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Abstract: Quon language is a 3D picture language that we can apply to simulate math-
ematical concepts. We introduce the surface algebras as an extension of the notion of
planar algebras to higher genus surface. We prove that there is a unique one-parameter
extension. The 2D defects on the surfaces are quons, and surface tangles are transforma-
tions. We use quon language to simulate graphic states that appear in quantum informa-
tion, and to simulate interesting quantities in modular tensor categories. This simulation
relates the pictorial Fourier duality of surface tangles and the algebraic Fourier duality
induced by the Smatrix of themodular tensor category. The pictorial Fourier duality also
coincides with the graphic duality on the sphere. For each pair of dual graphs, we obtain
an algebraic identity related to the S matrix. These identities include well-known ones,
such as the Verlinde formula; partially known ones, such as the 6j-symbol self-duality;
and completely new ones.

1. Introduction

Quon language is a 3D picture language that we can apply to simulate mathematical
concepts [LWJ17,JL18]. It was designed to answer a question in quantum information,
where the underling symmetry is the group Z2 for qubits and Zd for qudits. One can
consider the quon language as a topological quantum field theory (TQFT) [Ati88,Wit88,
RT91,TV92,Tur16] in the 3D space with lower dimensional defects, and a quon as a 2D
defect on the boundary of the 3D TQFT. The underlying symmetry of the 3D picture
language can be generalized to more general quantum symmetries captured by subfactor
theory [JS97,EK98].

Jones introduced subfactor planar algebras as a topological axiomatization of the
standard invariants of subfactors [Jon99]. One can consider a planar algebra as a 2D
topological quantum field theory (TQFT) on the plane with line defects. A subfactor
planar algebra is always spherical, so the theory also extends to a sphere.
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Table 1. Fourier duality on MTC and 1-quons

MTC Quon

Simple objects (Irr) Ortho-normal-basis
Multiplication Multiplication
Fusion Convolution
S matrix SFT FS
Full subcategories CK Biprojections PK
Müger’s center CK̂ PK̂ˆ̂K = K F2S(PK ) = PK
dimCK̂ S(PK )

dimCK dimCK̂ = dimC S(PK )S(PK̂ ) = δ2

A vector in the planar algebra of a subfactor is a morphism in the bi-module category
associated with the subfactor. From this point of view, a morphism is usually represented
as a disc with m boundary points on the top and n boundary points at the bottom, and
considered as a transformation with m inputs and n outputs,

In the 3D quon language, we consider these morphisms in planar algebras as quons,
and consider planar tangles as transformations. This interpretation is similar to the orig-
inal definition of Jones, which turns out to be more compatible with the notions in
quantum information. A planar tangle has multiple input discs and one output disc. So
it represents a transformation from multiple quons to one quon.

In quantum information, we usually consider multiple qubits and their transforma-
tions. To simulate multiple quon transformations, we generalize planar tangles to spher-
ical tangles with multiple input discs and output discs. When we compose such tangles,
we will obtain higher genus-surfaces. So we further extend the notion of planar algebras
to higher genus surfaces, that we call surface algebras. The theory of planar algebras
becomes the local theory of surface algebras.

There is a freedom todefine the partition functionof a sphere in this extension, denoted
by ζ . We show that the partition function of the genus-g surface is ζ 1−g , which detects
the topological non-triviality.We prove that any non-degenerate spherical planar algebra
has a unique extension of to a surface algebra for any non-zero ζ . Therefore a subfactor
not only defines a spherical planar algebra, but also a surface algebra parameterized by
ζ . The fruitful theory of subfactors provides many interesting examples.

In this paper, we take the subfactor to be the quantum double of a unitary modular
tensor category C , also known as the Drinfeld double [Dri86]. Then the 2-box space
of the planar algebra of the subfactor is isomorphic to L2(I rr), where I rr denotes the
set of irreducible objects of C . Xu and the author proved that the associated subfactor
planar algebra is unshaded [LX16]. Thus the 2-box space becomes the 4-box space of
the unshaded planar algebra, denoted byS4. The unshaded condition is crucial to define
the string Fourier transform (SFT) on one space. Moreover, we proved that the SFT on
S4 is identical to the modular S transformation of the MTC C . Both transformations
have been considered as a generalization of the Fourier transform from different point
of views. This identification relates the two different Fourier dualities for MTC and
subfactors. We restrict the 1-quon space as S4, in order to study this pair of Fourier
dualities. We list the correspondence for 1-quons in Fig. 1; see Sect. 4 for details.

Verlinde proposed that the S matrix diagonalizes the fusion in the framework of
CFT, known as the Verlinde formula [Ver88]. The Fourier duality on 1-quons gives a
conceptual proof addressing Verlinde’s original observation given by the Lines 3–5 in
Fig. 1.
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Fig. 1. Example: This is a genus-2 tangle with two input discs and one output disc. The genus-2 surface and
the discs are drawn in thick blue lines. The strings are drawn in black

Jiang, Wu, and the author studied the Fourier analysis of the SFT on subfactors in
[JLW16]. Through this identification, we obtain many inequalities for the S matrix,
which will be discussed in a coming paper. It is particularly interesting that the ∞-1
Hausdorff–Young inequality for SFT gives an important inequality for the S matrix in
unitary MTC proved by Terry Gannon [Gan05]:

‖FS(βY )‖∞ ≤ δ−1‖βY ‖1 (1)

⇒
∣
∣
∣
∣
∣

SYX
S0X

∣
∣
∣
∣
∣
≤ SY0

S00
. (2)

The equality condition has been used by Müger to define the center of full subcate-
gories in C , known as Müger’s center [Mug03b]. On the other hands, Bisch and Jones
introduced biprojections for subfactors and planar algebras by studying intermediate
subfactors [Bis94,BJ97]. The Lines 6–10 in Fig. 1 identifies full subcategories in C
with biprojections inS4, and the several corresponding results between Müger’s center
and biprojections.

We extend the correspondence between FS and S from 1-quons to n-quons using
surface algebras, see Theorem 6.1:

surface tangles graphic quonsZ

surface tangles graphic quonsZ

�FS �S

.
The left side is pictorial andFS could be considered as a global 90◦ rotation. The right

side is algebraic and the S-matrix is generalization of the discrete Fourier transform. The
partition function Z is a functor relating the pictorial Fourier duality and the algebraic
Fourier duality.

In particular, the algebraic Fourier duality between the two qudit resource state
|GHZ〉 and |Max〉 in quantum information turns out to be a pictorial Fourier dual-
ity in quon language [LWJ17], see Sect. 5.3 for details:

Maxn,g = �FS(GHZn,g) ⇒ |Max〉n,g = �S|GHZ〉n,g. (3)

Now this result also apply to unitary MTCs. Comparing the coefficients, we obtain the
generalized Verlinde formula:

|Max〉n,g = �S|GHZ〉n,g ⇒ dim( �X , g) =
∑

X∈I rr
(

n
∏

i=1

SX
Xi

)(S1X )2−n−2g. (4)
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The generalizedVerlinde formulawas first proved byMoore andSeiberg inCFT [MS89].
Here we prove it for any unitary MTC and any genus g. We refer the readers to an
interesting discussion about various versions of the Verlinde formula on MathOverflow:
https://mathoverflow.net/questions/151221/verlindes-formula.

Moreover, for each oriented graph � on the sphere, we define a surface tangle as
a fat graph of �. Then its SFT becomes a fat graph of �̂, where �̂ is the dual graph
of � forgetting the orientation. So the pictorial Fourier duality also coincide with the
graphical duality. Therefore, we obtain one algebraic identity as the algebraic Fourier
duality of quons from any graph �. We give some examples including well known ones,
such as the Verlinde formula mentioned above; partially known ones; and completely
new ones.

If the graph � is the tetrahedron, then the graphic self-duality of the tetrahedron gives
an algebraic 6 j-symbol self-duality for unitary MTCs, see Sect. 6 for details:
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. (5)

In the special case of quantum SU (2), the identity for the 6j-symbol self-duality was
discovered by Barrett in the study of quantum gravity [Bar03], based on an interesting
identity of Robert [Rob95]. Then the identity was generalized to some other cases related
to SU (2) in [FNR07].Ageneral case forMTCshas been conjecturedbyShamil Shakirov,
which we answer positively here.

We obtain a sequence of new algebraic self-dual identities from a sequence of self-
dual graphs, see Sect. 6 for details:
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. (6)

2. Surface Algebras

Jones introduced planar algebras in [Jon99], and proved that for each extremal, finite
index subfactor N ⊂ M, one can construct a shaded, spherical planar algebra. Shaded
means that the regions of planar tangles have an alternating shading colored by N and
M. Spherical means that the planar tangles can be defined on the sphere.

In this section, we are going to extend spherical planar algebras from the sphere to
higher genus surfaces, which are the boundaries of 3-manifolds in the 3D space. The
theory of spherical planar algebras become the genus-0 case.

To simply the notation, we only define the single color case and the ground field is
C. One can generalize these definitions to multi-color cases over a general field.

2.1. Surface tangles. If we consider a planar tangle as a spherical tangle by one point
compactification of the plane, then the complement of the planar tangle becomes a disc
on the sphere. The induced orientation of the boundary of the output discwill be changed.
Thus we use anti-clockwise and clockwise orientations of boundary of discs to indicate
input and output respectively.

The composition of planar tangles is still a planar tangle. In this case, the number of
output disc is always one. If we allow spherical tangles to have multiple input discs and

https://mathoverflow.net/questions/151221/verlindes-formula
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output discs, then we will obtain tangles on higher genus surfaces when we compose
these spherical tangles. We give a generalization of planar tangles in [Jon99] to surface
tangles:

Definition 2.1. A genus-g tangle, for g ∈ N, is a 3-manifold in the 3D space whose
boundary is a genus-g surface. The surface consists of a finite (possibly empty) set of
smooth closed discs D(T ). For each disc D ∈ D(T ), its boundary ∂D of is an oriented
circle with a number of marked points. There is also a finite set of disjoint smoothly
embedded curves called strings, which are either closed curves, or the end points of the
strings are different marked points of discs. Each marked point is an end-point of some
string, which meets the boundary of the corresponding disc transversally.

The connected components of the complement of the strings and discs are called
regions. The connected component of the boundary of a disc, minus its marked points,
will be called the intervals of that disc. To each disc there is a distinguished interval on
its boundary. The distinguished interval is marked by an arrow →, which also indicates
the orientation.

A surface tangle is a disjoint union of finitely many higher-genus tangles. See Fig. 1
for an example of a surface tangle.

Remark. One can impose additional data to color the regions and the strings. In sub-
factor theory, an alternating shading of the regions is preferred. Therefore the number
of boundary points of each disc is even. In tensor categories, the strings are colored by
simple objects. In 2-categories, one has multiple colors for regions and strings. In these
cases, the boundary condition ∂D will be colored too.

Notation 2.2. We consider the 3D topological isotopy by orientation-preserving diffeo-
morphisms in the 3D space.

Notation 2.3. Let ∂D be the set of boundary conditions of discs, i.e., the equivalent
classes of ∂D modulo 3D topological isotopy. We say a disc D is an input (respectively,
output) disc, if the orientation of ∂D is anti-clockwise (respectively, clockwise). Let DI
and DO be the sets of input discs and output discs respectively.

Notation 2.4. Let r be a reflection by a plane in the 3D space.

The reflection r is unique up to topological isotopy in the 3D space. Moreover r maps
a surface tangle to a surface tangle and reverses the orientation of the boundary of discs.
Thus r switches DI and DO .

We define another two elementary operations for surface tangles,

(1) Tensor: taking a disjoint union of two surface tangles.
(2) Contraction: gluing two discs of a surface tangle whose boundaries are mirror

images.

Definition 2.5. If a surface tangle T is a disjoint union of two surface tangles T1 and T2,
then we call T a tensor product of T1 and T2.

Definition 2.6. Suppose T1 is a surface tangle, Di is an input disc of T1 and Do is an
output disc of T1, such that ∂Di = r(∂Do) in ∂D. Suppose T2 is a genus-0 tangle with
one input disc D′

i and one out put disc D′
o, so that D′

i and D′
o are identical to Do and

Di respectively. Moreover, the two discs are the intersection of T1 and T2. Let T be the
union T1 and T2 forgetting the data on the two discs at the intersection. Then T is a
surface tangle. We call T a contraction of T1 at Di and Do.



870 Z. Liu

Modulo topological isotopy in the 3D space, there are inequivalent tensors and con-
tractions. For example,

T = , T ′ = , T1 = .

Both surface tangles T and T ′ are disjoint union of the torus, but they are not isotopic.
Moreover, both of them are contractions of the surface tangle T1.

We consider a planar tangle as a genus-0 surface tangle with one output disc. For
example, the Fourier transform on subfactors was introduced by Ocneanu in terms of
paragroups [Ocn89]. In planar algebras, it turns out to be a one-string rotation of the
diagram, called the string Fourier transform (SFT), denoted by FS . The planar tangle
of the SFT has one input disc and one output disc. In the case that each disc has four
marked points, the planar tangle is given by

.
We represent this planar tangle as a genus-0 surface tangle with its input disc on the top
and its output disc at the bottom,

FS =
.

(7)

We ignore the blue thick lines indicating the shape of the surface, if there is no confusion
as above.

The composition of planar tangles can be decomposed as a contraction and a tensor
of genus-0 surface tangles.

2.2. Surface algebras. We define surface algebras as finite dimensional representations
of surface tangles whose target spaces are indexed by the boundary condition ∂D:

Definition 2.7. A surface algebra S• is a representation Z of surface tangles on the
tensor products of a family of finite dimensional vector spaces {Si }i∈∂D, having the
following axioms:

(1) Boundary condition: For a surface tangle T , Z(T ) is a vector in
⊗

D∈D(T )

S∂D .

(1’) Second boundary condition: If T has no discs, then Z(T ) is a scalar in the ground
field.

(2) Duality: For any i ∈ ∂D,Sr(i) is the dual space of Si .
(3) Isotopy invariance: The representation Z is well-defined up to isotopy in the 3D

space.
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n

Fig. 2. The genus-0 tangle for the bilinear form Bn

(4) Naturality: The following commutative diagram holds:

surface tangles vectors
Z

surface tangles vectors
Z

tensor/contraction tensor/contraction

We also call Z(T ) the partition function of T from the statistic point of view.

Definition 2.8. The partition function of a sphere is called the 2D sphere value, denoted
by ζ . The partition function of a closed string in a sphere is δζ . We call δ the 1D circle
value.

If we restrict the representation Z to genus-0 tangles with one output disc, then we
recover unital, finite dimensional, spherical planar algebras. Moreover, δ is the statistical
dimension of the planar algebra.

Remark. The spherical condition for planar algebra is defined based on the evaluable
condition, namely the 0-box space is one-dimensional [Jon12]. The spherical condition
of surface algebras on the sphere does not require this one-dimensional condition. Typical
examples of such planar algebras are graph planar algebras [Jon00].

Definition 2.9. We say a surface algebra is an extension of a planar algebra, if the
restriction of its partition function Z on the planar tangles is the partition function of the
planar algebra.

Remark. If the regions and strings of surface tangles are colored, then the index set N
will be replaced by all permissible colors of the boundary of a disc.

Remark. If one considers surface algebras as 2D TQFTwith line defects, then it is better
to consider the discs of surface tangles as holes. However, we emphasize that these
surfaces are boundaries of 3-manifolds, thus the notion of discs is more reasonable.

Notation 2.10. For an input disc D, the boundary condition ∂D only depends on the
number of marked points n. Thus we denote S∂D by Sn and its dual space by S ∗

n .

We can consider Z(T ) as a multi-linear transformation on the vector space {Sn}n∈N
from input discs to output discs.

Let us extend some notions from planar algebra to surface algebras.

Notation 2.11. Weuse a thick string labelled by a number n to indicate n parallel strings.

Notation 2.12. The genus-0 tangle in Fig. 2 defines a bilinear form Bn on Sn ⊗ Sn.
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andn n

Fig. 3. The tangles for Dn and D−1
n

Definition 2.13. A surface algebra is called non-degenerate, if the bilinear form Bn is
non-degenerate for all n.

If the surface algebra is non-degenerate, then the bilinear form Bn induces an iso-
morphism Dn from the vector space Sn to its dual space S ∗

n . From this point of view,
the tangles for the map Dn and its inverse D−1

n are given in Fig. 3. So we can identity
the vector space Sn with its dual using these duality maps, denoted by D for short.

Definition 2.14. Suppose ∗ is an anti-linear involution on Sn , n ∈ N. Then R(x) :=
D(x∗) is an anti-linear isomorphism fromSn toS ∗

n . We still denote its inverse and the
linear extension on the tenor power by R. Then

〈y, x〉 := Bn(x, y
∗) = R(y)(x) (8)

is an inner product on Sn .

Remark. The bilinear form in planar algebras is 1
ζ
Bn .

Definition 2.15. A surface algebra is called a surface ∗-algebra, if it has an anti-linear
involution, such that for any surface tangle T ,

Z(r(T )) = R(Z(T )). (9)

Definition 2.16. A surface ∗-algebra S• is called (semi-)positive, if the inner product
〈·, ·〉 is (semi-)positive.

Note that positivity implies non-degeneracy.
For a positive surface algebraS•, the vector spaceSn is a Hilbert space. Moreover,

the map R is the Riesz representation. Thus, we can consider a positive surface algebra
as a Hilbert space representation of surface tangles satisfying an additional commutative
diagram:

surface tangles vectors
Z

surface tangles vectors
Z

reflection Riesz representation
. (10)

2.3. Labelled tangles. For a surface tangle, we can partially fill its discs by a vector
with compatible boundary condition. We consider the result as a labelled tangle. Let us
extend the representation Z of surface tangles to labelled tangles.
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Definition 2.17. Suppose S• is a surface algebra and T is a surface tangle. Let S be a
subset of D(T ) and v be a vector in

⊗

D∈S
Sr(∂D). We call the pair T and v a labelled

tangle, denoted by T ◦S v, or T (v) for short, in the sense that the discs in S are labelled
by the vector v. We call it fully labelled, if all discs are labelled. We define the partition
function of the labelled tangle T (v) by

Z(T (v)) := v(Z(T )), (11)

where v ∈
⊗

D∈S
Sr(∂D) is considered as a partial linear functional on

⊗

D∈D(T )

S∂D .

Definition 2.18. We define the reflection on a labelled tangle T (v) by

r(T (v)) = r(T )(R(v)). (12)

SupposeS• is a surface algebra and T is a surface tangle. Then Z(T ) ∈
⊗

D∈D(T )

S∂D .

Let S be a subset ofD(T ). Then each vector v in
⊗

D∈S
Sr(∂D) is a partial linear functional

on
⊗

D∈D(T )

S∂D . Moreover, v(Z(T )) is a vector in
⊗

D∈D(T )\S
Sr(∂D), corresponding to

the unlabelled discs of T .

Theorem 2.19. For a surface algebra S•, the extended representation Z of labelled
tangles satisfies all axioms in Definition 2.7.

Proof. Axioms (1’) and (3) follow from the corresponding axioms for surface tangles.
Axiom (1) and (4) follow from the corresponding axioms for surface tangles and Eq.

(11).
Axiom (2) follows the corresponding axioms for surface tangles and Eq. (12).
We give a proof for the tensor in axiom (4) in details. The others are similar. Suppose

T1(v1) and T2(v2) are labelled tangles, then their disjoint union T1(v1) ⊗ T2(v2) =
(T1 ⊗ T2)(v1 ⊗ v2) is a labelled tangle. So

Z(T1(v1) ⊗ T2(v2))

= Z((T1 ⊗ T2)(v1 ⊗ v2))

= (v1 ⊗ v2)(Z(T1 ⊗ T2))

= (v1 ⊗ v2)(Z(T1) ⊗ Z(T2))

= v1(Z(T1)) ⊗ v2(Z(T2))

= Z(T1(v1)) ⊗ Z(T2(v2)).

��
Let T (v) be a a labelled tangle containing T1(v1) as a sub labelled tangle. In other

words, there is a labelled tangle T2(v2), such that T (v) is amultiple contractions between
T1(v1) and T2(v2). We denote it by T (v) = T1(v1) ◦S T2(v2), where S indicates the
unlabelled discs are that glued. If T3(v3) is a labelled tangle which has the same partition
function as T1(v1). Then we can identify their unlabelled discs. If we replace T1(v1) by
T3(v3) in T (v), then we obtain a new labelled tangle T3(v3)◦S T2(v2). By Theorem 2.19,
we have that
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Corollary 2.20. If Z(T1(v1)) = Z(T3(v3)), then Z(T1(v1) ◦S T2(v2)) = Z(T3(v3) ◦S
T2(v2)).

Since the replacement of T1(v1) by T3(v3) will not affect the partition function, we
call it a relation of labelled tangles, denoted by T1(v1) = T3(v3).

Definition 2.21. Suppose S is a non-degenerated surface algebra, and T is a labelled
tangles. If Z(T ) = 0, then we call T a relation ofS , and denoted by T = 0.

The following genus-0 tangle In has one input disc and one output disc:

n
.

IfS• is non-degenerate, then In defines the identity map onSn .
For any vector v inSn , we obtain a labelled tangle In(v) by filling v in the input disc.

Then Z(In(v)) = v. So the vector v can be considered as a labelled tangle, denoted by
v = In(v). Its pictorial representation is

n

v

.
This construction can be generalized to any vector in the tensor product of {Sn}n∈N

and their dual spaces. Therefore, we can identify vectors and labelled tangles by each
other in a surface algebra.

The vector spaces Sn and S ∗
n are dual to each other. Let {αk} be a basis of Sn and

{βk} be its dual basis. Then we have that

Z(In) =
∑

k

αk ⊗ βk . (13)

The right hand side is independent of the choice of basis.
This defines a relation for labelled tangles that we call the joint relation.

Proposition 2.22 (Joint relation). SupposeS• is a non-degenerate surface algebra, then
we have the join relation for labelled tangels:

n
=

∑

k
n

αk

nβk
. (14)

Consequently, if dim(S0) = 1, then for the genus-g surface Sg, we have

Z(Sg) = ζ 1−g. (15)

Proof. SinceS• is non-degenerated, by Eq. (13), the partition function of both sides of
Eq. (14) are equal. So the Joint relation (14) holds.

Furthermore, if dim(S0) = 1, then

= ζ−1 . (16)

Applying Relation (16), we can remove a genus from a surface by multiplying a scalar
ζ−1, so Z(Sg) = ζ−1Z(Sg−1). Recall that Z(S0) = ζ 1, so Z(Sg) = ζ 1−g . ��
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Remark. Due to the joint relation, one can regard the partition function Z as a symmetric
monoidal functor from the category of cobordisms with line defects to the category of
vector spaces.

2.4. Unique extension.

Theorem 2.23. For any ζ �= 0, any non-degenerate, unital, finite dimensional, spherical
planar algebra P• has an unique extension to a non-degenerate surface algebra S•
with 2D sphere value ζ .

In other words, the joint relation and the local relations defined by the planar algebra
are consistent and the 2D sphere value ζ is a freedom.

Proof. Since P• is non-degenerate and ζ �= 0, its extension S• is non-degenerate.
Moreover, the inner product on S• is ζ times the inner product on P•. The anti-linear
isomorphism Dn : Sn → S ∗

n is defined by the Riesz representation.
The interior 3-manifold of a fully labelled surface tangle T is contractable to a graph

GT , homotopic to a planar graph.Moreover, the graphGT is unique up to the contraction
move which contracts an adjacent pair of an m-valent vertex and an n-valent vertex to
an (m + n − 2)-valent vertex:

→ .

We consider T as a small neighborhood of GT . We can decompose T into fully
labelled genus-0 tangles by applying the joint relation (14) to all edges of GT . Thus
the partition function Z(T ) is determined by the value of Z on fully labelled genus-0
tangles. Therefore the extension is unique for a fixed ζ .

Now we prove the existence of such extension. We need to prove that the partition
function Z(T ) is well-defined.

Let {αk} be a basis of Sn and {βk} be its dual basis. Let {αk′ } be a basis of Sm and
{βk′ } be its dual basis. By basic linear algebra, for any f ∈ Sn+m , we have that

∑

k

n

αk

f
m

nβk
=

∑

k′

f
m

n

α′
k

mβ ′
k

. (17)

Therefore, for a fixed GT , Z(T ) is well-defined up to isotopy.
By basic linear algebra, for any α ∈ Pn and β ∈ P∗

n , we have that

β

α

n
=

∑

k

βn

αk

α

nβk
. (18)
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Thus, Z(T ) is invariant under the contractionmove and it is independent of the choice
the GT . Therefore Z(T ) is well-defined for fully labelled surface tangles.

Applying the joint relation to a fully labelled tangle is equivalent to applying the
inverse of the contraction move to the graph. Thus the joint relation is a relation for Z .
Therefore, we obtain an extension fromP• toS•. ��

Consequently, the general constructions of spherical planar algebras can be extended
to surface algebras. For example,

Corollary 2.24. Suppose a surface algebra (S•)k is an extension of a planar algebra
(P•)k with sphere value ζk , for k = 1, 2. Then (S•)1 ⊗ (S•)2 is an extension of
(P•)1 ⊗ (P•)2 with sphere value ζ1ζ2.

Theorem 2.25. Suppose a surface algebra S• is an extension of a subfactor planar
algebra P• with sphere value ζ . Then S• is positive, if and only if ζ > 0.

Proof. We consider the genus-0 labelled tangle with one disc as a hemisphere. The
sphere is a composition of an unlabelled hemisphere and its mirror image, so ζ > 0
is necessary. Conversely, if ζ > 0, then the partition function of S• is positive on the
sphere. By the joint relation (14), any labelled tangles is a sum of disjoint unions of
hemispheres. The positivity follows. ��

3. Jones-Wassermann Subfactors

The Jones-Wassermann subfactor was first studied in the framework of conformal nets
[LR95,Was98,Xu00,KLM01]. Motivated by the reconstruction program from modular
tensor categories (MTC), (cf. [Tur16]), to conformal field theory (CFT), Xu and the
author have constructed m-interval Jones-Wassermann subfactors for modular tensor
categories, and proved that these subfactors are symmetrically self-dual, called the mod-
ular self-duality forMTC [LX16]. This is a resource of a large family of unshaded planar
algebras, where the input data is a modular tensor category.

For readers’ convenience, we briefly recall the correspondence between notions in
planar algebras and notions in category theory. Each irreducible, finite index subfactor
N ⊂ M defines a subfactor planar algebraP• [Jon99]. A subfactor planar algebra has
an alternating shading colored by N andM. In category theory, the N–N (orM–M)
bimodule category associated with the subfactor is a spherical category CN (or CM)
[BW99,Mug03a]. Moreover, the factor M defines a Frobenius algebra γ in CN which
induces the Morita equivalence between the two monoidal categories CN and CM. The
n-box space Pn,+ of the planar algebra is isomorphic to homCN (1, γ n).

Furthermore, if we can lift the shading, then the planar algebra is called unshaded.
In this case, the associated category is a Z2 graded spherical category D , so that the
generating, irreducible N–M bimodule M defines an odd, symmetrically self-dual,
irreducible object τ inD ; τ ⊗τ = γ ; CN and CM are isomorphic to the even part ofD ;
and the 2n-box space of the unshaded planar algebra is isomorphic to homD (1, τ 2n) ∼=
homCN (1, γ n).

An irreducible object is call symmetrically self-dual, if it is self-dual with Frobenius-
Schur indicator 1. The corresponding subfactor is called symmetrically self-dual, see
[LMP] for further discussions and examples.

We recall some notations and results in [LX16]. Let C be a unitary modular tensor
category and I rr be the set of irreducible objects of C . For an object X , its dual object
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is denoted by X . Its quantum dimension is d(X). Let μ =
∑

X∈I rr
d(X)2 be the global

dimension of C .
LetS• be the unshaded planar algebra of the 2-interval Jones-Wassermann subfactor

for C , and D be the associated Z2 graded spherical category. Then the even part of D
is a subcategory of C ⊗ C op. Since we begin with unshaded planar algebras in this
paper, the vector spaceS2n of the unshaded planar algebra isSn of the subfactor planar
algebra in [LX16].

In [LX16], we considered C ⊗C instead of C ⊗C op, which is necessary in studying
the m-interval Jones-Wassermann subfactor for all m ≥ 1. In this paper, we only deal
with the case m = 2. It is more convenient to work on C ⊗ C op. The opposite map
C → C op here corresponds to the map θC on C in [LX16]. The object Xop in C op

corresponds to the dual object of X in C , denoted by X .
We also defined a map θ2 on C in [LX16]. For a morphism a in homC (1, X1 ⊗· · ·⊗

Xn), X1, · · · , Xn ∈ I rr , θC (a) is a morphism in homC (1, Xn ⊗ · · · ⊗ X1),

θ2(a) =

θC (a)

X1

•

X2

•

X3

•

X4

•

, (19)

where n = 4 in this example. A vector a0⊗aop1 inC ⊗C op, for a0, a1 ∈ C , correspondes
to the vector a0 ⊗ θ2(a1) in C ⊗ C .

Let τ be the generating, odd, symmetrically self-dual, irreducible object in D . Then
Sn = homD (1, τ n). By parity, Sn is zero for odd n. Moreover, τ 2 = γ is an even
object, where

γ =
⊕

X∈I rr
X ⊗ Xop, (20)

and
S2n = homD (1, τ 2n) = homD (1, γ n) = homC⊗C op (1, γ n). (21)

In particular, when the Grothendieck ring of C is the group Zd , thenD is a Tambara-
Yamagami category [TY98]. More precisely, D is Z2 graded. Its the even objects are
invertible objects with fusion ring Zd . It has one odd object τ , so that τ 2 is a direct sum
of all invertible objects.

Recall that δ is the value of a closed circle inS•, namely d(τ ), then the Jones index
δ2 is the global dimension μ of the MTC C ,

δ2 = d(τ 2) = d(γ ) =
∑

X∈I rr
d(X)2 = μ. (22)

Note that S4 = homD (1, τ 4) = homC⊗C op (1, γ 2). By Frobenius reciprocity, we
can identify the S4 as

homD (τ 2, τ 2) = homC⊗C op (γ, γ ) =
⊕

X∈I rr
homC⊗C op (XD, XD) ∼= L2(I rr), (23)

where XD = X ⊗ Xop. The space S4 has been considered as the 1-quon space for
quantum information [LWJ17].
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We represent the identity map 1XD on XD in the category C ⊗ C op as

XD
.

While identifying it as a morphism in the even part ofD , we use the following pictorial
representation:

XD

τ τ

τ τ ,

where the trivalent vertices are isometries from τ 2 to XD and backwards. As a vector in
S4, we use the following pictorial representation:

XD

.

Take

βX = d(X)−11XD , (24)

where 1XD is the identity map in homC⊗C op (XD, XD). Then {βX }X∈I rr form an ONB
of the 1-quon space, called the quantum coordinate [LX16].

Notation 3.1. Wedenote thebra–ket notation for the1-quon
∑

X∈I rr
cXβX by

∑

X∈I rr
cX |X〉.

The modular transformation S of a MTC is originally defined by a hopf link.1 In
general, the SFT will change the shading of diagrams in a subfactor planar algebra. It
is crucial that the planar algebra S• of the Jones-Wassermann subfactor is unshaded,
so that the SFT is defined on each Sn , n ≥ 0. Furthermore, Xu and the author proved
that the action of FS on the quantum coordinate of the 1-quon space is the S matrix in
[LX16]:

Proposition 3.2. On the ONB {βX }X∈I rr of S4, the SFT FS is the modular S matrix,
i.e.,

FS(|X〉) =
∑

Y∈I rr
SYX |Y 〉 . (25)

1 The entries of the S matrix is defined by the value of a Hopf link in a MTC, usually denoted by SX,Y .
Here we write it as SYX while considering it as a matrix on 1-quons.
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InS•, we have the following pictorial representation:

d(X)−1
XD =

∑

Y∈I rr
SYXd(Y )−1

YD . (26)

In D , we have the following pictorial representation:

d(X)−1
XD

τ

τ

τ

τ

=
∑

Y∈I rr
SYXd(Y )−1 YD

τ τ

τ τ

. (27)

Note that this relation does not hold in C ⊗C op, as the SFT is not defined on C ⊗C op.
Let I rrn be the nth tensor power of I rr . Its element is given by �X := X1 ⊗· · ·⊗ Xn .

Then d( �X) =
n

∏

j=1

d(X j ). Let ONB( �X) be an orthonormal basis of homC (1, �X).

Proposition 3.3. The partition function of the following planar tangle with 2n boundary
points

· · · (28)

is given by the vector δ
n
2 μn inS2n = homC⊗C op (1, γ n), where

μn = δ1−n
∑

�X∈I rrn
d( �X)

1
2

∑

α∈ONB( �X)

α ⊗ αop. (29)

Proof. Following the construction in [LX16], for �X ∈ I rrn , take ONB( �X) to be an
orthonormal basis of homC (1, �X). Then B = {a0 ⊗ θ2(a1)|a0, a1 ∈ ONB( �X), �X ∈
I rrn} form an orthonormal basis of homC⊗C (1, γ n). The partition function of the planar
tangle (28) has been computed as a vector δ

n
2 μn in homC⊗C (1, γ n),

μn =
∑

α∈B
L(α)α, (30)

where L is simplified as follows for the 2-interval case,

L(a0 ⊗ θ2(a1)) = μ
1−n
2 d( �X)

1
2 a0

θ2(a1)

a0

θ2(a1)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
.

(31)
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By Eq. (19),

L(a0 ⊗ θ2(a1)) = μ
1−n
2 d( �X)

1
2 〈a1, a0〉, (32)

where 〈a0, a1〉 is the inner product in C . Therefore

μn = δ1−n
∑

�X∈I rrn
d( �X)

1
2

∑

α∈ONB( �X)

α ⊗ θ2(α). (33)

Identifying μn as a vector in S2n = homC⊗C op (1, γ n), still denoted by μn , we obtain
Eq. (29). ��

Note that μ1 is a morphism in homC⊗C op (1, γ ). By Frobenius reciprocity, μ3 ∈
homC⊗C op (1, γ 3) also defines a morphism in homC⊗C op (γ 2, γ ). The triple (γ, μ1, μ3)

defines the Frobenius algebra in C ⊗C op associated to the 2-interval Jones-Wasserman
subfactor. Its dual category is known as the quantum double.

In general, when we identify the string labelled by the Frobenius algebra γ as a pair
of parallel strings labelled by τ and τ with a shading in the middle. This is a classical
identification in subfactor theory. The alternating shading is essential in the study of
subfactor planar algebras. Here we can lift the shading by the modular self-duality of
MTCs, and the both strings are labelled by the symmetrically self-dual object τ in D .
Therefore the SFT is defined on D , which is used in a crucial way in Sect. 6.

4. Fourier Duality on 1-Quons

A quon x in S4 is represented by a labelled tangle which has one output disc with 4
points on the boundary. We modify shape of the disc as a square and represent x as
follows:

x
.

The outside region belongs to the output disc, when we consider it as a genus-0 labelled
tangle.

For quons x, y ∈ S4, we can compose the square-like labelled tangles vertically or
horizontally:

x

y

, .

x y

Both operations define associative multiplications on S4. We call the vertical compo-
sition the multiplication of x and y, denoted by xy. We call the horizontal composition
the convolution of x and y, denoted by x ∗ y.2

Furthermore, the SFT is given by the following 90◦ rotation

.
It intertwines the two multiplications,

FS(xy) = FS(x) ∗ FS(y). (34)

2 The horizontal multiplication is usually called the coproduct on subfactor planar algebras.
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This is a corner stone of the pictorial Fourier duality.
Let us consider the 1-quon spaceS4 ∼= L2(I rr) as functions on the quantum coordi-

nates. Then we have the following formulas for the multiplication and the convolution.

Proposition 4.1 (Multiplication). For X,Y ∈ I rr ,

|X〉 |Y 〉 = δX,Y d(X)−1 |X〉 . (35)

Proof. It follows from Eq. (24). ��
Proposition 4.2 (Convolution). For X,Y ∈ I rr ,

|X〉 ∗ |Y 〉 = δ−1
∑

W∈I rr
NW
X,Y |W 〉 , (36)

where NW
X,Y = dim homC (W, X ⊗ Y ).

Proof. It follows from Eq. (3.3). ��
The matrix NX = N−

X,− is called the adjacent matrix or the fusion. Verlinde first
proposed that themodular transformation S diagonalizes the fusion [Ver88]. The Fourier
duality of 1-quons gives a conceptual explanation of this result.

Theorem 4.3 (Verlinde formula). For any X ∈ I rr ,

δ−1SNX S
−1 =

∑

Y∈I rr
SYXd(Y )−1δY , (37)

where δY is the projection onto CβY .

Proof. By Eqs. (35), (36), (34) and (25)

δ−1SNX S
−1(S |W 〉) =S(|X〉 ∗ |W 〉)

=(S |X〉)(S |W 〉)
=

∑

Y∈I rr
SYXd(Y )−1δY (S |W 〉).

Since {S |W 〉}W∈I rr form an ONB of S4, we obtain Eq. (37). ��
Now we give another application of the Fourier duality on 1-quons. The set I rr of

irreducible objects of C forms a fusion ring under the direct sum ⊕ and the tensor ⊗.
For any subset K ⊂ I rr , we define its indicator function as

PK =
∑

X∈K
1XD . (38)

Then PK is a projection in S4 ∼= L2(I rr). This is a bijection between subsets of I rr
and projections in S4.

Proposition 4.4 (Theorem 4.12 in [Liu16]). Suppose P is a projection inS4 under the
multiplication. If the range projection of P ∗ P is a subprojection of P, then P is a
biprojection.

Notation 4.5. Let us define SU B⊗ = {K ⊂ I rr |K is closed under ⊗}.
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Theorem 4.6. Take K ⊂ I rr , then K ∈ SU B⊗ iff PK is a biprojection. Consequently,
if K is closed under ⊗, the it is closed under the dual.

Proof. By Eq. (36), if PK is a biprojection, then K is closed under the tensor and the
dual. Conversely, if K is closed under ⊗, by Eq. (36), the range projection of PK ∗ PK
is a subprojection of PK . By Proposition 4.4, PK is a biprojection. ��
Definition 4.7. For a subset K of I rr , let K be the smallest subset in SU B⊗ containing
K .

The Hausdorff–Young inequality for subfactor planar algebras has been proved
in [JLW16]. Applying the ∞-1 Hausdorff–Young inequality to the vector βY =
d(Y )−11YD , we have

‖FS(βY )‖∞ ≤ δ−1‖βY ‖1. (39)

By Proposition 3.2,

∣
∣
∣
∣
∣

SYX
S0X

∣
∣
∣
∣
∣
≤ SY0

S00
. (40)

We recover this important inequality for unitary MTC proved by Terry
Gannon [Gan05].

Definition 4.8. For a subset K of I rr , we define

K̂ =
{

X ∈ I rr

∣
∣
∣
∣
∣

SYX
S0X

= SY0
S00

, ∀ Y ∈ K

}

. (41)

Proposition 4.9 (Theorem 4.12 in [Liu16]). Suppose A is a positive operator in S4
under the multiplication. Let P be the smallest biprojection containing the range pro-
jection of A. Then the spectral projection of FS(P) at its norm is a biprojection and it
is a multiple of FS(P).

Theorem 4.10. For a subset K of Irr , we have K̂ ∈ SU B⊗, K̂ = K̂ and ˆ̂K = K.

Proof. By Proposition 3.2,

FS(PK ) =
∑

X∈I rr

∑

Y∈K
SYXd(Y )d(X)−11XD

=
∑

X∈I rr

∑

Y∈K

SYX
S0X

SY0 1XD .

By the Hausdorff–Young inequality,

∣
∣
∣
∣
∣

∑

Y∈K

SYX
S0X

SY0

∣
∣
∣
∣
∣
≤

∑

Y∈K

SY0
S00

SY0 = δ−1‖PK ‖1. (42)
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Moreover, the equality holds iff X ∈ K̂ . Therefore, ‖FS(PK )‖ = δ−1‖PK ‖1 and the
spectral projection of FS(PK ) at ‖FS(PK )‖ is PK̂ .

ByProposition 4.9, PK̂ is a biprojection and it is amultiple ofFS(PK ). So K̂ ∈ SU B⊗
and K̂ = K̂ . Moreover, FS(PK̂ ) is a multiple of F2

S(PK ) and F2
S(PK ) = PK , so

ˆ̂K = K .
��

Definition 4.11. Suppose K ∈ SU B⊗. Then K = K and ˆ̂K = K . We call K̂ and PK̂
the Fourier duals of K and PK respectively.

Notation 4.12. When K ∈ SU B⊗, we define CK to be the full fusion subcategories of
C whose simple objects are given by K .

This is a bijection between SU B⊗ and full fusion subcategories of C . By Theorem
4.6, we obtain a bijections between full fusion subcategories {CK } ofC and biprojections
{PK } of S4.

Let S(x) be the trace of the range projection of x . Let dimCk be the global dimension
of CK . Then

dimCK :=
∑

X∈K
d(X)2 = S(PK ). (43)

Moreover,
dimCK dimCK̂ = S(PK )S(FS(PK )) = δ2. (44)

In general, we have the Donoho-Stark uncertainty principle S(x)S(FS(x)) ≥ δ2, for
any non-zero x ∈ S4, see [JLW16].

In particular, CK̂ is known as Müger’s center of CK [Mug03b]. Using the bijection
betweenCK̂ and {PK }, we find a correspondence between the property ofMüger’s center
and that of biprojections. We summarize the results in this section in the Table 1.

5. Graphic Quons

5.1. Definitions. In this section, we extend the unshaded subfactor planar algebra S•
to a surface algebra by Theorem 2.23, still denoted by S•. We consider ζ := Z(S0)
as a free variable. We study n-quons through the surface algebra, particularly the ones
represented by surface tangles.

Recall thatS4 is the space of 1-quons. Take its nth tensor power (S4)
n to be the space

of n-quons. Let us denote Qm
n := hom((S4)

m, (S4)
n) to be the space of transformations

fromm-quons to n-quons.We ignore the index when it is zero. For �X = X1⊗· · ·⊗Xn ∈
I rrn , we define β �X = βX1 ⊗ · · · ⊗ βXn . Then {β �X } �X∈I rrn form an ONB of Qn .

Notation 5.1. We denote the bra–ket notation for the n-quon β �X by | �X〉 and | �X〉 =
|X1 · · · Xn〉. The bra–ket notation for a transformation in Qm

n is given by
∑

�Y∈I rrm

∑

�X∈I rrn
c

�Y
�X | �X〉 〈 �Y |.

By the commutative diagram (10), when we reverse the orientation of a disc of a
surface tangle, we switch 〈X | and |X〉 in its partition function. One can consider it as the
Frobenius reciprocity. When we use the bra–ket notation for n-quons, we have an order
for the tensor. Thus we also order the discs for surface tangles from 1 to n. The choice
of the order is identical to the action of a permutation on the tensors.
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Notation 5.2. Let LTm
n be the set of labelled surface tangles with m input discs and n

output discs, so that each disc has four boundary points.

Then the partition function Z is a surjective map from LTm
n toS4.

Definition 5.3. For a genus-g labelled tangle T in LTm
n , we define the normalized quon

|T 〉 by
|T 〉 := Z(Sg)

−1Z(T ). (45)

By Theorem 2.23, the extension from spherical planar algebra to surface algebras is
unique up to the choice of ζ = Z(S0).

Proposition 5.4. The normalized quon |T 〉 is independent of the choice of ζ .
Proof. It follows from the joint relation (14). ��
Definition 5.5. Let Tm

n be the subset LTm
n consisting of surface tangles.WecallGQm

n :=
Z(Tm

n ) the space of graphic quon transformations and GQn := Z(Tn) the space of
graphic n-quons.

5.2. From graphs to graphic quons. Let Gn be the set of oriented graphs on a surface
whose the edges are ordered from 1 to n. For � ∈ Gn , let us construct a surface tangle
T� ∈ Tn : We replace each edge of � by a pair of parallel strings, and replace the arrow
indicating the orientation by an output disc with four marked points; we replace the
neighborhood of an n-valent vertex of � by a planar diagram with 2n boundary points
as follows:

→

· · · → · · · .
Moreover, we obtain a graphic quon |T�〉.

For example, we take an oriented tetrahedron and order the edges by 1–6 as shown
in Fig. 4. We denote this graph by �6. Then we obtain a surface tangle T�6 as follows:

1

2

3

4

5

6

.
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1

2

3

45

6

Fig. 4. Tetrahedron �6: The first three edges are outside and the last three edges are inside. They are order by
the angle from 0◦ to 360◦. The orientation of the first three edges are anti-clockwise. The orientation of the
last three edges towards outside. We consider the tetrahedron as a graph on the sphere. Dashed lines indicate
that the first three edges are at the back of the sphere

For �X ∈ I rr6, the coefficient of | �X〉 in |T�6〉 is

∣
∣
∣
∣

(
X1X2X3

X4X5X6

)∣
∣
∣
∣

2

:=

β1

β2

β3

β4

β5

β6

, (46)

where β j = d(X j )
−11X j⊗Xop

j
, 1 ≤ j ≤ 6. By Proposition 3.3, we have

∣
∣
∣
∣

(
X1X2X3

X4X5X6

)∣
∣
∣
∣

2

=
∑

�α∈B( �X)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X1

X2

X3

X4
X5

X6

α0 α1

α2

α3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

, (47)

where �α = α0 ⊗ α1 ⊗ α2 ⊗ α3 and B( �X) is an orthonormal basis of homC (X4 ⊗ X5 ⊗
X6, 1) ⊗ homC (X1, X4 ⊗ X3) ⊗ homC (X2, X5 ⊗ X1) ⊗ homC (X3, X6 ⊗ X2).

The value of the tetrahedron in Eq. (47) is well-known as the 6 j symbol in C . The
corresponding value in C op is its complex conjugate. Thus, the coefficient becomes the
absolute square of the 6 j symbol summing over an orthonormal basis. The sum is a
good quantity to understand the global property of 6j symbols, as it is independent of
the choice of the orthonormal basis.

So we obtain a 6-quon in terms of 6 j-symbol squares,

|T�6〉 =
∑

�X∈I rr6

∣
∣
∣
∣

(
X1X2X3

X4X5X6

)∣
∣
∣
∣

2

| �X〉 . (48)
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For a generalMTCC , it could be difficult to compute the coefficients of these graphic
quons. Actually the closed form of 6 j symbols are only known for a few examples. We
can manipulate these graphic quons in a pictorial way by their graphic definition, even
though we do not know the algebraic closed forms of their coefficients.

We can also define |T�〉 for � in C ⊗C op directly similar to Eq. (47): Each k-valent

vertex of� is replaced by the rotationally invariantmorphism δ
k
2 μk ∈ homC⊗C op (1, γ k)

in Proposition (3.3). Each edge is an output discwith twomarked points. The target space
of each output disc is hom(γ, γ ) ∼= L2(I rr).

Definition 5.6. Annon-zero n-quon is called positive, if all coefficients are non-negative.

Proposition 5.7. For any � ∈ Gn, |T�〉 is positive. Equivalently, its dual 〈T�| is a
positive linear functional on the tensor power of L2(I rr).

Proof. For any �X ∈ I rrn , we label the j th edge of� by β(X j ) = d(X)−11X ⊗1Xop . We

label each k-valent vertex of � by δ
k
2 μk . Since μk is a positive linear sum of α ⊗ αop in

Eq. (3.3). It is enough to show that for each choice of α ⊗αop, the value is non-negative.
For each choice, we obtain a fully surface labelled tangle in C and its opposite in C op.
Thus the value is multiplication of a complex conjugate pair, which is non-negative.
Therefore 〈T�| �X〉 ≥ 0.

If the graph � is connected, then |T�〉 is usually entangled for any bipartite partition.
So we call 〈T�| a topologically entangled measurement on quons.

Definition 5.8. For � ∈ Gn , we define � ∈ Gn by reversing the orientations of all edges
of �.

Proposition 5.9. For any � ∈ Gn,

|T�〉 = |T�〉 . (49)

Proof. For any �X ∈ I rrn ,

〈 �X |T�〉 = 〈 �X |T�〉 = 〈 �X |T�〉 = 〈 �X |T�〉 ,

where �X = X1 ⊗ · · · ⊗ Xn and the last equality follows from Proposition 5.7. So
|T�〉 = |T�〉. ��

5.3. GHZ and Max. Greenberg, Horne and Zeilinger introduced a multipartite resource
state for quantum information, called the GHZ state, denoted by |GHZ〉 [GHZ89].
In [JLW], Jaffe, Wozniakowski and the author find another resource state following
topological intuition, called |Max〉. They both generalize the Bell state. For the 3-qubit
case,

|GHZ〉 = 2−1/2(|000〉 + |111〉),
|Max〉 = 2−1(|000〉 + |011〉 + |101〉 + |110〉).

We observe that |GHZ〉 and |Max〉 are Fourier duals of each other:
|Max〉 = (F ⊗ F ⊗ F)±1|GHZ〉, (50)

where F is the discrete Fourier transform.
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In tensor networks, the |GHZ〉 and |Max〉 are represented as two trivalent vertices:
and . They have been considered as two fundamental tensors in [Laf03],

see also [LWJ17,Bia17,CK17].
It is shown in [LWJ17] that |GHZ〉 and |Max〉 are graphic quons, and the corre-

sponding surface tangles are given by

1

2

3

and .
123

Inspired by this observation, we generalize |GHZ〉 and |Max〉 to n-quons on genus-g
surfaces for the MTC C .

Definition 5.10. Let us define the genus-g tanglesGHZn,g andMaxn,g in Tn as follows:

GHZn,g =
1 2 3

. (51)

Maxn,g =
1 2 3

. (52)

Here we draw the tangles for n = 3, g = 2. The readers can figure out the general
case. The corresponding tensor network notations could be generalized (up to a scalar)

as and .

Remark. From tensor network to quons language, we fat a string to a cuboid. The
relations of the two Frobenius algebras becomes topological isotopy in two orthogonal
directions, indicated by black and white.

Proposition 5.11. For n, g ≥ 0,

|GHZ〉n,g =
∑

X∈I rr
d(X)2−n−2g

n entries
︷ ︸︸ ︷

|XX · · · X〉 . (53)

Proof. By the joint relation (14), the coefficient of | �X〉 in |GHZ〉n,g is given by
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Z(S0)
−1

∑

�Y∈I rr g

βX1 βX2 βX3 βY1 βY2

βY1 βY2 .

(54)

Since βX = d(X)−11XD and 1XD is a minimal projection, the coefficient is nonzero
only when | �X〉 = |XX · · · X〉, for some X ∈ I rr . In this case, the coefficient is
d(X)2−n−2g . ��

For �X ∈ I rrn , let dim( �X , g) be the dimension of the vector space consisting of
vectors in genus-g surface with boundary points X1, X2, . . . , Xn in C . Then

dim( �X , 0) = dim homC (1, �X),

dim( �X , g) =
∑

�Y∈I rr g
dim homC (1, �X ⊗ �Y ⊗ θ1( �Y )),

where θ1( �Y ) = Yg ⊗ · · · ⊗ Y1.

Proposition 5.12. For any n, g ≥ 0,

|Max〉n,g = δ2−n−2g
∑

�X∈I rrn
dim( �X , g)| �X〉. (55)

Proof. By the joint relation (14), the coefficient of | �X〉 in |Max〉n,g is given by

Z(S0)
−1

∑

�Y∈I rr g

βX1 βX2 βX3 βY1 βY2

βY1 βY2 .

(56)
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Appying Eq. (3.3), the coefficient is

δ2−n−2g
∑

�Y∈I rr g

∑

α1,α2∈ONB( �X⊗ �Y⊗θ1( �Y ))

〈α1 ⊗ α
op
1 , α2 ⊗ α

op
2 〉

= δ2−n−2g
∑

�Y∈I rr g
dim homC (1, �X ⊗ �Y ⊗ θ1( �Y ))

= δ2−n−2g dim( �X , g).

��
Definition 5.13. Let us define the generating function for |GHZ〉 and |Max〉,

|GHZ〉n(z) =
∞
∑

g=0

|GHZ〉n,gz
g, (57)

|Max〉n(z) =
∞
∑

g=0

|Max〉n,gz
g. (58)

Proposition 5.14. For n ≥ 0,

|GHZ〉n(z) =
∑

X∈I rr

d(X)4−n

d(X)2 − z

n entries
︷ ︸︸ ︷

|XX . . . X〉 . (59)

The coefficients of |GHZ〉n(z) are all rational functions. It is less obvious that the
coefficients of |Max〉n(z) are also rational functions. We prove this in Theorem 6.5.

6. Fourier Duality

In this section, we study the Fourier duality on graphic quons.Without loss of generality,
we only consider surface tangles in Tn , i.e., all discs are output discs. Then their partition
functions are graphic quons in GQn .

Recall that the SFTFS is a 90◦ rotation of the output disc. The corresponding genus-0
tangle is given by

FS =
.

(60)

The action of FS on the quantum coordinate {βX }X∈I rr is identical to the S matrix of
C . We define the action of �FS on Tn as the action of FS on all output discs. We define
the action of �S on GQn as the nth tensor power of S.

Theorem 6.1. For any unitary MTC C , the following commutative diagram holds,

surface tangles graphic quonsZ

surface tangles graphic quonsZ

�FS �S

.
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Proof. It follows from Proposition 3.2 and 2.23. ��
In general, if we apply a global 90◦ rotation to a labelled surface tangle, then its

partition function is acted by the conjugation of S. By Proposition 5.9, we have that

Corollary 6.2. For any oriented graph on the surface T ∈ Gn,

�S2 |T�〉 = |T�〉 . (61)

So we call the graphic quons |T�〉 and �S |T�〉 the Fourier dual of each other.

Remark. By Proposition 5.7, the Fourier dual pair of quons are both positive. It is an
interesting phenomenon that the modular transformation S preserves this positivity. It
is difficult to construct such positive Fourier duals algebraically.

Corollary 6.3. Note that Maxn,g = �FS(GHZn,g), for any n, g ≥ 0, so

|Max〉n,g = �S|GHZ〉n,g. (62)

Theorem 6.4 (Verlinde formula). For any unitary MTC C and any n, g ≥ 0,

dim( �X , g) =
∑

X∈I rr
(

n
∏

i=1

SX
Xi

)(S1X )2−n−2g. (63)

Proof. Note that |GHZ〉n,g and |Max〉n,g are computed in Propositions 5.11 and 5.12,
and d(X) = δS1X . The statement follows from comparing the coefficients on both sides
of Eq. (62). ��

The higher-genus Verlinde formula was first proved by Moore and Seiberg in the
framework of CFT in [MS89]. Here we prove it for any unitary MTC as the Fourier
duality of |GHZ〉 and |Max〉. The unitary condition is not necessary in the proof.

Theorem 6.5. For any n ≥ 0,

|Max〉n(z) =
∑

�X∈I rrn

∑

X∈I rr
(

n
∏

i=1

SX
Xi

)
d(X)4−n

d(X)2 − z
| �X〉 . (64)

Proof. By Eq. (62), we have

|Max〉n(z) = �S|GHZ〉n(z). (65)

By Proposition 5.14, the statement holds. ��
It is interesting that the coefficients of |Max〉n(z), namely the generating functions

of {dim( �X , g)}g∈N, �X ∈ I rrn , for all n ≥ 0, live in a small dimensional vector space

spanned by

{
1

d(X)2 − z

}

X∈I rr
.

Note that the genus-0 |GHZ〉 and |Max〉 can be defined through the cycle graph and
the dipole graph,

· · ·
, .

· · ·
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The two graphs are dual to each other.
In general, for an oriented graph � ∈ Gn on the sphere, we obtain a genus-0 tangle

T� . If we do not lift the shading, then the tangle T� has an alternating shading, and
all distinguished intervals of the discs are unshaded. When we apply �FS to T� , all
distinguished intervals become shaded. By contracting the unshaded regions to a point,
we obtain an oriented graph �̂ in Gn , such that T�̂

= �FS(T�). By Theorem 6.1, we have
that

Theorem 6.6. For any oriented graph � ∈ Gn on the sphere,

|T
�̂
〉 = �S |T�〉 . (66)

If we forget the orientation, then �̂ is the dual graph of � on the sphere. Thus the
graphic duality coincides with the Fourier duality of quons on the sphere. However, this
is not true on surfaces. One needs further assumptions for graphs on surfaces: The faces
are simply connected and the edges are contractable. We call such graphs local. Then
Eq. (66) remains true for local graphs.

There are interesting graphs on surfaces that are not local. Actually the graphs for
|GHZ〉 and |Max〉 on higher-genus surfaces are not local. So the quon language provides
a natural extension of the graphic duality, which is compatible with the algebraic Fourier
duality.

There are many interesting graphs on surfaces. The symmetry of (oriented) graphs
leads to the symmetry of graphic quons. For examples, there are five platonic solids on
the spheres: tetrahedron, cube, octahedron, dodecahedron and icosahedron. The number
of edges are 6, 12, 12, 30, 30 respectively.

For the five platonic solids on the spheres, there are two dual pairs and one self-dual
tetrahedron. We obtain three identities for the Fourier duality: a Fourier self-duality of
the 6-quon associated with the tetrahedron; a Fourier duality between two 12-quons
associated with the cube and the octahedron; a Fourier duality between two 30-quons
associated with the dodecahedron and the icosahedron.

The self-duality of the tetrahedron gives a self-duality for 6j-symbols.

Theorem 6.7 (6j-symbol self-duality). For any MTC C , and any �X ∈ I rr6,

∣
∣
∣
∣

(
X6 X5 X4

X3 X2 X1

)∣
∣
∣
∣

2

=
∑

�Y∈I rr6

(
6

∏

k=1

SYkXk

) ∣
∣
∣
∣

(
Y1Y2Y3
Y4Y5Y6

)∣
∣
∣
∣

2

. (67)

Proof. We take the tetrahedron �6 in Fig. 4. Its dual graph �̂6 is given by the second.
The third is isotopic to the second by 180◦ rotation.

1

2

3

45

6

→ =
5

4

6

2 1

3

6

5

4

32

1
. (68)

By Theorem 6.6, we have |T6 j 〉 = �S |T6̂ j 〉. Comparing the coefficients using Eq. (48),
we obtain Eq. (67).
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We also give a direct proof using Proposition 3.2: The corresponding Fourier duality
on 6-quons is represented as follows,

∑

�Y∈I rr6

(
6

∏

k=1

SYkXk

)

β ′
1

β ′
2

β ′
3

β ′
4

β ′
5

β ′
6

=

β1

β2

β3

β4

β5

β6

.

(69)

where β j = d(X j )
−11X j⊗Xop

j
, and β ′

j = d(Y j )
−11Y j⊗Yop

j
, 1 ≤ j ≤ 6.

In the special case of quantum SU (2), the identity for the 6j-symbol self-duality was
discovered by Barrett in [Bar03], based on an interesting identity of J. Robert [Rob95].
Then the identity was generalized to some other cases related to SU (2) in [FNR07].

To generalize the triangle to all regular polygons, our order of edges of the tetrahedron
is slightly different from Barrett’s choice. To recover Barrett’s original formula, we take
the following tetrahedron:

3

1

2

45

6

→ = →
5

4

6

1 3

2

5

4

6

13

2

6

4

5

12

3
.

The first arrow is the graphic duality. The = is a rotation. The last arrow is a vertical
reflection. By Propositions 5.7 and 5.9, the 6-quons corresponding to the last two graphs
are the same.

We can generalize the tetrahedron to a sequence of self-dual graphs on the sphere:

, , , · · ·
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We order and orient the edges of each graph similar to �6 in Fig. 4, and denote the
oriented graph by �2n , for n ≥ 2. Then we obtain a 2n-quon, denoted by

|T�2n 〉 =
∑

�X∈I rr2n

∣
∣
∣
∣

(
X1 X2 · · · Xn

Xn+1Xn+2 · · · X2n

)∣
∣
∣
∣

2

| �X〉 . (70)

Theorem 6.8. For any MTC C , and any �X ∈ I rr2n, n ≥ 2,

∣
∣
∣
∣

(
X2n X2n−1 · · · Xn

Xn Xn−1 · · · X1

)∣
∣
∣
∣

2

=
∑

�Y∈I rr2n

(
2n
∏

k=1

SYkXk

) ∣
∣
∣
∣

(
Y1 Y2 · · · Yn
Yn+1Yn+2 · · · Y2n

)∣
∣
∣
∣

2

. (71)

Proof. The dual graph of�2n is obtained similar to Eq. (68). The statement follows from
Theorem 6.6. ��
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