4.4. For any x in P2,±, we have

‖x‖p = sup{|τ(xy)| : y ∈ P2,±, ‖y‖q ≤ 1},

where 1 ≤ p < ∞, 1
p + 1

q = 1.

Proof. The proof can be found in [32]. �
Proposition 4.5. For any x, y in P2,±, 1

p + 1
q = 1, p, q ≥ 1, we have

|tr2(x∗y)| = ‖x‖p‖y‖q

if and only if

x = u|x|, y = λu|y|, |x|p
‖x‖pp

= |y|q
‖y‖qq

for some unitary element u and some complex number λ with |λ| = 1. When p = ∞, 
|x|p
‖x‖p

p
is defined to be the spectral projection of |x| corresponding to its maximal spectrum 

(which is ‖x‖∞) over its trace.

Proof. This follows from the proof of Proposition 1.9 in [32] and the conditions for the 
equalities to hold in Hölder’s inequality and the Cauchy–Schwartz inequality. �
Proposition 4.6 (Interpolation theorem). Let M be a finite von Neumann algebra with a 
faithful normal tracial state τ . Suppose T : M → M is a linear map. If

‖Tx‖p1 ≤ K1‖x‖q1 and ‖Tx‖q1 ≤ K2‖x‖q2 ,

then

‖Tx‖pθ
≤ K1−θ

1 Kθ
2‖x‖qθ ,

where 1
pθ

= 1−θ
p1

+ θ
p2

, 1
qθ

= 1−θ
q1

+ θ
q2

, 0 ≤ θ ≤ 1.

Proof. This is a special case of the interpolation theorem in [21]. �
Proposition 4.7. For any x in P2,±, we have

‖F(x)‖∞ ≤ tr2(|x|)
δ

= ‖x‖1

δ
.

Proof. Note that P2,± = I2,± ⊕ P2,±/I2,± = Ce1 ⊕ P2,±/I2,±. If x = e1, F(x) = 1
and tr2(e1) = δ, then ‖F(x)‖∞ = 1 = tr2(|x|) .
δ
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If x is a rank-one partial isometry v in P2,±/I2,±, then by Wenzl’s formula (2), we 
have

δ

‖v‖1
≤ ,

as the left side is a subprojection of the right side. By the local relation (3), we have

δ

‖v‖1
≤ .

This is to say that

(F−1(v))∗(F−1(v)) ≤ (‖v‖1

δ
)21.

Taking norm, we have

‖(F−1(v))∗(F−1(v))‖∞ ≤ (‖v‖1

δ
)2.

Hence

‖F−1(v)‖∞ ≤ ‖v‖1

δ
.

Recall that F(v) = (F−1(v∗))∗ (see Proposition 3.2) and ‖v‖1 = ‖v∗‖1, we obtain that

‖F(v)‖∞ ≤ ‖v‖1

δ
.

For an arbitrary x in P2,±, let x =
∑

k λkvk be the rank-one decomposition. Then 
‖x‖1 =

∑
k λk‖vk‖1. We have proved that ‖F(vk)‖∞ ≤ ‖vk‖1

δ for rank-one partial isom-
etry vk, so

‖F(x)‖∞ ≤
∑
k

λk‖F(vk)‖∞ ≤
∑
k

λk
‖vk‖1

δ
= ‖x‖1

δ
. �

Remark. When x is positive, we see that ‖F(x)‖∞ = ‖x‖1
δ since e1F(x) = tr2(x)

δ e1.
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Theorem 4.8 (Hausdorff–Young inequality). For any x in P2,±,

‖F(x)‖p ≤
(

1
δ

)1− 2
p

‖x‖q,

where 2 ≤ p ≤ ∞ and 1
p + 1

q = 1.

Proof. By Proposition 4.7 and the sphericality of subfactor planar algebras, we have

‖F(x)‖∞ ≤ ‖x‖1

δ
, and ‖F(x)‖2 = ‖x‖2.

By Proposition 4.6, we have

‖F(x)‖p ≤
(

1
δ

)1− 2
p

‖x‖q,

where 2 ≤ p ≤ ∞ and 1
p + 1

q = 1. �
Now we are going to prove Young’s inequality.

Lemma 4.9. For any x, y in P2,±, we have

‖x ∗ y‖∞ ≤ ‖x‖∞‖y‖1

δ
, ‖y ∗ x‖∞ ≤ ‖x‖∞‖y‖1

δ
.

Proof. If y is a rank-one partial isometry v in P2,±/I2,±, we have

δ

‖v‖1
≤ .

Then

δ

‖v‖1
≤ ≤ ≤ ‖x‖2

∞ = ‖x‖2
∞
‖v‖1

δ
1,

the last inequality follows from Schur Product Theorem (Proposition 3.3). Hence
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‖(v ∗ x)∗(v ∗ x)‖∞ ≤ (‖x‖∞
‖v‖1

δ
)2,

and

‖v ∗ x‖∞ ≤ ‖x‖∞
‖v‖1

δ
.

For an arbitrary y in P2,±, let y =
∑

k λkvk be the rank-one decomposition. Then 
‖y‖1 =

∑
k λk‖vk‖1. We have proved that ‖vk ∗ x‖∞ ≤ ‖x‖∞‖vk‖1

δ , so

‖y ∗ x‖∞ ≤
∑
k

λk‖vk ∗ x‖∞ ≤
∑
k

λk‖x‖∞
‖vk‖1

δ
= ‖x‖∞

‖y‖1

δ
.

Note that ‖x ∗ y‖∞ = ‖y ∗ x‖∞, ‖x‖∞ = ‖x‖∞, and ‖y‖1 = ‖y‖1, we obtain that

‖x ∗ y‖∞ ≤ ‖x‖∞‖y‖1

δ
. �

Lemma 4.10. For any x, y in P2,±, we have

‖x ∗ y‖1 ≤ ‖x‖1‖y‖1

δ
.

Proof. For any x, y in P2,±, by Proposition 4.4 and Lemma 3.4, we have

‖x ∗ y‖1 = sup
‖z‖∞=1

|tr2((x ∗ y)z)|

= sup
‖z‖∞=1

|tr2(x(z ∗ y))|

≤ ‖x‖1‖z ∗ y‖∞ Hölder’s inequality

≤ ‖x‖1
‖y‖1

δ
Lemma 4.9 �

Lemma 4.11. For any x, y in P2,±, we have

‖x ∗ y‖p ≤ ‖x‖p‖y‖1

δ
, ‖y ∗ x‖p ≤ ‖x‖p‖y‖1

δ
,

where 1 ≤ p ≤ ∞.

Proof. It follows from Lemmas 4.9, 4.10 and Proposition 4.6. �
Lemma 4.12. For any x, y in P2,±, we have

‖x ∗ y‖∞ ≤ ‖x‖p‖y‖q
δ

,

where 1 ≤ p ≤ ∞ and 1 + 1 = 1.
p q
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Proof. Suppose that x ∗ y =
∑

k λkvk is the rank-one decomposition. Then

‖x ∗ y‖∞ = sup
k

λk = sup
k

tr2((x ∗ y)v∗k)
tr2(|vk|)

.

By Lemma 3.4 and Proposition 4.3, we have that

|tr2((x ∗ y)v∗k)| = |tr2((v∗k ∗ a)y)| ≤ ‖v∗k ∗ x‖p‖y‖q

By Lemma 4.11, we have

‖v∗k ∗ x‖p ≤ ‖x‖p
tr2(|v∗k|)

δ
.

Moreover, since ‖b‖q = ‖b‖q, we obtain

‖x ∗ y‖∞ ≤ ‖x‖ptr2(|v∗k|)‖y‖q
δtr2(|v∗k|)

= ‖x‖p‖y‖q
δ

.

This completes the proof of the lemma. �
Theorem 4.13 (Young’s inequality). For any x, y in P2,±, we have

‖x ∗ y‖r ≤ ‖x‖p‖y‖q
δ

,

where 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1
r + 1.

Proof. It follows from Lemmas 4.11, 4.12 and Proposition 4.6. �
Remark. The inequalities listed as above are sharp. This can be easily checked if one lets 
x = y = 1.

5. Noncommutative uncertainty principles

In this section, we will prove the Donoho–Stark uncertainty principle and the 
Hirschman–Beckner uncertainty principle for irreducible subfactor planar algebras. It 
was shown [11,28] that for a finite abelian group G and a nonzero function f on G,

|supp(f)||supp(f̂)| ≥ |G|,

where f̂ is the Fourier transform of f , supp(f) = {x ∈ G : f(x) �= 0}. We will generalize 
this uncertainty principle in subfactor planar algebras.

Notation 5.1. Suppose P be a subfactor planar algebra. For any x in Pn,±, recall that 
R(x) is the range projection of x. Let us define S(x) = trn(R(x)).
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Theorem 5.2. Suppose P is an irreducible subfactor planar algebra. Then for any nonzero 
x in P2,±, we have

S(x)S(F(x)) ≥ δ2.

This partially proves Main Theorem 1.

Proof. Let F(x) =
∑

j λjvj be the rank-one decomposition of F(x). Then ‖F(x)‖∞ =
supj λj . Now we have

sup
j

λj = ‖F(x)‖∞

≤ ‖x‖1

δ
≤ ‖R(x)‖2‖x‖2

δ

= S(x)1/2

δ
‖F(x)‖2

= S(x)1/2

δ
(
∑
j

λ2
j‖vj‖1)1/2

≤ S(x)1/2

δ
(sup

j
λ2
j )1/2‖R(F(x))‖1/2

1

= S(x)1/2S(F(x))1/2

δ
sup
j

λj .

Thus

S(x)S(F(x)) ≥ δ2. �
If we apply Theorem 5.2 to group subfactor planar algebras, we have

Corollary 5.3. For any finite abelian group G and a nonzero function f on G, we have

|supp(f)||supp(f̂)| ≥ |G|,

where f̂ is the Fourier transform of f .

In [30], T. Tao shows that for the group Zp, p prime, and a nonzero function f on it,

|supp(f)| + |supp(f̂)| ≥ p + 1.

Similarly we can ask if a parallel inequality

S(x) + S(F(x)) ≥ δ2 + 1 (4)
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holds in the 2-box space of subfactor planar algebras. The statement is false if a subfactor 
planar algebra has a non-trivial biprojection.

Suppose P is a nontrivial biprojection in P2,±. Then S(P )S(F(P )) = δ2 and 1 <
S(P ) < δ2. Hence S(P ) +S(F(P )) = S(P ) + δ2

S(P ) < δ2+1. In the case of group subgroup 
subfactor planar algebra, the inequality (4) is true only when the index is a prime number 
p which corresponds the finite group case for Tao’s uncertainty principle. In general, we 
do not have inequality (4) even if the index is a prime number. For example, let P1, P2

be Temperley Lieb algebra with index a and p/a, where p is a prime number, a > 4, 
p/a > 4. Then the free product P1∗P2 is a Fuss–Catalan algebra with index p (see [5]). 
Since P1 ∗ P2 has nontrivial biprojection, the inequality (4) is false for P1 ∗ P2.

We need a “prime” condition. It is proved by Bisch in [4] that a finite depth subfactor 
planar algebra with index p, p prime, has no non-trivial biprojection. We may ask the 
following question.

Question. Suppose P is an irreducible finite depth subfactor planar algebra with index 
p, p prime. Is inequality (4) true?

Remark. If P is a group subgroup subfactor planar algebra with index p, then the 
argument reduces to the group case, where it is true.

Remark. If S(F(x)) is replaced by the trace of the central support of F(x), then the 
corresponding weaker inequality for finite groups was proved in Corollary 5.1 in [13].

For Hirschman’s uncertainty principle [15], the Shannon entropy is used to describe 
his uncertainty principle in abelian groups. In subfactors, we will use the von Neumann 
entropy in place of the Shannon entropy.

Notation 5.4. For any x in Pn,±, the von Neumann entropy of |x|2 is

H(|x|2) = −trn(|x|2 log |x|2) = −trn(x∗x log x∗x).

Von Neumann entropy is widely used as an important measurement in quantum in-
formation theory and it is also important for our next uncertainty principle.

Theorem 5.5. Suppose that P is an irreducible subfactor planar algebra and x ∈ P2,±. 
Then

H(|x|2) + H(|F(x)|2) ≥ ‖x‖2
2(2 log δ − 4 log ‖x‖2).

Specifically

H(|x|2) + H(|F(x)|2) ≥ 2 log δ

whenever x ∈ P2,± and ‖x‖2 = 1.
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This together with Theorem 5.2 proves Main Theorem 1.

Proof. Without loss of generality, we assume that x �= 0. By Theorem 4.8,

‖F(x)‖p ≤
(

1
δ

)1− 2
p

‖x‖q,

where 2 ≤ p ≤ ∞ and 1
p + 1

q = 1. Take

f(p) = log ‖F(x)‖p − log ‖x‖q − log(1
δ
)1−

2
p .

Then f(p) ≤ 0. Note that ‖F(x)‖2 = ‖x‖2, so f(2) = 0. Then f ′(2) ≤ 0.
Note that

d
dp

∑
k

xp
k

∣∣∣
p=2

=
∑
k

x2
k log xk,

so

d
dp‖F(x)‖pp

∣∣∣
p=2

= −1
2H(|F(x)|2).

Then

d
dp log ‖F(x)‖p

∣∣∣
p=2

= d
dp

1
p

log ‖F(x)‖pp
∣∣∣
p=2

= −1
4 log ‖F(x)‖2

2 −
1
4
H(|F(x)|2)
‖F(x)‖2

2
.

Similarly

d
dp log ‖x‖q

∣∣∣
p=2

=
(

d
dq log ‖x‖q

∣∣∣
q=2

)(
dq
dp

∣∣∣
p=2

)
= 1

4 log ‖x‖2
2 + 1

4
H(|x|2)
‖x‖2

2
.

Moreover,

d
dp log(1

δ
)1−

2
p

∣∣∣
p=2

= −1
2 log δ.

Therefore

f ′(2) =
(
−1

4 log ‖F(x)‖2
2 −

1
4
H(|F(x)|2)
‖F(x)‖2

2

)
−

(
1
4 log ‖x‖2

2 + 1
4
H(|x|2)
‖x‖2

2

)
+ 1

2 log δ.

Recall that f ′(2) ≤ 0 and ‖F(x)‖2 = ‖x‖2, so

H(|x|2) + H(|F(x)|2) ≥ ‖x‖2
2(2 log δ − 4 log ‖x‖2).
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Specifically

H(|x|2) + H(|F(x)|2) ≥ 2 log δ,

when ‖x‖2 = 1. �
Remark. This is a noncommutative version of the proof of Theorem 23 in [10].

Corollary 5.6. Suppose P is an irreducible subfactor planar algebra. Then for any 
nonzero x in P2,±, we have

S(x)S(F(x)) ≥ δ2.

Proof. We will prove the inequality logS(x) ≥ H(|x|2) when ‖x‖2 = 1. With this in-
equality, it is easy to see that the corollary follows from Theorem 5.5.

Let x =
∑

j λjvj be the rank-one decomposition. Since ‖x‖2 = 1, we have ‖x‖2
2 =∑

j λ
2
j tr2(|vj |) = 1. Then

H(|x|2) = −tr2(|x|2 log |x|2) = −
∑
j

λ2
j log λ2

j tr2(|vj |)

= −tr2(R(|x|))
∑
j

tr2(|vj |)
tr2(R(|x|))λ

2
j log λ2

j

≤ −tr2(R(|x|))

⎛⎝∑
j

tr2(|vj |)
tr2(R(|x|))λ

2
j

⎞⎠ log

⎛⎝∑
j

tr2(|vj |)
tr2(R(|x|))λ

2
j

⎞⎠
Jensen’s inequality

= log tr2(R(|x|)) = log tr2(R(x)) = logS(x). �
Remark. The Hirschman–Beckner uncertainty principle is stronger than the Donoho–
Stark uncertainty principle.

Remark. If ‖x‖2 = δ, then H(|x|2) ≤ 0. Moreover, H(|x|2) = 0 if and only if x is a 
unitary. Therefore the maximizer of H(|x|2) + H(|F(x)|2) is a biunitary if there is one. 
In the case ‖x‖2 = δ, we have

−2δ log(2δ) ≤ H(|x|2) + H(|F(x)|2) ≤ 0

6. Minimizers for noncommutative uncertainty principles

Throughout this section, P is an irreducible subfactor planar algebra. We will discuss 
the minimizers of its two uncertainty principles shown in the last section. First, we would 
like to introduce some notions.
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Definition 6.1. An element x in P2,± is said to be extremal if ‖F(x)‖∞ = ‖x‖1

δ
. We say 

a nonzero element x is an (extremal) bi-partial isometry if x and F(x) are multiplies of 
(extremal) partial isometries.

For example, a positive operator is always extremal, since the norm of its Fourier
transform is achieved on the Jones projection; a biprojection is an extremal bi-partial 
isometry.

Proposition 6.2. If x in P2,± is extremal, then x∗ and x are extremal.

Proof. It follows from the facts that

‖F(x∗)‖∞ = ‖F−1(x)∗‖∞ = ‖F−1(x)‖∞ = ‖F(x)‖∞

and

‖x∗‖1 = ‖x‖1 = ‖x‖1. �
We will first show that the two uncertainty principles have the same minimizers which 

are extremal bi-partial isometries. The proof of the following theorem benefits a lot from 
[25], and we also need Hopf’s maximum principle. For readers’ convenience, we state it 
here:

Proposition 6.3 (Hopf’s maximum principle). (See [16].) Let D ⊂ C be an open unit 
disc, and let u : D → R be a harmonic function which extends to a continuous function 
on the closure D of D, u : D → R. Suppose z is a point on the boundary of D such 
that u(z) ≥ u(z′) for all z′ ∈ D, and the directional derivative of u at z along the radius 
which ends at z, is zero. Then u(z) = u(z′) for all z′ ∈ D.

Theorem 6.4. For a non-zero element x in P2,±, the following statements are equivalent:

(1) H(|x|2) + H(|F(x)|2) = ‖x‖2
2(2 log δ − 4 log ‖x‖2);

(2) S(x)S(F(x)) = δ2;
(3) x is an extremal bi-partial isometry.

This proves part of Main Theorem 2.

Proof. “(1) ⇒ (3)”. Suppose x is in P2,± such that ‖x‖2 =
√
δ and H(|x|2) +

H(|F(x)|2) = 0. Then λx also satisfies equation (1) in the theorem. Without loss of 
generality, we assume that ‖x‖2 =

√
δ. We define a complex function

F (z) = tr2

(
F
(
wx|x|2z

)
|F(x)|2z w∗

F(x)

)
,

where wx means the partial isometry in the of polar decomposition of x.
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Now we will show that F (z) is analytic and bounded on the strip 12 < σ < 1, z = σ+it. 
By Proposition 4.3 and Theorem 4.8,

|F (σ + it)| ≤ ‖F
(
wx|x|2z

)
‖ 1

1−σ
‖|F(x)|2z‖ 1

σ

≤
(

1
δ

)1−2(1−σ)

‖|x|2σ‖1/σ‖|F(x)|2σ‖1/σ

=
(

1
δ

)2σ−1

δσδσ = δ.

This implies that F (z) is bounded on 1
2 < σ < 1. Differentiating the function with 

respect to z, we have

F ′(z) = tr2

(
F
(
wx|x|2z(log |x|2)

)
|F(x)|2z w∗

F(x)

)
+ tr2

(
F
(
wx|x|2z

)
|F(x)|2z (log |F(x)|2)w∗

F(x)

)
.

Then evaluating the function at z = 1
2 , we obtain

F ′(1
2) = tr2

(
F
(
wx|x|(log |x|2)

)
|F(x)|w∗

F(x)

)
+ tr2

(
F (wx|x|) |F(x)| (log |F(x)|2)w∗

F(x)

)
= tr2(F(x(log |x|2))F(x)∗) + tr2(F(x)(logF(x)2)F(x)∗)

= tr2(x(log |x|2)x∗) −H(|F(x)|2)

= −H(|x|2) −H(|F(x)|2) = 0.

By Hopf’s maximum principle, Proposition 6.3, we have that F (z) is constant on the 
disc center at 3

4 with radius 1
4 . Hence

F (1) = F (1
2) = tr2(F(x)F(x)∗) = δ.

On the other hand, we have

F (1) = tr2

(
F
(
wx|x|2

)
|F(x)|2w∗

F(x)

)
= tr2(F(x|x|)|F(x)|F(x)∗).

Let x =
∑

j μjwj and F(x) =
∑

k λkvk be the rank-one decompositions. Then

δ = ‖x‖2
2 =

∑
μ2
j‖wj‖1, δ = ‖F(x)‖2

2 =
∑

λ2
k‖vk‖1,
j k
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and

F(x|x|) =
∑
j

μ2
jF(wj), |F(x)|F(x)∗ =

∑
k

λ2
kv

∗
k.

Therefore

δ = F (1) = tr2(
∑
j

μ2
jF(wj)

∑
k

λ2
kv

∗
k)

=
∑
j,k

λ2
kμ

2
j tr2(F(wj)v∗k)

On the other hand,

δ2 = ‖x‖2
2‖F(x)‖2

2 =
∑
j,k

λ2
kμ

2
j‖wj‖1‖vk‖1.

Combining the two equations above, we see that

∑
j,k

λ2
kμ

2
j

(
1
δ
‖wj‖1‖vk‖1 − tr2(F(wj)v∗k)

)
= 0. (5)

Note that λk > 0, μj > 0, and by Propositions 4.3, 4.7,

|tr2(F(wj)v∗k)| ≤ ‖F(wj)‖∞‖v∗k‖1 ≤ ‖wj‖1

δ
‖vk‖1.

By Equation (5), we see that tr2(F(wj)v∗k) =
1
δ
‖wj‖1‖vk‖1. Therefore

λk‖vk‖1 = tr2(F(x)v∗k) =
∑
j

μjtr2(F(wj)v∗k) = 1
δ

∑
j

μj‖wj‖1‖vk‖1 = 1
δ
‖x‖1‖vk‖1.

Then λk = ‖x‖1

δ
for any k. So x is extremal and F(x) is a multiple of a partial isometry. 

Similarly, we have μj = ‖F(x)‖1

δ
for any j. So x is an extremal bi-partial isometry.

“(3) ⇒ (2)” If x is an extremal bi-partial isometry, then it is easy to check that all 
the equalities of the inequalities hold in the proof of Theorem 5.2.

“(2) ⇒ (1)” From the proof of Corollary 5.6, we see that the Hirschman–Beckner 
uncertainty principle is stronger than the Donoho–Stark uncertainty principle. So the 
minimizer of the latter one has to be that of the former one. �

Theorem 6.4 is a noncommutative version of Theorem 1.5 in [25] when A is a finite 
abelian group. As showed in [25], the minimizer of the classical uncertainty principle is 
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a nonzero scalar multiple of a translation and a modulation of the indicator function of 
a subgroup of A. Their techniques to describe the extremal bi-partial isometries do not 
work in subfactor planar algebras, since we do not have the translation or the modulation 
to shift an extremal bi-partial isometry to a biprojection. We will define a notion of shift, 
a generalization of the translation and the modulation, and show that extremal bi-partial 
isometries are bi-shift of biprojections. Recall that biprojections are a generalization of 
indicator functions of subgroups.

First, we need some new notions as follows.

Definition 6.5. A projection x in P2,± is said to be a left shift of a biprojection B if 

tr2(x) = tr2(B) and x ∗B = tr2(B)
δ

x. A projection x in P2,± is said to be a right shift 

of a biprojection B if tr2(x) = tr2(B) and B ∗ x = tr2(B)
δ

x.

Remark. Note that this is similar to the translation. Since it is noncommutative, we have 
“left” and “right” here. Later we will see a left shift of a biprojection is always a right 
shift of a biprojection. We are able to find out all shifts of biprojections for concrete 
examples.

Remark. For a right shift x of a biprojection B, we have that R(F−1(x)) = R(F−1(B)), 
since tr2(x) = tr2(B), R(F−1(x)) ≤ R(F−1(B)), and the uncertainty principle 
tr2(x)tr2(R(F−1(x))) ≥ δ2. In particular, a right (or left) shift of a biprojection is a 
minimizer of the uncertainty principles.

For an extremal bi-partial isometry v, we will see the range projections of v∗ and 
F−1(v) are shifts of a pair of biprojections. Moreover, v is uniquely determined by the 
two range projections up to a scalar. To construct such an extremal bi-partial isometry 
from two certain range projections, we introduce bishifts of biprojections. There are 8 
different ways to construct bi-shifts of biprojections. We refer the reader to Appendix A
for details. Here we use one of them as its definition.

Definition 6.6. Suppose B is a biprojection in P2,±, we denote by B̃ the range projection 
of F(B). A nonzero element x in P2,± is said to be a bi-shift of a biprojection B if there 
exist a right shift Bg of the biprojection B and a right shift B̃h of the biprojection B̃

and an element y in P2,± such that x = F(B̃h) ∗ (yBg), i.e.,

x = .

Lemma 6.7. Let x be the above bi-shift of the biprojection B. Then R(x∗) = Bg and 
R(F−1(x)) = B̃h. Moreover, x is a minimizer of the uncertainty principles.
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Proof. Note that x = F(B̃h) ∗(yBg), we then have F−1(x) = B̃hF−1(yBg). This implies 
that R(F−1(x)) ≤ B̃h. On the other hand, we have

x∗ = F(B̃h)∗ ∗ (Bgy
∗)

= F−1(B̃h) ∗ (Bgy
∗),

R(F−1(B̃h)) = R(F−1(B̃))

= R(B) = B,

R(x∗) ≤ R(R(F−1(B̃h)) ∗ R(Bgy
∗)) Proposition 3.5

≤ R(B ∗Bg) = Bg.

By Theorem 5.2, we have

δ2 ≤ tr2(R(x))tr2(R(F−1(x)))

= tr2(R(x∗))tr2(R(F−1(x)))

≤ tr2(Bg)tr2(B̃h) = tr2(B)tr2(B̃) = δ2.

This means that R(x∗) = Bg and R(F−1(x)) = B̃h. Moreover, x is a minimizer of the 
uncertainty principles. �
Lemma 6.8. Suppose x ∈ P2,± is extremal. Let x =

∑
k λkvk and F(x) =

∑
l μlwl be 

rank-one decompositions. Then

w∗
l F(vk) = ‖vk‖1

δ
|wl|, for all k,

whenever μl = ‖F(x)‖∞.

Proof. If μl = ‖F(x)‖∞ = ‖x‖1
δ , we have

tr2(w∗
l F(x)) = μl‖wl‖1 = ‖x‖1

δ
‖wl‖1.

Recall that x =
∑

k λkvk, we obtain

∑
k

λktr2(w∗
l F(vk)) =

∑
k

λk
‖vk‖1

δ
‖wl‖1.

By Propositions 4.3 and 4.7,

|tr2(w∗
l F(vk))| ≤ tr2(|w∗

l F(vk)|) ≤ ‖wl‖1‖F(vk)‖∞ ≤ ‖wl‖1
‖vk‖1

.

δ
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Then

tr2(w∗
l F(vk)) = tr2(|w∗

l F(vk)|) = ‖wl‖1
‖vk‖1

δ
= tr2(|w1|

‖vk‖1

δ
),∀k.

Note that R(w∗
l F(vk)) = |wl|, and

‖w∗
l F(vk)‖∞ = ‖F(vk)‖∞ ≤ ‖vk‖1

δ
,

so w∗
l F(vk) = ‖vk‖1

δ |wl| for all k. �
Definition 6.9. Suppose v ∈ P2,+, w ∈ P2,−, we say v is extremal with respect to w if

tr2(w∗F(v)) = tr2(v∗F−1(w)) = ‖v‖1‖w‖1

δ
.

Remark. In general, we have

|tr2(w∗F(v))| = |tr2(v∗F−1(w))| ≤ ‖v‖1‖w‖1

δ
.

Proposition 6.10. If w is a partial isometry and F−1(w) is extremal, then w is an extremal 
bi-partial isometry.

This proves part of Main Theorem 2.

Proof. By Proposition 4.5, w is a multiple of a partial isometry if and only if ‖w‖2
2 =

‖w‖∞‖w‖1. To see F(w) is a partial isometry, we are going to check ‖F(w)‖2
2 =

‖F(w)‖∞‖F(w)‖1. If F−1(w) is extremal, then

‖w‖∞ = ‖F(F−1(w))‖∞ = ‖F−1(w)‖1

δ
.

If w is a partial isometry, then

‖F(w)‖∞‖F(w)‖1 ≥ ‖F(w)‖2
2 = ‖w‖2

2

= ‖w‖∞‖w‖1

≥ ‖F−1(w)‖1

δ
δ‖F(w)‖∞

= ‖F(w)‖∞‖F(w)‖1

Hence ‖F(w)‖2
2 = ‖F(w)‖∞‖F(w)‖1 and ‖F(w)‖∞ = 1

δ‖w‖1. Then F(w) is a multiple 
of a partial isometry and w is extremal. �
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Theorem 6.11. Suppose P is an irreducible subfactor planar algebra, and w ∈ P2,±. If 
w is a partial isometry and F−1(w) is extremal, then δ

‖w‖2
2
w ∗ w∗ is a partial isometry, 

and

(w∗ ∗ w)(w ∗ w∗) = ‖w‖2
2

δ
(w∗w) ∗ (w w∗), i.e.

= ‖w‖2
2

δ
.

Consequently ‖w‖1 = ‖ δ

‖w‖2
2
w ∗ w∗‖1.

Proof. Suppose w is a partial isometry and F−1(w) is extremal. Let w =
∑

l wl and 
x = F−1(w)∗ =

∑
k λkvk be the rank-one decompositions.

Note that x is extremal, so 
‖x‖1

δ
= ‖F(x)‖∞ = ‖w‖∞ = 1. Let

=
n∑

j=1

δ

‖vk‖1
+ (6)

be Wenzl’s formula (2), such that U1 = vk. Adding a cap to the left, we have the local 
relation (3)

=
n∑

j=1

δ

‖vk‖1
+ .

Then

=
n∑

j=1

δ

‖vk‖1
+ . (7)

When l1 = l2, each summand of the right hand side is positive.
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We are going to prove

= δ

‖vk‖1
, (8)

which implies the rest summands of the right side of Equation (7) are zeros. The left 
hand side of Equation (8) is

δ

‖vk‖1
w∗

l1wl1 = δ

‖vk‖1
|wl1 |.

The right hand side of Equation (8) is

δ

‖vk‖1
w∗

l1F(v∗k)F−1(vk)wl1 = δ

‖vk‖1
w∗

l1F(v∗k)(F(v∗k))∗wl1 .

From Lemma 6.8, we have

‖vk‖1

δ
|wl1 | = w∗

l1F(v∗k).

Thus

δ

‖vk‖1
w∗

l1F(v∗k)(F(v∗k))∗wl1 = δ

‖vk‖1

(
‖vk‖1

δ
|wl1 |

)2

= ‖vk‖1

δ
|wl1 |.

So Equation (8) holds.

Now we have = 0, for j �= 1, so = 0. Note that is a projection, 

so = 0. By Equation (6), we have
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=
n∑

j=1

δ

‖vk‖1
+ = δ

‖vk‖1
= δ

‖vk‖1

= δ

‖vk‖1
(‖vk‖1

δ
)2 ,

the last equality follows from Lemma 6.8. Adding a cap to the right and then taking the 
Fourier transform (the 1-click rotation), we have

= ‖vk‖1

δ
.

Then

∑
k,l1,l2

λ2
k =

∑
k,l1,l2

λ2
k

‖vk‖1

δ
.

Note that 
∑

l wl = w, 
∑

k λ
2
k‖vk‖1 = ‖x‖2

2, and

F(
∑
k

λ2
k|vk|) = F((

∑
k

λkvk)∗(
∑
k

λkvk)) = F(x∗x) = w ∗ w∗,

so

=
∑
l1,l2

‖x‖2
2

δ
.

Computing the trace on both sides, we have
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tr2((w∗ ∗ w)(w ∗ w∗)) = ‖x‖2
2

δ

∑
l1,l2

tr2(|wl2 | ∗ |wl1 |)

= ‖x‖2
2

δ

∑
l1,l2

‖wl2‖1‖wl1‖1

δ

= ‖x‖2
2

δ

‖w‖2
1

δ
.

By Hölder’s inequality (Proposition 4.3), we have

tr2((w∗ ∗ w)(w ∗ w∗)) ≤ ‖w∗ ∗ w‖∞‖w ∗ w∗‖1. (9)

So

‖x‖2
2

δ

‖w‖2
1

δ
≤ ‖w∗ ∗ w‖∞‖w ∗ w∗‖1.

On the other hand, by Proposition 4.7 and Lemma 4.9, we have

‖w ∗ w∗‖∞ ≤ ‖x∗x‖1

δ
= ‖x‖2

2
δ

(10)

and

‖w ∗ w∗‖1 ≤ ‖w‖1‖w∗‖1

δ
= ‖w‖2

1
δ

.

Hence all equalities of the inequalities hold. Note that (w∗ ∗ w) = (w ∗ w∗)∗. Then by 
the equality of (9), we have that

‖w ∗ w∗‖2
2 = ‖w ∗ w∗‖∞‖w ∗ w∗‖1.

By Proposition 4.4, w ∗ w∗ is a multiple of a partial isometry. By the equality of Equa-
tion (10), we have that δ

‖w‖2
2
w ∗ w∗ is a partial isometry.

Furthermore, since 
∑

l |wl| = w∗w and ‖x‖2
2 = ‖w‖2

2, we see that

= ‖w‖2
2

δ
.
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Recall that w and 
δ

‖w‖2
2
w ∗ w∗ are partial isometries, and ‖w‖2

2 = ‖w‖1. Computing 

the trace on both sides of the above equation, we have

‖w‖1 = ‖ δ

‖w‖2
2
w ∗ w∗‖1. �

Corollary 6.12. Suppose P is a subfactor planar algebra, and w ∈ P2,±. If F−1(w) is 
extremal, then wQ is an extremal bi-partial isometry, where Q is the spectral projection 
of |w| with spectrum ‖w‖∞.

Proof. Without loss of generality, we assume that ‖w‖∞ = 1. Note that

lim
k→∞

w(w∗w)k = wQ,

which is a partial isometry.
If F−1 (w) is extremal, then ‖F−1 (w) ‖1 = δ. By Lemma 4.10, we have

‖F−1(w(w∗w)k)‖1 = ‖F−1(w) ∗ F−1(w∗) ∗ F−1(w) ∗ · · · ∗ F−1(w∗) ∗ F−1(w))‖1 ≤ δ.

Recall that F−1 is continuous, so

‖F−1(wQ)‖1 ≤ δ.

On the other hand, by Proposition 4.7, we have

1 = ‖wQ‖∞ ≤ 1
δ
‖F−1(wQ)‖1.

So the equality of the above inequality holds and F−1(wQ) is extremal. By Proposi-
tion 6.10, wQ is an extremal bi-partial isometry. �
Theorem 6.13. Suppose P is an irreducible subfactor planar algebra, and w ∈ P2,±. 
Then w is an extremal bi-partial isometry if and only if w is a bi-shift of a biprojection. 
Furthermore, if w is a projection, then it is a left (or right) shift of a biprojection.

Proof. Suppose w is an extremal bi-partial isometry and w is a partial isometry. We 
define an element

B =
(

δ

‖w‖2
2

)2

.
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By Theorem 6.11, we have 
δ

‖w‖2
2
w ∗w∗ is a partial isometry and B is a projection. Note 

that F(w∗) is an extremal bi-partial isometry, by Theorem 6.11, one obtains F(w∗) ∗
F(w∗)

∗
is a multiple of a partial isometry. Moreover,

F(w∗) ∗ F(w∗)
∗

= F(w∗) ∗ F−1(w)

= F(w∗) ∗ F(w) = F(w∗w).

and
‖w‖2

2
δ

F(B) = δ

‖w‖2
2
F((w ∗ w∗)∗(w ∗ w∗))

= F((w∗w) ∗ (ww∗))

= F(ww∗)F(w∗w)

= (F(w∗w))∗F(w∗w).

We see that F(B) is a multiple of a projection, and B is a biprojection.
We define an element Bg = w∗w, then Bg is a projection. We are going to show Bg is a 

right shift of the biprojection B. By Theorem 6.11, we have 
δ

‖w‖2
2
Bg∗Bg = B. Computing 

the trace on both sides, we have 
δ

‖w‖2
2

tr2(Bg)2

δ
= tr2(B). Note that ‖w‖2

2 = tr2(Bg), so 

tr2(Bg) = tr2(B).

Recall that F(w∗) is an extremal bi-partial isometry, so 
δ

‖w‖1
F(w∗) is a partial isom-

etry. By Theorem 6.11, we see that

δ

‖w‖2
2
F (Bg) = δ

‖ δ
‖w‖1

F (w∗) ‖2
2

(
δ

‖w‖1
F (w∗)

)
∗
(

δ

‖w‖1
F (w∗)

∗
)

is a partial isometry. Hence we obtain

F (Bg) =
(

δ

‖w‖2
2

)2

F (Bg)F (Bg)∗ F (Bg)

=
(

δ

‖w‖2
2

)2

F (Bg)F
(
Bg

)
F (Bg)

=
(

δ

‖w‖2
2

)2

F
(
Bg ∗Bg ∗Bg

)
.

and 
(

δ

‖w‖2
2

)2

Bg ∗Bg ∗Bg = Bg. Then

B ∗Bg = δ

‖w‖2
2
Bg ∗Bg ∗Bg = ‖w‖2

2
δ

Bg = ‖Bg‖1

δ
Bg.

Therefore Bg is a right shift of the biprojection B.
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Note that F−1 (w∗) is an extremal bi-partial isometry, so 
δ

‖w‖1
F−1 (w∗) is a partial 

isometry. Take B̃ = R(F (B)) and B̃h =
(

δ

‖w‖1
F−1 (w∗)

)∗ (
δ

‖w‖1
F−1 (w∗)

)
. Simi-

larly B̃h is a right shift of B̃.
Recall that δ

‖w‖1
F−1 (w∗) is a partial isometry, we have

F−1(w∗)∗ = F(w) = F−1(w), F(B̃h) =
(

δ

‖w‖1

)2

w ∗ w∗,

and

F−1(w∗)∗ =
(

δ

‖w‖1

)2

F−1(w∗)∗F−1(w∗)F−1(w∗)∗

=
(

δ

‖w‖1

)2

F−1(w ∗ w∗ ∗ w).

So w =
(

δ

‖w‖1

)2

w ∗ w∗ ∗ w. Then w = F(B̃h) ∗ w = F(B̃h) ∗ (wBg), i.e.

w =
(

δ

‖w‖1

)2

=

is a bi-shift of the biprojection B.
By Lemma 6.7, a bi-shift of a biprojection gets the minimal value of the Donoho–Stark 

uncertainty principle, so it is an extremal bi-partial isometry by Theorem 6.4.
Furthermore, if w is positive, then w is identical to Bg in the above argument. �
As a corollary, we obtain a new characterization of biprojections.

Corollary 6.14. For a nonzero 2-box x in an irreducible subfactor planar algebra. If x
and F(x) are positive operators and S(x)S(F(x)) = δ2, then x is a biprojection.

Proof. It follows from Theorems 6.4, 6.13. �
Note that the proof of Theorem 6.13 is independent of the choice of the form of a 

bi-shift of a biprojection. We refer the reader to Appendix A for the eight forms of 
bishifts of biprojections.

We have shown that an element is the minimizer of the uncertainty principles if and 
only if it is an extremal bi-partial isometry if and only if it is a bi-shift of a biprojection. 
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Now let us prove the uniqueness of a bi-shift of a biprojection in the following sense. 
Given a 2-box, we will obtain four range projections, the left, top, right, bottom ones. 
An extremal bi-partial isometry, or equivalently a bi-shift of a biprojection is determined 
by two adjacent range projections up to a scalar.

Lemma 6.15. Suppose B is a biprojection in P2,+, and B̃ is the range projection of 
F(B). For x ∈ P2,+, if R(x∗) = B and R(F−1(x)) = B̃, then x is a multiple of B.

Proof. It is shown in [5] that the biprojection B can be expressed as a multiple of the 

(a, b-colored) Fuss–Catalan diagram . If R(x∗) = B and R(F−1(x)) = B̃, then 

x is a multiple of the Fuss–Catalan diagram . Recall that P is assumed to be 

irreducible, so is a multiple of . Hence x is a multiple of B. �

Theorem 6.16. Suppose B ∈ P2,+ is a biprojection and B̃ is the range projection of 
F(B). Take a right shift Bg of B, and a right shift B̃h of B̃. Then there is at most one 
element x ∈ P2,+ up to a scalar such that the range projection of |x| is contained in Bg

and the range projection of F−1(x) is contained in B̃h.

Proof. If x and z are two nonzero elements of P2,+, such that the range projec-
tions R(|x|) and R(|z|) are contained in Bg and the range projections R(F−1(x))
and R(F−1(z)) are contained in B̃h, then by Theorems 6.4, 6.13, we have R(|x|) =
R(|z|) = Bg and R(F−1(x)) = R(F−1(z)) = B̃h. Thus zx∗ and xx∗ are nonzero and 
R(|zx∗|) = R(|xx∗|) = R(x). By Lemma 3.5, we have

R(F−1(zx∗)) = R(F−1(x)
∗ ∗ F−1(z)) ≤ R(B̃h ∗ B̃h).

By Theorem 6.11,

S(B̃h ∗ B̃h) = S(B̃h) = S(F−1(x)).

Then

S(zx∗)S(F−1(zx∗)) ≤ S(x)S(F−1(x)) = δ2.
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By Theorem 5.2, we have

S(zx∗) = S(x); S(F−1(zx∗)) = S(F−1(x)) = S(B̃h ∗ B̃h).

Therefore

R(zx∗) = R(x); R(F−1(zx∗)) = R(B̃h ∗ B̃h).

By Theorems 5.2, 6.4, we have that zx∗ is a bi-shift of a biprojection. Similarly xx∗ is a 
bi-shift of a biprojection. Moreover,

R(|zx∗|) = R(|xx∗|); R(F−1(zx∗)) = R(F−1(xx∗)).

By a similar argument, we have (xx∗)
∗ ∗ (zx∗) and (xx∗)

∗ ∗ (xx∗) are bi-shifts of 
biprojections, and

R(|(xx∗)
∗ ∗ (zx∗)|) = R(|(xx∗)

∗ ∗ (xx∗)|);

R(F−1((xx∗)
∗ ∗ (zx∗))) = R(F−1((xx∗)

∗ ∗ (xx∗))).

By Theorem 6.11, (xx∗)
∗ ∗ (xx∗) is a multiple of a biprojection, denoted by Q. By 

Lemma 6.15, (xx∗)
∗ ∗ (zx∗) is also a multiple of Q. Observe that both z and x are 

multiples of ((xx∗) ∗Q)x, so z is a multiple of x. �
Finally we are able to formulate Hardy’s uncertainty principle as follows.

Corollary 6.17. Suppose a 2-box w is a minimizer for the (Hirschman–Beckner/Donoho–
Stark) uncertainty principle. For a 2-box x and constants C, C ′, if

|x| ≤ C|w|, |F(x)| ≤ C ′|F(w)|,

then x is a scalar multiple of w.

This proves Main Theorem 3.

7. Uncertainty principles for n-boxes

In this section, we will prove the uncertainty principles for general cases, in particular 
for reducible subfactor planar algebras and n-boxes. Suppose P is a subfactor planar 
algebra. For a projection P ∈ Pn,+, we define PP = {Px|x ∈ Pn,+} to be the Hilbert 
subspace of Pn,+. We make a similar definition for a projection in Pn,−. For projections 
Pi ∈ Pni,±, i = 1, 2, 3, 4, we define

Pi ⊗ Pj = ,
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when the shadings match. We define PP4⊗P3
P1⊗P2

to be the span of elements in the following 
form:

.

For an element in PP3⊗P4
P1⊗P2

, we also have the rank-one decomposition similar to the 
rank one decomposition in Section 2.

Note that |x| = (x∗x)1/2 ∈ Pn3+n4,±. Let us define ‖x‖p = ‖|x|‖p, 1 ≤ p ≤ ∞; 
S(x) = S(|x|).

Proposition 7.1. For any x in Pn,±, we have

(1) ‖x‖p = ‖x∗‖p = ‖x‖p, 1 ≤ p ≤ ∞;
(2) S(x) = S(x∗) = S(x);
(3) H(|x|2) = H(|x∗|2) = H(|x|2).

Let us define the Fourier transform FP1,P3 : PP4⊗P3
P1⊗P2

→ PP1⊗P4
P2⊗P3

as follows

FP1,P3( ) = .

Proposition 7.2. For any x in PP3⊗P4
P1⊗P2

, we have ‖FP1,P3(x)‖2 = ‖x‖2.

Proof. It follows from the sphericality of subfactor planar algebras. �

In the rest of the section, we will write the diagram as , or simply as 

if there is no confusion. By this notation, we can see that our method also works 

for a planar algebra with more kinds of regions and strings. The planar algebra should 
be C∗ and spherical. We will not give a formal definition here and skip the details.

Let us define

δi = min{trni
(P )|P is a nonzero subprojection of Pi}, 1 ≤ i ≤ 4;

δ0 = max{
√

δ1δ3,
√
δ2δ4}.
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When the planar algebra is irreducible and Pi is a through string, for 1 ≤ i ≤ 4, we 
have δi = δ0, and PP4⊗P3

P1⊗P2
is the 2-box space.

Theorem 7.3. For x ∈ PP4⊗P3
P1⊗P2

, we have

‖FP1,P3(x)‖p ≤
(

1
δ0

)1− 2
p

‖x‖q, 2 ≤ p < ∞,
1
p

+ 1
q

= 1.

The proof is almost identical to that of Theorem 4.8. Here we give a proof for the case 
p = ∞, q = 1, similar to Proposition 4.7.

Proof. If x is a rank-one partial isometry v in PP4⊗P3
P1⊗P2

, we have

≤ ‖v‖1

δ1
. (11)

Then

2

≤ ‖v‖1

δ1
.

Note that is a positive operator, and its range projection is contained in the pro-

jection , we obtain

≤ ‖v‖1

δ1
.
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Adding a cap to the left side, we have

≤ ‖v‖1

δ1
.

Note that

≤ ‖v‖1

δ3
. (12)

So

≤ ‖v‖2
1

δ1δ3
.

That is,

(F−1
P1,P3

(v))∗(F−1
P1,P3

(v)) ≤ (‖v‖
2
1

δ1δ3
)1.

Taking the norm on both sides, we have

‖(F−1
P1,P3

(v))∗(F−1
P1,P3

(v))‖∞ ≤ ‖v‖2
1

δ1δ3
.

Hence

‖F−1
P1,P3

(v)‖∞ ≤ ‖v‖1√
δ1δ3

.

Recall that FP1,P3(v) = (F−1
P1,P3

(v∗))∗ and ‖v‖1 = ‖v∗‖1, we obtain that

‖FP1,P3(v)‖∞ ≤ ‖v‖1√
δ1δ3

.

By symmetry, we have

‖FP1,P3(v)‖∞ ≤ ‖v‖1√ .

δ2δ4
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Therefore

‖FP1,P3(v)‖∞ ≤ ‖v‖1

δ0
,

where δ0 = max{
√

δ1δ3, 
√
δ2δ4}.

If x is arbitrary in P2,±, let x =
∑

k λkvk be the rank-one decomposition, then 

‖x‖1 =
∑

k λk‖vk‖1. We have proved that ‖FP1,P3(vk)‖∞ ≤ ‖vk‖1

δ0
for the rank-one 

partial isometry vk, so

‖FP1,P3(x)‖∞ ≤
∑
k

λk‖FP1,P3(vk)‖∞ ≤
∑
k

λk
‖vk‖1

δ0
= ‖x‖1

δ0
. � (13)

Notation 7.4. We call this general version of 2-box x extremal if it satisfies the equality

‖FP1,P3(x)‖∞ = 1
δ0

‖x‖1

for this general Fourier transform.

Lemma 7.5. Suppose x ∈ PP4⊗P3
P1⊗P2

is extremal. If δ0 =
√
δ1δ3, then there are subpro-

jections Qi of Pi with trace δi, for i = 1, 3, such that x = (Q1 ⊗ P2)x(P4 ⊗ Q3); If 
δ0 =

√
δ2δ4, then there are subprojections Qi of Pi with trace δi, for i = 2, 4, such that 

x = (P1 ⊗Q2)x(Q4 ⊗ P3).

Proof. Suppose x is extremal. When δ0 =
√
δ1δ3, if x is a rank-one partial isometry, 

then Equations (11), (12) hold in the proof of 7.3. So there are subprojections Qi of Pi

with trace δi, for i = 1, 3, such that x = (Q1 ⊗ P2)x(P4 ⊗Q3).
If x is arbitrary, let x =

∑
k λkvk be the rank-one decomposition, then each vk is 

a rank-one extremal partial isometry. Without loss of generality, we take v1 and v2, 
then there are subprojections Qi, Q′

i of Pi with trace δi, for i = 1, 3, such that v1 =
(Q1 ⊗ 1)v1(1 ⊗Q3); v2 = (Q′

1 ⊗ 1)v2(1 ⊗Q′
3). It is enough to show that Qi = Q′

i. Since 
x is extremal, from Equation (13) in the proof of 7.3, we have

‖FP1,P3(v1) + FP1,P3(v2)‖∞ = ‖FP1,P3(v1)‖∞ + ‖FP1,P3(v2)‖∞.

Taking the square on both sides,

‖(FP1,P3(v1) + FP1,P3(v2))∗(FP1,P3(v1) + FP1,P3(v2))‖∞
= (‖FP1,P3(v1)‖∞ + ‖FP1,P3(v2)‖∞)2.

So

‖|FP1,P3(v1)|2 + |FP1,P3(v2)|2‖∞ = ‖FP1,P3(v1)‖2
∞ + ‖FP1,P3(v1)‖2

∞.
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Then

‖‖FP1,P3(v1)‖2
∞(Q1 ⊗ P4) + ‖FP1,P3(v2)‖2

∞(Q′
1 ⊗ P4)‖∞

≥ ‖FP1,P3(v1)‖2
∞ + ‖FP1,P3(v1)‖2

∞.

So

‖‖FP1,P3(v1)‖2
∞Q1 + ‖FP1,P3(v2)‖2

∞Q′
1‖∞ ≥ ‖FP1,P3(v1)‖2

∞ + ‖FP1,P3(v1)‖2
∞.

That implies Q1 = Q′
1. Similarly Q3 = Q′

3.
The proof is similar if δ0 =

√
δ2δ4. �

For x ∈ PP4⊗P3
P1⊗P2

, y ∈ P
P3⊗P ′

4
P2⊗P ′

1
, let us define the coproduct ∗P3

P2
, simply denoted by ∗, 

as follows

x ∗ y = .

By a similar argument in Section 4 and the technique in the proof of Theorem 7.3, 
we have the following Young’s inequality.

Theorem 7.6. For any x in PP4⊗P3
P1⊗P2

, y in PP3⊗P ′
4

P2⊗P ′
1
, we have

‖x ∗ y‖r ≤
(

1√
δ2δ3

) 1
r

(
1√
δ′1δ

′
4

)1− 1
q ( 1√

δ1δ4

)1− 1
p

‖x‖q‖y‖p,

where 1
p + 1

q = 1
r + 1, and δ′1, δ

′
4 are defined in a similar way for P ′

1, P
′
4 respectively.

Repeating the arguments in Sections 5, 6, we have the following results.

Theorem 7.7. For a nonzero element x in PP3⊗P4
P1⊗P2

,

(1) S(x)S(FP1,P3(x)) ≥ δ2
0;

(2) H(|x|2) + H(|FP1,P3(x)|2) ≥ ‖x‖2
2(2 log δ0 − 4 log ‖x‖2).

Moreover, the following are equivalent

(1) S(x)S(FP1,P3(x)) = δ2
0;

(2) H(|x|2) + H(|FP1,P3(x)|2) = ‖x‖2
2(2 log δ0 − 4 log ‖x‖2);

(3) x is an extremal bi-partial isometry.
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Furthermore, if δ1δ3 = δ2δ4, then by Lemma 7.5, the projection Pi on the boundary 
of an extremal bi-partial isometry could be replaced by a minimal projection Qi with 
trace δi, for 1 ≤ i ≤ 4. Then the element B constructed in Theorem 6.13 is a 2-box in an 
irreducible subfactor planar algebra, so the definition and properties of the biprojection
B are inherited. By a similar argument in Section 6, we have the following results.

Theorem 7.8. With above notations and assumptions, for a nonzero element x in 
PP3⊗P4

P1⊗P2
, δ1δ3 = δ2δ4, the following statements are equivalent:

(1) S(x)S(FP1,P3(x)) = δ2
0;

(2) H(|x|2) + H(|FP1,P3(x)|2) = ‖x‖2
2(2 log δ0 − 4 log ‖x‖2);

(3) x is an extremal bi-partial isometry;
(3′) x is a partial isometry and F−1

P1,P3
(x) is extremal;

(4) x is a bi-shift of a biprojection.

Theorem 7.9. Suppose P is an irreducible subfactor planar algebra. For a nonzero ele-
ment x ∈ Pn,±, we have

n−1∏
k=0

S(Fk(x)) ≥ δn;

n−1∑
k=0

H(|Fk(x)|2) ≥ ‖x‖2
2(n log δ − 2n log ‖x‖2).

This is Main Theorem 4.

Proof. Considering P1, P3 as one through string, P2, P4 as n − 1 through strings in 
Theorem 7.7, then δ0 ≥

√
δ1δ3 = δ and S(x)S(FP1,P3(x)) ≥ δ2. So

2n−1∏
k=0

S(Fk(x)) ≥ δ2n.

Note that S(Fn+k(x)) = S(Fk(x)), so

n−1∏
k=0

S(Fk(x)) ≥ δn.

Similarly we have

n−1∑
H(|Fk(x)|2) ≥ ‖x‖2

2(n log δ − 2n log ‖x‖2). �

k=0
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The equalities of the above inequalities are obtained on the Temperley–Lieb diagram 
with caps around the boundary, for example the 5-box . If there is a biprojection, 
then the equality is also obtained on the Fuss–Catalan diagram with caps around.

Definition 7.10. Suppose P is an irreducible subfactor planar algebra. A projection P in 
Pn,± is called an n-projection if Fk(P ) is a multiple of a projection, for 0 ≤ k ≤ n − 1. 
An element x in Pn,± is called an extremal n-partial isometry if Fk(x) is a multiple of 

a partial isometry and ‖Fk±1(x)‖ = ‖Fk(x)‖1

δ
, for 0 ≤ k ≤ n − 1.

Question. Are all n-projections minimizers of the uncertainty principle? Are all minimiz-
ers extremal n-partial isometries? Are all minimizers “n-shifts of n-projections”?

8. Application to group algebras

Suppose M = N � G, for an outer action a finite group G. Let P be the subfactor 
planar algebra of the subfactor N ⊂ M. Then P2,+ is the C∗-algebra of functions over 
G and P2,− is the group C∗-algebra of G. The value of a closed circle δ is 

√
|G|. The 

trace tr2 of P2,+ is the integral of functions on G over the counting measure. The trace 
tr2 of P2,− is the trace of the group algebra of G on its left regular representation. For a 
group element g ∈ G, the Fourier transform from P2,∓ to P2,± maps the group element 
g to the function 

√
|G|δg; the function 

√
|G|δg to the group element g−1, where δg is the 

Dirac function at g. The coproduct of P2,+ is a multiple of the convolution. Precisely 
for two functions f1, f2 : G → C,

f1 ∗ f2(g0) = 1√
|G|

∑
g∈G

f1(g0g
−1)f2(g).

Theorem 4.13 becomes Young’s inequality for the convolution of groups. The Plancherel 
formula is a spherical isotopy.

Proposition 8.1. Suppose G is a finite group. Take a subgroup H, a one dimensional 
representation χ of H, an element g ∈ G, a nonzero constant c ∈ C. Then

x = c
∑
h∈H

χ(h)hg

is a bi-shift of a biprojection. Conversely any bi-shift of a biprojection is of this form.

Proof. For a subgroup H, the corresponding biprojection is B =
∑

h∈H δh. The range 

projection B̃ of F(B) is 1
|H|

∑
h. By a direct computation, we have that a right shift 
h∈H
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of B =
∑

h∈H δh is Bg =
∑

h∈H δhg for some g ∈ G. Let Q be a right shift of B̃. Then 
Q is an element in the group algebra of H, and it minimizes the uncertainty principle. 
Note that B̃ is a central minimal projection in the group algebra of H, so its right shift 
Q is also a rank-one projection. Then

tr2(hQ)
tr2(Q) , h ∈ H,

is a one dimensional representation of H. Take χ to be its contragredient representation, 

then χ(h) = tr2(h−1Q)
tr2Q

, and Q = 1
|H|

∑
h∈H

χ(h)h. Take x =
∑

h∈H χ(h)hg. Then R(x) =

Q and R(F(x)) = Bg. So x is a bi-shift of a biprojection. By Theorem 6.16, any bi-shift 
of a biprojection is of this form. �
Remark. Note that χ is the pull back of a character of H/[H, H], where [H, H] is the 
commutator subgroup.

By Theorems 6.11, 6.13, we have the following corollary.

Corollary 8.2. Take a finite group G acting on its left regular representation, a subset S
of G, an operator x =

∑
g∈S ωgg, |ωg| = 1, ∀ g. Then

(1) x is a bi-shift of a biprojection ⇐⇒ x is extremal.
Furthermore, if x =

∑
g∈S g, then

(2) S is a coset ⇐⇒ x is extremal ⇐⇒ ‖x‖1 = |S|.
(3) S is a subgroup ⇐⇒ x is positive.

9. Applications to group actions

The spin model [17] of an n-dimensional vector space V with an orthonormal basis 
S is a subfactor planar algebra, denoted by Spin. Its 2-box space Spin2,+ is the C∗

algebra End(V ); Spin2,− is the C∗ algebra of functions on the set S × S. For a matrix 
A = (aij)i,j∈S in Spin2,+, tr2(A) =

∑
i∈S aii; For a function f(i, j) = fij in Spin2,−, 

tr2(f) = 1
n

∑
i,j∈S fij . The Fourier transform F : Spin2,± → Spin2,∓ is

F(A)(i, j) =
√
naij ; F(f) = ( fji√

n
)i,j∈S .

Let A = (aij), B = (bij) be n × n matrices. The Hadamard product of A and B is the 
matrix C = (cij) (denoted by A ◦ B) given by cij = aijaij . The coproduct A ∗ B is 
realized as 

√
nA ◦B.
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If there is a group action G on S, then the fixed point algebra of Spin under the 
induced group action of G is also a subfactor planar algebra, denoted by P. Moreover, 
P2,+ consists of S×S matrices commuting with the action of G. Let δ0 be the minimal 
value of the trace of a nonzero minimal projection in P1,±. Then δ0 = n0√

n
, where 

n0 is the minimal cardinality of G-orbits of S. Then we obtain the Hausdorff–Young 
inequality, Young’s inequality, the uncertainty principles, and the characterizations of 
minimizers for elements in P2,+. For example, we have the following inequality for 
Hadamard product.

Corollary 9.1. If A, B are two S×S matrices commuting with a group action of G on S, 
then we have

‖A ◦B‖r ≤ 1
n2

0
‖A‖p‖B‖q,

where 1
p + 1

q = 1
r + 1 and n0 is the minimal value of the number of elements in an orbit 

of S under the action of G.

If the group action is transitive, then P is irreducible and it could be viewed as a 
group subgroup subfactor planar algebra. If S = G, and the action of G on G is the 
group multiplication, then P becomes the group subfactor planar algebra of G.
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Appendix A

Suppose B is a biprojection, and B̃ is the range projection of F(B). Let gB, Bg be 
a left and a right shift of B respectively. Let hB̃, B̃h be a left and a right shift of B̃
respectively.

The point to construct a bi-shift of the biprojection B is to make sure the pair of 
biprojections B and B̃ are adjacent to the same corner of the 2-box. There are eight 
forms of bi-shifts of biprojections as follows:
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Although the definition of bishifts of biprojections is given by the first form. By 
similar arguments, the proof of Theorem 6.13 also works for the other forms of bishifts 
of biprojections. Consequently any form of bi-shift of a biprojection could be expressed 
as any other form of bi-shift of a possibly different biprojection. Therefore it does not 
matter what we choose as the definition of bishifts of biprojections.
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