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In this article, we classify all standard invariants that can arise 
from a composed inclusion of an A3 with an A4 subfactor. 
More precisely, if N ⊂ P is an A3 subfactor and P ⊂ M is 
an A4 subfactor, then only four standard invariants can arise 
from the composed inclusion N ⊂ M. We answer a question 
posed by Bisch and Haagerup in 1994. The techniques of this 
paper also show that there are exactly four standard invariants 
for the composed inclusion of two A4 subfactors.
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1. Introduction

Jones classified the indices of subfactors of type II1 in [13]. It is given by

{4 cos2(π
n

), n = 3, 4, · · ·} ∪ [4,∞].

For a subfactor N ⊂ M of type II1 with finite index, the Jones tower is a sequence 
of factors obtained by repeating the basic construction. The system of higher relative 
commutants is called the standard invariant of the subfactor [8,35]. A subfactor is said 
to be of finite depth, if its principal graph is finite. The standard invariant is a complete 
invariant of a finite depth subfactor [35].
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Subfactor planar algebras were introduced by Jones as a diagrammatic axiomatization 
of the standard invariant [17]. Other axiomatizations are known as Ocneanu’s paragroups 
[30] and Popa’s λ-lattices [37]. Each subfactor planar algebra contains a Temperley–Lieb 
planar subalgebra which is generated by the sequence of Jones projections. When the 
index of the Temperley–Lieb subfactor planar algebra is 4 cos2( π

n+1 ), its principal graph 
is the Coxeter–Dynkin diagram An.

Given two subfactors N ⊂ P and P ⊂ M, the composed inclusion N ⊂ P ⊂ M
tells the relative position of these factors. The group type inclusion RH ⊂ R ⊂ R �K

for outer actions of finite groups H and K on the hyperfinite factor R of type II1 was 
discussed by Bisch and Haagerup [5].

We are interested in studying the composed inclusion of two subfactors of type A, i.e., 
a subfactor N ⊂ M with an intermediate subfactor P, such that the principal graphs 
of N ⊂ P and P ⊂ M are type A Coxeter–Dynkin diagrams. From the planar algebra 
point of view, the planar algebra of N ⊂ M is a composition of two Temperley–Lieb 
subfactor planar algebras. Their tensor product is well known [17,23]. Their free product
as a minimal composition was discovered by Bisch and Jones [6], called the Fuss–Catalan 
subfactor planar algebra. In general, the composition of two Temperley–Lieb subfactor 
planar algebras is still not understood.

The easiest case is the composed inclusion of two A3 subfactors. In this case, the index 
is 4, and such subfactors are extended type D [8,36]. They also arise as a group type 
inclusion RH ⊂ R ⊂ R �K, where H ∼= Z2 and K ∼= Z2.

The first non-group-like case is the composed inclusion of an A3 with an A4 subfactor. 
Its principal graph is computed by Bisch and Haagerup in their unpublished manuscript 
in 1994. Either it is a free composed inclusion, then its planar algebra is Fuss–Catalan; 
or its principal graph is a Bisch–Haagerup fish graph as

.

Then they asked whether this sequence of graphs are the principal graphs of subfactors. 
The first Bisch–Haagerup fish graph is the principal graph of the tensor product of 
an A3 and an A4 subfactor. By considering the flip on R ⊗ R, Bisch and Haagerup 
constructed a subfactor whose principal graph is the second Bisch–Haagerup fish graph. 
Later Izumi generalised the Haagerup factor [1] while considering endomorphisms of 
Cuntz algebras [10], and he constructed a Haagerup–Izumi subfactor for the group Z4 in 
his unpublished notes, also called the 3Z4 subfactor [31]. The third Bisch–Haagerup fish 
graph is the principal graph of an intermediate subfactor of a reduced subfactor of the 
dual of 3Z4 [12]. It turns out the even half is Morita equivalent to the even half of 3Z4 .

In this paper, we prove the following classification result.

Theorem 1.1. There are exactly four subfactor planar algebras as a composition of an A3
with an A4 planar algebra.
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This answers the question posed by Bisch and Haagerup. When n ≥ 4, the nth
Bisch–Haagerup fish graph is not the principal graph of a subfactor. In the meanwhile, 
Izumi, Morrison and Penneys have ruled out the 4th–10th Bisch–Haagerup fish graphs 
using a different method, see [12].

Three of the four subfactor planar algebras have finite depth which are complete 
invariants of subfactors of the hyperfinite factor of type II1 [35]. The Fuss–Catalan one 
has infinite depth. It can also be realised from a hyperfinite subfactor [38].

By similar techniques, we also prove the following classification result.

Theorem 1.2. There are exactly four subfactors planar algebras as a composition of two 
A4 planar algebras.

Our classification result is also important to the classification of small index subfac-
tors. The index 3 +

√
5 is the next frontier after 5 where the subfactor planar algebras 

were completed classified recently [18,28,26,11,32]. Some interesting examples and clas-
sification results are known up to this index [27,25].

Now we sketch the ideas of the proof. Following the spirit of [33,2], if the principal 
graph of a subfactor planar algebra is the nth Bisch–Haagerup fish graph, then by the 
embedding theorem [19], the planar algebra is embedded in the graph planar algebra of 
its principal graph [14]. By the existence of a “normalizer” in the Bisch–Haagerup fish 
graph, there will be a biprojection [3] in the subfactor planar algebra, and the planar 
subalgebra generated by the biprojection is Fuss–Catalan. The image of the biprojection 
is determined by the unique possible refined principal graph, see Definition 3.14 and The-
orem 3.26. Furthermore the planar algebra is decomposed as an annular Fuss–Catalan
module, similar to the Temperley–Lieb case, [15,20]. Comparing the principal graph of 
this Fuss–Catalan subfactor planar algebra and the Bisch–Haagerup fish graph, there 
is a lowest weight vector in the orthogonal complement of Fuss–Catalan. It will satisfy 
some specific relations, and there is a “unique” potential solution of these relations in 
the graph planar algebra.

The similarity of all the Bisch–Haagerup fish graphs admits us to compute the coeffi-
cients of loops of the potential solutions simultaneously. The coefficients of two sequences 
of loops have periodicity 5 and 20 with respect to n. Comparing with the coefficients of 
the other two sequences of loops, we will rule out the all the Bisch–Haagerup fish graphs, 
except the first three.

The existence of the first three follows from the construction mentioned above. The 
uniqueness follows from the “uniqueness” of the potential solution.

Furthermore we consider the composition of two A4 planar algebras in the same 
process. In this list, there are exactly four subfactor planar algebras. They all arise from 
reduced subfactors of the four compositions of A3 with A4.

The skein theoretic construction of these subfactor planar algebras could be realised
by the Fuss–Catalan Jellyfish relations of a generating vector space.
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2. Background

We refer the reader to [16] for the definition of planar algebras.

Notation 2.1. In a planar tangle, we use a thick string with a number k to indicate k
parallel strings.

A subfactor planar algebra S = {Sn,±}n∈N0 will be a spherical planar *-algebra 
over C, such that dim(Sn,±) < ∞, for all n, dim(S0,±) = 1, and the unnormal-
ized Markov trace induces a positive definite inner product of Sn,± [16,17]. Note that 
dim(S0,±) = 1, then S0,± is isomorphic to C as a field. It is spherical means

=

as a number in C, for any x ∈ S1,±. The inner product of Sn,± defined as

< y, z >= tr(z∗y) = ,

the Markov trace of z∗y, for any y, z ∈ Sn,±, is positive definite. (The diagram of the 
multiplication z∗y is not the usual convention. The usual multiplication is from the 
bottom to the top.)

A subfactor planar algebra is always unital, where unital means any tangle without 
inner discs can be identified as a vector of S . Note that S0,± is isomorphic to C, the 
(shaded or unshaded) empty diagram can be identified as the number 1 in C. The value 

of a (shaded or unshaded) closed string is δ. And δ−1 in Sn,+, denoted by en−1, 

for n ≥ 2, is the sequence of Jones projections. The filtered algebra generated by Jones 
projections is the smallest subfactor planar algebra, well known as the Temperley–Lieb 
algebra, denoted by TL(δ). Its vectors can be written as linear sums of tangles without 
inner discs.

Notation 2.2. We may identify Sm,− as a subspace of Sm+1,+ by adding one string to 
the left.

Definition 2.3. Let us define the (1-string) coproduct of x ∈ Si,± and y ∈ Sj,±, for 
i, j ≥ 1, to be
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x ∗ y = ,

whenever the shading matched.

Let us recall some facts about the embedding theorem. Then we generalize these 
results to prove the embedding theorem for an intermediate subfactor in the next section.

2.1. Principal graphs

Suppose N ⊂ M is an irreducible subfactor of type II1 with finite index. Then L2(M)
forms an irreducible (N , M) bimodule, denoted by X. Its conjugate X is an (M, N )
bimodule. The tensor products X ⊗X ⊗ · · · ⊗X, X ⊗X ⊗ · · · ⊗X, X ⊗X ⊗ · · · ⊗X

and X ⊗X ⊗ · · · ⊗X are decomposed into irreducible bimodules over (N , N ), (N , M), 
(M, N ) and (M, M) respectively, where ⊗ is Connes fusion of bimodules.

Definition 2.4. The principal graph of the subfactor N ⊂ M is a bipartite graph. Its 
vertices are equivalence classes of irreducible bimodules over (N , N ) and (N , M) in the 
above decomposed inclusion. The number of edges connecting two vertices, an (N , N )
bimodule Y and an (N , M) bimodule Z, is the multiplicity of the equivalence class of Z
as a sub bimodule of Y ⊗X. The vertex corresponding to the (N , N ) bimodule L2(N ) is 
marked by a star sign. The dimension vector of the bipartite graph is a function λ from 
the vertices of the graph to R+. Its value at a vertex is defined to be the dimension of 
the corresponding bimodule.

The dual principal graph is defined similarly for (M, M) and (M, N ) bimodules.

Remark 2.5. By Frobenius reciprocity, the multiplicity of Z in Y ⊗ X equals to the 
multiplicity of Y in Z ⊗X.

2.2. Standard invariants

For an irreducible subfactor N ⊂ M of type II1 with finite index, the Jones tower is 
a sequence of factors N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · obtained by repeating the basic con-
struction. The system of higher relative commutants

C = N ′ ∩N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ N ′ ∩M2 ⊂ · · ·
∪ ∪ ∪

C = M′ ∩M ⊂ M′ ∩M1 ⊂ M′ ∩M2 ⊂ · · ·

is called the standard invariant of the subfactor [8,35].
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There is a natural isomorphism between homomorphisms of bimodules X⊗X⊗· · ·⊗X, 
X⊗X⊗· · ·⊗X, X⊗X⊗· · ·⊗X and X⊗X⊗· · ·⊗X and the standard invariant of the 
subfactor [4]. The equivalence class of a minimal projection corresponds to an irreducible 
bimodule. So the principal graph tells how minimal projections are decomposed after the 
inclusion. Then we can define the principal graph for a subfactor planar algebra without 
the presumed subfactor. The following two propositions are well known to experts.

Proposition 2.6. Suppose S is a subfactor planar algebra. If P1, P2 are minimal projec-
tions of Sm,+, then P1em+1,+, P2em+1,+ are minimal projections of Sm+2,+. Moreover 
P1 and P2 are equivalent in Sm,+ if and only if P1em+1 and P2em+1 are equivalent in 
Sm+2,+.

Proposition 2.7 (Frobenius reciprocity). Suppose S is a subfactor planar algebra. If 
P is a minimal projection of Sm,+ and Q is a minimal projection of Sm+1,+, then 
dim(PSm+1,+Q) = dim(Pem+1Sm+2,+Q).

By the above two propositions, the Bratteli diagram of Sm,+ ⊂ Sm+1,+ is identified 
as a subgraph of the Bratteli diagram of Sm+1,+ ⊂ Sm+2,+. So it makes sense to take 
the limit of the Bratteli diagram of Sm,+ ⊂ Sm+1,+ as m approaches infinity.

Definition 2.8. The principal graph of a subfactor planar algebra S is the limit of the 
Bratteli diagram of Sm,+ ⊂ Sm+1,+. The vertex corresponding to the identity in S0,+

is marked by a star sign. The dimension vector λ at a vertex is defined to be the Markov 
trace of the minimal projection corresponding to that vertex.

Similarly the dual principal graph of a subfactor planar algebra S is the limit of the 
Bratteli diagram of Sm,− ⊂ Sm+1,−. The vertex corresponding to the identity in S0,−
is marked by a star sign. The dimension vector λ′ at a vertex is defined to be the Markov 
trace of the minimal projection corresponding to that vertex.

The Bratteli diagram of Sm,+ ⊂ Sm+1,+, as a subgraph of the Bratteli diagram of 
Sm+1,+ ⊂ Sm+2,+, corresponds to the two-sided ideal Im+1,+ of Sm+1,+ generated by 
the Jones projection em. So the two graphs coincide if and only if Sm+1,+ = Im+1,+.

Definition 2.9. For a subfactor planar algebra S , if its principal graph is finite, then the 
subfactor planar algebra is said to be finite depth. Furthermore it is of depth m, if m is 
the smallest number such that Sm+1,+ = Sm+1,+emSm+1,+.

Definition 2.10. A vertex v in the principal graph has depth m if the distance between 
v and the star vertex is m. The vertex has multiplicity n if there are n length-m paths 
from the star vertex to v.
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A depth-m vertex in the principal graph corresponds to a central component in 
Sm,+/Im,+. The vertex has multiplicity n tells that the central component is an n
by n matrix algebra. Therefore the dual of the vertex has the same multiplicity.

2.3. Finite dimensional inclusions

We refer the reader to Chapter 3 of [21] for a discussion of inclusions of finite dimen-
sional von Neumann algebras.

Definition 2.11. Suppose A is a finite dimensional von Neumann algebra and τ is a 
trace on it. The dimension vector λτ

A is a function from the set of minimal central 
projections (or equivalence classes of minimal projections or irreducible representations 
up to unitary equivalence) of A to C with following property, for any minimal central 
projection z, λτ

A(z) = τ(x), where x ∈ A is a minimal projection with central support z.

The trace of a minimal projection only depends on its equivalence class, so the dimen-
sion vector is well defined. On the other hand, given a function from the set of minimal 
central projections of A to C, we can construct a trace of A, such that the corresponding 
dimension vector is the given function. So the map λ → λτ

A is a bijection.
Let us recall some facts about the inclusion of finite dimensional von Neumann alge-

bras B0 ⊂ B1.
The Bratteli diagram Br for the inclusion B0 ⊂ B1 is a bipartite graph. Its even or 

odd vertices are indexed by the equivalence classes of irreducible representations of B0 or 
B1 respectively. The number of edges connects a vertex corresponding to an irreducible 
representation U of B0 to a vertex corresponding to an irreducible representation V of 
B1 is given by the multiplicity of U in the restriction of V on B0.

Let Br± be the even/odd vertices of Br . The Bratteli diagram can be interpreted 
as the adjacency matrix Λ = ΛB1

B0
: L2(Br−) → L2(Br+), where Λu,v is defined as the 

number of edges connects u to v for any u ∈ Br+, v ∈ Br−.

Proposition 2.12. (See [13].) For the inclusion B0 ⊂ B1 and a trace τ on it, we have 
λτ
B0

= Λλτ
B1

.

If the trace τ is a faithful state, then by GNS construction we will obtain a right B1

module L2(B1). And L2(B0) is identified as a subspace of L2(B1). Let e be the Jones 
projection on to the subspace L2(B0). Let B2 be the von Neumann algebra (B1 ∪ {e})′′. 
Then we obtain a tower B0 ⊂ B1 ⊂ B2 which is called the basic construction. Furthermore 
if the tracial state τ satisfies the condition Λ∗Λλτ

B1
= μλτ

B1
for some scalar μ, then it 

is said to be a Markov trace. In this case the scalar μ is ||Λ||2. Then λτ =
[
λτ
B0

δλτ
B1

]
is a 

Perron–Frobenius eigenvector for 
[

0 Λ
∗

]
.
Λ 0
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Definition 2.13. We call λτ the Perron–Frobenius eigenvector with respect to the Markov 
trace τ .

Remark 2.14. The existence of a Markov trace for the inclusion B0 ⊂ B1 follows from 
the Perron–Frobenius theorem. The Markov trace is unique if and only if the Bratteli 
diagram for the inclusion B0 ⊂ B1 is connected.

We will see the importance of the Markov trace from the following proposition.

Proposition 2.15. If τ is a Markov trace for the inclusion B0 ⊂ B1, then τ extends 
uniquely to a trace on B2, still denoted by τ . Moreover τ is a Markov trace for the 
inclusion B1 ⊂ B2.

In this case, we may repeat the basic construction to obtain a sequence of finite 
dimensional von Neumann algebras B0 ⊂ B1 ⊂ B2 ⊂ B3 ⊂ · · · and a sequence of Jones 
projections e1, e2, e3 · · ·.

2.4. Graph planar algebras

Given a finite connected bipartite graph Γ, it can be realised as the Bratteli diagram 
of the inclusion of finite dimensional von Neumann algebras B0 ⊂ B1 with a (unique) 
Markov trace. Applying the basic construction, we will obtain the sequence of finite 
dimensional von Neumann algebras B0 ⊂ B1 ⊂ B2 ⊂ B3 ⊂ · · ·. Take Sm,+ to be B′

0∩Bm

and Sm,− to be B′
1∩Bm+1. Then {Sm,±} forms a planar algebra, called the graph planar 

algebra of the bipartite graph Γ. Moreover Sm,± has a natural basis given by length 2m
loops of Γ. We refer the reader to [14,19] for more details. We cite the conventions used 
in Section 3.4 of [19].

Definition 2.16. Let us define G = {Gm,±} to be the graph planar algebra of a finite 
connected bipartite graph Γ. Let λ be the Perron–Frobenius eigenvector with respect to 
the Markov trace.

A vertex of the Γ corresponds to an equivalence class of minimal projections, so λ is 
also defined as a function from V± to R+. If Γ is the principal graph of a subfactor, then 
its dimension vector is a multiple of the Perron–Frobenius eigenvector. In this paper, we 
only need the proportion of values of λ at vertices. We do not have to distinguish these 
two vectors.

Let V± be the sets of even/odd vertices of Γ, and let E be the sets of all edges of 
Γ directed from even to odd vertices. Then we have the source and target functions 
s : E → V+ and t : E → V−. For a directed edge ε ∈ E , we define ε∗ to be the same 
edge with an opposite direction. The source function s : E∗ = {ε∗|ε ∈ E} → V− and the 
target function t : E∗ → V+ are defined as s(ε∗) = t(ε) and t(ε∗) = s(ε).
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A length 2m loop in Gm,+ is denoted by [ε1ε
∗
2 · · · ε2m−1ε

∗
2m] satisfying

(i) t(εk) = s(ε∗k+1) = t(εk+1), for all odd k < 2m;
(ii) t(ε∗k) = s(εk) = t(εk+1), for all even k < 2m;
(iii) t(ε∗2m) = s(ε2m) = t(ε1).

The graph planar algebra is always unital. The unshaded empty diagram is given by ∑
v∈V+

v; and the shaded empty diagram is given by 
∑

v∈V−
v. It is worth mentioning 

that the Jones projection is given by

e1 = δ−1 = δ−1
∑

s(ε1)=s(ε3)

√
λ(t(ε1))λ(t(ε3))
λ(s(ε1))λ(s(ε3))

[ε1ε
∗
1ε3ε

∗
3].

Now let us describe some elementary actions on G .
The adjoint operation is defined as the anti-linear extension of

[ε1ε
∗
2 · · · ε2m−1ε

∗
2m]∗ = [ε2mε∗2m−1 · · · ε2ε

∗
1].

For Gm,−, we have similar conventions.
For l1, l2 ∈ Gm,+, l1 = [ε1ε

∗
2 · · · ε2m−1ε

∗
2m], l2 = [ξ1ξ∗2 · · · ξ2m−1ξ2m], we have

=
{∏

1≤k≤m δεm+k,ξm+1−k
[ε1ε

∗
2 · · · ε∗mξm+1 · · · ξ2m−1ξ

∗
2m] when m is even;∏

1≤k≤m δεm+k,ξm+1−k
[ε1ε

∗
2 · · · εmξ∗m+1 · · · ξ2m−1ξ

∗
2m] when m is odd.

=
{∑

s(ε)=s(εm)[ε1ε
∗
2 · · · ε∗mεε∗εm+1 · · · ε2m−1ε

∗
2m] when m is even;∑

t(ε)=t(εm)[ε1ε
∗
2 · · · εmε∗εε∗m+1 · · · ε2m−1ε

∗
2m] when m is odd.

=
{

δεm,εm+1
λ(s(εm))
λ(t(εm)) [ε1ε

∗
2 · · · ε∗mεε∗εm+1 · · · ε2m−1ε

∗
2m] when m is even;

δεm,εm+1
λ(t(εm))
λ(s(εm)) [ε1ε

∗
2 · · · εmε∗εε∗m+1 · · · ε2m−1ε

∗
2m] when m is odd.

Definition 2.17. The Fourier transform F : Gm,+ → Gm,−, m > 0 is defined as the linear 
extension of

F([ε1ε
∗
2 · · · ε2m−1ε

∗
2m]) =

⎧⎨
⎩

√
λ(s(ε2m))
λ(t(ε2m))

√
λ(s(εm))
λ(t(εm)) [ε

∗
2mε1ε

∗
2 · · · ε2m−1] for m even;√

λ(s(ε2m))
λ(t(ε2m))

√
λ(t(εm))
λ(s(εm)) [ε

∗
2mε1ε

∗
2 · · · ε2m−1] for m odd.

Similarly it is also defined from Gm,− to Gm,+.
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The Fourier transform has a diagrammatic interpretation as a one-click rotation

.

Definition 2.18. Let us define ρ to be F2. Then ρ is defined from Gm,+ to Gm,+ as a 
two-click rotation for m > 0,

ρ([ε1ε
∗
2 · · · ε2m−1ε

∗
2m]) =

√
λ(s(ε2m))

λ(s(ε2m−1))

√
λ(s(εm))

λ(s(εm−1))
[ε2m−1ε

∗
2mε1ε

∗
2 · · · ε2m−3ε

∗
2m−2].

It is similar for Gm,−.

In general, the action of a planar tangle could be realised as a composition of actions 
mentioned above. It has a nice formula, see page 11 in [14].

2.5. The embedding theorem

For a depth 2r (or 2r + 1) subfactor planar algebra S , we have

Sm+1,+ = Sm+1,+emSm+1,+ = Sm,+em+1Sm,+, whenever m ≥ 2r + 1.

So Sm−1,+ ⊂ Sm,+ ⊂ Sm+1,+ forms a basic construction. Note that the Bratteli 
diagram of S2r,+ ⊂ S2r+1,+ is the principal graph. So the graph planar algebra G
of the principal graph is given by

Gk,+ = S ′
2r,+ ∩ S2r+k,+; Gk,− = S ′

2r+1,+ ∩ S2r+k+1,+.

Moreover the map Φ : S → G by adding 2r strings to the left preserves the planar 
algebra structure. It is not obvious that the left conditional expectation is preserved. We 
have the following embedding theorem, see Theorem 4.1 in [19].

Theorem 2.19. A finite depth subfactor planar algebra is naturally embedded into the 
graph planar algebra of its principal graph.

Remark 2.20. The embedding theorem for general cases is proved in [29].

2.6. Fuss–Catalan

The Fuss–Catalan subfactor planar algebras were discovered by Bisch and Jones as free 
products of Temperley–Lieb subfactor planar algebras while studying the intermediate 
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subfactors of a subfactor [6]. We refer the reader to [7,22] for the definition of the free 
product of subfactor planar algebras. It has a nice diagrammatic interpretation. For 
two Temperley–Lieb subfactor planar algebras TL(δa) and TL(δb), their free product 
FC (δa, δb) is a subfactor planar algebra. A vector in FC (δa, δb)m,+ can be expressed 
as a linear sum of Fuss–Catalan diagrams, a diagram consisting of disjoint a, b-colour 
strings whose boundary points are ordered as abba abba · · · abba︸ ︷︷ ︸

m

, m copies of abba, after 

the dollar sign. It is similar for a vector in FC(δa, δb)m,−, while the boundary points 
are ordered as baab baab · · · baab︸ ︷︷ ︸

m

. For the action of a planar tangle on a simple tensor 

of Fuss–Catalan diagrams, first we replace each string of the planar tangle by a pair 
of parallel a-colour and b-colour strings which matches the a,b-colour boundary points, 
then the output is gluing the new tangle with the input diagrams. If there is an a or 
b-colour closed circle, then it contributes to a scalar δa or δb respectively.

The Fuss–Catalan subfactor planar algebra FC(δa, δb) is naturally derived from an 
intermediate subfactor of a subfactor. Suppose N ⊂ M is an irreducible subfactor with 
finite index, and P is an intermediate subfactor. Then there are two Jones projections 
eN and eP acting on L2(M), and we have the basic construction N ⊂ P ⊂ M ⊂
P1 ⊂ M1. Repeating this process, we will obtain a sequence of factors N ⊂ P ⊂ M ⊂
P1 ⊂ M1 ⊂ P2 ⊂ M2 · · · and a sequence of Jones projections eN , eP , eM, eP1 · · ·. 
The algebra generated by these Jones projections forms a planar algebra, denoted by 
FC (δa, δb), where δa =

√
[P : N ] and δb =

√
[M : P]. Moreover eP ∈ FC (δa, δb)2,+

and eP1 ∈ FC (δa, δb)2,− could be expressed as and 

respectively. In particular, F(eP) is a multiple of eP1 .

Definition 2.21. For an irreducible subfactor planar algebra S , a projection Q ∈ S2,+ is 
called a biprojection, if F(Q) is a multiple of a projection.

If S is the planar algebra for N ⊂ M, then eP ∈ S2,+ is a biprojection. Conversely 
all the biprojections in S2,+ are realised in this way, see [6].

Proposition 2.22. If we identify S2,− as a subspace of S3,+ by adding a string to the 
left, then a biprojection Q ∈ S2,+ will satisfy QF(Q) = F(Q)Q, i.e.

= ,

called the exchange relation of a biprojection.
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Conversely if a self-adjoint operator in S2,+ satisfies the exchange relation, then it is 
a multiple of a biprojection. This can be proved by adding caps at proper positions. We 
refer the reader to [23] for some other approaches to biprojections. The Fuss–Catalan 
subfactor planar algebra could also be viewed as the planar algebra generated by a 
biprojection with its exchange relation.

The planar algebra of a composed inclusion of an A3 with an A4 subfactor always 
contains FC (δa, δb), where δa =

√
2, δb =

√
5+1
2 , as a planar subalgebra. The principal 

graph and dual principal graph of FC(δa, δb) are given as

.

3. The embedding theorem for an intermediate subfactor

A subfactor planar algebra is embedded in the graph planar algebra of its principal 
graph by the embedding theorem. If a subfactor planar algebra contains a biprojection, 
then we hope to know the image of the biprojection in the graph planar algebra. Recall 
that the image of the Jones projection e1 is determined by the principal graph,

δe1 =
∑

s(ε1)=s(ε3)

√
λ(t(ε1))
λ(s(ε1))

λ(t(ε3))
λ(s(ε3))

[ε1ε
∗
1ε3ε

∗
3].

We will see a similar formula for the image of the biprojection. It is determined by the 
refined principal graph. The refined principal graph is already considered by Bisch and 
Haagerup for bimodules, by Bisch and Jones for planar algebras. For the embedding 
theorem, we will use the one for planar algebras.

The lopsided version of embedding theorem for an intermediate subfactor is involved 
in a general embedding theorem proved by Morrison in [29]. To consider the algebraic 
structures, it is convenient to work with the spherical version of the embedding theorem. 
Their relations are described in [27]. For convenience, we prove the spherical version of 
embedding theorem, similar to the one proved by Jones and Penneys in [19].

In this section, we always assume N ⊂ M is an irreducible subfactor of type II1 with 
finite index, and P is an intermediate subfactor. If the subfactor has an intermediate 
subfactor, then its planar algebra becomes an N−P−M planar algebra. For N−P−M
planar algebras, we refer the reader to Chapter 4 in [9]. In this case, the subfactor planar 
algebra contains a biprojection P , and a planar tangle labelled by P can be replaced by 
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a Fuss–Catalan planar tangle. In this paper, we will use planar tangles labelled by P , 
instead of Fuss–Catalan planar tangles.

3.1. Principal graphs

For the embedding theorem, we will consider the principal graph of N ⊂ P ⊂ M. 
It refines the principal graph of N ⊂ M. Instead of a bipartite graph, it will be an 
(N , P, M) coloured graph. The following definitions and propositions are well known to 
experts [6,7,22,9].

Definition 3.1. An (N , P, M) coloured graph Γ is a locally finite graph, such that the set 
V of its vertices is divided into three disjoint subsets VN , VP and VM, and the set E of 
its edges is divided into two disjoint subsets E+, E−. Moreover every edge in E+ connects 
a vertex in VN to one in VP and every edge in E− connects a vertex in VP to one in VM. 
Then we define the source function s : E → VN ∪VM and the target function t : E → VP
in the obvious way. The operation ∗ reverses the direction of an edge.

Definition 3.2. From an (N , P, M) coloured graph Γ, we will obtain an (N , M) coloured 
bipartite graph Γ′ as follows, the N/M coloured vertices of Γ′ are identical to the N/M
coloured vertices of Γ; for two vertices vn in VN and vm ∈ VM, the number of edges 
between vn and vm in Γ is given by the number of length two paths from vn to vm in Γ′. 
The graph Γ′ is said to be the bipartite graph induced from the graph Γ. The graph Γ
is said to be a refinement of the graph Γ′.

Remark 3.3. Here we abuse the notations of Γ and Γ′ which are usually reserved for the 
principal graph and the dual principal graph respectively.

For a factor M of type II1, if N ⊂ P ⊂ M is a sequence of irreducible subfactors 
with finite index, then L2(P) forms an irreducible (N , P) bimodule, denoted by X, and 
L2(M) forms an irreducible (P, M) bimodule, denoted by Y . Their conjugates X, Y are 
(P, N ), (M, P) bimodules respectively. The tensor products X ⊗ Y ⊗ Y ⊗X ⊗ · · · ⊗X, 
X⊗Y ⊗Y ⊗X⊗· · ·⊗X, X⊗Y ⊗Y ⊗X⊗· · ·⊗Y , X⊗Y ⊗Y ⊗X⊗· · ·⊗Y , are decomposed 
into irreducible bimodules over (N , N ), (N , P), (N , M) and (N , P) respectively.

Definition 3.4. The principal graph for the inclusion of factors N ⊂ P ⊂ M is an 
(N , P, M) coloured graph. Its vertices are equivalence classes of irreducible bimodules 
over (N , N ), (N , P) and (N , M) in the above decomposed inclusion. The number of 
edges connecting two vertices, an (N , N ) (or (N , M)) bimodule U (or V ) and an (N , P)
bimodule W , is the multiplicity of the equivalence class of U (or V ) as a sub bimodule of 
W ⊗X (or W ⊗Y ). The vertex corresponding to the irreducible (N , N ) bimodule L2(N )
is marked by a star sign ∗. The dimension vector of the principal graph is a function λ
from the vertices of the graph to R+. Its value at a point is defined to be the dimension 
of the corresponding bimodule.
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Similarly the dual principal graph for the inclusion of factors is defined by considering 
the decomposed inclusion of (M, M), (M, P), (M, N ) bimodules.

There is another principal graph given by decomposing (P, N ), (P, P) and (P, M)
bimodules under inclusions, but it is not needed in this paper.

Proposition 3.5. The (dual) principal graph for the inclusion of factors N ⊂ P ⊂ M is 
a refinement of the (dual) principal graph of the subfactor N ⊂ M.

Proof. If follows from the definition and the fact that X ⊗ Y is the (N , M) bimodule 
L2(M). �

Let δa be 
√

[P : N ], the dimension of X, and δb be 
√

[M : P], the dimension of Y . 
Then by Frobenius reciprocity theorem, we have the following proposition.

Proposition 3.6. For the principal graph of factors N ⊂ P ⊂ M and the dimension 
vector λ, we have

δaλ(u) =
∑

ε∈E+,s(ε)=u

λ(t(ε)), ∀u ∈ VN ; δbλ(w) =
∑

ε∈E−,s(ε)=w

λ(t(ε)), ∀w ∈ VM;

δaλ(v) =
∑

ε∈E+,t(ε)=v

λ(s(ε)), ∀v ∈ VP ; δbλ(v) =
∑

ε∈E−,t(ε)=v

λ(s(ε)), ∀v ∈ VP .

Definition 3.7. For an (N , P, M) coloured graph Γ, if there exits a function λ : V → R
+

satisfying the proposition mentioned above, then we call it a graph with parame-
ter (δa, δb).

Proposition 3.8. The principal graph of factors N ⊂ P ⊂ M is a graph with parameter 
(
√

[P : N ], 
√

[M : P]). Consequently if N ⊂ M has finite depth, then the principal graph 
of N ⊂ P ⊂ M is finite.

Proof. The first statement follows from the definition. Note that the dimension of a 
bimodule is at least 1. By this restriction, N ⊂ M has finite depth implies the principal 
graph of N ⊂ P ⊂ M is finite. �
3.2. Standard invariants

We will define the refined (dual) principal graph for a subfactor planar algebra with a 
biprojection. This definition coincides with the definition given by bimodules, but we do 
not need this fact in this paper. Given N ⊂ P ⊂ M, there are two Jones projections eN
and eP acting on L2(M). Then we have the basic construction N ⊂ P ⊂ M ⊂ P1 ⊂ M1. 
Repeating this process, we will obtain a sequence of factors N ⊂ P ⊂ M ⊂ P1 ⊂ M1 ⊂



Z. Liu / Advances in Mathematics 279 (2015) 307–371 321
P2 ⊂ M2 · · · and a sequence of Jones projections eN , eP , eM, eP1 · · ·. Then the standard 
invariant is refined as

C = N ′ ∩N ⊂ N ′ ∩ P ⊂ N ′ ∩M ⊂ N ′ ∩ P1 ⊂ N ′ ∩M1 ⊂ · · ·
∪ ∪ ∪

C = P ′ ∩ P ⊂ P ′ ∩M ⊂ P ′ ∩ P1 ⊂ P ′ ∩M1 ⊂ · · ·
∪ ∪ ∪

C = M′ ∩M ⊂ M′ ∩ P1 ⊂ M′ ∩M1 ⊂ · · ·

For Fuss–Catalan, the corresponding Bratteli diagram is described by the middle 
patterns, see pages 114–115 in [6].

We hope to define the refined principal graph as the limit of the Bratteli diagram 
Brk of N ′ ∩ Mk−2 ⊂ N ′ ∩ Pk−1 ⊂ N ′ ∩ Mk−1. To show the limit is well defined, we 
need to prove that Brk is identified as a subgraph of Brk+1. To define it for a subfactor 
planar algebra with a biprojection without the presumed factors, we need to do some 
translations motivated by the fact

N ′ ∩ Pk = N ′ ∩ (Mk ∩ {ePk
}′) = (N ′ ∩Mk) ∩ {ePk

}′.

Definition 3.9. Let S = Sm,± be a subfactor planar algebra. Let e1, e2, · · · be the 
sequence of Jones projections.

Suppose p1 is a biprojection in S2,+. Then we obtain another sequence of Jones 
projections p1, p2, p3, · · ·, corresponding to the intermediate subfactors, precisely p2 in 
S2,− ⊂ S3,+ is a multiple of F(p1), and pk is obtained by adding two strings on the left 
side of pk−2.

For m ≥ 1, let us define S ′
m,+ to be Sm,+ ∩ {pm}′ and S ′

m,− to be Sm,− ∩ {pm+1}′.

Remark 3.10. If we interpret one string of a planar diagram as a pair of a/b-colour

strings , then sequence of Jones projections p1, p2, p3, · · ·, can be interpreted as follow-

ing a/b-colour diagrams [6],

.

The following proposition shows that the subspace S ′
m,± of Sm,± consists of diagrams 

with an a/b-colour through string on the rightmost.

Proposition 3.11. For X ∈ Sm,+, m ≥ 1, we have

Xpm = pmX ⇐⇒ F(X) = F(X)pm.
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That means S ′
m,+ is the invariant subspace of Sm,+ under the “right action” of the 

biprojection. Diagrammatically its consists of vectors with one a/b-colour through string 
on the rightmost.

Proof. If pmX = Xpm, then take the action given by the planar tangle , we 

have F(X) = F(X)pm.
For m odd, if F(X) = F(X)pm, then X = X ∗ F(p1), i.e.

X = .

By the exchange relation of the biprojection, we have

= .

So pmX = Xpm.
For m even, the proof is similar. �
Note that Sm−1,+ is in the commutant of pm′. So we have the inclusion of finite 

dimensional von Neumann algebras

S0,+ ⊂ S ′
1,+ ⊂ S1,+ ⊂ S ′

2,+ ⊂ S2,+ ⊂ · · · .

Then we obtain the Bratteli diagram Brm for the inclusion Sm−1,+ ⊂ S ′
m,+ ⊂ Sm,+. To 

take the limit of Brm, we need to prove that Brm is identified as a subgraph of Brm+1.

Proposition 3.12. If P1, P2 are minimal projections of S ′
m,+. Then P1pm, P2pm are 

minimal projections of S ′
m+1,+. Moreover P1 and P2 are equivalent in S ′

m,+ if and only 
if P1pm and P2pm are equivalent in S ′

m+1,+.

This proposition is proved similar to Proposition 2.6.

Proposition 3.13 (Frobenius reciprocity).

(1) For a minimal projection P ∈ Sm−1,+ and a minimal projection Q ∈ S ′
m,+, we 

have that Qpm is a minimal projection of S ′
m+1,+, Pem is a minimal projection 



Z. Liu / Advances in Mathematics 279 (2015) 307–371 323
of Sm+1,+, and

dim(P (S ′
m,+)Q) = dim(Pem(Sm+1,+)Qpm).

(2) For a minimal projection P ′ ∈ S ′
m,+ and a minimal projection Q′ ∈ Sm,+, we have 

P ′pm is a minimal projection of S ′
m+1,+, and

dim(P ′(Sm,+)Q′) = dim(P ′pm(S ′
m+1,+)Q′).

Proof. (1) Consider the maps

φ1 = : Sm,+ → Sm+1,+, φ2 = : Sm+1,+ → Sm,+.

For m odd, if X ∈ P (S ′
m,+)Q, then by Proposition 3.11, we have X = P (X ′ ∗ F(p1))Q

for some X ′ ∈ Sm,+. So φ1(X) ∈ Pem(Sm+1,+)Qpm. On the other hand, if Y ∈
Pem(Sm+1,+)Qpm, then φ2(Y ) ∈ P (S ′

m,+)Q. While φ1 ◦ φ2 is the identity map on 
Pem(Sm+1,+)Qpm and φ2◦φ1 is the identity map on P (S ′

m,+)Q. So dim(P ′(Sm,+)Q′) =
dim(P ′pm(S ′

m+1,+)Q′).
For m even, the proof is similar.
(2) This is the same as Proposition 2.7. �
By Proposition (2.6)(3.13), the Bratteli diagram Brm is identified as a subgraph of 

Brm+1.

Definition 3.14. Let us define the refined principal graph of S with respect to the bipro-
jection p1 to be the limit of the Bratteli diagram of Sm,+ ⊂ S ′

m+1,+ ⊂ Sm+1,+. The 
vertex corresponding to the identity in S0,+ is marked by a star sign.

Similarly let us define the refined dual principal graph of S with respect to the 
biprojection p1 to be the limit of the Bratteli diagram of Sm,− ⊂ S ′

m+1,− ⊂ Sm+1,−. 
The vertex corresponding to the identity in S0,− is marked by a star sign.

The refined principal graph is an (N , P, M) coloured graph. The N , P, M coloured 
vertices are given by equivalence classes of minimal projections of S2m,−, S ′

2m+1,−, 
S2m+1,− respectively as m approaches infinity. Similarly the refined dual principal graph 
is an (M, P, N ) coloured graph.

Definition 3.15. The dimension vector λ of the principal graph is defined as follows, for 
an N or M coloured vertex, its value is the Markov trace of the minimal projection 
corresponding to that vertex; for a P coloured vertex v, suppose Q ∈ S ′

m,+ is a minimal 
projection corresponding to v. Then λ(v) = δ−1

a tr(Q), when m is even, where δa =√
tr(p1); λ(v) = δ−1

b tr(Q), when m is odd, where δb = δδ−1
a .
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Remark 3.16. An element in S ′
m,+ has an a/b-colour through string on the rightmost. 

When we compute the dimension vector for a minimal projection in S ′
m,+, that string 

should be omitted. So there is a factor δ−1
a or δ−1

b .

Note that the dimension vector satisfies Proposition 3.6. So the refined principal graph 
is a graph with parameter (δa, δb). If the Bratteli diagram of Sm,+ ⊂ Sm+1,+ is the 
same as that of Sm+1,+ ⊂ Sm+2,+, i.e. S has finite depth, then Brm+1 = Brm+2 by 
the restriction of the dimension vector. In particular, the Bratteli diagram of S ′

m+1,+ ⊂
Sm+1,+ is the same as that of Sm+1,+ ⊂ S ′

m+2,+. So S ′
m+1 ⊂ Sm+1,+ ⊂ S ′

m+2,+ forms 
a basic construction, and pm+1 is the Jones projection. While applying the embedding 
theorem, the image of the Jones projection can be expressed as a linear sum of loops. 
We will see the formula later.

The subfactor planar algebra FC(
√

2, 1+
√

5
2 ) contains a trace-2 biprojection. Consid-

ering the middle pattern of its minimal projections, see pages 114–115 in [6], we have its 
refined principal graph, as

;

and its refined dual principal graph as

,

where the black, mixed, white points are N , P, M coloured vertices. We will discuss 
more about these graphs in Section 4.1.

3.3. Finite dimensional inclusions

Now given an inclusion of finite dimensional von Neumann algebras B0 ⊂ B1 ⊂ B2, 
similarly we may consider its Bratteli diagram, adjacency matrixes, Markov trace if there 
exists one, and the basic construction.

Definition 3.17. The Bratteli diagram Br for the inclusion B0 ⊂ B1 ⊂ B2 is a (B0, B1, B2)
coloured graph. Its Bi coloured vertices are indexed by the minimal central projections 
(or equivalently the irreducible representations) of Bi, for i = 0, 1, 2. The subgraph of 
Br consisting of B0, B1 coloured vertices and the edges connecting them is the same as 
the Bratteli diagram for the inclusion B0 ⊂ B1. The subgraph of Br consisting of B1, B2
coloured vertices and the edges connecting them is the same as the Bratteli diagram for 
the inclusion B1 ⊂ B2.
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Let Λ, Λ1 and Λ2 be the adjacency matrixes of B0 ⊂ B2, B0 ⊂ B1 and B1 ⊂ B2
respectively. Then Λ = Λ1Λ2. Take a faithful tracial state τ on B2. Let L2(B2) be the 
Hilbert space given by the GNS construction with respect to τ . Then L2(B0) and L2(B1)
are naturally identified as subspaces of L2(B2). Let e1, p1 be the Jones projections onto 
the subspaces L2(B0), L2(B1) respectively. Then B3 = (B2 ∪ p1)′′, B4 = (B2 ∪ e1)′′
are obtained by the basic construction. So Z(B0) = Z(B4), Z(B1) = Z(B3). And the 
adjacency matrixes of B2 ⊂ B3, B2 ⊂ B4 are ΛT

2 , ΛT .

Proposition 3.18. The adjacency matrix of B3 ⊂ B4 is ΛT
1 .

Proof. We assume that the adjacency matrix of B3 ⊂ B4 is Λ̃. Let J denote the modular 
conjugation operator on L2(B2). Then z → Jz∗J is a *-isomorphism of Z(B0) onto 
Z(B4), of Z(B1) onto Z(B3). Take a minimal central projection x of B0 and a minimal 
central projection y of B1, we have x̃ = JxJ is a minimal central projection of B4, and 
ỹ = JyJ is a minimal central projection of B3. The definition of the adjacency matrix 
implies that

Λy,x = [dim(xyB′
0xy ∩ xyB1xy)]

1
2 ;

Λ̃x̃,ỹ = [dim(x̃ỹB′
3x̃ỹ ∩ x̃ỹB4x̃ỹ)]

1
2 .

Note that

x̃ỹB′
3x̃ỹ ∩ x̃ỹB4x̃ỹ = JxyJB′

3JxyJ ∩ JxyJB4JxyJ = J(xyB′
0xy ∩ xyB1xy)J.

So Λ̃x̃,ỹ = Λy,x = ΛT
x,y. �

Definition 3.19. We say τ is a Markov trace for the inclusion B0 ⊂ B1 ⊂ B2, if τ is a 
Markov trace for the inclusions B0 ⊂ B1 and B1 ⊂ B2.

Proposition 3.20. If τ is a Markov trace for the inclusion B0 ⊂ B1 ⊂ B2, then τ is a 
Markov trace for the inclusion B0 ⊂ B2. Moreover τ extends uniquely to a Markov trace 
for the inclusion B2 ⊂ B3 ⊂ B4.

Proof. Let λi = λτ
Bi

be the dimension vectors for i = 0, 1, 2. If τ is a Markov trace 
for the inclusion B0 ⊂ B1 ⊂ B2, then by the definition τ is a Markov trace for the 
inclusions B0 ⊂ B1 and B1 ⊂ B2. So Λ2λ2 = λ1; Λ1λ1 = λ0; ΛT

1 λ0 = ||Λ1||2λ1; and 
ΛT

2 λ1 = ||Λ2||2λ2. Then ΛTΛλ2 = ΛT
2 ΛT

1 Λ1Λ2λ2 = ||Λ1||2||Λ2||2λ2. So τ is a Markov 
trace for the inclusion B0 ⊂ B2 and ||Λ|| = ||Λ1|| · ||Λ2||. Then τ extends uniquely to 
a Markov trace for the inclusion B2 ⊂ B4. Let λi = λτ

Bi
be the dimension vectors for 

i = 3, 4. We have λ4 = ||Λ||−2λ0 by the uniqueness of the extension of τ . And λ3 =
ΛT

1 λ4 = ||Λ||−2ΛT
1 λ0 = ||Λ2||−2λ1. Then Λ1ΛT

1 λ4 = ||Λ1||2λ4 and Λ2ΛT
2 λ3 = ||Λ2||2λ3

by a direct computation. That means τ extends to a Markov trace for the inclusion 
B2 ⊂ B3 ⊂ B4.
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On the other hand, if τ extends to a Markov trace for the inclusion B2 ⊂ B3 ⊂ B4, 
then it also extends to a Markov trace for the inclusion B0 ⊂ B2. That implies the 
uniqueness of such an extension. �
Definition 3.21. Given the Bratteli diagram Br for the inclusion B0 ⊂ B1 ⊂ B2, let us 
define the dimension vector with respect to the Markov trace τ to be λτ , a function from 
the vertices of the Bratteli diagram the into R+, as follows for a B0 coloured vertex, 
its value is the trace of the minimal projection corresponding to that vertex; for a B1
coloured vertex, its value is ||Λ1|| times the trace of the minimal projection corresponding 
to that vertex; for a B1 coloured vertex, its value is ||Λ|| times the trace of the minimal 
projection corresponding to that vertex.

Proposition 3.22. The inclusion B0 ⊂ B1 ⊂ B2 admits a Markov trace if and only if 
the Bratteli diagram for the inclusion is a graph with parameter (δa, δb). In this case 
δa = ||Λ1|| and δb = ||Λ2||. Under this condition, the Markov trace is unique if and only 
if the Bratteli diagram is connected.

Proof. The first statement follows from the definitions.
In this case, δa = ||Λ1|| and δb = ||Λ2|| follow from the fact that the eigenvalue of 

ΛT
i Λi with a positive eigenvector has to be ||Λi||2.
Suppose the inclusion B0 ⊂ B1 ⊂ B2 admits a Markov trace. If the Bratteli diagram 

Br is not connected, then we may adjust the proportion to obtain different Markov 
traces. If the Bratteli diagram Br for the inclusion B0 ⊂ B1 ⊂ B2 is connected, we want 
to show that the Bratteli diagram Br ′ for the inclusion B0 ⊂ B2 is connected. Actually 
if two B0 (or B2) coloured vertices are adjacent to the same B1 coloured vertex in Br ,
then they are adjacent to the same B2 (or B0) coloured vertex in Br ′, because any B1
coloured point is adjacent to a B2 (or B0) coloured vertex in Br . While the Bratteli 
diagram Br ′ is connected implies the uniqueness of the Markov trace for the inclusion 
B0 ⊂ B2. Then the dimension vectors λ0 and λ2 are unique. So λ1 is also unique. That 
means the Markov trace for the inclusion B0 ⊂ B1 ⊂ B2 is unique. �
Corollary 3.23. Given the principal graph for the inclusion N ⊂ P ⊂ M, its dimension 
vector is uniquely determined by the graph.

Proof. The dimension vector is a multiple of the dimension vector λτ with respect to 
the unique Markov trace τ . While the value of the marked point is 1, so the dimension 
vector is unique. �

Now we can repeat the basic construction to obtain the Jones tower B0 ⊂ B1 ⊂ B2 ⊂
B3 ⊂ B4 ⊂ · · · and a sequence of Jones projections e1, p1, e2, p2 · · ·.

Proposition 3.24. The algebra generated by the sequences of projections {ei} and {pj}
forms a Fuss–Catalan subfactor planar algebra.



Z. Liu / Advances in Mathematics 279 (2015) 307–371 327
This proposition is essentially the same as Proposition 5.1 in [6]. In that case the 
Jones projections are derived from the inclusion of factors. The proof is similar. We only 
need the fact that the trace preserving conditional expectation induced by a Markov 
trace maps the Jones projections to a multiple of the identity.

3.4. Graph planar algebras and the embedding theorem

Given a connected (N , P, M) coloured graph Γ with parameter (δa, δb), we have VN , 
VP , VM , E±, s, t, ∗ as in Definition 3.1. Let λ be the (unique) dimension vector. Let Γ′

be the bipartite graph induced from Γ. Suppose the Bratteli diagram for the inclusion of 
finite dimensional von Neumann algebras B0 ⊂ B1 ⊂ B2 is Γ. Then the Bratteli diagram 
for the inclusion of B0 ⊂ B2 is Γ′. Let Λ2 be the adjacency matrix for B1 ⊂ B2. Applying 
the basic construction, we will obtain the tower B0 ⊂ B1 ⊂ B2 ⊂ B3 ⊂ B4 ⊂ · · ·. Let 
{ei}, {pi} be the sequences of Jones projections arising from the basic construction. Note 
that the relative commutant of B0 in the tower can be expressed as linear sums of loops 
of Γ. The even parts of the relative commutants form a planar algebra isomorphic to the 
graph planar algebra G of Γ′ for a fixed choice of basis. So an element in G could be 
expressed as a linear sums of loops of Γ, instead of loops of Γ′. Actually an edge of Γ′ is 
replaced by a length 2 path ε1ε

∗
2. It is convenient to express p1 by loops of Γ.

Proposition 3.25. Note that p1 ∈ B′
1 ∩ B3, we have

p1 = δ−1
b

∑
ε3,ε7∈E−,t(ε3)=t(ε7)

√
λ(s(ε3))λ(s(ε7))
λ(t(ε3))λ(t(ε7))

[ε∗3ε3ε
∗
7ε7].

To express p1 as an element in G2,+ = B′
0 ∩ B4, we have

p1 = δ−1
b

∑
ε3,ε7∈E−
ε1,ε5∈E+

t(ε1)=t(ε3)=t(ε5)=t(ε7)

√
λ(s(ε3))λ(s(ε7))
λ(t(ε3))λ(t(ε7))

[ε1ε
∗
3ε3ε

∗
5ε5ε

∗
7ε7ε

∗
1].

Proof. Note that p1 is the Jones projection for the basic construction B1 ⊂ B2 ⊂ B3. So 
we have the first formula. Take the inclusion from B′

1∩B3 to B′
0 ∩B4 for p1, we obtained 

the second formula. �
Diagrammatically the inclusion from B′

1 ∩B3 to B′
0 ∩B4 is adding one a-colour string 

to the left and one to the right.

Theorem 3.26. Suppose S is a finite depth subfactor planar algebra, p is a biprojection 
in S2,+, Γ′ is the principal graph of S , and Γ is the refined principal graph with respect 
to the biprojection p. Let φ be the embedding map from S to the graph planar algebra G . 
Then φ(p) = p1 is the linear sum of loops as in Proposition 3.25.
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Proof. Note that pm is the Jones projection for the basic construction S ′
m,+ ⊂ Sm,+ ⊂

S ′
m+1,+, when m is odd and greater than the depth of S . So φ(p) is the Jones projection 

for the basic construction B1 ⊂ B2 ⊂ B3, which implies φ(p) = p1. �
Remark 3.27. In the rest of the paper, we will identify the subfactor planar algebras 
S with its image φ(S ) in the graph planar algebra G . We keep the same notation for 
elements in S and φ(S ) by ignoring the map φ.

4. Bisch–Haagerup fish graphs

Suppose N ⊂ P ⊂ M is an inclusion of factors of type II1, such that [M : P] =
3 +

√
5

2 and [P : N ] = 2. Then the (P, P) bimodules arisen from N ⊂ P is generated 

by an irreducible bimodule α with the relation α2 = 1. Moreover, the (P, P) bimodules 
arisen from P ⊂ M is generated by an irreducible bimodule β with the relation β2 =
β + 1.

If there is no extra relation for α and β, then N ⊂ P is called a free composed 
inclusion. In this case, the planar algebra of N ⊂ M is Fuss–Catalan.

If there is an extra relation for α and β, then Bisch and Haagerup showed that the 
relation is (αβ)n = (βα)n, for some positive integer n, in their unpublished work, see 
also Proposition 3.2 in [12]. It is easy to derive the principal graph of N ⊂ M from the 
fusion rule.

Definition 4.1. In the case (αβ)n = (βα)n, the subfactor N ⊂ M has depth 2n + 1. Its 
principal graph was computed by Bisch and Haagerup as

,

called the nth Bisch–Haagerup fish graph, when it is of depth 2n + 1.

Conversely if the principal graph of a subfactor N ⊂ M is a Bisch–Haagerup fish 
graph, then it has an intermediate subfactor P, such that [P : N ] = 2, due to the 
existence of a dimension one vertex at depth 2 of the Bisch–Haagerup fish graph [34].

If the principal graph of a subfactor planar algebra is the nth Bisch–Haagerup fish 
graph, then it contains a trace 2 biprojection. We are going to embed the subfactor planar 
algebra in its graph planar algebra. First we will see there is only one possible refined 
principal graph with respect to the biprojection. Then in the orthogonal complement of 
the Fuss–Catalan planar subalgebra, there is a new generator at depth 2n. We will show 
that this generator satisfies some relations. We hope to solve for the generator with such 
relations in the graph planar algebra. In the case n ≥ 4, there is no solution. So there is 
no subfactor planar algebra whose principal graph is the nth fish. In the case n = 1, 2, 3, 
there is a unique solution up to (planar algebra) isomorphism. So there is at most one 
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subfactor planar algebra for each n. Their existence follows from three known subfactors. 
We can reconstruct them in the graph planar algebra by generators and Fuss–Catalan 
Jellyfish relations.

Notation 4.2. Take δa =
√

2, δb = 1+
√

5
2 and δ = δaδb. Then δ2

b = δb + 1. Let FC =
FC (δa, δb) be the Fuss–Catalan planar algebra with parameters (δa, δb). We assume 
that f2n is the minimal projection in FC2n,+ with middle pattern abba abba · · · abba︸ ︷︷ ︸

n

, 

n copies of abba; and g2n is the minimal projection in FC 2n,− with middle pattern 
baab baab · · · baab︸ ︷︷ ︸

n

.

As a/b-colour diagrams, we have, for example,

f4 = ,

g4 = ,

where A2 and B2 are the a-colour and b-colour second Jones–Wenzl projections respec-
tively.

4.1. Principal graphs

If the nth Bisch–Haagerup fish graph is the principal graph of a subfactor N ⊂ M, 
then its index is δ2 = 3 +

√
5. Because of the existence of a normalizer, there is an 

intermediate subfactor P, such that [P : N ] = 2.

Definition 4.3. Let us define the subfactor planar algebra of N ⊂ M, if it exists, to 
be B = {Bm,±}, and eP to be the biprojection corresponding to the intermediate 
subfactor P.

Lemma 4.4. The refined principal graph with respect to the biprojection eP is

.
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Its dimension vector λ is given by

λ(c0) = λ(d0) = 1;

λ(c2k−1) = δaδ
k
b , for 1 ≤ k ≤ n;

λ(d2k−1) = δaδ
k−1
b , for 1 ≤ k ≤ n;

λ(c2k) = 2δkb , for 1 ≤ k ≤ n− 1;

λ(c2n) = λ(d2n) = δnb ;

λ(g2k−1) = δaδ
k−1
b , for 1 ≤ k ≤ n;

λ(g2k) = δaδ
k
b , for 1 ≤ k ≤ n.

Proof. Note that δ2 = 3 +
√

5 = δ2
aδ

2
b , so the planar subalgebra generated by the trace-2 

biprojection eP is FC = FC (δa, δb). Observe that the principal graph of FC is the same 
as the nth fish up to depth 2n −1, so B2(n−1),+ = FC 2(n−1),+. Then the refined principal 
graph of B starts as

.

The vertex c2k−1 corresponds to the minimal projection of FC 2k−1,+ with middle 
pattern abba · · · abba︸ ︷︷ ︸

k−1

ab, k − 1 copies of abba, for 1 ≤ k ≤ n. So λ(c2k−1) = δaδ
k
b .

The vertex d2k−1 corresponds to the minimal projection of FC 2k+1,+ with middle 
pattern abba · · · abba︸ ︷︷ ︸

k−1

abbb, for 1 ≤ k ≤ n − 1. So λ(d2k−1) = δaδ
k−1
b .

The vertex c2k corresponds to the minimal projection of FC 2k,+ with middle pattern 
abba · · · abba︸ ︷︷ ︸

k

, for 1 ≤ k ≤ n − 1. So λ(c2k) = 2δkb ;

The vertex c0 is the marked point. So λ(c0) = 1; The vertex d0 corresponds to the 
minimal projection of FC 2,+ with middle pattern aa. So λ(d0) = 1;

The vertex g2k−1 corresponds to the minimal projection of FC ′
2k−1,+ with middle 

pattern abba · · · abba︸ ︷︷ ︸
k−1

a, for 1 ≤ k ≤ n. So λ(g2k−1) = δaδ
k−1
b ;

The vertex g2k corresponds to the minimal projection of FC ′
2k,+ with middle pattern 

abba · · · abba︸ ︷︷ ︸
k−1

abb, for 1 ≤ k ≤ n − 1. So λ(g2k) = δaδ
k
b .

All these vertices are not adjacent to a new point in the refined principal graph except 
c2n−1, because they are identical to the vertices of the refined principal graph of FC .

Note that

δbλ(c2n−1) − λ(g2n−1) = δaδ
n+1
b − δaδ

n−1
b = δaδ

n
b ,
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so there is a new P coloured vertex, denoted by g2n, adjacent to c2n−1. Then λ(g2n) ≤
δaδ

n
b . On the other hand

λ(g2n) ≥ δ−1
b λ(c2n−1) = δnb >

1
2δaδ

n
b ,

so g2n is unique new P coloured vertex adjacent to c2n−1 and λ(g2n) = δaδ
n
b .

Note that

δbλ(g2n) − λ(c2n−1) = δaδ
n+1
b − δaδ

n
b = δaδ

n−1
b ,

so there is a new N coloured vertex, denoted by d2n−1, adjacent to g2n. Then λ(d2n−1) ≤
δaδ

n−1
b . On the other hand

λ(d2n−1) ≥ δ−1
b λ(g2n) = δaδ

n−1
b ,

so d2n−1 is unique new N coloured vertex adjacent to g2n and λ(d2n−1) = δaδ
n−1
b .

Now δbλ(d2n−1) = λ(g2n), so there is no new P coloured vertex adjacent to d2n−1.
In the principal graph, there are two M coloured vertices, denoted by c2n, d2n, 

adjacent to c2n−1. Thus c2n, d2n are adjacent to g2n in the refined principal graph. 
Moreover

λ(c2n) = λ(d2n) = 1
δ
(λ(c2n−1) + λ(d2n−1)) = δnb .

Then δaλ(c2n) = δaλ(d2n) = λ(g2n). So there is no new P coloured vertices adjacent to 
c2n or d2n.

Therefore we have the unique possible refined principal graph and its dimension vector 
as mentioned in the statement. �

Because B contains a biprojection, it is decomposed as an Annular Fuss–Catalan 
module [24], similar to the Temperley–Lieb case [15,20]. The Fuss–Catalan planar subal-
gebra FC is already a submodule of B. There is a lowest weight vector in B2n,+ which 
is orthogonal to FC . So this vector is rotation invariant up to a phase. Moreover it is 
totally uncappable, see [24]. In this special case, we have a direct proof of this result.

Definition 4.5. An element x ∈ Bm,+ is said to be totally uncappable, if

ρk(x)eP = 0, ρk(F(x))F(eP) = 0, ∀k ≥ 0;

An element y ∈ Bm,− is said to be totally uncappable, if F(y) is totally uncappable.

If we consider x as an a,b-colour diagram, then an element is totally uncappable means 
it becomes zero whenever it is capped by an a/b-colour string.
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Now let us construct the totally uncappable element S ∈ B2n,+. If S is totally uncap-
pable, then S is orthogonal to FC 2n,+. While the minimal projection f2n of FC 2n,+ is 
separated into two minimal projections in B2n,+, denoted by Pc and Pd, with the same 
trace. So S has to be a multiple of Pc − Pd. Take S to be Pc − Pd, then S satisfies the 
following propositions.

Proposition 4.6. For S = Pc − Pd in B2n,+, we have

(1) S∗ = S;
(2) S2 = f2n;
(3) S is totally uncappable;
(4) ρ(S) = ωS, for some ω ∈ C satisfying |ω| = 1.

Proof. (1) S∗ = (Pc − Pd)∗ = S.
(2) S2 = (Pc − Pd)2 = Pc + Pd = f2n.
(4) Note that ρ preserves the inner product of S ∈ B2n,+, and FC 2n,+ is rota-

tion invariant, so both S and ρ(S) are in the orthogonal complement of FC2n,+ which 
is a one-dimensional subspace. Then we have ρ(S) = ωS for some ω ∈ C. Moreover 
||ρ(S)||2 = ||S||2, so |ω| = 1.

(3) From the refined principal graph, we have S ∗P is a multiple of f2n. By computing 
the trace, we have S ∗ P = 0. On the other hand tr((SP )∗(SP )) = tr(f2nP ) = 0, so 
SP = 0. By proposition (4), we have S is totally uncappable. �

If S ∈ B2n,+ is totally uncappable, then F(S) ∈ B2n,− is also totally uncappable. To 
describe its relations, we need the dual principal graph of B.

Lemma 4.7. If the principal graph of B is the nth Bisch–Haagerup fish graph, then the 
dual principal graph of B is

.

For its dimension vector λ′, we have λ′(v1) = δnb , λ′(v2) = δn−1
b .

Proof. Note that B2n−1,+ = FC 2n−1,+, so B2n−1,− = FC 2n−1,−. Then the dual prin-
cipal graph of B is the same as the dual principal graph of FC up to depth 2n − 1. In 
B2n,−, there is a totally uncappable element, so the minimal projection g2n of FC 2n,−
is separated into two minimal projections of B2n,−, denoted by P ′

c, P ′
d. Then we have 
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the dual principal graph up to depth 2n as

.

The vertex v0 corresponds to the minimal projection of FC2n−1,− with middle pattern 
baab · · · baab︸ ︷︷ ︸

n−1

ba. So λ′(v0) = δaδ
n
b ;

The vertex v1 corresponds to the minimal projection P ′
c; The vertex v2 corresponds 

to the minimal projection P ′
d;

In the case n = 1, there is no vertex v3; In the case n ≥ 2, the vertex v3 corre-
sponds to the minimal projection of FC 2n,− with middle pattern baab · · · baab︸ ︷︷ ︸

n−1

bb. So 

λ′(v3) = δn−1
b .

In the case n = 1, there is no vertex v4; In the case n ≥ 2 the vertex v4 corresponds 
to the minimal projection of FC 2n−1,− with middle pattern bb baab · · · baab︸ ︷︷ ︸

n−2

ba. So 

λ′(v4) = δaδ
n−2
b .

The vertex v5 corresponds to the minimal projection of FC2n,− with middle pattern 
bb baab · · · baab︸ ︷︷ ︸

n−1

. So λ′(v5) = δn−1
b .

In the case n ≤ 2, there is no vertex v6; In the case n ≥ 3, the vertex v5 corre-
sponds to the minimal projection of FC2n,− with middle pattern bb baab · · · baab︸ ︷︷ ︸

n−2

bb. So 

λ′(v6) = δn−3
b .

In the principal graph, there is one vertex at depth 2n + 1 with multiplicity 2 (Def-
inition 2.9). So in the dual principal graph, there is one vertex at depth 2n + 1 with 
multiplicity 2, denoted by v7.

While δλ′(v5) − λ′(v4) = δaδ
n
b − δaδ

n−2
b = δaδ

n−1
b . So v5 is adjacent to v7. Then at 

most one of v1 and v2 is adjacent to v7. Without loss of generality, we assume that v2

is not adjacent to v7. Then λ′(v2) = 1
δλ

′(v0) = δn−1
b . So λ′(v1) = tr(g2n) − λ′(v2) =

δn+1
b − δn−1

b = δnb . Then δλ′(v1) − λ′(v0) = δaδ
n+1
b − δaδ

n
b = δaδ

n−1
b . So v1 is adjacent to 

v7, and λ′(v7) = δaδ
n−1
b . While δλ′(v7) − λ′(v1) − λ′(v5) = 2δnb − δnb − δn−1

b = δn−2
b . So 

there is a new N coloured vertex, denoted by v8, adjacent to v7. Then λ′(v8) ≤ δn−2
b . 

On the other hand λ′(v8) ≥ δ−1λ′(v7) = δn−2
b . So λ′(v8) = δn−2

b . And there is no new 
vertices in the dual principal graph.

Therefore we obtain the unique possible dual principal graph. �

Definition 4.8. Let us define Γn to be the (potential) dual principal graph of B.
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Note that the minimal projection g2n of FC 2n,− is separated into two minimal projec-
tions P ′

c, P ′
d in B2n,−. And tr(P ′

c) = λ(v1) = δnb , tr(P ′
d) = λ(v2) = δn−1

b . Take R to be 
δ−1
b P ′

c − δ−2
b P ′

d, then R is orthogonal to FC2n,− in B2n,−. Recall that F(S) ∈ FC 2n,− is 
totally uncappable, so F(S) is also orthogonal to FC 2n,− in B2n,−. While the orthogonal 
complement of FC2n,− in B2n,− is one dimensional. So F(S) is a multiple of R. Then 
we have the following propositions.

Proposition 4.9. For R = δ−1
b P ′

d − δ−2
b P ′

c in B2n,−, we have

(0) R = ω0δ
−1F(S), for a constant ω0 satisfying ω−2

0 = ω, where S and ω are given in 
Proposition 4.6;

(1’) R∗ = R;
(2’) R + δ−2

b g2n is a projection;
(3’) R is totally uncappable;
(4’) ρ(R) = ωR.

Proof. (1’) R∗ = (δ−1
b P ′

d − δ−2
b P ′

c)∗ = R.
(0) By the argument above, we have F(S) is a multiple of R. Note that

||F(S)||22 = tr(S ∗ S)

= tr(f2n)

= δ2
aδ

n
b ,

||R||22 = tr(R∗R)

= δ−2
b tr(P ′

c) + δ−4
b tr(P ′

d)

= δ−2
b δn−1

b + δ−4
b δnb

= δn−2
b

= δ−2||F(S)||22.

So R = ω0δ
−1F(S), for some phase ω0, i.e. ω0 ∈ C and |ω0| = 1.

Note that

(F(R))∗ = F−1(R∗) = F−1(R).

So

(ω0δ
−1F2(S))∗ = (F(R))∗

= F−1(R)

= ω0δ
−1(S).
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Then

ω0ρ(S) = (ω0S)∗ = ω0S.

Recall that ρ(S) = ωS. Thus ω−2
0 = ω.

(2’) R + δ−2
b g2n = P ′

d is a projection.
(3’) and (4’) follow from (0). �
By the embedding theorem, we hope to solve for (S, R, ω0) in the graph planar alge-

bra, such that (S, R, ω0) satisfies the propositions (0)(1)(2)(3)(4)(1’)(2’)(3’)(4’) listed in 
Proposition (4.6)(4.9). In this case, there is no essential difference to solve it in the graph 
planar algebra of the principal graph or the dual principal graph. But for computations, 
we may avoid a factor 1

2 in the graph planar algebra of the dual principal graph. The 
factor 1

2 comes from the symmetry of c0, d0 and c2n, d2n in the principal graph. Now let 
us describe the refined dual principal graph of B.

Lemma 4.10. The refined principal graph of B with respect to the biprojection eP is

.

For computations, let us adjust the refined principal graph and relabel its the vertices 
as

,

where the marked vertex is b1. For convenience, we assume that a4n = a0. Then its 
dimension vector λ′ is given by

λ′(a2k−1) = λ′(a4n−2k+1) = δkb , for 1 ≤ k ≤ n;

λ′(b2k−1) = λ′(b4n−2k+1) = δk−1
b , for 1 ≤ k ≤ n;

λ′(a2k) = λ′(a4n−2k) = δaδ
k
b , for 0 ≤ k ≤ n;

λ′(h2k−1) = λ′(h4n−2k+2) = δk−1
b , for 1 ≤ k ≤ n;

λ′(h2k) = λ′(h4n−2k+1) = δkb , for 1 ≤ k ≤ n.
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The even vertices of the principal graph have odd indices and the odd vertices have 
even indices.

Proof. The proof is similar to that of Lemma 4.4.
We have known that B2n,− = FC 2n,− ⊕ C(R), where C(R) is the one dimensional 

vector space generated by the totally uncappable element R. So we obtain the refined 
principal graph up to depth 2n as mentioned in the statement.

For the vertices v9, v10 as marked in the statement, we have

λ′(v9) = δbλ
′(v2) = δbδ

n−1
b = δnb ,

λ′(v10) = δ−1
b λ′(v5) = δ−1

b δn−1
b = δn−2

b .

Then δbλ′(v1) −λ(v9) = δbδ
n
b − δnb = δn−1

b . So v1 is adjacent to a new P coloured vertex, 
denoted by v11. Then λ′(v11) ≤ δn−1

b . On the other hand λ′(v11) ≥ δ−1
b λ′(v1) = δn−1

b . 
So v11 is the unique new P coloured vertex adjacent to v1 and λ′(v11) = δn−1

b . Then 
δbλ

′(v11) = λ′(v1) implies v8 is not adjacent to v11. And the N coloured vertex adjacent 
to v11 has to be v7.

Moreover δbλ′(v5) − λ(v10) = δbδ
n−1
b − δn−2

b = δn−1
b . So v1 is adjacent to a new P

coloured vertex, denoted by v12. Then λ′(v12) ≤ δn−1
b . On the other hand λ′(v12) ≥

δ−1
b λ′(v5) = δn−2

b > 1
2δ

n−1
b . So v12 is the unique new P coloured vertex adjacent to v5

and λ′(v12) = δn−1
b . Then δbλ′(v12) − λ′(v5) = λ′(v8) implies v8 is adjacent to v11. And 

the N coloured vertex adjacent to v11 has to be v7.
While δaλ(v7) = 2δn−1

b = λ′(v11) + λ′(v12), δbλ′(v8) = δn−1
b = λ′(v12). So there is no 

new P coloured vertices. Then we have the unique possible refined dual principal of B.
Now we adjust the refined principal graph and relabel its the vertices as

,

where the marked vertex is b1.
The graph is vertically symmetrical, by Corollary 3.23, the dimension vector λ′ is also 

symmetric. So we only need to compute the value of λ′ for the upper half vertices.
The vertex a1 corresponds to the minimal projection of FC2,− with middle pattern 

bb. So λ′(a1) = δb; The vertex a2k−1 corresponds to the minimal projection of FC2k−2,−
with middle pattern baab · · · baab, k−1 copies of baab, for 2 ≤ k ≤ n. So λ′(a2k−1) = δkb , 
for 2 ≤ k ≤ n;
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The vertex b1 is the marked vertex. So λ′(b1) = 1; The vertex b2k−1 corresponds to 
the minimal projection of FC2k−1,− with middle pattern baab · · · baab bb, k − 1 copies 
of baab, for 2 ≤ k ≤ n. So λ′(b2k−1) = δk−1

b , for 2 ≤ k ≤ n;
The vertex a0 corresponds to the minimal projection of FC 3,− with middle pattern 

bbba. So λ′(a0) = δa; The vertex a2k corresponds to the minimal projection of FC2k−1,−
with middle pattern baab · · · baab ba, k − 1 copies of baab, for 1 ≤ k ≤ n. So λ′(a2k) =
δaδ

k
b , for 1 ≤ k ≤ n;
The vertex h1 corresponds to the minimal projection of FC ′

3,− with middle pattern bbb. 
So λ′(h1) = 1; The vertex h2k−1 corresponds to the minimal projection of FC ′

2k−1,− with 
middle pattern baab · · · baab baa, k−2 copies of baab, for 2 ≤ k ≤ n. So λ′(a2k) = δk−1

b , 
for 2 ≤ k ≤ n;

The vertex h1 corresponds to the minimal projection of FC ′
3,− with middle pattern bbb. 

So λ′(h1) = 1; The vertex h2k corresponds to the minimal projection of FC ′
2k−1,− with 

middle pattern baab · · · baab b, k − 1 copies of baab, for 1 ≤ k ≤ n. So λ′(a2k) = δk−1
b , 

for 1 ≤ k ≤ n; �
We hope to embed Bm,∓ in the graph planar algebra of the dual principal graph, so 

we will consider the biprojection eP1 = δ−1
a δbF(eP) in B2,−.

Definition 4.11. Let us define G = Gm,± to be the graph planar algebra of the dual 
principal graph Γn. Then Bm,∓ is embedded in Gm,±. Let p1 ∈ G2,+ be the image of 
eP1 . Then the planar subalgebra FC(δb, δa)m,± of G generated by p1 is identical to the 
image of FC (δa, δb)m,∓. The images of f2n and g2n are still denoted by f2n and g2n.

Notation 4.12. Note that the dual principal graph Γ is simply laced. An edge ε of Γn is 
determined by s(ε) and t(ε), so we may use

[s(ε1)t(ε1)s(ε3)t(ε3) · · · s(ε2m−1)t(ε2m−1)]

to express a loop [ε1ε
∗
2ε3ε

∗
4 · · · ε2m−1ε

∗
2m] in G2m,+, similarly for loops in G2m,−.

Proposition 4.13.

p1 =
n∑

k=1

[a2k−1a2k−2a2k−1a2k−2] + [a4n−2k+1a4n−2k+2a4n−2k+1a4n−2k+2]

+ [a2k−1a2ka2k−1a2k] + [a4n−2k+1a4n−2ka4n−2k+1a4n−2k]

+ [a2k−1a2kb2k−1a2k] + [a4n−2k+1a4n−2kb4n−2k+1a4n−2k]

+ [b2k−1a2kb2k−1a2k] + [b4n−2k+1a4n−2kb4n−2k+1a4n−2k]

+ [b2k−1a2ka2k−1a2k] + [b4n−2k+1a4n−2ka4n−2k+1a4n−2k].

Proof. It follows from Theorem 3.26 and Lemma 4.10. �
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Definition 4.14. Note that G0,+ is abelian. Let us define Ak, Bk to be the minimal 
projections corresponding to the vertices a2k−1, b2k−1 respectively, for 1 ≤ k ≤ 2n.

Note that G1,+ is abelian. Let us decompose Ak into minimal projections A−
k and A+

k

as follows,

A−
k = [a2k−1a2k−2], A−

2n−k = [a4n−2k+1a4n−2k+2],

A+
k = [a2k−1a2k], A+

2n−k = [a4n−2k+1a4n−2k],

for 1 ≤ k ≤ n.
Let us define H2k−1, H4n−2k+1, H2k and H4n−2k in G1,−, for 1 ≤ k ≤ n, as follows

H2k−1 = [a2k−2a2k−1], H2k = [a2ka2k−1] + [a2kb2k−1],

H4n−2k+2 = [a4n−2k+2a4n−2k+1], H4n−2k+1 = [a4n−2ka4n−2k+1] + [a4n−2kb4n−2k+1].

Remark 4.15. If we apply the general embedding theorem [29] for the graph planar 
algebra of the refined principal graph equipped with actions of Fuss–Catalan tangles 
(with N −P −M shadings of regions and a/b-colour strings), then

A−
k = , A−

2n−k = , 1 ≤ k ≤ n;

A+
k = , A+

2n−k = , 1 ≤ k ≤ n;

Hk = , 1 ≤ k ≤ 4n,

while identifying the dual spaces of loop algebras as themselves for a finite graph.

Proposition 4.16. In the graph planar algebra, Ak, Bk are in the centre of G2n,+. More-
over, g2n commutes with A+

k and A−
k .

Proof. The first statement is obvious.
By Proposition 4.13, for 1 ≤ k ≤ n, we have

p1A
+
k = [a2k−1a2ka2ka2k−1a2k] = A+

k p1.
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Note that p1 + g1 is the identity, so g1A
+
k = A+

k g1. Adding one through string to the 
left of f2n−1, denoted by 1 ⊗ f2n−1, we have (1 ⊗ f2n−1)A+

k = A+
k (1 ⊗ f2n−1) and 

g2n = g1(1 ⊗ f2n−1). Therefore g2nA
+
k = A+

k g2n.
Similar formulas hold for other cases. �

Remark 4.17. As a/b-colour diagrams, A±
k has a b-colour through string on the right and 

g2n has an a-colour through string on the left, so they commute with each other.

4.2. The potential generator

Now we sketch the idea of solving the generator R in G . Essentially we are considering 
the length 8n loops on the refined dual principal graph. Observe that if a loop contains 
a word hkakhk, for 1 ≤ k ≤ 2n, then the vertex ak could be replaced by an a/b-colour 
cap, because ak is the unique N/M coloured vertex adjacent to hk. The coefficient 
of such a loop in the totally uncappable element R has to be 0. Therefore for a loop 
l with non-zero coefficient in R, if it goes to the right, then it will not return until 
passing the vertex a2n. Among these loops, there is exactly one in A−

1 G2n,+A
+
1 , that 

tells the initial condition of R. By proposition (2’), AkRAk is determined by A−
k RA+

k . 
By proposition (3’), BkR is determined by A+

k RA+
k . By proposition (4’), A−

k+1RAk+1 is 
determined by (Ak +Bk)R(Ak +Bk). That means R could be computed inductively by 
the initial condition.

Definition 4.18. Let us define F ∈ G2,+ to be the image of F(id − eP), i.e. F = δe1 −
δaδ

−1
b p1.

Remark 4.19. In terms of a/b-colour diagrams, we have

F = .

It is easy to check that F ∗ F = F and F ∗ g2n = g2n ∗ F = 0.
Note that e1 and p1 could be expressed as linear sums of loops, then we have

F =
∑

1≤k≤n

δaδ
−0.5
b ([a2k−1a2k−2a2k−1a2k] + [a4n−2k+1a4n−2k+2a4n−2k+1a4n−2k]

+ [a2k−1a2ka2k−1a2k−2] + [a4n−2k+1a4n−2ka4n−2k+1a4n−2k+2])

+ δaδ
−2
b ([a2k−1a2ka2k−1a2k] + [a4n−2k+1a4n−2ka4n−2k+1a4n−2k])

− δaδ
−1
b ([a2k−1a2kb2k−1a2k] + [a4n−2k+1a4n−2kb4n−2k+1a4n−2k])

+ δa([b2k−1a2kb2k−1a2k] + [b4n−2k+1a4n−2kb4n−2k+1a4n−2k])
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− δaδ
−1
b ([b2k−1a2ka2k−1a2k] + [b4n−2k+1a4n−2ka4n−2k+1a4n−2k]).

We can compute F ∗ l for a loop l ∈ G2n,+ by the following fact,

[y0y1y2y3] ∗ [x0x1 · · ·x4n−1] = δy1x1δy2x0δy3x4n−1

√
λ′(y2)λ′(y2)
λ′(y1)λ′(y3)

[y0x1 · · ·x4n−1].

Proposition 4.20. For a loop l ∈ G2n,+ and 1 ≤ k ≤ 2n, we have

F ∗ l = 0, when l = A−
k lA

−
k ,

F ∗ l = l, when l = A−
k lA

+
k or l = A+

k lA
−
k ;

F ∗ l = (A+
k + Bk)(F ∗ l)(A+

k + Bk), when l = (A+
k + Bk)l(A+

k + Bk).

So G2n,+ is separated into 6n invariant subspaces under the action F∗. Moreover the set 
of length 4n loops, as a basis of G2n,+, is separated into 6n subsets simultaneously.

Proof. It could be checked by a direct computation. �
Definition 4.21. Let β : A+

k G2n,+A
+
k → BkG2n,+, ∀ 1 ≤ k ≤ 2n, be the linear extension of

β([a2k−1a2kx3x4 · · ·x2n−1a2k]) = [b2k−1a2kx3x4 · · ·x2n−1a2k],

for any loop [a2k−1a2k−2x3x4 · · ·x2n−1a2k−2] ∈ A+
k G2n,+A

+
k , 1 ≤ k ≤ n;

β([a2k−1a2k−2x3x4 · · ·x2n−1a2k−2]) = [b2k−1a2k−2x3x4 · · ·x2n−1a2k−2],

for any loop [a2k−1a2k−2x3x4 · · ·x2n−1a2k−2] ∈ A+
k G2n,+A

+
k , n + 1 ≤ k ≤ 2n.

Proposition 4.22. The linear map β : A+
k G2n,+A

+
k → BkG2n,+ is a *-isomorphism. More-

over,

F ∗ x = δ−2
b x− δ−1

b β(x), ∀x ∈ A+
k G2n,+A

+
k ;

F ∗ y = δ−1
b y − δ−2

b β−1(y), ∀ y ∈ BkG2n,+;

β(A+
k g2n) = Bkg2n.

Proof. It is obvious that β is a *-isomorphism. It is easy to check the first two formulas 
by a direct computation. For the third formula, by Proposition 4.20 and the fact that 
F ∗ g2n = 0, we have

F ∗ ((A+
k + Bk)g2n(A+

k + Bk)) = 0.
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By Proposition 4.16, we have

F ∗ (A+
k g2n) = −F ∗ (Bkg2n).

Then

δ−2
b (A+

k g2n) − δ−1
b β(A+

k g2n) = −δ−1
b (Bkg2n) + δ−2

b β−1(Bkg2n).

So

β(A+
k g2n) = Bkg2n. �

Lemma 4.23. In the graph planar algebra,

A−
k RA−

k = 0, ∀ 1 ≤ k ≤ 2n;

HiF(R)Hi = 0, ∀ 1 ≤ i ≤ 4n.

Proof. By proposition (3’), R is totally uncappable, so R = F ∗R. By Proposition 4.20, 
we have

(A−
k RA−

k ) = F ∗ (A−
k RA−

k ) = 0.

Note that
∑

1≤i≤4n
HiF(R)Hi = F(Rp1) = 0,

so

HiF(R)Hi = 0, ∀ 1 ≤ i ≤ 4n. �
Lemma 4.24. In the graph planar algebra,

A−
1 RA+

1 is a multiple of the loop [a1a4na4n−1 · · · a2], denote by L1;
A−

2nRA+
2n is a multiple of the loop [a4n−1a0a1 · · · a4n−2], denote by L2.

Proof. Note that the coefficient of a loop l = [a1a4nx3x4 · · ·x4n−1a2] in A−
1 RA+

1 is the 
same as the coefficient of l in R. If it is non-zero, then by proposition (4’), the coefficient 
of F−2k+1(l) in F(R) is non-zero and the coefficient of F−2k(l) in R is non-zero. Applying 
Lemma 4.23, we have

H1F(R)H1 = 0 ⇒ x3 = a4n−1;

A−
4n−1RA−

4n−1 = 0 ⇒ x4 = a4n−2;
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and for k = 1, 2, · · · , n,

H4n+3−2kF(R)H4n+3−2k = 0 ⇒ x2k+1 = a4n+1−2k;

A−
4n+1−2kRA−

4n+1−2k = 0 ⇒ x2k+2 = a4n−2k.

For the rest, there is only one length 2n − 2 path from a2n to a2. So

l = [a1a4na4n−1 · · · a2] = L1.

That means A−
1 RA+

1 is a multiple of L1. Similarly A−
2nRA+

2n is a multiple of L2. �
Definition 4.25. For a loop l = [x0x1 · · ·x4n−1] and 0 ≤ k ≤ 4n −1, the point xk is said to 
be a cusp point of the loop l, if xk−1 = xk+1, where x−1 = x2n−1, x2n = x0. Otherwise 
it is said to be a flat point.

Similar to the proof of Lemma 4.24, Lemma 4.23 tells that if the coefficient of a loop 
l = [x0x1 · · ·x4n−1] in R is non-zero, then a cusp point xk of l has to be b2i−1 or a2i−1. In 
this case, we have xk−1 = xk+1 = a2i, when 1 ≤ i ≤ n; Or xk−1 = xk+1 = a2i−2, when 
n +1 ≤ i ≤ 2n. Furthermore if l passes the point a0, then it is unique up to rotation and 
the adjoint operation ∗; If l does not pass the point a0, then it is determined by its first 
point and cusp points. So we can simplify the expression of a loop by its first point and 
cusp points. To compute the product of two loops, we also need the middle point x2n. 
Then the loop is separated into two length 2n paths from the first point to the middle 
point. We can label the two paths by the first point, cusp points and the middle point.

Definition 4.26. For a loop l = [x0x1 · · ·x4n−1], xk �= a0, ∀ 0 ≤ k ≤ 4n − 1, we as-
sume that y1, y2, · · · , yi are the cusp points from x1 to x2n−1 and z1, z2, · · · , zj are the 
cusp points from x2n+1 to x4n−1. Then we use [x0y1y2 · · · yix2n〉c to express the first 
length 2n path of l, 〈x2nz1z2 · · · zjx0]c to express the second length 2n path of l and 
[x0y1y2 · · · yix2n〉c〈x2nz1z2 · · · zjx0]c to express the loop l. Furthermore if x2n is a cusp 
point, then it could be simplified as [x0y1y2 · · · yix2nz1z2 · · · zjx0]c; if x2n is a flat point, 
then it could be simplified as [x0y1y2 · · · yiz1z2 · · · zjx0]c.

All the loops in the rest of the paper have length 4n.

Definition 4.27. Suppose R ∈ G2n,+ is a solution of Proposition 4.9, i.e. R satisfies the 
following propositions,

(1’) R∗ = R;
(2’) R + δ−2

b g2n is a projection;
(3’) R is totally uncappable;
(4’) ρ(R) = ωR, for some ω ∈ C satisfying |ω| = 1.
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Let us define Uk, Pk, Qk, P k, Qk, Rk for 1 ≤ k ≤ 2n as follows

Uk = A−
k RA+

k ;

P k = δ−2
b (R− δ−1

b g2n)Bk;

Qk = δ−1
b (R + δ−2

b g2n)Bk;

Pk = −δ−1
b β−1(P k);

Qk = −δ−1
b β−1(Qk);

Rk = (A+
k + Bk)R(A+

k + Bk).

The following lemma is the key to solve the generator R in the graph planar algebra 
G2n,+. It allows us to construct the unique possible solution in G2n,+ inductively for all 
n simultaneously.

Lemma 4.28. The element R is uniquely determined by μ1, μ2 and ω. Precisely

U1 = μ1δ
−1.5
b L1, for some μ1 ∈ C, |μ1| = 1;

U2n = μ2δ
−1.5
b L2, for some μ2 ∈ C, |μ2| = 1;

Pk = U∗
kUk, for 1 ≤ k ≤ 2n;

Rk = δ4
bF ∗ Pk ∗ F, for 1 ≤ k ≤ 2n;

Uk+1 = ω−1ρ(Rk + Uk) and

U2n−k = ω−1ρ(R2n−k+1 + U2n−k+1), for 1 ≤ k ≤ n− 1;

R =
∑

1≤k≤2n

Uk + U∗
k + Rk.

Proof. For 1 ≤ k ≤ 2n, by definition, we have

RBk = −δ−2
b (δ−1

b g2n −R)Bk + δ−1
b (R + δ−2

b )Bk = P k + Qk.

By proposition (2’)(3’), we have R + δ−2
b g2n is a subprojection of g2n. Then

g2n − (R + δ−2
b g2n) = δ−1

b g2n −R

is a projection. So

δbQk = (R + δ−2
b )Bk, −δ2

bP k = (δ−1
b g2n −R)Bk

are projections, by Proposition 4.16. Note that

Rk = (A+
k + Bk)R(A+

k + Bk) = A+
k RA+

k + BkRBk,
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so F ∗Rk = Rk, by Proposition 4.20. Furthermore by Proposition 4.22, we have

F ∗Rk = δ−2
b A+

k RA+
k − δ−1

b β(A+
k RA+

k ) + δ−1
b BkRBk − δ−2

B β−1(BkRBk).

Thus

A+
k RA+

k = δ−2
b A+

k RA+
k − δ−2

b β−1(BkRBk).

Then

A+
k RA+

k = −δ−1
b β−1(BkRBk) = −δ−1

b β−1(P k + Qk) = Pk + Qk.

By Proposition 4.22, we have

A+
k g2n = β−1(Bkg2n) = β−1(−δ2

bP k + δbQk) = δ3
bPk − δ2

bQk,

and δ3
bPk, −δ2

bQk are projections. Then

A+
k (R + δ−2

b g2n)A+
k = (Pk + Qk) + (δbPk −Qk) = δ2

bPk.

By Proposition (4.16)(4.23) and proposition (1’), we have
[
A−

k (R + δ−2
b g2n)A−

k A−
k (R + δ−2

b g2n)A+
k

A+
k (R + δ−2

b g2n)A−
k A+

k (R + δ−2
b g2n)A+

k

]
=

[
δ−2
b A−

k g2n Uk

U∗
k δ2

bPk

]

Recall that R + δ−2
b g2n is a projection, so Ak(R + δ−2

b g2n) is a projection. Then the 
matrix [

δ−2
b A−

k g2n Uk

U∗
k δ2

bPk

]

is a projection. While A−
k g2n and δ3

bP1 are projections, so δ1.5
b Uk is a partial isometry 

from δ3
bP1 to A−

k g2n. Then

(δ1.5
b Uk)∗(δ1.5

b Uk) = δ3
bPk; (δ1.5

b Uk)(δ1.5
b Uk)∗ = A−

k g2n.

Therefore

U∗
kUk = Pk and U1U

∗
1 = δ−3

b A−
1 g2n.

Observe that [a1a4na4n−1 · · · a2n+2a2n+1a2n+2 · · · a4n]c is a subprojection of A−
1 g2n. So 

A−
1 g2n �= 0. Then U1 �= 0. By Lemma 4.24, we have

U1 = μ1δ
−1.5
b L1, for some μ1 ∈ C, |μ1| = 1;
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Symmetrically

U2n = μ2δ
−1.5
b L2, for some μ2 ∈ C, |μ2| = 1;

Note that

Bk(x ∗ F ) = (Bkx) ∗ F, ∀x ∈ G2n,+,

so

δ2
bP k ∗ F = (BkR) ∗ F − δb(Bkg2n) ∗ F = Bk(R ∗F )− δbBk(g2n ∗F ) = BkR = P k +Qk.

Observe that

β−1(y ∗ F ) = β−1(y) ∗ F, ∀ y ∈ BkG2n,+,

so

δ2
bPk ∗ F = Pk + Qk.

By Proposition 4.22, we have

δ2
bF ∗ Pk = Pk − δbβ(Pk) = Pk + P k.

So

δ4
bF ∗ Pk ∗ F = δ2

b (Pk + P k) ∗ F
= Pk + Qk + P k + Qk

= A+
k RA+

k + RBk

= (A+
k + Bk)R(A+

k + Bk)

= Rk.

Note that ρ induces a one onto one map from the loops of G2n,+(A+
k + Bk) to loops 

of A−
k+1G2n,+A

+
k+1, for 1 ≤ k ≤ n − 1. So

ρ(R(A+
k + Bk)) = A−

k+1ρ(R)A+
k+1.

Then by proposition (4’), we have

ρ(R(A+
k + Bk)) = ωA−

k+1RA+
k+1.

While

R(A+
k + Bk) = (A+

k + Bk)R(A+
k + Bk) + A−

k R(A+
k ) = Rk + Uk,
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thus

Uk+1 = ω−1ρ(Rk + Uk).

By a similar calculation, we see that

U2n−k = ω−1ρ(R2n−k+1 + U2n−k+1).

Finally

R =
∑

1≤k≤2n

(Ak + Bk)R(Ak + Bk)

=
∑

1≤k≤2n

(A−
k + A+

k + Bk)R(A−
k + A+

k + Bk)

=
∑

1≤k≤2n

A−
k RA+

k + A+
k RA−

k + (A+
k + Bk)R(A+

k + Bk)

=
∑

1≤k≤2n

Uk + U∗
k + Rk.

Given μ1, μ2 and ω, Uk, Pk, Rk could be obtained inductively. So R is uniquely 
determined by μ1, μ2 and ω. �
Remark 4.29. Note that the dual principal graph has a Z2 symmetry. When μ1 = μ2 =
ω = 1, the above process for calculating R is also symmetric. Thus the coefficient of a 
loop in R does not change by switching a2k−1 to a4n−2k+1.

4.3. Solutions

Definition 4.30. Based on Lemma 4.28, for fixed μ1, μ2, ω ∈ C, |μ1| = |μ2| = |ω| = 1, let 
us construct the unique possible generator Rμ1μ2ω ∈ G2n,+ inductively,

U1 = μ1δ
−1.5
b L1;

U2n = μ2δ
−1.5
b L2;

Pk = U∗
kUk, for 1 ≤ k ≤ 2n;

Rk = δ4
bF ∗ Pk ∗ F, for 1 ≤ k ≤ 2n;

Uk+1 = ω−1ρ(Rk + Uk) and

U2n−k = ω−1ρ(R2n−k+1 + U2n−k+1), for 1 ≤ k ≤ n− 1;

Rμ1μ2ω =
∑

1≤k≤2n

Uk + U∗
k + Rk.
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We hope to check proposition (1’)(2’)(3’)(4’) for Rμ1μ2ω. Actually propositions (1’)(2’)
(3’) are satisfied, but not obvious. Proposition (4’) fails, when n ≥ 4. We are going to 
compute the coefficients of loops in Rμ1μ2ω. If proposition (4’) is satisfied, then their 
absolute values are determined by the coefficients of loops in Rk.

Lemma 4.31. Rμ1μ2ω is totally uncappable.

Proof. Note that U1 is totally uncappable. So

g2nU1g2n = U1.

Then

g2nP1g2n = P1.

By the exchange relation of the biprojection, we have

g2n(F ∗ P1 ∗ F )g2n = F ∗ (g2n ∗ P1 ∗ g2n) ∗ F = F ∗ p1 ∗ F.

As an a/b-colour diagram, it is

.

Therefore R1 = F ∗ P1 ∗ F is totally uncappable. Then U2 = ω−1ρ(R1) is totally 
uncappable. Inductively we have Uk, Rk are totally uncappable, for k = 1, 2, · · · , n. 
Symmetrically Ui, Ri are totally uncappable, for i = 2n, 2n − 1, · · · , n + 1. So Rμ1μ2ω =∑

1≤k≤2n Uk + U∗
k + Rk is totally uncappable. �

Lemma 4.32. For 1 ≤ k ≤ 2n, Rk does not depend on the parameters μ1, μ2 and ω.

Proof. Note that P1 = U∗
1U1 does not depend on the parameters, so R1 = δ4

bF ∗ P1 ∗ F
does not depend on the parameters. We use the second principle of mathematical in-
duction. For k = 1, 2, · · · , n − 1, assume that Ri, for any i ≤ k, does not depend on the 
parameters. Note that

Pk+1 = U∗
kUk

= ρ(Rk + Uk)∗ρ(Rk + Uk)



348 Z. Liu / Advances in Mathematics 279 (2015) 307–371
= ρ(Rk)∗ρ(Rk) + ρ(Uk)∗ρ(Uk)

= · · ·
= ρ(Rk)∗ρ(Rk) + ρ2(Rk−1)∗ρ2(Rk−1) + · · · + ρk(R1)∗ρk(R1) + ρk(U1)∗ρk(U1)k.

Moreover ρk(U1)∗ρk(U1) does not depend on the parameters. So Pk+1 does not depend 
on the parameters. Then Rk+1 = δ4

bF ∗ Pk+1 ∗ F does not depend on the parameters. 
For n + 1 ≤ k ≤ 2n, the proof is similar. �

To compute Rk, we can fix the parameters as μ1 = μ2 = ω = 1 first. Now let us 
compute the coefficients of loops in R = R111.

Definition 4.33. For a loop l ∈ G2n,+, let us define CR(l) to be the coefficient of l in 
R = R111. Let us define CP (l) to be the coefficient of l in P =

∑
1≤k≤2n Pk.

If a loop l′ has a cusp point b2i−1, then we can substitute b2i−1 by a2i−1 to obtain 
another loop l. By Proposition (4.20)(4.22) and Lemma 4.31, we have CR(l′) is deter-
mined by CR(l). Essentially we only need to compute the coefficients of loops whose cusp 
points are just a′js. Their relations are given by the following lemma.

Lemma 4.34. For a loop l′1 ∈ G2n,+, l′1 = [x0 · · · b2i−1 · · ·x2n〉c〈x2n · · ·x0]c, we have

CR(l′1) = −δ
1
2
b CR(l1),

where l1 = [x0 · · · a2i−1 · · ·x2n〉c〈x2n · · ·x0]c is the loop replacing the given point b2i−1 by 
a2i−1 in l′1.

For a loop l2 ∈ A+
k G2n+A

+
k , l2 = [a2k−1 · · · a2m−1〉c〈a2m−1 · · · a2k−1]c, we have

CR(l2) =
{

δ2
bCP (l2), when the middle point a2m−1 is a flat point;
CP (l2) − CP (l′2), when the middle point a2m−1 is a cusp point,

where l′2 = [a2k−1 · · · b2m−1〉c〈b2m−1 · · · a2k−1]c is the loop replacing the middle point 
a2m−1 by b2m−1 in l2.

Proof. For a loop l′1 ∈ G2n+,

l′1 = [x0 · · ·x2k−1b2i−1x2k+1 · · ·x2n〉c〈x2nx2n+1 · · ·x4n−1x0]c,

we take l1 to be the loop

l1 = [x0 · · ·x2k−1a2i−1x2k+1 · · ·x2n〉c〈x2nx2n+1 · · ·x4n−1x0]c.

Assume that

l′0 = [b2i−1x2k+1 · · ·x2n+2k〉c〈x2n+2k · · ·x4n−1x0 · · ·x2k−1b2i−1]c
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and

l0 = [a2i−1x2k+1 · · ·x2n+2k〉c〈x2n+2k · · ·x4n−1x0 · · ·x2k−1a2i−1]c.

Then the coefficient of l′0 in ρ−k(R) is

√
λ′(x0)λ′(x2n)

λ′(b2i−1)λ′(x2n+2k)
CR(l′1);

and the coefficient of l0 in ρ−k(R) is

√
λ′(x0)λ′(x2n)

λ′(a2i−1)λ′(x2n+2k)
CR(l1).

By Proposition 4.20, the linear space spanned by l0, l′0 is invariant under the coproduct 
of F on the left side. By Lemma 4.31, we have

F ∗ (ρ−k(R)) = ρ−k(R).

So
√

λ′(x0)λ′(x2n)
λ′(b2i−1)λ′(x2n+2k)

CR(l′1)l′0 +

√
λ′(x0)λ′(x2n)

λ′(a2i−1)λ′(x2n+2k)
CR(l1)l0

is invariant under the coproduct of F on the left side. By Proposition 4.22, we have

√
λ′(x0)λ′(x2n)

λ′(b2i−1)λ′(x2n+2k)
CR(l′1) + δb

√
λ′(x0)λ′(x2n)

λ′(a2i−1)λ′(x2n+2k)
CR(l1) = 0.

Thus

CR(l′1) = −δ
1
2
b CR(l1).

For a loop l2 ∈ A+
k G2n+A

+
k , l2 = [a2k−1 · · · a2m−1〉c〈a2m−1 · · · a2k−1]c, we have

CR(l2) = tr(Rl∗2)
tr(l2l∗2)

= tr(Rkl
∗
2)

tr(l2l∗2)
= δ4

b

tr((F ∗ Pk ∗ F )l∗2)
tr(l2l∗2)

.

Note that

tr((F ∗ Pk ∗ F )l∗2) = tr(Pk(F ∗ l∗2 ∗ F ))
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by a diagram isotopy. So

CR(l2) = δ4
b

tr(Pk(F ∗ l∗2 ∗ F ))
tr(l2l∗2)

= δ4
b

tr(Pk(F ∗ l2 ∗ F )∗)
tr(l2l∗2)

.

If a2m−1 is a flat point, then l2∗F = l2, by a direct computation. By Proposition 4.22, 
we have

F ∗ l2 = δ−2
b l2 − δ−1

b β(l2).

So

CR(l2) = δ4
b δ

−2
b

tr(Pkl
∗
2)

tr(l2l∗2)
= δ2

bCP (l2).

If a2m−1 is a cusp point, then

l2 ∗ F = δ−2
b l2 − δ−1

b l′2,

by Proposition 4.22 and an 180◦ rotation, where l′2 = [a2k−1 · · · b2m−1〉c〈b2m−1 · · · a2k−1]c
is the loop replacing the middle point a2m−1 by b2m−1 in l2. Again by Proposition 4.22, 
we have

F ∗ l2 ∗ F = δ−4
b l2 − δ−3

b β(l2) − δ−3
b l′2 + δ−2

b β(l′2).

So

CR(l2) = δ4
b δ

−4
b

tr(Pkl
∗
2)

tr(l2l∗2)
− δ4

b δ
−3
b

tr(Pkl
′∗
2 )

tr(l2l∗2)
.

Observe that

tr(l2l∗2) = δbtr(l′2l′∗2 ).

Therefore

CR(l2) = CP (l2) − CP (l′2). �
Note that Pk = U∗

kUk, to compute the coefficient of a loop in Pk we only need the 
coefficients of loops in Uk. They are determined by the coefficients of loops in Rk−1.

Definition 4.35. For 1 ≤ k ≤ n, let us define [a2k−1, y〉c to be the set of all length 2n
paths from a2k−1 to y starting with a2k−1a2k−2. For a path η = [z0z1 · · · zk−1zk〉c, let us 
define η∗ to be the path 〈zk, zk−1, · · · , z1, z0]c.
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Lemma 4.36. For a loop η1η
∗
2 ∈ A+

k G2n,+A
+
k whose first point is a2k−1, suppose its middle 

point is y. Then we have

CP (η1η
∗
2) =

∑
η∈[a2k−1y〉c

CR(η1η
∗)CR(ηη∗2).

Proof. Note that a length 2n path η ∈ [a2k−1y〉c starts with a2k−1a2k−2, so CR(η∗η2)
is the coefficient of η∗η2 in Uk and CR(η1η

∗) is the coefficient of η1η
∗ in U∗

k . Then the 
statement follows from the fact Pk = U∗

kUk. �
When the initial condition μ1 = μ2 = ω = 1 is fixed, given a loop

l = [ak1a2n+k2a2n−k3 · · · a2n+k2tak1 ]c, for 1 ≤ k1, k2, · · · , k2t ≤ 2n− 1,

we can compute CR(l) by repeating Lemma (4.34)(4.36). A significant fact is that the 
computation only depends on k1, k2, · · · , k2t, in other words, CR(l) is independent of n. 
We list all the coefficients for k1 ≤ 7 in Appendix A. This is enough to rule out the 4th fish 
by comparing the coefficients CR([a5a9a5a9a5]c) and CR([a7a11a7a11a7]c). It is possible 
to rule out finitely many Bisch–Haagerup fish graphs by computing more coefficients. 
To rule out the nth Bisch–Haagerup fish graph, for all n ≥ 4, we need formulas for the 
coefficients of two families of loops which do not match the proposition (4’). Then only 
the first three Bisch–Haagerup fish graphs are the principal graphs of subfactors.

Lemma 4.37.

CR([a2k−1a2n+2k−1a2k−1]c) = δ−3
b , ∀ 1 ≤ k ≤ n.

Proof. For 1 ≤ k ≤ n, by Lemma 4.34, we have

CR([a2k−1a2n+2k−1a2k−1]c)

= CP ([a2k−1a2n+2k−1a2k−1]c) − CP ([a2k−1b2n+2k−1a2k−1]c).

By Lemma 4.36, we have

CP ([a2k−1a2n+2k−1a2k−1]c)

= CR([a2k−1 · · · a4n−1a0 · · · a2k−1a2k−2]c)CR([a2k−1a2k−2 · · · a0a4n−1 · · · a2k]c),

because

[a2k−1a2n+2k−1a2k−1]c = [a2k−1a2n+2k−1〉c〈a2n+2k−1a2k−1]c,

and a2k−1a2k−2 · · · a0a4n−1 · · · a2n+2k−1 is the unique path in [a2k−1, a2n+2k−1〉c. Note 
that

[a2k−1 · · · a4n−1a0 · · · a2k−1a2k−2]∗c = [a2k−1a2k−2 · · · a0a4n−1 · · · a2k]c,
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and R = R∗, so

CR([a2k−1 · · · a4n−1a0 · · · a2k−1a2k−2]c) = CR([a2k−1a2k−2 · · · a0a4n−1 · · · a2k]c).

Observe that

ρ[a1a0a4n−1 · · · a2]c

=

√
λ′(a1)λ′(a2n+1)

λ′(a2k−1)λ′(a2n+2k−1)
[a2k−1a2k−2 · · · a1a0a4n−1 · · · a2k]c

= [a2k−1a2k−2 · · · a1a0a4n−1 · · · a2k]c,

and ρ(R) = R, (we assumed that μ1 = μ2 = ω = 1), so

CR([a2k−1a2k−2 · · · a0a4n−1 · · · a2k]c) = CR([a1a0a4n−1 · · · a2]c) = δ−1.5
b .

Then

CP ([a2k−1a2n+2k−1a2k−1]c) = δ−3
b .

On the other hand,

[a2k−1b2n+2k−1a2k−1]c = [a2k−1b2n+2k−1〉c〈b2n+2k−1a2k−1]c,

but there is no path in [a2k−1, b2n+2k−1]c, so

CP ([a2k−1b2n+2k−1a2k−1]c) = 0.

Then

CR([a2k−1a2n+2k−1a2k−1]c) = δ−3
b . �

Lemma 4.38.

CR([a2k−1a2n+1a2n−2k+3a2n+1a2k−1]c) = δ−5
b , ∀ 2 ≤ k ≤ n;

CR([a2k−1a2n+1a2n−1a2n+2k−3a2k−1]c) = δ−5.5
b , ∀ 3 ≤ k ≤ n;

CR([a2k−1a2n+2k−3a2n−1a2n+1a2k−1]c) = δ−5.5
b , ∀ 3 ≤ k ≤ n.

Proof. For 2 ≤ k ≤ n, by Lemma 4.34, we have

CP ([a2k−1a2n+1a2n−2k+3a2n+1a2k−1]c)

= CP ([a2k−1a2n+1a2n−2k+3〉c〈a2n−2k+3a2n+1a2k−1]c)
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= CR([a2k−1a2n+1a2n−2k+3〉c〈a2n−2k+3a1a2k−1]c)

× CR([a2k−1a1a2n−2k+3〉c〈a2n−2k+3a2n+1a2k−1]c)

+ CR([a2k−1a2n+1a2n−2k+3〉c〈a2n−2k+3b1a2k−1]c)

× CR([a2k−1b1a2n−2k+3〉c〈a2n−2k+3a2n+1a2k−1]c)

By Lemma 4.34, we have

CR([a2k−1b1a2n−2k+3〉c〈a2n−2k+3a2n+1a2k−1]c

= −δ0.5
b CR([a2k−1a1a2n−2k+3〉c〈a2n−2k+3a2n+1a2k−1]c.

So the formula is simplified as

CP ([a2k−1a2n+1a2n−2k+3a2n+1a2k−1]c)

= δ2
bCR([a2k−1a2n+1a2n−2k+3〉c〈a2n−2k+3a1a2k−1]c)

× CR([a2k−1a1a2n−2k+3〉c〈a2n−2k+3a2n+1a2k−1]c),

where δ2
b is given by 1 + (−δ0.5

b )2 = δ2
b .

We see that the cusp point of a path in [a2k−1a2n−2k+3〉c could be a1 or b1, but we 
can ignore the path with the cusp point b1 by adding a factor δ2

b .
Moreover,

CR([a2k−1a1a2n+1a2k−1]c)

=

√
λ′(a1)λ′(a2n+1)

λ′(a2k−1)λ′(a2n−2k+3)
CR([a1a2n+1a1]c)

= δ−0.5
b δ−3

b

= δ−3.5
b .

So

CP ([a2k−1a2n+1a2n−2k+3a2n+1a2k−1]c) = δ2
b (δ−3.5

b )2 = δ−5
b .

On the other hand, there is no path in [a2k−1b2n−2k+3〉c, so

CP ([a2k−1a2n+1b2n−2k+3a2n+1a2k−1]c) = 0.

Then

CR([a2k−1a2n+1a2n−2k+3a2n+1a2k−1]c) = δ−5
b .
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For the formula CR([a2k−1a2n+1a2n−1a2n+2k−3a2k−1]c), when k = 3, we have

CR([a3a2n+1a2n−1a2n+1a3]c) = δ−5
b .

When k ≥ 3, by Lemma 4.34, we have

CP ([a2k−1a2n+1a2n−1a2n+2k−3a2k−1]c)

= CP ([a2k−1a2n+1a2n−1a2n+2k−5〉c〈a2n+2k−5a2n+2k−3a2k−1]c)

= δ2
bCR([a2k−1a2n+1a2n−1a2n+2k−5〉c〈a2n+2k−5a2k−3a2k−1]c)

× CR([a2k−1a2k−3a2n+2k−5〉c〈a2n+2k−5a2n+2k−3a2k−1]c),

where the factor δ2
b comes from the choice the cusp point a2k−3. Moreover,

CR([a2k−1a2n+1a2n−1a2n+2k−3a2k−1]c)

= CR([a2k−1a2n+1a2n−1a2n+2k−5〉c〈a2n+2k−5a2k−3a2k−1]c)

=

√
λ′(a2k−3)λ′(a2n+2k−7)
λ′(a2k−1)λ′(a2n+2k−5)

CR([a2k−3a2n+1a2n−1a2n+2k−5a2k−3]c)

=
{
δ−0.5
b CR([a3a2n+1a2n−1a2n+1a3]c) = δ−5.5

b when k = 3;
CR([a2k−3a2n+1a2n−1a2n+2k−5a2k−3]c) when k ≥ 4.

CR([a2k−1a2k−3a2n+2k−3a2k−1]c)

=

√
λ′(a2k−3)λ′(a2n+2k−3)
λ′(a2k−1)λ′(a2n+2k−5)

CR([a2k−3a2n+2k−3a2k−3]c) = δ−1
b δ−3

b = δ−4
b .

Note that the middle point a2n+2k−5 is a flat point, by Lemma 4.34, we have

CR([a2k−1a2n+1a2n−1a2n+2k−3a2k−1]c) = δ2
bCP ([a2k−1a2n+1a2n−1a2n+2k−3a2k−1]c).

Then

CR([a2k−1a2n+1a2n−1a2n+2k−3a2k−1]c) = δ−5.5
b when k = 3;

CR([a2k−1a2n+1a2n−1a2n+2k−3a2k−1]c)

= CR([a2k−3a2n+1a2n−1a2n+2k−5a2k−3]c) when k ≥ 4.

Therefore we have CR([a2k−1a2n+1a2n−1a2n+2k−3a2k−1]c) = δ−5.5
b inductively, for 3 ≤

k ≤ n.
Take the adjoint, we have CR([a2k−1a2n+2k−3a2n−1a2n+1a2k−1]c) = δ−5.5

b . �
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Lemma 4.39.

CR([a2k−1a2n+1a2n−1a2n+2k−5a2n−1a2n+1a2k−1]c) = −δ−8
b , ∀ 3 ≤ k ≤ n.

Proof. For 3 ≤ k ≤ n, by Lemma 4.36, we have

CP ([a2k−1a2n+1a2n−1a2n+2k−5a2n−1a2n+1a2k−1]c)

= CP ([a2k−1a2n+1a2n−1a2n+2k−5〉c〈a2n+2k−5a2n−1a2n+1a2k−1]c)

= δ2
bCR([a2k−1a2n+1a2n−1a2n+2k−5〉c〈a2n+2k−5a2k−3a2k−1]c)

× CR([a2k−1a2k−3a2n+2k−5〉c〈a2n+2k−5a2n−1a2n+1a2k−1]c),

where δ2
b is given by the choice of a2k−3.

On the other hand

CP ([a2k−1a2n+1a2n−1b2n+2k−5a2n−1a2n+1a2k−1]c)

= CP ([a2k−1a2n+1a2n−1b2n+2k−5〉c〈b2n+2k−5a2n−1a2n+1a2k−1]c)

= δ2
bCR([a2k−1a2n+1a2n−1b2n+2k−5〉c〈b2n+2k−5a2k−3a2k−1]c)

× CR([a2k−1a2k−3b2n+2k−5〉c〈b2n+2k−5a2n−1a2n+1a2k−1]c),

where δ2
b is given by the choice of a2k−3.

Note that

CR([a2k−1a2n+1a2n−1b2n+2k−5a2k−3a2k−1]c)

= δ−1
b CR([a2k−1a2n+1a2n−1a2n+2k−5a2k−3a2k−1]c);

CR([a2k−1a2k−3b2n+2k−5a2n−1a2n+1a2k−1]c)

= δ−1
b CR([a2k−1a2k−3a2n+2k−5a2n−1a2n+1a2k−1]c).

By Lemma 4.34, we have

CR([a2k−1a2n+1a2n−1a2n+2k−5a2n−1a2n+1a2k−1]c)

= CP ([a2k−1a2n+1a2n−1a2n+2k−5a2n−1a2n+1a2k−1]c)

− CP ([a2k−1a2n+1a2n−1b2n+2k−5a2n−1a2n+1a2k−1]c)

= δ−1
b δ2

bCR([a2k−1a2n+1a2n−1a2n+2k−5〉c〈a2n+2k−5a2k−3a2k−1]c)

× CR([a2k−1a2k−3a2n+2k−5〉c〈a2n+2k−5a2n−1a2n+1a2k−1]c),

where −δb is given by 1 − (δ−1
b )2 = −δb.

We see that if the middle point is a cusp point, and both a2n+2k−5 and b2n+2k−5
contribute to the middle point of a loop in the multiplication, then we can ignore the 
loop with middle point b2n+2k−5 by adding a factor −δb.
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While

CR([a2k−1a2k−3a2n+2k−5a2n−1a2n+1a2k−1]c

=

√
λ′(a2k−3)λ′(a2n+2k−7)
λ′(a2k−1)λ′(a2n+2k−5)

CR([a2k−3a2n+2k−5a2n−1a2n+1a2k−1]c)

=
{
δ−0.5
b CR([a3a2n+1a2n−1a2n+1a3]c) = δ−5.5

b when k = 3;
CR([a2k−3a2n+2k−5a2n−1a2n+1a2k−1]c) = δ−5.5

b when k ≥ 4.

So

CR([a2k−1a2n+1a2n−1a2n+2k−5a2n−1a2n+1a2k−1]c) = −δbδ
2
b (δ−5.5

b )2

= −δ−8
b , ∀ k ≥ 3. �

Lemma 4.40. For 5 ≤ k ≤ n, we assume that

ηk1 = [a2k−1a2n+2k−5a2n+2k−9〉c;
ηk2 = [a2k−1a2n+1a2n−1a2n+2k−7a2n+2k−9〉c;
η̃k1 = [a2k−1a2k−5a2n+2k−9〉c;
η̃k2 = [a2k−1a2k−3a2n+1a2n−1a2n+2k−9〉c.

Then [
CR(ηk1η̃

∗
k1) CR(ηk1η̃

∗
k2)

CR(ηk2η̃
∗
k1) CR(ηk2η̃

∗
k2)

]
=

[
δ−5
b δ−6.5

b

δ−6.5
b −δ−9

b

]
.

Proof.

CR(ηk1η̃
∗
k1) = CR([a2k−1a2n+2k−5a2k−5a2k−1]c)

= δ−2
b CR([a2k−5a2n+2k−5a2k−5]c)

= δ−5
b , by Lemma 4.37

CR(ηk1η̃
∗
k2) = CR([a2k−1a2n+2k−5a2n−1a2n+1a2k−3a2k−1]c)

= δ−1
b CR([a2k−3a2n+2k−5a2n−1a2n+1a2k−3]c)

= δ−6.5
b , by Lemma 4.38;

CR(ηk2η̃
∗
k1) = CR([a2k−1a2n+1a2n−1a2n+2k−7a2k−5a2k−1]c)

= δ−1
b CR([a2k−5a2n+1a2n−1a2n+2k−7a2k−5]c)

= δ−6.5
b , by Lemma 4.38;

CR(ηk2η̃
∗
k2) = CR([a2k−1a2n+1a2n−1a2n+2k−7a2n−1a2n+1a2k−3a2k−1]c)

= δ−1
b CR([a2k−3a2n+1a2n−1a2n+2k−7a2n−1a2n+1a2k−3]c)

= −δ−9
b , by Lemma 4.39. �
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Lemma 4.41. For 5 ≤ k ≤ n, we assume that

ηk3 = [a2k−1a2n+1a2n−1a2n+1a2n−1a2n+2k−9〉c;
ηk4 = [a2k−1a2n+3a2n−1a2n+2k−9〉c;
ηk5 = [a2k−1a2n+1a2n−3a2n+2k−9〉c.

Then

k = 5l + 5 5l + 6 5l + 7 5l + 8 5l + 9

CR(ηk1η
∗
k3) 0 0 δ−8

b −δ−9
b δ−8

b

CR(ηk2η
∗
k3) −δ−10.5

b δ−9.5
b −δ−10.5

b δ−11.5
b δ−11.5

b

CR(ηk1η
∗
k4) δ−5.5

b 0 δ−6.5
b δ−6.5

b 0
CR(ηk2η

∗
k4) 0 0 δ−8

b −δ−9
b δ−8

b

CR(ηk1η
∗
k5) 0 δ−5.5

b 0 δ−6.5
b δ−6.5

b

CR(ηk2η
∗
k5) δ−8

b 0 0 δ−8
b −δ−9

b

CR(ηk3η
∗
k3) δ−13

b −δ−12
b −δ−12

b δ−13
b −δ−14

b

CR(ηk3η
∗
k4) 0 0 0 δ−9.5

b −δ−10.5
b

CR(ηk3η
∗
k5) δ−9.5

b 0 0 0 −δ−10.5
b

CR(ηk4η
∗
k4) −δ−8

b δ−7
b −δ−8

b 0 0
CR(ηk4η

∗
k5) 0 0 0 0 δ−8

b

CR(ηk5η
∗
k5) 0 −δ−8

b δ−7
b −δ−8

b 0

Proof. For 5 ≤ k ≤ n, i = 3, 4, 5, we assume that[
αki

βki

]
=

[
CR(ηk1η

∗
ki)

CR(ηk2η
∗
ki)

]
.

Then[
αki

βki

]
=

[
CR(ηk1η

∗
ki)

CR(ηk2η
∗
ki)

]
= δ2

b

[
CR(ηk1η̃

∗
k1) CR(ηk1η̃

∗
k2)

CR(ηk2η̃
∗
k1) CR(ηk2η̃

∗
k2)

] [
δ2
bCR(η̃k1η

∗
ki)

δ6
bCR(η̃k2η

∗
ki)

]

Furthermore we have

CR(η̃k1η
∗
ki) = CR(ρ−2(η̃(k−2)1η

∗
(k−2)i)) = CR(η̃(k−2)1η

∗
(k−2)i) = α(k−2)i, when k ≥ 7.

CR(η̃k2η
∗
k2) = CR(ρ−1(η̃(k−1)2η

∗
(k−1)i)) = CR(η̃(k−1)2η

∗
(k−1)i) = β(k−1)i, when k ≥ 6.

So [
αki

]
= δ2

b

[
δ−5
b δ−6.5

b
−6.5 −9

] [
δ2
bα(k−2)i
6

]
=

[
δ−1
b δ1.5

b
−2.5 −1

] [
α(k−2)i

]
.

βki δb −δb δbβ(k−1)i δb −δb β(k−1)i
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Substituting βki by αki, we have

α(k+1)i + δ−1
b αki − δ−1

b α(k−1)i − α(k−2)i = 0.

Recall that δb = 1 +
√

5
2 , so x3 + δ−1

b x2 − δ−1
b x − 1 = 0 has three roots 1, e 4πi

5 , e 6πi
5 . 

So

αki = r1i + r2ie
4kπi

5 + r3ie
6kπi

5 ,

for some constant r1i, r2i, r3i. Therefore the periodicity of αki is 5 with respect to k.
Based on the results listed in Appendix A, the initial condition is⎡

⎣α33
α43
β43

⎤
⎦ =

⎡
⎣CR(η̃51η

∗
53)

CR(η̃61η
∗
53)

CR(η̃52η
∗
53)

⎤
⎦ =

⎡
⎣ −δ−9

b

δ−8
b

δ−11.5
b

⎤
⎦ ;

⎡
⎣α34
α44
β44

⎤
⎦ =

⎡
⎣CR(η̃51η

∗
54)

CR(η̃61η
∗
54)

CR(η̃52η
∗
54)

⎤
⎦ =

⎡
⎣ δ−6.5

b

0
δ−8
b

⎤
⎦ ;

⎡
⎣α35
α45
β45

⎤
⎦ =

⎡
⎣CR(η̃51η

∗
55)

CR(η̃61η
∗
55)

CR(η̃52η
∗
55)

⎤
⎦ =

⎡
⎣ δ−6.5

b

δ−6.5
b

−δ−9
b

⎤
⎦ .

For example,

α33 = CR(η̃51η
∗
53)

= CR([a9a5a2n+1a2n−1a2n+1a2n−1a2n+1a9)

= δ−1
b CR([a5a2n+1a2n−1a2n+1a2n−1a2n+1a5]c)

= −δ−9
b .

The others are similar.

Then 
[
αki

βki

]
is obtained inductively. The result is listed in the following table

k = 5l + 5 5l + 6 5l + 7 5l + 8 5l + 9

αk3 0 0 δ−8
b −δ−9

b δ−8
b

βk3 −δ−10.5
b δ−9.5

b −δ−10.5
b δ−11.5

b δ−11.5
b

αk4 δ−5.5
b 0 δ−6.5

b δ−6.5
b 0

βk4 0 0 δ−8
b −δ−9

b δ−8
b

αk5 0 δ−5.5
b 0 δ−6.5

b δ−6.5
b

βk5 δ−8
b 0 0 δ−8

b −δ−9
b
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For 5 ≤ k ≤ n, 3 ≤ i, j ≤ 5, by Lemma (4.34)(4.36), we have

CR(ηkiη∗kj) = −δb(δ2
bCR(ηkiη̃∗k1)CR(η̃k1η

∗
kj) + δ6

bCR(ηkiη̃∗k2)CR(η̃k2η
∗
kj))

+ δ4
bCR(ηki〈a2n+2k−9a2n+2k−7a2k−3a2k−1]c)

× CR([a2k−1a2k−3a2n+2k−7a2n+2k−9〉cη∗kj)

= −δb(δ2
bCR(ηkiη̃∗k1)CR(η̃k1η

∗
kj) + δ6

bCR(ηkiη̃∗k2)CR(η̃k2η
∗
kj))

+ δ4
bCR(η(k+1)iη̃

∗
(k+1)1)CR(η̃(k+1)1η

∗
kj).

= −δ3
bα(k−2)iα(k−2)j − δ7

bβ(k−1)iβ(k−1)j + δ4
bα(k−1)iα(k−1)j .

Then

k = 5l + 5 5l + 6 5l + 7 5l + 8 5l + 9

CR(ηk3η
∗
k3) δ−13

b −δ−12
b −δ−12

b δ−13
b −δ−14

b

CR(ηk3η
∗
k4) 0 0 0 δ−9.5

b −δ−10.5
b

CR(ηk3η
∗
k5) δ−9.5

b 0 0 0 −δ−10.5
b

CR(ηk4η
∗
k4) −δ−8

b δ−7
b −δ−8

b 0 0
CR(ηk4η

∗
k5) 0 0 0 0 δ−8

b

CR(ηk5η
∗
k5) 0 −δ−8

b δ−7
b −δ−8

b 0 �
Lemma 4.42.

CR(a2n−1a4n−7a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1)

=

⎧⎪⎪⎨
⎪⎪⎩

−δ−13.5
b when n = 20l + 8;

−δ−13.5
b when n = 20l + 13;

−δ−11.5
b when n = 20l + 18;

−δ−11.5
b when n = 20l + 23;

∀ l ≥ 0.

Proof. When 7 ≤ k ≤ n, we assume that

ξk1 = [a2k−1a2n+2k−7a2n+2k−13〉c;
ξk2 = [a2k−1a2n+1a2n−1a2n+2k−9a2n+2k−13〉c;
ξk3 = [a2k−1a2n+1a2n−1a2n+1a2n−1a2n+2k−11a2n+2k−13〉c;
ξk4 = [a2k−1a2n+3a2n−1a2n+2k−11a2n+2k−13〉c;
ξk5 = [a2k−1a2n+1a2n−3a2n+2k−11a2n+2k−13〉c;
ξ̃k1 = [a2k−1a2k−7a2n+2k−13〉c;
ξ̃k2 = [a2k−1a2k−5a2n+1a2n−1a2n+2k−13〉c;
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ξ̃k3 = [a2k−1a2k−3a2n+1a2n−1a2n+1a2n−1a2n+2k−13〉c;

ξ̃k4 = [a2k−1a2k−3a2n+3a2n−1a2n+2k−13〉c;

ξ̃k5 = [a2k−1a2k−3a2n+1a2n−3a2n+2k−13〉c.

By Lemma (4.40)(4.41), we can compute Tk, for k ≥ 7, where

Tk =

⎡
⎢⎢⎢⎢⎣
CR(ξk1ξ̃

∗
k1) CR(ξk1ξ̃

∗
k2) CR(ξk1ξ̃

∗
k3) CR(ξk1ξ̃

∗
k4) CR(ξk1ξ̃

∗
k5)

CR(ξk2ξ̃
∗
k1) CR(ξk2ξ̃

∗
k2) CR(ξk2ξ̃

∗
k3) CR(ξk2ξ̃

∗
k4) CR(ξk2ξ̃

∗
k5)

CR(ξk3ξ̃
∗
k1) CR(ξk3ξ̃

∗
k2) CR(ξk3ξ̃

∗
k3) CR(ξk3ξ̃

∗
k4) CR(ξk3ξ̃

∗
k5)

CR(ξk4ξ̃
∗
k1) CR(ξk4ξ̃

∗
k2) CR(ξk4ξ̃

∗
k3) CR(ξk4ξ̃

∗
k4) CR(ξk4ξ̃

∗
k5)

CR(ξk5ξ̃
∗
k1) CR(ξk5ξ̃

∗
k2) CR(ξk5ξ̃

∗
k3) CR(ξk5ξ̃

∗
k4) CR(ξk5ξ̃

∗
k5)

⎤
⎥⎥⎥⎥⎦ .

For 1 ≤ i, j ≤ 2, we have

CR(ξkiξ̃∗kj) = δ−1
b CR(η(k−1)iη̃

∗
(k−1)j) ∀k ≥ 7.

For 1 ≤ i ≤ 5, 3 ≤ j ≤ 5, we have

CR(ξkiξ̃∗kj) = δ−1
b CR(η(k−1)iη̃

∗
(k−1)j) ∀k ≥ 7.

For 3 ≤ i ≤ 5, j = 2, we have

CR(ξkiξ̃∗kj) = δ−1
b CR(η(k−2)iη̃

∗
(k−2)j) ∀k ≥ 7.

For 3 ≤ i ≤ 5, j = 1, we have

CR(ξkiξ̃∗kj) = δ−1
b CR(η(k−3)iη̃

∗
(k−3)j) ∀k ≥ 8.

Based on the results listed in Appendix A, we have

CR(ξ73ξ̃∗71) = δ−9
b ; CR(ξ74ξ̃∗71) = 0; CR(ξ75ξ̃∗71) = δ−7.5

b .

For example,

CR(ξ73ξ̃∗71) = CR([a13a2n+1a2n−1a2n+1a2n−1a2n+3a7a13]c)

= δ−1.5
b CR([a7a2n+1a2n−1a2n+1a2n−1a2n+3]c)

= δ−9
b .
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The others are similar. Then

Tk =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ−6
b δ−7.5

b 0 0 δ−6.5
b

δ−7.5
b −δ−10

b δ−10.5
b 0 0

δ−9
b −δ−11.5

b −δ−13
b 0 0

0 0 0 δ−8
b 0

δ−7.5
b δ−9

b 0 0 −δ−9
b

⎤
⎥⎥⎥⎥⎥⎥⎦ , when k = 5l + 7;

Tk =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ−6
b δ−7.5

b δ−9
b δ−7.5

b 0
δ−7.5
b −δ−10

b −δ−11.5
b δ−9

b 0
0 δ−10.5

b −δ−13
b 0 0

δ−6.5
b 0 0 −δ−9

b 0
0 0 0 0 δ−8

b

⎤
⎥⎥⎥⎥⎥⎥⎦ , when k = 5l + 8;

Tk =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ−6
b δ−7.5

b −δ−10
b δ−7.5

b δ−7.5
b

δ−7.5
b −δ−10

b δ−12.5
b −δ−10

b δ−9
b

0 −δ−11.5
b δ−14

b δ10.5
b 0

0 δ−9
b δ10.5

b 0 0
δ−6.5
b 0 0 0 −δ−9

b

⎤
⎥⎥⎥⎥⎥⎥⎦ , when k = 5l + 9;

Tk =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ−6
b δ−7.5

b δ−9
b 0 δ−7.5

b

δ−7.5
b −δ−10

b δ−12.5
b δ−9

b −δ−10
b

δ−9
b δ−12.5

b −δ−15
b −δ−11.5

b −δ−11.5
b

δ−7.5
b −δ−10

b −δ−11.5
b 0 δ−9

b

0 δ−9
b −δ−11.5

b δ−9
b 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , when k = 5l + 10;

Tk =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ−6
b δ−7.5

b 0 δ−6.5
b 0

δ−7.5
b −δ−10

b −δ−11.5
b 0 δ−9

b

−δ−10
b δ−12.5

b δ−14
b 0 δ−10.5

b

δ−7.5
b δ−9

b 0 −δ−9
b 0

δ−7.5
b −δ−10

b δ10.5
b 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , when k = 5l + 11.

Take ξk to be [a2k−1a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1a2n+2k−13〉c, then

⎡
⎢⎢⎢⎢⎢⎢⎣

CR(ξk1ξ
∗
k)

CR(ξk2ξ
∗
k)

CR(ξk3ξ
∗
k)

CR(ξk4ξ
∗
k)

C (ξ ξ∗)

⎤
⎥⎥⎥⎥⎥⎥⎦ = δ2

bTk

⎡
⎢⎢⎢⎢⎢⎢⎣

δ2
bCR(ξ̃k1ξ

∗
k)

δ6
bCR(ξ̃k2ξ

∗
k)

δ10
b CR(ξ̃k3ξ

∗
k)

δ6
bCR(ξ̃k4ξ

∗
k)

δ6C (ξ̃ ξ∗)

⎤
⎥⎥⎥⎥⎥⎥⎦ , ∀k ≥ 7.
R k5 k b R k5 k



362 Z. Liu / Advances in Mathematics 279 (2015) 307–371
Furthermore

CR(ξ̃k1ξ
∗
k) = CR(ξ(k−3)1ξ

∗
k−3), when k ≥ 10;

CR(ξ̃k2ξ
∗
k) = CR(ξ(k−2)2ξ

∗
k−2), when k ≥ 9;

CR(ξ̃k3ξ
∗
k) = CR(ξ(k−1)3ξ

∗
k−1), when k ≥ 8;

CR(ξ̃k4ξ
∗
k) = CR(ξ(k−1)4ξ

∗
k−1), when k ≥ 8;

CR(ξ̃k5ξ
∗
k) = CR(ξ(k−1)5ξ

∗
k−1), when k ≥ 8.

So we can compute it inductively. By Lemma (4.40)(4.41) and a direct computation, the 
initial condition is⎡

⎢⎢⎢⎢⎢⎢⎣

CR(ξ̃71ξ∗7) CR(ξ̃81ξ∗8) CR(ξ̃91ξ∗9)
CR(ξ̃72ξ∗7) CR(ξ̃82ξ∗8)

CR(ξ̃73ξ∗7)
CR(ξ̃74ξ∗7)
CR(ξ̃75ξ∗7)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ−12.5
b 0 −δ−12.5

b

δ−14
b δ−13

b

δ−14.5
b

−δ−14
b

−δ−14
b

⎤
⎥⎥⎥⎥⎥⎥⎦ .

For example,

CR(ξ̃91ξ∗9)

= CR([a17a11a2n+5a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a17]c)

= δ−0.5
b CR([a11a2n+5a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a11]c)

= δ−0.5
b (δ2

bCR([a11a2n+5a5a11]c)CR([a11a5a2n+1a2n−1a2n+1a2n−1a2n+1a11]c)

+ δ6
bCR([a11a2n+5a2n−3a2n+1a9a11]c)

× CR([a11a9a2n+1a2n−3a2n+1a2n−1a2n+1a2n−1a2n+1a11]c)

− δbδ
4
bCR([a11a2n+5a2n−1a2n+1a7a11]c)

× CR([a11a7a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a11]c)

− δbδ
4
bCR([a11a2n+5a2n−1a2n+3a9a11]c)

× CR([a11a9a2n+3a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a11]c)

− δbδ
8
bCR([a11a2n+5a2n−1a2n+1a2n−1a2n+1a9a11]c)

× CR([a11a9a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a11]c))

= δ−0.5
b (δ2

b δ
−2.5
b δ−3

b δ−1.5
b (−δ−8

b ) + δ6
b δ

−0.5
b CR(η51η

∗
55)δ−0.5

b CR(η55η
∗
53)

− δbδ
4
b δ

−1.5
b δ−7.5

b δ−1
b δ−11

b − δbδ
4
b δ

−0.5
b CR(η51η

∗
54)δ−0.5

b CR(η54η
∗
53)

− δbδ
8
b δ

−0.5
b CR(η51η

∗
53)δ−0.5

b CR(η53η
∗
53))
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= δ−0.5
b (δ2

b δ
−2.5
b δ−3

b δ−1.5
b (−δ−8

b ) + 0 − δbδ
4
b δ

−1.5
b δ−5.5

b δ−1
b δ−11

b + 0 + 0)

= −δ−12.5
b .

The others are similar.
Then we have

k = 7 8 9 10 11 12 13

CR(ξk1ξ∗k) 0 −δ−13.5
b δ−12.5

b −δ−12.5
b −δ−12.5

b δ−12.5
b −δ−13.5

b

CR(ξk2ξ∗k) δ−13
b −δ−15

b δ−16
b δ−12

b δ−15
b 0 δ−16

b

CR(ξk3ξ∗k) −δ−15.5
b δ−14.5

b δ−17.5
b −δ−16.5

b δ−16.5
b −δ−15.5

b δ−15.5
b

CR(ξk4ξ∗k) −δ−14
b δ−15

b δ−12
b −δ−14

b δ−15
b δ−15

b −δ−14
b

CR(ξk5ξ∗k) δ−13
b δ−13

b −δ−13
b δ−14

b −δ−14
b δ−12

b δ−12
b

14 15 16 17 18 19 20 21

0 −δ−12.5
b 0 δ−12.5

b −δ−11.5
b 0 0 0

δ−13
b + δ−16

b δ−13
b −δ−14

b δ−14
b δ−13

b + δ−16
b δ−14

b 0 0
−δ−18.5

b δ−15.5
b δ−14.5

b −δ−14.5
b δ−17.5

b −δ−15.5
b − δ−18.5

b δ−15.5
b δ−13.5

b

δ−14
b −δ−14

b δ−13
b δ−13

b −δ−13
b δ−14

b 0 0
−δ−13

b − δ−15
b δ−14

b 0 δ−14
b δ−14

b −δ−15
b δ−12

b 0

22 23 24 25 26 27 28 29

0 −δ−11.5
b δ−12.5

b 0 −δ−12.5
b 0 −δ−13.5

b δ−12.5
b

δ−12
b δ−14

b −δ−15
b δ−14

b δ−13
b δ−13

b −δ−15
b δ−16

b

−δ−14.5
b δ−15.5

b −δ−16.5
b −δ−16.5

b δ−14.5
b −δ−15.5

b δ−14.5
b δ−17.5

b

0 0 δ−12
b 0 −δ−14

b −δ−14
b δ−15

b δ−12
b

0 0 0 δ−12
b −δ−14

b δ−13
b δ−13

b −δ−13
b

Note that the periodicity is 20. So

CR(a2n−1a4n−7a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1)

= CR(ξn1ξ
∗
n)

=

⎧⎪⎪⎨
⎪⎪⎩

−δ−13.5
b when n = 20l + 8;

−δ−13.5
b when n = 20l + 13;

−δ−11.5
b when n = 20l + 18;

−δ−11.5
b when n = 20l + 23.

�

Theorem 4.43. When n ≥ 4, the nth Bisch–Haagerup fish graph is not the principal graph 
of a subfactor.

Proof. By Lemma 4.32, to compute the coefficients CR of loops in A+
k G2n,+A

+
k , we can 

fix the initial condition as μ1 = μ2 = ω = 1.
When n = 4, from Appendix A, we have CR([a5a9a5a9a5]c) = δ−5

b and
CR([a7a11a7a11a7]c) = 0. Recall that the coefficient of loops in R can be computed 
inductively from the initial condition μ1 = μ2 = ω = 1. By the symmetry of the dual 
principal graph and the symmetry of the initial condition μ1 = μ2 = ω = 1, we can 
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substitute 2k − 1 by 4n − 2k + 1, see Remark 4.29. Then CR([a9a5a9a5a9]c) = 0. By 
Lemma 4.32, these coefficients are independent of the parameters μ1, μ2, ω. If Rμ1μ2ω is 
a solution of Proposition 4.9, then

λ′(a5)
λ′(a9)

CR([a5a9a5a9a5]c) = ω2CR([a9a5a9a5a9]c).

So

|δ−1
b CR([a5a9a5a9a5]c)| = |CR([a9a5a9a5a9]c)|.

It is a contradiction. That means the 4th Bisch–Haagerup fish graph is not the principal 
graph of a subfactor.

When n ≥ 5, by Lemma 4.39, we have

CR([a5a2n+1a2n−1a2n+1a2n−1a2n+1a5]c) = −δ−8
b .

By the symmetries of the dual principal graph and the initial condition, we have

CR([a4n−5a2n−1a2n+1a2n−1a2n+1a2n−1a4n−5]c) = −δ−8
b .

If Rμ1μ2ω is a solution of Proposition 4.9, then by Lemma 4.32, we have

|CR([a2n−1a4n−5a2n−1a2n+1a2n−1a2n+1a2n−1]c)|
= |δ−1

b CR([a4n−5a2n−1a2n+1a2n−1a2n+1a2n−1a4n−5]c)|
= δ−9

b .

On the other hand, by Lemma 4.41, we have

|CR(ηn1η
∗
n3)| = |CR([a2n−1a4n−5a2n−1a2n+1a2n−1a2n+1a2n−1]c)| = δ−9

b

which implies 5|n − 3.
When n ≥ 8 and 5|n − 3, from Appendix A, we have

CR([a7a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a7]c) = δ−11
b .

By the symmetries of the dual principal graph and the initial condition μ1 = μ2 = ω = 1, 
we have

CR([a4n−7a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1a4n−7]c) = δ−11
b .

So

|CR([a2n−1a4n−7a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1]c)| = δ−12.5
b .
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On the other hand, by Lemma 4.42, we have

|CR([a2n−1a4n−7a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1]c)| = δ−11.5
b or δ−13.5

b .

It is a contradiction.
Therefore the nth Bisch–Haagerup fish graph is not the principal graph of a subfactor 

whenever n ≥ 4. �
4.4. Uniqueness

Theorem 4.44. There is only one subfactor planar algebra whose principal graph is the 
nth Bisch–Haagerup fish graph, for n = 1, 2, 3.

It is easy to generalize the Jellyfish technic [2] for Fuss–Catalan tangles, or tangles 
labelled by the biprojection. We are going to check the Fuss–Catalan Jellyfish relations for 
the generators S and R. Before that let us prove two lemmas which tell the Fuss–Catalan 
Jellyfish relations.

Lemma 4.45. If R is a solution of Proposition 4.9 in a subfactor planar algebra with a 
biprojection, then

P = δ2Pe2nP,

where P = δ−1
b g2n −R.

Proof. Note that P = δ−1
b g2n −R is a projection. It is easy to check that δ2Pe2nP is a 

subprojection of P . Moreover they have the same trace. So P = δ2Pe2nP . �
Remark 4.46. This is Wenzl’s formula [39,23] for the minimal projection P .

Lemma 4.47. If S is a solution of Proposition 4.6 in a subfactor planar algebra with a 
biprojection, then

Q = δδaQp2nQ,

where Q = 1
2 (f2n + S).

Proof. Note that Q = 1
2 (f2n + S) is a projection. It is easy to check that δδaQp2nQ is a 

subprojection of Q. Moreover they have the same trace. So Q = δδaQp2nQ. �
Proof of Theorem 4.44. We have known three examples whose principal graphs are the 
first three Bisch–Haagerup fish graphs. We only need to prove the uniqueness.
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For n = 1, 2, 3, suppose Rμ1μ2ω is a solution of Proposition 4.9. Note that the loop

[a2n−1a2n+1 · · · a2n−1a2n+1︸ ︷︷ ︸
n

]c

is rotation invariant. Moreover its coefficient in R is non-zero. So ω = 1.
If (S, R, ω0) is a solution of Proposition (4.6)(4.9), then (−S, R, −ω0) is also a solution. 

Up to this isomorphism, we can assume ω0 = 1.
Suppose B is a subfactor planar algebra whose principal graph is the nth Bisch–

Haagerup fish graph, and its generators R, S satisfy Proposition (4.6)(4.9), such that 
ω0 = 1. Let us consider the linear subspaces V± of B2n+1,± generated by annular Fuss–
Catalan tangles acting on R. We claim that the space V± satisfies Fuss–Catalan Jellyfish 
relations. Therefore the subfactor planar algebra is unique.

Obviously V± is * closed and rotation invariant. The multiplication on V± is implied 
by Lemma 4.45. Now let us check the Fuss–Catalan Jellyfish relations.

When we add one string in an unshaded region, for example, we add one string on 
the right of R̃, where R̃ ∈ V− is the diagram adding one string on the right of R. Then 
by Lemma 4.45, we have δ−1

b g2n−R ∈ I2n+2,−, where I2n+2,− is the two sided ideal of 
B2n,− generated by the Jones projection. That implies the Jellyfish relation of R̃ while 
adding one string on the right. Other Jellyfish relations are similar.

When we add one string in a shaded region, for example, we add one string on the 
right of S̃, where S̃ ∈ V+ is the diagram adding one string on the right of S. Then by 
Lemma 4.47, and the fact that p2n ∈ I2n+2,+, where I2n+2,+ is the two sided ideal of 
B2n,+ generated by the Jones projection, we have 1

2(f2n + S) ∈ I2n+2,+. That implies 
the Jellyfish relation of S̃ while adding one string on the right. Other Jellyfish relations 
are similar. �

It is easy to check that the possible solution (R, S), for μ1 = μ2 = ±1, ω0 = 1, in the 
graph planar algebra does satisfy Proposition (4.6)(4.9). The skein theoretic construction 
of the three subfactor planar algebras corresponding to the first three Bisch–Haagerup 
fish graphs could be realised by the Fuss–Catalan Jellyfish relations of the generating 
vector space V± mentioned above. We leave the details to the reader.

5. Composed inclusions of two A4 subfactors

In this section, we will consider composed inclusions N ⊂ P ⊂ M of two A4 subfac-
tors. Let id be the trivial (P, P) bimodule, and ρ1, ρ2 be the non-trivial (P, P) bimodules 
arise from N ⊂ P, P ⊂ M respectively. Then ρ2

i = ρi ⊕ id, for i = 1, 2. If it is a free 
composed inclusion, i.e., there is no relation between ρ1 and ρ2, then its planar algebra 
is FC (δb, δb); Otherwise take w to be a shortest word of ρ1, ρ2 which contains id. If 
w = (ρ1ρ2)nρ1, and n is even, then by Frobenius reciprocity, we have

dim(hom((ρ1ρ2)
n
2 ρ1, (ρ1ρ2)

n
2 )) = c ≥ 1.
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So

dim(hom((ρ1ρ2)
n
2 ρ2

1, (ρ1ρ2)
n
2 )) = dim(hom((ρ1ρ2)

n
2 ρ1, (ρ1ρ2)

n
2 ρ1)) ≥ c + 1.

Note that ρ2
1 = ρ ⊕ id, we have

dim(hom((ρ1ρ2)
n
2 , (ρ1ρ2)

n
2 )) ≥ 1.

So (ρ1ρ2)n contains id, which contradicts to the assumption that w is shortest. It is 
similar for the other cases. Without loss of generality, we have w = (ρ1ρ2)n, for some 
n ≥ 1.

Considering the planar algebra B of N ⊂ M as an annular Fuss–Catalan module, 
then it contains a lowest weight vector T ∈ Bn,+ which induces a morphism from (ρ1ρ2)n
to id. So T is totally uncappable.

Remark 5.1. There is another proof without using bimodules. The lowest weight vector 
T ∈ Bn,+ is totally uncappable, for n ≥ 2, see [24]. For the case n = 1, to show it 
is totally uncappable, we need the fact that the biprojection cutdown induces a planar
algebra isomorphism [7].

Definition 5.2. Let us define Ωn, for n ≥ 1, to be the (N , P, M) coloured graph with 
parameter (δb, δb) as

,

where the black vertices are N , M coloured, and the white vertices are P coloured, and 
the number of white vertices is 2n.

Lemma 5.3. Suppose B is a composition of two A4 Temperley–Lieb planar algebras. Then 
either B is Fuss–Catalan, or its refined principal graph is Ωn, for some n ≥ 1.

Proof. If B is not Fuss–Catalan, then it contains a lowest weight vector T ∈ Bn,+ which 
is totally uncappable, for some n ≥ 1. So the refined principal graph of B is the same 
as that of FC (δb, δb), until the vertex corresponding to fn splits, where fn the minimal 
projection of FC (δb, δb)n,+ with middle pattern abba · · · abba(ab).

By the embedding theorem, T is embedded in the graph planar algebra. Similar to the 
proof of Lemma 4.28, the loop passing the vertex, corresponding to the middle pattern 
aaa, has non-zero coefficient in S. Similar to the proof of Lemma 4.24, it has to be a 
length 2n flat loop, a loop whose vertices are all flat. Via computing the trace, there is 
a unique way to complete the refined principal graph as
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. �

For n = 1, 2, 3, it is easy to check that Ωn is the refined principal graph of the reduced 
subfactor from the vertex a3, corresponding to the middle pattern baab, in the (refined) 
dual principal graph of the nth fish factor.

Comparing this refine principal graph with the one obtained in Lemma 4.10, they 
share the same black and white vertice and the same dimension vector on these vertices. 
Similar to Proposition 4.9, we have the following result.

Proposition 5.4. Suppose B is a planar algebra as a composition of two A4 planar alge-
bras, and it is not Fuss–Catalan. Then there is a lowest weight vector T ∈ Bn,+, such 
that

(1) T∗ = T ;
(2) T + δ−2

b fn is a projection;
(3) T is totally uncappable;
(4) ρ(T ) = ωT ,

where fn is the minimal projection of FC (δb, δb)n,+ with middle pattern abba · · · abba(ab).

Note that the dual of B is still a composition of two A4 planar algebras. So the refined 
dual principal graph is the same as Ωn. Then there is a lowest weight vector T ′ ∈ Bn,−
satisfying similar propositions. Solving this generators T , T ′ in the graph planar algebra 
is the same as solving R for the compositions of A3 with A4, while the rotation is replaced 
by the Fourier transform. Therefore we have the following result.

Theorem 5.5. There are exactly four subfactor planar algebras as a composition of two 
A4 planar algebras.

Proof. Suppose B is a planar algebra as a composition of two A4 planar algebras. If B
is not Fuss–Catalan, then there is a lowest weight vector T ∈ Bn,+ satisfying proposition 
(1)(2)(3)(4), and T ′ ∈ Bn,+ satisfying similar propositions. Comparing with the process 
of solving R in the graph planar algebra for the composition of A3 and A4, we have 
the Ωn, for n ≥ 4, is not the refined principal graph of a subfactor.

For n = 1, 2, 3, three examples are known as reduced subfactors. We only need to 
prove the uniqueness. Similar to the proof of Theorem 4.44, by comparing the coefficient 
of the rotation invariant loop, we have T = F(T ′) = ρ(T ). So ω = 1. Furthermore the 
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linear subspaces V± of Bn+1,± generated by annular Fuss–Catalan tangles acting on T
satisfy Fuss–Catalan Jellyfish relations, which are derived from Wenzl’s formula similar 
to Lemma 4.47 and Theorem 4.44. Therefore the subfactor planar algebra is unique. �

Similarly we can construct the generators (T, T ′) in the graph planar algebra. The 
skein theoretic construction of the three subfactor planar algebras could be realised by 
the Fuss–Catalan Jellyfish relations of the generating vector space V±.
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Appendix A. The initial conditions

Up to the rotation, we only need CR(l) for a loop l ∈ A+
k G2n,+A

+
k . Now we list of 

results up to adjoint for 1 ≤ k ≤ 4. They are obtained by a direct computation by 
Lemma (4.34)(4.36).

When n ≥ 1,

CR([a1a2n+1]c) = δ−3
b .

When n ≥ 2,

CR([a3a2n+3]c) = δ−3
b ;

CR([a3a2n+1a2n−1a2n+1]c) = δ−5
b .

When n ≥ 3,

CR([a5a2n+5]c) = δ−3
b ;

CR([a5a2n+1a2n−3a2n+1]c) = δ−5
b ;

CR([a5a2n+1a2n−1a2n+1a2n−1a2n+1]c) = −δ−8
b ;

CR([a5a2n+1a2n−1a2n+3]c) = δ−5.5
b .

When n ≥ 4,

CR([a7a2n+7]c) = δ−3
b ;

CR([a7a2n+1a2n−5a2n+1]c) = δ−5
b ;

CR([a7a2n+3a2n−1a2n+3]c) = 0;
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CR([a7a2n+3a2n−1a2n+1a2n−1a2n+1]c) = δ−7.5
b ;

CR([a7a2n+1a2n−1a2n+1a2n−1a2n+1a2n−1a2n+1]c) = δ−11
b ;

CR([a7a2n+1a2n−3a2n+1a2n−1a2n+1]c) = −δ−8.5
b ;

CR([a7a2n+1a2n−3a2n+3]c) = δ−6
b ;

CR([a7a2n+5a2n−1a2n+1]c) = δ−5.5
b ;

CR([a7a2n+1a2n−1a2n+3a2n−1a2n+1]c) = −δ−8
b .
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