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Furthermore, we show Hardy’s uncertainty principle for 
locally compact quantum groups in terms of bi-shifts of group-
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1. Introduction

Uncertainty principles were first studied in quantum mechanics and then widely de-
veloped in harmonic analysis, information theory, and quantum information etc. In [9], 
Donoho and Stark proved a support-version uncertainty principle for cyclic groups and 
applied it in signal recovery. Later Candes, Romberg, and Tao [7] developed this un-
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certainty principle in the theory of compressed sensing. The Donoho–Stark uncertainty 
principle was proved for finite abelian groups [25], locally compact abelian groups[23], 
compact groups [1], Kac algebras [6,20]. The minimizers of the Donoho–Stark uncer-
tainty principle for locally compact abelian groups [9,25,23] were the translations and 
modulations of characteristic functions of compact open subgroups. For noncommutative 
case, the authors [14] showed the Donoho–Stark uncertainty principle for subfactors and 
introduced bi-shifts of biprojections for subfactors which generalized the modulations 
and translations of characteristic functions of subgroups. The authors showed that the 
minimizers of the uncertainty principle are bi-shifts of biprojections. For infinite case, 
Liu and Wu [20] characterized the minimizers of the Donoho–Stark uncertainty principle 
for Kac algebras with biprojections.

Hirschman uncertainty principle in terms of entropies was first introduced by 
Hirschman in [13]. In [2], Beckner proved the uncertainty principle with sharp con-
stant for the real line R. The Hirschman–Beckner uncertainty principle generalized 
Heisenberg’s uncertainty principle in quantum mechanics. This uncertainty principle 
was studied for locally compact abelian groups [23], Kac algebras [6,20], and subfactors 
[14]. The minimizers of the Hirschman–Beckner uncertainty principle were characterized 
in [23] and [14].

Hardy’s uncertainty principle for R was proved in [11]. Hardy’s uncertainty principles 
for arbitrary locally compact group were studied rarely. In [14], the authors showed that 
Hardy’s uncertainty principle for subfactors by using the minimizers of the Donoho–Stark 
and the Hirschman–Beckner uncertainty principle. In [20], Liu and Wu proved Hardy’s 
uncertainty principle for Kac algebras with biprojections. Note that the authors [14]
showed that there are eight forms of a bi-shift of a biprojection and Hardy’s uncertainty 
principle in [14,20] implies that the uniqueness of a bi-shift of a biprojection.

Locally compact quantum groups introduced by Kustermanns and Vaes [16,17] gen-
eralized locally compact groups and their duals. Compact quantum groups introduced 
by Woronowicz [27–30] are locally compact quantum groups. In this paper, we prove the 
Donoho–Stark uncertainty principle for locally compact quantum groups and character-
ize the minimizers of the uncertainty principle. We introduce the notion of a bi-shift of a 
group-like projection and show that the minimizers are bi-shifts of group-like projections. 
For finite abelian groups, bi-shifts of group-like projections are wave packets [10]. Wave 
packets are widely used in quantum mechanics, information theory, etc.

Main Theorem 1 (Donoho–Stark uncertainty principle, Theorem 4.2, Proposition 4.7, 
Proposition 6.5). Suppose G is a locally compact quantum group. Then for any ω in 
L1(G) ∩ L2(G), 1 ≤ t ≤ 2, 2 ≤ s ≤ ∞, we have

Sr(ξt(ω))Sr(ιs(λ(ω))) ≥ 1.

Moreover the following are equivalent:
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1. ω ∈ L1(G) ∩ L2(G) is a minimizer of the Donoho–Stark uncertainty principle.
2. ω is an extremal bi-partial isometry such that |ω|σϕ

t = |ω|, σ̂t(|λ(ω)|) = |λ(ω)|, 
∀t ∈ R.

3. ω is a bi-partial isometry, |ω|σϕ
t = |ω|, ∀t ∈ R, and λ(ω) is in L1(Ĝ) such that 

‖λ̂(λ(ω)ϕ̂)‖∞ = ‖λ(ω)ϕ̂‖.
4. ω ∈ L1(G) ∩ L2(G) satisfies that Sr(ω)Sr(λ(ω)) = 1 and σ̂t(|λ(ω)|) = |λ(ω)|.
5. ω ∈ L1(G) ∩ L2(G) satisfies that Sr(ω)Sr(λ(ω)) = 1 and Sr(ξ(ω))Sr(Λ̂(λ(ω))) = 1.
6. ω is a bi-shift of a group-like projection B ∈ L1(G).

Note that Sr(x) is the ϕ-value of the support projection of x, and it will be explained in 
Section 3.

The Donoho–Stark uncertainty principle for locally compact quantum groups is a 
series of inequalities which is different from the case for unimodular Kac algebras. For 
a locally compact quantum group G, we define an entropy H(ξ) of ξ in L2(G). Then 
we proved the Hirschman–Beckner uncertainty principle for compact quantum groups or 
discrete quantum groups.

Main Theorem 2 (Hirschman–Beckner uncertainty principle, Theorem 5.15). Suppose G
is a compact quantum group or a discrete quantum group and φ = ϕ(Jϕ · Jϕ). Let ω ∈
L1(G) ∩ L2(G) such that ‖ξ(ω)‖ = 1. If H(ξ(ω)), H(Λ̂(λ(ω))), 〈| log d|Jϕξ(ω), Jϕξ(ω)〉
〈| log d̂|ĴΛ̂(λ(ω)), ĴΛ̂(λ(ω))〉 are finite, then

H(ξ(ω)) + H(Λ̂(λ(ω))) ≥ −〈(log d)Jϕξ(ω), Jϕξ(ω)〉 − 〈(log d̂)ĴΛ̂(λ(ω)), ĴΛ̂(λ(ω))〉.

Moreover, for any ξ ∈ L2(G) if H(ξ), H(F2(ξ)), 〈| log d|Jϕξ, Jϕξ〉, 〈| log d̂|ĴF2(ξ),
ĴF2(ξ)〉 are finite, then

H(ξ) + H(F2(ξ)) ≥ −〈(log d)Jϕξ, Jϕξ〉 − 〈(log d̂)ĴF2(ξ), ĴF2(ξ)〉.

By using bi-shifts of group-like projections, we show Hardy’s uncertainty principle for 
locally compact quantum groups with group-like projections.

Main Theorem 3 (Hardy’s uncertainty principle, Theorem 6.6). Suppose G is a locally 
compact quantum group with a bi-shift w of a group-like projection. Let x ∈ L1(G) ∩
L∞(G) be such that

|x∗| ≤ C|w∗|, |λ(xϕ)| ≤ C ′|λ(wϕ)|,

for some C, C ′ > 0. Then x is a multiple of w.

The techniques in [4,12,16] for locally compact quantum groups and noncommutative 
Lt spaces will be frequently used in the paper. This paper is organized as follows. In Sec-
tion 2, we go over the definition and some basic properties of locally compact quantum 



2402 C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399–2445
groups and noncommutative Lt spaces for 1 ≤ t ≤ ∞. In Section 3, we study support 
projections or range projections of elements in noncommutative Lt spaces. In Section 4, 
we show the Donoho–Stark uncertainty principle for locally compact quantum groups 
and obtain the properties of the minimizers of the Donoho–Stark uncertainty principle. 
In Section 5, we study the derivative of the t-norm and show the Hirschman–Beckner 
uncertainty principle for compact quantum groups or discrete quantum groups. In Sec-
tion 6, we prove Hardy’s uncertainty principle for locally compact quantum groups. In 
Section 7, we obtain more results on Young’s inequality for locally compact quantum 
groups.

2. Preliminaries

In this section, we will recall some properties of noncommutative Lt spaces and the 
definition and properties of locally compact quantum groups.

Let M be a von Neumann algebra with a normal semi-finite faithful weight ϕ and

Nϕ = {x ∈ M : ϕ(x∗x) < ∞}, Mϕ = N∗
ϕNϕ.

Denote by ∇ϕ, Jϕ, σϕ the modular operator, modular conjugation and modular au-
tomorphism group associated with ϕ. It is known that ϕ is invariant under σϕ, i.e. 
ϕσϕ

t = ϕ for any t ∈ R. For any x ∈ D(σϕ
i/2), the domain of σϕ

i/2, we have that 
ϕ(x∗x) = ϕ(σϕ

i/2(x)σϕ
i/2(x)∗). Denote by M+

ϕ the set of all positive elements in Mϕ.
Let (Hϕ, πϕ, Λϕ) be the Gelfand–Naimark–Segal (GNS) semi-cyclic representation, 

where Λϕ : Nϕ → Hϕ is an inclusion map. We assume that M act on Hϕ. Therefore 
we will omit πϕ. The modular conjugation Jϕ satisfies that JϕΛϕ(x) = Λϕ(σϕ

i/2(x)∗) for 
any x ∈ Nϕ ∩ D(σϕ

i/2). For any x ∈ Mϕ and a ∈ D(σϕ
−i), we have ax, xa ∈ Mϕ and 

ϕ(ax) = ϕ(xσ−i(a)).
Denote by M∗ the predual of M. Denote by M+

∗ the set of all positive linear func-
tionals in M∗. For any ω ∈ M∗, the linear functional ω ∈ M∗ is given by ω(x) = ω(x∗)
for any x in M. Given x in M and ω ∈ M∗, the linear functionals xω and ωx are given 
by (xω)(y) = ω(yx) and (ωx)(y) = ω(xy) for any y in M.

The Tomita algebra Tϕ is given by

Tϕ = {x ∈ M : x is analytic w. r. t. σϕ and σϕ
z (x) ∈ N∗

ϕ ∩Nϕ, ∀z ∈ C}.

It is known that Tϕ, T 2
ϕ are σ-strongly dense in M.

Let Lϕ = {x ∈ Nϕ : xϕ ∈ M∗} and Rϕ = {x ∈ N∗
ϕ : ϕx ∈ M∗}. By the results in [3], 

we have that T 2
ϕ ⊂ Lϕ and Rϕ = L∗

ϕ.
The noncommutative Lt space Lt(M) is the complex interpolation space (M, M∗)[1/t]

of M∗ and M for 1 ≤ t ≤ ∞. In [3], Lt(M) is written as Lt(M)left or Lt
(−1/2)(M). 

Note that L1(M) = M∗, L∞(M) = M, and L1(M) ∩ L∞(M) = Lϕ. Denote by 
ιt : Lϕ �→ Lt(M) the embedding of Lϕ into Lt(M). It is known that ιt(Lϕ) is dense in 
Lt(M) for any 1 ≤ t ≤ ∞. By results in [3], we identify L2(M) with Hϕ. Moreover,
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L1(M) ∩ L2(M) = I = {ω ∈ M∗|Λϕ(x) �→ ω(x∗), x ∈ Nϕ is a bounded map.}

= M∗ ∩Hϕ,

and

L2(M) ∩ L∞(M) = Nϕ = Hϕ ∩M.

Denote by ξt : I → Lt(M) for 1 ≤ t ≤ 2 the embedding from I to Lt(M). For t = 2, we 
use ξ(ω) instead of ξ2(ω) whenever ω ∈ I. Denote by ιs : Nϕ → Ls(M) for 2 ≤ s ≤ ∞
the embedding from Nϕ to Ls(M). For s = 2, we use Λϕ(x) instead of ι2(x) whenever 
x ∈ Nϕ. Note that we use the same notation as ιt : Lϕ → Lt(M) here, since there is no 
confusion.

Let φ be a fixed normal semifinite faithful weight on the commutant M′ of M on Hϕ. 
A closed densely defined operator a on the Hilbert space Hϕ is γ-homogeneous with γ ∈ R

if xa ⊆ aσφ
iγ(x) for all x ∈ M′ analytic with respect to the modular automorphism σφ of 

M′. The Hilsum Lt space Lt(φ) is the space of all closed densely defined operators a on 
Hϕ such that if x = u|x| is the polar decomposition, then |x|t is the spatial derivative of a 
positive linear functional ω ∈ M∗ and u ∈ M. Note that L∞(φ) = M. The distinguished 
spatial derivative d = dϕ

dφ is a strictly positive self-adjoint operator acting on Hϕ and 

σϕ
t (x) = ditxd−it for every x in M; σφ

t (y) = d−itydit for every y in M′. Throughout the 
paper, we will identify strong product, strong sum as product, sum respectively. There 
is an isometric isomorphism Φt : Lt(φ) → Lt(M) for 1 ≤ t ≤ ∞ such that

Φt(xd1/t) = ιt(x), x ∈ T 2
ϕ .

If t ≥ 2, we have that Φt(xd1/t) = ιt(x) for any x ∈ Nϕ.
By Theorem 2.4 in [5], for any x ∈ Tϕ, t ∈ [2, ∞], we have xd1/t = d1/tσϕ

i/t(x).
Now we will recall the definition of locally compact quantum groups. A locally compact 

quantum group G = (M, Δ, ϕ, ψ) consists of

(1) A von Neumann algebra M;
(2) A unital normal *-homomorphism Δ : M → M⊗M satisfying (Δ ⊗ι)Δ = (ι ⊗Δ)Δ, 

where ι : M → M is the identity.
(3) Two normal semifinite faithful weight ϕ, ψ on M such that

ϕ((ω ⊗ ι)Δ(x)) = ϕ(x)ω(1), ∀ω ∈ M+
∗ , x ∈ M+

ϕ ,

ψ((ι⊗ ω)Δ(x)) = ψ(x)ω(1), ∀ω ∈ M+
∗ , x ∈ M

+
ψ ,

ϕ is the left Haar weight and ψ is the right Haar weight.

Suppose Hϕ is the Hilbert space arising from the GNS representation of M with 
respect to ϕ and assume that M acts on Hϕ.
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The multiplicative unitary operator W ∈ B(Hϕ ⊗Hϕ) is defined by

W ∗(Λϕ(x) ⊗ Λϕ(y)) = (Λϕ ⊗ Λϕ)(Δ(y)(x⊗ 1))

for any x, y ∈ Nϕ. We have Δ(x) = W ∗(1 ⊗ x)W for any x ∈ M.
There is a dual locally compact quantum group Ĝ = (M̂, Δ̂, ϕ̂, ψ̂). Recall that

M̂ = {(ω ⊗ ι)(W )|ω ∈ B(H)∗}
σ-strong-∗

,

Ŵ = ΣW ∗Σ, where Σ is the flip on Hϕ ⊗ Hϕ. Δ̂(x) = Ŵ ∗(1 ⊗ x)Ŵ for any x ∈ M̂. 
The Fourier representation λ : M∗ → M̂ is given by λ(ω) = (ω ⊗ ι)(W ) for any ω in 
M∗. The dual left Haar weight ϕ̂ is the unique normal semifinite faithful weight on M̂
having (Hϕ, ι, Λ̂) as a GNS-construction where Λ̂ is a linear map from Nϕ̂ to Hϕ given 
by Λ̂(λ(ω)) = ξ(ω) for any ω ∈ L1(M) ∩ L2(M). There are the antipode S, the unitary 
antipode R, and a scaling automorphism τ on M. The left and the right Haar weights ϕ, 
ψ satisfies ψ(·) = ϕ(δ1/2 · δ1/2), where δ is the modular element of the locally compact 
quantum group G. Note that δ is a unique strictly positive element affiliated with M
and

Δ(δ) = δ ⊗ δ, R(δ) = δ−1, τt(δ) = δ, ∀t ∈ R.

There are norm continuous one-parameter representations ρ, δ∗, τ∗ of R on M∗ given 
by

ρt(ω)(x) = ω(δ−itτ−t(x)), δ∗t (ω)(x) = ω(δitx), τ∗t (ω)(x) = ω(τt(x))

respectively for all ω ∈ M∗, x ∈ M and t ∈ R. For the dual locally compact quantum 
group Ĝ, there are norm continuous one-parameter groups σ̂, τ̂ on M̂ such that

σ̂t(λ(ω)) = λ(ρt(ω)), τ̂t(λ(ω)) = λ(ωτ−t)

respectively for all t ∈ R and ω ∈ M∗. There is the unitary antipode R̂ on M̂ such that 
R̂(λ(ω)) = λ(ωR) for all ω ∈ M∗. There is also an antipode Ŝ = R̂τ̂−i/2 on M̂. Denote 
by Ĵ the modular conjugation associated to ϕ̂.

Recall that the antipode S = Rτ−i/2 on M has the following properties:

1. S(ψ ⊗ ι)((x∗ ⊗ 1)Δ(y)) = (ψ ⊗ ι)(Δ(x∗)(y ⊗ 1)), ∀x, y ∈ Nψ.
2. S((ι ⊗ ϕ)(Δ(x∗)(1 ⊗ y))) = (ι ⊗ ϕ)((1 ⊗ x∗)Δ(y)), ∀x, y ∈ Nϕ.
3. S((ι ⊗ ω)(W )) = (ι ⊗ ω)(W ∗), ∀ω ∈ B(H)∗.

Denote by ν the scaling constant of the locally compact quantum group G. Then

ϕτt = ν−tϕ, ϕσψ
t = νtϕ, ∀t ∈ R.
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Some fundamental commutation relations for the locally compact quantum group G are

Δσϕ
t = (τt ⊗ σϕ

t )Δ, Δτt = (τt ⊗ τt)Δ.

For a locally compact quantum group G = (M, Δ, ϕ, ψ) and t ∈ [1, ∞], we denote 
by Lt(G) the complex interpolation space Lt(M). For any ω ∈ L1(G) ∩ L2(G), the 
Lt-Fourier transform Ft : Lt(G) → Ls(Ĝ), 1/t + 1/t′ = 1 is given by

Ft(ξt(ω)) = ιt
′
(λ(ω)).

By the Hausdorff–Young inequality [5,3], we have that ‖Ft‖ ≤ 1.
Suppose G is a locally compact quantum group. A projection B in L∞(G) is a group-

like projection if Δ(B)(1 ⊗ B) = B ⊗ B and B �= 0. A projection B in L1(G) ∩ L∞(G)
is a biprojection if λ(Bϕ) is a multiple of a projection. For more details on group-like 
projections, we refer to [18]. In [19], Liu, Wang and Wu show that a biprojection is a 
group-like projection in L1(G) if ϕ = ψ or ϕ is tracial.

In the end of the section, we recall the resolvent convergence for unbounded self-adjoint 
operators, let an, n = 1, . . . and a be (unbounded) self-adjoint operators on a Hilbert 
space H. The elements an is said to converge to a in the strong resolvent sense if (z −
an)−1 → (z − a)−1 in the strong operator topology for all z ∈ C with �z �= 0. an is 
said to converge to a in the weak resolvent sense if (z − an)−1 → (z − a)−1 in the weak 
operator topology for all z ∈ C with �z �= 0. The weak resolvent convergence implies 
the strong resolvent convergence. For more details, we refer the readers to [24].

3. Support projections

In this section, we define the range projections and the support projections of elements 
in the noncommutative Lt space Lt(M) with the help of the Hilsum Lt spaces and 
investigate their properties, where M is a von Neumann algebra with a normal semifinite 
faithful weight ϕ.

For any x in Lt(M), 1 ≤ t ≤ ∞, we define the range projection Rl(x) (which is on 
the left hand side) of x to be the range projection R(Φ−1

t (x)) of Φ−1
t (x) and the support 

projection Rr(x) (which is on the right hand side) of x to be R(Φ−1
t (x)∗). Note that by 

the definition of the Hilsum Lt space, we see that R(Φ−1
t (x)), R(Φ−1

t (x)∗) ∈ M for any 
x ∈ Lt(M). We denote by Sl(x) = ϕ(Rl(x)) and Sr(x) = ϕ(Rr(x)). If t = ∞, then for 
any x ∈ L∞(M)(= M), we have that

Rl(x) = R(x), Rr(x) = R(x∗).

For any ω in L1(M)(= M∗), we denote the support projection of ω by R(ω) which 
is given by

R(ω) = 1 − p,
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where p is the union of all projection pα in M such that ω(pαx) = 0, ∀x ∈ M.
For any ξ in L2(M)(= Hϕ), we denote the support projection of ξ by R(ξ) given by

R(ξ) = 1 − p,

where p is the union of all projection pα in M such that pαξ = 0. For any x ∈ M and 
ξ ∈ L2(M), the right action of x on ξ is given by ξx = Jϕx

∗Jϕξ.

Lemma 3.1. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ. Then for any x ∈ M, ω ∈ L1(M), ξ ∈ L2(M), we have that

xΦ−1
1 (ω) = Φ−1

1 (xω), Φ−1
1 (ω)x = Φ−1

1 (ωx),

and

xΦ−1
2 (ξ) = Φ−1

2 (xξ), Φ−1
2 (ξ)x = Φ−1

2 (ξx).

Proof. Suppose that x ∈ T 2
ϕ and assume that {xβ}β is a net in T 2

ϕ such that limβ ‖xβϕ −
ω‖ = 0. Then

‖xΦ−1
1 (ω) − Φ−1

1 (xω)‖1,φ = lim
β

‖xΦ−1
1 (ω) − xxβd + xxβd− Φ−1

1 (xω)‖1,φ

≤ lim
β

‖xΦ−1
1 (ω) − xxβd‖1,φ + lim

β
‖xxβd− Φ−1

1 (xω)‖1,φ

≤ ‖x‖∞ lim
β

‖ω − xβϕ‖ + lim
β

‖xxβϕ− xω‖ = 0,

i.e. xΦ−1
1 (ω) = Φ−1

1 (xω) for any x in T 2
ϕ .

Suppose that x ∈ M and take a bounded net {xα}α ⊆ T 2
ϕ such that xα converges to 

x σ-strongly. Let Φ−1
1 (ω) = w|Φ−1

1 (ω)| be the polar decomposition and ω0 the positive 
normal linear functional such that |Φ−1

1 (ω)| = dω0
dφ . Then

‖xΦ−1
1 (ω) − Φ−1

1 (xω)‖1,φ = lim
α

‖xΦ−1
1 (ω) − xαΦ−1

1 (ω) + Φ−1
1 (xαω) − Φ−1

1 (xω)‖1,φ

≤ lim
α

‖(x− xα)Φ−1
1 (ω)‖1,φ + lim

α
‖xαω − xω‖

≤ lim
α

‖(x− xα)w|Φ−1
1 (ω)|1/2‖2,φ‖|Φ−1

1 (ω)|1/2‖2,φ

= lim
α

ω0(w∗(x− xα)∗(x− xα)w)1/2ω0(1)1/2 = 0,

i.e. xΦ−1
1 (ω) = Φ−1

1 (xω) for all x in M. The rest of the Lemma can be proved simi-
larly. �
Proposition 3.2. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ. Then for any ω in L1(M), we have that
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Rl(ω) = R(ω), Rr(ω) = R(ω);

for any ξ in L2(M), we have that

Rl(ξ) = R(ξ), Rr(ξ) = R(Jϕξ).

Proof. This can be obtained from Lemma 3.1. �
Proposition 3.3. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ. Then for any ω ∈ L1(M) ∩ L2(M), y ∈ L2(M) ∩ L∞(M), x ∈ M, we have 
that

xΦ−1
t (ξt(ω)) = Φ−1

t (ξt(xω)), 1 ≤ t ≤ 2, xΦ−1
s (ιs(y)) = Φ−1

s (ιs(xy)), 2 ≤ s ≤ ∞.

Moreover, for any ω ∈ L1(M) ∩ L2(M), y ∈ L2(M) ∩ L∞(M), we have

Rl(ω) = Rl(ξt(ω)), 1 ≤ t ≤ 2, Rl(ιs(y)) = Rl(y), 2 ≤ s ≤ ∞.

Proof. By Result 8.6 in [16], we have that xξ(ω) = ξ(xω) for any x ∈ M, ω ∈ L1(M) ∩
L2(M). That is to say that xω ∈ L1(M) ∩L2(M). By Proposition 3.4 in [3], for a given 
ω ∈ L1(M) ∩ L2(M), there is a net {xβ}β ⊂ T 2

ϕ such that limβ ‖ω − xβϕ‖ = 0 and 
limβ ‖ξ(ω) − Λϕ(xβ)‖ = 0. Then for any 1 ≤ t ≤ 2, x ∈ T 2

ϕ , we have that

‖xΦ−1
t (ξt(ω)) − Φ−1

t (ξt(xω))‖t,φ
= lim

β
‖xΦ−1

t (ξt(ω)) − xxβd
1/t + xxβd

1/t − Φ−1
t (ξt(xω))‖t,φ

= lim
β

‖xΦ−1
t (ξt(ω)) − xxβd

1/t‖t,φ + ‖xxβd1/t − Φ−1
t (ξt(xω))‖t,φ

≤ ‖x‖∞‖Φ−1
t (ξt(ω)) − xβd

1/t‖t,φ + lim
β

‖ξt(xxβϕ) − ξt(xω)‖t

≤ lim
β

‖xxβϕ− xω‖2/t−1‖Λϕ(xxβ) − ξ(xω)‖2−2/t

= 0,

i.e. xΦ−1
t (ξt(ω)) = Φ−1

t (ξt(xω)) for any x in T 2
ϕ .

For any x in M, there is a bounded net {xα}α ⊂ T 2
ϕ such that xα converges to x

σ-strongly. Then for any ω ∈ L1(M) ∩ L2(M), let Φ−1
t (ξt(ω)) = wt|Φ−1

t (ξt(ω))| be the 
polar decomposition, and we have

‖xΦ−1
t (ξt(ω)) − Φ−1

t (ξt(xω))‖t,φ
= lim

α
‖xΦ−1

t (ξt(ω)) − xαΦ−1
t (ξt(ω)) + Φ−1

t (ξt(xαω)) − Φ−1
t (ξt(xω))‖t,φ

≤ lim ‖(x− xα)wt|Φ−1
t (ξt(ω))|t/2|Φ−1

t (ξt(ω))|1−t/2‖t,φ

α
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+ lim
α

‖xαω − xω‖2/t−1
1 ‖ξ(xαω) − ξ(xω)‖2−2/t

2

≤ lim
α

‖(x− xα)wt|Φ−1
t (ξt(ω))|t/2‖2,φ‖|Φ−1

t (ξt(ω))|1−t/2‖(2−t)/2t

= 0

i.e. xΦ−1
t (ξt(ω)) = Φ−1

t (ξt(xω)) for any x in M.
For the second equation, we can use a similar argument as above and Proposition 3.6 

in [3] to see it. The remaining two equations are obtained directly from the first two 
equations. �

Now we can define the left action of M on Lt(M) for any 1 ≤ t ≤ ∞. The left action 
is given as

xy = Φt(xΦ−1
t (y)), ∀x ∈ M, y ∈ Lt(M), 1 ≤ t ≤ ∞.

Similarly, we can define the right action on Lt(M) for 1 ≤ t ≤ M by

yx = Φt(Φ−1
t (y)x), ∀x ∈ M, y ∈ Lt(M), 1 ≤ t ≤ ∞.

Proposition 3.4. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ. Then for any ω ∈ L1(M) ∩ L2(M), y ∈ L2(M) ∩ L∞(M), x ∈ T 2

ϕ , we have

Φ−1
2 (ξ(ω))x = Φ−1

2 (ξ(ωσϕ
i/2(x))), Φ−1

2 (Λϕ(y))x = Φ−1
2 (Λϕ(yσϕ

−i/2(x))).

Proof. For any y ∈ Nϕ, we have that

〈ξ(ω)x,Λϕ(y)〉 = 〈Jϕx∗Jϕξ(ω),Λϕ(y)〉
= 〈ξ(ω), JϕxJϕΛϕ(y)〉
= 〈ξ(ω),Λϕ(yσϕ

−i/2(x
∗))〉

= ω(σϕ
−i/2(x

∗)∗y∗)

= ω(σϕ
i/2(x))(y∗)

= 〈ξ(ω(σϕ
i/2(x)),Λϕ(y)〉,

i.e. ξ(ω)x = ξ(ω(σϕ
i/2(x))) for any x ∈ T 2

ϕ . By Lemma 3.1, we have the first equation is 
true. Similarly, we can prove the second equation. �

Generalizing the results in the proposition above, we have the following proposition.

Proposition 3.5. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ. Then for any ω ∈ L1(M) ∩ L2(M), y ∈ L2(M) ∩ L∞(M), 1 ≤ t ≤ 2, 
2 ≤ s ≤ ∞, x ∈ T 2

ϕ , we have
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Φ−1
t (ξt(ω))x = Φ−1

t (ξt(ωσϕ
i−i/t(x))), Φ−1

s (ιs(y))x = Φ−1
s (ιs(yσϕ

−i/s(x)))

Proof. By Proposition 3.4 in [3], there exists a net {xβ}β ⊂ T 2
ϕ such that limβ ‖xβϕ −

ω‖ = 0 and limβ ‖Λϕ(xβ) − ξ(ω)‖ = 0. Then we have

‖Φ−1
t (ξt(ω))x− Φ−1

t (ξt(ωσϕ
i−i/t(x)))‖t,φ

= lim
β

‖Φ−1
t (ξt(ω))x− xβd

1/tx + xβd
1/tx− Φ−1

t (ξt(ωσϕ
i−i/t(x)))‖t,φ

≤ lim
β

‖Φ−1
t (ξt(ω))x− xβd

1/tx‖t,φ + lim
β

‖xβd
1/tx− Φ−1

t (ξt(ωσϕ
i−i/t(x)))‖t,φ

≤ lim
β

‖Φ−1
t (ξt(ω)) − xβd

1/t‖t,φ‖x‖∞ + lim
β

‖xβd
1/tx− Φ−1

t (ξt(ωσϕ
i−i/t(x)))‖t,φ

= lim
β

‖xβσ
ϕ
−i/t(x)d1/t − Φ−1

t (ξt(ωσϕ
i−i/t(x)))‖t,φ

≤ lim
β

max{‖xβσ
ϕ
−i/t(x)ϕ− ωσϕ

i−i/t(x)‖, ‖Λϕ(xβσ
ϕ
−i/t(x)) − ξ(ωσϕ

i−i/t(x))‖}

= lim
β

max{‖xβϕσ
ϕ
i−i/t(x) − ωσϕ

i−i/t(x)‖, ‖Λϕ(xβ)σϕ
i/2−i/t(x) − ξ(ω)σϕ

i/2−i/t(x)‖}

= 0,

i.e. Φ−1
t (ξt(ω))x = Φ−1

t (ξt(ωσϕ
i−i/t(x))). Similarly, one can show that the second equation 

is true. �
For any ω ∈ L1(M), we let ω = vω|ω| be the polar decomposition. By Theorem 4.2 

in Chapter 3 of [26], we see that v∗ωvω = R(|ω|) = R(ω). If ω ∈ L1(M) ∩ L2(M), then 
|ω| ∈ L1(M) ∩ L2(M).

Proposition 3.6. Let G be a locally compact quantum group. For any ω ∈ L1(G), t ∈ R, 
we have

R(ω ◦ σϕ
t ) = σϕ

−t(R(ω)), R(ω ◦ τt) = τ−t(R(ω))

R(δ∗t (ω)) = δ−itR(ω)δit, R(ω ◦R) = R(R(ω))

Proof. We leave the proof to the reader. �
4. Donoho–Stark uncertainty principle

In this section, we prove the Donoho–Stark uncertainty principle for locally compact 
quantum groups and show a series of equivalent statements for the characterizations of 
minimizers of the uncertainty principle. Moreover, we obtain biprojections from mini-
mizers of the uncertainty principle.
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Proposition 4.1. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ. Then for any ω ∈ L1(M) ∩ L2(M), we have that

Sr(ξt(ω)) ≥ ‖ω‖2

‖ξ(ω)‖2 , 1 ≤ t ≤ 2;

for any y ∈ L2(M) ∩ L∞(M), we have that

Sr(ιs(y)) ≥
‖Λϕ(y)‖2

‖y‖2
∞

, 2 ≤ s ≤ ∞.

Proof. Fix some 1 ≤ t ≤ 2. Suppose that ϕ(Rr(ξt(ω))) < ∞. Then when 1 < t ≤ 2, we 
have

‖ω‖ = sup
‖x‖∞=1

|ω(x)|

= sup
‖x‖∞=1,x∈T 2

ϕ

|ω(x)|

= sup
‖x‖∞=1,x∈T 2

ϕ

〈ξt(ω), x〉R∗
ϕ,Rϕ

= sup
‖x‖∞=1,x∈T 2

ϕ

∫
Φ−1

t (ξt(ω))d
t−1
t xdφ

= sup
‖x‖∞=1,x∈T 2

ϕ

∫
Φ−1

t (ξt(ω))Rr(ξt(ω))d
t−1
t xdφ

≤ sup
‖x‖∞=1,x∈T 2

ϕ

‖ξt(ω)‖t‖Rr(ξt(ω))d
t−1
t ‖ t

t−1 ,φ
‖x‖∞

= ‖ξt(ω)‖t‖ι
t

t−1 (Rr(ξt(ω)))‖ t
t−1

≤ ‖ω‖ 2
t−1‖ξ(ω)‖2− 2

t ‖Rr(ξt(ω))‖2− 2
t

2 ‖Rr(ξt(ω))‖
2
t−1
∞

= ‖ω‖ 2
t−1‖ξ(ω)‖2− 2

t Sr(ξt(ω))1− 1
t

i.e.

Sr(ξt(ω)) ≥ ‖ω‖2

‖ξ(ω)‖2 , 1 < t ≤ 2.

When t = 1, suppose ϕ(R(ω)) < ∞, we have

‖ω‖ = sup
x∗∈Nϕ,‖x‖∞=1

|ω(x)|

= sup
x∗∈Nϕ,‖x‖∞=1

|ω(R(ω)x)|

= sup
∗

|〈ξ(ω),Λϕ(x∗R(ω))〉|

x ∈Nϕ,‖x‖∞=1
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≤ sup
x∗∈Nϕ,‖x‖∞=1

|‖ξ(ω)‖‖x∗‖‖Λϕ(R(ω))‖

= ‖ξ(ω)‖ϕ(R(ω))1/2

= ‖ξ(ω)‖Sr(ω)1/2.

Hence

Sr(ξt(ω)) ≥ ‖ω‖2

‖ξ(ω)‖2 , 1 ≤ t ≤ 2.

Suppose that ϕ(Rr(ιs(y))) < ∞ for 2 < s ≤ ∞. Then we have

‖Λϕ(y)‖ = sup
‖ξ‖=1

|〈Λϕ(y), ξ〉|

= sup
x∈L2(φ),‖x‖2,φ=1

|
∫

yd1/2xdφ|

= sup
x∈L2(φ),‖x‖2,φ=1

|
∫

yd1/sRr(ιs(y))d
1
2− 1

sxdφ|

≤ ‖y‖s‖ι
s−2
2s (Rr(ιs(y)))‖ 2s

s−2

≤ ‖Λϕ(y)‖ 2
s ‖y‖1− 2

s∞ ‖Λϕ(Rr(ιs(y)))‖
s−2
s ‖Rr(ιs(y))‖

s
2∞

= ‖Λϕ(y)‖ 2
s ‖y‖1− 2

s∞ (Sr(ιs(y)))
s−2
2s ,

i.e.

Sr(ιs(y)) ≥
‖Λϕ(y)‖2

‖y‖2
∞

, 2 < s ≤ ∞.

When s = 2, suppose ϕ(Rr(Λϕ(y))) < ∞, we have

‖Λϕ(y)‖ = ‖Λϕ(y)Rr(Λϕ(y))‖

= ‖yJϕΛϕ(Rr(Λϕ(y)))‖

≤ ‖y‖∞‖Λϕ(Rr(Λϕ(y)))‖

= ‖y‖∞ϕ(Rr(Λϕ(y))1/2

= ‖y‖∞Sr(Λϕ(y))1/2.

Hence

Sr(ιs(y)) ≥
‖Λϕ(y)‖2

‖y‖2
∞

, 2 ≤ s ≤ ∞. �
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Theorem 4.2 (Donoho–Stark uncertainty principle). Suppose G is a locally compact quan-
tum group. Then for any ω in L1(G) ∩ L2(G), 1 ≤ t ≤ 2, 2 ≤ s ≤ ∞, we have

Sr(ξt(ω))Sr(ιs(λ(ω))) ≥ 1.

Proof. Suppose that ϕ(R(ω)) < ∞ and ϕ̂(R(λ(ω)∗)) < ∞. Then by Proposition 4.1, we 
have

Sr(ξt(ω))Sr(ιs(λ(ω))) ≥ ‖ω‖2

‖ξ(ω)‖2
‖Λ̂(λ(ω))‖2

‖λ(ω)‖2
∞

= ‖ω‖2

‖λ(ω)‖2
∞

≥ 1.

Hence we have the theorem proved. �
Definition 4.3. Suppose G is a locally compact quantum group. An element ω ∈ L1(G) ∩
L2(G) is said to be a minimizer of the Donoho–Stark uncertainty principle in Theorem 4.2
if

Sr(ξt(ω))Sr(ιs(λ(ω))) = 1

for all 1 ≤ t ≤ 2, 2 ≤ s ≤ ∞.

Proposition 4.4. Suppose that M is a von Neumann algebra with a normal semifinite 
faithful weight ϕ. Let ω ∈ L1(M) ∩ L2(M) be such that ϕ(Rr(ω)) < ∞. If

Sr(ω) = ‖ω‖2

‖ξ(ω)‖2 ,

then there is a partial isometry v ∈ L1(M) ∩ L∞(M) such that ω = μωvϕ for some 
μω > 0 and Rr(ξt(ω)) = Rr(ω) = σϕ

s (Rr(ω)) for any 1 ≤ t ≤ 2, s ∈ R.

Proof. Let ω = vω|ω| be the polar decomposition. We have that

ϕ(v∗ωvω) = ϕ(R(ω)) = ϕ(Rr(ω)) < ∞.

Then

‖ω‖ = ω(v∗ω)

= 〈ξ(ω),Λϕ(vω)〉
≤ ‖ξ(ω)‖ϕ(R(ω))1/2

= ‖ω‖.

By the Cauchy–Schwarz inequality, we have that

ξ(ω) = μωΛϕ(vω),
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for some μω ∈ C. Therefore vω ∈ L1(M) and

ω = μωvωϕ.

Note that

‖ω‖ = 〈ξ(ω),Λϕ(vω)〉 = μω‖Λϕ(vω)‖2,

we see that μω > 0. Since ‖vωϕ‖ = ϕ(v∗ωvω) = ϕ(|vω|), we obtain that |vω|ϕ is a positive 
linear functional. Then for any y > 0 in Mϕ, we have that

ϕ(y|vω|) = ϕ(y|vω|) = ϕ(|vω|y).

Hence for any y in Mϕ, we have ϕ(y|vω|) = ϕ(|vω|y). By Theorem 2.6 in [26], we see 
that σϕ

s (|vω|) = |vω| for any s ∈ R. By Proposition 3.5, we have that for any 1 ≤ t ≤ 2,

Φ−1
t (ξt(ω))Rr(ω) = Φ−1

t (ξt(ωRr(ω)))

= Φ−1
t (ξt(ω)).

Hence Rr(ξt(ω)) ≤ Rr(ω). By Proposition 4.1, we have that Rr(ξt(ω)) = Rr(ω) for any 
1 ≤ t ≤ 2. �
Proposition 4.5. Suppose that M is a von Neumann algebra with a normal semifinite 
faithful weight ϕ. Let y ∈ L2(M) ∩ L∞(M). If

Sr(y) = ‖Λϕ(y)‖2

‖y‖2
∞

,

then there is a partial isometry v in M such that y = μyv for some μy > 0. If

Sr(y) = Sr(Λϕ(y)) = ‖Λϕ(y)‖2

‖y‖2
∞

,

then σϕ
t (Rr(y)) = Rr(y) for t ∈ R and

Rr(ιs(y)) = Rr(y), ∀2 ≤ s ≤ ∞.

Moreover y ∈ L1(M) ∩ L∞(M).

Proof. Since

‖Λϕ(y)‖2 = ‖Λϕ(yRr(y))‖2

= 〈y∗yΛϕ(Rr(y)),Λϕ(Rr(y))〉
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≤ ‖y∗yΛϕ(Rr(y))‖‖Λϕ(Rr(y))‖
≤ ‖y‖2

∞ϕ(Rr(y))

= ‖Λϕ(y)‖2,

we have that

y∗yΛϕ(Rr(y)) = μΛϕ(Rr(y))

for some μ > 0, i.e. y∗y = μRr(y). Therefore y = vyμ
1/2Rr(y) by the polar decomposi-

tion. Let μy = μ1/2, v = vy, we have that y = μyv.
Now we assume that Sr(y) = Sr(Λϕ(y)). Let p2 = Rr(Λϕ(y)) and p∞ = Rr(y). Then 

we have

p2 = R(d1/2y∗) = R(d1/2p∞).

Furthermore,

ϕ(p∞) = ‖p∞d1/2p2‖2,φ =
∫

p2d
1/2p∞d1/2p2dφ

=
∫

d1/2p2p2d
1/2p∞dφ

≤ ‖p∞‖∞
∫

d1/2p2p2d
1/2dφ

= ϕ(p2) = ϕ(p∞).

By Hölder’s inequality, we have that

R(d1/2p2p2d
1/2) = R(d1/2p2) ≤ p∞.

By Proposition 4.1, we have that

ϕ(R(d1/2p2)) = Sr(Λϕ(p2)) ≥
‖Λϕ(p2)‖2

‖p2‖2
∞

= ϕ(p2) = ϕ(p∞).

Hence R(d1/2p2) = p∞. Note that p2 = R(d1/2p∞), we then obtain that

p∞d1/2p2 = p∞d1/2 = d1/2p2.

Applying σϕ
t for any t ∈ R, we see that

σϕ
t (p∞)d1/2 = d1/2σϕ

t (p2).

Let p(n)
2 = n√

π

∫∞
−∞ e−n2t2σϕ

t (p2)dt and p(n)
∞ = n√

π

∫∞
−∞ e−n2t2σϕ

t (p∞)dt. Then for any 
n ∈ N,



C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399–2445 2415
p(n)
∞ d1/2 = d1/2p

(n)
2 .

Now we have that

p(n)
∞ = σϕ

−i/2(p
(n)
2 ),

and

p(n)
∞ = p(n)∗

∞ = σϕ
i/2(p

(n)
2 ).

Hence σϕ
i (p(n)

2 ) = p
(n)
2 and σϕ

t (p(n)
2 ) = p

(n)
2 for any t ∈ R. Finally, we obtain that 

σϕ
t (p2) = p2 = p∞ for any t ∈ R and

Rr(ιs(y)) = R(d1/sy∗) = p∞ = Rr(y)

for any 2 ≤ s ≤ ∞. To see y in L1(M), we actually have

sup
‖x‖∞≤1,x∈Nϕ

|ϕ(xy)| = sup
‖x‖∞≤1,x∈Nϕ

|ϕ(p∞xy)|

≤ sup
‖x‖∞≤1,x∈Nϕ

ϕ(p∞xx∗p∞)1/2ϕ(y∗y)1/2

≤ ϕ(p∞)1/2‖Λϕ(y)‖ < ∞. �
Definition 4.6. Suppose that G is a locally compact quantum group. An element ω ∈
L1(G) is extremal if ‖λ(ω)‖∞ = ‖ω‖. An element ω ∈ L1(G) is a bi-partial isometry 
if ω = μωvωϕ for some μω > 0 and some partial isometry vω ∈ L∞(G), and λ(ω) =
μ̂λ(ω)v̂λ(ω) for some μ̂λ(ω) > 0 and some partial isometry v̂λ(ω) ∈ L∞(Ĝ). An element 
ω ∈ L1(G) is an extremal bi-partial isometry if ω is a bi-partial isometry, ω is extremal, 
and λ(ω) ∈ L1(Ĝ) ∩ L∞(Ĝ) is extremal.

Proposition 4.7. Suppose that G is a locally compact quantum group. Then the following 
are equivalent:

1. ω ∈ L1(G) ∩ L2(G) is a minimizer of the Donoho–Stark uncertainty principle.
2. ω is an extremal bi-partial isometry such that |ω|σϕ

t = |ω|, σ̂t(|λ(ω)|) = |λ(ω)|, 
∀t ∈ R.

3. ω is a bi-partial isometry, |ω|σϕ
t = |ω|, ∀t ∈ R, and λ(ω) is in L1(Ĝ) such that 

‖λ̂(λ(ω)ϕ̂)‖∞ = ‖λ(ω)ϕ̂‖.
4. ω ∈ L1(G) ∩ L2(G) satisfies that Sr(ω)Sr(λ(ω)) = 1 and σ̂t(|λ(ω)|) = |λ(ω)|.
5. ω ∈ L1(G) ∩ L2(G) satisfies that Sr(ω)Sr(λ(ω)) = 1 and Sr(ξ(ω))Sr(Λ̂(λ(ω))) = 1.

Proof. 1. ⇒ 2.: Suppose that ω ∈ L1(G) ∩ L2(G) is a minimizer of the Donoho–Stark 
uncertainty principle. By Proposition 4.4, Proposition 4.5, we have that ω is a bi-partial 
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isometry, i.e. ω = μωvωϕ for some μω > 0, a partial isometry vω in L∞(G), λ(ω) =
μ̂λ(ω)v̂λ(ω) ∈ L1(Ĝ) ∩ L∞(Ĝ) and

σϕ
t (|vω|) = |vω|, σ̂t(|v̂λ(ω)|) = |v̂λ(ω)|, ∀t ∈ R.

By Theorem 4.2, we have that ‖λ(ω)‖∞ = ‖ω‖, i.e. ω is extremal. Now we have to show 
λ(ω)ϕ̂ is extremal. Note that

‖ω‖ = μωϕ(|vω|), ‖λ(ω)‖∞ = μ̂λ(ω),

‖λ(ω)ϕ̂‖ = μ̂λ(ω)ϕ̂(|v̂λ(ω)|), ‖λ̂(λ(ω)ϕ̂)‖∞ = μω.

We have

‖λ(ω)ϕ̂‖ = μ̂λ(ω)ϕ̂(|v̂λ(ω)|)

= 1
μ̂λ(ω)

〈Λ̂(μ̂λ(ω)v̂λ(ω)), Λ̂(μ̂λ(ω)v̂λ(ω))〉

= 1
μ̂λ(ω)

〈Λϕ(μωvω),Λϕ(μωvω)〉

= μ2
ωϕ(|vω|)
‖λ(ω)‖∞

= ‖λ̂(λ(ω)ϕ̂)‖∞
‖ω‖

‖λ(ω)‖∞
= ‖λ̂(λ(ω)ϕ̂)‖∞,

(1)

i.e. ‖λ(ω)ϕ̂‖ = ‖λ̂(λ(ω)ϕ̂)‖∞. Hence λ(ω)ϕ̂ is extremal and then ω is an extremal bi-
partial isometry such that |ω|σϕ

t = |ω|, σ̂t(|λ(ω)|) = |λ(ω)|.
2. ⇒ 1.: Suppose that ω = μωvωϕ is an extremal bi-partial isometry such that |ω|σϕ

t =
|ω|, σ̂t(|λ(ω)|) = |λ(ω)|, ∀t ∈ R and λ(ω) = μ̂λ(ω)v̂λ(ω). Then for any 1 ≤ t ≤ 2, 
2 ≤ s ≤ ∞,

Sr(ξt(ω)) = Sr(ω) = ϕ(|vω|) = ‖ω‖2

‖ξ(ω)‖2 ,

Sr(ιs(λ(ω))) = Sr(λ(ω)) = ϕ̂(|v̂λ(ω)|) = ‖Λ̂(λ(ω))‖2

‖λ(ω)‖2
∞

.

Hence Sr(ξt(ω))Sr(ιs(λ(ω))) = 1.
2. ⇒ 3.: By the argument of “1. ⇒ 2.”, it is obvious.
3. ⇒ 2.: Suppose that ω = μωvωϕ is a bi-partial isometry, σϕ

t (|vω|) = |vω| and λ(ω) =
μ̂λ(ω)v̂λ(ω) ∈ L1(Ĝ), ‖λ̂(λ(ω)ϕ̂)‖∞ = ‖λ(ω)ϕ̂‖. By the computation of the Equation (1), 
we obtain that
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‖λ(ω)ϕ̂‖ ≥ μ̂λ(ω)ϕ̂(|v̂λ(ω)|)

= μ2
ωϕ(|vω|)
‖λ(ω)‖∞

= ‖λ̂(λ(ω)ϕ̂)‖∞
‖ω‖

‖λ(ω)‖∞
≥ ‖λ̂(λ(ω)ϕ̂)‖∞.

By the assumption, we have that ‖λ(ω)ϕ̂‖ = μ̂λ(ω)ϕ̂(|v̂λ(ω)|) and ‖ω‖ = ‖λ(ω)‖∞. By the 
argument of Proposition 4.4, we have that σ̂t(|v̂λ(ω)|) = |v̂λ(ω)|. Hence ω is an extremal 
bi-partial isometry such that |ω|σϕ

t = |ω|, σ̂t(|λ(ω)|) = |λ(ω)|, ∀t ∈ R.
1. ⇒ 4.: It is obvious.
4. ⇒ 1.: By Theorem 4.2, we have that

Sr(ω) = ‖ω‖2

‖ξ(ω)‖2 , Sr(λ(ω)) = ‖Λ̂(λ(ω))‖2

‖λ(ω)‖2
∞

, ‖λ(ω)‖∞ = ‖ω‖.

By Proposition 4.4, we have Sr(ξt(ω)) = Sr(ω). By Proposition 4.5, we have that 
Sr(ιs(λ(ω))) = Sr(λ(ω)). Hence ω is a minimizer of the Donoho–Stark uncertainty prin-
ciple.

1. ⇒ 5. It is obvious.
5. ⇒ 1.: By Theorem 4.2, we have that

Sr(ω) = Sr(ξ(ω)) = ‖ω‖2

‖ξ(ω)‖2 , Sr(λ(ω)) = Sr(Λ̂(λ(ω))) = ‖Λ̂(λ(ω))‖2

‖λ(ω)‖2
∞

,

‖λ(ω)‖∞ = ‖ω‖.

By Proposition 4.5, we have that σ̂s(Rr(λ(ω))) = Rr(λ(ω)) for any s ∈ R and 
Sr(ιs(λ(ω))) = Sr(λ(ω)) for any 2 ≤ s ≤ ∞. By Proposition 4.4, we have that 
Sr(ξt(ω)) = Sr(ω) for any 1 ≤ t ≤ 2. Hence ω is a minimizer of the Donoho–Stark 
uncertainty principle. �

Next, we will construct a biprojection by using a minimizer of the Donoho–Stark un-
certainty principle. Throughout the paper, we say ω = vϕ is a minimizer with assumption 
that v is a partial isometry. We also say v is a minimizer when vϕ is a minimizer and v
is a partial isometry.

Proposition 4.8. Suppose G is a locally compact quantum group and ω = vϕ ∈ L1(G) ∩
L2(G) is a minimizer of the Donoho–Stark uncertainty principle. Then

|(ϕv∗ ⊗ ι)Δ(v)|2 = ϕ(|v|)(ϕ|v| ⊗ ι)Δ(|v|)

and (ϕv∗⊗ι)Δ(v) is a multiple of a partial isometry, 1 (ϕ|v| ⊗ι)Δ(|v|) is a projection.
ϕ(|v|)
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Proof. By Proposition 4.4, we have that σϕ
t (|v|) = |v| for any t ∈ R. Thus v ⊗ 1 and 

Δ(v)(|v| ⊗ 1) are in Nϕ⊗ι and (ϕ ⊗ ι)((v∗ ⊗ 1)Δ(v)) = (ϕ ⊗ ι)((v∗ ⊗ 1)Δ(v)(|v| ⊗ 1)). By 
Proposition 1.24 in [16], we have that

|(ϕ⊗ ι)((v∗ ⊗ 1)Δ(v)(|v| ⊗ 1))|2 ≤ ‖ϕ(|v|)1‖∞(ϕ⊗ ι)((|v| ⊗ 1)Δ(|v|)(|v| ⊗ 1))

= ϕ(|v|)(ϕ⊗ ι)(Δ(|v|)(|v| ⊗ 1)).
(2)

Applying ϕ to the right hand side of Inequality (2), we obtain

ϕ(|v|)(ϕ⊗ ϕ)(Δ(|v|)(|v| ⊗ 1)) = ϕ(|v|)(|v|ϕ⊗ ϕ)Δ(|v|)

= ϕ(|v|)ϕ(|v|)ϕ(|v|) = ϕ(|v|)3.

Note that λ(ω)∗Λϕ(v) = (ω⊗ ι)(W ∗)Λϕ(v) = Λϕ((ϕv∗ ⊗ ι)Δ(v)). Applying ϕ to the left 
hand side of Inequality (2), we have that

ϕ(|(ϕv∗ ⊗ ι)Δ(v)|2) = ‖Λϕ(ϕv∗ ⊗ ι)Δ(v))‖2

= ‖λ(ω)∗Λϕ(v)‖2

= ‖Λ̂(λ(ω)∗λ(ω))‖2

= ‖λ(ω)‖2ϕ̂(λ(ω)∗λ(ω)) Proposition 4.4, 1. ⇒ 2.

= ‖|v|‖2
1ϕ(|v|) = ϕ(|v|)3.

Combining the computation above, we obtain that

|(ϕv∗ ⊗ ι)Δ(v)|2 = ϕ(|v|)(ϕ|v| ⊗ ι)Δ(|v|).

Repeating the argument above, we have that

((ϕ|v| ⊗ ι)Δ(|v|))2 = ϕ(|v|)(ϕ|v| ⊗ ι)Δ(|v|).

Hence (ϕ|v| ⊗ ι)Δ(|v|) is a multiple of a projection and (ϕv∗ ⊗ ι)Δ(v) is a multiple of a 
partial isometry. �
Proposition 4.9. Suppose that G is a locally compact quantum group and ω = vϕ is a 
minimizer of the Donoho–Stark uncertainty principle. Then we have

1. τt((ϕv∗ ⊗ ι)Δ(v)) = (ϕv∗ ⊗ ι)Δ(v)δit;
2. τt((ϕ|v| ⊗ ι)Δ(|v|)) = (ϕ|v| ⊗ ι)Δ(|v|);
3. ν = 1;
4. R((ϕ|v| ⊗ ι)Δ(|v|)) = (ϕ|v| ⊗ ι)Δ(|v|);
5. δ(ϕ|v| ⊗ ι)Δ(|v|) = (ϕ|v| ⊗ ι)Δ(|v|).



C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399–2445 2419
Proof. For any x in L∞(G), we have that

ρt(ω)(x) = ϕ(δ−itτ−t(x)v)

= ϕ(τ−t(x)vσ−i(δ−it))

= ν−tϕ(τ−t(x)vδ−it)

= ϕ(xτt(v)δ−it),

i.e. ρt(ω) = τt(v)δ−itϕ.
Note that σ̂t(λ(ω)∗λ(ω)) = λ(ω)∗λ(ω) for any t ∈ R. We have

Λϕ((ϕv∗ ⊗ ι)Δ(v)) = Λ̂(λ(ω)∗λ(ω))

= Λ̂(σ̂t(λ(ω)∗λ(ω)))

= Λ̂(λ(ρt(ω))∗λ(ρt(ω)))

= Λϕ((ϕδitτt(v∗) ⊗ ι)Δ(τt(v)δ−it)).

Hence

(ϕv∗ ⊗ ι)Δ(v) = (ϕδitτt(v∗) ⊗ ι)Δ(τt(v)δ−it)

= ν−tτt(ϕδitv∗ ⊗ ι)Δ(vδ−it)

= τt((ϕv∗ ⊗ ι)Δ(v))δ−it,

and τt((ϕ|v| ⊗ ι)Δ(|v|)) = δit(ϕ|v| ⊗ ι)Δ(|v|)δ−it.
Now we define

en = n√
π

∫
exp(−n2t2)δitdt.

Then vδ−1/2en ∈ Nψ. Since

(ϕv∗ ⊗ ι)Δ(v)en = n√
π

∫
exp(−n2t2)τt(ϕv∗ ⊗ ι)Δ(v))dt,

we have that (ϕv∗ ⊗ ι)Δ(v)en ∈ D(τ−i/2) and

τ−i/2((ϕv∗ ⊗ ι)Δ(v)en) = (ϕv∗ ⊗ ι)Δ(v)enδ1/2.

Then

S((ϕv∗ ⊗ ι)Δ(v)en) = R((ϕv∗ ⊗ ι)Δ(v)enδ1/2).

On the other hand, we have that
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S(((ϕ⊗ ι)(ekv∗ ⊗ 1)Δ(vem))δ−1/2en)

= enS(ψ ⊗ ι)(ekδ−1/2v∗ ⊗ 1)Δ(vδ−1/2em)

= en(ψ ⊗ ι)(Δ(ekδ−1/2v∗)(vδ−1/2em ⊗ 1))

= enδ
−1/2(ψ ⊗ ι)((δ−1/2 ⊗ 1)Δ(ekv∗)(vemδ−1/2 ⊗ 1))

= enδ
−1/2(ϕ⊗ ι)(Δ(ekv∗)(vem ⊗ 1)).

Since S is σ-strong-*/σ-strong-* closed, by taking the limits as k → ∞ and m → ∞, we 
obtain that

R((ϕv∗ ⊗ ι)Δ(v)enδ1/2) = enδ
−1/2((vϕ⊗ ι)Δ(v∗)).

Taking the limit as n → ∞, we have that

R((ϕv∗ ⊗ ι)Δ(v)) = (vϕ⊗ ι)Δ(v∗),

and hence

R((ϕ|v| ⊗ ι)Δ(|v|)) = (|v|ϕ⊗ ι)Δ(|v|).

Let

an = n√
π

∫
exp(−n2t2)δit(ϕ|v| ⊗ ι)Δ(|v|)δ−itdt

Then an ∈ D(τ−i/2), and we see that

S( n√
π

∫
exp(−n2t2)δ1/2δit((ϕ⊗ ι)(ek|v| ⊗ 1)Δ(|v|em))δ−1/2δ−it)

= n√
π

∫
exp(−n2t2)δ1/2δ−1/2(ϕ⊗ ι)(Δ(ek|v|)(|v|em ⊗ 1)).

(3)

By Equation (3) and taking the limits, we have that

(|v|ϕ⊗ ι)Δ(|v|) = δ(|v|ϕ⊗ ι)Δ(|v|).

Then

τt((ϕ|v| ⊗ ι)Δ(|v|)) = (ϕ|v| ⊗ ι)Δ(|v|),

and hence ν = 1. �
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Proposition 4.10. Suppose G is a locally compact quantum group and ω = vϕ ∈ L1(G) ∩
L2(G) is a minimizer of the Donoho–Stark uncertainty principle. Let v̂ = λ(ω)/‖λ(ω)‖∞. 
Then

Λϕ((ϕ|v| ⊗ ι)Δ(|v|)) = ϕ(|v|)3Λ̂((ϕ̂|v̂| ⊗ ι)Δ̂(|v̂|)).

Moreover σϕ
t ((ϕ|v| ⊗ ι)Δ(|v|)) = (ϕ|v| ⊗ ι)Δ(|v|) ∈ L1(G) ∩ L∞(G), ∀t ∈ R.

Proof. Since λ(ω) ∈ L1(Ĝ) ∩ L∞(Ĝ), we have λ(ω)∗λ(ω) ∈ L1(Ĝ) ∩ L∞(Ĝ) and

Λϕ((vϕ⊗ ι)Δ(v∗)(ϕv∗ ⊗ ι)Δ(v)) = ((ϕv∗ ⊗ ι)Δ(v))∗Λϕ((ϕv∗ ⊗ ι)Δ(v))

= (λ̂(λ(ω)∗λ(ω)ϕ̂)∗Λ̂(λ(ω)∗λ(ω))

= ‖λ(ω)‖4λ̂(|v̂|ϕ̂)∗Λ̂(|v̂|)

= ϕ(|v|)4Λ̂((ϕ̂|v̂| ⊗ ι)Δ̂(|v̂|)).

By Proposition 4.8, we have

Λϕ((ϕ|v| ⊗ ι)Δ(|v|)) = ϕ(|v|)3Λ̂((ϕ̂|v̂| ⊗ ι)Δ̂(|v̂|)).

Recall that P̂ itΛ̂(x) = νt/2Λ̂(τ̂t(x)) and Ĵ δ̂itĴΛ̂(x) = ν−t/2Λ̂(xδ̂−it) for any t ∈ R and 
x ∈ Nϕ̂. By Proposition 8.14 in [16] and Proposition 4.9, we have

Λϕ(σϕ
t ((ϕ|v| ⊗ ι)Δ(|v|))) = P̂ itĴ δ̂itĴΛϕ((ϕ|v| ⊗ ι)Δ(|v|))

= ϕ(|v|)3P̂ itĴ δ̂itĴΛ̂((ϕ̂|v̂| ⊗ ι)Δ̂(|v̂|))

= ϕ(|v|)3Λ̂(τ̂t((ϕ̂|v̂| ⊗ ι)Δ̂(|v̂|))δ̂−it)

= ϕ(|v|)3Λ̂((ϕ̂|v̂| ⊗ ι)Δ̂(|v̂|))

= Λϕ((ϕ|v| ⊗ ι)Δ(|v|)),

i.e. σϕ
t ((ϕ|v| ⊗ ι)Δ(|v|)) = (ϕ|v| ⊗ ι)Δ(|v|). Therefore (ϕ|v| ⊗ ι)Δ(|v|) ∈ L1(G) ∩

L∞(G). �
Proposition 4.11. Suppose G is a locally compact quantum group and ω = vϕ is a mini-
mizer of the Donoho–Stark uncertainty principle. Then τt(|v|) = |v| for any t ∈ R.

Proof. By Proposition 4.10, we have that σϕ
t ((ϕ|v| ⊗ ι)Δ(|v|)) = (ϕ|v| ⊗ ι)Δ(|v|). Ap-

plying the commutation relation Δσϕ
t = (τt ⊗ σϕ

t )Δ and Proposition 4.4, we obtain 
that

(ϕτt(|v|) ⊗ ι)Δ(|v|) = (ϕ|v| ⊗ ι)Δ(|v|).
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Hence λ(τt(|v|)ϕ)∗λ(|v|ϕ) = λ(|v|ϕ)∗λ(|v|ϕ). Let ṽt be the polar part of the polar de-
composition of λ(τt(|v|)ϕ). Then

|λ(τt(|v|)ϕ)|ṽ∗t ṽ0|λ(|v|ϕ)| = |λ(|v|ϕ)|2.

By Proposition 4.9, we have τt((ϕ|v| ⊗ ι)Δ(|v|)) = (ϕ|v| ⊗ ι)Δ(|v|), and then

|λ(τt(|v|)ϕ)| = |λ(|v|ϕ)|, |ṽt| = |ṽ0|.

Hence

ṽ∗t ṽ0 = |ṽ0|.

Now taking the adjoint and multiplying it from the right, we obtain

ṽ∗t |ṽ∗0 |ṽt = |ṽ0| = |ṽt|,

i.e. ṽ∗t (1 − |ṽ∗0 |)ṽt = 0 and then

ṽ∗t = ṽ∗t |ṽ∗0 | = ṽ∗t ṽ0ṽ
∗
0 = |ṽ0|ṽ∗0 = ṽ∗0 .

Finally, we have that λ(τt(|v|)ϕ) = λ(|v|ϕ) and then τt(|v|) = |v|. �
Theorem 4.12. Suppose G is a locally compact quantum group and ω = vϕ is a minimizer 
of the Donoho–Stark uncertainty principle. Then

1. (ϕv∗ ⊗ ι)Δ(v) and |v| are minimizers of the Donoho–Stark uncertainty principle.
2. 1

ϕ(|v|) (ϕ|v| ⊗ ι)Δ(|v|) is a biprojection and a minimizer of the Donoho–Stark uncer-
tainty principle.

3. τt(v)ϕ is a minimizer of the Donoho–Stark uncertainty principle for any t in R.
4. δ∗t (vϕ) is a minimizer of the Donoho–Stark uncertainty principle for any t in R.

Proof. 1. By Proposition 4.7 and Proposition 4.8, we have that (ϕv∗ ⊗ ι)Δ(v) is a bi-
partial isometry. By Proposition 4.10, we have that (ϕv∗⊗ ι)Δ(v) ∈ L1(G) ∩L∞(G). By 
the argument in Proposition 4.9, we have

Λϕ((ϕv∗ ⊗ ι)Δ(v)) = Λ̂(λ(ω)∗λ(ω)).

This is to say that λ(((ϕv∗ ⊗ ι)Δ(v))ϕ) = λ(ω)∗λ(ω). Suppose that λ(ω) = μ̂v̂ where 
μ̂ > 0 and v̂ is a partial isometry. By Proposition 4.8, we have

Sr((ϕ̂v̂∗ ⊗ ι)Δ̂(v̂)) = ϕ̂

(
1 (ϕ̂|v̂| ⊗ ι)Δ̂(|v̂|)

)
= ϕ̂(|v̂|).
ϕ̂(|v̂|)



C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399–2445 2423
By Proposition 4.8 and Proposition 4.10, we have

Sr((ϕv∗ ⊗ ι)Δ(v)ϕ) = ϕ

(
1

ϕ(|v|) (ϕ|v| ⊗ ι)Δ(|v|)
)

= ϕ(|v|).

Since Sr(vϕ)Sr(v̂) = 1, we obtain that

Sr((ϕv∗ ⊗ ι)Δ(v)ϕ)Sr((ϕ̂v̂∗ ⊗ ι)Δ̂(v̂)) = 1.

By Proposition 4.4 and Proposition 4.7, we see that (ϕv∗ ⊗ ι)Δ(v)ϕ is a minimizer of 
the Donoho–Stark uncertainty principle. Then |λ(ω)| is a minimizer of the uncertainty 
principle and so is |v|.

2. By Proposition 4.8 and Proposition 4.10, we have that 1
ϕ(|v|) (ϕ|v| ⊗ ι)Δ(|v|) is a 

biprojection. By the argument above, we see that it is a minimizer of the Donoho–Stark 
uncertainty principle.

3. Since σϕ
t , τt commute, we have that

Sr(τt(v)ϕ) = ϕ(τt(|v|)) = ϕ(|v|) = Sr(vϕ).

By Proposition 4.9 and Proposition 4.11, we have

Sr(λ(τt(v)ϕ)) = Sr(τ̂−t(λ(vϕ)))

= Sr(τ̂−t(λ(vϕ)∗λ(vϕ)))

= Sr(λ(vϕ)∗λ(vϕ))

= Sr(λ(vϕ)).

Hence τt(v)ϕ is a minimizer of the Donoho–Stark uncertainty principle by Proposi-
tion 4.7.

4. By Proposition 3.6 and the argument above, we see that δ∗t (vϕ) is a minimizer of 
the Donoho–Stark uncertainty principle. �
Remark 4.13. In general, we don’ t know if v∗, λ(vϕ)∗, σϕ

t (v) are minimizers of the 
Donoho–Stark uncertainty principle when v is a minimizer.

5. Hirschman–Beckner uncertainty principle

In this section, we will prove the Hirschman–Beckner uncertainty principle for certain 
locally compact quantum groups.

Suppose M is a von Neumann algebra with a normal semifinite weight ϕ acting on the 
Hilbert space Hϕ = L2(M, ϕ). Let φ be a normal semifinite weight on the commutant 
M′ of M on Hϕ. A vector ξ in Hϕ is φ-bounded if the map y �→ yξ for any y ∈ Nφ ⊂ M′

is bounded. Denote by Rφ(ξ) : L2(M′, φ) → Hϕ the operator given by Rφ(ξ)y = yξ for 
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any y ∈ Nφ. Moreover, θφ(ξ, ξ) = |Rφ(ξ)∗|2. We denote by D(Hϕ, φ) the set of φ-bounded 
vector in Hϕ. We have that (see [12] for more details)

D(Hϕ, φ) =
⋂

{D(T ), T ∈ L2(φ)}.

Proposition 5.1. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ and x ∈ T 2

ϕ . Then fx(t) = ‖xd1/t‖t,φ is continuous with respect to t, t ∈ [1, ∞).

Proof. Following the proof of Proposition 3.4 in [8], we see that the proposition holds. �
Proposition 5.2. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ and ω ∈ L1(M) ∩L2(M), x ∈ Nϕ. Then we have fω(t) = ‖ξt(ω)‖t is continuous 
on [1, 2] and fx(t) = ‖xd1/t‖t,φ is continuous on [2, ∞).

Proof. By Proposition 3.4 in [3], for any ε > 0, there exists y ∈ T 2
ϕ such that ‖ω−yϕ‖ < ε

and ‖ξ(ω) − Λϕ(y)‖ < ε. Hence ‖ξt(ω) − ιt(y)‖t ≤ ε for any 1 ≤ t ≤ 2. Since

|‖ξt+ε(ω)‖t+ε − ‖ξt(ω)‖t|

≤ ‖ξt(ω) − ιt(y)‖t + ‖ξt+ε(ω) − ιt+ε(y)‖t+ε + |‖ιt(y)‖t − ‖ιt+ε(y)‖t+ε|

and ‖ιt(y)‖t is continuous, we obtain that fω(t) is continuous. By Proposition 3.6 in [3], 
we see the rest of the proposition is true. �
Proposition 5.3. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ and x ∈ T 2

ϕ . Then

d

dt
〈|d1/tx∗|tξn, ξn〉

∣∣∣∣
t=2

= 〈|d1/2x∗|2 log |d1/2x∗|ξn, ξn〉 −
1
2 〈x(d log d)x∗ξn, ξn〉,

where ξn = n√
π

∫∞
−∞ e−n2t2ditξdt for any n ∈ N and ξ ∈ D(Hϕ, φ).

Proof. Note that

〈|d1/2x∗|2| log |d1/2x∗||ξn, ξn〉 < ‖ξn‖2 + 1
2‖|d

1/2x∗|2ξn‖2 < ∞,

we have that ξn ∈ D(|d1/2x∗|| log |d1/2x∗||1/2). To show that

〈|d 1
2+εx∗|2+εξn, ξn〉 − 〈|d1/2x∗|2ξn, ξn〉

ε

→ 1
2 〈(xdx

∗) log(xdx∗)ξn, ξn〉 −
1
2 〈x(d log d)x∗ξn, ξn〉

as ε → 0, we have to estimate the following three terms
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I = 〈|d 1
2+εx∗|2+εξn, ξn〉 − 〈|d 1

2+εx∗|2ξn, ξn〉
ε

− 1
2 〈(xd

2
2+εx∗) log(xd

2
2+εx∗)ξn, ξn〉,

II = 1
ε
(〈xd 2

2+εx∗ξn, ξn〉 − 〈xdx∗ξn, ξn〉) + 1
2 〈x(d log d)x∗ξn, ξn〉,

III = 〈(xd 2
2+εx∗) log(xd

2
2+εx∗)ξn, ξn〉 − 〈(xdx∗) log(xdx∗)ξn, ξn〉.

Note that for any t > 0, we have that

t2+ε − t2

ε
− t2 log t = εt2(log t)2

∞∑
k=0

(ε log t)k

(k + 2)! .

When e−1/|ε|1/4
< t < e1/|ε|1/4 , we see that

| t
2+ε − t2

ε
− t2 log t| < |ε|1/2t2.

When t ≥ e1/|ε|1/4 , we have

| t
2+ε − t2

ε
− t2 log t| < |ε|(t3 − t2 − t2 log t) < |ε|t4.

For the first term, we have
∣∣∣∣∣
〈|d 1

2+εx∗|2+εξn, ξn〉 − 〈|d 1
2+εx∗|2ξn, ξn〉

ε
− 1

2 〈(xd
2

2+εx∗) log(xd
2

2+εx∗)ξn, ξn〉
∣∣∣∣∣

=

∣∣∣∣∣〈χ[0,1/m](|d
1

2+εx∗|)( |d
1

2+εx∗|2+ε − |d 1
2+εx∗|2

ε
− |d 1

2+εx∗|2 log |d 1
2+εx∗|)ξn, ξn〉

∣∣∣∣∣
+

∣∣∣∣∣〈χ[1/m,m](|d
1

2+εx∗|)( |d
1

2+εx∗|2+ε − |d 1
2+εx∗|2

ε
− |d 1

2+εx∗|2 log |d 1
2+εx∗|)ξn, ξn〉

∣∣∣∣∣
+

∣∣∣∣∣〈χ[m,∞)(|d
1

2+εx∗|)( |d
1

2+εx∗|2+ε − |d 1
2+εx∗|2

ε
− |d 1

2+εx∗|2 log |d 1
2+εx∗|)ξn, ξn〉

∣∣∣∣∣
≤ 1

|ε| (
1

m2+ε
+ 1

m2 + |ε|
m2 logm) + |ε|1/2〈|d 1

2+εx∗|2ξn, ξn〉

+ |ε|〈χ[m,∞)(|d
1

2+εx∗|)|d 1
2+εx∗|4ξn, ξn〉

Note that

〈|d 1
2+εx∗|2ξn, ξn〉 = 〈xd 2

2+εx∗ξn, ξn〉 ≤ ‖x∗ξn‖2 + ‖dx∗ξn‖2 < ∞,

and
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〈χ[m,∞)(|d
1

2+εx∗|)|d 1
2+εx∗|4ξn, ξn〉 ≤ 〈|d 1

2+εx∗|4ξn, ξn〉

= 〈xd 2
2+εx∗xd

2
2+εx∗ξn, ξn〉

≤ ‖x‖2
∞〈xd 4

2+εx∗ξn, ξn〉

≤ ‖x‖2
∞(‖x∗ξn‖2 + ‖d2x∗ξn‖2) < ∞

Take m = e1/|ε|1/4 , we see the first term can be estimated.
For the second term, we apply a similar argument to d, we see the second term can 

be estimated.
Now we will estimate the third term. For any ε > 0, there exist m ∈ N such that

‖ exp(−|d1/2x∗|2/m)ξn − ξn‖ < ε.

Note that xd
2

2+εx∗ → xdx∗ as ε → 0 in strong resolvent sense. Then for ε small enough, 
we have

‖|d 1
2+εx∗|ξn − |d1/2x∗|ξn‖ < ε,

‖ exp(−|d 1
2+εx∗|2/m)ξn − exp(−|d1/2x∗|2/m)ξn‖ < ε,

and

|〈|d 1
2+εx∗|2 log |d 1

2+εx∗| exp(−|d 1
2+εx∗|2/m)ξn, ξn〉

− 〈|d1/2x∗|2 log |d1/2x∗| exp(−|d1/2x∗|2/m)ξn, ξn〉| < ε.

Hence

|〈|d 1
2+εx∗|2 log |d 1

2+εx∗|ξn, ξn〉 − 〈|d1/2x∗|2 log |d1/2x∗|ξn, ξn〉|

≤ |〈|d 1
2+εx∗|2 log |d 1

2+εx∗|(1 − exp(−|d 1
2+εx∗|2/m))ξn, ξn〉|

+ |〈|d 1
2+εx∗|2 log |d 1

2+εx∗| exp(−|d 1
2+εx∗|2/m)ξn, ξn〉

− 〈|d1/2x∗|2 log |d1/2x∗| exp(−|d1/2x∗|2/m)ξn, ξn〉|

+ |〈|d1/2x∗|2 log |d1/2x∗|(1 − exp(−|d1/2x∗|2/m))ξn, ξn〉|

≤ ‖ξn − exp(−|d 1
2+εx∗|2/m)ξn‖‖|d

1
2+εx∗|2 log |d 1

2+εx∗|ξn‖

+ ε + ε‖|d1/2x∗|2 log |d1/2x∗|ξn‖

≤ 2ε(‖ξn‖2 + ‖|d 1
2+εx∗|3ξn‖2)1/2 + ε + ε‖|d1/2x∗|2 log |d1/2x∗|ξn‖

≤ 2ε(‖ξn‖2 + (‖|d1/2x∗|3ξn‖ + ε)2)1/2 + ε + ε‖|d1/2x∗|2 log |d1/2x∗|ξn‖.

Finally, we see that 〈|d1/tx∗|tξn, ξn〉 is differentiable at t = 2. �
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Lemma 5.4. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ. Let {xβ}β ⊂ L2(φ) be a net with the limit x in L2(φ). Then limβ |xβ | = |x| in 
strong resolvent sense.

Proof. Suppose that M acts on a Hilbert space H. For any ξ ∈ D(H, φ), we have that

‖(|xβ | − |x|)ξ‖2 ≤ ‖||xβ | − |x||2‖1‖θφ(ξ, ξ)‖ = ‖|xβ | − |x|‖2
2‖θφ(ξ, ξ)‖

≤ ‖xβ − x‖2
2‖θφ(ξ, ξ)‖.

Since D(H, φ) is dense in H, we see that limβ |xβ | = |x| in strong resolvent sense. �
Proposition 5.5. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ. For any ξ ∈ D(Hϕ, φ), we denote ξn by n√

π

∫∞
−∞ e−n2t2ditξdt. Let ω ∈ L1(M) ∩

L2(M) be such that ξn ∈ D(Φ−1
2 (ξ(ω))∗) and

〈|Φ−1
2 (ξ(ω))∗|2| log |Φ−1

2 (ξ(ω))∗||ξn, ξn〉 < ∞,

〈| log d|Φ−1
2 (ξ(ω))∗ξn,Φ−1

2 (ξ(ω))∗ξn〉 < ∞.

Then

d

dt
〈|Φ−1

t (ξt(ω))∗|tξn, ξn〉
∣∣∣∣
t=2−

= 〈|Φ−1
2 (ξ(ω))∗|2 log |Φ−1

2 (ξ(ω))∗|ξn, ξn〉 −
1
2 〈Φ

−1
2 (ξ(ω))(log d)Φ−1

2 (ξ(ω))∗ξn, ξn〉.

Proof. There exists a net {xβ}β ⊂ T 2
ϕ such that limβ ‖ξt(ω) −ξt(xβϕ)‖t = 0 for 1 ≤ t ≤ 2

uniformly. Then

‖Φ−1
t (ξt(ω))∗ − d1/tx∗

β‖t,φ < ε

for all 1 ≤ t ≤ 2. Note that 〈|d1/tx∗
β |ξn, ξn〉 is differentiable. We have that 

d1/2x∗
β → Φ−1

2 (ξ(ω))∗ in strong resolvent sense. By using a similar argument in Propo-
sition 5.3, applying exp(−|d1/2x∗

β |2/m) we can see that 〈|d1/2x∗
β |2 log |d1/2x∗

β |ξn, ξn〉 →
〈|Φ−1

2 (ξ(ω))∗|2 log |Φ−1
2 (ξ(ω))∗|ξn, ξn〉. Note that d1/2x∗

βξn ∈ D(| log d|1/2) and
d1/2x∗

βξn → Φ−1
2 (ξ(ω))∗ξn, we have that

〈xβd
1/2(log d)d1/2x∗

βξn, ξn〉 → 〈Φ−1
2 (ξ(ω))(log d)Φ−1

2 (ξ(ω))∗ξn, ξn〉.

Hence 〈|Φ−1
t (ξt(ω))∗|tξn, ξn〉 is differentiable at 2−. �

Proposition 5.6. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ. For any ξ ∈ D(Hϕ, φ), we denote ξn by n√

π

∫∞
−∞ e−n2t2ditξdt. Let x ∈ Nϕ be 

such that
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〈|d1/2x∗|2| log |d1/2x∗||ξn, ξn〉 < ∞, 〈| log d|d1/2x∗ξn, d
1/2x∗ξn〉 < ∞

Then

d

dt
〈|d1/tx∗|tξn, ξn〉

∣∣∣∣
t=2+

= 〈|d1/2x∗|2 log |d1/2x∗|ξn, ξn〉 −
1
2 〈xd

1/2(log d)d1/2x∗ξn, ξn〉.

Proof. Note that ξn ∈ D(d1/2x∗) and the proof is similar to the one of Proposition 5.5 �
Remark 5.7. Suppose M is a von Neumann algebra with a normal semifinite faithful 
tracial weight ϕ and φ = ϕ(Jϕ ·Jϕ). Then d = 1 and for any x ∈ L1(M) ∩L∞(M), ‖x‖t
is differentiable for any 1 ≤ t < ∞.

Lemma 5.8. Suppose that M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ and φ = ϕ(Jϕ · Jϕ). Then Φ−1

2 (ξ)∗Λϕ(e) = Jϕe
∗ξ for any ξ ∈ L2(M) and 

e ∈ Tϕ.

Proof. Suppose x ∈ T 2
ϕ . We will show that d1/2x∗Λϕ(e) = Jϕe

∗Λϕ(x) for any e ∈ Tϕ. 
Since φ = ϕ(Jϕ · Jϕ), we have that d = ∇ϕ and θφ(Λϕ(e1), Λϕ(e2)) = e1e

∗
2 for any 

e1, e2 ∈ Tϕ.

d1/2x∗Λϕ(e) = Λϕ(σϕ
−i/2(x

∗e)) = Λϕ(σϕ
i/2(e

∗x)∗) = JϕΛϕ(e∗x).

For any ξ ∈ L2(M), there exists a net {xβ}β ⊂ T 2
ϕ such that limβ ‖ξ − Λϕ(xβ)‖ = 0. 

Since

‖Φ−1
2 (ξ)∗Λϕ(e) − Jϕe

∗ξ‖ = ‖(Φ−1
2 (ξ)∗Λϕ(e) − d1/2x∗

βΛϕ(e)) + (Jϕe∗Λϕ(xβ) − Jϕe
∗ξ)‖

≤ ‖Φ−1
2 (ξ)∗ − d1/2x∗

β‖2,φ‖e‖ + ‖e‖‖Λϕ(xβ) − ξ‖

= 2‖e‖‖Λϕ(xβ) − ξ‖.

we have that Φ−1
2 (ξ)∗Λϕ(e) = Jϕe

∗ξ. �
Proposition 5.9. Suppose M is a von Neumann algebra with a normal faithful state ϕ
and x ∈ T 2

ϕ . If φ = ϕ(Jϕ · Jϕ), then ‖xd1/t‖tt,φ is differentiable at t = 2 and

d

dt
‖xd1/t‖tt,φ

∣∣∣∣
t=2

= 〈log |xd1/2|JϕΛϕ(x), JϕΛϕ(x)〉 − 1
2 〈(log d)JϕΛϕ(x), JϕΛϕ(x)〉.

Moreover,
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d

dt
‖xd1/t‖t,φ

∣∣∣∣
t=2

= −1
2
‖Λϕ(x)‖ log ‖Λϕ(x)‖ + 1

2‖Λϕ(x)‖〈log |xd1/2|JϕΛϕ(x), JϕΛϕ(x)〉

− 1
4‖Λϕ(x)‖〈(log d)JϕΛϕ(x), JϕΛϕ(x)〉.

Proof. Let d1/2x∗ = vx|d1/2x∗| be the polar decomposition. Then by Lemma 5.8 we have

d

dt
‖xd1/t‖tt,φ

∣∣∣∣
t=2

= d

dt
〈|d1/tx∗|tΛϕ(1),Λϕ(1)〉

∣∣∣∣
t=2

= 1
2 〈(xdx

∗) log(xdx∗)Λϕ(1),Λϕ(1)〉 − 1
2 〈x(d log d)x∗Λϕ(1),Λϕ(1)〉

= 〈vx(log |d1/2x∗|)v∗xd1/2x∗Λϕ(1), d1/2x∗Λϕ(1)〉 − 1
2 〈(log d)d1/2x∗Λϕ(1), d1/2x∗Λϕ(1)〉

= 〈log |xd1/2|JϕΛϕ(x), JϕΛϕ(x)〉 − 1
2 〈(log d)JϕΛϕ(x), JϕΛϕ(x)〉.

Differentiating ‖xd1/t‖t,φ with respect to t, we obtain that

d

dt
‖xd1/t‖t,φ

∣∣∣∣
t=2

= − 1
t2
‖xd1/t‖t log ‖xd1/t‖tt

∣∣∣∣
t=2

+ 1
t‖xd1/t‖t−1

t

d

dt
‖xd1/t‖tt

∣∣∣∣
t=2

= −1
2‖Λϕ(x)‖ log ‖Λϕ(x)‖ + 1

2‖Λϕ(x)‖〈log |xd1/2|JϕΛϕ(x), JϕΛϕ(x)〉

− 1
4‖Λϕ(x)‖〈(log d)JϕΛϕ(x), JϕΛϕ(x)〉. �

Remark 5.10. Suppose M is a von Neumann algebra with a normal faithful state ϕ and 
φ = ϕ(Jϕ ·Jϕ). Let ω ∈ L1(M) ∩L2(M). Then ‖ξt(ω)‖t is differentiable at t = 2− when

〈| log d|Jϕξ(ω), Jϕξ(ω)〉 < ∞, 〈| log |Φ−1
2 (ξ(ω))||Jϕξ(ω), Jϕξ(ω)〉 < ∞.

Let x ∈ Nϕ. Then ‖xd1/t‖t,φ is differentiable at t = 2+ when

〈| log d|JϕΛϕ(x), JϕΛϕ(x)〉 < ∞, 〈| log |xd1/2||JϕΛϕ(x), JϕΛϕ(x)〉 < ∞.

Corollary 5.11. Suppose that M = ⊕j∈JMj be a von Neumann algebra with a normal 
semifinite faithful weight ϕ such that ϕ|Mj

is bounded for any j ∈ J and φ = ϕ(Jϕ ·Jϕ). 
Then for any x ∈ T 2

ϕ , ‖xd1/t‖t,φ is differentiable at t = 2.

Proof. Let pj be the central projection in M corresponding to Mj . Then pjd = dpj for 
any j ∈ J . ‖xd1/t‖tt,φ =

∑
j ‖pjxd1/t‖tt,φ. Note that 

∑
j finite ‖pjxd1/t‖tt is differentiable 

at t = 2 and 
∑

j finite ‖pjxd1/t‖tt converges to ‖xd1/t‖tt uniformly on 1/4 ≤ t ≤ 4. Then 
we see that ‖xd1/t‖tt is differentiable at t = 2. �
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Definition 5.12. Suppose M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ and φ = ϕ(Jϕ · Jϕ). Let ξ ∈ L2(M). Then the entropy H(ξ) of ξ is defined to 
be

H(ξ) = −〈log |Φ−1
2 (ξ)|2Jϕξ, Jϕξ〉.

We say the entropy H(ξ) of ξ ∈ L2(M) is finite if 〈| log |Φ−1
2 (ξ)||Jϕξ, Jϕξ〉 < ∞.

For more entropy of operator, we refer to an interesting book [22] by M. Ohya and 
D. Petz.

Proposition 5.13. Suppose that M = ⊕j∈JMj is a von Neumann algebra with a normal 
semifinite faithful weight ϕ such that ϕ|Mj

is bounded and φ = ϕ(Jϕ ·Jϕ). Let ξ ∈ L2(M)
and xβ ∈ T 2

ϕ such that limβ ‖ξ − Λϕ(xβ)‖ = 0 and H(ξ) is finite. Then

H(ξ) = lim
β

H(Λϕ(xβ)).

Proof. For any x ∈ T 2
ϕ , we have that JϕΛϕ(x) ∈ D(| log |xd1/2||1/2) (as follows by the 

properties of the function log t and Lemma 5.8). Let hm(t) = exp(−t2/m)t2 log t, m ∈ N. 
Then hm(t) is a bounded continuous function on R>0. Since limβ ‖ξ − Λϕ(xβ)‖ = 0, we 
have that xβd

1/2 → Φ−1
2 (ξ) in the strongly resolvent sense. Then for any m ∈ N, by 

Lemma 5.8,

lim
β
〈exp(−|xβd

1/2|2/m) log |xβd
1/2|JϕΛϕ(xβ), JϕΛϕ(xβ)〉

= 〈exp(−|Φ−1
2 (ξ)|2/m) log |Φ−1

2 (ξ)|Jϕξ, Jϕξ〉

Note that as m → ∞, we have

〈exp(−|Φ−1
2 (ξ)|2/m)| log |Φ−1

2 (ξ)||Jϕξ, Jϕξ〉 → 〈| log |Φ−1
2 (ξ)||Jϕξ, Jϕξ〉 < ∞.

Then for m, β large enough, we have

|〈exp(−|xβd
1/2|2/m) log |xβd

1/2|JϕΛϕ(xβ), JϕΛϕ(xβ)〉

− 〈log |xβd
1/2|JϕΛϕ(xβ), JϕΛϕ(xβ)〉|

is small enough. Therefore, we see that

H(ξ) = lim
β

H(Λϕ(xβ)). �
Remark 5.14. Suppose M is a von Neumann algebra with a normal semifinite faithful 
tracial weight ϕ and φ = ϕ(Jϕ · Jϕ). Then for any ξ ∈ L2(M), and any net {xβ}β ∈
L1(M) ∩ L∞(M) such that limβ xβ = ξ in 2-norm, we have that H(ξ) = limβ H(xβ).
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Theorem 5.15 (Hirschman–Beckner uncertainty principle). Suppose G is a compact quan-
tum group or a discrete quantum group. Let ω ∈ L1(G) ∩ L2(G) such that ‖ξ(ω)‖ = 1. 
If H(ξ(ω)), H(Λ̂(λ(ω))), 〈| log d|Jϕξ(ω), Jϕξ(ω)〉, 〈| log d̂|ĴΛ̂(λ(ω)), ĴΛ̂(λ(ω))〉 are finite, 
then

H(ξ(ω)) + H(Λ̂(λ(ω))) ≥ −〈(log d)Jϕξ(ω), Jϕξ(ω)〉 − 〈(log d̂)ĴΛ̂(λ(ω)), ĴΛ̂(λ(ω))〉.

Moreover, for any ξ ∈ L2(G) if H(ξ), H(F2(ξ)), 〈| log d|Jϕξ, Jϕξ〉, 〈| log d̂|ĴF2(ξ),
ĴF2(ξ)〉 are finite, then

H(ξ) + H(F2(ξ)) ≥ −〈(log d)Jϕξ, Jϕξ〉 − 〈(log d̂)ĴF2(ξ), ĴF2(ξ)〉.

Proof. Let fω(t) = ‖ξt(ω)‖t − ‖ι t
t−1 (λ(ω))‖ t

t−1
. Since f(t) ≥ 0, 1 ≤ t ≤ 2 and f(2) = 0, 

we have for any f ′(2−) ≤ 0. By Proposition 5.9 and Corollary 5.11, we have

f ′(2−) = 1
4 〈log |Φ−1

2 (ξ(ω))|2Jϕξ(ω), Jϕξ(ω)〉 − 1
4 〈(log d)Jϕξ(ω), Jϕξ(ω)〉

+1
4 〈log |λ(ω)d̂1/2|2ĴΛ̂(λ(ω)), ĴΛ̂(λ(ω))〉 − 1

4 〈(log d̂)ĴΛ̂(λ(ω)), ĴΛ̂(λ(ω))〉

= −1
4H(ξ(ω)) − 1

4H(Λ̂(λ(ω)))

−1
4 〈(log d)Jϕξ(ω), Jϕξ(ω)〉 − 1

4 〈(log d̂)ĴΛ̂(λ(ω)), ĴΛ̂(λ(ω))〉 ≤ 0

i.e.

H(ξ(ω)) + H(Λ̂(λ(ω))) ≥ −〈(log d)Jϕξ(ω), Jϕξ(ω)〉 − 〈(log d̂)ĴΛ̂(λ(ω)), ĴΛ̂(λ(ω))〉.

For any ξ ∈ L2(G), there exists a net {xβ}β ⊂ T 2
ϕ such that limβ ‖Λϕ(xβ) − ξ‖ = 0. 

Let

xβ,m = m√
π

∞∫
−∞

exp(−m2t2)τt(xβ)δ−itdt.

Then xβ,m ∈ T 2
ϕ and limβ,m ‖Λ(xβ,m) − ξ‖ = 0. Since

λ(xβ,mϕ) = m√
π

∞∫
−∞

exp(−m2t2)λ(ρt(xβϕ))dt = m√
π

∞∫
−∞

exp(−m2t2)σ̂t(λ(xβϕ))dt,

we see that λ(xβ,mϕ) ∈ Tϕ̂. Hence we have that

H(Λϕ(xβ,m)) + H(Λ̂(λ(xβ,mϕ)))

≥ −〈(log d)JϕΛϕ(xβ,m), JϕΛϕ(xβ,m)〉 − 〈(log d̂)ĴΛ̂(λ(xβ,mϕ)), ĴΛ̂(λ(xβ,mϕ))〉.
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By Proposition 5.13, we have that

lim
β,m

H(Λϕ(xβ,m)) = H(ξ), lim
β,m

H(Λ̂(λ(xβ,mϕ))) = H(F2(ξ)).

Note that

lim
β,m

〈(log d)JϕΛϕ(xβ,m), JϕΛϕ(xβ,m)〉 = 〈(log d)Jϕξ, Jϕξ〉

lim
β,m

〈(log d̂)ĴΛ̂(λ(xβ,mϕ)), ĴΛ̂(λ(xβ,mϕ))〉 = 〈(log d̂)ĴF2(ξ), ĴF2(ξ)〉.

Therefore for any ξ ∈ L2(G), we have the Hirschman–Beckner uncertainty principle. �
Remark 5.16. Suppose G is a unimodular Kac algebra. By the results in [20] and Re-
mark 5.14, we have that

H(ξ) + H(F2(ξ)) ≥ 0, ξ ∈ L2(G),

and by the argument in Proposition 3.3 in [20], we have

Sr(ξ)Sr(F2(ξ)) ≥ 1, ξ ∈ L2(G).

Corollary 5.17. Suppose G is a compact quantum group or a discrete quantum group. If 
ξ(ω) ∈ D(d−1/2) and Λ̂(λ(ω)) ∈ D(d̂−1/2), then

H(ξ(ω)) + H(Λ̂(λ(ω))) ≥ − log ‖d−1/2ξ(ω)‖2 − log ‖d̂−1/2Λ̂(λ(ω))‖2.

Let ξ ∈ L2(G) be such that ξ ∈ D(d−1/2) and F2(ξ) ∈ D(d̂−1/2). Then

H(ξ) + H(F2(ξ)) ≥ − log ‖d−1/2ξ‖2 − log ‖d̂−1/2F2(ξ)‖2.

Proof. This is followed by Jensen’s inequality. �
There is an alternative way to define an entropy of ξ ∈ L2(G).

Definition 5.18. Suppose G is a locally compact quantum group. Let ξ ∈ L2(G) be such 
that 〈| log |Φ−1

2 (ξ)|2 − log d|Jϕξ, Jϕξ〉 < ∞. Then we can define a modified entropy of ξ
as

H0(ξ) = 〈(log |Φ−1
2 (ξ)|2 − log d)Jϕξ, Jϕξ〉.

Corollary 5.19. Suppose G is a compact quantum group or a discrete quantum group. Let 
ξ ∈ L2(G) be such that H0(ξ), H0(F2(ξ)) are finite. Then

H0(ξ) + H0(F2(ξ)) ≥ 0.
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Proof. By a similar argument in Proposition 5.13 and Theorem 5.15, we see the Corollary 
is true. �
Remark 5.20. Suppose that G is a compact quantum group or a discrete quantum group. 
Let ω ∈ L1(G) ∩L2(G) with ‖ξ(ω)‖ = 1 be a minimizer of the Donoho–Stark uncertainty 
principle. Then ξ(ω) is a minimizer of the uncertainty principle in Corollary 5.19, i.e.

H0(ξ(ω)) + H0(Λ̂(λ(ω))) = 0.

In fact, suppose ω = μvϕ and λ(ω) = μ̂v̂, where μ, μ̂ > 0, v, v̂ are partial isometries. We 
have

ϕ(|v|) = μ−2, ϕ̂(|v̂|) = μ̂−2, μ̂ = μ−1

H0(ξ(ω)) = 〈(μ2 logμ2)|v|JϕΛϕ(v), JϕΛϕ(v)〉,

and

H0(Λ̂(λ(ω))) = 〈(μ̂2 log μ̂2)|v̂|ĴΛ̂(v̂), ĴΛ̂(v̂)〉.

Then

H0(ξ(ω)) + H0(Λ̂(λ(ω))) = μ2ϕ(|v|) log μ2 + μ̂2ϕ̂(|v̂|) log μ̂2 = logμ2 + log μ̂2 = 0.

In general, ω might not be a minimizer of the uncertainty principle in Theorem 5.15.

Next we will give a Rényi entropic uncertainty principle for locally compact quantum 
groups. Suppose M is a von Neumann algebra with a normal semifinite faithful weight 
ϕ. For any 0 < t < 1, we define Lt(φ) to be the set of all densely defined closed operators 
x on Hϕ with the polar decomposition x = vx|x| such that vx ∈ M and |x|t ∈ L1(φ).

Definition 5.21. Suppose M is von Neumann algebra with a normal semifinite faithful 
weight ϕ. For any x ∈ Lt(φ), t ∈ (0, 1) ∪ (1, ∞), the Rényi entropy of x is defined to be

ht(x) = t

1 − t
log ‖x‖t,φ.

Proposition 5.22 (Rényi entropic uncertainty principle). Suppose G is a locally compact 
quantum group. For any x ∈ Lt(G), 1/t + 1/t′ = 1, 1 ≤ t ≤ 2, we have

ht/2(|Φ−1
t (x)|2) + ht′/2(|Φ̂−1

t′ (Ft(x))|2) ≥ 0.

Proof. By the Hausdorff–Young inequality, we have

log ‖Ft(x)‖t′ ≤ log ‖x‖t.



2434 C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399–2445
Hence

ht/2(|Φ−1
t (x)|2) + ht′/2(|Φ̂−1

t′ (F(x))|2)

= 1
1 − t/2 log ‖|Φ−1

t (x)|2‖t/2t/2 + 1
1 − t′/2 log ‖|Φ̂−1

t′ (Ft(x))|2‖t
′/2
t′/2

= t

1 − t/2 log ‖x‖t + t′

1 − t′/2 log ‖Ft(x)‖t′

= 2t
2 − t

log ‖x‖t + 2t
t− 2 log ‖Ft(x)‖t′

≥ 2t
2 − t

0 = 0. �
Proposition 5.23. Suppose M = ⊕jMj is a von Neumann algebra with a normal semifi-
nite faithful weight ϕ such that ϕ|Mj

is bounded. Let ω ∈ L1(M) ∩ L2(M) such that 
‖ξ(ω)‖2 = 1. Then

lim
t→2−

ht/2(|Φ−1
t (ξt(ω))|2) = H(ξ(ω)) + 〈(log d)Jϕξ(ω), Jϕξ(ω)〉.

Proof.

lim
t→2−

ht/2(|Φ−1
t (ξt(ω))|2)

= lim
t→2−

1
1 − t/2(log ‖ξt(ω)‖tt − log ‖ξ(ω)‖2

2)

= − d

dt
log ‖ξt(ω)‖tt

∣∣∣∣
t=2−

= − 1
‖ξt(ω)‖t

d

dt
‖ξt(ω)‖tt

∣∣∣∣
t=2−

= −〈log |Φ−1
2 (ξ(ω))|2Jϕξ(ω), Jϕξ(ω)〉 + 〈(log d)Jϕξ(ω), Jϕξ(ω)〉. �

Remark 5.24. In Proposition 5.23, let x ∈ Nϕ be such that ‖Λϕ(x)‖ = 1. Then we 
similarly have

lim
t→2+

ht/2(|xd1/2|2) = H(Λϕ(x)) + 〈(log d)JϕΛϕ(x), JϕΛϕ(x)〉.

6. Hardy’s uncertainty principle

In this section, we show that minimizers of the Donoho–Stark uncertainty principle 
are bi-shifts of group-like projections and then prove Hardy’s uncertainty principle for 
locally compact quantum groups with group-like projections.
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Proposition 6.1. Suppose G is a locally compact quantum group and v is a minimizer 
of the Donoho–Stark uncertainty principle. Then 1

ϕ(|v|) (ϕ|v| ⊗ ι)Δ(|v|) is a group-like 
projection.

Proof. Using the argument in Proposition 4.7 in [19] and Proposition 4.9, we have that 
1

ϕ(|v|) (ϕ|v| ⊗ ι)Δ(|v|) is a group-like projection. �
We will recall the definition of the left shift of a group-like projection first.

Definition 6.2. Suppose G is a locally compact quantum group and there exists a group-
like projection B in L1(G) ∩ L∞(G). A projection x in L1(G) ∩ L∞(G) is called a left 
shift of the group-like projection B if ϕ(x) = ϕ(B) and

Δ(x)(1 ⊗B) = x⊗B, Δ(B)(1 ⊗ x) = R(x) ⊗ x.

In [19], Liu, Wang, Wu showed that for a left shift x of a group-like projection B in 
L1(G) ∩ L∞(G) and t ∈ R,

τt(x) = x, σϕ
t (x) = x, xδit = μit

x x,

where μx > 0.

Proposition 6.3. Suppose G is a locally compact quantum group and x ∈ L1(G) ∩L∞(G)
is a projection. Then x is a minimizer of the Donoho–Stark uncertainty principle if and 
only if x is a left shift of a group-like projection.

Proof. Suppose that x is a left shift of a group-like projection. By Proposition 4.4, 
Corollary 4.14, Proposition 4.17 in [19], we have

Sr(xϕ)Sr(λ(xϕ)) = 1, σt(x) = x, σ̂t(|λ(xϕ)|) = |λ(xϕ)|.

By Proposition 4.7, we have that x is a minimizer of the Donoho–Stark uncertainty 
principle.

Suppose that x is a minimizer of the Donoho–Stark uncertainty principle and x is a 
projection. Let B = 1

ϕ(x) (ϕx ⊗ ι)Δ(x). Then B is a group-like projection by Proposi-
tion 6.1 and ϕ(B) = ψ(B) by the results in [19]. We have ϕ(B) = ϕ(x). Note that

(ψ ⊗ ϕ)(|Δ(B)(1 ⊗ x) −R(x) ⊗ x|2)

= (ψ ⊗ ϕ)((1 ⊗ x)Δ(B)(1 ⊗ x)) + (ψ ⊗ ϕ)(R(x) ⊗ x)

− 2�(ψ ⊗ ϕ)((1 ⊗ x)Δ(B)(R(x) ⊗ x))

= ψ(B)ϕ(x) + ϕ(x)2 − 2�(ψ ⊗ ϕ)(Δ(B)(R(x) ⊗ x))
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and

(ψ ⊗ ϕ)(Δ(x)(R(x) ⊗ x)) = R(x)ψS−1((ι⊗ ϕ)(1 ⊗B)Δ(x))

= (ϕx)((ι⊗ ϕ)(1 ⊗B)Δ(x))

= ϕ(B((ϕx⊗ ι)Δ(x)))

= ϕ(x)ϕ(B) = ϕ(x)2.

We obtain that Δ(B)(1 ⊗ x) = R(x) ⊗ x. Since

(ϕ⊗ ϕ)(|Δ(x)(1 ⊗B) − x⊗B|2)

= (ϕ⊗ ϕ)(Δ(x)(1 ⊗B)) + ϕ(x)ϕ(B) − 2�(ϕ⊗ ϕ)((x⊗ 1)Δ(x)B)

= ϕS−1((ι⊗ ϕ)((1 ⊗ x)Δ(B))) − ϕ(x)2 Propositions 4.9, 4.11

= ϕS−1(R(x))ϕ(x) − ϕ(x)2 = 0,

we see that Δ(x)(1 ⊗ B) = x ⊗ B. Therefore x is a left shift of the group-like projec-
tion B. �

We will update the definition of a bi-shift of a biprojection in [19]. Note that by the 
results in [15], we see that there are eight forms to define a bi-shift of a biprojection. But 
we only take one of them as our definition of a bi-shift of a group-like projection here.

Definition 6.4. Suppose G is a locally compact quantum group and there exists a group-
like projection B in L1(G) ∩ L∞(G). Denote by B̃ the range projection of λ(Bϕ) in 
L∞(G). A nonzero element x in L1(G) ∩ L∞(G) is said to be a bi-shift of a group-like 
projection B if there exist a left shift Bg of the group-like projection B and a left shift 
B̃h of the group-like projection B̃ and an element y ∈ L∞(G) such that

xϕ = (yBgϕ) ∗ (λ̂(B̃hϕ̂)ϕ).

Proposition 6.5. Suppose G is a locally compact quantum group and x ∈ L1(G) ∩L∞(G). 
Then x is a minimizer of the Donoho–Stark uncertainty principle if and only if x is a 
bi-shift of a group-like projection.

Proof. Suppose that x is a minimizer of the Donoho–Stark uncertainty principle and 
x is a partial isometry. Then |x|(= Bg) is a left shift of the group-like projection B =

1
ϕ(|x|) (ϕ|x| ⊗ ι)Δ(|x|) and 1

ϕ(|x|) |λ(xϕ)|(= B̃h) is a left shift of the group-like projection 

R(λ(Bϕ))(= B̃). Then

λ(xϕ ∗ (λ̂(|λ(xϕ)|ϕ̂))) = λ(xϕ)λ(λ̂(|λ(xϕ)|ϕ̂))

= λ(xϕ)|λ(xϕ)|
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= 1
ϕ(|x|)λ(xϕ),

i.e.

xϕ = xϕ ∗ ( 1
ϕ(|x|) (λ̂(|λ(xϕ)|ϕ̂)) = xBgϕ ∗ λ̂(B̃hϕ̂)ϕ.

Hence x = xBg ∗ λ̂(B̃hϕ̂) is a bi-shift of the group-like projection B.
Suppose that x is a bi-shift of a group-like projection B. By Proposition 4.17 in [19], 

we have that |λ̂(B̃hϕ̂)| = B. For any a ∈ L∞(G), we have that

(xϕ)(Bga) = (ϕ⊗ ϕ)(Δ(Bga)(yBg ⊗ λ̂(B̃hϕ̂)))

= (ϕ⊗ ϕ)((1 ⊗B)Δ(Bg)Δ(a)(yBg ⊗ λ̂(B̃hϕ̂)))

= (ϕ⊗ ϕ)((Bg ⊗B)Δ(a)(yBg ⊗ λ̂(B̃hϕ̂)))

= (ϕ⊗ ϕ)(Δ(a)(yBg ⊗ λ̂(B̃hϕ̂)))

= (xϕ)(a),

i.e. R(xϕ) ≤ Bg. On the other hand, we have that λ(xϕ) = λ(yBgϕ)B̃h and Rr(λ(xϕ)) ≤
B̃h. Hence Sr(xϕ)Sr(λ(xϕ)) ≤ ϕ(Bg)ϕ̂(B̃h) = 1. By Theorem 4.2, the Donoho–Stark 
uncertainty principle, we see that

Sr(xϕ)Sr(λ(xϕ)) = 1, R(xϕ) = Bg, Rr(λ(xϕ)) = B̃h.

By Proposition 4.4 and Proposition 4.5, we have that x is a bi-partial isometry. Note that 
σ̂t(B̃h) = B̃h. By Proposition 4.7, we have that x is a minimizer of the Donoho–Stark 
uncertainty principle. �
Theorem 6.6 (Hardy’s uncertainty principle). Suppose G is a locally compact quantum 
group with a bi-shift w of a group-like projection. Let x ∈ L1(G) ∩ L∞(G) be such that

|x∗| ≤ C|w∗|, |λ(xϕ)| ≤ C ′|λ(wϕ)|,

for some C, C ′ > 0. Then x is a multiple of w.

Proof. We assume that w is a partial isometry. Consider the element x∗w in L1(G) ∩
L∞(G). Since |x∗| ≤ C|w∗|, x∗w is nonzero. We have that Sr(x∗wϕ) ≤ ϕ(|w|). To 
estimate Sr(λ(x∗wϕ)), we will show

λ(x∗wϕ) = (ϕ̂λ(xϕ)∗ ⊗ ι)Δ̂(λ(wϕ)).

This is because
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Λ̂((ϕ̂λ(xϕ)∗ ⊗ ι)Δ̂(λ(wϕ))) = Λϕ(λ̂(λ(xϕ)ϕ̂)∗λ̂(λ(wϕ)ϕ̂))

= Λϕ(x∗w) = Λ̂(λ(x∗wϕ)).

By Proposition 1.24 in [16] and |λ(xϕ)| ≤ C ′|λ(wϕ)|, we have that

|(ϕ̂λ(xϕ)∗ ⊗ ι)Δ̂(λ(wϕ))|2

≤ ‖ϕ̂(|λ(xϕ)|2)1‖(ϕ̂⊗ ι)(( |λ(wϕ)|
ϕ(|w|) ⊗ 1)Δ̂(|λ(wϕ)|2)( |λ(wϕ)|

ϕ(|w|) ⊗ 1))

= ϕ(x∗x)(ϕ̂⊗ ι)(Δ̂(|λ(wϕ)|2)( |λ(wϕ)|
ϕ(|w|) ⊗ 1)) Propositions 6.5, 4.7

= ϕ(x∗x)(ϕ̂⊗ ι)(Δ̂(|λ(wϕ)|)(|λ(wϕ)| ⊗ 1)).

By Proposition 4.10, we see that

Sr(λ(x∗wϕ)) ≤ Sr((ϕ̂⊗ ι)(Δ(|λ(wϕ)|)(|λ(wϕ)| ⊗ 1))) = ϕ̂( |λ(wϕ)|
ϕ(|w|) ) = Sr(λ(wϕ)).

By Theorem 4.2, we have that

Sr(x∗wϕ)Sr(λ(x∗wϕ)) = 1.

and

R(x∗wϕ) = |w|, Rr(λ(x∗wϕ)) = B̃,

where B̃ = R((ϕ̂⊗ ι)(Δ(|λ(wϕ)|)(|λ(wϕ)| ⊗ 1))). Now we will show that (ϕ ⊗ ι)((w∗x ⊗
1)Δ(|w|)) = ϕ(w∗x)B, where B = 1

ϕ(|w|) (ϕ|w| ⊗ ι)Δ(|w|). By Proposition 1.24 in [16], 
we have that

|(ϕ⊗ ι)((w∗x⊗ 1)Δ(|w|))|2 ≤ ‖ϕ(w∗xx∗w)1‖(ϕ⊗ ι)((|w| ⊗ ι)Δ(|w|))
= ‖x‖2ϕ(|w|)2B.

Hence we have that

(ϕ⊗ ι)((w∗x⊗ 1)Δ(|w|)) = (ϕ⊗ ι)((w∗x⊗ 1)Δ(|w|))B
= (ϕ⊗ ι)((w∗x⊗ 1)Δ(|w|)(1 ⊗B))

= (ϕ⊗ ι)((w∗x⊗ 1)(|w| ⊗B))

= ϕ(w∗x)B

= ϕ(w∗x)
ϕ(|w|) (ϕ⊗ ι)((|w| ⊗ 1)Δ(|w|)).

Applying the map Λϕ, we obtain
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Λϕ((ϕ⊗ ι)((w∗x⊗ 1)Δ(|w|))) = Λϕ(ϕ(w∗x)
ϕ(|w|) (ϕ⊗ ι)((|w| ⊗ 1)Δ(|w|))).

Therefore

λ(x∗wϕ)∗λ(|w|ϕ) = ϕ(w∗x)
ϕ(|w|) λ(|w|ϕ)∗λ(|w|ϕ).

Now we obtain that

x∗w = ϕ(w∗x)
ϕ(|w|) w∗w,

and

x = ϕ(x∗w)
ϕ(|w|) w,

i.e. x is a multiple of w. �
Remark 6.7. Note that Hardy’s uncertainty principle for unimodular Kac algebras proved 
in [20] imply the uniqueness of a bi-shift of a biprojection, but Hardy’s uncertainty 
principle for locally compact quantum groups given here does not imply the uniqueness 
(see also Theorem 4.12).

7. Young’s inequality revisited

In [19], Liu, Wang and Wu shows that for any x ∈ Lt(G) and y ∈ Ls(G), 1 ≤ t, s ≤ 2, 
the convolution x ∗ ρ−i/t′(y) is well defined by using Cauchy sequences and

Φ̂−1
r′ Fr(x ∗ ρ−i/t′(y)) = Φ̂−1

t′ Ft(x)Φ̂−1
s′ Fs(y),

where 1
r + 1 = 1

t + 1
s , 1

t + 1
t′ = 1. In this definition, we have that Φ̂−1

t′ Ft(x)Φ̂−1
s′ Fs(y) ∈

Lr′(Ĝ) for 2 ≤ r′ ≤ ∞. When 1 ≤ r′ ≤ 2, we can give a new definition of the convolution 
of x ∈ Lt(G) and y ∈ Ls(G), 1 ≤ t, s ≤ 2, by

x ∗ ρ−i/t′(y) = F̂r′Φ̂r′(Φ̂−1
t′ Ft(x)Φ̂−1

s′ Fs(y)).

Note that for this definition we could have written the convolution as x ∗ y, but it will 
not coincide with the case when 2 ≤ r′ ≤ ∞.

Combining Theorem 3.4 in [19] and the definition above we have Young’s inequality 
for any 1 ≤ t, s ≤ 2 as follows:

Theorem 7.1. Suppose G is a locally compact quantum group. For any x ∈ Lt(G), y ∈
Ls(G), 1 ≤ t, s ≤ 2, we have
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‖x ∗ ρ−i/t′(y)‖r ≤ ‖x‖t‖y‖s,

where 1
r + 1 = 1

t + 1
s and 1

t + 1
t′ = 1.

In [17], Kustermans and Vaes defined the subspace L1(G)# of L1(G) as

L1(G)# = {ω ∈ L1(G)|∃ρ ∈ L1(G) : ρ(x) = ω(S(x)), for all x ∈ D(S)}.

For all ω ∈ L1(G)#, we define ω#(x) = ω(S(x)) for all x in D(S). It is known that 
λ(ω#) = λ(ω)∗ for all ω ∈ L1(G)#. Now we define subspaces Lt(G)# of Lt(G), 1 ≤ t ≤ 2, 
as

Lt(G)# = {x ∈ Lt(G)|∃x0 ∈ Lt(G) : Φ−1
t

t−1
Ft(x0) = (Φ−1

t
t−1

Ft(x))∗}.

Note that L2(G) = L2(G)#. For any x ∈ Lt(G)#, we define x# = x0 where x0 is the 
one described in the definition. The definition here coincides with the definition given in 
[17] when t = 1 by Proposition 2.4 in [17]. We define a norm ‖ · ‖t,# on Lt(G)# by

‖x‖t,# = max{‖x‖t, ‖x#‖t}.

Proposition 7.2. Suppose G is a locally compact quantum group. Let ω ∈ L1(G) ∩L2(G)
be such that ω ∈ D(τ∗(−1/t′+1/2)iδ

∗
−i/t′) for any 1 ≤ t ≤ 2, where 1/t′ + 1/t = 1. Then

ξt(ω)# = ξt(τ∗(1/t′−1/2)iδ
∗
i/t′(ωR)).

In particular, if ω ∈ D(δ∗−i/2), we have that

ξ(ω)# = ξ(δ∗i/2(ωR)).

Proof. We check the equation in the Hilsum space Lt(φ),

(Φ−1
t Ft(ξt(τ∗(1/t′−1/2)iδ

∗
i/t′(ωR))))∗ = (λ(τ∗(1/t′−1/2)iδ

∗
i/t′(ωR))d̂1/t′)∗

= (σ̂−i/t′(λ(ω#))d̂1/t′)∗

= (d̂1/t′λ(ω)∗)∗

= λ(ω)d̂1/t′

= Φ−1
t Ft(ξt(ω)). �

Proposition 7.3. Suppose G is a locally compact quantum group. Let x ∈ Lt(G)#, y ∈
Ls(G) and 1

r + 1 = 1
t + 1

s , where 1 ≤ r, t, s ≤ 2. Then

(x ∗ ρ−i/t′(y))# = y# ∗ ρ−i/s′(x#).
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Proof. By Proposition 3.7 in [19], we have

Φ−1
r′ Fr((x ∗ ρ−i/t′(y))#) = (Φ−1

r′ Fr(x ∗ ρ−i/t′(y)))∗

= (Φ−1
t′ Ft(x)Φ−1

s′ Fs(y))∗

= Φ−1
s′ Fs(y)∗Φ−1

t′ Ft(x)∗

= Φ−1
s′ Fs(y#)Φ−1

t′ Ft(x#)

= Φ−1
r′ Fr(y# ∗ ρ−i/s′(x#)),

i.e. (x ∗ ρ−i/t′(y))# = y# ∗ ρ−i/s′(x#). �
Proposition 7.4. Suppose G is a locally compact quantum group. Let x ∈ Lt(G)#, y ∈
Ls(G)# and 1

r + 1 = 1
t + 1

s , 1 ≤ t, s ≤ 2. If 2 ≤ r ≤ ∞, then

‖x# ∗ ρ−i/t′(y#)‖r ≤ ‖x‖t‖y‖s.

If 1 ≤ r ≤ 2, then

‖x ∗ ρ−i/t′(y)‖r,# ≤ ‖x‖t,#‖y‖s,#.

Proof. For 2 ≤ r ≤ ∞, we have

‖x# ∗ ρ−i/t′(y#)‖r = ‖F̂r′Φ̂r′(Φ̂−1
t′ Ft(x#)Φ−1

s′ Fs(y#))‖r

≤ ‖Φ̂−1
t′ Ft(x#)Φ−1

s′ Fs(y#)‖r′,φ
= ‖Φ−1

s′ Fs(y)Φ̂−1
t′ Ft(x)‖r′,φ

≤ ‖Fs(y)‖s′‖Ft(x)‖t′

≤ ‖y‖s‖x‖t.

For 1 ≤ r ≤ 2, we have

‖x ∗ ρ−i/t′(y)‖r,# = max{‖x ∗ ρ−i/t′(y)‖r, ‖(x ∗ ρ−i/t′(y))#‖r}

= max{‖x ∗ ρ−i/t′(y)‖r, ‖y# ∗ ρ−i/s′(x#)‖r}

≤ max{‖x‖t‖y‖s, ‖x#‖t‖y#‖s}

≤ ‖x‖t,#‖y‖s,#. �
Lemma 7.5. Suppose that M is a von Neumann algebra with a normal semifinite faithful 
weight ϕ. Let x ∈ L1(M) ∩ L∞(M) be such that ‖Λϕ(x)‖2 = ‖x‖∞‖xϕ‖. Then x is a 
multiple of a partial isometry and σϕ

t (|x|) = |x| for any t ∈ R.
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Proof. Note that ϕ(|x|) ≤ ‖xϕ‖ < ∞, we have that |x|1/2 ∈ Nϕ. Then

ϕ(|x|2) = 〈|x|Λϕ(|x|1/2),Λϕ(|x|1/2)〉

≤ ‖|x|Λϕ(|x|1/2)‖‖Λϕ(|x|1/2)‖

≤ ‖x‖∞ϕ(|x|)

≤ ‖x‖∞‖xϕ‖.

By the assumption, we obtain that

|x|Λϕ(|x|1/2) = ‖x‖∞Λϕ(|x|1/2), ‖xϕ‖ = ϕ(|x|).

Then |x| = ‖x‖∞R(|x|) and by Proposition 4.5, we have that x is a partial isometry 
such that σϕ

t (|x|) = |x| for any t ∈ R. �
In [21], Liu and Wu completely characterize the extremal pairs of Young’s inequality 

for unimodular Kac algebras. But in general, it is quite difficult to characterize the 
extremal pairs of Young’s inequality for locally compact quantum groups.

Proposition 7.6. Suppose G is a locally compact quantum group. Let ω ∈ L1(G) ∩L2(G)
be such that ‖ω ∗ ξ(ω)#‖2 = ‖ω‖‖ξ(ω)‖. Then ω is a minimizer of the Donoho–Stark 
uncertainty principle.

Proof. Note that

‖ω ∗ ξ(ω)#‖2
2 = ‖λ(ω)Φ−1

2 F2(ξ(ω))∗‖2
2,φ

= ‖λ(ω)d̂1/2λ(ω)∗‖2
2,φ

=
∫

λ(ω)d̂1/2λ(ω)∗λ(ω)d̂1/2λ(ω)∗dφ

≤ ‖λ(ω)∗λ(ω)d̂1/2λ(ω)∗‖2,φ‖d̂1/2λ(ω)∗‖2,φ

≤ ‖λ(ω)‖2
∞‖ξ(ω)‖2

2

≤ ‖ω‖2‖ξ(ω)‖2.

Then we have that all inequalities above must be equalities by the assumption. This is 
to say,

λ(ω)∗λ(ω)d̂1/2λ(ω)∗ = ‖λ(ω)‖2
∞d̂1/2λ(ω)∗, ‖λ(ω)‖∞ = ‖ω‖1.

Let p2 = R(d̂1/2λ(ω)∗) and p∞ = R(λ(ω)∗). Then λ(ω)∗λ(ω)p2 = ‖λ(ω)‖2
∞p2 and hence 

p2 ≤ p∞. Note that
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ϕ̂(p2) = 1
‖λ(ω)‖2

∞
ϕ̂(|λ(ω)|p2|λ(ω)|) ≤ ‖ξ(ω)‖2

2
‖λ(ω)‖2

∞
.

By Proposition 4.4, we have that

ϕ̂(p2) = Sr(Λ̂(λ(ω))) ≥ ‖Λ̂(λ(ω))‖2
2

‖λ(ω)‖2
∞

.

Combining the two inequalities above, we have that

ϕ̂(p2) = ‖Λ̂(λ(ω))‖2
2

‖λ(ω)‖2
∞

and p2 = p∞. By Proposition 4.7, we have that λ(ω) is a multiple of a partial isometry 
and σ̂t(|λ(ω)|) = |λ(ω)|. Now we have to show that ω = vϕ is such that v is a multiple 
of a partial isometry. Note that λ(ω) ∈ L1(G) ∩ L∞(G), we let v = λ̂(λ(ω)ϕ̂). Then

Λϕ(v) = Λϕ(λ̂(λ(ω)ϕ̂)) = Λ̂(λ(ω)) = ξ(ω),

i.e. ω = vϕ. We will check that ‖Λϕ(v)‖2 = ‖v‖∞‖vϕ‖.

‖v‖∞‖vϕ‖ ≥ ‖Λϕ(v)‖2 = ‖Λ̂(λ(ω))‖2

= ‖λ(ω)‖∞‖λ(ω)ϕ̂‖

= ‖ω‖‖λ(ω)ϕ̂‖

≥ ‖vϕ‖‖v‖∞,

i.e. ‖Λϕ(v)‖2 = ‖v‖∞‖vϕ‖. By Lemma 7.5, we have that v is a multiple of a partial 
isometry and σt(|v|) = |v|. Hence ω is a minimizer of the Donoho–Stark uncertainty 
principle by Proposition 4.7. �
Remark 7.7. Suppose G is a locally compact quantum group. Let ω ∈ L1(G) ∩L2(G) be 
such that ‖ξ(ω)# ∗ ρ−i/2(ω)‖2 = ‖ξ(ω)‖‖ω‖. We can not prove that ω is a minimizer of 
the Donoho–Stark uncertainty principle. Actually we can show that λ(ω) is a multiple 
of a partial isometry and ‖λ(ω)‖∞ = ‖ω‖1.

Now we show that bi-shifts of group-like projections are extremal operators for the 
Hausdorff–Young inequality.

Proposition 7.8. Suppose that G is a locally compact quantum group. Let v be a minimizer 
of the Donoho–Stark uncertainty principle. Then for any 1 ≤ t ≤ 2, 1/t + 1/t′ = 1,

‖Ft(ξt(vϕ))‖t′ = ‖ξt(vϕ)‖t.
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Proof. Suppose that v is a partial isometry and λ(vϕ) = μ̂v̂, where μ̂ > 0 and v̂ is a 
partial isometry. By Theorem 4.2, we have

ϕ̂(|v̂|) = ϕ(|v|)−1 = μ̂−1.

‖Ft(ξt(vϕ))‖t′ = ‖ιt′(λ(vϕ))‖t′

= ϕ̂(|λ(vϕ)|t′)1/t′

= μ̂μ̂−1/t′ = μ̂1/t

= ϕ(|v|)1/t = ‖ξt(vϕ)‖t,

i.e. ‖Ft(ξt(vϕ))‖t′ = ‖ξt(vϕ)‖t. �
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