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1. Introduction

Subfactor theory provides an entry point into a world of mathematics and physics 
containing large parts of conformal field theory, quantum algebras and low dimensional 
topology, see [9]) and references therein. In [10] V. Jones has devised a renormalization 
program based on planar algebras as an attempt to show that all finite depth subfactors 
are related to CFT, i.e., the double of a finite depth subfactor should be related to CFT.

More generally, the program is the following: given a unitary modular tensor category 
(MTC) C [22,30], can we construct a (complete rational) conformal net whose repre-
sentation category is isomorphic to C ? We shall call such a program “reconstruction 
program”, analogue to a similar program in higher dimensions by Doplicher-Roberts [1].

Given a rational conformal net A, and let I be a union of m ≥ 1 disconnected inter-
vals. The Jones-Wassermann subfactor is the subfactor A(I) ⊂ A(I ′)′ [13,21,31,32]. This 
subfactor is related to permutation orbifold and a simple application of orbifold theory 
shows that the Jones-Wassermann subfactor is self-dual, see Remark 6.19.

If the reconstruction program works, then for any MTC C we can find a rational 
conformal net A such that the category of representations of A is isomorphic to C , it 
will follow that there are self-dual Jones-Wassermann subfactors for each integer m > 1. 
Hence a positive solution to reconstruction program would imply that we can construct 
self-dual Jones-Wassermann subfactors for each integer m > 1 associated with any uni-
tary MTC C . This is the motivation for our paper.

Our main result gives a construction of self-dual Jones-Wassermann subfactors for 
each integer m > 1 associated with any unitary MTC C . The main difficulty is the 
proof of the self-duality for Jones-Wassermann subfactors for MTC. Furthermore, we 
prove that the Jones-Wassermann subfactors are symmetrically self-dual. The proof of 
the self-duality and symmetrical self-duality essentially requires the modularity of C , so 
we call it the modular self-duality. We believe that our construction will shed new light 
on the reconstruction program.

We construct the “m-interval” Jones-Wassermann subfactor associated with a unitary 
MTC C by a Frobenius algebra γm in Cm, the mth tensor power of C . The notion of 
intervals is natural in conformal nets, and it is important to understand the locality. 
However, there is no notion of intervals in modular tensor categories. This is a major 
problem in the reconstruction program.

We give an explicit formula for the object and the morphism of the Frobenius algebra 
γm. When m = 2, the Jones-Wassermann subfactor defines the quantum double of C
[2,21,25–27]. For people who are interested in the algebraic aspects, the unitary condition 
is not necessary for our construction. The unitary condition is important for analysis and 
the reconstruction program.

The bimodule category of a subfactor is described by a subfactor planar algebra [11]. 
The n-box space of the planar algebra of the m-interval Jones-Wassermann subfactor for 
C is given by the vector space homCm(1, γn

m). It turns out to be natural to represent these 
vectors by a 3D picture. This representation identifies homCm(1, γn

m) as a configuration 
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space Confn,m on a 2D n ×m lattice. Therefore the configuration space {Confn,m}m,n∈N
unifies the Jones-Wassermann subfactors for all m ≥ 1. It is a natural candidate for the 
configuration space of a 2D lattice model that can be used in the reconstruction program.

Moreover, we show that planar tangles can act on {Confn,m}m,n∈N in two different 
directions independently. In one direction m is fixed. These actions are the usual ones in 
the planar algebra of the m-interval Jones-Wassermann subfactor. In the other direction, 
n is fixed. These actions relate the Jones-Wassermann subfactor with different intervals 
which have not been studied before.

The bi-directional actions of planar tangles are compatible with the geometric actions 
on the 2D lattices. We call such family of vector spaces a bi-planar algebra. It is a new 
subject in subfactor theory and it adds one additional dimension to the theory of planar 
algebras.

This 3D representation also leads to the discovery of a new m-n duality by identifying 
the configuration spaces {Confn,m}m,n∈N and {Confm,n}m,n∈N , while the meaning of 
the actions of planar tangles in the two directions are completely different. It will be 
interesting to understand these additional symmetries in conformal field theory.

When C is the representation category of a finite abelian group G, the configuration 
space Conf(C )2,2 becomes L2(G). Moreover, the modular self-duality coincides with 
the self-duality of G. The proof of the self-duality of G requires the discrete Fourier 
transform on G. For general MTCs, we construct the string Fourier transform (SFT) on 
the configuration space homCm(1, γn

m) to prove the modular self-duality. From this point 
of view, the modular self-duality and the SFT generalize and categorify the self-duality 
and the Fourier transform of finite abelian groups.

Furthermore, we prove that the m-interval Jones-Wassermann subfactor of a unitary 
MTC C is symmetrically self-dual, namely their planar algebras are unshaded in Theo-
rems 6.18 and 6.20. The projection category of the even part of a subfactor planar algebra 
is a unitary fusion category [4,24]. The projection category of an unshaded planar alge-
bra is a Z2-graded unitary fusion category, whose generating odd object is symmetrically 
self-dual [17,23]. From the unshaded planar algebra of the m-interval Jones-Wassermann 
subfactors of C , we obtain a Z2-graded extension of the full subcategory of Cm generated 
by the Frobenius algebra γm, such that γm = τ ⊗ τ and τ is a symmetrically self-dual 
odd object. The object τ appeared as a twisted sector in orbifold theory of conformal 
nets, see Remark 6.19 and [12]. When the Grothendieck ring of C is a finite cyclic group, 
we obtain the Tambara-Yamagami category [29] from the unshaded planar algebra of 
the two-interval Jones-Wasserman subfactor of C , and τ is the only odd simple object. 
In general, for any unitary MTC C and any interval m, m ≥ 1, we obtain a Z2-graded 
unitary fusion category [4], which generalizes Tambara-Yamagami categories.

The modular transformation S was studied in the early work of ’t Hooft in rational 
conformal field theory as a Hopf link, a union of a Wilson loop and a Dirac string [6]. 
This has been formalized in the framework of conformal nets by Rehren in [28]. In the 
general theory of MTCs, we prove that the modular transformation S for the MTC C is 
identical to the SFT on the vector space homC 2(1, γ2

2) in our construction. This provides 



4 Z. Liu, F. Xu / Advances in Mathematics 355 (2019) 106775
a different point of view to understand the S matrix of MTCs as a special case of the 
SFT. The unshaded condition of the planar algebra is necessary to define the SFT as a 
matrix on homC 2(1, γ2

2). The SFT is always a unitary, so the modularity of the MTC, 
namely the S matrix is a unitary [30], is crucial in this identification.

The recent progress about the Fourier analysis of the SFT on subfactors in [8,15,19]
leads to many interesting inequalities for the S matrix. These unshaded planar algebras 
have been used in the quon 3D language for quantum information [18], where the vector 
space homC 2(1, γ2

2) is considered as the 1-quon space. This new interpretation leads to 
many interesting algebraic identities for the S matrix in a MTC as the Fourier duality 
of quons [16]. A combination of these works leads to further applications in the study of 
MTC.

Acknowledgment. Zhengwei Liu was supported by Templeton Religion Trust under the 
grant TRT 159 and by an AMS-Simons Travel Grant. Feng Xu was supported by NSF 
under the grant DMS-1764157 and an academic senate grant from UCR. The authors 
would like to thank Vaughan F. R. Jones for stimulating discussions about his renormal-
ization program.

2. Configuration spaces

2.1. Modular tensor categories

We refer the readers to [30] for basic definitions about modular tensor categories 
(MTC). All categories in this paper are strict. Suppose C is a unitary MTC. Let Irr
be the set of (representatives of) simple objects of C and the unit is denoted by 1. 
Take X̃ =

⊕
X∈Irr(C )

X. For an object X, its dual object is denoted by X. Its quantum 

dimension is d(X). Let μ =
∑

X∈Irr

d(X)2 be the global dimension of C .

The modular conjugation JC on C is a horizontal reflection. We have that JC (X) = X. 
Moreover, for objects X, Y , Z in C , JC : homC (X ⊗ Y, Z) → homC (Y ⊗ X, Z) is an 
anti-linear algebroid isomorphism. The adjoint operator ∗ on C is a vertical reflection. 
We have that X∗ = X. Moreover, ∗ : homC (X ⊗ Y, Z) → homC (Z, X ⊗ Y ) is an anti-
linear algebroid anti-isomorphism. The contragredient map ρπ on C is a rotation by π. 
We have that ρπ(X) = X. Moreover, ρπ : homC (X ⊗ Y, Z) → homC (Z, Y ⊗ X) is a 
linear algebroid anti-isomorphism. Furthermore

JC = ρπ ◦ ∗. (1)

For objects X, Y in C , the inner product of α, β ∈ homC (X, Y ) is defined as
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〈β, α〉 =
α
β∗ ,

which is an element in homC (1, 1) ∼= C.
We can identify the morphism spaces homC (Z, X ⊗ Y ) and homC (1, X ⊗ Y ⊗ Z)

as follows: For a morphism α ∈ homC (1, X ⊗ Y ⊗ Z), we obtain a morphism α̃ =
(1X ⊗ 1Y ⊗ φZ⊗Z)(α ⊗ 1Z) in homC (Z, X ⊗ Y ), where φZ⊗Z ∈ homC (1, Z ⊗ Z) is the 
duality map.

Notation 2.1 (Frobenius reciprocity). Diagrammatically we represent α̃ as

α̃
:=

α

Notation 2.2. For an object X in C , we denote an ortho-normal-basis of homC (1, X) by 
ONBC (X), or ONB(X) for short. We denote an ortho-normal-basis of homC (X, 1) by 
ONB∗

C (X), or ONB∗(X) for short.

For two objects X and Y , we have the resolution of the identity:

1X ⊗ 1Y = =
∑

Z∈Irr,α∈ONB(X⊗Y⊗Z)

d(Z) α∗

α
(2)

Lemma 2.3. Suppose Y and Z are objects in C and X ∈ Irr. Let ONB(Y, X), 
ONB(X, Z) be ONB of homC (Y, X) and homC (X, Z). Then

{
√
d(X)βα : X ∈ Irr, α ∈ ONB(Y,X), β ∈ ONB(X,Z)}

is an ONB of homC (Y, Z).

Proof. For αi ∈ ONB(Y, X), βi ∈ ONB(X, Z), i = 1, 2,

d(X)〈β1α1, β2α2〉 =d(X)
α2
β2
β∗

1
α∗

1

= 〈β1, β2〉
α2

α∗
1

= 〈β1, β2〉〈α1, α2〉.

On the other hand,∑
X∈Irr

dim homC (Y,X) dim homC (X,Z) = dim homC (Y,Z).

Therefore, the statement holds. �



6 Z. Liu, F. Xu / Advances in Mathematics 355 (2019) 106775
Fig. 1. Grid(n,m) for n = 4, m = 3.

2.2. Configuration spaces

Now let us define the configuration space on a finite 2D-lattice with the target space 
C . Each configuration has three parts: Z-, X-, Y - configurations.

We use Grid(n, m) to represent the grid Zn ×Zm ×{±1}. We allocate the vertices of 
the grid at (i, j, ±1), 1 ≤ i ≤ n and 0 ≤ j ≤ m − 1 in the 3D space which are indicated 
by the bullets in Fig. 1. To simplify the notations, we draw pictures for n = 4, m = 3. 
The reader can figure out the general case.

For the lattice Lat = Zn×Zm, a Z-configuration is a map from the sites of the lattice 
to simple objects in C . We denote the simple object at the site (i, j) as Xi,j . We denote 
this Z-configuration by X�i,�j and represent it in the 3D space by assigning the object 
Xi,j to the line from (i, j, 1) to (i, j, −1) as in Fig. 2:

Fig. 2. Z-Configuration.

We denote X�i,j = X1,j ⊗ · · · ⊗Xn,j and Xi,�j = Xi,0 ⊗ · · · ⊗Xi,m−1. Moreover,

d(X�i,�j) :=
∏

1≤i≤n,0≤j≤m−1
d(Xi,j),

d(X�i,j) :=
∏

d(Xi,j),

1≤i≤n



Z. Liu, F. Xu / Advances in Mathematics 355 (2019) 106775 7
Fig. 3. X- and Y -Configurations.

d(Xi,�j) :=
∏

0≤j≤m−1
d(Xi,j).

An X-configuration with boundary X�i,j is a morphism aj in homC (1, X�i,j). We denote 
the boundary by X(aj) := X�i,j . A Y -configuration with boundary Xi,�j is a morphism 
bi in homC (Xi,�j , 1). We denote the boundary by X(bi) := Xi,�j . We represent them in 
the 3D space in Fig. 3. Moreover, we call a�j = a0 ⊗ · · · ⊗ am an X-configuration with 
boundary X�i,�j and b�i = b1 ⊗ · · · ⊗ bn a Y -configuration with boundary X�i,�j . We define 
the X-configuration space with boundary X�i,�j as

ConfX(X�i,�j) :=
m−1⊗
j=0

homC (1, X�i,j) .

We define the Y -configuration space with boundary X�i,�j as

ConfY (X�i,�j) :=
n⊗

i=1
homC (Xi,�j , 1) .

We call a�j ⊗ b�i a configuration with boundary X�i,�j , denoted by X(a�j ⊗ b�i) := X�i,�j . 
We represent it in the 3D space as in Fig. 4: We define the configuration space on the 
n ×m 2D-lattice Lat to be the Hilbert space

Conf(Lat) = Conf(C )m,n : =
⊕

X�i,�j∈Irrnm

ConfX(X�i,�j) ⊗ ConfY (X�i,�j)

=
⊕

X�i,�j∈Irrnm

⎛
⎝m−1⊗

j=0
homC (1, X�i,j) ⊗

n⊗
i=1

homC (Xi,�j , 1)

⎞
⎠ ,

where each hom space is considered as a Hilbert space. We simply use the notation ∑
a� ⊗ b� to represent an element in Conf(Lat).
j i
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Fig. 4. Configurations for n = 4, m = 3: We use the small square (orthogonal to the Z-axis) at the 
coordinate (i, j, 0) to indicate the vertex (i, j) in the lattice Zm ×Zn. Moreover, the boundaries of a�j and 
b�i are separated on opposite sides of the small squares. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

2.3. Duality

When we consider Lat = Zn ×Zm as a lattice on a torus, its dual lattice Lat′ is also 
Zn × Zm and the configuration space on the dual lattice is Conf(C )m,n. We allocate 
the vertices of the corresponding Grid(n, m) at (i + 1/2, j − 1/2, ±1), 1 ≤ i ≤ n and 
0 ≤ j ≤ m − 1 in the 3D space.

We define a bilinear form LL on the configuration spaces of the lattice and the dual 
lattice Conf(Lat) ⊗Conf(Lat′) = Conf(C )m,n⊗Conf(C )m,n. For a�j⊗b�i with boundary 
X�i,�j in Conf(Lat), and a′�j ⊗ b′�i with boundary X ′

�i,�j
in Conf(Lat′), the bilinear form LL

is defined as

LL(a�j ⊗ b�i, a
′
�j
⊗ b′�i) =μ

(1−n)(m−1)
2

√
d(X�i,�j)d(X ′

�i,�j
)

(3)

When m = 0 or n = 0, we define the configuration space as the ground field. We 
define LL as the multiplication of the two scalars.

Theorem 2.4. For any unitary MTC C , the configurations spaces of the lattice and the 
dual lattice are dual to each other. Precisely the map from Conf(Lat) to the dual space 
of Conf(Lat′) induced by LL(−, −) is an isometry.
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We first prove the case for m = n = 2. We prove the general case by a bi-induction 
in §6.

Proof for the case m = n = 2: When m = n = 2, the diagram in Equation (3) becomes 
the Hopf link and LL defines the S matrix of C .

By the modularity of C , namely the S matrix is a unitary [30], the map induced by LL
is an isometry. �
Proposition 2.5. Suppose V is a Hilbert space and {αi} is an ONB. Let V ′ be the dual 
space of V . For f ∈ V ′, a linear functional on V ,

r(f) =
∑
i

f(αi)αi (4)

is independent of the choice of the basis.

Proof. It follows directly from the definition. �
The map r : V ∗ → V is an anti-isometry which is well-known as the Riesz represen-

tation. Therefore we obtain an anti-isometry D : Conf(Lat′) → Conf(Lat) that we call 
the duality map:

Definition 2.6 (duality maps). We define

D+(x) =
∑

x′∈B′

LL(x, x′)x′,

D−(x′) =
∑
x∈B

LL(x, x′)x,

where B is an ONB of Conf(Lat) and B′ is an ONB of Conf(Lat′).

Therefore Theorem 2.4 is equivalent to the following Proposition.

Proposition 2.7. The map D+ is an anti-linear isometry from Conf(Lat) to Conf(Lat′), 
and D− is its inverse.
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Definition 2.8. We use 1n,m to denote the trivial configuration whose Z-, X-, Y -
configurations are all 1. We define

μn,m : = D−(1n,m). (5)

Definition 2.9. We define L as a linear functional on Conf(Lat) as L(x) = LL(x, 1n,m).

Then

L(a�j ⊗ b�i) = μ
(1−n)(m−1)

2

√
d(X�i,�j) ,

(6)

and

μn,m =
∑
α∈B

L(α)α, (7)

where B be is an ONB of Conf(Lat).
In §3, we study the actions of rotations and reflections in X- and Y -directions on the 

lattices and the induced actions the configuration spaces.
In §4, we fix m and study the structure of the configuration space for different n. 

We prove that μ3,m defines a Frobenius algebra and these configuration spaces ad-
mit the action of planar tangles in the X-direction. Thus For each m ≥ 1, {Sn,+ =
Conf(C )m,n}n∈N defines a subfactor planar algebra. This defines the m-interval Jones-
Wassermann subfactor for the unitary MTC C . We prove this result in Theorem 4.13.

In §5, we describe the action of planar tangles on the dual space {Sn,−}.
In §6, we construct a planar algebra *-isomorphism from S·,+ to S·,−. That 

means {Sn,±} defines a self-dual subfactor planar algebra, i.e., the m-interval Jones-
Wassermann subfactor for C is self-dual. We prove this result in Theorem 6.18. Further-
more, we prove that the *-isomorphism commutes with string Fourier transform (SFT). 
That means {Sn = Conf(C )m,n}n∈N defines an unshaded subfactor planar algebra, 
i.e., the m-interval Jones-Wassermann subfactor for C is symmetrically self-dual. (It is 
called symmetrically self-dual, since the SFT is a symmetric matrix [17].) We prove this 
result in Theorem 6.20. Moreover, the duality map is related to the SFT of the unshaded 
planar algebra.
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Remark 2.10. If we fix n, instead of m, then all the results also work. So we also have 
the action of planar tangles on the configuration spaces in the Y -direction. Therefore 
the configuration spaces {Conf(C )m,n}m,n∈N} admit the action of planar tangles in two 
different directions.

3. Actions on configuration spaces

3.1. Automorphisms on the lattice

Note that the lattice Zm × Zn is invariant under the following actions:

• The clockwise 2π/n rotation around the Y -direction ρ1: (i, j) → (i − 1, j).
• The reflection in the X-direction θ1: (i, j) → (n + 1 − i, j).
• The clockwise 2π/m rotation around the X-direction ρ2: (i, j) → (i, j + 1).
• The reflection in the Y -direction θ2 (i, j) → (i, m − 1 − j).

Now let us define the induced action on the configuration space Conf(C )n,m.
For k = 1, 2, the induced actions on the Z-configurations are

ρk(X)i,j = Xρ−1
k (i,j),

θk(X)i,j = JC (Xθ−1
k (i,j)).

For an X-configuration ak, we define

ρ1(aj) = ,

θ1(aj) = JC (aj),

ρ2(aj) = aj ,

θ2(aj) =

= .
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For a Y -configuration bi, we define

ρ1(bi) = bi,

θ1(bi) = = ,

ρ2(bi) = ,

θ2(bi) = JC (bi).

Definition 3.1. For a configuration a�j ⊗ b�i, we define

ρ1(a�j ⊗ b�i) = (ρ1(a0) ⊗ · · · ⊗ ρ1(am−1)) ⊗ (b2 ⊗ · · · ⊗ bn ⊗ b1),

θ1(a�j ⊗ b�i) = (θ1(a0) ⊗ · · · ⊗ θ1(am−1)) ⊗ (θ1(bn) ⊗ · · · ⊗ θ1(b1)),

ρ2(a�j ⊗ b�i) = (am−1 ⊗ a1 ⊗ · · · ⊗ am−2) ⊗ (ρ2(b1) ⊗ · · · ⊗ ρ2(bn)),

θ2(a�j ⊗ b�i) = (θ2(am−1) ⊗ · · · ⊗ θ2(a0)) ⊗ (θ2(b1) ⊗ · · · ⊗ θ2(bn)).

The actions on the configuration space are defined by their linear or anti-linear exten-
sions.

Note that this definition coincide with the geometric actions on the configurations in 
Fig. 4. Therefore, their relations also hold on the configuration space.

Proposition 3.2. On the configuration space, ρ1 and θ1 commute with ρ2 and θ2, and for 
k = 1, 2, ρkθk = θkρ

−1
k , ρmk = 1, θ2

k = 1.
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3.2. Automorphisms on the dual pair of lattices

Similarly, we also define the four actions on the dual lattice Lat′ and the configuration 
space Conf(Lat′).

Proposition 3.3. For x ∈ Conf(Lat) and x′ ∈ Conf(Lat′), we have that

LL(x, x′) = LL(ρk(x), ρk(x′)), k = 1, 2 (8)

LL(x, x′) = LL(θ1(x), ρ1θ1(x′)), (9)

LL(x, x′) = LL(ρ1θ2(x), θ2(x′)). (10)

Proof. It is enough to prove the case x = a�j ⊗ b�i, x′ = a′�j ⊗ b′�i.
Recall that LL is defined by a closed diagram in the 3D space as shown in Equation 

(3). Applying the rotation on the 3D diagram, we obtain Equation (8).
If we consider the 3D diagram as an element in C , then we have that

LL(a�j ⊗ b�i, a
′
�j
⊗ b′�i)

= μ
(1−n)(m−1)

2
√
d(X�i,�j)d(X ′

�i,�j
)

= μ
(1−n)(m−1)

2
√
d(X�i,�j)d(X ′

� �)
i,j
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= LL(θ1(x), ρ1θ1(x′))

The proof of Equation (10) is similar. �
By definitions, ρk, θk, k = 1, 2, preserve 1n,m. Take x′ = 1n,m in Proposition 3.3, we 

obtain that

Proposition 3.4. For any x in Conf(Lat), k = 1, 2,

L(ρk(x)) = L(x),

L(θk(x)) = L(x).

Proposition 3.5. The four actions ρk, θk, k = 1, 2, preserve μn,m.

Proof. The statement follows from Proposition 3.4 and the definition of μn,m in Equation 
(7). �
4. Jones-Wassermann subfactors for MTC

4.1. Identification

Suppose C is a unitary MTC. Take Irrm = { 
X = X0⊗· · ·⊗Xm−1 : Xj ∈ Irr, 1 ≤ j ≤
m −1}. Let C m be the mth Deligne tensor power of C , denoted by Cm := C �C �· · ·�C . 
We can consider 
X as an object 
X� := X0 � · · · � Xm−1 in Cm. Then the set Irrm is 
identical to the set of (representatives of) simple objects of Cm. The objects 
X in C and 


X� in Cm have the same quantum dimension, d( 
X) = d( 
X�) =
m−1∏

d(Xj).

j=0
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Definition 4.1. For a unitary MTC C and m ∈ Z+, we define

N �X = dim homC (X0 ⊗ · · · ⊗Xm−1, 1); (11)

γ = γm =
⊕

�X∈Irrm

N �X

X�. (12)

Proposition 4.2. Recall that μ is the global dimension of C . For m ≥ 1,

d(γ) = μm−1.

Proof. It is obvious for m = 1. When m ≥ 2,

d(γ) =
∑

�X∈Irrm

N �Xd( 
X)

=
∑

�X∈Irrm−1,Y ∈Irr1

dim homC ( 
X, Y )d( 
X)d(Y ) by Frobenius reciprocity

=
∑

�X∈Irrm−1

d( 
X)2

= μm−1. �
Notation 4.3. For a fixed m, we take δ = μ

m−1
2 .

For each 
X, let ONB∗
C ( 
X) be an ONB of homC ( 
X, 1). Then we can use the basis to 

represent the multiplicity of simple objects in γ.

γ =
⊕

�X∈Irrm,b∈ONB∗
C ( �X)


X(b), (13)

where 
X(b) = 
X� = X0 � · · · � Xm−1.
The representation is covariant with respect to the choice of the ONB: For an object 

Y in Cm and a morphism y ∈ homCm(Y, N �X

X�), we take two ONB B(1), B(2) of 

homC ( 
X, 1). Then we obtain two representations

y =
⊕

b1∈B(1)

y(b1), y(b1) ∈ homCm(Y, 
X(b1)),

y =
⊕

b2∈B(2)

y(b2), y(b2) ∈ homCm(Y, 
X(b2)).

The covariance of the representation means that

y(b) =
∑

〈b′, b〉y(b′).

b′
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Note that

homCm(1, γn) =
⊕

X�i,�j∈Irrnm

⊕
bi∈ONB∗

C (Xi,�j),1≤i≤n

homCm(1, X�i,�j(b�i)), (14)

where

homCm(1, X�i,�j(b�i)) = �m−1
j=0 homC (1, X�i,j(b�i)).

We call homCm(1, γn) the n-box space of γ. For any aj ∈ homC (1, X�i,j), 0 ≤ j ≤ m − 1, 
we have a�j(b�i) ∈ homCm(1, X�i,�j(b�i)).

Definition 4.4. We define a map Φ : homCm(1, γn) → Conf(C )n,m as a linear extension 
of

Φ(a�j(b�i)) = a�j ⊗ b�i.

The definition is independent of the choice of the ONB b�i, since the representation is 
covariant. Moreover,

〈a�j(b�i), c�j(d�i)〉 = 〈a�j , c�j〉〈b�i, d�i〉 = 〈a�j ⊗ b�i, c�j ⊗ d�i〉.

So Φ is an isometry. Therefore we can identify the vectors in the two Hilbert spaces 
homCm(1, γn) and Conf(C )n,m. We use the notation 

∑
a�j(b�i) to represent an element 

in homCm(1, γn).

Definition 4.5. Induced by the isometry Φ, the four actions ρk, θk, k = 1, 2, and the 
contractions ∧k, k ≥ 0, are also defined on homCm(1, γn), still denoted by ρk, θk.

Recall that the multiplicity of X−,�j in γ is represented by b in ONB∗(X−,�j). We 
need an anti-isometric involution on ONB∗(X−,�j) to specify the dual of X−,�j(b). To be 
compatible with the geometric interpretation of the configuration in the 3D space, we 
define the dual by θ1 as follows:

Definition 4.6. For an object X−,�j(b), we define its dual object as X−,�j(θ1(b)).

Note that θ2
1(b) = b, thus X−,�j(b) = X−,�j(b). By Frobenius reciprocity, the modular 

conjugation on Cm is given by θ1.
The element in homCm(1, γn) is usually represented by a diagram on the 2D plane. 

To be compatible with the isometry Φ, we simplify the 3D pictures for configurations by 
their projections on the plane Y = 0 as follows:



Z. Liu, F. Xu / Advances in Mathematics 355 (2019) 106775 17
(1) The configuration in Fig. 4 is simplified as its projection on the plane Y = 0,

b1
•

b2
•

b3
•

b4
•

a�j

.

(2) Induced by the isometry Φ, L becomes a linear functional on homCm(1, γn),

L(a�j(b�i)) := L(a�j ⊗ b�i) =δ1−n
√
d(X�i,�j)

b1
•

b2
•

b3
•

b4
•

a�j

,

where we simplify the diagram in Equation (6) by its projection on the plane Y = 0.

4.2. Contractions

The multiplication on Cm defines a map from homCm(γn, γk) ⊗ homCm(γk, γl)
to homCm(γn, γl). Applying Frobenius reciprocity, we obtain a contraction ∧k :
homCm(1, γn+k) ⊗ homCm(1, γk+l) → homCm(1, γn+l). Then ∧k is also defined on the 
configuration spaces induced by Φ. We give the definition in detail here.

Remark 4.7. The notation ∧k comes from the graded multiplication in [5].

Suppose X�i,�j , Y�i,�j , Z�i,�j are Z-configurations of size n × m, � × m, k × m. For X-
configurations aj ∈ homC (1, X�i,j⊗Z�i,j) and cj ∈ homC (1, θ1(Z�i,j) ⊗Y�i,j), 0 ≤ j ≤ m −1, 
we define the k-string contraction, k ≥ 0, as

aj ∧k cj :=

X1,j · · · Xn,j Z1 · · ·
Zk Zk · · · Z1 Y1,j · · · Y�,j

aj cj

.

Moreover, a�j ∧k c�j := (a1 ∧k c1) ⊗ · · · ⊗ (am ∧k cm). Suppose

bi ∈ homC (1, Xi,�j), for 1 ≤ i ≤ n;

bi ∈ homC (1, Zi,�j), for n + 1 ≤ i ≤ n + k;

di ∈ homC (1, θ1(Zi,�j)), for 1 ≤ i ≤ k;

di ∈ homC (1, Yi,�j), for k + 1 ≤ i ≤ k + �,
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namely b�i ∈ ConfY (X�i,�j ⊗Z�i,�j) and d�i ∈ ConfY (θ1(Z�i,�j) ⊗ Yi,�j). We define the k-string 
contraction ∧k on the configurations a�j ⊗ b�i and c�j ⊗ d�i as

(a�j ⊗ b�i) ∧k (c�j ⊗ d�i) =
k∏

s=1
〈θ1(dk+1−s), bn+s〉

(
a�j ∧k c�j

)
⊗

(
n⊗

i=1
bi ⊗

k+�⊗
i=k+1

di

)
. (15)

Definition 4.8. We define the k-string contraction on the configuration spaces ∧k :
Conf(C )n+k,m ⊗ Conf(C )k+�,m → Conf(C )k+�,m as a linear extension of Equation 
(15).

When � = 0, we can identity Conf(C )n+k,m as operators from Conf(C )k,m to 
Conf(C )n,m corresponding to Frobenius reciprocity. Moreover, the composition of these 
operators is associative. So we obtain a C∗-algebroid for a fixed m.

Proposition 4.9. Recall that ρ2 and θ2 are actions in the Y -directions. They commute 
with the contraction ∧k in the X-direction.

Proof. Recall that ρ2 is an isometry and it commutes with θ1 by Proposition 3.2, so

ρ2(a�j ⊗ b�i) ∧k ρ2(c�j ⊗ d�i)

=
k∏

s=1
〈θ1ρ2(dk+1−s), ρ2(bn+s)〉

(
ρ2(a�j) ∧k ρ2(c�j)

)
⊗

(
n⊗

i=1
ρ2(bi) ⊗

k+�⊗
i=k+1

ρ2(di)
)

=
k∏

s=1
〈θ1(dk+1−s), (bn+s)〉ρ2(a�j ∧k c�j) ⊗

(
n⊗

i=1
ρ2(bi) ⊗

k+�⊗
i=k+1

ρ2(di)
)

=ρ2((a�j ⊗ b�i) ∧k (c�j ⊗ d�i)).

The proof for θ2 is similar. �
Lemma 4.10. When k = 1, we have

• • • •
b1 bn d1+1 d1+�

· · · · · ·

a�j c�j

=
∑

b∈ONB(Z�j) • • • • • •
b1 bn b θ1(b) d1+1 d1+�

· · · · · ·

a�j c�j

.
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Proof. We apply Equation (2), the resolution of identity in C , to 1Z�j
in the first diagram. 

Only the component equivalent to 1 remains non-zero, since the first diagram has no 
boundary on the left. This component gives the second diagram. �
4.3. Frobenius algebras

Definition 4.11. We define μn = Φ−1(μn,m), for n ≥ 1, and μ0 = 1. Then

μn =
∑
α∈B

L(α)α,

where B be is an ONB of homCm(1, γn).

Moreover, μ1 is the canonical inclusion from 1 to γ, and μ2 is the canonical inclusion 
from 1 to γ ⊗ γ which defines the dual of objects. By Proposition 3.5, for k = 1, 2,

ρk(μn) = μn, (16)

θk(μn) = μn. (17)

Let us prove that μ3 defines a Frobenius algebra.

Lemma 4.12. For n ≥ 2, � ≥ 1,

μn ∧1 μ� = δ−1μn+�−2. (18)

Proof. Suppose X�i,�j , Y�i,�j , Z�j are Z-configurations of size (n −1) ×m, (� −1) ×m, 1 ×m

respectively. By Lemma 2.3,{√
d(Zj)aj ∧1 cj : Zj ∈ Irrm, aj ∈ ONB(X�i,j ⊗ Zj), cj ∈ ONB(Zj ⊗ Y�i,j)

}

forms an ONB(X�i,j ⊗ Y�i,j). Take b�i = b1 ⊗ · · · ⊗ bn and d�i = d1 ⊗ · · · ⊗ d�, where 
bi ∈ ONB(Xi,�j) and di ∈ ONB(Yi,�j). By Lemma 4.10, we have

L(
√

d(Zj)a�j ∧1 c�j(b�i ⊗ d�i))
√
d(Zj)a�j ∧1 c�j(b�i ⊗ d�i)

=δ
∑

b∈ONB∗(Z�j)

L(a�j(b�i ⊗ b))L(c�j(θ1(b) ⊗ d�i))a�j ∧1 c�j(b�i ⊗ d�i)

=δ

⎛
⎝ ∑

b∈ONB∗(Z�j)

L(a�j(b�i ⊗ b))a�j(b�i ⊗ b)

⎞
⎠

∧1

⎛
⎝ ∑

b∈ONB∗(Z�j)

L(c�j(θ1(b) ⊗ d�i))c�j(θ1(b) ⊗ d�i)

⎞
⎠ .
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Summing over a�j(b�i), c�j(d�i), we have

μn+�−2 = δμn ∧1 μ�. �
For morphisms v ∈ homCm(1, γ), w ∈ homCm(γ, γ2), we call (γ, v, w) a Q-system [20], 

or (γ, v, w, v∗, w∗) a Frobenius algebra [24] in the *-category Cm, if

(w ⊗ 1γ)w = (1γ ⊗ w)w;

(v∗ ⊗ 1γ)w = 1γ = (1γ ⊗ v∗)w;

(w∗ ⊗ 1γ)1γ ⊗ w = ww∗.

Theorem 4.13. By Frobenius reciprocity, we can identify μn+k as a morphism μk
n ∈

homCm(γk, γn). Then (γ, μ1, δ2μ1
2) is a Q-system in Cm.

Proof. By Equations (16), (17) and (18),

(μ1
2 ⊗ 1γ)μ1

2 = μ1
3 = (1γ ⊗ μ1

2)μ1
2;

(μ1
0 ⊗ 1γ)μ1

2 = δ−21γ = (1γ ⊗ μ1
0)μ1

2;

(μ2
1 ⊗ 1γ)1γ ⊗ μ1

2 = μ2,2 = μ1
2μ

2
1.

So (γ, μ1, δ2μ1
2) is a Q-system in C m. �

Notation 4.14. Since μ1 is the canonical inclusion, we simply denote this Q-system or 
Frobenius algebra by (γ, μ3).

Corollary 4.15. For k ≥ 1, n ≥ k + 1, � ≥ k,

μn ∧k μ� = δ−1μn+�−2k;

μk ∧k μk = 1.

Definition 4.16. We call the subfactor associated with the Frobenius algebra (γ, μ3) the 
m-interval Jones-Wassermann subfactor of C .

The modularity is not used in the construction of the Jones-Wassermann subfactors, 
but it is crucial in the proof of the self-duality of the Jones-Wassermann subfactor. The 
formula of (γ, μ3) in terms of the 3D configuration is intuitive in the proof of self-duality.

Remark 4.17. For an X-configuration a�j with boundary X�i,�j , we project it to the 2D 
space, such that the boundary points are ordered on a line as

X1,0, . . . , X1,m−1, X2,0, . . . , X2,m−1, . . . Xn,0, . . . , Xn,m−1 :
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.

−→

This defines a map F : homCm(1, 
⊗n

i=1 X
�
i,�j

) → homC (1, 
⊗n

i=1 Xi,�j). Furthermore, 
F extends to a monoidal functor from Cm to C . We can also derive the Frobenius 
algebra (γ, μ3) from the tensor functor F . (1) The adjoint functor of F sends the trivial 
Frobenius algebra in C to a Frobenius algebra in Cm [14], which is our (γ, μ3). (2) Take 
Xi,j = X̃, then F (homCm(1, 

⊗n
i=1 X

�
i,�j

)) ⊆ homC (X̃mn). The inductive limit of this 
inclusion for n → ∞ defines a subfactor, which was studied by Erlijman and Wenzl in 
[3]. The corresponding Frobenius algebra is (γ, μ3).

The Frobenius algebra (γ, μ3) defines a γ − γ bimodule category induced by Cm. It 
is a unitary fusion category, called the dual of Cm with respect to (γ, μ3). When m = 2, 
the dual of C 2 is known as the quantum double of C .

Definition 4.18. For a general m, we call the dual of Cm with respect to the Frobenius 
algebra (γ, μ3) the quantum m-party, or quantum multiparty, of C .

Definition 4.19. By Equation (14), the n-box space of the m-interval Jones-Wassermann 
subfactor is isomorphic to the m-box space of the n-interval Jones-Wassermann subfac-
tor. The identification is switching the m, n coordinates of the 3D configurations. We 
call this identification the m-n duality.

Remark 4.20. Suppose the Grothendieck ring of the MTC C is the group Zd and 
k =
(k1, k2, . . . , kn) ∈ Zn

d . Note that N�k = 1 if |
k| = 0, where |
k| := k1 + k2 + · · · + kn in 
Zd, and N�k = 0 elsewhere. So the object of Frobenius algebra of the n-interval Jones-
Wassermann subfactor for C is

γn =
⊕
�

k1 � · · · � kn. (19)

|k|=0
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A similar formula has been considered as a resource state in quantum information in [7],

|Max〉 =
∑
|�k|=0

|k1k2 · · · kn〉. (20)

The two formulas are identical, but they have completely different meanings. By Frobe-
nius reciprocity, the formula γn can be considered as μ2, a 2-box of the n-interval 
Jones-Wassermann subfactor. The formula |Max〉 is μn, an n-box of the 2-interval Jones-
Wassermann subfactor in quon language [18]. The identification between γn and |Max〉
could be realized through the m-n duality, for m = 2.

5. The string Fourier transform on planar algebras

Once we obtain a Frobenius algebra (γ, μ3), we can define a subfactor planar algebra 
S = {Sn,±}n∈N , such that Sn,+ = homCm(1, γn) [24]. This provides partial structures 
of the configuration spaces in Theorem 2.4. We show that the planar algebra is unshaded 
by constructing a planar algebraic *-isomorphism from Sn,− to Sn,+ in §6.

The modular conjugation θ1 defines the involution ∗ of the subfactor planar algebra 
S . In the planar algebra Sn,+, the element δ n

2 μn is represented by

· · ·$ ,

where the diagram has 2n boundary points at the bottom.

Remark 5.1. Convention: We omit the $ sign of the planar diagram if it is on the left.

Remark 5.2. Using the above diagrammatic representation of μn, it is easy to see that 
μ1 is the canonical inclusion from 1 to γ; μ2 is the canonical inclusion from 1 to γ ⊗ γ; 
and μn, n ≥ 1, satisfy Equations (16), (17) and (18). Conversely, these conditions imply 
that (γ, μ1, δ2μ1

2) is a Frobenius algebra by Theorem 4.13.

The action of any planar tangle on S·,+ is a composition of the following 6 elementary 
ones, for n, � ≥ 0:

• The rotation ρ : Sn,+ → Sn,+,

ρ(x) =

x

· · ·
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• The wedge product ∧ : Sn,+ ⊗ S�,+ → Sn�,+,

x ∧ y = x

· · ·
y

· · ·

• The inclusion ι0 : Sn,± → Sn+1,±,

ι0(x) = δ−1/2 x

· · · .

• The contraction φ0 : Sn+1,± → Sn,±,

φ0(x) = δ−1/2 x

· · · .

• The inclusion ι1 : Sn,± → Sn+1,±,

ι1(x) = δ−1/2 x

· · · .

• The contraction φ1 : Sn+1,± → Sn,±,

φ1(x) = δ−1/2 x

· · · .

The first two are isometries. The last four are partial isometries. These actions except 
the rotation can be written as contractions:

ι0(x) = μ1 ∧ x

φ0(x) = μ1 ∧1 x

ι1(x) = δμ3 ∧1 x

φ1(x) = δμ3 ∧2 x.

Moreover, φk is the adjoint operator of ιk:

Proposition 5.3. For x ∈ Sn,±, y ∈ Sn+2,±, k = 0, 1, we have

< ιk(x), y >=< x, φk(y) > .

As a subfactor planar algebra, we have the involution on Sn,+ defined by the reflection 
θ1 which is an anti-isometry.
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We have also these actions on the configuration space in the Y -direction. In particular, 
the rotation ρ2 and the reflection θ2 preserves the size m, and they are defined on 
Sn,+ = homCm(1, γn).

Theorem 5.4. The action ρ2 on S is a planar algebraic ∗-isomorphism. The action θ2
on S is an anti-linear planar algebraic ∗-isomorphism.

Proof. By Propositions 3.2, ρ2 and θ2 commute with ρ and θ1. By Propositions 3.5 and 
4.9, we have that ρ2 and θ2 commute with ∧, ιk and φk, for k = 1, 2. Therefore they are 
(anti-linear) planar algebraic *-isomorphisms. �

Similarly, we have the 6+1 elementary actions on S·,− by switching the shading. The 
string Fourier transform (SFT) F : Sn,± → Sn,∓ is an isometry given by a clockwise 
one-string rotation. Applying the SFT, we can represent the element in Sn,− by F(x)
for x in Sn,+ and derive the six elementary actions on S·,− by actions on S·,+.

For an element x ∈ Sn,+
x

· · ·
, its SFT F(x) ∈ Sn,− is given by

F(x) = x

· · ·
. (21)

Then ρ = F2. Moreover, ιk := F−kι0F
k, 1 ≤ k ≤ 2n, is adding a cap before the kth

boundary points, and φk := F−kφ0F
k, 1 ≤ k ≤ 2n, is a contraction between the k + 1th

and k + 2th boundary points.

Notation 5.5. By the spherical property, we define φ1 on S1,± by φ0.

For x ∈ Sn,+, y ∈ Sn′,+, we define x � y ∈ Sn+n′,+ as

x � y =
y

· · ·
x

· · ·

(22)

Then
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ρF(x) = Fρ(x), (23)

F(x) ∧ F(y) = F(x � y), (24)

φkF(x) = Fφk+1(x), (25)

ιk+1F(x) = Fιk(x), (26)

θ1(F(x)) = Fρ−1θ1(x). (27)

Recall that Sn,+ = homCm(1, γn), thus the induced map � : homCm(1, γn) ⊗
homCm(1, γn′) → homCm(1, γn+n′) is also defined. From the planar algebra S to cate-
gory Cm, the shaded strip becomes a γ-string. Then Equation (22) becomes

x � y = δ2 x

· · ·
y

· · ·

μ4

.

6. Modular self-duality

In this Section, we prove that the Jones-Wassermann subfactor is self-dual in Theo-
rem 6.18 and symmetrically self-dual in Theorem 6.20. We apply Theorem 2.4 to prove 
Proposition 6.1 and 6.2. Proposition 6.2 will be used in Lemma 6.13. Then we prove 
Theorem 6.18 which implies Theorem 2.4. We prove Theorems 2.4, 6.18 in the following 
order:

Theorem 2.4 for m = 2, n = 2;

→Theorem 6.18 for m = 2;

→Theorem 2.4 for m = 2, n ≥ 1;

↔Theorem 2.4 for m ≥ 1, n = 2;

→Theorem 6.18 for m ≥ 1;

→Theorem 2.4 for m ≥ 1, n ≥ 1.

By induction, Theorems 2.4, 6.18 hold for all m and n. Then we apply them to prove 
Theorem 6.20. (When m = 1, the configuration space Conf(C )m,n is C. The theorems 
are obvious.)
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6.1. Killing relation

Proposition 6.1. For a fixed m and two Y -configurations b1, b2 ∈ homC (X̃m, 1), we have

δ−2
∑

X�j∈Irr(Cm)

d(X�j)
∑

b′∈ONB(X�j)

= 〈b1, 1∗m〉〈b2, 1∗m〉,

where 1m is the canonical inclusion from 1m to X̃m in Cm.

Proof. Without loss of generality, we assume that b1 and b2 are unit vectors. Note that 
if X(b1) �= X(θ1(b2)), then both sides are zero. We assume that X(b2) = X(θ1(b1)).

If a Y -configuration b ∈ homC (X̃m, 1) is a unit vector, then

dim homCm(1, X(b) ⊗X(θ(b))) = 1.

So there is only one X-configuration with boundary X(b) ⊗X(θ(b)) up to a scalar. Let 
ab be the canonical inclusion from 1 to X(b) ⊗X(θ(b)) in Cm. Let C ′ = {a′�j ⊗ b′�i} be an 

ONB of Conf(Lat′). Applying Theorem 2.4 for n = 2, we have that

〈b1, 1∗m〉〈b2, 1∗m〉

=〈ab1 ⊗ (b1 ⊗ b2), 1m,2〉

=
∑

a′
�j
⊗b′�i∈C′

LL(ab1 ⊗ (b1 ⊗ b2), a′�j ⊗ b′�i)LL(1m,2, a′�j ⊗ b′�i)

=
∑
b′∈B

LL(ab1 ⊗ (b1 ⊗ b2), a′b′ ⊗ (b′ ⊗ θ1(b′)))LL(1m,2, a′b′ ⊗ (b′ ⊗ θ1(b′)))

=δ−2
√
d(X(b1))

∑
b′∈B

d(X(b′))
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If X(b1) �= 1, then both sides are zero. If X(b1) = 1, then d(X(b1)) = 1 and the 
statement holds. �
Proposition 6.2. For a fixed m, we have the following identity in C :

μ1−m
∑

X�j∈Irrm

d(X�j)
∑

b′∈ONB(X�j)

, (28)

where the one-valent vertex labeled by a square (orthogonal to the Y -axis) on the right 
represents the conical inclusion from 1 to X̃.

Proof. Note that δ−2 = μ1−m. By Proposition 6.1, for any b1, b2 ∈ homC (X̃m, 1),

δ−2
∑

X�j∈Irr(Cm)

d(X�j)
∑

b′∈ONB(X�j)

=〈b1, 1∗m〉〈b2, 1∗m〉,

=

=

So the inner product of both sides of Equation (28) with
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are the same. Note that such elements form a generating set of homC (X̃m−1, X̃m−1), so 
Equation (28) holds. �

If we switch n and m in Proposition 6.2, then we have obtain the following equivalent 
result:

Proposition 6.3. For a fixed m, take X̃ =
⊕

X∈Irr(C )

X and 1X̃ to be the conical inclusion 

from 1 to X̃. Then

μ1−n
∑

X�i∈Irrn

d(X�i)
∑

a′∈ONB(X�i)

= . (29)

After the bi-induction argument in this section, we obtain Theorem 2.4 for any m, n. 
Then we prove the following general situation.

Theorem 6.4. For m ≥ 2 and n ≥ 2, we have

μ
(1−n)(m−1)

2
∑

X�i,�j∈Irrnm

√
d(X�i,�j)

∑
aj∈ONB(X�i,j),bi∈ONB(Xi,�j)

LL(a�j ⊗ b�i)

= .

Proof. The proof is similar to that of Propositions 6.1 and 6.2 using Theorem 2.4. �
Remark 6.5. When m = n = 2, Equation (29) is the killing relation.
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6.2. The self-duality of Jones-Wassermann subfactors

Suppose that S is the subfactor planar algebras of the Jones-Wassermann subfactor 
for a unitary MTC C . In this section, we construct a planar algebraic *-isomorphism from 
Sn,− to Sn,+. That means the Jones-Wassermann subfactor is self-dual. Furthermore, 
we show that the *-isomorphism commutes with the SFT, so the subfactor planar algebra 
S is unshaded, i.e., the Jones-Wassermann subfactor is symmetrically self-dual.

Induced by Φ, we define LL on homCm(1, γn) ⊗ homCm(1, γn). Moreover, we use the 
following notation to simplify the diagram in Equation (3):

LL(a�j(b�i), a
′
�j
(b′�i))

=LL(a�j ⊗ b�i, a
′
�j
⊗ b′�i)

=δ1−n
√
d(X�i,�j)d(X ′

�i,�j
)

b∗1
•

b∗2
•

b∗3
•

b∗4
•

a�j

(b′1)∗
•

(b′2)∗
•

(b′3)∗
•

(b′4)∗
•

a′�j

(30)

Notation 6.6. We use An to denote an ONB of homCm(1, γn). We use B to denote an 
ONB of homC (γ, 1).

Definition 6.7 (string Fourier transform). We represent elements in Sn,− as F(x) for 
x ∈ Sn,+ = homC (1, γn). We define Ψ : Sn,− → Sn,+, n ≥ 0,

Ψ(F(x)) =
∑

x′∈Bn

LL(x, θ2(x′))x′. (31)

When n = 0, Ψ maps 1 to 1. When n = 1, Ψ maps the canonical inclusion from 1 to 
γ in S1,− to the canonical inclusion in S1,+. Let us prove that Ψ commutes with the 
6+1 elementary actions, so Ψ is a planar algebraic *-isomorphism from Sn,− to Sn,+. 
Then S becomes an unshaded planar algebra. Moreover, the map ΨF in Equation (31)
defines the SFT on the unshaded planar algebra Sn.

When m = n = 2, γ =
⊕

X∈Irr(C )

X ⊗X. The vectors {vX}X∈Irr(C ) form an ONB of 

homC 2(1, γ2), where vX is the canonical inclusion from 1 to (X ⊗X) ⊗ (X ⊗X) in C 2. 
We call the ONB {vX}X∈Irr(C ) the quantum coordinate of homC 2(1, γ2).

The vector vX is independent of the choice of the representative of X ⊗X in γ. For 
convenience, we take b∗ to be the canonical inclusion from 1 to X ⊗X to indicate the 
multiplicity of X ⊗X in γ, then (X ⊗X)(b) = (X ⊗X)(θ1(b)).
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The following result is a consequence of the modular self-duality and our definition of 
the SFT.

Theorem 6.8. The SFT on the quantum coordinate of homC 2(1, γ2) is the same as the 
modular S matrix of the MTC C : for any X, X ′ ∈ IrrC,

〈ΨF(vX), vX′〉 = SXX′ . (32)

Proof. By Definition 6.7, the matrix units of ΨF on the basis {vX}X∈Irr(C ) is

〈ΨF(vX), vX′〉 = LL(x, θ2(x′))

= μ− 1
2

= μ− 1
2

= SXX′ �
Proposition 6.9. For x ∈ homC (1, γn), n ≥ 1,

Ψ(F(ρ(x)) = ρΨ(F(x)),

Ψ(Fρ−1θ1(x)) = θ1(Ψ(F(x))).

Proof. By Propositions 3.2 and 3.3, we have

Ψ(F(ρ(x)) (33)

=
∑

x′∈An

LL(ρ(x), θ2(x′))x′ (34)

=
∑

x′∈An

LL(x, ρ−1θ2(x′)))x′ (35)

=
∑

x′∈An

LL(x, θ2ρ
−1(x′))ρρ−1(x′) (36)

=ρΨ(F(x)). (37)

Similarly, we have Ψ(Fρ−1θ1(x)) = θ1(Ψ(F(x))). �
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Lemma 6.10. For x, x′ ∈ homCm(1, γn), y, y′ ∈ homCm(1, γ�), n, � ≥ 1,

LL(x � y, x′ ∧ y′) = LL(x, x′)LL(y, y′).

Proof. Take x = a�j(b�i), x = a′�j(b
′
�i
), y = c�j(d�i) and y′ = c′�j(d

′
�i
). Note that the boundary 

of a Y -configuration b is a Z-configuration, denoted by 
X(b). It represents a simple 
sub object of γ in Cm. For Y -configurations b, d ∈ B, we define Ab,d to be an ONB of 
homCm(1, X(b) ⊗X(θ1(b1)) ⊗X(d) ⊗X(θ1(d1))), a sub space of homCm(1, γ4). Then

LL(
x � 
y, 
x′ ∧ 
y′)

=
∑

b,d∈B1,α∈Ab,d

δ1−n−�δ2

√
d(b)d(d)d(b�j)d(b′�j)d(d�j)d(d

′
�j
)

d(b1)d(d1)
L(α)

b2 b3b

a�j

• •

a′�j

b′1 b′2 b′3
• • •

d2 d3d

c�j

• •

c′�j

d′1 d′2 d′3
• • •

α

• •

=
∑

b,d∈B1,α∈Ab,d

δ3−n−�

√
d(b)d(d)d(b�j)d(b′�j)d(d�j)d(d

′
�j
)

d(b1)d(d1)
L(α)

θ(b1) b1 b2 b3b

a�j

• • ••

a′�j

b′1 b′2 b′3
• • •

θ(d1) d1 d2 d3d

c�j

• • • •

c′�j

d′1 d′2 d′3
• • •

α

• •
by Lemma 4.10

=
∑

b,d∈B1,α∈Ab,d

δ4 1
d(b1)d(d1)

|L(α)|2LL(x, x′)LL(y, y′)

=
∑
d∈B1

δ−2d(d)LL(x, x′)LL(y, y′) by Lemma 4.10 and Equation (2)

=LL(x, x′)LL(y, y′) by Proposition 4.2.
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By the linearity, the equation holds for any x and x′. (Here we give the pictures for 
n = � = 3. One can figure out the general case.) �
Proposition 6.11. For x ∈ homCm(1, γn), y ∈ homCm(1, γn′), n, n′ ≥ 1,

Ψ(F(x � y)) = Ψ(F(x)) ∧ Ψ(F(y)).

Proof. By Lemma 6.10,

Ψ(F(x � y))

=
∑

x′,y′∈B

LL(
x � 
y, 
x′ ⊗ 
y′)x′ ⊗ y′

=
∑

x′,y′∈B

LL(
x, 
x′)LL(
y, 
y′)x′ ⊗ y′

=Ψ(F(x)) ∧ Ψ(F(y)). �
Lemma 6.12. For x ∈ homCm(1, γn) and x′ ∈ homCm(1, γn−1), n ≥ 1,

LL(φ1(x), x′) = LL(x, ι0(x′)).

Proof. When n = 1, the statement is obvious.
When n ≥ 2, suppose x = a�j(b�i) and x′ = a′�j(b

′
�i
). For Y -configurations b ∈ B, we 

define Ab to be an ONB of homCm(1, X(b) ⊗ X(θ1(b2)) ⊗ X(θ1(b1))), a sub space of 
homCm(1, γ3). Then by Lemma 4.10 and Equation (2), we have

LL(φ1(x), x′) (38)

=
∑

b∈B1,α∈Ab

δ1−(n−1)δδ−2d(b)
√

d(b�j)d(b′�j) (39)

b3
•

b4
•

α

•
b

α∗

•b
∗

• •
b1 b2

a�j

b′1
•

b′2
•

b′3
•

a′�j

(40)

=δ1−n
√

d(b�j)
√
d(b′�) (41)
j
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b1
•

b2
•

b3
•

b4
•

a�j

b′1
•

b′2
•

b′3
•

a′�j

(42)

= LL(x, ι0(x′)) (43)

The general case follows from the linearity. �
From the proof of Lemma 6.12, we see that the contraction φ1 on the configuration 

space is contracting the Z-configurations X1,�j and X2,�j . The diagrammatic representa-
tion of the contracted configuration is given by

δ1−n
√
d(X�i,�j)

b1
•

b2
•

b3
•

b4
•

a�j

. (44)

Lemma 6.13. For x ∈ homCm(1, γn) and x′ ∈ homCm(1, γn−1), n ≥ 2,

LL(φ2(x), x′) = LL(x, ι1(x′)).

Proof. For b′−, b′+ ∈ B, take Ab′−,b′+ to be an ONB of homCm(1, X(b′−) ⊗ X(b′+) ⊗
X(θ1(b′1))). Then by Lemma 4.10, Equation (2) and Proposition 6.2, we have

LL(x, ι1(x′)) (45)

=
∑

b′−,b′+∈B,α∈Ab′−,b′+

δ1−nδδ−2d(b′−)d(b′+)
√

d(b�j)d(b′�j) (46)

b1
•

b2
•

b3
•

b4
•

a�j

• •
b′2 b′3b′−

•
b′+
•

a′�j

α

(b′−)∗
•

(b′+)∗
•


α•
b1 (47)

=
∑
b′ ∈B

δ−nd(b′−)
√

d(b�j)d(b′�j) (48)

−
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b1
•

b2
•

b3
•

b4
•

a�j

• •
b′2 b′3b′−

•
b′1
•

•
(b′−)∗

a′�j

(49)

= δb2,1∗
m
δ2δ−n (50)

b1
•

b3
•

b4
•

a�j

• • •
b′1 b′2 b′3
•

a′�j

(51)

= LL(φ2(x), x′) � (52)

Lemma 6.14. Suppose H1 and H2 are Hilbert spaces, and T is an operator from H1 to 
H2. If x ⊥ T (H1) in H2, then T ∗x = 0.

Proof. If x ⊥ T (H1) in H2, i.e., < x, Ty >= 0, ∀y ∈ H2, then < T ∗x, y >= 0. Thus 
T ∗x = 0. �
Proposition 6.15. For 0 ≤ k ≤ 2n − 2, x ∈ homCm(1, γn),

Ψ(F(φk+1(x)) = φkΨ(F(x)).

Proof. For k = 0, 1,

Ψ(F(φk+1(x))

=
∑

x′∈Bn−1

LL(φk+1(x), θ2(x′))x′

=
∑

x′∈Bn−1

LL(x, ιkθ2(x′)))x′ by Lemmas 6.12, 6.13

=
∑

x′∈Bn−1

LL(x, θ2ιk(x′))x′ by Proposition 3.2

=
∑

x′′∈ιk(Bn−1)

LL(x, θ2(x′′))φk(x′′)

=
∑
′′

LL(x, θ2(x′′))φk(x′′) by Proposition 5.3 and Lemma 6.14

x ∈Bn
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=φkΨ(F(x)).

The general case follows from Proposition 6.9. �
Proposition 6.16. The map Ψ : Sn,− → Sn,+ is an isometry.

Proof. It is true for n = 0, 1 by definition. When n ≥ 2, for x, y in Sn,+,

〈ΨF(x),ΨF(y)〉
=δn/2φ0φ1 · · ·φ2n−1(ΨF(x) ∧ ΨF(y))

=δn/2φ0ΨF(φ2 · · ·φ2n(x � y)) by Propositions 6.11, 6.15

=δn/2φ0φ2 · · ·φ2n(x � y)

=〈x, y〉
=〈F(x),F(y)〉. �

Proposition 6.17. For 0 ≤ k ≤ 2n − 2, x ∈ homCm(1, γn),

Ψ(F(ιk(x)) = ιk+1Ψ(F(x)).

Proof. By Propositions 6.16, 5.3, and 6.15, we have

〈ΨFιk(x), y)〉.
=〈ιk(x),ΨF(y)〉
=〈x, φkΨF(y)〉
=〈x,ΨF(φk+1(y))〉
=〈ιk+1ΨF(x), y〉

Therefore Ψ(F(ιk(x)) = ιk+1Ψ(F(x)). �
Theorem 6.18. The map Ψ is a planar algebraic *-isomorphism from Sn,− to Sn,+. 
Therefore, the m-interval Jones-Wassermann subfactor is self-dual for any m ≥ 1.

Proof. We write an elements in S·,− as x′ = F(x), y′ = F(y), for x, y ∈ S·,+.
By Equation (23) and Proposition 6.9, Ψ(ρ(x′)) = Ψ(F(ρ(x)) = ρΨ(x′).
By Equation (24) and Proposition 6.11, Ψ(x′ ∧ y′) = Ψ(F (x � y)) = Ψ(x′) ∧ Ψ(y′).
By Equation (25) and Proposition 6.15, Ψ(φk(x′)) = Ψ(F(φk+1(x)) = φkΨ(x′).
By Equation (26) and Proposition 6.17, Ψ(ιk(x′)) = Ψ(F(ιk+1(x)) = ιkΨ(x′).
By Equation (27) and Proposition 6.9, Ψ(θ1(x′)) = Ψ(Fρ−1θ1(x)) = θ1(Ψ(x′)).
That means Ψ commutes with the 6+1 elementary actions of planar algebras. So for 

any planar tangles T+ on S·,+, we have a tangle T− on S− with opposite shading and 
the following commutative diagram
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Ψ

Ψ

S·,+ S·,−

S·,+ S·,−

T T

.

So Ψ is a planar algebraic *-isomorphism. �
When Theorem 6.18 holds for some m, we obtain Theorem 2.4 for m, since the SFT 

of a subfactor planar algebra is a unitary.

Remark 6.19. From orbifold theory it is easy to see that the Jones-Wassermann subfac-
tors for n disjoint intervals are isomorphic to its dual as subfactors. Here is a proof using 
orbifold theory: we refer the reader to Section 6.2 of [12] for notations. By construction 
the Jones-Wassermann subfactor is represented by representation π1,{0,1,...,n−1}. By (2) 
of Prop. 6.2 in [12], the dual of π1,{0,1,...,n−1} is π1,{n−1,n−2,...,0}, but {n − 1, n − 2, ..., 0}
is conjugate to {0, 1, ..., n − 1} in Sn via g(i) = n − i − 1, i = 0, 1, ..., n − 1, hence 
π1,{n−1,n−2,...,0} � gπ1,{0,1,...,n−1}g

−1.

Theorem 6.20. The following commutative diagram holds,

Ψ

Ψ−1

S·,− S·,+

S·,+ S·,−

F F

.

Therefore the planar algebra S• is unshaded and the Jones-Wassermann subfactor is 
symmetrically self-dual.

Proof. We can consider both F and Ψ as a map from the lattice to the dual lattice. By 
the definition of ΨF in Equation (31) and Theorem 2.4, we have that (ΨF)ρ−1(ΨF) is 
the identity map. Therefore, the commutative diagram holds. So the isomorphism Ψ±1

commutes with all planar tangles on S•. Then we can lift the shading of the planar 
algebra and obtain an unshaded planar algebra. �
Remark 6.21. The modularity is essential in the proof of the symmetrically self-duality 
of Jones-Wassermann subfactors for the unitary MTC C , so we call this property the 
modular self-duality of the MTC.

Remark 6.22. Recall that ρ2 is a planar algebraic *-isomorphism of S·,+ with periodicity 
m, then for each k ∈ Zm, Ψρk2 is a planar algebraic *-isomorphism from S·,− to S·,+. 
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Therefore there are k different ways to lift the shading of Sn,±. Each choice defines an 
unshaded subfactor planar algebra.

Example. If we take C to be the unitary MTC, such that its Grothendieck ring is the 
cyclic group Zd and its S matrix is the discrete Fourier transform of Zd, then the 
Frobenius algebra object is

γ =
⊕

ki∈Zd,
∑n

i=1 ki=0

k1 � · · · � kn. (53)

Moreover, the m-interval Jones-Wassermann subfactor is the group subfactor for Zm−1
d . 

The projection category of the unshaded planar algebra is a Tambara-Yamagami category 
[29]. It has only one odd simple object τ and τ2 = γ. Its even simple objects are {k1 �

· · · � kn : ki ∈ Zd,

n∑
i=1

ki = 0}.

Moreover, the two-box space of the two-interval Jones-Wassermann subfactor is iso-
morphic to L2(Zd). It is known that the usual multiplication and coproduct on the 
2-box space in subfactor theory coincide with the multiplication and convolution on 
L2(Zd). The SFT F intertwines the multiplication and the convolution. We have shown 
that F = S, which is the discrete Fourier transform. The modular self-duality reduces 
to the self-duality of Zd on L2(Zd). Therefore the modular self-duality generalizes and 
categorifies the self-duality of finite abelian groups.

Example. If C is the representation category of SU(2)2, then it has three simple objects 
Irr = {1, σ, g}, and d(1) = d(g) = 1, d(σ) =

√
2. Let D be the Z2-graded projection 

category of the unshaded planar algebra of the m-interval Jones-Wassermann subfactor 
of C .

When m = 2,

τ2 = γ = 1 � 1 ⊕ σ � σ ⊕ g � g. (54)

The category D has two odd objects and five even objects. The fusion rule of even objects 
follows from the fusion rule of C . The fusion graph of tensoring τ is given by the principal 
graph of the subfactor:

1 � 1 τ σ � σ τ ′ 1 � g

g � g g � 1

• • • • •

• • .

The left half of the graph is given by Equation (54) and the right half is given by the 
left half tensoring 1 � g. Since τ ′ = τ ⊗ (1 � g), the fusion rule of tensoring τ ′ can be 
derived from the fusion rule for τ . Therefore, we obtain the fusion rule of D.



38 Z. Liu, F. Xu / Advances in Mathematics 355 (2019) 106775
When m ≥ 2, we denote Sk to be the set of Deligne tensors of m simple objects with 
k multiples of τ . Denote S+ (and S−) to be the elements in S0 that are equivalent to 1
(and g) while changing the Deligne tensor � to the tensor ⊗ in C respectively. Then

τ2 = γ =
⊕
�X∈S+


X ⊕

⎛
⎝ [m2 ]⊕

k=1

⊕
�Y ∈S2k

2k−1
Y

⎞
⎠ . (55)

It is easy to compute that

d(γ) = 2m−1 + 3m + (−1)m − 2
4 .

Similar to the case m = 2, we obtain the left half from Equation (54) and the right half 
from tensoring an element ∈ S−. There are two odd simple objects τ and τ ′ in D . The 

even simple objects in D are given by 
[m2 ]⋃
k=0

S2k. For any 
X ∈ S+,


X ⊗ τ = τ ;

X ⊗ τ ′ = τ ′.

For any 
X ∈ S−,


Z ⊗ τ = τ ′;

Z ⊗ τ ′ = τ.

For any 
Y ∈ S2k, k ≥ 1,


Y ⊗ τ = 2k−1(τ ⊕ τ ′);

Y ⊗ τ ′ = 2k−1(τ ⊕ τ ′).

And

τ ′ ⊗ τ ′ = γ;

τ ′ ⊗ τ = γ ⊗ 
Z =
⊕
�Z∈S−


Z ⊕

⎛
⎝ [m2 ]⊕

k=1

⊕
�Y ∈S2k

2k−1
Y

⎞
⎠ .

6.3. Actions of planar tangles on the configuration space

Motivated by the Jones-Wassermann subfactor, we obtain actions of planar tangles on 
the configuration spaces {Confn,m}n,m∈N in both X- and Y -directions. Moreover, these 
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actions coincide with the geometric action on the lattices: The contraction tangle φ1 cor-
responds contractions of lattices to as shown in Equation (44). The correspondence for 
the other 6+1 elementary tangles are more straightforward. Thus the actions of planar 
tangles in two different directions commute. We call the (Hilbert) space {Confn,m}n,m∈N
equipped with such commutative actions of bidirectional planar tangles a bi-planar al-
gebra which we will study in the future.

Note that

D+(x) =
∑
x′∈B

LL(x, x′)x′ = θ2Ψ(F(x)). (56)

Since θ2 is anti-isometry, we obtain Theorem 2.4 from Proposition 6.16. Moreover, θ2
commute with the action of planar tangles, we have the following result corresponding 
to Propositions 6.9, 6.11, 6.15, 6.17:

Proposition 6.23. For x ∈ Conf(C )n,m, y ∈ Conf(C )�,m,

D+ρ(x) = ρD+(x),

D+ρ
−1θ1(x) = θ1D+(x),

D+(x � y) = D+(x) ∧D+(y),

D+φk+1(x) = φkD+(x),

D+ιk(x) = ιk+1D+(x).
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