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1. Introduction

Uncertainty principles were first studied in quantum mechanics and then widely de-
veloped in harmonic analysis, information theory, and quantum information etc. In [9],
Donoho and Stark proved a support-version uncertainty principle for cyclic groups and
applied it in signal recovery. Later Candes, Romberg, and Tao [7] developed this un-
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certainty principle in the theory of compressed sensing. The Donoho—Stark uncertainty
principle was proved for finite abelian groups [25], locally compact abelian groups[23],
compact groups [1], Kac algebras [6,20]. The minimizers of the Donoho-Stark uncer-
tainty principle for locally compact abelian groups [9,25,23] were the translations and
modulations of characteristic functions of compact open subgroups. For noncommutative
case, the authors [14] showed the Donoho—-Stark uncertainty principle for subfactors and
introduced bi-shifts of biprojections for subfactors which generalized the modulations
and translations of characteristic functions of subgroups. The authors showed that the
minimizers of the uncertainty principle are bi-shifts of biprojections. For infinite case,
Liu and Wu [20] characterized the minimizers of the Donoho—Stark uncertainty principle
for Kac algebras with biprojections.

Hirschman uncertainty principle in terms of entropies was first introduced by
Hirschman in [13]. In [2], Beckner proved the uncertainty principle with sharp con-
stant for the real line R. The Hirschman-Beckner uncertainty principle generalized
Heisenberg’s uncertainty principle in quantum mechanics. This uncertainty principle
was studied for locally compact abelian groups [23], Kac algebras [6,20], and subfactors
[14]. The minimizers of the Hirschman—Beckner uncertainty principle were characterized
in [23] and [14].

Hardy’s uncertainty principle for R was proved in [11]. Hardy’s uncertainty principles
for arbitrary locally compact group were studied rarely. In [14], the authors showed that
Hardy’s uncertainty principle for subfactors by using the minimizers of the Donoho—Stark
and the Hirschman—Beckner uncertainty principle. In [20], Liu and Wu proved Hardy’s
uncertainty principle for Kac algebras with biprojections. Note that the authors [14]
showed that there are eight forms of a bi-shift of a biprojection and Hardy’s uncertainty
principle in [14,20] implies that the uniqueness of a bi-shift of a biprojection.

Locally compact quantum groups introduced by Kustermanns and Vaes [16,17] gen-
eralized locally compact groups and their duals. Compact quantum groups introduced
by Woronowicz [27-30] are locally compact quantum groups. In this paper, we prove the
Donoho—Stark uncertainty principle for locally compact quantum groups and character-
ize the minimizers of the uncertainty principle. We introduce the notion of a bi-shift of a
group-like projection and show that the minimizers are bi-shifts of group-like projections.
For finite abelian groups, bi-shifts of group-like projections are wave packets [10]. Wave
packets are widely used in quantum mechanics, information theory, etc.

Main Theorem 1 (Donoho—Stark uncertainty principle, Theorem 4.2, Proposition 4.7,
Proposition 6.5). Suppose G is a locally compact quantum group. Then for any w in
LYG)NL*G), 1<t <2,2<s< oo, we have

Sr(&(W))Sr(*(Aw))) = 1.

Moreover the following are equivalent:
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1. we LY (G) N L3(G) is a minimizer of the Donoho-Stark uncertainty principle.
2. w is an extremal bi-partial isometry such that |w|lof = |w|, 6:(|A\w)]) = |Aw)],
vt e R.

IMA@) D)oo = IMw)II-

4. w e LY(G) N L3(G) satisfies that S, (w)S,(AMw)) = 1 and 6(|A\(w)]) = |[M(w)].
5. w e LYG) N L%(G) satisfies that Sy(w)Sr(A(w)) =1 and Sy (£(w))S, (A(A(w))) = 1.
6. w is a bi-shift of a group-like projection B € L'(G).

Note that S-(z) is the p-value of the support projection of x, and it will be explained in
Section 3.

The Donoho—Stark uncertainty principle for locally compact quantum groups is a
series of inequalities which is different from the case for unimodular Kac algebras. For
a locally compact quantum group G, we define an entropy H(¢) of ¢ in L?(G). Then
we proved the Hirschman—Beckner uncertainty principle for compact quantum groups or
discrete quantum groups.

Main Theorem 2 (Hirschman—Beckner uncertainty principle, Theorem 5.15). Suppose G

is a compact quantum group or a discrete quantum group and ¢ = @(J, - J,). Let w €
LY(G) N L*(G) such that |§(w)l| = 1. If H({(w)), HAA(W))), ([logd|Jp&(w), Jp&(w))
(|log d|JA(Nw)), JA(Nw))) are finite, then

H(EW)) + HAM W) = —((log d) Jo€(w), Jp€(w)) = ((log d) TAN(w)), JAA(@))).

Moreover, for any ¢ € L*(G) if H(E), H(Fx()), (|logd|J,€, J L), (\logdA\j]:g(f),
JF3(€)) are finite, then

H(E) + H(F2(€)) = —((log d) Jo€, J,€) — ((log d)JF2(€), JF2(€)).

By using bi-shifts of group-like projections, we show Hardy’s uncertainty principle for
locally compact quantum groups with group-like projections.

Main Theorem 3 (Hardy’s uncertainty principle, Theorem 6.6). Suppose G is a locally
compact quantum group with a bi-shift w of a group-like projection. Let x € LY(G) N
L>(G) be such that

lz*] < Clw™|,  [Azp)| < C'|A(we)],

for some C,C’ > 0. Then x is a multiple of w.

The techniques in [4,12,16] for locally compact quantum groups and noncommutative
Lt spaces will be frequently used in the paper. This paper is organized as follows. In Sec-
tion 2, we go over the definition and some basic properties of locally compact quantum
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groups and noncommutative L spaces for 1 < t < co. In Section 3, we study support
projections or range projections of elements in noncommutative L spaces. In Section 4,
we show the Donoho—Stark uncertainty principle for locally compact quantum groups
and obtain the properties of the minimizers of the Donoho—Stark uncertainty principle.
In Section 5, we study the derivative of the t-norm and show the Hirschman—Beckner
uncertainty principle for compact quantum groups or discrete quantum groups. In Sec-
tion 6, we prove Hardy’s uncertainty principle for locally compact quantum groups. In
Section 7, we obtain more results on Young’s inequality for locally compact quantum
groups.

2. Preliminaries

In this section, we will recall some properties of noncommutative L' spaces and the
definition and properties of locally compact quantum groups.
Let M be a von Neumann algebra with a normal semi-finite faithful weight ¢ and

N, ={z € M:p(x"z) <oof, M, =N N,.

Denote by V., J,, 0¥ the modular operator, modular conjugation and modular au-
tomorphism group associated with ¢. It is known that ¢ is invariant under ¥, i.e.
wof = ¢ for any t € R. For any # € D(0],), the domain of 052, we have that
p(a*z) = p(075(x)0],(2)"). Denote by ML the set of all positive elements in M.

Let (Hy,mp,Ay) be the Gelfand-Naimark-Segal (GNS) semi-cyclic representation,
where Ay, : M, — H, is an inclusion map. We assume that M act on H,. Therefore
we will omit 7,. The modular conjugation J, satisfies that J,A,(x) = A¢(032 (z)*) for
any € N, N D(O’f/2). For any € M, and a € D(07,), we have az,za € M, and
plaz) = p(zo_i(a)).

Denote by M, the predual of M. Denote by M7 the set of all positive linear func-
tionals in M,. For any w € M,, the linear functional @ € M, is given by @(x) = w(z*)
for any = in M. Given x in M and w € M,, the linear functionals xw and wx are given
by (2w)(y) = w(yx) and (wx)(y) = w(zy) for any y in M.

The Tomita algebra 7, is given by

T, = {x € M : z is analytic w. r. t. ¥ and o7 (x) € M, NN, Vz € C}.

It is known that 7T, 7;? are o-strongly dense in M.

Let L, = {z € N, : zp € M.} and R, = {z € N7, : px € M..}. By the results in [3],
we have that 77 C L, and R, = L.

The noncommutative L* space L*(M) is the complex interpolation space (M, M..)p
of M, and M for 1 < ¢ < co. In [3], L*(M) is written as L*(M)ies or Li_, 5y (M).
Note that L'(M) = M., L®(M) = M, and L*(M) N L>®(M) = L,. Denote by
b Ly LY(M) the embedding of £, into LY(M). It is known that ¢/(L,) is dense in
LY(M) for any 1 < ¢ < co. By results in [3], we identify L?(M) with H,. Moreover,
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L'M)N L2 M) =T = {w € M.|Ay(x) = w(z*),z € N, is a bounded map.}
=M.NH,,

and
L*(M)NL®(M) =N, = H, N M.

Denote by & : Z — LY(M) for 1 <t < 2 the embedding from Z to L*(M). For t = 2, we
use {(w) instead of £ (w) whenever w € Z. Denote by ¢* : N, — L°(M) for 2 < s < o0
the embedding from 9, to L*(M). For s = 2, we use A, (z) instead of 1?(z) whenever
z € M. Note that we use the same notation as ¢ : £, — L'(M) here, since there is no
confusion.

Let ¢ be a fixed normal semifinite faithful weight on the commutant M’ of M on H,,.
A closed densely defined operator a on the Hilbert space H,, is y-homogeneous with v € R
if xa C aaﬁy (z) for all # € M’ analytic with respect to the modular automorphism o? of
M. The Hilsum L* space L!(¢) is the space of all closed densely defined operators a on
M, such that if z = u|x| is the polar decomposition, then |z|* is the spatial derivative of a
positive linear functional w € M, and u € M. Note that L>°(¢) = M. The distinguished
spatial derivative d = ‘;—‘; is a strictly positive self-adjoint operator acting on H, and
of (x) = di*zd = for every z in M; 0¥ (y) = d~"yd" for every y in M’. Throughout the
paper, we will identify strong product, strong sum as product, sum respectively. There
is an isometric isomorphism ®; : L*(¢) — L*(M) for 1 <t < oo such that

Oy (zd't) = H(x), z¢€ 7:3.

If t > 2, we have that ®;(zd/*) = (!(z) for any = € N,,.

By Theorem 2.4 in [5], for any = € T, t € [2, 00|, we have zd'/* = dl/taﬁt(x).

Now we will recall the definition of locally compact quantum groups. A locally compact
quantum group G = (M, A, p, 1) consists of

(1) A von Neumann algebra M;

(2) A unital normal *-homomorphism A : M — MM satisfying (A®)A = L@ A)A,
where ¢ : M — M is the identity.

(3) Two normal semifinite faithful weight ¢, 1) on M such that

o((w @ 1) Ax)) = p(z)w(l), Yw € Mf, zeM?,
P((t @ W)A(2)) = Y(z)w(l), Vw € Mf,x € Sﬁz,

 is the left Haar weight and 1) is the right Haar weight.

Suppose H, is the Hilbert space arising from the GNS representation of M with
respect to ¢ and assume that M acts on H,,.
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The multiplicative unitary operator W € B(H, ® H,,) is defined by
W*(Ap(z) @ Ap(y)) = (Ap @ Ap)(A(y)(z @ 1))

for any z,y € M,. We have A(z) = W*(1 ® z)W for any € M.
There is a dual locally compact quantum group G= (/\;l7 A, 1&) Recall that

o-strong-*

M={(we )W)l € B(H).} ;

W = SW*Y, where ¥ is the flip on H, @ H,. A(z) = W*(1 @ )W for any z € M.
The Fourier representation A : M, — M is given by Mw) = (w ® ¢)(W) for any w in
M.,. The dual left Haar weight ¢ is the unique normal semifinite faithful weight on M
having (H, ¢, A) as a GNS-construction where A is a linear map from N, to H, given
by A(A(w)) = &(w) for any w € LY(M) N L2(M). There are the antipode S, the unitary
antipode R, and a scaling automorphism 7 on M. The left and the right Haar weights ¢,
1 satisfies 1(-) = @(6'/2 - §1/2), where § is the modular element of the locally compact
quantum group G. Note that § is a unique strictly positive element affiliated with M
and

A@0)=0®6, R(S)=6" m(5)=6 VteR.

There are norm continuous one-parameter representations p, 0*, 7* of R on M, given
by

pe(w)(@) = w0 (x), 8 (W) (2) =w(0"2), 7 (w)(@) =w(r(z))

respectively for all w € M,, x € M and t € R. For the dual locally compact quantum
group G, there are norm continuous one-parameter groups &, 7 on M such that

Gt (AW)) = Mpe(w)),  Te(AMw)) = Mwr—)

respectively for all £ € R and w € M. There is the unitary antipode R on M such that
R(AMw)) = A(wR) for all w € M,. There is also an antipode 5 = ]A%f',i/g on M. Denote
by J the modular conjugation associated to .

Recall that the antipode S = R7_;/ on M has the following properties:

L S(ed(@ @A) = e )(Al")(y®1)), Yo,y € Ny.
2. S(L@e)(A@")(1ey) = (@) (1ez")A(y)), Yo,y € N,.
3. S(t@w) (W) =(Lew)(W*), Yw e B(H)..

Denote by v the scaling constant of the locally compact quantum group G. Then

o1 =v b, @0? =vlp, VteR.



C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399-2445 2405

Some fundamental commutation relations for the locally compact quantum group G are
Acf = (i @ o)A, A1 = (v @ T¢) A.

For a locally compact quantum group G = (M, A, p, ) and t € [1,00], we denote
by L'(G) the complex interpolation space L!(M). For any w € LY(G) N L*(G), the
L*-Fourier transform Fy : L'(G) — L(G), 1/t + 1/t = 1 is given by

’

Fi(&(w)) =" (A))-

By the Hausdorfl-Young inequality [5,3], we have that || F|| < 1.

Suppose G is a locally compact quantum group. A projection B in L>°(G) is a group-
like projection if A(B)(1® B) = B® B and B # 0. A projection B in L'(G) N L*(G)
is a biprojection if A\(By) is a multiple of a projection. For more details on group-like
projections, we refer to [18]. In [19], Liu, Wang and Wu show that a biprojection is a
group-like projection in L'(G) if ¢ = 1) or ¢ is tracial.

In the end of the section, we recall the resolvent convergence for unbounded self-adjoint
operators, let a,,n = 1,... and a be (unbounded) self-adjoint operators on a Hilbert
space H. The elements a,, is said to converge to a in the strong resolvent sense if (z —
a,)"! — (2 —a)~! in the strong operator topology for all z € C with Sz # 0. a, is
said to converge to a in the weak resolvent sense if (z — a,)™! — (2 — a) ™! in the weak
operator topology for all z € C with Sz # 0. The weak resolvent convergence implies
the strong resolvent convergence. For more details, we refer the readers to [24].

3. Support projections

In this section, we define the range projections and the support projections of elements
in the noncommutative L' space L!(M) with the help of the Hilsum L' spaces and
investigate their properties, where M is a von Neumann algebra with a normal semifinite
faithful weight ¢.

For any x in LY(M), 1 <t < co, we define the range projection R;(z) (which is on
the left hand side) of = to be the range projection R(®; *(z)) of ®; *(z) and the support
projection R,.(x) (which is on the right hand side) of = to be R(®; !(x)*). Note that by
the definition of the Hilsum L space, we see that R(®; *(z)), R(®; ' (x)*) € M for any
x € L*(M). We denote by Sj(x) = ¢(R;(z)) and S,(z) = ¢(R,(x)). If t = oo, then for
any « € L>(M)(= M), we have that

For any w in L'(M)(= M.), we denote the support projection of w by R(w) which
is given by

R(w)=1-p,
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where p is the union of all projection p,, in M such that w(p,z) = 0,V € M.
For any ¢ in L?(M)(= H,), we denote the support projection of £ by R(£) given by

R(E)=1-p,

where p is the union of all projection p, in M such that p,§ = 0. For any x € M and
¢ € L*(M), the right action of z on £ is given by x = J,z* J,E.

Lemma 3.1. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight ¢. Then for any # € M, w € L*(M), £ € L?(M), we have that

2@ (w) = @ Haw), O (w)z = By (wa),
and
@, (€) = 0 (2€), @1z =y (¢u).

Proof. Suppose that 2 € 72 and assume that {z3}s is a net in 72 such that limg ||z —
w|| = 0. Then

@7 (w) — &7 (2w)|l1,6 = lign |2®7 " (w) — 2xpd + zasd — D7 (2w) |1,
< 1i[gn 2®7 (w) — 2zpd]1,6 + hgl lzzgd — @7 (2w) |1,

< [[lloc lim Jlo — zpepl| + lim [lzz5 — 2w]| = 0,

ie. 2@ (w) = & (zw) for any z in T2.

Suppose that z € M and take a bounded net {z4}o C 7:3 such that z, converges to

x o-strongly. Let ®!(w) = w|®; ' (w)| be the polar decomposition and wy the positive
dwo

normal linear functional such that |®;*(w)| = 73 Then

@7 (w) — D7 (aw)|l1,6 = lim @7 (w) — 2o P (W) + @1 H(Taw) — 7 (2w) |16
< lim||(z — xa)q)fl(w)ﬂly(b + lim ||zqw — zw||
< lim [(z — 2o )w|®7 (W) [2 2,0 ]l17 (@) V2 ]|2,6
= limwo(w* (z — 24)" (x — xa)w)l/2w0(l)1/2 =0,

ie. 2@ (w) = ®; ' (aw) for all z in M. The rest of the Lemma can be proved simi-
larly. O

Proposition 3.2. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight . Then for any w in L*(M), we have that
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Ri(w) =R@), Rr(w)=RwW);

for any & in L*(M), we have that

Proof. This can be obtained from Lemma 3.1. 0O

Proposition 3.3. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight . Then for any w € LY(M) N L*(M), y € L>(M) N L®(M), x € M, we have
that

2P (& (W) = 0 (G(aw)), 1 <t <2, 2@ (% (y)) = D51 (1% (2y)), 2 < 5 < o0
Moreover, for any w € L*(M) N L*(M), y € L*(M) N L>®(M), we have
Ri(w)=Ri(&(w)), 1 <t <2, Ri(t°() =Ri(y),2 < s < oo.

Proof. By Result 8.6 in [16], we have that 2&(w) = £(aw) for any o € M, w € LY (M) N
L?(M). That is to say that zw € L'(M) N L?(M). By Proposition 3.4 in [3], for a given
w € L*(M) N L*(M), there is a net {xg}s C T2 such that limg ||w — 2| = 0 and
limg [|£(w) — Ap(zp)|| = 0. Then for any 1 <t <2, z € T2, we have that

2@ (& (w)) — @7 (E(2w)) [ls,

= lim [l ®; ! (6 (w)) — awgd"/* + zwpd"/* — @7 () e

= lim 2@, ! (6(w) — zzgd"|1p + lzzfd"" — &7 (& (2w)) 1,6
< oo | ®7 1 (€e(w) — wad g + lim 1§ (z2p0) — & (aw)l|e

< lim w2 — wwl||*/ | Ay (z25) — €(aw)||*~*/*

ie. 2®; (& (w)) = &1 (& (2w)) for any z in 7;?.
For any 2 in M, there is a bounded net {z,}s C 7:3 such that x, converges to x

o-strongly. Then for any w € L' (M) N L2(M), let &, (&(w)) = wy|®; (& (w))| be the
polar decomposition, and we have

2@ (& (w)) = @77 (& (aw)) e
= lim [l2®; (€(w) — 2@y (& (W) + @7 (&(waw)) — 7 (& (2w))leg

< lim (@ = o)l (€))7

|,
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iz — a7 € o) — €5
S [ L e ) P [ ) s FENAYE
=0

ie. 2@, 1 (& (w)) = ;1 (& (aw)) for any 2 in M.

For the second equation, we can use a similar argument as above and Proposition 3.6
in [3] to see it. The remaining two equations are obtained directly from the first two
equations. O

Now we can define the left action of M on LY(M) for any 1 < ¢ < co. The left action
is given as

zy = &, (x®; ' (y), Vre M,ye L' (M), 1<t< o0
Similarly, we can define the right action on L{(M) for 1 <t < M by
yr = &4(; ' (y)x), Yo € M,ye LI(M),1<t< o0

Proposition 3.4. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight @. Then for any w € L' (M) N L*(M), y € L*(M) N L>°(M), z € T2, we have

Oy (E(w)z = 05 (E(wofy(2), D3 (Ap(y))a = D3 (Ap(yo?, (x))).
Proof. For any y € 91,, we have that
(€W, Ap(y)) = (Jor™ Jp8(w), Ap(y))
= (f(w), JsastaAw(y»
= ({(w), Ap(yo?, (7))
0% (@) y")

ie &(w)x = f(w(ol%(x))) for any x € 772. By Lemma 3.1, we have the first equation is
true. Similarly, we can prove the second equation. O

Generalizing the results in the proposition above, we have the following proposition.
Proposition 3.5. Suppose M is a von Neumann algebra with a normal semifinite faithful

weight p. Then for any w € LY (M) N L3M), y € L2 (M)NLPM), 1 <t < 2,
2§8§OO,$E7:3, we have
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FH(Ew)z = (&lwol, ,(2)), TN (W))e = @7 (P (yo?, (1))

Proof. By Proposition 3.4 in [3], there exists a net {zg}s C 72 such that limg [lze —
w|| =0 and limg [|Ay(z5) — £(w)|| = 0. Then we have

18, (€ (w))a — By (Ewo?, ,()))

:1ién||<1>;1(gt(w))x—mgdl/terxgdl/tx i H(Ewal (@)l

< lim 1€ (€)= wpdallep +lim [lzpd P = B (Eulwo? 1, (0))) e

< lim [ 87 (6() — @5d |l gllalloc +lim o/ x — 87 (€(wo? (@)
:liéonngi/t(aJ)dl/t 7 (& (wa? 1/,5( I,

< limmax{|lopo®, ,(2)p = w0? @) 42307, (@) = St (@)}
— limmax {25007,/ (2) — w7 @) [Ap(w5)075 s o(2) = €)@}

:O’

e @71 (& (w))x = o1 (& (waffi/t(x))). Similarly, one can show that the second equation
is true. O

For any w € LY(M), we let w = v,|w| be the polar decomposition. By Theorem 4.2
in Chapter 3 of [26], we see that v} v, = R(jw|) = R(w). If w € LY(M) N L?*(M), then
lw| € LY (M) N LE(M).

Proposition 3.6. Let G be a locally compact quantum group. For any w € L'(G), t € R,
we have

R(woof)=0%(R(w)), R(wom)=r1(R(w))
R0} (w)) = 0 "R(w)é", R(woR)= R(R[®))
Proof. We leave the proof to the reader. O

4. Donoho—-Stark uncertainty principle

In this section, we prove the Donoho-Stark uncertainty principle for locally compact
quantum groups and show a series of equivalent statements for the characterizations of
minimizers of the uncertainty principle. Moreover, we obtain biprojections from mini-
mizers of the uncertainty principle.
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Proposition 4.1. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight p. Then for any w € LY(M) N L*(M), we have that

Jlw]|*
> <t<2
for any y € L*(M) N L (M), we have that
s Ap()|I?
sz el 2 cscx

Proof. Fix some 1 <t < 2. Suppose that (R, (&(w))) < co. Then when 1 < ¢ < 2, we
have

[wll = sup |w(z)]
lz]lo=1

= sup  |w(z)|
lzlloo=1,2€T2

= sup  (G(w), 1)ry R,
lzllcc=1,2€T2

— / ;L (6 (w))d' T xdg

lz]lo=1,2€T2

— sw / 716 ()R (€4 (w))d'T 2dd

lz]lo=1,2€T2

S 160 @)1 R (§6())d T 1| 2y g1l

llzlloo=1,x€

= [|& @) le 7T (Re(€e(w))I]. 2.
2

< JwlF @) F IR (& @)Z F IR (& ())&

= wll g )12~ S ((w))

@

i.e.

s el
SGlD = G

When ¢ = 1, suppose p(R(w)) < oo, we have

1<t <2

lwlf = sup  Jw(z)l
2+ €M, 2]l oo =1

= sup [w(R(w)z)|
@+ €My |7 =1

= sup [(€(w), Ap(z"R(w)))|

2* €Ny, [z o =1
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< sup [l A (R(w))]]

z* €N, ||z oo =1
= [lE(@)llp(R(w)/?
= [lE@)1S-(w) /2.

Hence

]I

1
e TS

Suppose that ¢(R,(t5(y))) < oo for 2 < s < co. Then we have

Sr(&i(w)) =

1A ()l = i [(Ag (1), )

= sup | / yd'/?zdg|

zeL?(¢)[|zl2,6=1

= sup |/yd1/SR dif’mdqﬁ\

2€L2(),[|zll2,4=1

lyllslle = (R0 ()] 22,

< Ae @)1 il A (R (@)=

1,, 5—=2

= A @)1 llyllse * (S, (° () ==,

IN

IR )1

i.e.

A4 ()11
Iyl

When s = 2, suppose ¢(R,(Ay(y))) < oo, we have

Sr(*(y)) =

2 < s<o0.

Ao (W) = A6 (Y)Rr (A (9)
= [[yJoAp (Rr(Ap(9))
< [ylloo 1Ap (Rr(Ap (w)))l
= [lylloop(Rr (A (y))'/?
= lyllocSr(Ap ().

Hence

2
By s co o

Se(1(y) = W 0 2S

2411



2412 C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399-2445

Theorem 4.2 (Donoho—Stark uncertainty principle). Suppose G is a locally compact quan-
tum group. Then for any w in LY(G)NL*(G), 1 <t <2, 2 < s < 0o, we have

Sr(&(w))Sr(1*(Aw))) = 1.

Proof. Suppose that ¢(R(w)) < oo and @(R(A(w)*)) < oco. Then by Proposition 4.1, we
have

ot 5 9l TROE@DIE _ fll?
SHENS RO 2 e P, ~ R =

Hence we have the theorem proved. 0O

Definition 4.3. Suppose G is a locally compact quantum group. An element w € L'(G) N
L?(G) is said to be a minimizer of the Donoho—Stark uncertainty principle in Theorem 4.2
if

S (& (w))Sr (P (AMw))) =1
forall 1 <t<2,2<s<o0.

Proposition 4.4. Suppose that M is a von Neumann algebra with a normal semifinite
faithful weight . Let w € LY(M) N L*(M) be such that o(R,(w)) < co. If

[

T E@E

then there is a partial isometry v € L'(M) N L®(M) such that w = p,ve for some
te >0 and R, (&(w)) = Re(w) = 0?(Rr(w)) for any 1 <t <2, s eR.

Sr(w)

Proof. Let w = v,|w| be the polar decomposition. We have that

p(vive) = (R(w)) = (R (w)) < 0.
Then
w] = w(v)
= ({(w), Ay (va))
< éW)lle(R(w))'?

= [lwll-
By the Cauchy—Schwarz inequality, we have that

§(w) = :uwAtp('Uw)v
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for some p,, € C. Therefore v,, € L'(M) and

W = LUy P.

Note that

lwll = {€(w), Ap(va)) = ol A (v 17,

we see that p, > 0. Since [lv, @] = ¢(vive) = ©(|vy|), we obtain that |v,|e is a positive
linear functional. Then for any y > 0 in 91, we have that

o(ylve]) = (ylvwl) = @(Jvely)-

Hence for any y in M, we have ¢(y|v,|) = ¢(|ve|y). By Theorem 2.6 in [26], we see
that 0 (Jv|) = |ve| for any s € R. By Proposition 3.5, we have that for any 1 <t < 2,

O (6 (W) Rr (W) = 77 (& (WRr (W)
q); t\W

(& (W)

Hence R, (&:(w)) < R, (w). By Proposition 4.1, we have that R, (£:(w)) = R, (w) for any
1<t<L2. O

Proposition 4.5. Suppose that M is a von Neumann algebra with a normal semifinite
faithful weight . Let y € L>(M) N L>®(M). If

AP
50 = Ty

then there is a partial isometry v in M such that y = pyv for some p, > 0. If

2
Se(y) = Si(Mp(y)) = %

then of (R, (y)) = Rr(y) fort € R and

Moreover y € L*(M) N L®°(M).

Proof. Since

AW = [Ap(yRr(w)]I?
= (Y YA (R (y)), Ao (R (1))



2414 C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399-2445

<y YA (Re @A (R (1)
< |yl e (R (y))
= A ()l
we have that
y*yAcp (R(y)) = Pl (Rr(y))
for some p > 0, i.e. y*y = uR,(y). Therefore y = v,u'/*R,(y) by the polar decomposi-
tion. Let p, = pt/? v = vy, we have that y = p,v.

Now we assume that S,(y) = Sr (A, (y)). Let po = R (A, (y)) and po = R, (y). Then

we have
P2 = R(dV2y*) = R(dY?poo).
Furthermore,
P(po) = I pallas = [ pad!pecdZpads

= / A" papydPpacds

< sl [ @ 2papadi /s

= ¢(p2) = ¢ (Poo)-
By Holder’s inequality, we have that

R(d"*popad'/?) = R(d"*p2) < pec-

By Proposition 4.1, we have that

[Ag (2] _

P(R(d"?pa)) = 8r(Ay(p2)) > TN 0(p2) = ©(Poo)-

Hence R(d'/?py) = poo. Note that py = R(d'/?ps), we then obtain that
Daod2py = pacd/? = dM/2p,.
Applying of for any ¢t € R, we see that
of (pso)d'/? = d'%0f (pa).

Let p{" = o [ e~ of (po)dt and p) = o e 57 (pso)dt. Then for any
n €N,
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n) 31/2 _ 1/2, (n)
pPd'? = d'?py.

Now we have that

and

(n)

P = p* = 0%, (05).

=P’ =552
Hence o (pén)) = Pén) and of (pén)) = pé") for any ¢ € R. Finally, we obtain that
of(p2) = pa = poo for any ¢t € R and

Re(1*(y)) = R(d*y") = poc = Ru(y)

for any 2 < s < oco. To see y in L'(M), we actually have

sup lp(zy)| = sup lo(Pocy)|
)]0 <1,2€9,, [

< sup P(Peemrpec) 2y y)
l2lloe <1,z€0,

< e(po) P A (W) < 00. O

Definition 4.6. Suppose that G is a locally compact quantum group. An element w €
LY(G) is extremal if [[A(w)]|ooc = ||w]||- An element w € L'(G) is a bi-partial isometry
if w = p,v,p for some p, > 0 and some partial isometry v, € L*°(G), and A\w) =
fix(w)Dxw) for some fiy,) > 0 and some partial isometry 9y, € L‘X’(@). An element
w € LY(G) is an extremal bi-partial isometry if w is a bi-partial isometry, w is extremal,
and A(w) € LY(G) N L>®(G) is extremal.

Proposition 4.7. Suppose that G is a locally compact quantum group. Then the following
are equivalent:

1. we LYG) N L*(G) is a minimizer of the Donoho—Stark uncertainty principle.
2. w is an extremal bi-partial isometry such that |w|of = |w|, 6:(|A\w)]) = |[Aw)],
vt € R.

3. w is a bi-partial isometry, |w|of = |w|, Vt € R, and Aw) is in L*(G) such that
AA@)P) oo = A (w)-

w € LY(G) N L3(G) satisfies that S, (w)S,-(AMw)) =1 and 6(|A(w)]) = |[A(w)].

. w e LYG) N L%(G) satisfies that S, (w)S,(A(w)) = 1 and S,(€(w))Sr(A(A(w))) = 1.

ot
%)

Proof. 1. = 2.: Suppose that w € L(G) N L?(G) is a minimizer of the Donoho-Stark
uncertainty principle. By Proposition 4.4, Proposition 4.5, we have that w is a bi-partial



2416 C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399-2445

isometry, i.e. w = p,v,¢ for some p, > 0, a partial isometry v, in L>(G), A(w) =
fir(@)Or(w) € LH(G) N L=(G) and

of ([vw]) = lvl,  6:([0aw)l) = [0aq), VE € R.

By Theorem 4.2, we have that ||[A(w)]eo = ||w]|, i-e. w is extremal. Now we have to show
A(w)@ is extremal. Note that

lwll = pup(vol),  IMw)lleo = JUNY

M@l = fir) 2(0r))s TAA@)R) oo = pr-

We have
[A@)RI = fin()y@(|9xe)l)
Lo Ren oA
= ——(A(fir(w)Or(@))s Alfr)Br(w)))
Hx(w)
1
= = <A¢(/‘wvw>7Aw(Mw”uJ)>
HX(w)
> (1)
— Nw%p(|”w|)
[RYCRI[PS
% 5 o]
A (@) @) lloo
A @)oo
= [[AAM@) @) loo;
ie. IMw)@l = [[AAMw)®)]loo- Hence A(w)@ is extremal and then w is an extremal bi-

partial isometry such that |w|oy = |w]|, 6¢(|A(w)]) = A (w)].
2. = 1.: Suppose that w = p,v,¢ is an extremal bi-partial isometry such that |w|of =
lw|, 6:(JA(w)]) = |[AMw)|, V& € R and A(w) = fixw)Oxr(w)- Then for any 1 < ¢ < 2

2 < s < o0,

w 2
(&) = 5,(6) = plluul) = T,
5, (@) = 8, (@) = (x| = %

Hence S, (&(w))Sr(¢®(Mw))) = 1.

2. = 3.: By the argument of “1. = 2.7, it is obvious.

3. = 2.: Suppose that w = p,v,¢ is a bi-partial isometry, o7 (|v,|) = |ve| and A(w) =
Aixw)Pa(w) € LYG), [AMw)P)]loo = IMw)@]|. By the computation of the Equation (1),
we obtain that
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AWl = fiag)@(0rw) )

_ 12 (va)
A @) loo

_ W)Y o]
IMAM@IEoo 73T

By the assumption, we have that | A(w)@|| = fixw)®
= [0x(w)|- Hence w is an extremal

(
argument of Proposition 4.4, we have that &; (|0l |
) = |Aw)], Vt € R.

bi-partial isometry such that |w|of = |w|, 6¢(|A(w)]
1. = 4.: It is obvious.
4. = 1.: By Theorem 4.2, we have that
w12 A @)1
Sr(w) = o S(Mw) = T AW llee = llel-
1€ (@) A3

By Proposition 4.4, we have S,(§(w)) = S,(w). By Proposition 4.5, we have that
Sr(L*(Mw))) = S (A(w)). Hence w is a minimizer of the Donoho—Stark uncertainty prin-
ciple.

1. = 5. It is obvious.

5. = 1.: By Theorem 4.2, we have that

e
1€ ()I>”
A @)l = [[w]l-

~ A w 2
S (W) = S (AA(W))) = W

5:(w) = 8:(¢(w)) =

By Proposition 4.5, we have that 65(R,.(A(w))) = R,(AMw)) for any s € R and
S (Mw))) = Sp(Mw)) for any 2 < s < oo. By Proposition 4.4, we have that
Sr(&(w)) = Sp(w) for any 1 < ¢t < 2. Hence w is a minimizer of the Donoho—Stark
uncertainty principle. O

Next, we will construct a biprojection by using a minimizer of the Donoho—Stark un-
certainty principle. Throughout the paper, we say w = vy is a minimizer with assumption
that v is a partial isometry. We also say v is a minimizer when vy is a minimizer and v
is a partial isometry.

Proposition 4.8. Suppose G is a locally compact quantum group and w = ve € L*(G) N
L?(G) is a minimizer of the Donoho-Stark uncertainty principle. Then

(v @ )A©)* = @) (@l @ )A(Jv)

and (pv* @) A(v) is a multiple of a partial isometry, m(<p|v|®b)A(|v|) is a projection.
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Proof. By Proposition 4.4, we have that of(|v|) = |v| for any ¢ € R. Thus v ® 1 and
A)(Jvo]©1) are in Ny, and (e @ )((v* @ 1)A(v)) = (¢ @) ((0* @ 1)A(v)(Jv[®1)). By
Proposition 1.24 in [16], we have that
(e @)((v" @ DA) (o] @ D) < (o)l (e ® (o] @ DA(u])(|v] @ 1))
= @(lv) (e @ )(A(Jv])(Jv] @ 1)).

Applying ¢ to the right hand side of Inequality (2), we obtain

e([v)) (v @ @) (A(J])(Jv] @ 1)) = (o) (Jvle ®@ p)A(v])
= o([vDe(lvl)e(lv]) = @(|v])?.

Note that A(w)*Ay(v) = (@@ ) (W*)A,(v) = Ay ((ev* ® L)A(v)). Applying ¢ to the left
hand side of Inequality (2), we have that

e(l(pv" @ )AD)?) = [Ap(pv* @ )A))|?
= A @) Ap(v)1?
= [[A(Aw@)*A@))]>
= [IM)P(AMw)*AM(w)) Proposition 4.4,1. = 2.
= [l[v[[l (o) = (Jv])?.

Combining the computation above, we obtain that

(o™ @ AW = o(|v])(elv] @ DA([o]).-
Repeating the argument above, we have that

((plvl @ )A(0]))* = e(vl)(elv] @ YA([v]).

Hence (¢|v| ® t)A(Jv]) is a multiple of a projection and (pv* ® ¢)A(v) is a multiple of a
partial isometry. O

Proposition 4.9. Suppose that G is a locally compact quantum group and w = vy is a
minimizer of the Donoho—Stark uncertainty principle. Then we have

Te((pv* ® 1) A(v)) = (pv* @ 1)A(v)d*;
Te((elv] @ )A(Jv])) = (plv] @ )A(Jv]);
v=1;

R((elv] ® )A(Jv]) = (plv] @ )A(Jv]);
5(plvf @ )A(Jv]) = (elv] @ )A(Jv]).

CUR W=
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Proof. For any z in L>°(G), we have that

pe(w)(z) = (0™ m—i(x)v)
= p(T-e(x)vo—i(67"))
= v p(r(z)vd ")
= p(am(v)d ),

ie. pi(w) =74 (v)d .
Note that (A w)*A(w)) = A(w)*A(w) for any ¢t € R. We have

Hence

(pv" ® )A(v) = (93" (v") ® 1) A(Te(v)d ™)
vt (6t @ ) A(vs )
= 1((pv" ® )A(v))s ",

and 7 ((plv] @ )A(Jv])) = 6" (plv] @ YA(|v])d~
Now we define

n

en = NG /exp(—n2t2)6itdt.

Then vd—1/2¢,, € M. Since

(v © )Aw)en = - [ emntynion s 0a@)at
we have that (pv* ® t)A(v)e, € D(1_;/2) and
a0 ® )A®)en) = (90" ® YA(D)end /2.
Then
S((gv" ® )A®@)en) = R((90" © )A@)ens?)

On the other hand, we have that

2419
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S(((9 @ ) (exv”™ ® 1)A(ven))d~ 2e,)
=, S(¥ @ 1) (exd 20" @ 1)A(v5 Y ?e,)
= e ® )(Alerd ™ 07) (0672, @ 1))
= ead 2 @ (672 © 1) Aler”) (vend 2 @ 1))

= end V2 (p @ 1) (Alerv*) (vem @ 1)).

Since S is o-strong-*/o-strong-* closed, by taking the limits as k — oo and m — oo, we
obtain that

R((pv* @ )A(v)end'?) = end 2 ((vp @ )A(07)).
Taking the limit as n — oo, we have that
R((pv” @ 1)A(v)) = (vp @ )A("),
and hence
R((glvl @ )A(|v]) = (lvle @ ) A(Jv]).
Let

o = % /exp(—n2t2)5it(w\v| 2 O)A(Jo])5dt

Then a,, € D(7_;/2), and we see that

n exn(—n2t2)51/2 5t Dlewlv vle —1/2 5—it
S<ﬁ/ p(—n22)8Y/257 (0 ® 1) (exlv] © 1) A((Ju]en))5~1/257) )
-7 / exp(—n22)8Y/25-Y2(0 & 1) (A(ex o)) ([ulem  1)).

By Equation (3) and taking the limits, we have that
(lvle @ ) A(Jv]) = 8(Jvfe © L) A(Jv]).-
Then
Ti((plvl @ YA(Jv])) = (plv] @ ) A(Jv]),

and hence v =1. O
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Proposition 4.10. Suppose G is a locally compact quantum group and w = ve € L*(G) N
L?(G) is a minimizer of the Donoho—Stark uncertainty principle. Let & = ANw)/||Mw)]]oo-
Then

Ao ((plol @ )A(0]) = e(lo)*A((18] @ ) A(8])).
Moreover of ((¢lv] @ )A(|v])) = (plv] @ )A(Jv]) € LY(G) N L*(G), Vt € R.
Proof. Since A(w) € L*(G) N L>®(G), we have AMw)*Aw) € LY(G) N L>=(G) and

Ap((vp @ JA(U7)(pv* @ 1)A(v)) =

By Proposition 4.8, we have

Ao ((plvl ® )A(])) = @(lo)*A((@l0] @ DA(D])).

AAAAA

x € Ny. By Proposition 8.14 in [16] and Proposition 4.9, we have

Ao (of ((lo] @ )A(Ju])) = PIS* T (wlv] @ )A(v])
= p(Jo])* P67 TA((p10] ® )A([8]))
= (vl A7 ((2]0] © ) A(0])6 ")
= p(lv])*A(plo] @ ) A(I9]))
= Ay ((plv] @ YA(Jv])),

ie. of (plo] ® DA(]) = (¢lv] ® )A(Jv]). Therefore (o] ® YA(u]) € LY(G) N
L>(G). O

Proposition 4.11. Suppose G is a locally compact quantum group and w = vy is a mini-
mizer of the Donoho—Stark uncertainty principle. Then 1(|v|) = |v| for any t € R.

Proof. By Proposition 4.10, we have that o ((¢|v] @ t)A(|v])) = (¢|v] @ t)A(Jv]). Ap-
plying the commutation relation Aoy = (1 ® of)A and Proposition 4.4, we obtain
that

(o) @ ) A(Jo]) = (plv] @ )A(|v])-
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Hence A(7(|v]))* A(lv|e) = A(Jv|e)*A([v|p). Let @ be the polar part of the polar de-
composition of A(7¢(Jv|)¢). Then

M ([o))) |53 ol A(Jvl)] = [A(vle)]*.
By Proposition 4.9, we have 7;((¢]v] ® t)A(Jv])) = (¢|v| ® t)A(Jv]), and then

A(re (o))l = [A(vlo)l,  [oe] = [0l
Hence

¥y To = |To.
Now taking the adjoint and multiplying it from the right, we obtain
070610 = |To| = [0e],

ie. o7 (1 — |9¢])0 = 0 and then

by = 0/ [05| = 07 D5 = [To|V5 = Tg-
Finally, we have that A(7:(|v|)¢) = A(|Jv|e) and then 7(|v]) = |v]. O

Theorem 4.12. Suppose G is a locally compact quantum group and w = v is a minimizer
of the Donoho—Stark uncertainty principle. Then

1. (pv* ® 1)A(v) and |v| are minimizers of the Donoho-Stark uncertainty principle.

2. —L—~(¢lv| @ )A(|v]) is a biprojection and a minimizer of the Donoho-Stark uncer-

e(lv))
tainty principle.
3. 1(v)p is a minimizer of the Donoho-Stark uncertainty principle for any t in R.

4. 0f (vy) is a minimizer of the Donoho—Stark uncertainty principle for any t in R.

Proof. 1. By Proposition 4.7 and Proposition 4.8, we have that (¢v* ® t)A(v) is a bi-
partial isometry. By Proposition 4.10, we have that (pv* ®)A(v) € LY(G) N L*>®(G). By
the argument in Proposition 4.9, we have

Ao (v @ )A(®W)) = AN W) AW))-

This is to say that A(((¢v* @ L)A(v))p) = AMw)*A(w). Suppose that A(w) = [0 where
1> 0 and 9 is a partial isometry. By Proposition 4.8, we have

5,((90* © )A®) = ¢ (ﬁ«am ® L>A<|@|>) — 5(l0)).
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By Proposition 4.8 and Proposition 4.10, we have

5, ((pv ® )AW)p) = ( (el ®0A <|v|>) — (o).
Since S, (vp)S, (D) = 1, we obtain that

Sr((pv* @ )A@W)P)S (($0* @ )A(D)) =

By Proposition 4.4 and Proposition 4.7, we see that (pv* ® t)A(v)p is a minimizer of
the Donoho—Stark uncertainty principle. Then |A(w)| is a minimizer of the uncertainty
principle and so is |v].

2. By Proposition 4.8 and Proposition 4.10, we have that |U 5 (plv] @ L)A(Jv]) is a
biprojection. By the argument above, we see that it is a mlmmlzer of the Donoho—Stark
uncertainty principle.

3. Since o}, ¢ commute, we have that

Sr(re(v)p) = (i (|v]) = (o)) = Sp(ve).

By Proposition 4.9 and Proposition 4.11, we have

Hence 74(v)p is a minimizer of the Donoho-Stark uncertainty principle by Proposi-
tion 4.7.

4. By Proposition 3.6 and the argument above, we see that d;(vy) is a minimizer of
the Donoho—Stark uncertainty principle. 0O

Remark 4.13. In general, we don’ t know if v*, A(ve)*, of (v) are minimizers of the
Donoho—Stark uncertainty principle when v is a minimizer.

5. Hirschman-Beckner uncertainty principle

In this section, we will prove the Hirschman—-Beckner uncertainty principle for certain
locally compact quantum groups.

Suppose M is a von Neumann algebra with a normal semifinite weight ¢ acting on the
Hilbert space H, = L*(M, ¢). Let ¢ be a normal semifinite weight on the commutant
M’ of M on H,. A vector & in H,, is ¢-bounded if the map y — y§ for any y € Ny C M’
is bounded. Denote by R?(€) : L2(M’, ) — H,, the operator given by R?(&)y = y¢ for
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any y € Ny. Moreover, 0% (¢, &) = |R?(€)*|2. We denote by D(H,,, ¢) the set of ¢-bounded
vector in H,. We have that (see [12] for more details)

(He,0) = [ {D(T), T € L*(9)}.

Proposition 5.1. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight o and x € T2. Then f.(t) = |2d*/t||;.¢ is continuous with respect to t, t € [1,00).

Proof. Following the proof of Proposition 3.4 in [8], we see that the proposition holds. O

Proposition 5.2. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight ¢ and w € LY(M)NLA*(M), x € N,. Then we have f,(t) = ||&(w)]|¢ is continuous
on [1,2] and f.(t) = ||xd*|;.4 is continuous on [2,00).

Proof. By Proposition 3.4 in [3], for any € > 0, there exists y € '7'2 such that [|[w—yep|| < €
and [|{(w) — Au(y)|| < e. Hence [|&(w) — ! (y)]: < € for any 1 § t < 2. Since

1€t4e (@)t — 1€ () ][]
< l€e(w) = @ lle + e @) = =@ e + e @l = 167 (W) <

and [|¢*(y)]|; is continuous, we obtain that f,(¢) is continuous. By Proposition 3.6 in [3],
we see the rest of the proposition is true. O

Proposition 5.3. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight ¢ and x € 7:3. Then

d 1
a6 &) = (d! % P log|d! (g, €n) — 5 (a(dlog d)a"En, &n),

t=2
where &, = J= s e~ ditedt for anyn €N and € € D(Hy, ).
Proof. Note that
(/22 2 log [0/ 22 6,60} < 1l + 3142 Pl < oo,
we have that &, € D(|d"/2z*||log |d'/22*||*/?). To show that

(|47 2* 760, &) — (422" %60, €0)
€

((xdx™) log(zdz™ ), &n) — %(x(dlog A)x* &, En)

_>

N | =

as € — 0, we have to estimate the following three terms
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(ld= e P 6n 6n) = (d= e Penn) 1 o e
- _ §<(xd = T )log(xd =T )£n7§n>7
1 2 1
II= E(<-Td2JrE x*gna€n> - <xdz*£na€n>) + §<5E(d10gd)1‘*§n,fn>,

I=

T = ((2d=>Fa") log(2d=4 0" )6n, 6n) — ((wda”™) log(ada™)&n, &n)-
Note that for any ¢t > 0, we have that

t2Fe — 2 (elogt)*

o0
—t?logt = et’(logt)?y ~—2=2_,
ogt = et”(logt) kZ:O(kJr2)!

When eVl < ¢ < el/‘€|1/4, we see that

t2+6 2

t
|——— — t%logt| < |e|*/?%.
€
When t > el/|€|l/4, we have
t2+6 —t2
|——— —t2logt| < |e|(t® — t* — t*logt) < |e|t™.
€

For the first term, we have

€ 2

dﬁx* eln, &n) — dﬁx*Q nySn o2 * P
‘<| T 6n En) = (| F&ns&n) 1(( dz+e ™) log(xd 2+ £*)&p,, &n)

|d2%rex*|2+e _ \dﬁx*P

(X10,1/my (| 27[)( — |d== 2" [ log |dT 2 |)&n, €n)

€

1 |dEE a2 — | d e a2 1, 1,
| g st (IR ke 2 tog a6 )
1 1
1 JdEEep 2T — | d2ve o) 1, a1,
| (a7t (LTIt 1o st 60
1 1 1
< G tog m) + 12 (a7 2" e, £)

b T T
1 1

+ e X[m,OO)(|d2+ex*|)|d2+é x*‘4§na§n>

Note that

i * 2 * * *
([d=e ™ "6, €n) = (wd e w™6n, &) < [|27En]|? + [ldz™€nl|* < oo,

and
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(Xim,oo) (1477 @* D] d 75 2|6, En) < (|d=F 2|46, 60)
= (xd%ﬂx*xd%ﬂz*gn,ﬁw
< [l |3 (zd=+ 2" 60, 6n)
< )3 (2" €nll® + ld*a"€nl|?) < o0
Take m = el/MlM7 we see the first term can be estimated.
For the second term, we apply a similar argument to d, we see the second term can

be estimated.
Now we will estimate the third term. For any ¢ > 0, there exist m € N such that

lexp(—|d"/2a" 2 fm)én — &l < e

Note that zd? 2% — zdz* as € — 0 in strong resolvent sense. Then for € small enough,

we have
lld== ™[, — [d"/ 22" |€,] <e,
lexp(—|d= 2™ [2/m)&, — exp(—|d"/?a* 2 /m)€a| < e,
and
(= 2* 2 log |d = a*| exp(—|d = a* 2 /m)én, )
— (|d"?2* *log [d'/2x*| exp(—[d"/2x* * fm)&p, £)] < .
Hence

(75 22 log |[d7+ a* |, €,) — (|d/ 22" [*log |d"/2a* €., €,)|
< [{|d7+ 2" log [d=+ " |(1 — exp(—|d>+ | /m) )., €n)]
+ [(|d= 2* 2 log [d7+ 2| exp(— | 2*[* /m)&p, €n)
— {|d"?a* *log [/ 2a*| exp(—|dY/ %" |2 /m)€n, £,)]
+ |{|dY 22" 2 log |d/ 22| (1 — exp(—|d /22" 2 /m))n, €0)

1

- * I
< [|€n — exp(—[dzez”[*/m)&u [[||d>F 2 |* log |d>+e 27 |E, |

+e+ 5|||d1/2;1:*|2 log |d1/2x*\5n\|

1

< 2e(||&al® + [[[dzFea™PEa )2 + & +ellld! e[ log |4/ 22™ €|

< 2e(|[&all® + (1 2a" Peall +€)*)'/? + e + el |d" 2™ log |d™ 2" |&, .

Finally, we see that (|d'/tz*|!¢,,&,) is differentiable at t = 2. O
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Lemma 5.4. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight . Let {z3}s C L?(¢) be a net with the limit = in L?(¢). Then limg |z5| = |z in
strong resolvent sense.

Proof. Suppose that M acts on a Hilbert space H. For any £ € D(H, ¢), we have that

I(lzsl = [2DEI* < llllwsl = 211 16°(E, )l = sl = |=]I3167 (€, €Il
< lleg — 31167 (€, ©)1-

Since D(H, ¢) is dense in H, we see that limg |xg| = |z| in strong resolvent sense. 0O

Proposition 5.5. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight ¢. For any § € D(H,, ¢), we denote &, by 7= 1= e ditedt. Letw € LY(M)N
L*(M) be such that &, € D(®;(£(w))*) and

(|25 (W) *[* log |5 (£(w))*[[€n, n) < 0o,

(| log d|®5 ! (€(w))"Enr 5 (E(w)) En) < oo

Then
d —1 x|t
A CIRIN
= (|51 (£(w))*[*log | @5 1 (£(w))*[En, €n) — %<‘1>2_1(E(w))(logd)%_l(f(w))*§n,§n>~

Proof. There exists a net {xg}s C 77 such that limg [|& (w) =& (zge)||; = 0for 1 <t <2
uniformly. Then

127! (€e(w))" — d ablles < e

for all 1 < t < 2. Note that <|d1/tx;§|£n,§n> is differentiable. We have that
dv/ Qa:/*g — @5 (&(w))* in strong resolvent sense. By using a similar argument in Propo-
sition 5.3, applying exp(—|d1/2x/*6|2/m) we can see that (\d1/2x2|210g |d1/29€2|fmfn> —
(|95 (£(w))*|*log |@5 1 (£(w))*[€n, €n). Note that d/?z3¢, € D(|logd|'/?) and
A2, — 51 (£(w))* &, we have that

(wpd' 2 (log d)d' a5, €n) — (23 (6(w)) (log d) @3 (€(w)) &n, &n)-
Hence (|®; 1 (&(w))*[*€,, &) is differentiable at 2. O
Proposition 5.6. Suppose M is a von Neumann algebra with a normal semifinite faithful

weight ¢. For any & € D(Hy, @), we denote &, by T s eV ditedt. Let x € N, be
such that
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(122" 2| log |[dY/a* |60, 6} < 00, (|logd|d"/a*E,.,d"/*a"E,) < oo

Then
d
N <|d1/t$* |t§n7 £n>
dt t=2+

1
= (|d"22" " log |d" 22 g, €n) — 5 (wd!/*(log d)d' 2" &, ).
Proof. Note that &, € D(d/?x*) and the proof is similar to the one of Proposition 5.5 O

Remark 5.7. Suppose M is a von Neumann algebra with a normal semifinite faithful
tracial weight ¢ and ¢ = ¢(J,, - J,,). Then d = 1 and for any x € L*(M)NL>®(M), ||
is differentiable for any 1 <t < oo.

Lemma 5.8. Suppose that M is a von Neumann algebra with a normal semifinite faithful
weight ¢ and ¢ = ¢(J, - J,). Then ®;'(£)*A,(e) = Je*€ for any € € L*(M) and
e €T,

Proof. Suppose = € 772. We will show that A2 Ay (e) = Jpe*Ay(z) for any e € To,.

Since ¢ = ¢(J, - J,), we have that d = V,, and 0?(Ay(e1),Ay(e2)) = ere} for any
e1,ez € To.

0208 g ) = Apl0?, y(@7€)) = Ap(0F5(e"2)") = TpA ().

For any £ € L?*(M), there exists a net {xg}g C T2 such that limg [[€ — A, (z5)] = 0.
Since

1951 (€)" A (€) = Jpe* €]l = [R5 ()" Ap(e) — d*PwfAp(€)) + (Jpe Ap(2p) — Jpe*€) |
<1251 — d2abllz o llell + llellllAp(z5) — €]
= 2[le][[[ A (z5) — &I

we have that &5 (€)*A,(e) = Je*¢. O

Proposition 5.9. Suppose M is a von Neumann algebra with a mormal faithful state
and v € T2 If ¢ = (Jy - Jyp), then ||zd"/||} , is differentiable at t =2 and

d 1
Enxdl/q = (log ‘xd1/2|J¢Aw(3¢)’ J«pAw(x» - §<(logd)J¢A¢(x), J¢A¢(m)>.

t
t,¢
t=2

Moreover,
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— Al Log A, (@) | + (log [xd' /2| T Ay (2), Jp Ay ()

1

= 2 ? 2[[ A ()]
ot

A Ay ()]

d
e o

(logd)Jy,Ay(x), JoAy(2)).
Proof. Let d'/2z* = vm|d1/2m*| be the polar decomposition. Then by Lemma 5.8 we have

- %(ldl/tx*vAw(l),Aga(l»

d
— [led"/*|If
dt ¢ t=2 t=2

(e og(rda )M (1), Ap(1)) — 3 (a(dlogd)a* A, (1), A, (1)

N | =

1
= (v, (log [d*?z*|)vid  2a* A, (1), d 22" A (1)) — 5 {(log d)d*?z* A, (1), dM 2" A, (1))
1
= (log |2d"/?|J Ay (x), JoAy(2)) — §<(log d)J,A (), JoAp(2)).

Differentiating ||zd'/?||;.4 with respect to ¢, we obtain that

1

1/t
tl|lad/t||t 1dt” M

d 1
gt leo| = —gllad" | dog lad |+
t=2

t=2 t=2

1
= —5l1Ap () log [|Ay ()| + (log |zd' | Jp Ay (), Jp Ay ()

_
2[[ A (@)l

1

Remark 5.10. Suppose M is a von Neumann algebra with a normal faithful state ¢ and
¢ =p(Jy-Jy,). Let w € L*(M)NL*(M). Then ||&(w)]|; is differentiable at ¢ = 2~ when

([log d|Jp€(w), Jo€(w)) < 00, (|log|®5" (&(w))[[Jp€(w), Jp&(w)) < o0

Let x € M,. Then ||zd'/?||; 4 is differentiable at ¢ = 2+ when
(Hlogd|JyAy (), JoAp(2)) < oo, (|log |xd1/2\|J¢A¢(x), JoAyp(2)) < oo.

Corollary 5.11. Suppose that M = ©;cjM; be a von Neumann algebra with a normal
semifinite faithful weight ¢ such that |, s bounded for any j € J and ¢ = p(J, - J,).
Then for any x € ’Tg, |xd ¢ is differentiable at t = 2.

Proof. Let p; be the central projection in M corresponding to M. Then p;d = dp; for
any j € J. ||lzd"!|} , = =32, Ipjed ||} 4. Note that 3 g .. [Pz dl/th is differentiable
at t =2and 3 g Hp]xdl/tﬂt converges to ||zd"/||! uniformly on 1/4 <t < 4. Then
we see that ||zd'/t||! is differentiable at t = 2. O
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Definition 5.12. Suppose M is a von Neumann algebra with a normal semifinite faithful
weight ¢ and ¢ = ¢(J, - J,). Let £ € L?(M). Then the entropy H(£) of ¢ is defined to
be

H(&) = —(log |3 (€)*J€, J,€).
We say the entropy H (&) of & € L?(M) is finite if (| log |®5 " (&)||J,&, J,€) < oco.

For more entropy of operator, we refer to an interesting book [22] by M. Ohya and
D. Petz.

Proposition 5.13. Suppose that M = @;c ;M is a von Neumann algebra with a normal
semifinite faithful weight ¢ such that ¢|am; is bounded and ¢ = p(J,-Jy,). Let & € L*(M)
and xg € T2 such that limg || — Ay (zg)|| = 0 and H(E) is finite. Then

H(&) = lim H(Ay(5)).

Proof. For any = € 772, we have that J,A,(z) € D(|log |zd'/2||1/2) (as follows by the
properties of the function logt and Lemma 5.8). Let h,, (t) = exp(—t?/m)t?logt, m € N.
Then h,,(t) is a bounded continuous function on Rs. Since limg || — Ay (23)]| = 0, we
have that x5d1/2 — @51(5) in the strongly resolvent sense. Then for any m € N, by
Lemma 5.8,

1ién<exp(*lxﬁdl/2l2/m) log 25d"/2|JpAp(5), JoAy(25))
= (exp(~|®3 ' ()I*/m) log |25 (€)|J,€, J€)
Note that as m — oo, we have
(exp(=|®5 7 (&) /m)[log | @57 (&), J€) — ([log |3 ()| €, Jo€) < 0.
Then for m, 8 large enough, we have

[exp(—|zgd" /2| /m) log|wsd" *|Jp Ay (26), JpAp(p))
~ (log|zpd!/2|Jp Ay (25), JoAy(25))]

is small enough. Therefore, we see that

H() =lim H(A(z). O

Remark 5.14. Suppose M is a von Neumann algebra with a normal semifinite faithful
tracial weight ¢ and ¢ = ¢(J,, - J,). Then for any £ € L?(M), and any net {z3}s €
LY (M) N L>(M) such that limg 25 = £ in 2-norm, we have that H(§) = limg H(xg).
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Theorem 5.15 (Hirschman—Beckner uncertainty principle). Suppose G is a compact quan-
tum group or a discrete quantum group. Let w € L'(G) N L*(G) such that ||£(w)| = 1.
If H(¢(w)), H(AAw))), ([logd|J,&(w), Jp€(w)), ([logd|JA(Aw)), JA(A(w))) are finite,
then

A

H(£(w)) + HAMW))) 2 —((log d) Jo£ (), o€ (w)) — {(log d) JAN(w)), JAM())).

Moreover, for any & € L*(G) if H(E), H(Fx(§)), (|logd|J,€, JLE), (\logé\jfg(f),
JF2(€)) are finite, then

H(&) + H(F2(€)) = —((logd) J,&, Jo€) — ((logd) JF(€), JFa()).

Proof. Let f,,(t) = [|&(w)|l: — Hbﬁ()\(w))ﬂ _. Since f(t) > 0,1 <t <2and f(2) =0,

_t_
T—

we have for any f/(27) < 0. By Proposition 5.9 and Corollary 5.11, we have

(log |@5 " (£(w))[*Jp€(w), Jp€(w)) — %((log d)Jo€(w), Jp§(w))

(log [A(w)d'/*PTA(Aw)), JAM())) — i((log d)JAA()), JAMA(W)))

H(E(w) ~ JHAO))
(08 6(w), 7,6()) — §{(logd)TANW), JAR@)) <0
H(E(W)) + HANW)) = —((log d) Jp€(w), Jp€(w)) — {(log d) FA(Aw)), JAA())).-
For any ¢ € L?(G), there exists a net {xg}s C ’7:3 such that limg ||A,(z5) — &|| = 0.
Let

Thm = % /exp(—m2t2)7}($5)5_itdt.

Then g, € 77 and limg p, [|A(zp.m) — & = 0. Since

Naome) == [ exl=m* o)t = T2 [ explom* (@)

we see that A(2g,m¢p) € Ts. Hence we have that

~

H(Ap(2p,m)) + HAAzp,mp)))
> —((log d)Jp Ay (T5,m), Jo Ao (25,m)) — ((log ) TAN@p,m0)), TR (@5,m)))-
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By Proposition 5.13, we have that
lim H (A (23,m)) = H(E),  lim HAN @2.09)) = HF2(€).

Note that

lim (108 d) Jp Ao (. ), oo (@5m)) = (108 d) o6, TE)

A

lim((log ) JAN@p,m9))s TAN(@5,m9))) = ((log d) T F2(€), TF(€)).
Therefore for any ¢ € L?(G), we have the Hirschman—Beckner uncertainty principle. O

Remark 5.16. Suppose G is a unimodular Kac algebra. By the results in [20] and Re-
mark 5.14, we have that

and by the argument in Proposition 3.3 in [20], we have
S ()Si(F(€) 21, € € L*(G).

Corollary 5.17. Suppose G is a compact quantum group or a discrete quantum group. If
£(w) € D(d~?) and A\ (w)) € D(d~/2), then

H(¢(w)) + HAAW))) = —log [d~/2¢(w)[|* = log |d~"/*A(A(w))||>
Let £ € L2(G) be such that € € D(d~/?) and Fa(&) € D(d~'/2). Then
H(E) + H(F2(€)) > —log|ld~"/2¢||* = log||d /2 Fo (€)1
Proof. This is followed by Jensen’s inequality. O
There is an alternative way to define an entropy of £ € L*(G).

Definition 5.18. Suppose G is a locally compact quantum group. Let ¢ € L?(G) be such
that (|log |®5 " (€)|? — logd|J, &, J,€) < co. Then we can define a modified entropy of ¢
as

Hy(&) = ((log |25 (&)* — log d) J,&, J,€).

Corollary 5.19. Suppose G is a compact quantum group or a discrete quantum group. Let
¢ € L*(G) be such that Ho(§), Ho(F2(€)) are finite. Then

Ho(¢) + Ho(F2(€)) > 0.



C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399-2445 2433

Proof. By a similar argument in Proposition 5.13 and Theorem 5.15, we see the Corollary
is true. O

Remark 5.20. Suppose that G is a compact quantum group or a discrete quantum group.
Let w € LY(G)N L3(G) with ||¢(w)|| = 1 be a minimizer of the Donoho-Stark uncertainty
principle. Then £(w) is a minimizer of the uncertainty principle in Corollary 5.19, i.e.

Hy(¢(w)) + Ho(A(Aw))) = 0.

In fact, suppose w = pvp and A(w) = [0, where p, i > 0, v, O are partial isometries. We

have
(o)) = p=2 ¢(|0)) = p7% p=p!
Ho(§(w)) = {(1* log 1) [v] Jp Ay (v), T Ay (v)),
and
Ho(A(\w))) = ((4* log 2*) 8] TA(9), JA(0))
Then

Ho(E(w)) + Ho(AA))) = p2i(Jo]) log 1 + 423(10]) log % = log 4 + log 4 = 0.
In general, w might not be a minimizer of the uncertainty principle in Theorem 5.15.

Next we will give a Rényi entropic uncertainty principle for locally compact quantum
groups. Suppose M is a von Neumann algebra with a normal semifinite faithful weight
. For any 0 < t < 1, we define L!(¢) to be the set of all densely defined closed operators
x on H, with the polar decomposition z = v,|z| such that v, € M and |z|' € L(¢).

Definition 5.21. Suppose M is von Neumann algebra with a normal semifinite faithful
weight . For any z € L*(¢), t € (0,1) U (1,00), the Rényi entropy of z is defined to be

ht(l') =

—— log 2]

Proposition 5.22 (Rényi entropic uncertainty principle). Suppose G is a locally compact
quantum group. For any v € LY(G), 1/t +1/t' =1, 1 <t < 2, we have

heyo (187 (@) P) + har 21D (Fi(2))]?) > 0.
Proof. By the Hausdorff-Young inequality, we have

log || ()l < log ||z]]s-
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Hence

heyo (127 (2)]%) + ht//z(l‘f’{/l(f(x))IQ)

B 1 _ 2)8/2 2|t /2

= T B 9 @I + T e 185 () Pl
t/

1 —t’/2

t
= 75 log |zl + log || Fe ()|«

1—t/2

logllwllt +7

logH]:t( e

2t
> —0=0. O
T2t

Proposition 5.23. Suppose M = @©;M; is a von Neumann algebra with a normal semifi-
nite faithful weight ¢ such that p|aq, is bounded. Let w € L'(M) N L*(M) such that
[[€E(w)|l2 =1. Then

T (|87 (€(@)P) = H(EW)) + (logd) L&), Jo€(w).
Proof.
Tim (@7 1 (6(w))?)

1
= tm m(log 1€e(@)l} — log [l€(w)II3)

d
— Zog ()

1
&)l di t=2-

= —(log |3 (§(w))[?Jp€(w), Jo€(W)) + ((log d) Jp&(w), Jp(w)). O

t=2—

D el

Remark 5.24. In Proposition 5.23, let € M, be such that ||[A,(z)| = 1. Then we
similarly have

i hyo(j2d22) = H(A (@) + (08 d)TAp(2), oA (2).
6. Hardy’s uncertainty principle
In this section, we show that minimizers of the Donoho—Stark uncertainty principle

are bi-shifts of group-like projections and then prove Hardy’s uncertainty principle for
locally compact quantum groups with group-like projections.
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Proposition 6.1. Suppose G is a locally compact quantum group and v is a minimizer
of the Donoho—Stark uncertainty principle. Then T(ap|v| ® L)A([v]) is a group-like
projection.

Proof. Using the argument in Proposition 4.7 in [19] and Proposition 4.9, we have that
m(cphﬁ ® t)A(Jv]) is a group-like projection. O

We will recall the definition of the left shift of a group-like projection first.

Definition 6.2. Suppose G is a locally compact quantum group and there exists a group-
like projection B in L'(G) N L>(G). A projection = in L(G) N L>=(G) is called a left
shift of the group-like projection B if p(x) = ¢(B) and

Az)(1®B)=z® B, A(B)(1®z)=R(z)®x.
In [19], Liu, Wang, Wu showed that for a left shift  of a group-like projection B in
LYG)N L>®(G) and t € R,

®

m(x) =2, of(x)=x 26" =p's

x

where (1, > 0.

Proposition 6.3. Suppose G is a locally compact quantum group and x € L*(G) N L>®(G)
is a projection. Then x is a minimizer of the Donoho—Stark uncertainty principle if and
only if x is a left shift of a group-like projection.

Proof. Suppose that x is a left shift of a group-like projection. By Proposition 4.4,
Corollary 4.14, Proposition 4.17 in [19], we have

Sr(2)Sr(Map)) =1, ou(x) =z,  6:(|Mz@)]) = [Mzp)].

By Proposition 4.7, we have that = is a minimizer of the Donoho—Stark uncertainty
principle.

Suppose that x is a minimizer of the Donoho—Stark uncertainty principle and x is a
projection. Let B = —= )(gax ® ¢)A(x). Then B is a group-like projection by Proposi-
tion 6.1 and ¢(B) = ¢(B) by the results in [19]. We have ¢(B) = ¢(z). Note that

Y @e)(AB)(1 @) - R) @)
=Wee)(1or)AB)(1®))+ (Y0 )(R(z)® 1)
—2R(¢ @ 9)((1 @ z)A(B)(R(x) ® z))

= ¥(B)p(x) + ¢(2)* — 2R(Y @ ) (A(B)(R(z) ® ))
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and

®¢)(1© B)A(x))
(1@ B)A(z))

We obtain that A(B)(1 ® ) = R(x) ® x. Since

(P2 e)(|A@)(1® B) —z® BJ?)

= (e @ @)(A(2)(1® B)) + ¢(z)p(B) — 2R(¢ @ ¢)((z ® 1)A(z)B)
=S M (1 ®)((1®z)A(B))) — @(x)? Propositions 4.9, 4.11

= pSTHR(2)p(x) — p(x)? = 0,

we see that A(z)(1 ® B) =  ® B. Therefore x is a left shift of the group-like projec-
tion B. O

We will update the definition of a bi-shift of a biprojection in [19]. Note that by the
results in [15], we see that there are eight forms to define a bi-shift of a biprojection. But
we only take one of them as our definition of a bi-shift of a group-like projection here.

Definition 6.4. Suppose G is a locally compact quantum group and there exists a group-
like projection B in L'(G) N L>°(G). Denote by B the range projection of A\(By) in
L>(G). A nonzero element z in L'(G) N L>(G) is said to be a bi-shift of a group-like
projection B if there exist a left shift B, of the group-like projection B and a left shift
By, of the group-like projection B and an element y € L>°(G) such that

= (yByp) * (\(Brg)e).

Proposition 6.5. Suppose G is a locally compact quantum group and x € L*(G)NL>®(G).
Then x is a minimizer of the Donoho-Stark uncertainty principle if and only if x is a
bi-shift of a group-like projection.

Proof. Suppose that = is a minimizer of the Donoho—Stark uncertainty principle and
x is a partial isometry. Then |z|(= By) is a left shift of the group-like projection B =
w(lm\ (np|ac| ® t)A(]z|) and <P(|:r| \)\(xgp)|(: By,) is a left shift of the group-like projection
R(M(By))(= B). Then

Map * (A(1M29)[9))) = Map)AA (A (z9)[9))
= Az@)|Azp)|
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= —x)‘(:mp)a

ie.

1
o(|z]

zp = wp* ( ) A(A(@9)[)) = 2By * N(Bri)ep-

Hence x = By * S\(Bhaﬁ) is a bi-shift of the group-like projection B.
Suppose that x is a bi-shift of a group-like projection B. By Proposition 4.17 in [19],
we have that [\(Bj,$)| = B. For any a € L>®(G), we have that

(w¢)(Bya) = (v ® ¢)(A(Bya)(yBy @ A(Brg)))
(1® B)A(By)A(a)(yBy © A(Bug)))
(By ® B)A(a)(yBy @ A\(Brg)))

(a)(yBy @ A(Br$)))

( )

= (@)

= (@)

=(pee)(A
= (z¢)(a),

i.e. R(zg) < B,. On the other hand, we have that A(z¢) = A(yB,¢) By and R,.(A(zp)) <

By,. Hence S, (2¢)S,(AMz)) < ¢(B,)¢(Bp,) = 1. By Theorem 4.2, the Donoho-Stark
uncertainty principle, we see that

Sr(29)S,(Mzp)) =1, R(zp) = By, Ry(Mzy)) = Bn.
By Proposition 4.4 and Proposition 4.5, we have that x is a bi-partial isometry. Note that
6¢(By) = By,. By Proposition 4.7, we have that z is a minimizer of the Donoho-Stark

uncertainty principle. O

Theorem 6.6 (Hardy’s uncertainty principle). Suppose G is a locally compact quantum
group with a bi-shift w of a group-like projection. Let x € L*(G) N L>°(G) be such that

27| < Clw™],  [A(zgp)] < C"[Mwe),
for some C,C" > 0. Then x is a multiple of w.
Proof. We assume that w is a partial isometry. Consider the element z*w in L'(G) N

L>(G). Since |z*| < C|w*|, z*w is nonzero. We have that S,(z*wp) < ¢(Jw|). To
estimate S, (A(z*wep)), we will show

Mz we) = (@A(we)* ® YA (we)).

This is because
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A((@Aae)” ® DA we))) = Ap(AA () ) A\ (we) @)
A (z*w) = ANz we)).

By Proposition 1.24 in [16] and |A(zp)| < C’|A(wep)|, we have that
|(PA(zp)” © YA (we))|?

< o)) (6 @ (2w

() ® DA(A(we)7)(

6o Al oy AR
= pla"2)(p © AN wR) T

= p(a"2)(¢ ® ) (AN (we) (A (we)| @ 1)).

AMwyp)|
o(w|)

® 1)) Propositions 6.5, 4.7

® 1))

By Proposition 4.10, we see that

8, (Mz*wp)) < 8:((6 @ (A we) ) (Mwe)| @ 1)) = (2D _ s (Awe)).

By Theorem 4.2, we have that
S,(@*we) S, (Mawe)) = 1.
and
Rlz*wp) = wl, Re(Aa*wy)) = B,
where B = R((¢ @ 1) (A(|Awe)) (| Mwe)| @ 1))). Now we will show that (¢ @ ) ((w*z ®

DA(Jw])) = p(w*z)B, where B = (plw| @ t)A(Jw]). By Proposition 1.24 in [16],
we have that

_1
w(Jwl)

(@) (wz @ DA(lw])* < e(wzz w)lll(e ® )((Jw] @ ) Alw])
= llz|*e(jwl)*B.

Hence we have that

(p@)((w'z @ DA(jw]) = w'e @ 1)A(Jw]))B
w'z @ 1)A(jw|)(1® B))
w'z @ 1)(|w| @ B))

x)B

*m>
() (@ )((Jw] @ DA(Jw])).

[

5 § % %

g E ® ® ®
(S

Applying the map A, we obtain
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Ap((p ® 1) (w*z @ D)A(|w]))) = A@(Sﬁ(w*x)

W@ @ 1)((Jw] ® 1)A(|w]))).

Therefore
Az we)* A(Jwlp) = oD Alwle)*Alwlp).

Now we obtain that

I o
e(Jwl)
and
xr = 790(‘% w w,
e(wl)

i.e. x is a multiple of w. O

Remark 6.7. Note that Hardy’s uncertainty principle for unimodular Kac algebras proved
in [20] imply the uniqueness of a bi-shift of a biprojection, but Hardy’s uncertainty
principle for locally compact quantum groups given here does not imply the uniqueness
(see also Theorem 4.12).

7. Young’s inequality revisited

In [19], Liu, Wang and Wu shows that for any z € L*(G) and y € L¥(G), 1 < t,s < 2,
the convolution x * p_; 1/ (y) is well defined by using Cauchy sequences and

O Fr(a ok pi () = 0 Fo(2) @, Fuly),

where 2 +1=1+1 24 1 =1 In this definition, we have that @glft(x)é;l}"s(y) €
LT/(G) for 2 <1’ < oo. When 1 < 7/ < 2, we can give a new definition of the convolution

of z € L'(G) and y € L*(G), 1 <t,5 <2, by
T * P—ijt (y) = ﬁr’(i)r/((i);lft(-r)(i)s_/lfs(y))'

Note that for this definition we could have written the convolution as = * y, but it will
not coincide with the case when 2 < 7’ < 0.

Combining Theorem 3.4 in [19] and the definition above we have Young’s inequality
for any 1 <t,s < 2 as follows:

Theorem 7.1. Suppose G is a locally compact quantum group. For any v € LY(G), y €
L*(G), 1 <t,s <2, we have
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2% p—ise (W) lr < [lllellylls,
where%—l—l:%—&—% and%—&-tl,:l.
In [17], Kustermans and Vaes defined the subspace L'(G)# of L'(G) as
LYG)* = {w e L}(G)|3p € L*(G) : p(x) = T(S(x)), for all z € D(S)}.
For all w € LY(G)#, we define w#(z) = @(S(z)) for all x in D(S). It is known that
AMw#) = MNw)* for all w € L*(G)#. Now we define subspaces L*(G)# of L!(G), 1 < t < 2,
as
LYG)# = {z € L}(G)|3z € L(G) : @;}}(m‘o) = (@%ft(x))*}.

Note that L?(G) = L*(G)*. For any =z € L'(G)¥, we define % = xy where z; is the

one described in the definition. The definition here coincides with the definition given in
[17] when ¢ = 1 by Proposition 2.4 in [17]. We define a norm || - ||; 4 on L*(G)# by

e = max{falle, a7 [l¢}-

Proposition 7.2. Suppose G is a locally compact quantum group. Let w € L*(G) N L?*(G)
be such that w € D<T(*71/t'+1/2)i5iz‘/t') forany 1 <t <2, where 1/t'+ 1/t =1. Then

&(w)* = &((1 /12050 (@R)).

In particular, if w € D(6ii/2), we have that

E(w)* = &(67/2(@R)).
Proof. We check the equation in the Hilsum space L!(¢),
(@ " F(&(7(1 jir—1/2i05/0 (@R))))* = ()‘(Tﬁ/tfq/z)ﬁf/t’(WR))dl/t/)*
= (61w (Mw#))d")*
= (@ M)
= Mw)d"/*
=&, ' Fi(&(w). O

Proposition 7.3. Suppose G is a locally compact quantum group. Let x € L*(G)#, y €
L*(G) and % +1= % + %, where 1 < r,t,s < 2. Then

(@ * P—i/t’(y))# =y" x P—ifs’ (™).
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Proof. By Proposition 3.7 in [19], we have

O Fol(m % poiye (9)*) = (@ Folw x p_ije(y)))*
= (0, Fo(2)®, Foly))”
=0 Fo(y) @, Fila
=o' F(y¥) 0, Fu(a¥)
=@ Fr(y® % p_iye (a7)),

)
)

*

ie. (@xp_i(y)* =y# xp_ie(@?). O

Proposition 7.4. Suppose G is a locally compact quantum group. Let x € L*(G)¥, y €
L (G)# (md%—i—l:%—l—%, 1<t,s<2. If2<r < oo, then

lz# % pije () lle < Nleliyls-

If1 <r <2, then

5 p—iyer ()l < N lleaellylls, -

Proof. For 2 < r < oo, we have

2% % piyor (™)l = e e (85 Fe ()25 Fo(y™)
<194 Fe(a) @ Foly™) o
= |0, Fu(y)®y ' Fol@) .0
< 1Fs@)llsr 1 Fe ()

< lyllsll]le-

For 1 <r <2, we have

% pier () llrge = maxc{lla % p_izer (W)l (@ % piyer ()% 1}

= max{||z * p_ize W)lr, y* * p_ize (%)}

IN

max{||zlellylls, o™ llelly* ]}

IN

lzllellylls, g O

Lemma 7.5. Suppose that M is a von Neumann algebra with a normal semifinite faithful
weight o. Let 2 € L1(M) N L>(M) be such that [|[A,(2)]?> = ||z]/eo]|z¢l]. Then  is a
multiple of a partial isometry and of (|z|) = |z| for any ¢ € R.
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Proof. Note that o(|z]) < ||z¢|| < oo, we have that |z|*/2 € N,. Then

p(lz[?) = (el Ay (J2]*2), Ay (|2]*/%))
< Mzl Ag ()1 A (2] /)]
< [lzllooe(l2])

< |zl llzell-

By the assumption, we obtain that
2| A (|2]'/?) = ||zlloo A (12V/2), [zl = (|-

Then |z| = ||z||R(|z]) and by Proposition 4.5, we have that x is a partial isometry
such that of(|z]) = |z| for any t e R. O

In [21], Liu and Wu completely characterize the extremal pairs of Young’s inequality
for unimodular Kac algebras. But in general, it is quite difficult to characterize the
extremal pairs of Young’s inequality for locally compact quantum groups.

Proposition 7.6. Suppose G is a locally compact quantum group. Let w € L*(G) N L*(G)
be such that ||w * (W) |2 = [[w||[|€(W)||. Then w is a minimizer of the Donoho-Stark
uncertainty principle.

Proof. Note that
low * E(W) P15 = [[Mw) @5 Fa(€(w))*]13,4
= [AMw)d" A w)*113,,
:/A(w)dl/QA(w)*A(w)dl/QA(w)*d¢

<A@ A@)d2A )" |20l d" 2 A(w) 12,6
< @)% NE@)I13

< Jlwl*flgw)II*.

Then we have that all inequalities above must be equalities by the assumption. This is
to say,

M) A@)d PAW)* = [A@)IZd2Aw@)7 M@)o = w1

Let py = R(dY2A(w)*) and pso = R(A(w)*). Then A(w)*A(w)pz = ||A(w)]|2,p2 and hence
P2 < Poo. Note that



C. Jiang et al. / Journal of Functional Analysis 274 (2018) 2399-2445 2443

o < llE@)3

By Proposition 4.4, we have that

o) — s (i o JAAE)IB
Plp2) = S (AN 2 T

Combining the two inequalities above, we have that

AW
) = TR

and pa = poo. By Proposition 4.7, we have that A(w) is a multiple of a partial isometry

and (A (w)]) = |Mw)]. Now we have to show that w = v is such that v is a multiple

of a partial isometry. Note that A(w) € L'(G) N L>(G), we let v = A(A(w)@). Then
Ap(v) = A (AAW)9)) = AA(W)) = (W),

i.e. w = vp. We will check that [|Ay,(v)]|? = [Jv]ls|lve]l-

olloc vl = 1A ()17 = JAAW))I?

= [[A@)lloo IA )l

= [lwllIA@)&ll

> velllivlloe,
ie. [A,(0)|* = |[v]lsollvell. By Lemma 7.5, we have that v is a multiple of a partial
isometry and o.(Jv|) = |v|. Hence w is a minimizer of the Donoho-Stark uncertainty

principle by Proposition 4.7. O

Remark 7.7. Suppose G is a locally compact quantum group. Let w € L'(G) N L?(G) be
such that [|(w)# * p_;/2(w)||2 = [|£(w)|||w]|. We can not prove that w is a minimizer of
the Donoho—-Stark uncertainty principle. Actually we can show that A(w) is a multiple
of a partial isometry and [|A(w)]|co = |lw]|1-

Now we show that bi-shifts of group-like projections are extremal operators for the
Hausdorff-Young inequality.

Proposition 7.8. Suppose that G is a locally compact quantum group. Let v be a minimizer
of the Donoho—Stark uncertainty principle. Then for any 1 <t <2, 1/t +1/t' =1,

[Fe(&e (o))l = [1€e(vp) -
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Proof. Suppose that v is a partial isometry and A(vp) = [id, where § > 0 and ¢ is a
partial isometry. By Theorem 4.2, we have

p(Jol) = e~ =4~

IFe (€ ool = 1" Aw)) e

= ¢(|A(wp) )"

_ ﬂﬂ_l/t — ﬂl/t

([o)"* = lI€(0p)lle,
Le. [[Fe(&e(vo))ller = [1&c(vo)lle- O
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