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Abstract: An irreducible II1-subfactor A ⊂ B is exactly 1-supertransitive if B � A
is reducible as an A − A bimodule. We classify exactly 1-supertransitive subfactors
with index at most 6 1

5 , leaving aside the composite subfactors at index exactly 6 where
there are severe difficulties. Previously, such subfactors were only known up to index
3 +

√
5 ≈ 5.23. Our work is a significant extension, and also shows that index 6 is not

an insurmountable barrier.
There are exactly three such subfactors with index in (3 +

√
5, 6 1

5 ], all with index
3 + 2

√
2. One of these comes from SO(3)q at a root of unity, while the other two appear

to be closely related, and are ‘braided up to a sign’.
This is the published version of arXiv:1310.8566.

1. Introduction

A II1-subfactor is an inclusion of infinite dimensional von Neumann algebras A ⊂ B
each with trivial centre, and a trace on B with tr(1) = 1. The index of the subfactor is the
Murray–von Neumann dimension of B as a left A-module. A subfactor is irreducible if
B is irreducible as an A − B bimodule. As an A − A bimodule, B is certainly reducible,
with A as a sub-bimodule. In this article, we study the very restricted case in which the
index is at most 6 1

5 , B is irreducible as an A − B bimodule, and B � A is reducible as
an A − A bimodule (this condition is called ‘exactly 1-supertransitive’).

We study a finite index subfactor by analyzing its standard invariant, which has many
equivalent characterizations, such as Ocneanu’s paragroups [Ocn88], Popa’s λ-lattices
[Pop95], and Jones’ planar algebras [Jon99]. The standard invariant of a subfactor is not
a complete invariant, but it is for finite depth hyperfinite subfactors, and, moreover, every
finite depth standard invariant arises as the invariant of a hyperfinite subfactor [Pop90].

Copyright © 2014 by the authors. This paper may be reproduced, in its entirety, for non-commercial
purposes.
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After Jones’ landmark result [Jon83] that the index of a II1-subfactor is quantized,
and must lie in the set

{
4 cos2 (π/n)

∣∣∣n ≥ 3
}

∪ [4,∞],
Ocneanu and others classified all standard invariants with index less than 4 [Ocn88]. Popa
and others subsequently completed the classification of standard invariants with index
exactly 4 [Pop94]. Above index 4, there are subfactors with Temperley–Lieb standard
invariant at every index [Pop93]. Leaving these aside, however, the spectrum of possible
index values for extremal subfactors remains discrete above 4! Haagerup announced that
in the index range (4, 3+

√
3) there were at most 3 discrete families of standard invariants

(besides Temperley–Lieb) [Haa94], and these families were later reduced to exactly
3 standard invariants (up to taking duals) which have subsequently been constructed
[AH99,BMPS12]. In a series of recent articles, these classification results were pushed
all the way to index less than 5 [MS12,MPPS12,IJMS12,PT12]. Above index 5, we
also have a complete classification of exactly 1-supertransitive standard invariants with
index less than 3 +

√
5 [MP12b]. For a much more detailed history, including references

for all the results mentioned in this paragraph, and an overview of the techniques used
in the classification up to index 5, see the survey article [JMS13].

Recently, two breakthroughs have opened the possibility of pushing classification
results to higher indices. First, [Liu13b] provides results on virtual normalizers implying
the existence of an intermediate subfactor. Second, [Pop95,BP14] shows that when the
index is greater than 4, principal graphs which are stable at some depth must be stable
thereafter and finite.

This article explains that the exactly 1-supertransitive case is now completely under-
stood below index 6. In fact, while index exactly 6 still holds mysteries, described below,
we can also classify all exactly 1-supertransitive standard invariants with index in the
interval (6, 6 1

5 ]. We are forced to stop, for now, at 6 1
5 , and we explain in what follows

(see Proposition 5.9) why this index value is an obstacle.
Our main result is

Theorem 1. If P• is an exactly 1-supertransitive subfactor planar algebra in the index
range [3 +

√
5, 6 1

5 ], then either P• has a nontrivial biprojection corresponding to an

intermediate subfactor (and so the index is exactly 3 +
√

5 or exactly 6), or the principal
graphs (�+, �−) are one of

S =
(

,
)

or

S ′ =
(

,
)

.

Moreover, there is a unique P• with principal graphs S, and exactly two P• with principal
graphs S ′ which are complex conjugate. All three planar algebras are symmetrically
self-dual in the sense of [MP12a, Section 5.1], and thus give unshaded planar algebras.
(The red lines on �± denote dual data. See Sect. 2.1 for the relevant notation and
definitions.)

The planar algebra with principal graphs S is merely the reduction of A7 at f (2)

(equivalently, the shading of the planar algebra coming from the 3-dimensional repre-
sentation of quantum SO(3) at the appropriate root of unity). In particular, it is braided.
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Although we do not have a direct construction of the other two planar algebras starting
from quantum groups, they appear to be closely related. In particular, while they are
not braided, they are “σ -braided”, a notion we introduce in Sect. 4.1. It would be very
interesting to find a construction starting from the braided case, perhaps by some type
of twisting.

Our subfactors are related to Izumi’s 241 subfactors. By [Izu01, Examples A.2 and
A.3] (see also [EG12, Proposition 6 and Table 2]), there is exactly one 2Z/2Z×Z/2Z1
subfactor and two complex conjugate 2Z/4Z1 subfactors, with principal graph pairs

(
,

)
and

(
,

)

respectively. These 241 subfactors arise as equivariantizations of the one S and two S ′
subfactors respectively (see Sect. 4.3).

At index exactly 6, we show that any exactly 1-supertransitive subfactor must have
an intermediate subfactor, and is thus a composite of an A3 subfactor with an A5 sub-
factor, or of an A3 subfactor with a D4 subfactor. In the latter case, there are (at least)
countably many different standard invariants of finite depth subfactors — indeed every
finite quotient of the modular group Z/2Z ∗ Z/3Z ∼= P SL(2, Z) gives an example of
a Bisch–Haagerup subfactor [BH96] at index 6. But even worse, the result of [BV13]
(which builds upon [BNP07]) shows there are non-isomorphic hyperfinite subfactors,
not classifiable by countable structures, all with the same A3 ∗ D4 standard invariant at
index 6.

At present not much is known about composites of A3 with A5; unfortunately the
techniques of [Liu13a,IMP13] which classify the standard invariants of composites of
A3 with either A3 or A4 break down.

At this point we still have few results on subfactors with arbitrary supertransitivity
above index 5.

This work builds on [MS12,MP12b], which classify exactly 1-supertransitive sub-
factors with index in the intervals (4, 5) and (5, 3+

√
5) respectively. Index at most 4 was

done by [Ocn88,Pop94] (see [JMS13] for further details), and index exactly 5 appears in
[IMP+14]. Subfactor planar algebras with intermediates at index 3 +

√
5 were classified

in [Liu13a,IMP13].

Outline. In Sects. 2 and 3, we show that any exactly 1-supertransitive subfactor with
index in (3 +

√
5, 6 1

5 ] either has principal graphs S or S ′, or is an extension of one of
the following four graphs:

D =
(

,
)

K =
(

,
)

D′ =
(

,
)

K′ =
(

,
)

.

In Sect. 4, we prove existence and uniqueness (up to complex conjugation) of our σ -
braided subfactors with principal graphs S,S ′. Some technical computations from this
section are deferred to Appendix A. Finally, in Sects. 5 and 6, we eliminate extensions
of the graphs D,D′ and K,K′ respectively.
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2. Weeds and Intermediate Subfactors

2.1. Notation for planar algebras. We refer the reader to [Jon12,BMPS12] for the defi-
nition of a subfactor planar algebra. In this article, P• denotes a subfactor planar algebra
of modulus δ = [2] where

[k] = qk − q−k

q − q−1 ,

and q ∈
{

exp
(

2π i
2 j

)∣∣∣ j ≥ 3
}
∪[1,∞) such that [2] = q+q−1. We denote the Temperley–

Lieb subfactor planar subalgebra by T L•.
We refer the reader to [GdlHJ89,BP14,JMS13] for the definition of the principal

graphs (�+, �−) of P•. If there is only one projection P ∈ Pn,± in the equivalence class
[P] corresponding to a vertex of �± at depth n, then we identify [P] with P .

For a projection P ∈ Pk,±, the dual projection P is given by

P = P

k

k

.

For a vertex [P] of �± at depth n, there is a corresponding dual vertex [P] necessarily
at depth n. If n is even then [P] is a vertex of �+, but if n is odd, then [P] is a vertex of
�−.

When we draw principal graph pairs, we use the convention that the vertical ordering
of vertices at a given odd depth determines the duality; the lowest vertices in each graph
at each odd depth are dual to each other, etc. When we specify the duality at even depths
(sometimes we omit this data), the duality is represented by red arcs joining dual pairs
of vertices. Self-dual even vertices have a small red dash above them.

Definition 2.1. A subfactor planar algebra P• is called k-supertransitive if P j,+ =
T L j,+ for all 0 ≤ j ≤ k. Equivalently, P• is k-supertransitive if the truncation �+(k) of
�+ to depth k is Ak+1. This gives us the notion of the supertransitivity of a potential prin-
cipal graph. We say a subfactor N ⊂ M is k-supertransitive if its associated subfactor
planar algebra is k-supertransitive.

2.2. Results on 1-supertransitive subfactors using Liu’s thickness. Suppose P• is an
exactly 1-supertransitive subfactor planar algebra.

Definition 2.2. Suppose X ∈ P2,+ is a positive element such that

X =
k∑

i=1

ci Pi

where the Pi ’s are mutually orthogonal minimal projections in P2,+, and ci > 0 for all
1 ≤ i ≤ k. We define the thickness of X , denoted by thick(X), to be the number k,
which is independent of the decomposition of X .

For two minimal projections P, Q ∈ P2,+, we define the thickness between P and
Q, denoted by thick(P, Q) to be the number of length 2 paths on �+ between [P] and
[Q].
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The thickness between P and Q is related to the thickness of the positive operator
P ∗ Q, where ∗ denotes the coproduct on P2,+:

P ∗ Q = P Q .

Lemma 2.3 ([Liu13b, Lemma 4.2]). Suppose P, Q are minimal projections in P2,+.
Then thick(P ∗ Q) ≤ thick(P, Q).

The following is a weak version of a powerful result of Liu on virtual normalizers
which ensures the existence of an intermediate subfactor. This weaker version is sufficient
for our purposes.

Theorem 2.4 ([Liu13b, weakened Theorem 4.16]). Suppose there is a vertex [P] at
depth 2 of �+ satisfying
• [P] is central, i.e., there is only 1 edge to the vertex at depth 1,
• dim([P]) > 1, and
• thick(P, Q) = 1 for all Q ∈ P2,+ with [Q] �= [P].
Then either P• is Temperley–Lieb or P• has a nontrivial biprojection corresponding to
an intermediate subfactor.

2.3. Results on intermediate subfactors. If N ⊂ M is a subfactor with index in (4, 6 1
5 ]

with an intermediate subfactor, then [M : N ] ∈ {3 +
√

5, 6}. Subfactor planar algebras
with intermediates at index 3 +

√
5 were completely classified by Liu [Liu13a] (see

also Izumi–Morrison–Penneys [IMP13], which simultaneously conjectured the same
classification, without proving all cases):

Theorem 2.5 ([Liu13a]). If N ⊂ P ⊂ M is an inclusion of II1-factors such that [P :
N ] = 2 and [M : P] = 3+

√
5

2 (so [M : N ] = 3 +
√

5), then the principal graphs of
N ⊂ M must be one of the following:

BHF1 =
(

,
)

BHF2 =
(

,
)

BHF3 =
(

,
)

FC =
(

· · · , · · ·
)

Moreover, there is exactly one subfactor planar algebra with these principal graph pairs.

Proposition 2.6. Suppose N ⊂ M is a hyperfinite II1-subfactor with (�+, �−) an exten-
sion of

(
,

)
.

Then N ⊂ M is isomorphic to a Bisch–Haagerup subfactor RZ/2 ⊂ R � Z/3.



894 Z. Liu, S. Morrison, D. Penneys

Recall that an extension of � is a graph of greater depth which truncates to �.

Proof. Denote the two univalent vertices at depth 2 of�− byα, β. One can show similarly
to [IMP13, Lemma 4.7] that e1 +α +β is a biprojection corresponding to an intermediate
subfactor M ⊂ Q ⊂ 〈M, eN 〉 with [Q : M] = 3. Denote the self-dual vertex at depth 3
of �− by P , and note that

P = id2,− −e1 − α − β.

By Lemma 2.3, the coproduct P ∗ P is a positive linear combination of at most 3 minimal
projections in P2,−. A straightforward computation shows

P ∗ P =
(

δ − 6

δ

)
id2,− +

3

δ
(e1 + α + β),

so we must have that δ − 6
δ

= 0, i.e., δ2 = 6.

Recall that M ′ ∩ 〈Q, eQ
M 〉 can be identified with (e1 + α + β)P2,−(e1 + α + β) by

[BL10], and α, β are fixed by (e1 + α + β). Hence dim(M ′ ∩ 〈Q, eQ
M 〉) = 3, so M ⊂ Q

is isomorphic to the Z/3-subfactor R ⊂ R � Z/3.
Now Q corresponds to an intermediate subfactor N ⊂ P ⊂ M where [P : N ] = 2

and [M : P] = 3. By Goldman’s Theorem [Gol59], N ⊂ P is isomorphic to the Z/2-
fixed point subfactor RZ/2 ⊂ R. Hence N ⊂ M is a Bisch–Haagerup subfactor of the
form RZ/2 ⊂ R � Z/3. ��
Remark 2.7. Subfactors of index 6 with an intermediate subfactor are wild. By [BNP07],
there is a continuous family of non-isomorphic, hyperfinite Bisch–Haagerup subfactors
at index 6 with the same standard invariant. In fact, by [BV13], hyperfinite Bisch–
Haagerup subfactors at index 6 with standard invariant A3 ∗ D4 are not classifiable by
countable structures.

2.4. Results on subfactor planar algebras generated by a single 2-box.

Theorem 2.8 (Bisch–Jones [BJ03]). If P• is a subfactor planar algebra generated by a
single 2-box such that dim(P3) = 13, then P• is the subgroup subfactor for R � Z/2 ⊂
R � D5. Thus P• has principal graphs

, .

Corollary 2.9. If the principal graph of a subfactor planar algebra P• is an extension of

, ,

then P• is the planar algebra of the subgroup subfactor R � Z/2 ⊂ R � D5 with

(Γ+, Γ−) = , .

Proof. Let Q• be the planar subalgebra of P• generated by P2,+. Then dim(Q3,+) ≤ 13,
so Q• is one of the following subfactors by [BJ00,BJ03]:
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(1) the group subfactor R ⊂ R � Z/3,
(2) the subgroup subfactor R � Z/2 ⊂ R � D5, or
(3) Fuss-Catalan.

The first is impossible by the Frobenius–Perron dimensions, and if Q• is the second, we
are finished. Note that the dimensions of the bimodules at depth 2 must be equal by the
shape of the graph, so the branch factor must be r = 1. But this is not the case for any
Fuss-Catalan planar algebra by [Pen13], since Fuss-Catalan has annular multiplicities
∗10 or ∗11. ��
Theorem 2.10 ([BJL13]). If P• is a subfactor planar algebra generated by a single
2-box such that dim(P3) = 14, then the principal graphs of P• are extensions of

, ,

and P• is a BMW planar algebra in the sense of [Wen90]. In particular, P• is either
the depth 3 trivial extension coming from O(3), or P• comes from Sp(4) (the case
n = −5 where r = qn and q = eπ i/	 with 	 ≥ 12 even [Wen90, Table 1]), and has
index

(
sin

(|n|π
	

)

sin
(

π
	

) − 1

)2

> 7.4641.

Remark 2.11. Note that the q for the BMW planar algebras is not the same q such that
[2] = q + q−1.

Corollary 2.12. If the principal graph of a subfactor planar algebra P• is an extension of

,

and δ2 < 7.4641, then P• is the unique self-dual subfactor planar algebra with

(Γ+, Γ−) = ,

(uniqueness and self-duality follows from [Wen90,MP12b,BJL13]).

Proof. Let Q• be the planar subalgebra of P• generated by P2,+. Then dim(Q3,+) ≤
dim(P3,+) = 14. If dim(Q3,+) = 14, then Q3,+ = P3,+, and by Theorem 2.10 and
the index restriction, Q• must be the unique subfactor planar algebra with principal
graphs

, .

In this case, since Q• is finite depth, we know P• has depth at most the depth of Q•
(e.g., by [BP14, Corollary 3.11]), so P• = Q•.

Otherwise, dim(Q3,+) ≤ 13, and Q• is one of the 3 subfactors in the proof of
Corollary 2.9. Cases (1) and (2) are impossible by the Frobenius-Perron dimensions. If
Q• is Fuss-Catalan Am∗An , then by examining the Frobenius-Perron dimensions at depth
2, m, n > 3. By the index restriction, we must have m = n = 4, so δ2 = (4 cos2(π

5 ))2 ≈
6.8541. Hence P• has a biprojection corresponding to an intermediate subfactor, so it
must be a composed inclusion of two A4 subfactors. But these are completely classified
by [Liu13a], so this case is impossible. ��
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2.5. Results on principal graph stability. Recall the following definition from [Pop95,
BP14].

Definition 2.13. A principal graph � is said to be stable at depth n if every vertex at
depth n connects to at most one vertex at depth n + 1, no two vertices at depth n connect
to the same vertex at depth n + 1, and all edges between depths n and n + 1 are simple.
We say (�+, �−) is stable at depth n if both �+ and �− are stable at depth n.

Theorem 2.14 (Principal Graph Stability [Pop95, Theorem 4.5], [BP14, Theorem 1.3]).

(1) If (�+, �−) is stable at depth n, the truncation �±(n + 1) �= An+2, and δ > 2, then
(�+, �−) is stable at depth k for all k ≥ n, and �+, �− are finite.

(2) If �+ is stable at depths n and n + 1, the truncation �+(n + 1) �= An+2, and δ > 2,
then (�+, �−) is stable at depth k for all k ≥ n + 1, and �+, �− are finite.

Definition 2.15. A cylinder is a stable principal graph, i.e., it is a principal graph
(�+, �−) such that (�+, �−) is stable at depth n for some n.

Recall from [MS12] that we prove ‘classification statements’ (�, δ2,W,V) describ-
ing all the possible translated extensions with graph norm at most δ of a given graph �,
by specifying a collection of weeds W and a collection of vines V . The assertion of a
classification statement is that every translated extension of � with graph norm at most
δ which could be the principal graph of a subfactor is either a translated extension of a
weed or a translation of a vine.

We improve classification statements by taking a weed, moving it into the set of
vines, and then adding all the depth 1 extensions of that weed to the set of weeds. The
consequence of Theorem 2.14 is that if a weed is a cylinder we only need to consider
stable extensions.

Definition 2.16. Suppose P• is a subfactor planar algebra with principal graphs
(�+, �−). A tail of �+ is a chain of vertices with degree at most 2 connected to some
vertex v of �.

The next proposition is probably folklore.

Proposition 2.17. Suppose P• is a finite depth subfactor planar algebra with principal
graph �+. Then no tail of �+ may be longer than the initial arm.

Proof. Suppose P• is exactly n − 1-supertransitive and �+ has a tail of length m. Let
P ∈ Pd,+ be a representative of the vertex [P] at the end of the tail, where [P] has depth
d. An induction argument shows that for each k = 1, . . . , m, P ⊗ f (k) is a representative
of the vertex at distance m − k on the tail.

· · ·
�

n vertices

f (n−1) [P ⊗ f(m−1)] [P ]

m vertices

· · ·

Since f (n) is not simple, P ⊗ f (n) is not simple, so m ≤ n. ��
The previous proposition together with Theorem 2.14 gives the following.

Corollary 2.18. Suppose the cylinder (�+, �−) has fixed supertransitivity n − 1. Then
any tail of �± has length at most n. In particular, a cylinder with fixed supertransitivity
1 cannot be extended.

In the language of classification statements of [MS12], because we are only interested
in exactly 1-supertransitive subfactors, we can move any cylindrical weeds to the vines.
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3. Proof of the Main result

Theorem 3.1. Suppose N ⊂ M is an exactly 1-supertransitive subfactor with no inter-
mediate subfactor and index in the range [3 +

√
5, 6 1

5 ]. Then the principal graphs
(�+, �−) are extensions of one of the following 4 weeds:

Proof. We run the principal graph odometer of [MS12] on the weed , ,
noting that we may ignore the following weeds:

• , , since we are only concerned with exactly 1-supertran-
sitive subfactors,

• , , since it has no extensions by Theorem 2.8,

• , , since its extensions are classified by Corollary 2.9,

• , , since the bottom vertex at depth 3 must have dimen-

sion 0, which is impossible,

• , , since its extensions with index at most 7.4641 are classi-

fied by Corollary 2.12,

• , , since any extension must be a Bisch–Haagerup sub-

factor of index 6 with an intermediate subfactor by Proposition 2.6,

• , , since analyzing the rotation by π implies �+ and �−
must have the same number of self-dual vertices one past the branch by [MS12,
Lemma 3.6].

We get 300 weeds at depth 3, of which 292 have intermediates by the results of
Sect. 2.2. Of the remaining 8, two are stable in the sense of [Pop95,BP14], leaving only
6 weeds that will continue to grow as we keep running the odometer, along with 19 vines
and 2 cylinders. Four of these weeds are D,D′,K,K′, which we ignore as we continue
to run the odometer. We then run the odometer to depth 5, leaving no remaining weeds
which are not D,D′,K,K′, and a total of 32 vines and cylinders.

We present the output of the odometer in Fig. 1, omitting weeds with interme-
diates. The Mathematica notebook performing this computation can be found as
1STBelow6Enumerator.nbwith thearXiv sources of this article. (It further relies
on theFusionAtlas‘ package; see [MS12] for more details.) This notebook also con-
tains sections for the later parts of the paper which enumerate principal graphs.

We highlight cylinders with a blue background and ‘active’ weeds with a red back-
ground. Weeds with a white background which are leaves on the tree do not have descen-
dants at the next depth. See the description in [MS12] and [MP12b] for more details.

Since we are only interested in exactly 1-supertransitive subfactors, the vines cannot
be translated. By Proposition 2.17 and Corollary 2.18, the tails of the cylinders can have
length at most 1, and hence cannot be extended. Thus from this point we consider all
the cylinders as vines.
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We now examine the vines in the index range [3+
√

5, 6 1
5 ]. All the vines either have a

vertex whose dimension is less than 1 or have a vertex whose dimension is not an algebraic
integer (ruling them out), or they are on the following list of potential principal graphs.

(1)

(2)

(3)
2

,

(4)
2

,

(5) ,

(6) ,

(7) ,

(8) 2 , 2

Note that (3) is the principal graph pair of the S3-subfactor, and (7) is the principal graph
pair of the Z/6-subfactor. In fact, depth 2 subfactors are classified by outer actions of
finite dimensional Kac algebras [Ocn88,Szy94]. We know all such algebras of dimen-
sion 6; they are either group algebras or duals of group algebras by [EG98]. Thus, (1),
(2), (4), (5), and (6) are not principal graph pairs of subfactors. By [Izu91, p. 991], (8)
is not the principal graph pair of a subfactor. ��

Using the above theorem, we now prove our main result.

Proof of the main Theorem 1. In Sect. 4, we show that there is exactly one subfactor
planar algebra with principal graphs S, and exactly two subfactors with principal graphs
S ′ which are complex conjugate, and all three are symmetrically self-dual in the sense
of [MP12a, Section 5.1]. The weeds D,D′ are eliminated in Sect. 5. The weeds K,K′
are eliminated in Sect. 6. ��

4. Classification of Subfactors with Principal Graphs S, S′

In this section, we construct one subfactor with principal graphs S and two subfactors
with principal graphs S ′ which are complex conjugate, where

S =
(

,
)

S ′ =
(

,
)

.

We then show these are the unique such subfactors with these principal graphs.
To do so, we work in the common underlying bipartite graph planar algebra of S,S ′

(without dual data). By the symmetry of the graph, the vertices at depth 2 have the
same dimension. Thus, up to a scalar, the new low-weight rotational eigenvector at
depth 2 corresponding to eigenvalue ω = ±1 must be the difference of the two minimal
projections P, Q at depth 2. Note that
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2

2

2

2

2

2

2

2

2

2

2

2

2

2

Fig. 1. Results of running the odometer on (A2, A2) to depth 5, ignoring D,D′,K, K′
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• P, Q are self-dual if and only if ω = 1, and
• P, Q are dual to each other if and only if ω = −1.

For ω = 1, we find a 1-parameter family of self-adjoint, uncappable elements which
square to f (2), while for ω = −1 we find two such families. We then show that related
elements satisfy a relation analogous to the braid relation, and that these relations are
independent of the parameter. (Thus each 1-parameter family actually gives a single
planar algebra, and the parameter only determines the embedding of this planar algebra
in the graph planar algebra.) Using this relation, we see that planar algebras generated
by these elements are evaluable, and hence subfactor planar algebras.

4.1. σ -braided planar algebras. By Theorem 2.8 and Theorem 2.10, subfactor planar
algebras P• generated by a single 2-box such that dim(P3,±) ≤ 14 are completely
classified. One could hope to extend this classification to dimension 15, where it is
possible to simplify at least one triangle formed by the 2-box [Jon99, p. 33].

Note that if P• is a subfactor planar algebra with principal graphs S or S ′, then
there is a new low-weight rotational eigenvector at depth 2, and dim(P3,±) = 15. In
the examples at hand, we can use this element to build a quadratic σ -braiding, defined
below.

Definition 4.1. Let F =

n − 1

n − 1

be the one-click rotation.

Definition 4.2. A 2-box R is called a quadratic σ -braiding if

(1) R is bi-invertible, i.e.,

R�

R−1�
= idP2,+ and R� R−1 � = ,

(2) R� = a and R

�

= σa−1 for some a ∈ C \ {0},

(3) R − σ 2F2(R) ∈ T L2,+ (which implies R−1 − σ 2F2(R−1) ∈ T L2,+),
(4) (σ -braid relation) R satisfies

σ

R�

R�

R−1

�

= σ2

R−1

�

R−1

�

R� ,

and
(5) (the quadratic condition) R2 ∈ T L2,+ ⊕ CR.
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Of course, an honest braiding satisfying the quadratic condition is a quadratic (+1)-
braiding. One of our examples has an honest braiding, but the other two have quadratic
(±i)-braidings. Note that the condition R ± R−1 ∈ T L2,+ implies R is quadratic. This
holds for our examples. Note that R is a quadratic (+1)-braiding if and only if i R is a
quadratic (−1)-braiding.

Remark 4.3. Perhaps it would be interesting to work out the definition of a (not neces-
sarily quadratic) σ -braiding; one would need all the variations of Reidemeister III, not
just the σ -braid relation. It’s unclear whether this would be motivated by the existence
of examples, however! Observe that an honest braiding would be a (not necessarily
quadratic) (+1)-braiding (carefully note the positions of the � in the σ -braid relation
to see this is equivalent to a Reidemeister III move). Moreover, any honest braiding
satisfying the HOMFLYPT skein relation [FYH+85] is a quadratic (+1)-braiding.

Theorem 4.4. Suppose the 2-box R is a quadratic σ -braiding. Then the planar algebra
generated by R is evaluable.

There are two nice proofs. One is an adaptation of the skein template algorithm for
evaluating the HOMFLYPT polynomial, the other an adaption of an argument used in
analyzing Hecke algebras.

Proof 1. We associate to a closed diagram D in R and R−1 a link L(D) by replacing each
R with a positive crossing and each R−1 with a negative crossing. If L(D1) is isotopic
to L(D2), then D1 = D2 + lower order terms; to see this, just follow the sequence of
Reidemeister moves witnessing the isotopy by the corresponding relations for a quadratic
σ -braiding. The quadratic hypothesis says that if L(D1) differs from L(D2) by a crossing
change, again D1 = D2 + lower order terms. Now we show that all closed diagrams
are evaluable by inducting on the pair (u(L(D)), #(L(D))) (ordered lexicographically),
where u is the unknotting number and # is the number of crossings (equivalently the
number of R or R−1s in D). If the unknotting number is zero, there is an isotopy that
reduces the number of crossings. Otherwise, by the definition of unknotting number,
there is some isotopy followed by a crossing change which decreases the unknotting
number. A diagram with #(L(D)) = 0 is in Temperley–Lieb, providing the base case
of the induction. ��
Proof 2. This time, we induct on the number of generators appearing in a diagram.

By an isotopy, we can arrange a closed diagram in R and R−1 as the trace of a
‘rectangular’ diagram without any cups or caps, and with each generator having two
strings up and two strings down. (This is the same as the argument in Alexander’s
theorem [Ale23] that every link is the trace closure of a braid.) Such a diagram consists
of n parallel strings, and some number of generators bridging adjacent pairs of strings,
as in the following example:

.
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Now, we argue that it is possible to use the relations to arrange that there is at most
one generator connected to the rightmost string. If there are at least two, start bringing
two adjacent generators on the rightmost string together. If there are no intervening
generators on the rightmost-but-one string, we can bring them together and use the
quadratic relation to replace the pair of generators with a single one (and lower order
terms, which are handled via our induction). If there is exactly one intervening generator,
we can use condition (5) for a quadratic σ -braiding (the analogue of Reidemeister III)
to reduce the number of generators connected to the rightmost string. If there are at
least two intervening generators, we first apply the argument of this paragraph again to
those generators, replacing them with a single generator, and then apply the previous
sentence! ��

Note that the evaluation of a diagram depends on σ , a, and also the implicit structure
constants in relations (3) and (5) above.

Remark 4.5. By unpublished work of Bisch and Jones, and independently Wenzl, all
quadratic (+1)-braided subfactor planar algebras come from BMW algebras. This also
follows from Liu’s classification work [Liu].

4.2. Existence and Uniqueness of S,S ′. Let � be the underlying graph (without dual
data) of the principal graph of S,S ′. Let G• denote the bipartite graph planar algebra of
� [Jon00].

The following two lemmas are the first ingredients of the existence and uniqueness
of S and S ′. We defer the technical proof to Appendix A.

Lemma 4.6. Up to a sign, there is exactly a 1-parameter family of elements A =
±A(λ) ∈ G2,+ where λ ∈ T which satisfy

(1) A∗ = A and F2(A) = A,
(2) A is uncappable, and
(3) A2 = f (2) and F(A)2 = f (2).

Lemma 4.7. Up to a sign, there are exactly two 1-parameter families of elements B =
±B(λ, ε) ∈ G2,+ where λ ∈ T and ε ∈ {−1, 1} which satisfy

(1) B∗ = B and F2(B) = −B,
(2) B is uncappable, and
(3) B2 = f (2) and B̌2 = (−iF(B))2 = f (2).

Using the elements found in Lemmas 4.6 and 4.7, the next 2 propositions follow
from the classification results in [Liu], or by a straightforward, but tedious calculation
in the graph planar algebra G•. We also check these computations directly in G• in
the Mathematica notebook BraidRelationsForS.nb bundled with the arXiv
source of this article.

Proposition 4.8. The element

R = R(λ,±) =
(√

2

2
i

)
(id2,+ −(1 +

√
2)e1) ±

(√
2

2

)
A(λ)

is a quadratic (+1)-braiding such that the following hold independently of λ,±:
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• a = i
• F2(R) = R, and
• R − R−1 = (i

√
2) id2,+ −i(2 +

√
2)e1.

Proposition 4.9. The element

S = S(λ, ε,±) =
(

εi√
4 + 2

√
2

)
id2,+ +

(
1 +

√
2√

4 + 2
√

2

)
(e1 ± B(λ, ε))

is a quadratic (εi)-braiding such that the following hold independently of λ,±:

• aε = exp
(
ε 3π i

8

)

• S − σ 2F2(S) = S + F2(S) = σ
(√

2 − √
2
)

id2,+ +
(√

2 +
√

2
)

e1, and

• S − S−1 = εi
(√

2 − √
2
)

id2,+.

With the above lemmas and propositions, we now prove the main results of this
section.

Theorem 4.10. There exists a unique subfactor planar algebra with principal graphs
S.

Proof. By Lemma 4.6, there is a 1-parameter family of elements A(λ) in G2,+ (the graph
planar algebra), each of which gives a (+1)-braiding R(λ) which satisfies the relations in
Proposition 4.8, independent of λ. By Theorem 4.4, each R(λ) generates an isomorphic
evaluable 1-supertransitive subfactor planar algebra. By Theorem 3.1 and the results of
Sects. 5 and 6, the only possibility for the principal graph pair is S. This establishes
existence.

To prove uniqueness, we note that any subfactor planar algebra with principal graphs
S has an uncappable self-adjoint low-weight rotational eigenvector A with ωA = 1
satisfying A2 = f (2) and F(A)2 = f (2). By the graph planar algebra embedding
theorem [JP11], there must be a solution for these equations in the graph planar algebra
G•. These solutions are, up to sign, precisely the 1-parameter family found in Lemma
4.6. If we have A = ±A(λ), we then consider the (+1)-braiding

R =
(√

2

2
i

)
(id2,+ −(1 +

√
2)e1) +

(√
2

2

)
A

as in Proposition 4.8. The planar algebra generated by this R is independent of the
choice of λ and ± in A = ±A(λ), giving uniqueness. (Observe that although the sub-
factor planar algebra is unique, it does not embed uniquely in the graph planar algebra,
giving the family ±A(λ). This is because of the gauge action, c.f. [MP12b, Section
1.4].)

By uniqueness, the planar algebra A generates must be self-dual. We can also check
this explicitly by a straightforward calculation in G•. We have

Ř = Ř(λ) =
(√

2

2
i

)
(id2,− −(1 +

√
2)e1) +

(√
2

2

)
F(A(λ))

is a quadratic (+1)-braiding satisfying the same relations as R, so the map R ↔ Ř,
or equivalently A ↔ Ǎ = F(A), induces an isomorphism with the dual planar
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algebra. We also check these computations directly in G• in the Mathematica
notebook BraidRelationsForS.nb bundled with the arXiv source of this
article. ��
Remark 4.11. There is an easier construction of S. It is the reduced subfactor of A7 at
f (2).

A referee pointed out the following nice proof of uniqueness based on this observation.
Recall that finite depth subfactors correspond to Frobenius algebra objects in unitary
fusion categories (where the fusion category is the even part) [Ost03,Mg03,GS12b].
First, the even part must be the even part of A7, by the recognition theorem from [GS12a,
Section 3.2]. Second, since there is an odd vertex of dimension 1, the algebra object
must be of the form X ⊗ X∗ for some simple object X in the even part of A7. (This
argument is explained in the proof of [GS12b, Lemma 3.1].) Thus the algebra is either
f (2) ⊗ f (2) or f (4) ⊗ f (4), but these are isomorphic, since f (4) = f (2) ⊗ f (6) in
A7.

Theorem 4.12. There exist exactly two distinct self-dual subfactor planar algebras with
principal graphs S ′ which are complex conjugate to each other.

Proof. The proof for existence and uniqueness for a fixed choice of ε is identical to the
proof of existence and uniqueness from Theorem 4.10, exchanging A(λ) with B(λ, ε)

and R(λ) with S(λ, ε) and S with S ′.
We note that the B(λ, +1) and the B(λ,−1) generate non-isomorphic subfactor planar

algebras. In the planar algebra generated by B(λ, ε), we look for the low weight rotational
eigenvectors B, satisfying

(1) B∗ = B and F2(B) = −B,
(2) B is uncappable, and
(3) B2 = f (2) and B̌2 = (−iF(B))2 = f (2),

and find ±B(λ, ε). We next evaluate the octahedron in B

Tr B�

B�

B

�

B

�

B

�

B�

= ε16(1 −
√

2),

which is independent of the choice ± because it has an even number of vertices. Thus ε

is an invariant of the planar algebra.
Each of these subfactors is self-dual. One can check by a straightforward calculation

in G• that

T (λ, ε) =
(

εi√
4 + 2

√
2

)
id2,− +

(
1 +

√
2√

4 + 2
√

2

)
(e1 − iF(B(λ, ε)))
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is a quadratic (εi)-braiding satisfying the same relations as S(λ, ε), so the map S(λ, ε) ↔
T (λ, ε), or equivalently B ↔ B̌ = −iF(B), induces an isomorphism with the dual pla-
nar algebra. To see these subfactors are complex conjugate to each other, one can check
by a straightforward calculation in G• that B(λ, ε) is the entry-wise complex conjugate
of B(λ,−ε). We also check these computations directly in G• in the Mathematica
notebook BraidRelationsForS.nb bundled with the arXiv source of this
article. ��

Remark 4.13. The self-dualities in the proofs of Theorems 4.10 and 4.12 are symmetric
in the sense of [MP12a, Section 5.1]. Hence these planar algebras are really unshaded,
and they give unitary Z/2Z-graded fusion categories.

4.3. Equivariantization. Let P• denote the unique subfactor planar algebra with prin-
cipal graph pair S. Let P ′(ε)• denote the unique subfactor planar algebra with principal
graph pair S ′ generated by B(ε) = B(ε, 1).

We now show that the P• and P ′(ε)• subfactor planar algebras have equivariantiza-
tions which are Izumi’s 2Z/2Z1 and 2Z/4Z1 subfactor planar algebras respectively. First,
we observe that the planar algebra involution ι induced by sending the lowest weight
2-box to its negative has a non-trivial fixed point planar subalgebra. Second, we identify
the planar subalgebra and its principal graph.

Lemma 4.14.

(1) The map A �→ −A extends to an involution ι of P•. The fixed point pla-
nar subalgebra P ι• is exactly 2-supertransitive with annular multiplicity at
least 3.

(2) The map B(ε) �→ −B(ε) extends to an involution ι of P ′(ε)•. The fixed point
planar subalgebra P ′(ε)ι• is exactly 2-supertransitive with annular multiplicity at
least 3.

Proof. We prove (1), and the proof for (2) is similar. First, we need to see the map
A �→ −A extends to an involution. We have seen that P• has a presentation with
generator A, and (+1)-braid relations in terms of the element R defined by

R =
(√

2

2
i

)
(id2,+ −(1 +

√
2)e1) +

(√
2

2

)
A

with structure coefficients as in Proposition 4.8. We need to see that these relations are
fixed by A �→ −A. To do this, we pick the particular embedding j : P• ↪→ G•, sending
A to A(1). We then define

R′ =
(√

2

2
i

)
(id2,+ −(1 +

√
2)e1) −

(√
2

2

)
A,

and a straightforward calculation in G• shows j (R′) satisfies the same (+1)-braid rela-
tions as j (R), and hence R′ satisfies the same relations as R.
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Next, we note that T L3,+ together with the three quadratic tangles

A�

A�

,
A�

A
� , and

A�

A
�

(which are obviously fixed by the involution ι) forms a linearly independent subset of
P3,+.

Both of these computations in G• are performed in the Mathematica notebook
BraidRelationsForS.nb bundled with the arXiv source of this article. ��

Proposition 4.15. The principal graph pair of an exactly 2-supertransitive subfactor
planar algebra with annular multiplicity at least 3 and δ2 = 3 + 2

√
2 must be either

(
,

)
or

(
,

)
.

Proof. The multiplicity must be exactly 3 since otherwise the graph norm is too large.
We now run the odometer two steps, which is sufficient to terminate. The output is
displayed in Fig. 2.

Now the cylinders and vines which are not the two graph pairs claimed all have a
vertex with dimension not an algebraic integer. ��

The next two propositions are straightforward calculations in G• which we perform in
the Mathematica notebook BraidRelationsForS.nb bundled with the arXiv
source of this article.

Proposition 4.16. The depth 4 minimal idempotents in P ι
4 are all self-dual. The depth

4 minimal idempotents in P ′(ε)ι4 consist of a self-dual idempotent and a dual pair.

Proposition 4.17. The planar algebras P ′(+)ι• and P ′(−)ι• are complex conjugate and
not isomorphic.

Proof. The planar algebras P ′(ε)• are complex conjugate, so the fixed point planar
algebras are too.

The fixed point planar algebras are each generated by 3 low weight rotational eigen-
vectors C(ε)λ with corresponding eigenvalues λ the three distinct cube roots of unity.

Any isomorphism P ′(+)ι• → P ′(−)ι• must map C(+)λ to C(−)λ. However,

Tr(C(+)2
1C(+)exp(2π i/3)) �= Tr(C(−)2

1C(−)exp(2π i/3)). ��

5. Eliminating D, D′

In this section we show that S,S ′ are the only principal graphs which are extensions of
the graphs D or D′ at most index 6 1

5 , where
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D = , D′ = , .

We consider the cases D,D′ at the same time. We give the following names to the
vertices with depth at most 3 of �+.

P

Q

P ′

[R]

Q′

.

Fig. 2. Results of running the odometer on
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Fact 5.1. We have the following formulas for the dimensions of the vertices.

dim(P) + dim(Q) = [3]
dim(P ′) = [2] dim(P) − dim([R]) − [2]
dim(Q′) = [2] dim(Q) − dim([R]) − [2].

We divide the extensions of D,D′ into three families based on which vertices at
depth 3 connect to a vertex at depth 4.

Definition 5.2.

(1) An extension of D or D′ is in D1 if exactly one of P ′, Q′ connects to a vertex at
depth 4, and [R] and the other do not.

(2) An extension of D or D′ is in D2 if both P ′, Q′ connect to vertices at depth 4, and
[R] does not.

(3) An extension of D or D′ is in D3 if [R] connects to a vertex at depth 4.

We rule out these families below index 6 1
5 separately in the following subsections.

Fact 5.3. If we have an extension not in D3, so [R] does not connect to a vertex at depth
4, then

dim([R]) = dim(P) + dim(Q)

[2] = [3]
[2] .

5.1. Ruling out D1. We now suppose that (�+, �−) is in D1. By symmetry, we may
assume that only Q′ connects to vertices at depth 4.

Lemma 5.4.

dim(P ′) = 1 + 2[3]
[2][3] = q

(
2q4 + 3q2 + 2

)
(
q2 + 1

) (
q2 − q + 1

) (
q2 + q + 1

) .

Proof. Since dim(P) = [2] dim(P ′), it follows from Facts 5.1 and 5.3 that

dim(P ′) = [2]2 dim(P ′) − dim([R]) − [2]
= dim([R]) + [2]

[3]
= 1 + 2[3]

[2][3] .

��
Corollary 5.5. No graph pairs in D1 are principal graphs of subfactors.

Proof. Assume all vertices have dimension at least one. First,

∂

∂q
dim(P ′) = −2q10 − 5q8 − 4q6 + 4q4 + 5q2 + 2(

q6 + 2q4 + 2q2 + 1
)2 ,

which is easily seen to be negative (e.g. by pairing up terms in the numerator, and using
q > 1). Since dim(P ′) ≈ 0.998428 at q = 1.64, if dim(P ′) ≥ 1, we must have
q < 1.64. But since the norm of D1 is q + q−1 where q ≈ 1.76918, we have q > 1.76,
a contradiction. ��
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5.2. Ruling out D2. We now suppose that (�+, �−) is in D2, so both P ′ and Q′ connect
to vertices at depth 4 of �+.

Lemma 5.6. Suppose a vertex V of �+ has dimension 1. Then V is univalent.

Proof. Since V has dimension 1, V ⊗ V ∼= id and V ⊗ V ∼= id. The edges of �+
correspond to tensoring with the standard bimodule N MM or its dual M M N . Since P•
is 1-supertransitive, M is irreducible, and thus V M or V M (depending on whether V
occurs at an even or odd depth) is irreducible by Frobenius reciprocity. ��
Lemma 5.7. When δ2 < 6.245, no vertex at depth 4 of �+ can have dimension 1.

Proof. First, note that if (q + q−1)2 = δ2 = 6.245, then q ≈ 1.99867. Without loss of
generality, suppose P ′ attaches to a vertex of dimension 1, which must be univalent by
Lemma 5.6. Then dim(P ′) = [2], and using Facts 5.1 and 5.3, we calculate

dim(P) = 2[2] + [3]
[2]

[2] = 2 + 3[3]
[2]2

dim(Q) = [3] − dim(P) = [5] − [3] − 1

[2]2

dim(Q′) = [2] dim(Q) − [2] − [3]
[2] = [5] − 3[3] − 2

[2] = q8 − 2q6 − 4q4 − 2q2 + 1

q3
(
q2 + 1

) .

Now when q < 1.9988, dim(Q′) <
√

2. Hence dim(Q′) = 1, which means Q′ is
univalent by Lemma 5.6. But then (�+, �−) ∈ D1, not D2, a contradiction. ��
Lemma 5.8. Let P ′′, Q′′ be the sum of all vertices at depth 4 connected to P ′, Q′ respec-
tively. Then

dim(P ′′) + dim(Q′′) = [5] − 3[3] − 1 = q8 − 2q6 − 3q4 − 2q2 + 1

q4 .

Proof. Using Facts 5.1 and 5.3 and the formulas

dim(P ′′) = [2] dim(P ′) − dim(P)

dim(Q′′) = [2] dim(Q′) − dim(Q),

it follows that

dim(P ′′) + dim(Q′′) = [2](dim(P ′) + dim(Q′)) − (dim(P) + dim(Q))

= [2]([2](dim(P) + dim(Q)) − 2 dim([R]) − 2[2])
− (dim(P) + dim(Q))

= [2]
(

[2][3] − 2
[3]
[2] − 2[2]

)
− [3]

= [5] − 3[3] − 1.

��
Proposition 5.9. If δ2 ≤ 6 1

5 , then there are exactly 2 edges in �+ between depths 3
and 4.
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Proof. First, note that if (q + q−1)2 = δ2 = 6 1
5 , then q ≈ 1.98661. Suppose there

are N edges in total from P ′ and Q′ to vertices at depth 4. Then since each vertex has
dimension at least 1,

dim(P ′′) + dim(Q′′) = [5] − 3[3] − 1 = q8 − 2q6 − 3q4 − 2q2 + 1

q4 ≥ N .

First, if q < 2.017, then

q8 − 2q6 − 3q4 − 2q2 + 1

q4 < 5.

Thus N ≤ 4. Second, if q < 1.993, then

q8 − 2q6 − 3q4 − 2q2 + 1

q4 < 3 +
√

2.

Hence if N = 4, all four vertices at depth 4 must have dimension exactly 1, contradicting
Lemma 5.7. Thus N ≤ 3. Third, if q < 1.9867, then

q8 − 2q6 − 3q4 − 2q2 + 1

q4 < 3
√

2. (5.1)

Hence if N = 3, at least one vertex at depth 4 has dimension 1, contradicting Lemma
5.7. Thus N = 2. ��
Remark 5.10. In fact, all we needed was Inequality (5.1), since 3

√
2 < 3 +

√
2 < 5.

However, to classify exactly 1-supertransitive subfactors to higher indices in the future,
it may be helpful to have these more precise bounds at our disposal.

Proposition 5.11. No graph pairs in D2 with δ2 ≤ 6 1
5 are principal graphs of subfactors.

Proof. Running the odometer to depth 5 on {D,D′}, there are no remaining weeds in
D2 which have exactly 2 edges in �+ between depths 3 and 4. See Figs. 3 and 4 for the
output of running the odometer on D and D′ respectively, and only keeping results which
are in D2 with exactly 2 edges between depths 3 and 4. (Recall that the red background
denotes an active weed, while a blue background denotes a cylinder.) The vines and
cylinders in D2 either have a vertex with dimension less than one or have a vertex whose
dimension is not an algebraic integer. ��

Fig. 3. Results in D2 with 2 edges between depths 3 and 4 of running the odometer on D to depth 5
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Fig. 4. Results in D2 with 2 edges between depths 3 and 4 of running the odometer on D′ to depth 5

5.3. Ruling out D3. We now suppose that (�+, �−) is in D3, so [R] connects to a vertex
at depth 4 of �+.

Proposition 5.12. When δ2 ≤ 6 1
5 , the only graph pairs in D3 which are principal graphs

of subfactors are S and S ′.

Proof. Running the odometer on {D,D′} to depth 6, the vines and cylinders in D3 either
have a vertex with dimension less than one or have a vertex whose dimension is not an
algebraic integer, or are exactly S,S ′. The weeds in D3 are given in Figs. 5 and 6. (We
run the odometer to depth 6 because some depth 5 weeds have no descendants at depth
6; this saves considering them separately.)

For all the remaining weeds, there is a univalent vertex at depth 4 not connected to
[R] on one of �±. Its dimension is given by

d(q) = q16 − q14 − 5q12 − 6q10 + 6q6 + 5q4 + q2 − 1

q2
(
q4 − 1

) (
q4 + q2 + 1

)2 .

Now d(q) < 1 until q ≈ 2.03228, which corresponds to index 6.37228. ��

6. Eliminating K, K′

In this section we show that there are no principal graphs which are extensions of the
graphs K or K′ with index at most 6 1

5 , where

K =
(

,
)

K′ =
(

,
)

.

Proposition 6.1. When δ2 ≤ 6 1
5 , no extensions of K,K′ are principal graphs of subfac-

tors.

Proof. First, we run the odometer to depth 5 on K, removing the cylinders along the
way. The output is given in Fig. 7.

For the weeds which are extensions of K which are not cylinders, the top vertex at
depth 4 has dimension

d(q) = q10 − 1

q
(
q2 − 1

) (
q2 + 1

)3 .
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Fig. 5. Results in D3 of running the odometer on D to depth 6
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Fig. 6. Results in D3 of running the odometer on D′ to depth 6

Fig. 7. Results of running the odometer on K to depth 5
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Fig. 8. Results of running the odometer on K′ to depth 6

Note that

• if (q + q−1)2 = δ2 = 3 +
√

5, then q ≈ 1.70002, and
• if (q + q−1)2 = δ2 = 6 1

5 , then q ≈ 1.98661.

However, for 1.636 < q < 2.047, 1 < d(q) <
√

2, which is impossible.
Note that the �+ of K′ is the same as the �+ of D. Hence all the results of Sect. 5

which only referred to �+ apply to these weeds. In particular, Proposition 5.9 applies if
the middle vertex [R] does not continue, so in this case, there must be exactly 2 edges
between depths 3 and 4 on any extension.

We now run the odometer to depth 6 on K′, removing cylinders along the way, and
keeping only the extensions of K′ for which either the middle vertex [R] continues, or
[R] does not continue and there are exactly 2 edges between depths 3 and 4 on the graph
which truncates to �+ of K′. The output is given in Fig. 8.

Now both of the two remaining weeds have the same �+. The vertex at depth 6 of
this �+ has dimension

q18 − 3q16 − 3q14 − q12 + 2q10 − 2q8 + q6 + 3q4 + 3q2 − 1

2q6
(
q2 − 1

) (
q2 + 1

)2 ,

which is less than 1 for q < 1.987.
The vines and cylinders from both K and K′ all either have a vertex with dimension

less than 1, or have a vertex whose dimension is not an algebraic integer. ��
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Appendix A. The proofs of Lemmas 4.6 and 4.7

Let � be the underlying graph of the principal graphs of both S,S ′. We label the vertices
of � as follows:

Γ =
0

7

4

6

3

5

1

2 .

Let G• denote the bipartite graph planar algebra of � [Jon00].
Since � is simply laced, we use a sequence of vertices to express a loop on �. We

express elements X ∈ Gn,+ as a linear combination of loops of length 2n. Thus we use
the loop convention of [Jon00,JP11], not the functional convention of [BMPS12].
Definition A.1. Given X ∈ Gn,+ and a loop 	 ∈ Gn,+, let coeff∈X (	) be the coefficient
of 	 in X .

Recall that the coefficients of loops for a Temperley–Lieb diagram are determined
by [Jon00,JP11]. We use a matrix to express coefficients of multiple loops at the same
time.

Definition A.2. For a vertex v of �, let pv ∈ G0,± be the 0-box projection corresponding
to v. For v an even vertex of �, let pvGn,+ be the algebra consisting of elements of the
form

pv X

n

n

where X ∈ Gn,+ and the multiplication is the usual stacking of elements.
If n is even, and v,w are both even vertices of �, let pvGn,+ pw be the algebra

consisting of elements of the form

pv pwX

n

n

where X ∈ Gn,+ and the multiplication is the usual stacking of elements.

Remark A.3. If v is an even vertex, pvGn,+ is a direct sum of matrix algebras, and if w

is an even vertex and n is even, then pvGn,+ pw is a matrix algebra.

The following is similar to [PP13, Proposition 4.10].

Proposition A.4. The following maps are ∗-algebra homomorphisms:
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(1) �v : Gn,+ → pvGn,+ by X

n

n

�→ pv X

n

n

and

(2) �v,w : Gn,+ → pvGn,+ pw by X

n

n

�→ pv pwX

n

n

We now have two subsections to prove Lemmas 4.6 and 4.7 respectively. We
also check these computations directly in G• in the Mathematica notebook
BraidRelationsForS.nb bundled with the arXiv source of this article.

A.1. The case ωA = 1. We now prove Lemma 4.6. That is, for ωA = 1, we show that up
to sign, there is exactly a 1-parameter family of elements A = A(λ) in the graph planar
algebra of � which satisfy

(1) A∗ = A and F2(A) = A,
(2) A is uncappable, and
(3) A2 = f (2) and Ǎ2 = F(A)2 = f (2).

Proof of Lemma A.6. We will define the coefficients of the loops for the element A ∈
G2,+ and Ǎ = F(A) ∈ G2,−. To do so, we will simultaneously find coefficients of
projections P, Q ∈ G2,+ and P̌, Q̌ ∈ G2,− satisfying

(1) A = P − Q and Ǎ = P̌ − Q̌, and
(2) P + Q = f (2) ∈ G2,+ and P̌ + Q̌ = f (2) ∈ G2,−.

First, note that p0G2,+ is three dimensional. Since A2 = f (2), A is uncappable, and

coeff∈e1

⎛
⎝

0707
0767
0747

⎞
⎠ =

⎛
⎝

1
0
0

⎞
⎠ ,

without loss of generality, we may assume that

coeff∈A

⎛
⎝

0707
0767
0747

⎞
⎠ =

⎛
⎝

0
1

−1

⎞
⎠ .

Then

coeff∈ Ǎ

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎝

0 δ− 1
2 −δ− 1

2

δ− 1
2 ? ?

−δ− 1
2 ? ?

⎞
⎟⎠ .
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Since P̌ = f (2) + Ǎ

2
, Q̌ = f (2) − Ǎ

2
, and

1 − δ−2

2
= δ−1, we have

coeff∈P̌

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎜⎜⎝

δ−1 −δ
− 3

2 +δ
− 1

2

2
−δ

− 3
2 −δ

− 1
2

2
−δ

− 3
2 +δ

− 1
2

2 ? ?
−δ

− 3
2 −δ

− 1
2

2 ? ?

⎞
⎟⎟⎟⎠ and

coeff∈Q̌

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎜⎜⎝

δ−1 −δ
− 3

2 −δ
− 1

2

2
−δ

− 3
2 +δ

− 1
2

2
−δ

− 3
2 −δ

− 1
2

2 ? ?
−δ

− 3
2 +δ

− 1
2

2 ? ?

⎞
⎟⎟⎟⎠ .

Observe that p7G2,− p7 is a 3 by 3 matrix algebra. The images of e2, P̌, Q̌ ∈ G2,− in
p7G2,− p7 under the natural ∗-homomorphism from Proposition A.4 are three mutually
orthogonal non-zero projections, so they are all rank 1 projections. Hence we must have

coeff∈P̌

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎜⎜⎝

δ−1 −δ
− 3

2 +δ
− 1

2

2
−δ

− 3
2 −δ

− 1
2

2
−δ

− 3
2 +δ

− 1
2

2 (−δ−1+1
2 )2 δ−2−1

4
−δ

− 3
2 −δ

− 1
2

2
δ−2−1

4 ( δ−1+1
2 )2

⎞
⎟⎟⎟⎠ ,

coeff∈Q̌

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎜⎜⎝

δ−1 −δ
− 3

2 −δ
− 1

2

2
−δ

− 3
2 +δ

− 1
2

2
−δ

− 3
2 −δ

− 1
2

2 ( δ−1+1
2 )2 δ−2−1

4
−δ

− 3
2 +δ

− 1
2

2
δ−2−1

4 (−δ−1+1
2 )2

⎞
⎟⎟⎟⎠ , and

coeff∈ Ǎ

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎝

0 δ− 1
2 −δ− 1

2

δ− 1
2 −δ−1 0

−δ− 1
2 0 δ−1

⎞
⎟⎠ .

By a similar argument for p6G2,+ p4, which is a 2 by 2 matrix algebra, we have

coeff∈A

(
6747 6745
6547 6545

)
=

(
0 ?
? ?

)
,

coeff∈P

(
6747 6745
6547 6545

)
=

(
1
2 ?
? ?

)
, and

coeff∈Q

(
6747 6745
6547 6545

)
=

(
1
2 ?
? ?

)
,

and the image of P̌, Q̌ in p6G2,+ p4 under the natural ∗-homomorphism from Proposition
A.4 are pairwise orthogonal projections. So

coeff∈P

(
6747 6745
6547 6545

)
=

( 1
2

1
2λ

1
2λ 1

2

)
for a phase λ,
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coeff∈Q

(
6747 6745
6547 6545

)
=

( 1
2 − 1

2λ

− 1
2λ 1

2

)
, and

coeff∈A

(
6747 6745
6547 6545

)
=

(
0 λ

λ 0

)
.

Then

coeff∈ Ǎ

(
7454 7456
7654 7656

)
=

(
? λ

λ ?

)
,

coeff∈P̌

(
7454 7456
7654 7656

)
=

(
? 1

2λ
1
2λ ?

)
, and

coeff∈Q̌

(
7454 7456
7654 7656

)
=

(
? − 1

2λ

− 1
2λ ?

)
.

There is only one way to realize the two projections in p7G2,− p5 as follows

coeff∈P̌

(
7454 7456
7654 7656

)
=

( 1
2

1
2λ

1
2λ 1

2

)
and

coeff∈Q̌

(
7454 7456
7654 7656

)
=

( 1
2 − 1

2λ

− 1
2λ 1

2

)
.

Then

coeff∈ Ǎ

(
7454 7456
7654 7656

)
=

(
0 λ

λ 0

)
.

By the symmetries of the graph and the symmetries of A and Ǎ, we can apply the same
argument beginning with p1G2,−, p2G2,+, and p3G2,−, instead of p0G2,+ to derive the
coefficients of the other loops. Therefore we obtain a generator A = A(λ) ∈ G2,+, which
is parameterized by a phase λ which satisfies the desired relations by construction. ��

A.2. The case ωB = −1. We now prove Lemma 4.7. That is, for ωB = −1, up to sign,
there are exactly two 1-parameter families of elements B = B(λ, ε) in the graph planar
algebra of � which satisfy

(1) B∗ = B and F2(B) = −B,
(2) B is uncappable, and
(3) B2 = f (2) and B̌2 = (−iF(B))2 = f (2).

Proof of Lemma 4.7. We will define the coefficients of the loops for the element B ∈
G2,+ and B̌ = −iF(B) ∈ G2,−. To do so, we will simultaneously find coefficients of
projections P, Q ∈ G2,+ and P̌, Q̌ ∈ G2,− satisfying

(1) B = P − Q and B̌ = P̌ − Q̌, and
(2) P + Q = f (2) ∈ G2,+ and P̌ + Q̌ = f (2) ∈ G2,−.
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As before, without loss of generality, we may assume that

coeff∈B

⎛
⎝

0707
0767
0747

⎞
⎠ =

⎛
⎝

0
1

−1

⎞
⎠ .

Then

coeff∈B̌

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎝

0 iδ− 1
2 −iδ− 1

2

−iδ− 1
2 ? ?

iδ− 1
2 ? ?

⎞
⎟⎠ .

Since P̌ = f (2) + B̌

2
, Q̌ = f (2) − B̌

2
, and

1 − δ−2

2
= δ−1, we have

coeff∈P̌

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎜⎜⎝

δ−1 −δ
− 3

2 +iδ− 1
2

2
−δ

− 3
2 −iδ− 1

2

2
−δ

− 3
2 −iδ− 1

2

2 ? ?
−δ

− 3
2 +iδ− 1

2

2 ? ?

⎞
⎟⎟⎟⎠ and

coeff∈Q̌

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎜⎜⎝

δ−1 −δ
− 3

2 −iδ− 1
2

2
−δ

− 3
2 +iδ− 1

2

2
−δ

− 3
2 +iδ− 1

2

2 ? ?
−δ

− 3
2 −iδ− 1

2

2 ? ?

⎞
⎟⎟⎟⎠ .

Observe that p7G2,− p7 is a 3 by 3 matrix algebra. The images of e2, P̌, Q̌ ∈ G2,− in
p7G2,− p7 under the natural ∗-homomorphism from Proposition A.4 are three mutually
orthogonal non-zero projections, so they are all rank 1 projections. Hence we must have

coeff∈P̌

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎜⎜⎝

δ−1 −δ
− 3

2 +iδ− 1
2

2
−δ

− 3
2 −iδ− 1

2

2
−δ

− 3
2 −iδ− 1

2

2
1+δ−2

4 (−δ−1−i
2 )2

−δ
− 3

2 +iδ− 1
2

2 (−δ−1+i
2 )2 1+δ−2

4

⎞
⎟⎟⎟⎠ ,

coeff∈Q̌

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎜⎜⎝

δ−1 −δ
− 3

2 −iδ− 1
2

2
−δ

− 3
2 +iδ− 1

2

2
−δ

− 3
2 +iδ− 1

2

2
1+δ−2

4 (−δ−1+i
2 )2

−δ
− 3

2 −iδ− 1
2

2 (−δ−1−i
2 )2 1+δ−2

4

⎞
⎟⎟⎟⎠ , and

coeff∈B̌

⎛
⎝

7070 7076 7074
7670 7676 7674
7470 7476 7474

⎞
⎠ =

⎛
⎜⎝

0 iδ− 1
2 −iδ− 1

2

−iδ− 1
2 0 iδ−1

iδ− 1
2 −iδ−1 0

⎞
⎟⎠
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By a similar argument for p6G2,+ p4, which is a 2 by 2 matrix algebra, we have

coeff∈B

(
6747 6745
6547 6545

)
=

(
δ−1 ?

? ?

)
,

coeff∈P

(
6747 6745
6547 6545

)
=

(
1+δ−1

2 ?
? ?

)
, and

coeff∈Q

(
6747 6745
6547 6545

)
=

(
1−δ−1

2 ?
? ?

)
,

and the image of P̌, Q̌ in p6G2,+ p4 under the natural ∗-homomorphism from Proposition
A.4 are pairwise orthogonal projections. So

coeff∈P

(
6747 6745
6547 6545

)
=

(
1+δ−1

2 λ
√

1−δ−2

2

λ
√

1−δ−2

2
1−δ−1

2

)
for a phase λ,

coeff∈Q

(
6747 6745
6547 6545

)
=

(
1−δ−1

2 −λ
√

1−δ−2

2

−λ
√

1−δ−2

2
1+δ−1

2

)
, and

coeff∈B

(
6747 6745
6547 6545

)
=

(
δ−1 λ

√
1 − δ−2

λ
√

1 − δ−2 −δ−1

)
.

Then

coeff∈B̌

(
7454 7456
7654 7656

)
=

(
? −iλ

√
1 − δ−2

iλ
√

1 − δ−2 ?

)
,

coeff∈P̌

(
7454 7456
7654 7656

)
=

(
? − i

2λ
√

1 − δ−2

i
2λ

√
1 − δ−2 ?

)
, and

coeff∈Q̌

(
7454 7456
7654 7656

)
=

(
? i

2λ
√

1 − δ−2

− i
2λ

√
1 − δ−2 ?

)
.

There are two ways to realize the two projections in p7G2,− p5 based on the sign ε as
follows

coeff∈P̌

(
7454 7456
7654 7656

)
=

(
1−εδ−1

2 − i
2λ

√
1 − δ−2

i
2λ

√
1 − δ−2 1+εδ−1

2

)
and

coeff∈Q̌

(
7454 7456
7654 7656

)
=

(
1+εδ−1

2
i
2λ

√
1 − δ−2

− i
2λ

√
1 − δ−2 1−εδ−1

2

)
.

Then

coeff∈B̌

(
7454 7456
7654 7656

)
=

( −εδ−1 −iλ
√

1 − δ−2

iλ
√

1 − δ−2 εδ−1

)
.

By the symmetries of the graph and the symmetries of B and B̌, we can apply the same
argument beginning with p1G2,−, p2G2,+, and p3G2,−, instead of p0G2,+ to derive the
coefficients of the other loops. Therefore we obtain a generator B = B(λ, ε) ∈ G2,+,
which is parameterized by a phase λ and a sign ε which satisfies the desired relations by
construction. ��
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