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Abstract
Wegive a topological simulation for tensor networks thatwe call the two-stringmodel. In this approach
we give a newway to design protocols, andwe discover a newmultipartite quantum communication
protocol.We introduce the notion of topologically compressed transformations. Our newprotocol
can implementmultiple, non-local compressed transformations amongmulti-parties using one
multipartite resource state.

1. Constructive simulation and topological design

By constructive simulationwemean the development of a picture-language for quantum information that yields
intuition and insight, as well as understanding. Just as the choice of language can determine style or tone in
writing, the choice of amathematical language can influence oneʼs pattern of thinking. Different languages
convey different ideas and insights related to the same content. A good language can suggest the discovery of new
relations and aid the invention of new concepts.

Manin and Feynman introduced the concept of quantum simulation [1–3], and herewe explore the
simulation of quantumprocesses from the point of view of using a picture-language.We are not thefirst to study
topologicalmethods; early landmark papers using topologicalmethods in quantum information include [4–6].
The categorical approach has been studied extensively in quantum information and tensor networks bymany
persons [7–14]. The usage of planar diagrams in the categorical approach could also be formulated in terms of
planar algebras.We proposed in [15] using the robust framework of planar (para) algebras to understand some
knownprotocols in quantum information, as well as to design newones. A key feature in our pictorial approach
is that we use 2-string diagrams to represent a 1-qudit transformation; thus we call it a 2-stringmodel. One
usually uses 1-string diagrams to represent 1-qudit transformation.However our usage of 2-strings is essential
for our topological design of protocols. The 2-string approach has recently been discussed further, in the
context of generalizing other protocols in a topological way [16, 17].

Pictures have for a long time complemented algebra as away to provide guidance.We focus on
communicationwhich is intrinsic to quantumnetworks: this is the task of propagating information fromone
place in the network to another. It is reasonable to think that topological simulation based on isotopy is
sufficient. In fact, communication seems especially suited for topological design, as quantum communication
protocols can be expressed in purely topological form.We showed in [15] that one can recover fundamental
concepts in quantum information in this way. In this paper we showhow to define new concepts and to use
topological simulation to design newprotocols.

In sections 4–5we explain the concept of topological simulation in detail, andwe define topologically
compressed transformations—a category of transformations that includes all controlled transformations.

Then in section 6we use topological para-isotopy to design a newdiagrammatic protocol that we call
multipartite compressed teleportation (MCT).We apply this protocol to implementmultiple non-local
compressed transformations amongmulti parties—using one entangled state as a resource state, local
transformations, and classical communication(LOCC).We showhowone can representMCT in terms of the
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usual algebraic elements that one employs in circuit design. This protocol improves the efficiency of
teleportation, comparedwith two-party communication, by a factor of two.

The concepts of constructive simulation and topological design aremodel independent. In this paper we
studywhat we call the two-stringmodel. In thismodel we can simulate the Paulimatrices,measurement, and the
resource state in a topological way. Inmany communication protocols, themeasurement-based recoverymap is
given by Paulimatrices. The resource state is the Bell state, or theGHZ state [18]. Ourmodel provides a
topological explanation of this fact.

It is interesting tofind if other protocols, such as factoring [19] or secure sharing [20], require using other
elements of simulation in addition to topology.

2. Fundamental diagrams in the two-string language

Our two-string language acquires its name from the fact that we represent transformations of 1-qudits by
diagramswith two input points and two output points.We obtain fundamental diagrams for resource states,
measurements, the Paulimatrices X Y Z, , , and the string Fourier transform FS. Our strings are charged, with a
label indicating the charge Îk ;d thismeans that we consider chargesmodulo d.

The readermaywish to read complete details about the two-string language that we present in [15, 21].
However, in order tomake this paper self-contained, we explain in this section those aspects of the language that
we require in this paper—without repeating the detailed proofs.

2.1.Qudits and transformations
Let d be the dimension of the single qudit space.We represent qudits by charged strings in the shape of a cap.We
generally omit the label for any charge =k 0j .We place our strings in the plane.

Our convention is to place the charge on the left side of a vertical string. Isotopies that reverse this placement
are not allowed.However the string-Fourier relation allows one tomove a charge label over a cap or under a cup,
see (7). One can use this relation to enable isotopies thatwould otherwisemove a label across a string fromone
side to the other.

We represent the n-qudit basis ñ = ¼ ñ


∣ ∣k k k k, , , n1 2 by n charged caps, and these have n2 output points:

ð1Þ

By convention, we place the label on the righthand string in each cap.
One denotes the adjoint by a charge-inverting vertical reflection, so the n-quditmatrix units

ñá = ¼ ñá ¼
 

ℓ ℓ ℓ ℓ∣ ∣ ∣ ∣k k k k, , , , , ,n n1 2 1 2 are represented by:

ð2Þ

Therefore any n-qudit transformationT is a diagramwith n2 input points on the top and n2 output points on
the bottom

ð3Þ

2.2. Planar relations
In this sectionwe give relations between certain diagrams; the consistency of these relations is proved in [21].
These relations provide a dictionary that relates qudits, transformations,measurements, and diagrams. It is
crucial that any diagramwith n2 input points and n2 output points represents an n-qudit transformation.

Recall that d is the dimension of the 1-qudit space. Let =
p

q e d
2 i
, and z = q1 2 be a square root of q

satisfying z = 1d2
.

2
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2.2.1.Multiplication yields additive charge of order d

ð4Þ

2.2.2. Para-isotopy for exchange of charge order

ð5Þ

Herewe assume that the strings between charge-k string and charge-ℓ string are neutral.

2.2.3. Twisted tensor product
The twisted tensor product interpolates between the two vertical orders of the product. In the twisted product,
wewrite the labels at the same vertical height:

ð6Þ

In this case Îℓk, , and k and k+d yield different diagrams. If the pair is neutral, namely = -ℓ k, then the
twisted tensor product is defined for Îk d.

2.2.4. The string Fourier relation, formoving charge across a cap or cup

ð7Þ

2.2.5. Quantumdimension

ð8Þ

2.2.6. Neutrality

ð9Þ

2.2.7. Temperley-Lieb relation

ð10Þ

Based on the Temperley-Lieb relation, a neutral string only depends on the end points:

ð11Þ

2.2.8. Resolution of the identity

ð12Þ

2.2.9. Braid
We show in proposition 2.15 of [21] that

åw z w= =
=

-

∣ ∣ ( )
d

1
satisfies 1. 13

j

d
j

0

1
2

3
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The positive braid is

ð14Þ

2.2.10. Pauli matrices
The Paulimatrices X Y Z, , are

ð15Þ

2.2.11. Bell state
The Bell state, as a two-qudit resource state shared byAlice and Bob, is -d 1 2 times

ð16Þ

Here only the double caps represent the Bell state; the other labels are for explanation. The dashed, red line
indicates that the two persons have distinct localizations. The double cap can pass the red line. Thismeans that
the corresponding state can be shared betweenAlice and Bob as an entangled resource state.We use a
corresponding n-qudit resource state given in (22) for designing our protocol.

2.3. Algebraic relations for some 1-qudit transformations
The algebraic definitions of the Pauli X Y Z, , are

zñ = + ñ ñ = - ñ ñ = ñ-∣ ∣ ∣ ∣ ∣ ∣ ( )X k k Y k k Z k q k1 , 1 , . 17k k1 2

The quantumFourier transformmatrix F and theGaussianmatrixG are defined by

å zñ = ñ ñ = ñ
=

-

ℓ∣ ∣ ∣ ∣ ( )
ℓ

ℓF k
d

q G k k
1

, . 18
d

k k

0

1
2

Thesematrices are unitary, and they satisfymany interesting relations, including

w= = = = = =-( ) ( )X Y Z F G FG I, 19d d d d4 2 3 1

= = =- - - - - - ( )XYX Y YZY Z ZXZ X q, 201 1 1 1 1 1

z= = =- - - ( )XYZ FXF Z GXG Y, , . 211 1 1

Wehave shown that thesematrices generate the single qudit Clifford group in proposition9.1 of [21]. The
representations of the 1-qubit Clifford groupwere studied in [22]. For themulti-qubit case, the representations
of theClifford groupwere studied in [23], where one canfind further references about the applications in
quantum information. It would be interesting to generalize those results to the qudit case.

2.4.Multipartite resource states
Greenberger, Horne, andZeilinger introduced the classicmultipartite resource state that we denote ñ∣GHZ in
[18]. Experimental work on ñ∣GHZ was achieved in [24–26].

We introduced our n-qudit resource state ñ∣Max in [15]. This state generalizes the Bell state (16) and has the
diagrammatic representation

ð22Þ

The algebraic interpretation of this resource state is also interesting. Let ñ = ¼ ñ


∣ ∣k k k k, , , n1 2 denote an

n-qudit state with charges = ¼


( )k k k, , n1 . Also let = å Î=


∣ ∣k kj

n
j d1 denote the total charge.We have

4
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shown that

å åñ = ¼ ñ ñ = ¼ ñ-

=

- -

=


∣ ∣ ∣ ∣ ( )
∣ ∣

d k k k d k k kGHZ , , , , while Max , , , . 23
k

d
n

k

n
1
2

0

1
1

2

0

1 2

In fact these two resource states are related by the local operation of the quantumFourier transform,

ñ = Ä Ä ñ∣ ( )∣ ( )F FGHZ Max , 24

where F denotes the 1-qudit quantumFourier transformdefined in (18).

3. Teleportation

One could say that themodern theory of quantum communication networks began in 1993with the quantum
teleportation protocol discovered by Bennett, Brassard, Crépeau, Jozsa, Peres, andWootters [27]. This protocol
allows one to disassemble a quantum state located at Aliceʼs location, and to reconstruct it at Bobʼs location. In
order for the reconstruction to succeed, Alice andBob prearrange to share a specific entangled state, which is
utilized as a resource for the protocol. In addition, they share some purely classical information.

Preskill, Gottesman, andChuang described the notion of quantum software for solving problems in
quantum computation and quantum communication [28, 29]. Recently, Pirandola andBraunstein cite
teleportation as the ‘most promisingmechanism for a future quantum internet’ [30]. One can realize quantum
networks through bidirectional quantum teleportation (BQST).

Thefirst experimental realization of teleportationhas been achieved in [31]. A tripartite resource statewas
utilized for pairwise teleportation in a quantumnetwork [32]. Experimentalworkon long-distance teleportation
has been achieved [33–35]. TheQuantumScience Satellite built byPan andhis coworkers provides anopportunity
to test teleportation at record-breaking distances [36, 37].

4. Topological compression: informal discussion

A fundamental concept that we introduce in this paper is a topologically compressed transformation. Our notion
of topological compression becomes transparent in terms of the two-stringmodel for quantum information.
One can visualize compression of a transformation in terms of the diagrams that describe it. Topological
compression is compatible with use of ourmultipartite resource state ñ∣Max illustrated in (22).

Basically, the information for a compressed transformation on a qudit is carried by one of two strings. For
transformations on a single qudit, the Paulimatrices X Y, in the representation (15) are compressed. But PauliZ
is unitarily equivalent to PauliX, so it too is compressed. Let us explain this in terms of amore general example.

Suppose that Alice and Bob are at separate locations andwant to implement a non-local, two-qudit
transformationT. The topological simulation of that goal is given by the following diagram:

If one applies a topological isotopy, one canmove the red line so the transformation is performed completely by
Alice. This is the solution, and its topological simulation is

ð25Þ

5
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This topological isotopy does not change the function of the diagram, but does change its interpretation in
quantum information. After isotopy, the diagrammeans that Bob can teleport his input to Alice; thenAlice can
implement the transformationT locally on her computer and teleport the result back to Bob using BQST.

It is well-known that the cost of teleportation for a general 1-qudit transformation is two resource states.
Recall that one resource state allows two strings to pass across the red dashed line, as explained for the Bell state
in (16). Thus one has an indication from (25) that the cost of teleportation can be estimated by counting the
number of strings that pass over the red dashed line.

However Zhou et al and Eisert et al pointed out that the cost of BQSTmay not be optimal. For certain
transformations, including CNOT, they gave a teleportation protocol with lower cost [38, 39]. This optimization
has been further studied in [40], and in [41, 42] onefinds extensive references.

So it is natural to ask the question: what transformations can be teleportedwith less cost, comparedwith
BQST?We now characterize topologically compressed transformations and show that they have this property.
All controlled transformations are topologically compressed.

Following the above discussion, consider any 2-qudit transformation that can be represented by the
following diagram:

In otherwords, such a transformation acting onBobʼs qudit only requires the information on one of the two
strings.We say that such transformations are topologically compressed; we give the precise statement as
Definition 5.4. This covers a large variety of transformations that are commonly used in protocols. In this case
the corresponding isotopy yields:

As only two strings pass over the red line, one expects that it is possible to implement this non-local
transformation using only one resource state, rather than two.

In section 6, we introduce a newprotocol to teleport information that is captured on one string using one
resource state.We call this protocol compressed teleportation (CT). It relies on using LOCC. Furthermore it
optimizes the entanglement resource cost for teleportation of compressed transformations. TheCTprotocol
reduces the costs by 50% comparedwith BQST. In BQST, one needs two resource states. In our CTprotocol, we
use one resource state. Since CNOT, Tofolli, and controlled transformations are all topologically compressed,
our protocol covers the previous teleportation protocols for CNOT, Tofolli, and controlled transformations.

We then generalize this protocol tomultipartite communication in section 6.1.OurMCTprotocol does not
reduce tomultiple, bipartite communications. If one realizes this teleportation byBQST, then onewould need n
bipartite resource states, and constructing these requires n2 noiseless channels. In ourMCTprotocol, we use
one n-partite resource, which requires n noiseless channels to construct. Thereforewe reduce the cost by 50%.

5. Topological compression: definitions

If the diagrammatic representation of a 2-qudit transformationThas a free through string4 on the left, namely

ð26Þ

thenwe consider such transformations as topologically compressed on the first qudit.

Proposition 5.1. For an n-qudit transformation T , the following conditions are equivalent:

(1) The transformation T is block diagonal on the first qudit.

4
By ‘through string’, wemean a neutral string that passes from the jth input to the jth output and that crosses no other string.

6
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(2) There are -( )n 1 -qudit transformations ℓ( )T , Îℓ d, so that

å= ñá Ä
=

-

ℓ ℓ ℓ∣ ∣ ( ) ( )
ℓ

T T , 27
d

0

1

i.e.,T is a controlled transformation, where the first qudit is the controlled qudit.

(3) There are qudit transformations ¢ ℓ( )T , Îℓ d, so that

å= Ä ¢
=

-

ℓ( ) ( )
ℓ

ℓT Z T . 28
d

0

1

(4) The transformation T commutes with Pauli Z on the first qudit.

Proof.Obviously ( ) ⟺ ( ) ⟺ ( ) ( )1 2 3 4 . SinceZ has distinct eigenvalues on the diagonal, we have that
( ) ( )4 2 . ,

A transformationT is calledZ-compressed on thefirst qudit if one of the above conditions holds.

Definition 5.2. In general, we say that a transformation T is Z-compressed on the jth-qudit ifT commutes with
the action of Pauli Z on the jth-qudit. Similarly we sayT is X (or Y )-compressed on the jth qudit, if it
commutes with the action of Pauli X (or Y ) on the jth qudit.

We can switch between the three compressed transformations using =-FXF Z1 and =- -GXG Y1 1.

Theorem5.3.A transformation T has the representation (26) if and only if it is X -compressed on the first qudit.

Proof.Applying the conjugation of F on thefirst qudit to proposition 5.1, we have the following equivalent
conditions:

(1) The transformationT isX-compressed on thefirst qudit.

(2) There are -( )n 1 -qudit transformations ¢ ℓ( )T , Îℓ d, so that

å= Ä ¢
=

-

ℓ( ) ( )
ℓ

ℓT X T . 29
d

0

1

(3) The transformationT commutes with PauliX on thefirst qudit.

The transformation on the second qudit Ä ¢ ℓ( )I T is represented by

ð30Þ

By the Jordan–Wigner transformation, the transformation ÄX I is represented by

ð31Þ

Therefore ifT isX-compressed, thenT has the representation (26) by condition (2).
On the other hand, ifT has the representation (26), then it is algebraically generated by the three

transfomations

ð32Þ

By para-isotopy, the three generators commutewith ÄX I . SoT also commutes with ÄX I . By condition (3),
T isX-compressed on thefirst qudit. ,

The characterization and the proof alsowork for the n-qudit case.

7
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Definition 5.4.The transformation ¢T is compressed on the jth-qudit if ¢ =T UTV , whereT is Z-compressed
on the jth-qudit andU V, are local transformations on the jth-qudit.

6. Themutipartite CT (MCT)protocol

6.1.MCT for controlled transformations
Suppose a network has one leader and n parties. Also assume that the jth party can perform a controlled
transformation

å= ñá Ä
=

-

ℓ ℓ ℓ∣ ∣ ( ) ( )
ℓ

T T , 33j

d

j
0

1

where the control qudit belongs to the person Pj in the jth party, and ℓ( )Tj can be an arbitrarymulti-person,
multi-qudit transformation on the targets. (The algebraic notation for the controlled transformationTj is shown
infigure 1.)

With these assumptions, we design a circuit shownon the left of (34), where the resource state ñ∣GHZ is

represented by å ¼ ñ-
=
- ∣d k k k, , ,k

d
0
11

2 .We call it theMCTprotocol.
The function of the circuit is shownon the right of (34). The leader can perform any non-local controlled

transformationTj to the jth party in the network, for  j n1 . The leader has the common control qudit, and
the jth party performs the transformation ℓ( )Tj for control quditℓ.

Surprisingly, one can implement these nnon-local transformations using only 1 resource state shared by the
leader and the personsPj.

Theorem6.1. It costs one +( )n 1 -partite resource state ñ∣GHZ and n2 cdits (classical information channels) to
implement controlled transformations Tj shared by a Leader and the jth party, for  j n1 . The time cost is the
transmission of two cdits and the implementation of local transformations.

ð34Þ

Figure 1.Controlled transformations.

8
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We specify theMCT in the usual algebraic terminology as a circuit. One can consider CT as a special case for
two parties. From this picture, one can understand the protocol without knowing its topological significance. In
section 7we derive this protocol from topological simulation.

7. Topological simulation forMCT

Wegive theMCTdiagrammatic protocol forX-compressed transformations. The design of this protocol is
equivalent to the design forZ-compressed transformations by applying unitary conjugation.

We summarize the use of topological simulation to design the protocol in (35). Let us call the left-hand side
of the identity ‘Picture 1,’ themiddle term in the identity ‘Picture 2,’ and the right-hand side of the identity
‘Picture 3.’Picture 1 represents the simulation of the goal, where the Leader desires to share anX-compressed
transformationTjwith the jth party, for  j n1 .

ð35Þ

The non-local transformationTj in picture 1 of (35) cannot be implemented directly.Wefirst apply
topological isotopy, in away that isolates each transformationTj in the region of the jth party. (These regions are
separated by the red dashed lines.)Then eachTj becomes local.We alsomove the intersections of the strings and
the red dashed lines to the top, so that the non-locality only appears in the state, which turns out to be the
resource state. This is howone obtains picture 2 frompicture 1.

The cups in picture 2 of (35) representmeasurements.We add charges on cups to indicate the results of the
measurements. Each resulting charge in ameasurementmust be balanced by an opposite charge.We add that
charge on the corresponding string in the region of the Leader. Thismay also give a global phase from applying
the string Fourier relation(7) for the Leaderʼs charge. These charged strings definemeasurement-based
recoverymaps given by PauliX. Thuswe arrive at picture 3, which is a diagrammatic protocol forMCT. It
includes onemultipartite resource state ñ∣Max and LOCC.

Weconstruct the diagrammaticMCTprotocol using the 2-string language. From the above topological
simulation,weobserve that a natural resource state formultipartite communication is ñ∣Max , whichwe recognize
from (22). In fact, ñ∣Max is unitarily equivalent to theusual resource state ñ∣GHZ . Themeasurement-based

9
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recoverymap arising from topological design is given byPaulimatrices. This is a general phenomenon in various
protocols for communication.

Using the two-string language dictionary in [15], one can translate this diagrammatic protocol to the
algebraic circuit given in (36).

ð36Þ

Here one simplifies the protocol by the identity in the cancellation rule (37).

ð37Þ

We represent ñ∣Max as ñ


∣F 0s in equation (36), where the state ñ = ¼ ñ


∣ ∣0 0, 0, , 0 denotes the n-qudit with

charge 0 for each 1-qudit, andwe call ñ


∣0 the ground state.Wemention the extremely interesting transformation
Fs that appears here, and that we call the string Fourier transform. It is amechanism to produce the n-qudit
resource state ñ∣Max from the ground state ñ


∣0 .We explore Fs extensively in [21].

Taking the conjugation of local transformations, we obtain theMCTprotocol for other types of compressed
transformations. In particular, taking the conjugate of the Fourier transform F, we obtain theMCTprotocol for
Z-compressed transformations or controlled transformations in (34) .

In the case with only two persons, theMCTprotocol says: assume that a quantumnetwork can perform a
transformationT, which is compressed on a 1-qudit belonging to a networkmember Alice. ThenAlice can
teleport her 1-qudit transformation to Bob using one edit and two cdits. One can easily derive the entanglement-
swapping protocol, and the teleportation of the Tofolli gate from it.

8. Conclusion

In this paper we extend our two-stringmodel for quantum information.

(1) Wearticulate the concept of constructive simulation and topological design.

(2) We introduce topological compression and define compressed transformations.

(3) Wedefine a protocol to teleport compressed transformations.

(4) Our new protocol costs only one multipartite resource state to implement multiple, non-local
transformations betweenmultiple parties. Formore than two parties, ourmultipartite teleportation
protocol does not reduce to compositions of bipartite communications.
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