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In this paper, we introduce the notation of bi-shift of biprojections in subfactor theory to
unimodular Kac algebras. We characterize the minimizers of the Hirschman-Beckner
uncertainty principle and the Donoho-Stark uncertainty principle for unimodular Kac
algebras with biprojections and prove Hardy’s uncertainty principle in terms of the
minimizers. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4983755]

I. INTRODUCTION

Uncertainty principles for locally compact abelian groups were studied by Hardy,16 Hirschman,17

Beckner,2 Donoho and Stark,10 Smith,23 Tao,25 etc. In 2008, Alagic and Russell1 proved the Donoho-
Stark uncertainty principle for compact groups. In 2004, Özaydm and Przebinda22 characterized
the minimizers of the Hirschman-Beckner uncertainty principle and the Donoho-Stark uncertainty
principle for locally compact abelian groups. The uncertainty principles have important applications
in the theory of compressed sensing.5

Kac algebras were introduced independently by Vainerman and Kac28–30 and Enock and
Schwartz,11–13 which generalized locally compact groups and their duals. Furthermore, Kustermans
and Vaes introduced locally compact quantum groups.19 Recently Crann and Kalantar proved the
Hirschman-Beckner uncertainty principle and the Donoho-Stark uncertainty principle for unimodular
locally compact quantum groups.8

Subfactor theory also provides a natural framework to study quantum symmetry. The group
symmetry is captured by the subfactor arisen from the group crossed product construction. Ocneanu
first pointed out the one-to-one correspondence between finite dimensional Kac algebras and finite-
index, depth-two, irreducible subfactors. This correspondence was proved by Szymanski.24 Enock
and Nest generalized the correspondence to infinite dimensional compact (or discrete) type Kac
algebras and infinite-index, depth-two, irreducible subfactors.15 In general, a subfactor provides a
pair of non-commutative spaces dual to each other and a Fourier transformF between them. It appears
to be natural to study Fourier analysis for subfactors.

In Ref. 18, Jiang and the authors studied uncertainty principles for finite index subfactors in
terms of planar algebras. We proved the Hirschman-Beckner uncertainty principle and the Donoho-
Stark uncertainty principle for finite index subfactors. Furthermore, we introduced bi-shifts of
biprojections3,4,32 and use them to characterize the minimizers of the two uncertainty principles.

Moreover, we formalized Hardy’s uncertainty principle using the minimizers of the Hirschman-
Beckner uncertainty principle and proved it for finite index subfactors. The case for finite-index,
depth-two, irreducible subfactors covers the results for finite dimensional Kac algebras. The quantum
group community wondered whether the methods in Ref. 18 work for infinite-dimensional cases. That
is the motivation of this paper.

In this paper, we introduce notions in subfactor theory to unimodular Kac algebras, such as
biprojections and bi-shifts of biprojections. For example, the identity of a compact quantum group
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is a biprojection. The Fourier transform of a biprojection is a biprojection. We characterize the mini-
mizers of the Hirschman-Beckner uncertainty principle and the Donoho-Stark uncertainty principle
for unimodular Kac algebras containing biprojections. Furthermore, we prove Hardy’s uncertainty
principle for such Kac algebras. Our proofs utilize the ideas in subfactor theory18 and the methods
for locally compact quantum groups.19

Main Theorem 1 (Proposition 3.6, Theorem 3.15). Let G be a unimodular Kac algebra. For
any nonzero w in L1(G) ∩ L2(G), the following statements are equivalent:

(1) H(|w |2) + H(|F(w)|2)=−4‖w‖22 log ‖w‖2;
(2) S(w)S(F(w))= 1;
(3) w is an extremal bi-partial isometry;
(4) w is a bi-shift of a biprojection.

Conditions (1) and (2) are inequalities, in general, namely, the Hirschman-Beckner uncertainty
principle and the Donoho-Stark uncertainty principle. When G has biprojections, the above four
conditions characterize the minimizers of the Hirschman-Beckner uncertainty principle. In terms of
these minimizers, we obtain Hardy’s uncertainty principle for unimodular Kac algebras.

Main Theorem 2 (Hardy’s uncertainty principle, Theorem 3.18). Let G be a unimodular Kac
algebra. Suppose that a non-zero w in L1(G)∩L∞(G) satisfies the conditions in Theorem 1. For any x
∈ L1(G)∩L∞(G), if |x∗ | ≤C |w∗ | and |F(x)∗ | ≤C ′ |F(w)∗ |, for some constants C > 0 and C ′ > 0, then
x is a scalar multiple of w.

II. PRELIMINARIES

Let M be a von Neumann algebra acting on a Hilbert space H with a normal semifinite faithful
tracial weight ϕ.

A closed densely defined operator x affiliated with M is called ϕ-measurable if for all ε > 0
there exists a projection p ∈M such that pH ⊂D(x), and ϕ(1 − p) ≤ ε , where D(x) is the domain
of x. Denote by M̃ the set of ϕ-measurable closed densely defined operators. Then M̃ is ∗-algebra
with respect to a strong sum, strong product, and adjoint operation. If x is a positive self-adjoint
ϕ-measurable operator, then xα log x is ϕ-measurable for any α ∈C with <α > 0, where <α is the
real part of α.

The sets

N(ε, ε′)= {x ∈ M̃| ∃ a projection p ∈M : pH ⊆D(x), ‖xp‖ ≤ ε, ϕ(1 − p) ≤ ε′},

where ε , ε ′ > 0, form a basis for the neighborhoods of 0 for a topology on M̃ that turns M̃ into a
topological vector space. Now M̃ is a complete Hausdorff topological ∗-algebra and M is a dense
subset of M̃.

For any positive self-adjoint operator x affiliated with M, we put

ϕ(x)= sup
n∈N

ϕ(
∫ n

0
tdet),

where x = ∫
∞

0 tdet is the spectral decomposition of x. Then for p ∈ [1,∞), the noncommutative Lp

space Lp(M) with respect to ϕ is given by

Lp(M)= {x densely defined, closed, affiliated with M�� ϕ(|x |p)<∞}.

The p-norm ‖x‖p of x in Lp(M) is given by ‖x‖p = ϕ(|x |p)1/p. We have that Lp(M) ⊆ M̃. For more
details on noncommutative Lp space, we refer to Refs. 26 and 27.

Throughout the paper, we will use the results in Ref. 19 frequently. Let us recall the definition
of locally compact quantum groups.

Let M be a von Neumann algebra with a normal semifinite faithful weight ϕ. Then Nϕ = {x
∈M|ϕ(x∗x)<∞},Mϕ =N

∗
ϕNϕ , andM+

ϕ = {x ≥ 0|x ∈Mϕ }. Denote by Hϕ the Hilbert space by taking
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the closure of Nϕ . The map Λϕ :Nϕ 7→Hϕ is the inclusion map. We may use Λ instead of Λϕ if there
is no confusion.

A locally compact quantum group G= (M,∆, ϕ,ψ) consists of the following:

(1) a von Neumann algebra M,
(2) a normal, unital, *-homomorphism ∆ :M→M⊗M such that (∆ ⊗ ι) ◦ ∆= (ι ⊗ ∆) ◦ ∆,
(3) a normal, semi-finite, faithful weight ϕ such that (ι ⊗ ϕ)∆(x)= ϕ(x)1, ∀ x ∈M+

ϕ; a normal,
semi-finite, faithful weight ψ such that (ψ ⊗ ι)∆(x)=ψ(x)1, ∀ x ∈M+

ψ ,

where ⊗ denotes the von Neumann algebra tensor product and ι denotes the identity map. The normal,
unital, *-homomorphism ∆ is a comultiplication of M, ϕ is the left Haar weight, and ψ is the right
Haar weight.

We assume that M acts on Hϕ . There exists a unique unitary operator W ∈B(Hϕ ⊗Hϕ) which
is known as the multiplicative unitary defined by

W∗(Λϕ(a) ⊗ Λϕ(b))= (Λϕ ⊗ Λϕ)(∆(b)(a ⊗ 1)), a, b ∈Nϕ .

Moreover for any x ∈M, ∆(x)=W∗(1 ⊗ x)W .
For the locally compact quantum group G, there exist an antipode S, a scaling automorphism

group τ, and a unitary antipode R and there also exists a dual locally compact quantum group
Ĝ= (M̂, ∆̂, ϕ̂, ψ̂) of G. The antipode, the scaling group, and the unitary antipode of Ĝ will be denoted
by Ŝ, τ̂, and R̂, respectively. We refer to Refs. 19 and 20 for more details.

For any ω ∈M∗, λ(ω)= (ω ⊗ ι)(W ) is the Fourier representation of ω, where M∗ is the Banach
space of all bounded normal functionals on M. For any ω, θ in M∗, the convolution ω ∗ θ is given
by

ω ∗ θ = (ω ⊗ θ)∆.

In Ref. 21, Wang and the authors defined the convolution x ∗y of x ∈ Lp(G) and Lq(G) for 1 ≤ p, q ≤ 2.
If the left Haar weights ϕ, ϕ̂ ofG and Ĝ, respectively, are tracial weights, we have that the convolution
is well defined for 1 ≤ p, q ≤∞ by the results in Ref. 21.

For any locally compact quantum group G, the Fourier transform Fp : Lp(G)→Lq(Ĝ) is well
defined. (See Refs. 6 and 7 for the definition of Fourier transforms and Ref. 31 for the definition of the
Fourier transform for algebraic quantum groups.) For any x in L1(G), we denote by xϕ the bounded
linear functional on L∞(G) given by (xϕ)(y)= ϕ(yx) for any y in L∞(G). Recall that a projection p
in L1(G) ∩ L∞(G) is a biprojection if F1(pϕ) is a multiple of a projection in L∞(Ĝ) (see Ref. 21 for
more properties of biprojections).

III. MAIN RESULTS

In this section, we will focus on a unimodular Kac algebraG, which is a locally compact quantum
group subject to the condition ϕ=ψ that is tracial. (See Ref. 14 for more details.) We denote L∞(G) by
M. The Fourier transform Fp from Lp(G) to Lq(Ĝ) is given by x 7→ λ(xϕ) for any x ∈ L1(G)∩L∞(G).
For a unimodular Kac algebra G, we will denote by F the Fourier transform for simplicity.

For any ϕ-measurable element x in M̃, the von Neumann entropy H(|x|2) is defined by

H(|x |2)=−ϕ(x∗x log x∗x).

Proposition 3.1. Let G be a unimodular Kac algebra. Then for any x ∈ L1(G)∩ L2(G), we have

H(|x |2) + H(|F(x)|2) ≥ −4‖x‖22 log ‖x‖2.

Proof. By Lemma 18 in Ref. 26, we have that α 7→ |x |α is differentiable for α > 0. Now
differentiating the Hausdorff-Young inequality7

‖F(x)‖q ≤ ‖x‖p, x ∈ L1(G) ∩ L2(G), p ∈ [1, 2],
1
p

+
1
q
= 1,

with respect to p and plug p = 2 into the result inequality, we can obtain that

H(|x |2) + H(|F(x)|2) ≥ −4‖x‖22 log ‖x‖2. �
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Remark 3.2. For the proof of Proposition 3.1, we refer to Ref. 9 for the commutative case.

For any x ∈ M̃, let S(x)= ϕ(R(x)), where R(x) is the range projection of x.

Proposition 3.3. Let G be a unimodular Kac algebra. Then for any nonzero x ∈ L1(G)∩ L2(G),
we have

S(x)S(F(x)) ≥ 1.

Proof. We present two proofs here.

1. Note that for any a, b ∈ (0,∞), one has that a− a log a ≤ b− a log b. Then by functional calculus,
we obtain that for any x ∈ L1(G) ∩ L2(G),

|x |2 − |x |2 log |x |2 ≤
1

ϕ(R(|x |))
R(|x |) − |x |2 log

1
ϕ(R(|x |))

.

Suppose that ‖x‖2 = 1 and applying ϕ to both sides of the inequality above, we have H(|x |2)
≤ log ϕ(R(|x |)). Since ϕ(R(|x |))= ϕ(R(x)), we have the inequality logS(x) ≥H(|x |2), when
‖x‖2 = 1. By Proposition 3.1, we see that the proposition is true.

2. We assume that S(x),S(F(x))<∞. Then by Hölder’s inequality, we have

‖F(x)‖∞ ≤ ‖x‖1 ≤ ‖R(x)‖2‖x‖2

= S(x)1/2‖F(x)‖2

≤ S(x)1/2S(F(x))1/2‖F(x)‖∞.

Therefore S(x)S(F(x)) ≥ 1. �

Definition 3.4. An element x in L1(G)∩ L2(G) is said to be extremal if ‖F(x)‖∞ = ‖x‖1. We say
that a nonzero element x is an (extremal) bi-partial isometry if x and F(x) are multiplies of (extremal)
partial isometries.

Proposition 3.5. Let G be a unimodular Kac algebra. If x is extremal, then x∗ and R(x) are
extremal.

Proof. By Proposition 2.4 in Ref. 20, we have

‖F(x∗)‖∞ = ‖λ(x∗ϕ)‖∞ = ‖λ(x∗ϕ)∗‖∞

= ‖λ(x∗ϕR)‖∞ = ‖λ(xϕR)‖∞

= ‖R̂(λ(xϕ))‖∞ = ‖λ(xϕ)‖∞,

‖F(R(x))‖∞ = ‖λ(R(x)ϕ)‖∞ = ‖λ(xϕR)‖∞

= ‖R̂(λ(xϕ))‖∞ = ‖λ(xϕ)‖∞,

and
ϕ(|x |)= ϕ(|x∗ |)= ϕ(R(|x |))= ϕ(|R(x)|).

Therefore x∗ and R(x) are extremal. �

Proposition 3.6. Let G be a unimodular Kac algebra. For any nonzero x in L1(G) ∩ L2(G), the
following statements are equivalent:

(1) H(|x |2) + H(|F(x)|2)=−4‖x‖22 log ‖x‖2;
(2) S(x)S(F(x))= 1;
(3) x is an extremal bi-partial isometry.

Proof. “(1) ⇒ (3).” We assume that ‖x‖2 = 1. Now we follow the proof in Ref. 18. First, we
define a complex function F(z) for z=σ + it, 1

2 < σ < 1, as

F(z)= ϕ̂(F(wx |x |
2z)|F(x)|2zw∗F(x)),
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where wx means the partial isometry in the polar decomposition of x. Note that x ∈ L1(G) ∩ L2(G),
we see that F(wx |x |2z) is well defined.

By Hölder’s inequality and the Hausdorff-Young inequality,7 we have

|F(σ + it)| ≤ ‖F(wx |x |
2z)‖ 1

1−σ
‖|F(x)|2z‖ 1

σ
≤ ‖|x |2σ ‖ 1

σ
‖|F(x)|2σ ‖ 1

σ
= 1.

This implies that F(z) is bounded on 1
2 < σ < 1. Again by Lemma 18 in Ref. 26, we can follow the

proof of Theorem 6.4 in Ref. 18 directly to obtain that

ϕ̂(F(x |x |)|F(x)|F(x)∗)= 1.

Now we see that
1 = ϕ̂(F(x |x |)|F(x)|F(x)∗)

= (x |x |ϕ ⊗ (|F(x)|F(x)∗)ϕ̂)(W )

= (wx |x |
2ϕ ⊗ (|F(x)|2w∗F(x))ϕ̂)(W )

= (|x |2ϕ ⊗ (|F(x)|2)ϕ̂)((1 ⊗ w∗F(x))W (wx ⊗ 1))

≤ (|x |2ϕ ⊗ (|F(x)|2)ϕ̂)(1 ⊗ 1)= 1.

(1)

Let p= w∗xwx and q= w∗F(x)wF(x). Since the equality holds in inequality (1), we have that

(p ⊗ w∗F(x))W (wx ⊗ q)= p ⊗ q.

Applying |x |ϕ ⊗ ι to both sides of the equation above, we obtain that

w∗F(x)F(x)q= ϕ(|x |)q,

i.e.,F(x)= ϕ(|x |)wF(x). Similarly, we can obtain that x = ϕ̂(|F(x)|)wx. Now we see that x is an extremal
bi-partial isometry.

“(3) ⇒ (2).” Suppose x is an extremal bi-partial isometry. Following the second proof in
Proposition 3.3, we have

‖F(x)‖∞ = ‖x‖1 = ‖R(x)‖2‖x‖2

= ϕ(R(x))1/2‖F(x)‖2

= ϕ(R(x))1/2ϕ̂(R(F(x)))1/2‖F(x)‖∞.

Hence S(x)S(F(x))= 1.
“(2)⇒ (1).” Since (2) is stronger than (1), we see that (2) implies (1). �

Definition 3.7. Let G be a unimodular Kac algebra with a biprojection B in L1(G) ∩ L∞(G).
A projection x in L1(G)∩L2(G) is called a left shift of a biprojection B if ϕ(x)= ϕ(B) and x ∗B
= ϕ(B)x. A projection x in L1(G)∩L2(G) is called a right shift of a biprojection B if ϕ(x)= ϕ(B) and
B ∗ x = ϕ(B)x.

Proposition 3.8. Let G be a unimodular Kac algebra. Suppose that there is a biprojection B in
L1(G) ∩ L∞(G) and x is a right (or left) shift of a biprojection B in L1(G) ∩ L2(G). Then x is an
extremal bi-partial isometry.

Proof. By Proposition 3.6, it suffices to show that x is a minimizer of the uncertainty principle.
Since B ∗ x = ϕ(B)x, we have F(B)F(x)= ϕ(B)F(x), i.e., R(F(x)) ≤R(F(B)).
By Proposition 3.3, we have ϕ(x)ϕ̂(R(F(x))) ≥ 1 and

1= ϕ(B)ϕ̂(R(F(B))) ≥ ϕ(x)ϕ̂(R(F(x))) ≥ 1.

Now we have R(F(x))=R(F(B)). Hence x is a minimizer of the uncertainty principle. �

Definition 3.9. Let G be a unimodular Kac algebra. Suppose there exists a biprojection B in
L1(G) ∩ L2(G), we denote by B̃ the range projection of F(B). A nonzero element x in L∞(G) is said



052102-6 Z. Liu and J. Wu J. Math. Phys. 58, 052102 (2017)

to be a bi-shift of a biprojection B if there exist a right shift Bg of the biprojection B, a right shift B̃h

of the biprojection B̃, and an element y in L∞(G) such that

x = F̂(B̃h) ∗ (Bgy).

Now we will prove that the bi-shift of a biprojection described as above is a minimizer of the
uncertainty principle. To see this, we need the following lemma.

Lemma 3.10. Let G be a unimodular Kac algebra. Suppose x, y, and R(x),R(y) are in L1(G)
∩ L∞(G). Then

(x ∗ y)(x ∗ y)∗ ≤ ‖R(x∗)‖22 (xx∗) ∗ (yy∗),

and
R(x ∗ y) ≤R(R(x) ∗R(y)).

Proof. First, we assume that x and y are positive. Then x ≤ ‖x‖R(x) and y ≤ ‖y‖R(y). Now by
computing the convolution,21 we obtain that

x ∗ y = ((xϕ)R ⊗ ι)(∆(y))

= ((x1/2ϕx1/2)R ⊗ ι)(∆(y))

≤ ‖y‖((x1/2ϕx1/2)R ⊗ ι)(∆(R(y)))

= ‖y‖x ∗R(y)

= ‖y‖(ι ⊗R(y)ϕR)(∆(x))

≤ ‖x‖‖y‖R(x) ∗R(y).

Therefore,
R(x ∗ y) ≤R(R(x) ∗R(y)).

When x, y are in the general case, we will show that

(x ∗ y)(x ∗ y)∗ ≤ ‖R(x∗)‖22 (xx∗) ∗ (yy∗). (2)

If this inequality (2) is true, then we can see that the second inequality in the lemma is proved. By
Lemma 9.5 in Ref. 19 and L1(G) ∩ L∞(G) ⊂Nϕ , we have

R((xx∗) ∗ (yy∗))

=R((xx∗ϕ)R ⊗ ι)(∆(yy∗))

= (ι ⊗ ωΛ(x),Λ(x))
(
∆(R(y)∗R(y))

≥
1

‖R(x∗)‖22
((ι ⊗ ωΛ(x),Λ(R(x∗)))∆(R(y)))∗(ι ⊗ ωΛ(x),Λ(R(x∗)))∆(R(y))

=
1

‖R(x∗)‖22
(R(x ∗ y))∗R(x ∗ y)

=
1

‖R(x∗)‖22
R((x ∗ y)(x ∗ y)∗),

i.e.,

(x ∗ y)(x ∗ y)∗ ≤ ‖R(x∗)‖22 (xx∗) ∗ (yy∗). �

Proposition 3.11. Let Gbe a unimodular Kac algebra. Suppose x is the bi-shift of the biprojection
B as in Definition 3.9. ThenR(x)=Bg and R(F(x))= B̃h. Moreover, x is a minimizer of the uncertainty
principles.

Proof. Note that x = F̂(B̃h) ∗ (Bgy), we then have F(x)= B̃hF(Bgy). This implies that R(F(x))
≤ B̃h. From the fact that B̃h is a right shift of the biprojection B̃, we see that ϕ̂(B̃h)= ϕ̂(B̃).
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On the other hand, we have R(F̂(B̃h))=R(F̂(B̃))=R(B)=B and by Lemma 3.10

R(x) ≤R(R(F̂(B̃h)) ∗R(Bgy)))

≤R(B ∗ Bg)=Bg.

Now by Proposition 3.3, we see that

1 ≤ ϕ(R(x))ϕ̂(R(F(x))) ≤ ϕ(Bg)ϕ̂(B̃)

= ϕ(B)ϕ̂(B̃)= 1.

Therefore all inequalities above must be equalities and R(x)=Bg and R(F(x))= B̃h. Moreover, x is
a minimizer of the uncertainty principles. �

Proposition 3.12. Let G be a unimodular Kac algebra. Suppose w is a partial isometry in
L1(G) ∩ L∞(G) and F(w) is extremal. Then w is an extremal bi-partial isometry.

Proof. By Hölder’s inequality, we have that x is a multiple of a partial isometry if and only if
‖x‖22 = ‖x‖∞‖x‖1. To see that F(w) is a multiple of a partial isometry, it is enough to check that

‖F(w)‖22 = ‖F(w)‖∞‖F(w)‖1.

Since F(w) is extremal, we have

‖w‖∞ = ‖F̂(F(w))‖∞ = ‖F(w)‖1.

Now by Hölder’s inequality and Hausdorff-Young inequality,7 we obtain

‖F(w)‖∞‖F(w)‖1 ≥ ‖F(w)‖22 = ‖w‖
2
2

= ‖w‖∞‖w‖1

≥ ‖F(w)‖1‖F(w)‖∞.

Hence ‖F(w)‖22 = ‖F(w)‖∞‖F(w)‖1 and ‖F(w)‖∞ = ‖w‖1. Now we see thatw is an extremal bi-partial
isometry. �

Theorem 3.13. Let G be a unimodular Kac algebra. Suppose there is an extremal bi-partial
isometry w in L1(G) ∩ L2(G). Then

(w ∗ R(w)∗)(w∗ ∗ R(w))= ‖w‖22 (ww∗) ∗ (R(w)∗R(w)).

Moreover 1
‖w ‖22

w ∗ R(w)∗ is a partial isometry and ‖w‖1 = 1
‖w ‖2
‖w ∗ R(w)∗‖1.

Proof. By Lemma 9.5 in Ref. 19, we have

R((ww∗) ∗ (R(w)∗R(w)))

=R((ww∗ϕR ⊗ ι)(∆(R(w)∗R(w))))

= (ι ⊗ (ωΛ(w),Λ(w))(∆(ww∗)))

≥
1

‖w‖22
((ι ⊗ ωΛ(w),Λ( |w |))∆(w∗))∗((ι ⊗ ωΛ(w),Λ( |w |))∆(w∗))

=
1

‖w‖22
(R(wϕR ⊗ ι)(∆(R(w∗))))∗(R(wϕR ⊗ ι)(∆(R(w∗))))

=
1

‖w‖22
R(w ∗ R(w∗))∗R(w ∗ R(w∗))

=
1

‖w‖22
R((w ∗ R(w∗))(w∗ ∗ R(w))),

i.e.,
(w ∗ R(w)∗)(w∗ ∗ R(w)) ≤ ‖w‖22 (ww∗) ∗ (R(w)∗R(w)). (3)
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We will show that the traces of both sides are equal. For the right hand side, we have

ϕ((ww∗) ∗ (R(w)∗R(w))) = ϕ(ww∗)ϕ(R(w)∗R(w))

= ‖w‖22 ‖R(w)‖22 = ‖w‖
4
2 .

(4)

On the other hand, since w is an extremal bi-partial isometry, we let w = F̂(x) for x in L1(Ĝ). Then
we have that

F(w ∗ R(w)∗)=F(w)F(R(w)∗)= xx∗.

Therefore w ∗ R(w)∗ = F̂(xx∗) and

ϕ((w ∗ R(w)∗)(w∗ ∗ R(w)))= ϕ(F̂(xx∗)F̂(xx∗)∗)

= ϕ̂(xx∗xx∗).

Note that x is a multiple of a partial isometry. We assume that x = µx0 for some µ ∈C and a partial
isometry x0. Then (xx∗)2 = |µ|4 |x0 |. Since w is a minimizer of the uncertainty principle, we have
ϕ(|w |)ϕ̂(|x0 |)= 1, i.e., ϕ̂(|x0 |)= 1

‖w ‖22
. Meanwhile we have ‖w‖2 = ‖x‖2. Now we can obtain that

‖w‖22 = |µ|
2 1
‖w ‖22

and |µ| = ‖w‖22 .

Hence ϕ̂((xx∗)2)= |µ|4 1
‖w ‖22
= ‖w‖62 , i.e., the trace of the left hand side of inequality (3) is ‖w‖62 .

By Eq. (4), we have that the trace of the right hand side of inequality (3) is ‖w‖62 . This implies that

(w ∗ R(w)∗)(w∗ ∗ R(w))= ‖w‖22 (ww∗) ∗ (R(w)∗R(w)).

Now we show that w ∗ R(w)∗ is a multiple of a partial isometry. By Hölder’s inequality we have

‖w‖62 = ‖w ∗ R(w)∗‖22 ≤ ‖w ∗ R(w)∗‖∞‖w ∗ R(w)∗‖1.

By the Hausdorff-Young inequality,7 we obtain

‖w ∗ R(w)∗‖∞ = ‖F̂(xx∗)‖∞ ≤ ‖xx∗‖1 = ‖x‖
2
2 = ‖w‖

2
2

and by Young’s inequality, we have

‖w ∗ R(w)∗‖1 ≤ ‖w‖1‖R(w)∗‖1 = ‖w‖
2
1 = ‖w‖

4
2 .

Hence all equalities of the inequalities above hold and

‖w ∗ R(w)∗‖22 = ‖w ∗ R(w)∗‖∞‖w ∗ R(w)∗‖1.

Finally we see that 1
‖w ‖22

w ∗ R(w)∗ is a partial isometry and

‖w‖1 = ‖w‖
2
2 = ‖

1

‖w‖22
w ∗ R(w)∗‖1. �

Corollary 6.12 in Ref. 18 is a useful tool to find an extremal bi-partial isometry in a given element.
However, that result is not true in general. Instead, we have the following result for unimodular Kac
algebras:

Proposition 3.14. Let G be a unimodular Kac algebra. Suppose w ∈ L1(G) ∩ L2(G) such that
‖w ∗ R(w∗)‖∞ = ‖w‖22 , ‖w‖22 is a point spectrum of w ∗ R(w∗), and Q is the spectral projection of
|w ∗ R(w∗)| with spectrum ‖w‖22 . Then Q is a biprojection.

Proof. We assume that ‖w‖2 = 1. Take x = (w∗ ∗ R(w))(w ∗ R(w∗)). Then ‖x‖∞ = 1. Note that
lim
k→∞

xk =Q in the strong operator topology and Q is a projection. By Hölder’s inequality and Young’s

inequality, we have that

‖xk ‖1 ≤ ‖w ∗ R(w∗)‖1 ≤ ‖w‖
2
1 , k = 1, 2, . . . . (5)

Note that xk ≤ x, and by dominant convergence theorem,

lim
k→∞
‖xk − Q‖1 = 0.
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By the Hausdorff-Young inequality,7 we obtain that

lim
k→∞
‖F(xk) − F(Q)‖∞ = 0.

Note that F(x)= (F(w∗)F(w∗)∗) ∗ (F(w)F(w)∗) ≥ 0 and F(xk)=F(x)∗(k) ≥ 0. Thus

F(Q)= lim
k→∞

F(xk) ≥ 0.

Moreover,
‖F(xk)‖1 = ‖((F(w∗)F(w∗)∗) ∗ (F(w)F(w)∗))∗(k)

‖1 = ‖w‖
4k
2 = 1.

By the Hausdorff-Young inequality and Eq. (5), ‖F(xk)‖∞ ≤ ‖w‖21 . So

‖F(Q)‖1 ≤ lim
k→∞
‖F(xk)‖1 = 1.

By the Hausdorff-Young inequality, 1= ‖Q‖∞ ≤ ‖F(Q)‖1 = 1. So F(Q) is extremal.
By Proposition 3.12 and Corollary 3.16, we see that Q is a biprojection. �

Theorem 3.15. Let G be a unimodular Kac algebra and w ∈ L1(G) ∩ L∞(G). Then w is an
extremal bi-partial isometry if and only if w is a bi-shift of a biprojection. Furthermore, if w is a
projection, then it is a left (or right) shift of a biprojection.

Proof. Suppose w is an extremal bi-partial isometry and w is a partial isometry. Let

B=
1

‖w‖42
(w ∗ R(w)∗)(w∗ ∗ R(w)).

By Theorem 3.13, we have that 1
‖w ‖22

w ∗ R(w)∗ is a partial isometry and hence B is a projection.

Now we compute the Fourier transform of B,

F(B)=
1

‖w‖42
F((w ∗ R(w)∗)(w∗ ∗ R(w)))

=
1

‖w‖22
F((ww∗) ∗ (R(w)∗R(w)))

=
1

‖w‖22
F(ww∗)F(R(w)∗R(w))

=
1

‖w‖22
F(ww∗)F(ww∗)∗.

Hence it suffices to check that F(ww∗) is a multiple of partial isometry. First we observe that F(w)
is an extremal bi-partial isometry. By Theorem 3.13, we have that F(w) ∗ R̂(F(w)∗) is a multiple of
partial isometry and

F(w) ∗ R̂(F(w)∗)=F(w) ∗ F(w∗)=F(ww∗).

Therefore F(B) is a multiple of a projection and B is a biprojection.
Now we define Bg = ww

∗, then Bg is a projection. We are going to show that Bg is a right shift
of the biprojection B. By Theorem 3.13, we have that 1

‖w ‖22
Bg ∗ R(Bg)=B. Computing the trace on

both sides, we have 1
‖w ‖22

ϕ(Bg)2 = ϕ(B). Note that ϕ(Bg)= ‖w‖22 , and we see that

ϕ(B)=
1

‖w‖22
(‖w‖22 )

2
= ‖w‖22 = ϕ(Bg).

Recall that F(w) is an extremal bi-partial isometry. We have ‖F(w)‖∞ = ‖w‖1, and 1
‖w ‖22

F(w) is

a partial isometry. By Theorem 3.13, we see that

1

‖ 1
‖w ‖22

F(w)‖22

F(w)

‖w‖22
∗

R̂(F(w)∗)

‖w‖22
=

1

‖w‖22
F(ww∗)=

1

‖w‖22
F(Bg)
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is a partial isometry.
Hence we obtain that

F(Bg)=
1

‖w‖42
F(Bg)F(Bg)∗F(Bg)

=
1

‖w‖42
F(Bg)F(R(Bg))F(Bg)

=
1

‖w‖42
F(Bg ∗ R(Bg) ∗ Bg)

and 1
‖w ‖42

Bg ∗ R(Bg) ∗ Bg =Bg. Then

B ∗ Bg =
1

‖w‖22
Bg ∗ R(Bg) ∗ Bg = ‖w‖

2
2Bg = ϕ(Bg)Bg.

Therefore Bg is a right shift of the biprojection B.

Let B̃h =
1
‖w ‖42

F(w)F(w)∗. We have F̂(B̃h)= 1
‖w ‖42

w ∗ R(w)∗. Finally we will find a form of w in

terms of Bg and B̃h,

F(w)=
1

‖w‖42
F(w)F(w)∗F(w)

=
1

‖w‖42
F(w)F(R(w)∗)F(w)

=
1

‖w‖42
F(w ∗ R(w)∗ ∗ w).

Then w = 1
‖w ‖42

w ∗ R(w)∗ ∗ w = F̂(B̃h) ∗ (Bgw). �

Corollary 3.16. Let G be a unimodular Kac algebra. If x ∈ L1(G)∩L2(G) and F(x) are positive
and S(x)S(F(x))= 1, then x is a biprojection.

Lemma 3.17. Let G be a unimodular Kac algebra. Suppose B is a biprojection in L1(G)∩L∞(G)
and B̃ is the range projection of F(B) in L1(Ĝ) ∩ L∞(Ĝ). If x ∈ L1(G) ∩ L∞(G) such that R(x)=B
and R(F(x))= B̃, then x is a multiple of B.

Proof. By the assumption, we have Bx = x and F(B)F(x)= ϕ(B)F(x), i.e., B ∗ x = ϕ(B)x. Hence
B ∗ Bx = ϕ(B)x. Note that B is biprojection, then B is a group-like projection,21 i.e.,

∆(B)(B ⊗ 1)=∆(B)(1 ⊗ B)=B ⊗ B.

Now we have

ϕ(B)x =B ∗ (Bx)= (ϕ ⊗ ι)((B ⊗ 1)∆(Bx))

= (ϕ ⊗ ι)((1 ⊗ B)∆(B)∆(x))

= ϕ(Bx)B,

i.e., x is a multiple of B. �

Theorem 3.18. [Hardy’s uncertainty principle]. Suppose G is a unimodular Kac algebra and
w ∈G is a bi-shift of biprojection. For any x ∈ L1(G)∩L∞(G), if |x∗ | ≤C |w∗ | and |F(x)∗ | ≤C ′ |F(w)∗ |,
for some constants C > 0 and C ′ > 0, then x is a scalar multiple of w.

Proof. Suppose w ∈ L∞(G) is a bi-shift of a biprojection B. Let B̃ be the range projection of
F(B), and Bg and B̃h be right shifts of biprojections B and B̃, respectively, such that R(w) ≤ Bg and
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R(F(w)) ≤ B̃h. If x satisfies the assumption, then R(x) ≤ Bg and R(F(x)) ≤ B̃h. By Theorem 1, we
have that R(w)=R(x)=Bg and R(F(w))=R(F(x))= B̃h.

We assume that x , 0. Then x∗w and w∗w are nonzero and

R(F(x∗w)) =R(F(x∗) ∗ F(w))

=R (R̂(F(x))∗ ∗ (F(w))

≤R(R̂(B̃h) ∗ B̃h).

By Theorem 3.13, R̂(B̃h) ∗ B̃h is a multiple of a projection and

S(F(x∗w)) ≤ S(R̂(B̃h) ∗ B̃h)=S(B̃h)=S(F(w)).

Then
1 ≤ S(x∗w)S(F(x∗w))=S(w∗x)S(F(x∗w)) ≤ S(w∗)S(F(w))= 1.

Hence we have
S(w∗x)=S(w∗); S(F(x∗w))=S(F(w))=S(R̂(B̃h) ∗ B̃h).

Therefore
R(w∗x)=R(w∗), R(F(x∗w))=R(R̂(B̃h) ∗ B̃h).

Hence x∗w is a bi-shift of a biprojection. Similarly w∗w is a bi-shift of a biprojection. Moreover,

R(w∗x)=R(w∗w), R(F(x∗w))=R(F(w∗w)).

By a similar argument, we have that R(w∗w)∗∗(x∗w) and R(w∗w)∗∗(w∗w) are bi-shifts of biprojections
and

R(R(w∗w)∗ ∗ (w∗x)) = R(R(w∗w)∗ ∗ (w∗w)),

R(F(R(w∗w)∗ ∗ (x∗w))) = R(F(R(w∗w)∗ ∗ (w∗w))).
(6)

By Theorem 3.13, we have that R(w∗w)∗ ∗ (w∗w) is a multiple of a biprojection Q. By Lemma 3.17
and Eq. (6), we have that R(w∗w)∗ ∗ (w∗x) is a multiple of biprojection Q and then R(w∗w)∗ ∗ (x∗w)
is a multiple of biprojection Q. Observe that both x and w are multiples of (Q ∗ (w∗w))w∗. Therefore
x is a scalar multiple of w. �

Corollary 3.19. Let G be a unimodular Kac algebra. Suppose B is a biprojection in L1(G) and
B̃ is the range projection of F(B) in L1(Ĝ). Let Bg and B̃h be right shifts of biprojections B and B̃,
respectively. Then there is at most one element x ∈ L1(G) ∩ L2(G) up to a scalar such that the range
projection of x is contained in Bg and the range projection of F(x) is contained in B̃h.

Remark 3.20. Therefore we can use the supports of Bg and B̃h to define a bi-shift of a biprojection.
It is independent of the choice of y in Definition 3.9.
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