
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 371, Number 8, 15 April 2019, Pages 5973–5991
https://doi.org/10.1090/tran/7738

Article electronically published on December 28, 2018

AN ANGLE BETWEEN INTERMEDIATE SUBFACTORS

AND ITS RIGIDITY

KESHAB CHANDRA BAKSHI, SAYAN DAS, ZHENGWEI LIU, AND YUNXIANG REN

Abstract. We introduce a new notion of an angle between intermediate sub-
factors and prove various interesting properties of the angle and relate it to the
Jones index. We prove a uniform 60 to 90 degree bound for the angle between
minimal intermediate subfactors of a finite index irreducible subfactor. From
this rigidity we can bound the number of minimal (or maximal) intermediate
subfactors by the kissing number in geometry. As a consequence, the number
of intermediate subfactors of an irreducible subfactor has at most exponential
growth with respect to the Jones index. This answers a question of Longo’s
published in 2003.

1. Introduction

Jones pioneered the study of modern subfactor theory in his seminal paper[Jon83].
He showed that the indices of subfactors of type II1 lie in the set {4 cos2(πn ) : n ≥
3} ∪ [4,+∞]. The study of intermediate subfactors N ⊂ P ⊂ M for a finite index
inclusion of II1 factors plays an important role in understanding the theory of sub-
factors. See [Bis94, BJ97] for some early motivating results in this direction. We
denote by L(N ⊂ M) the set of all intermediate von Neumann subalgebras for the
subfactor N ⊂ M . The set L(N ⊂ M) forms a lattice under the two operations
P ∧ Q = P ∩ Q and P ∨ Q = {P ∪ Q}′′. The lattice structure of von Neumann
subalgebras was first studied by Murray and von Neumann in [MVN36]. If N ⊂ M
is irreducible, that is, N ′ ∩ M = C, then L(N ⊂ M) is exactly the lattice of in-
termediate subfactors. In this case, all intermediate subalgebras are automatically
factors. There is a pretty 1-1 correspondence between intermediate subfactors (of
an irreducible subfactor) and biprojections introduced in [Bis94] (reformulated in
planar algebraic terms in [Lan02,BJ00]).

The lattice of intermediate subfactors generalize the lattice of subgroups because
of the following reason: Let G be a finite group with an outer action on the II1 factor
M . Then the intermediate subfactors of M ⊂ M �G are given by M �H, where
H is a subgroup of G. This leads us to the study of the lattice L(N ⊂ M) inspired
by various interesting questions in group theory. See [GX11,Xu13,Xu15,Xu16] for
some recent progress.
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Watatani in [Wat96], following previous work by Popa [Pop86], obtained the
following remarkable result.

Theorem 1.1 ([Wat96]). Let N ⊂ M be an irreducible subfactor of type II1 such
that [M : N ] < ∞. Then the set L(N ⊂ M) is finite.

In the same paper Watatani remarked that in this case we can regard an inter-
mediate subfactor lattice as a “quantization” of continuous geometry, invented by
von Neumann in [vN60] as a continuous analogue of projective geometry. For a
general finite index subfactor N ⊂ M , the set of all intermediate subfactors may
not be finite. Even in the case in which N ′∩M is abelian, the set of all intermediate
subfactors may be infinite, as shown in [TW97, Theorem 5.4]. Thus, finite index
irreducible subfactors may behave very differently from reducible inclusions.

Inspired by earlier works of Christensen and Watatani (see [Chr79, Wat96]),
Longo gave an explicit bound for a number of intermediate subfactors for irreducible
subfactors in [Lon03]. He showed that the number of intermediate subfactors is

bounded by [M : N ]2[M :N ]2 . Longo then asked whether the number of intermediate
subfactors can be bounded by [M : N ][M :N ] (see [Lon03, discussions at the end
of section 2.2]). In this paper we answer this question positively by showing the
following (see Theorem 4.7).

Theorem 1.2. Let N ⊂ M be a finite index, irreducible subfactor. Then the
number of intermediate subfactors |L(N ⊂ M)| is bounded by min{9[M :N ], [M :
N ][M :N ]}.

Our bound improves the existing upper bound of the cardinality of the lattice
L(N ⊂ M) and as a consequence provides another proof of Theorem 1.1. To solve
this problem of finding an upper bound for the cardinality of L(N ⊂ M), our idea is
to first focus on minimal intermediate subfactors. Minimal (or by duality, maximal)
subfactors were extensively studied by Guralnick and Xu [GX11] inspired by Wall’s
conjecture [Wal62]. Our result shows that the number of minimal intermediate
subfactors has at most exponential growth with respect to the index. We conjecture
that this number has polynomial growth.

Conjecture 1.3. There are constants c1, c2 such that for any irreducible subfactor
N ⊂ M with finite index, the number of minimal intermediate subfactors is less
than c2[M : N ]c1 .

Furthermore, we prove that the number of minimal intermediate subfactors
is bounded by the kissing number τn of the n-dimensional sphere, where n =
dim(N ′∩M1). A straightforward estimate of the kissing number shows that τn < 3n.
Therefore, we get the following.

Theorem 1.4. Suppose that N ⊂ M is a finite index, irreducible subfactor. Then
the number of minimal intermediate subfactors is less than 3dim(N ′∩M1).

We prove the above theorem by introducing a new angle (see Definition 2.2),
denoted by αN

M (P,Q), between intermediate subfactors P and Q of any finite index
subfactor N ⊂ M . This angle is also the Fourier dual of the correlation function.
We prove the following rigidity result for the angle between minimal intermediate
subfactors.

Theorem 1.5. If P,Q are two distinct minimal intermediate subfactors of a finite
index, irreducible subfactor N ⊂ M , then π

3 < αN
M (P,Q) ≤ π

2 .
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We can identify intermediate subfactors as unit vectors in the real vector space
(N ′ ∩M1)s.a. such that the angle between them is given by αN

M (·, ·). Then Theo-
rem 1.4 follows from Theorem 1.5. Iterating Theorem 1.4, we obtain Theorem 1.2.

We also study the angle between two intermediate subfactors of finite index
subfactors which are not necessarily irreducible and show that αN

M (P,Q) = π
2 if

and only if the quadruple
Q ⊂ M
∪ ∪
N ⊂ P

,

denoted by (N,P,Q,M), is a commuting square, namely EM
P EM

Q = EM
Q EM

P = EM
N .

The commuting square is a central tool in subfactor theory (see, for example, [JS97,
GdlHJ89,Pop94,Pop95,Pop83,Pop89] and references therein). By Fourier duality,
we define a dual angle βN

M (P,Q) in Definition 2.6 and show that βN
M (P,Q) = π

2 if
and only if the quadruple is a co-commuting square.

In general, the angles αN
M (P,Q) and βN

M (P,Q) are different. Surprisingly, the
following result holds.

Theorem 1.6. Suppose that P,Q are two distinct intermediate subfactors of a
finite index subfactor N ⊂ M . If [M : Q] = [P : N ] and hence [M : P ] = [Q : N ],
then αN

M (P,Q) = βN
M (P,Q).

When the equality holds, we call the quadruple (N,P,Q,M) a parallelogram and
consider the angles αN

M (P,Q) and βN
M (P,Q) opposite angles of the parallelogram.

We further study the relation between angles and Pimsner–Popa bases and de-
rive various equivalent conditions for a quadruple to be a commuting and/or co-
commuting square (see Theorems 2.20, 2.28, and 2.29). As a consequence, we
recover the various equivalent conditions of a “nondegenerate commuting square”
by Popa in [Pop94] (see Corollary 2.30).

This paper is organized as follows. In §2 we define our notion of angle and
obtain various properties, mainly related to commuting squares. In §3 we prove the
main rigidity result Theorem 1.5. In §4 we estimate the number of intermediate
subfactors and prove Theorems 1.4 and 1.2. In §5 we compare our angle with the
Sano–Watatani angle [SW94].

2. Angle and commuting square

Suppose that N ⊂ M is a finite index subfactor (not necessarily irreducible),
suppose that P is an intermediate subfactor, and suppose that eP is the corre-
sponding biprojection. Let τP = tr(eP ), let δ =

√
[M : N ], and let τ = [M : N ]−1.

Note that tr(e1) = τ , where e1 denotes the Jones projection of N ⊂ M .
For two intermediate subfactors P and Q of a finite index subfactor N ⊂ M , we

denote the quadruple of type II1 factors

Q ⊂ M
∪ ∪
N ⊂ P

by (N,P,Q,M). We call it extremal if the subfactor N ⊂ M is extremal.
Recall the following definition (see, e.g., [SW94]).

Definition 2.1. A quadruple (N,P,Q,M) is called a commuting square if
EM

P EM
Q = EM

Q EM
P = EM

N . A quadruple (N,P,Q,M) is called a co-commuting
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square if the quadruple (M,Q1, P1,M1) is a commuting square, where P1, Q1,M1

denote the basic constructions of P ⊂ M,Q ⊂ M and N ⊂ M , respectively.

Definition 2.2. For an intermediate subfactor P 
= N , we define the unit vector
vP in (N ′ ∩ M1)s.a. as vP = eP−e1

‖eP−e1‖2
. Suppose that P and Q are intermediate

subfactors of N ⊂ M . Define the angle, denoted by αN
M (P,Q), between P and Q

as follows:

αN
M (P,Q) = cos−1 〈vP , vQ〉,

where 〈x, y〉 = tr(y∗x) and hence ||x||2 = (tr(x∗x))1/2.

If N and M are clear from the context, we may omit them from αN
M (P,Q). As

usual, the angle takes only the principal value: 0 ≤ αN
M (P,Q) ≤ π. Note that

vP , vQ ≥ 0, so 〈vP , vQ〉 ≥ 0. Therefore, 0 ≤ αN
M (P,Q) ≤ π

2
.

Proposition 2.3. For a quadruple (N,P,Q,M), α(P,Q) = 0 if and only if
eP = eQ.

Proof. Note that α(P,Q) = 0 if and only if vP is a multiple of vQ. Since both vP
and vQ are positive and ‖vP ‖2 = ‖vQ‖2 = 1, it follows that vP = vQ. As (eP − e1)
and (eQ − e1) are both projections, they are equal. So eP = eQ. �

Proposition 2.4. The quadruple (N,P,Q,M) forms a commuting square if and
only if α(P,Q) = π

2 .

Proof. Note that (N,P,Q,M) forms a commuting square iff eP eQ = e1 iff (eP −
e1)(eQ − e1) = 0 iff α(P,Q) = π/2. �

Proposition 2.5. For an extremal quadruple (N,P,Q,M),

cosαN
M (P,Q) = corr(eP1

, eQ1
),

where corr(x, y) := 〈 x−tr(x)
‖x−tr(x)‖2

, y−tr(y)
‖y−tr(y)‖2

〉 is the correlation function. Here P1 and

Q1 denote the basic construction of P ⊂ M and Q ⊂ M , respectively.

Proof. Let F : N ′ ∩ M1 → M ′ ∩ M2 be the Fourier transform (see, e.g., [Bis97])
defined as follows:

F(x) = EN ′

M ′(e1e2x),

where e1 (resp., e2) is the Jones projection for the basic construction of N ⊂ M

(resp., M ⊂ M1, where M1 is the basic construction of N ⊂ M) and EN ′

M ′ is the
trace-preserving conditional expectation from N ′ to M ′. Since the subfactor is
extremal, we have

(1) cosαN
M (P,Q) = 〈vP , vQ〉 = 〈F(vP ),F(vQ)〉.

Note that F(eP ) is a multiple of eP1
and that F(e1) is a multiple of the identity.

So F(eP −e1) = aeP1
−b for some constants a and b. Moreover, 〈F(eP −e1),F(e1)〉 =

〈eP − e1, e1〉 = 0, so tr(F(eP − e1)) = 0. Therefore, F(eP − e1) = a(eP1
− tr(eP1

)).

Recall that ‖vP ‖2 = 1, so F(vP ) =
eP1

−tr(eP1
)

‖eP1
−tr(eP1

)‖2
. Similarly, F(vQ) =

eQ1
−tr(eQ1

)

‖eQ1
−tr(eQ1

)‖2
.

By equation (1), cosαN
M (P,Q) = corr(eP1

, eQ1
). �

Definition 2.6. We define the dual angle, denoted by βN
M (P,Q), between P and

Q as βN
M (P,Q) := αM

M1
(P1, Q1), where P1 and Q1 denote the basic construction of

P ⊂ M and Q ⊂ M , respectively.
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This is similar to [SW94]. As before, if from the context it is clear what N and
M are, we may omit them from βN

M (P,Q). By duality we have that

αN
M (P,Q) = βM

M1
(P1, Q1).(2)

Proposition 2.7. The quadruple (N,P,Q,M) forms a co-commuting square if and
only if β(P,Q) = π

2 .

Proof. It follows from Definitions 2.1 and 2.6 and Proposition 2.4. �
The next theorem also follows easily from the above definitions and from Propo-

sition 2.5. We leave the details to the reader.

Theorem 2.8. For a quadruple (N,P,Q,M), let τP = tr(eP ), and let τQ = tr(eQ).
Then

cosαN
M (P,Q) =

tr(eP eQ)− τ√
τP − τ

√
τQ − τ

.(3)

If the quadruple is extremal, then

cosβN
M (P,Q) =

tr(eP eQ)− τP τQ√
τP − τ2P

√
τQ − τ2Q

.(4)

Remark 2.9. Theorem 2.8 implies easily the following two facts:

(1) tr(eP eQ) ≥ τ , tr(eP eQ) ≥ τP τQ. The equalities hold if and only if αN
M (P,Q)

= π/2 and βN
M (P,Q) = π/2, respectively.

(2) If the extremal quadruple (N,P,Q,M) is a commuting square, then [M :
Q] ≥ [P : N ] and [M : P ] ≥ [Q : N ]. This result was proved in [Pop89,
Proposition 1.7], and it also follows easily from the above fact.

Definition 2.10. For a quadruple (N,P,Q,M), the following are equivalent:

(1) τP τQ = τ ,
(2) [M : P ] = [Q : N ],
(3) [M : Q] = [P : N ].

We call the quadruple a parallelogram if one of the above equivalent conditions
holds.

In general, it is not true that αN
M (P,Q) = βN

M (P,Q) (see, for instance, Fact 2.15).
One can have a quadruple which is commuting, but not co-commuting. Surprisingly,
the following result holds.

Theorem 2.11. If an extremal quadruple (N,P,Q,M) is a parallelogram, then
αN
M (P,Q) = βN

M (P,Q).

Proof. If a quadruple (N,P,Q,M) is a parallelogram, namely τ = τP τQ, then by
Theorem 2.8, cosαN

M (P,Q) = cosβN
M (P,Q). So αN

M (P,Q) = βN
M (P,Q). �

Remark 2.12. Hence, we may consider αN
M (P,Q) and βN

M (P,Q) opposite angles of
the parallelogram (N,P,Q,M).

Motivated by [SW94], we try to investigate the angle αN
M (P,Q) in terms of

Pimsner–Popa basis [PP86]. In this paper, by a Pimsner–Popa basis we mean a
right basis. Thus, the condition for a set {λi : i ∈ I} ⊂ M (for some finite indexing
set I) to be a right basis for M/N would be

∑n
i=1 λie1λi

∗ = 1 or equivalently,
x =

∑n
i=1 EN (xλi)λi

∗ =
∑n

i=1 λiEN (λi
∗x) for all x ∈ M . The set {λi : i ∈ I} will

be called a left basis for M/N if {λi
∗ : i ∈ I} is a right basis.
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Remark 2.13. A set {λi : i ∈ I} ⊂ M is called a two-sided basis for M/N if it is
both a left basis and a right basis. It is an open question as to whether any finite
index (irreducible) subfactor has a two-sided basis.

Proposition 2.14. Consider intermediate subfactors P and Q of N ⊂ M . Let
{λi} (resp., {μj}) be (right) basis for P/N (resp., Q/N). Then

(5) cos(α(P,Q)) =

∑
i,j tr(E

M
N (λi

∗μj)μj
∗λi)− 1√

[P : N ]− 1
√
[Q : N ]− 1

.

Proof. First observe that for any intermediate subfactor, say, P , of N ⊂ M and
basis {λi} we have eMP =

∑
i λie1λi

∗. This follows trivially from the following
array of equations and is well known. For any x ∈ M we have (

∑
i λie1λi

∗)(xΩ) =
(
∑

i λi(E
M
N (λi

∗x)))Ω = (
∑

i λiE
P
N (λi

∗EM
P (x)))Ω = EM

P (x)Ω = eMP (xΩ), where Ω
denotes the cyclic vector for the standard Hilbert space L2(M).

In our notation we have eMQ =
∑

j μje1μj
∗. Then it follows from Definition 2.2

that

cos(α(P,Q)) =
tr(eP eQ)− τ√

tr(eP )− τ
√
tr(eQ)− τ

=
tr(

∑
i,j λie1λi

∗μje1μj
∗)− τ√

tr(
∑

i λie1λi
∗)− τ

√
tr(

∑
j μje1μj

∗)− τ

=

∑
i,j tr(e1E

M
N (λi

∗μj)μj
∗λi)− τ√∑

i tr(e1λi
∗λi)− τ

√∑
j tr(e1μj

∗μj)− τ

=

∑
i,j tr(E

M
N (λi

∗μj)μj
∗λi)− 1√

[P : N ]− 1
√
[Q : N ]− 1

.

This completes the proof. �

Fact 2.15. Consider intermediate subfactors P and Q such that N ⊂ P ⊂ Q ⊂ M .
Then the following two equations hold (as is seen from the definitions): cos(α(P,Q))

=
√

[P :N ]−1
[Q:N ]−1 and cos(β(P,Q)) =

√
[M :Q]−1
[M :P ]−1 . This shows that α(P,Q) and β(P,Q)

may not be equal in general.

Proposition 2.16. Consider factors of type II1 such that R,N ⊂ P,Q ⊂ M,S.
Then αN

M (P,Q) = αN
S (P,Q) and βN

M (P,Q) = βR
M (P,Q).

Proof. This follows from Proposition 2.14. �

Definition 2.17. Consider the quadruple of type II1 factors (N,P,Q,M). Let {λi}
(resp., {μj}) be a basis for P/N (resp., Q/N). Define two self-adjoint operators p
and q as follows:

p :=
∑
i,j

λiμje1μj
∗λi

∗, q :=
∑
i,j

μjλie1λi
∗μj

∗.

In general, p and q are not projections. Later we will see that they always have the
same spectrum and the same trace.

Lemma 2.18. The definition above (of p and q) does not depend on the choice of
the Pimsner–Popa bases.
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Proof. Suppose that {ψj : j ∈ I} is another basis for P/N . Then it is easy to see
that ∑

i

λieQλi
∗ =

∑
i

{
∑
j

ψjE
P
N (ψj

∗λi)}eQλi
∗ =

∑
i,j

ψjeQE
P
N (ψj

∗λi)λi
∗

=
∑
j

ψjeQ{
∑
i

EP
N (ψj

∗λi)λi
∗} =

∑
j

ψjeQψj
∗.

As already observed in the proof of Proposition 2.14, eQ =
∑

j μje1μj
∗. Thus,

p =
∑

i λieQλi
∗. This shows that p is independent of the choice of basis. Similar

proof works for q. �

Lemma 2.19. Following the notations in Definition 2.17, {λiμj} is a basis for
M/N if and only if p = 1, and {μjλi} is a basis for M/N if and only if q = 1.

Proof. It follows from the definition of the Pimsner–Popa basis. �

Proposition 2.20. Consider again N ⊂ P,Q ⊂ M , and let {λi} (resp., {μj}) be
a basis for P/N (resp., Q/N). Then the following are equivalent:

(1) α(P,Q) = π/2.
(2) q =

∑
i,j μjλie1λi

∗μj
∗ is a projection such that q ≥ eP .

(3) p =
∑

i,j λiμje1μj
∗λi

∗ is a projection such that p ≥ eQ.

Proof.
(1) ⇒ (2) That q is a projection is easy and was observed in [SW94]. We

prove it for the sake of completeness. From the proof of Proposition 2.14, we have
q =

∑
i μiePμi

∗ and hence q = q∗. Then

q2 =
∑
i,j

μiePμi
∗μjePμj

∗ =
∑
i,j

μiE
M
P (μi

∗μj)ePμj
∗ =

∑
i,j

μiE
M
P EM

Q (μi
∗μj)ePμj

∗

=
∑
i,j

μiE
M
N (μi

∗μj)ePμj
∗ (applying Proposition 2.4)

=
∑
j

μjePμj
∗ (since{μj}is a basis for Q/N) = q.

Now we show that (eP )q = eP .

(eP )q =
∑
j

ePμjePμj
∗ =

∑
j

ePE
M
P (μj)μj

∗ =
∑
j

ePE
M
P EM

Q (μj)μj
∗

=
∑
j

ePE
M
N (μj)μj

∗ (applying Proposition 2.4)

= eP (since {μj} is a basis for Q/N).

Thus, q is a projection such that q ≥ eP . This completes the proof of (1) ⇒ (2).

(2) ⇒ (1) (eP )q = eP implies that
∑

j ePE
M
P (μj)μj

∗ = eP . Taking the trace of
both sides, we get

(6)
∑
j

tr(EM
P (μj)μj

∗) = 1.
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Then from the definition of angle it follows easily that

(7) cos(α(P,Q)) =
tr(eP eQ)− τ√

tr(eP )− τ
√
tr(eQ)− τ

.

Put r =
∑
j

μj
∗ePμj . Thus, tr(re1) = tr(

∑
j μj

∗ePμje1) = tr(eP
∑

j μje1μj
∗) =

tr(eP eQ) (since
∑

j μje1μj
∗ = eQ). Thus, it follows from equation (7) that

(8) cos(α(P,Q)) =
tr(re1)− τ√

tr(eP )− τ
√
tr(eQ)− τ

.

On the other hand, re1 =
∑

j μj
∗ePμje1 =

∑
j μj

∗ePμjeP e1 (since eP e1 = e1) =∑
j μj

∗EM
P (μj)e1. Thus, tr(re1) = τ tr(μj

∗EM
P (μj)) = τ tr(EM

P (μj)μj
∗). Then

equation (6) implies that tr(re1) = τ. Thus, by equation (8) we have α(P,Q) = π/2,
thereby completing the proof of (2) ⇒ (1).

(1) ⇔ (3) Simply observe that α(P,Q) = α(Q,P ). The rest follows from the
above two implications. This completes the proof. �

Fact 2.21. q = eP if and only if Q = N . Similarly, p = eQ if and only if P = N .

Proof. By the Markov property of the trace, tr(q) = tr(
∑

j μjePμj
∗) =

∑
j tr(μjμj

∗)

[M :P ] .

But as {μj} is a basis for Q/N,
∑

j μjμj
∗ = [Q : N ]. Thus,

(9) tr(q) =
[M : N ]

[M : P ][M : Q]
.

Suppose that q = eP . After taking the trace on both sides, we get [M : N ] = [M :
Q], which implies that Q = N .

Conversely, Q = N implies that tr(q) = tr(eP ) (see equation (9)). Since by
Proposition 2.20 q ≥ eP , it follows that q = eP , as tr is faithful. �

Proposition 2.22. Consider again N ⊂ P,Q ⊂ M , and let {λi} (resp., {μj}) be a
basis for P/N (resp., Q/N). Define p and q as in Proposition 2.20. Then JpJ = q,
where J is the usual modular conjugation operator on L2(M).

Proof. We know that p =
∑

i λieQλi
∗ and that q =

∑
j μjePμj

∗. Let us denote by

Ω the cyclic vector for the standard Hilbert space L2(M). Then for any x ∈ M

JpJ(xΩ) = Jp(x∗Ω) = J(
∑
i

λieQ(λi
∗x∗Ω))

=
∑
i

J(λiE
M
Q (λi

∗x∗)Ω) =
∑
i

(EM
Q (xλi)λi

∗)Ω

=
∑
i

(
∑
j

μjE
Q
N{μj

∗EM
Q (xλi)}λi

∗)Ω (since {μj} is a basis for Q/N)

=
∑
i,j

(μjE
Q
N{EM

Q (μj
∗xλi)}λi

∗)Ω =
∑
i,j

(μjE
M
N (μj

∗xλi)λi
∗)Ω.
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On the other hand, the following array of equations hold true:

q(xΩ) = (
∑
j

μjePμj
∗)(xΩ) =

∑
j

(μjE
M
P (μj

∗x))Ω

=
∑
j

(μj(
∑
i

EP
N{EM

P (μj
∗x)λi}λi

∗))Ω (since {λi} is a basis for P/N)

=
∑
i,j

(μjE
P
N (EM

P (μj
∗xλi))λi

∗)Ω =
∑
i,j

(μjE
M
N (μj

∗xλi)λi
∗)Ω.

Thus, we see that JpJ = q. This completes the proof. �
The following result is well known. For example, see Proposition 2.7 in [Bis97].

Lemma 2.23. Let N ⊂ M be an inclusion of II1 factors with finite index, and
let {mi : i ∈ I} ⊂ M be a Pimsner–Popa basis (not necessarily orthonormal) for
M/N . Let us also denote by trN ′ the unique normalized trace on N ′ = N ′ ∩
B(L2(M)). Then the unique trN ′-preserving conditional expectation is given by

φ(x) = [M : N ]−1 ∑
i mixmi

∗, where x ∈ N ′.

Remark 2.24. Note that Proposition 2.22 may also be derived from Lemma 2.23.
We thank an anonymous referee for this paper for pointing this out.

Proposition 2.25. Let N ⊂ P,Q ⊂ M be intermediate subfactors such that [M :
N ] is finite (N ⊆ M is not assumed to be irreducible for this proposition). Then the

self-adjoint operator p belongs to P ′∩Q1 and is given by p = [P : N ]EN ′

P ′ (eQ) = [Q :

N ]EM1

Q1
(eP ). Similarly, q = [Q : N ]EN ′

Q′ (eP ) = [P : N ]EM1

P1
(eQ). Thus, q ∈ Q′ ∩P1.

Here, as usual, Q1 (resp., P1) denotes the basic construction of Q ⊂ M (resp.,
P ⊂ M).

Proof. Consider again N ⊂ P, Q ⊂ M , and let {λi}(resp., {μj}) be a basis for

P/N (resp., Q/N). By Lemma 2.23 we immediately get, for any x ∈ N ′, EN ′

P ′ (x) =

[P : N ]−1 ∑
i λixλi

∗. Clearly eQ ∈ N ′ and hence EN ′

P ′ (eQ) = [P : N ]−1 ∑
i λieQλi

∗.

Thus, p =
∑

i λieQλi
∗ = [P : N ]EN ′

P ′ (eQ). Similarly, we can prove q = [Q :

N ]EN ′

Q′ (eP ). Now take the modular conjugation operator J on L2(M) to get JqJ =

[Q : N ]EM1

Q1
(eP ).Now, by Proposition 2.22 we immediately get p = [Q : N ]EM1

Q1
(eP ).

The proof for q is similar. This completes the proof of the proposition. �
Proposition 2.26. Let α = π/2, and let p, q be as in Theorem 2.20. Then∨
{veQv∗:v ∈ U(P )} = p and

∨
{uePu∗ : u ∈ U(Q)} = q.

Proof. First note that (as observed in Proposition 2.20) for any basis {μj} of Q/N ,
q =

∑
j μjePμj

∗ is a projection such that q ≥ eP . Consider an arbitrary uni-

tary element u ∈ U(Q). Then it is trivial to see that {u∗μj} is a basis for Q/N .
Thus, u∗qu ≥ eP and hence uePu

∗ ≤ q. Therefore,
∨
{uePu∗ : u ∈ U(Q)} ≤ q.

Since q =
∑

j μjePμj
∗, range(q) ⊂ [μL2(P ) : μ ∈ Q] = [uL2(P ) : u ∈ U(Q)] =

[range({uePu∗ : u ∈ U(Q)})]. Thus,
∨
{uePu∗ : u ∈ U(Q)} ≥ q. So

∨
{uePu∗ : u ∈

U(Q)} = q. The proof for p is exactly the same. �
Remark 2.27. Let α = π

2 and p, q be as in Theorem 2.20. Then it is not hard to
show that p, q ≥ eP ∨ eQ. In general, it is not true that eP ∨ eQ = eP∨Q, although
eP ∨ eQ ≤ p, q ≤ eP∨Q.

Below we give a characterization of commuting squares in terms of basis.
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Theorem 2.28. For a quadruple (N,P,Q,M) the following are equivalent:

(1) (N,P,Q,M) is a commuting square, that is, α(P,Q) = π/2.
(2) p =

∨
{veQv∗ : v ∈ U(P )}.

(3) q =
∨
{uePu∗ : u ∈ U(Q)}.

Proof.
(1) ⇒ (2) This is Proposition 2.26.
(2) ⇒ (1) Clearly

∨
{veQv∗ : v ∈ U(P )} ≥ eQ. Hence, p ≥ eQ. Again applying

Proposition 2.20, we get α(P,Q) = π
2 .

Thus (1) and (2) are equivalent. By symmetry, (1) and (3) are equivalent. This
completes the proof. �

Below we investigate a case in which α(P,Q) = π/2 = β(P,Q). Explicitly
we characterize simultaneously commuting and co-commuting squares in terms of
various equivalent conditions.

Theorem 2.29. For a quadruple (N,P,Q,M) the following are equivalent:

(1) (N,P,Q,M) is a commuting and co-commuting square.
(2) α(P,Q) = β(P,Q) = π/2.
(3) p = 1.
(4) If {λi} (resp., {μj}) is a basis for P/N (resp., Q/N), then {λiμj} is a basis

for M/N .
(5) q = 1.
(6) If {λi} (resp., {μj}) is a basis for P/N (resp., Q/N),then {μjλi} is a basis

for M/N .
(7) Any basis (not necessarily orthonormal) for P/N is a basis for M/Q.
(8) Any basis (not necessarily orthonormal) for Q/N is a basis for M/P .

Proof. By Proposition 2.4 and by the definition of a co-commuting square, (1) ⇐⇒
(2).

Suppose that (1) holds true. Then, applying fact (2) in Remark 2.9 twice, we
get [M : Q] = [P : N ]. Thus, by equation (9) tr(q) = 1. Since α(P,Q) = π/2, from
Proposition 2.20 it follows that q is a projection implying that q = 1. Similarly,
p = 1. Thus, (1) ⇒ (3), (5).

By Lemma 2.19 (3) ⇐⇒ (4) and (5) ⇐⇒ (6).
Suppose that (3) holds true, that is, p = 1 . Thus, applying Proposition 2.20, we

immediately get α(P,Q) = π/2. Using again equation (9), we obtain [M : Q] = [P :
N ]. Then Theorem 2.11 implies that β(P,Q) = π/2. In other words, (3) ⇒ (1).

Suppose that (4) holds true. Let {λi} be any basis for P/N . Fix a basis {μj} for
Q/N . Thus, (4) implies that {λiμj} is a basis forM/N . Hence,

∑
i,j λiμje1μj

∗λi
∗ =

1. Thus,
∑

i λieQλi
∗ = 1 (since we know that

∑
j μje1μj

∗ = eQ). We thus obtain

that {λi} is a basis for M/Q. Therefore, (4) ⇒ (7).
Simply use [JS97, Lemma 4.3.4(i)] to conclude that (7) ⇒ (4).
Thus, we obtain that (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (7).
By symmetry (since β(P,Q) = β(Q,P )) (1) ⇐⇒ (2) ⇐⇒ (5) ⇐⇒

(6) ⇐⇒ (8).
This completes the proof. �

Now, the following corollary follows easily. This is the characterization of nonde-
generate commuting squares due to Popa (see [Pop94]) (with slight modification).
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Corollary 2.30 ([Pop94]). For a commuting square (N,P,Q,M) of II1 factors
with [M : N ] finite, the following statements are equivalent:

(1) (N,P,Q,M) is a co-commuting square, that is, βN
M (P,Q) = π/2.

(2)
∨
{veQv∗ : v ∈ U(P )} = 1.

(3)
∨
{uePu∗ : u ∈ U(Q)} = 1.

(4) Any basis (not necessarily orthonormal) for P/N is a basis for M/Q.
(5) Any basis (not necessarily orthonormal) for Q/N is a basis for M/P .
(6) PQ := span{

∑n
i=1 xiyi : xi ∈ P, yi ∈ Q} = M ; in particular, (N,P,Q,M)

is nondegenerate.
(7) QP = M ; in particular, (N,Q, P,M) is nondegenerate.

Proof. Let {λi}, {μj}, p, and q be as before.
By Theorem 2.29 and Proposition 2.26 it is trivial to see that conditions (1),

(2), and (4) all are equivalent to the equation p = 1. Similarly, (1), (3), and (5) are
equivalent to the equation q = 1.

Suppose that (3) holds true. Thus, by Theorem 2.28 {μjλi} is a basis for M/N
and hence M = QP , implying (7). Conversely, suppose that (7) holds true. Thus,
any x ∈ M can be written as x =

∑
k bkak, where bk ∈ Q and ak ∈ P . Then it is

easy to check that for any x ∈ M

q(xΩ) = q((
∑
k

bkak)Ω) =
∑
j,k

μjeP (μj
∗bkakΩ) =

∑
j,k

μjE
M
P (μj

∗bk)akΩ

=
∑
j,k

μjE
M
P EM

Q (μj
∗bk)akΩ

=
∑
j,k

μjE
Q
N (μj

∗bk)akΩ (by the commuting square condition)

=
∑
k

bkakΩ (since {μj} is a basis for Q/N) = xΩ.

Thus, q = 1.
That (6) is equivalent to p = 1 is exactly the same. This completes the proof. �

Remark 2.31. It is worth mentioning that Popa has shown that if (4) of Theo-
rem 2.29 holds for a quadruple (N,P,Q,M), then spPQ = M , with the additional
assumption that the quadruple is a commuting square, whereas we have shown in
Theorem 2.29 that if (4) holds, then automatically the quadruple will be a nonde-
generate commuting square.

Corollary 2.32. If P/N and Q/N both have a two-sided basis, then α(P,Q) =
β(P,Q) = π/2 implies that M/N has a two-sided basis.

Proof. Just use the fact (2) ⇔ (3) of Theorem 2.29. �

3. Boundedness of angle

In this section and the next section we assume that N ⊂ M is a finite index,
irreducible subfactor. In the irreducible case intermediate von Neumann algebras
are intermediate subfactors, so the set of intermediate subfactors form a lattice
under the operations P ∧Q = P ∩Q and P ∨Q = {P ∪Q}′′.

Definition 3.1. Let N ⊂ M be a subfactor. Then Q is called a maximal (resp.,
minimal) intermediate subfactor of N ⊂ M if whenever there exists an intermediate
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subfactor P such that N ⊂ Q ⊂ P ⊂ M (resp., N ⊂ P ⊂ Q ⊂ M), then P equals
either Q or M (resp., P equals either N or Q). We exclude N and M from the
definition of maximal (or minimal) intermediate subfactor for obvious reasons.

Note that maximal intermediate subfactors in N ⊂ M correspond to minimal
intermediate subfactors in M ⊂ M1, where M1 denotes the basic construction of
N ⊂ M .

Lemma 3.2. For a quadruple (N,P,Q,M) with N ′ ∩ M = C, the self-adjoint
operator p (resp., q) is a multiple of a projection.

Proof. We have p =
∑

i λieQλi
∗. Now by the pushdown lemma [PP86, Lemma 1.2]

peQ = [M : Q]EM (peQ)eQ. But clearly, EM (peQ) ∈ N ′∩M = C. Thus, peQ = λeQ
(say). Using Proposition 2.25, we obtain that p = [P : N ]EN ′

P ′ (eQ). Thus, p
2 = [P :

N ]pEN ′

P ′ (eQ). But since p ∈ P ′ ∩ Q1, we get that p2 = [P : N ]EN ′

P ′ (peQ) = λ[P :

N ]EN ′

P ′ (eQ) = λp. This completes the proof. The proof for q is similar. �

Remark 3.3. Lemma 3.2 implies that 1
λp is a projection, where λ = ‖p‖ = [M :

Q]tr(peQ). Thus,
p

‖p‖ and q
‖q‖ both are projections. Observe, by Proposition 2.22,

that ‖q‖ = ‖p‖.

Lemma 3.4. Let N ⊂ M be a finite index irreducible inclusion of II1 factors, and
let P,Q be intermediate subfactors. Suppose that eP and eQ are two biprojections;
then eP ∨ eQ is a subprojection of the projection p

‖p‖ (or q
‖q‖ ).

Proof. From the proof of Lemma 3.2 we obtain peQ = ‖p‖eQ. Thus, p
‖p‖ ≥ eQ.

Similarly, qeP = ‖q‖eP = ‖p‖eP . Now, by Proposition 2.22 peP = JqJeP = JqePJ .
Hence, peP = ‖p‖JePJ = ‖p‖eP . In other words, p

‖p‖ ≥ eP . In conclusion, p
‖p‖ ≥

eP ∨ eQ. The proof for q is similar. This completes the proof of the lemma. �

Proposition 3.5. Suppose that P,Q are distinct minimal intermediate subfactors
of a finite index, irreducible subfactor N ⊂ M . Then

τP τQ
tr(eP eQ) ≥ τP + τQ − τ .

Proof. If P and Q are minimal intermediate subfactors, then P ∩ Q = N . Thus,
eP ∧ eQ = e1. Now, by Remark 3.3 and Lemma 3.4 we have p

[M :Q]tr(peQ) ≥ eP ∨ eQ.

Now, by Proposition 2.25 we get peQ = [Q : N ]EM1

Q1
(eP eQ). Thus, tr(peQ) =

[Q : N ]tr(eP eQ). Hence, we get that p
[M :N ]tr(eP eQ) ≥ eP ∨ eQ.

Computing the trace of both sides and observing by equation (9) tr(p) =
[M :N ]

[M :P ][M :Q] , we get

τP τQ
tr(eP eQ)

≥ tr(eP ∨ eQ)=τP + τQ − tr(eP ∧ eQ)=τP + τQ − tr(e1) = τP + τQ − τ.

�

Theorem 3.6. Let P,Q be distinct minimal intermediate subfactors of a finite
index, irreducible subfactor N ⊂ M . Then α(P,Q) > π

3 .

Proof. First observe that (τP + τQ − τ ) > 0. By the inequality in Proposition 3.5
we have

tr(eP eQ)− τ ≤ τP τQ
τP + τQ − τ

− τ =
τP τQ − τ (τP + τQ) + τ2

τP + τQ − τ
=

(τP − τ )(τQ − τ )

τP + τQ − τ
.

Licensed to Tsinghua Sanya Forum. Prepared on Sun Jul  3 04:01:00 EDT 2022 for download from IP 183.173.168.124.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN ANGLE BETWEEN INTERMEDIATE SUBFACTORS 5985

By Theorem 2.8 we have

cos(α(P,Q)) =
tr(eP eQ)− τ√
τP − τ

√
τQ − τ

≤ (τP − τ )1/2(τQ − τ )1/2

τP + τQ − τ

<
(τP − τ )1/2(τQ − τ )1/2

τP − τ + τQ − τ
≤ 1/2.

Therefore, α(P,Q) > π
3 . �

4. Number of intermediate subfactors

In geometry the kissing number problem asks for the maximum number τn
of unit spheres that can simultaneously touch the unit sphere in n-dimensional
Euclidean space without pairwise overlapping. The value of τn is known only for
n = 1, 2, 3, 4, 8, 24 (even though upper bounds for τn are known for n ≤ 24.) While
its determination for n = 1, 2 is trivial, it is not the case for other values of n. The
case n = 3 was the object of a famous discussion between Isaac Newton and David
Gregory in 1694. See [Cas04], for instance.

Theorem 4.1. Suppose that N ⊂ M is a finite index, irreducible inclusion of II1
factors. Let M1 denote the basic construction for N ⊂ M. Let Lm(N,M) be the
set of all minimal intermediate subfactors of N ⊂ M . Then the number of minimal
intermediate subfactors |Lm(N,M)| is bounded by the kissing number τn, where
n = dim(N ′ ∩M1). In particular, |Lm(N,M)| < 3n.

Proof. Note that {vP : P ∈ Lm(N,M)} is a set of unit vectors in (N ′ ∩M1)s.a, a
real inner product space of dimension n. Consider the n-dimensional unit ball BP

with center at 2vP . Each BP is adjacent to the unit ball B(1) with a center at the
origin.

By Theorem 3.6 ‖vP − vQ‖2 > 1 for distinct P and Q in Lm(N,M). So BP and
BQ are disjoint. Therefore, |Lm(N,M)| ≤ τn.

Furthermore, for any P ∈ Lm(N,M), BP ⊂ B(3) \B(1), where B(3) stands for
the n-dimensional ball with a center at the origin and radius 3. Thus, we have

|Lm(N,M)| ≤ V ol(B(3))− V ol(B(1))

V ol(B(1))
= 3n − 1. �

Remark 4.2. For an irreducible subfactor N ⊂ M one has dim(N ′∩M1) ≤ [M : N ].
Hence, the number of minimal intermediate subfactors is also bounded by 3[M :N ].

Definition 4.3. Suppose that δ2 is a real number greater than or equal to 2. We
define

I(δ2) = sup
N⊂M

{|L(N,M)| : N ⊂ M is a subfactor with [M : N ] ≤ δ2},

m(δ2) = sup
N⊂M

{|Lm(N,M)| : N ⊂ M is a subfactor with [M : N ] ≤ δ2}.

Corollary 4.4. Let δ2 be a real number greater than or equal to 2. Then we have

m(δ2) ≤ 3δ
2

.

Lemma 4.5. If δ2 ≥ 4, then we have I(δ2) ≤ m(δ2)I(δ2/2).
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Proof. Note that the inclusion R ⊂ R � (Z2 × Z2) is of index 4 and that Z2 × Z2

has two nontrivial proper subgroups. Thus, m(δ2) ≥ 2 when δ2 ≥ 4.
To prove the lemma, we need to show that for an arbitrary subfactor N ⊂ M

with [M : N ] ≤ δ2, |L(N,M)| ≤ m(δ2)I(δ2/2).

Case 1. If |Lm(N,M)| = 0, then |L(N,M)| = 2 (since in this case L(N,M) =
{N,M}). Note that m(δ2) ≥ 2 and I(δ2) ≥ 2, and the lemma follows directly.

Case 2. Suppose that |Lm(N,M)| = 1. Let P be the minimal intermediate sub-
factor. Then we have L(N,M) = L(P,M) ∪ {N}. Thus, we have |L(N,M)| =
|L(P,M)|+ 1 ≤ I([M : P ]) + 1.

Since [M : P ] = [M : N ]/[P : N ] and [P : N ] ≥ 2, we have [M : P ] ≤ [M :
N ]/2 ≤ δ2/2. Therefore,

|L(N,M)| ≤ I(δ2/2) + 1 ≤ 2I(δ2/2) ≤ m(δ2)I(δ2/2).

Case 3. Suppose that |Lm(N,M)| ≥ 2. It follows that L(N,M)\{N,M} ⊂⋃
P∈Lm(N,M)(L(P,M)\M). Therefore,

|L(N,M)| ≤
∑

P∈Lm(N,M)

(|L(P,M)| − 1) + 2 ≤
∑

P∈Lm(N,M)

(I([M : P ])− 1) + 2

≤
∑

P∈Lm(N,M)

(I(δ2/2)− 1) + 2 ≤ |Lm(N,M)|I(δ2/2)− |Lm(N,M)|+ 2

≤ |Lm(N,M)|I(δ2/2) ≤ m(δ2)I(δ2/2).

�

Theorem 4.6. Let N ⊂ M be a finite index, irreducible inclusion of type II1
factors. Then the number of intermediate subfactors is at most 9[M :N ].

Proof. First note that if we have 2 ≤ [M : N ] < 4, then there there are no nontrivial
intermediate subfactors for N ⊂ M . Therefore, |L(N,M)| = 2 < 92 ≤ 9[M :N ].
Suppose that δ2 = [M : N ] ≥ 4. By Lemma 4.5 we have

|L(N,M)| ≤ I(δ2) ≤ m(δ2)I(δ2/2) ≤ m(δ2)m(δ2/2)I(δ2/22)

≤ m(δ2)m(δ2/2)m(δ2/4) · · ·m(δ2/2k)I(δ2/2k+1),

where k is the smallest integer such that 2 ≤ δ2/2k+1 < 4.
By Theorem 4.1 we have

|L(N,M)| ≤ I(δ2/2k+1)

k∏
j=0

3δ
4/2j ≤

k+1∏
j=0

3δ
2/2j (since I(δ2/2k+1) = 2 < 3δ

2/2k+1

)

≤
+∞∏
j=0

3δ
2/2j ≤ 32δ

2

= 9δ
2

.

This completes the proof. �

In 2003 Longo asked whether the number of intermediate subfactors can be
bounded by [M : N ][M :N ] (see [Lon03]). Theorem 4.6 provides a better estimate
for the number of intermediate subfactors for an index greater than 9. In fact, we
can use our techniques to give a positive answer to Longo’s question for any value
of the index [M : N ].
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Theorem 4.7. Let N ⊂ M be an irreducible subfactor of finite index. Then the
number of intermediate subfactors is bounded by min{9[M :N ], [M : N ][M :N ]}.

Proof. By Lemma 4.5 we know that

(10) |L(N,M)| ≤ I(δ2) ≤ m(δ2)I(δ2/2) ≤ 3δ
2

I(δ2/2).

If [M : N ] < 4, then from Jones’s index theorem [Jon83] we know that there are no
nontrivial intermediate subfactors, and hence the statement holds. If 4 ≤ δ2 < 8,
then we have I(δ2/2) = 2. Therefore, equation (10) yields

|L(N,M)| ≤ 3δ
2

I(δ2/2) = 2 · 3δ2 ≤ 4δ
2 ≤ [M : N ][M :N ].

Now if 8≤δ2≤9, we have |L(N,M)|≤I(δ2)≤m(δ2)I(δ2/2)≤m(δ2)m(δ2/2)I(δ2/4).

Note that δ2/4 < 4 and hence I(δ2/4) = 2.We also havem(δ2)m(δ2/2) ≤ 3δ
2

3δ
2/2 ≤

314. So |L(N,M)| ≤ 2 · 314 ≤ 88 ≤ [M : N ][M :N ].
Finally, if [M : N ] ≥ 9, then from Theorem 4.6 we have |L(N,M)| ≤ 9[M :N ] ≤

[M : N ][M :N ]. �

Remark 4.8. In various cases we can get better estimates for the number of inter-
mediate subfactors, as explained below:

(1) We can use the estimate m(δ2) ≤ τn, where n is the smallest integer bigger
than δ2 and τn denotes the kissing number (at dimension n). Since upper
bounds of the values of kissing number are known for small dimensions, the
above calculation yields that for [M : N ] < 16, |L(N,M)| ≤ 2 · τ9 · τ5 ≤
2× 44× 364 = 32032 < 215.

(2) Suppose that N ⊂ M is an irreducible subfactor, and suppose that N ′ ∩
M1 is abelian. (For example, R ⊂ R � G, where G is a finite abelian
group acting outerly on R. Therefore, Theorem 4.9 provides a bound for
the cardinality of the set of all subgroups of a finite abelian group.) Then
for two distinct minimal intermediate subfactors P and Q it is trivial to
check that αN

M (P,Q) = π
2 . Thus, the set {vP : P ∈ Lm(N,M)} forms an

orthonormal set, and hence the number of minimal intermediate subfactors
is bounded by dim(N ′ ∩ M1) ≤ [M : N ]. After that, doing an iteration
as above, we obtain a better bound than [TW97, Proposition 5.1] for the
cardinality of the lattice L(N ⊂ M), as explained below.

Theorem 4.9. Suppose that N ⊂ M is an irreducible subfactor, and suppose that
N ′ ∩M1 is abelian. Then

|L(N,M)| ≤ (
[M : N ]√

2
)

log([M:N])
2 .

Proof. Let P and Q be two minimal intermediate subfactors. Then we have

cos(α(P,Q)) =
tr((eP − e1)(eQ − e1))

‖eP − e1‖2‖eQ − e1‖2
=

tr(eP eQ)− tr(e1)

‖eP − e1‖2‖eQ − e1‖2
.

Note that eP , eQ ∈ N ′ ∩M1, which is abelian, and that P ∩Q = N . Thus, we have
tr(eP eQ) = tr(eP ∧ eQ) = tr(e1), and this further implies that cos(α(P,Q)) = 0.
Therefore, for any two minimal intermediate subfactors P and Q, α(P,Q) = π/2.
In particular, this means that the set {vP : P ∈ Lm(N,M)} is an orthonormal set.
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Therefore, |Lm(N,M)| ≤ dim(N ′ ∩M1) ≤ [M : N ]. This implies that m(δ2) ≤ δ2

and therefore, by Lemma 4.5, we have

|L(N,M)| ≤ I(δ2) ≤ m(δ2)I(δ2/2) ≤ m(δ2)m(δ2/2)I(δ2/22)

≤ m(δ2)m(δ2/2)m(δ2/4) · · ·m(δ2/2k)I(δ2/2k+1),

where k is the smallest integer such that 2 ≤ δ2/2k+1 < 4, i.e., k + 1 ≤ log(δ2/2).
Since m(δ2) ≤ δ2, we have

|L(N,M)| ≤ m(δ2)m(δ2/2)m(δ2/4) · · ·m(δ2/2k)I(δ2/2k+1)

≤ I(δ2/2k+1)

k∏
j=0

δ2/2j ≤
k+1∏
j=0

δ2/2j

= (δ2)k+1 1

2(k+1)(k+2)/2
≤ (δ2)k+1 1

2(k+1)/2
= (

δ2√
2
)k+1 ≤ (

δ2√
2
)log(δ

2/2).

This completes the proof. �

5. Final remarks: Comparison with the Sano–Watatani angle

In this section we compare our notion of the angle between intermediate subfac-
tors with the notion of the angle operator due to Sano and Watatani [SW94]. The
authors would like to thank an anonymous referee of this paper for suggesting that
we include a discussion on the comparison between these two notions of angles.

In [SW94] Sano and Watatani introduced the notion of angles between a pair
of subalgebras of a given finite von Neumann algebra as the spectrum of an angle
operator (see below). We define only the angle between intermediate subfactors of
a finite index subfactor N ⊂ M . In theory, the Sano–Watatani angle is a set of
values, whereas our notion always gives a single number. This is perhaps the main
difference between these two notions. As we show later, the two notions are not
comparable in general, even though they coincide when we consider quadrilaterals
which are commuting squares. Recall that a quadruple (N,P,Q,M) of II1 factors
is called a quadrilateral if N = P ∩Q and M is generated by P and Q.

Let us now briefly recall the definition of a Sano–Watatani angle. Motivated
by the relative position of two different subspaces K and L of a Hilbert space H,
see, for example, [Hal69], Sano and Watatani defined the angle operator θ(p, q)
(where p (resp., q) is the projection onto K (resp., L)) as cos−1√pqp− p ∧ q, where
(pqp − p ∧ q) is regarded as the operator acting on its support. The set of angles
Ang(p, q) between p and q is the subset of [0, π/2] defined by [SW94, Definition 2.1]

(11) Ang(p, q) =

{
sp θ(p, q) if pq 
= qp.

{π/2} otherwise.

Definition 5.1 ([SW94]). Let M be a finite von Neumann algebra with a faithful
normal tracial state tr, and let P,Q be von Neumann subalgebras. Then the Sano–
Watatani angle AngM (P,Q) between two subalgebras P and Q of M is defined as
follows:

AngM (P,Q) = Ang(eP , eQ).

(Here eP and eQ are corresponding Jones projections.)
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Most of the paper [SW94] is devoted to the case in which (N,P,Q,M) is a quadri-
lateral of type II1 factors. In this scenario, by [SW94, Proposition 3.2], AngM (P,Q)
is a finite set. Thus, in this case we might hope to relate the two definitions of an-
gles. However, as we show below, the two notions of angles are not comparable in
general.

• Consider a quadruple N ⊂ P ⊂ Q ⊂ M of type II1 factors with [M :

N ] < ∞. Then by Fact 2.15 cos(αN
M (P,Q)) =

√
[P :N ]−1
[Q:N ]−1 . Whereas, since in

this situation eP eQ = eQeP = eP , we conclude that AngM (P,Q) = {π/2}.
Therefore, αN

M (P,Q) and AngM (P,Q) are different in general.
• By [SW94, Corollary 3.1] we see that for a quadrilateral (N,P,Q,M) of
type II1 factors with [M : N ] < ∞, if the operator s = eP eQeP − eN is
0, then AngM (P,Q) = {π/2}, and hence the quadrilateral is a commuting
square. Therefore, αN

M (P,Q) = π/2, and two notions of angles coincide in
this case.

• Consider again the quadrilateral (N,P,Q,M) of type II1 factors with [M :
N ] < ∞, and let s be the operator as described above. In [SW94, Corol-
lary 3.1] Sano and Watatani proved that if s2 = μs 
= 0 for some scalar
μ, then AngM (P,Q) consists of one point, say, θ(P,Q). Then θ(P,Q) =
cos−1√μ. In [SW94, proof of Lemma 3.6] the authors have shown that

tr(eP eQ− eN ) = μ tr(r), where r is the projection eP − eP ∧ eQ− eP ∧ eQ
⊥.

Then an easy calculation shows that

cos(α(P,Q)) = cos2(θ(P,Q))

{
tr(r)√

tr(eP )− τ
√
tr(eQ)− τ

}
.

In conclusion, even if AngM (P,Q) is a singleton, it can be different from
α(P,Q). More precisely, in this case cos2(θ(P,Q)) = cos(α(P,Q)) if and
only if the following equation holds:

tr(eP ∧ eQ
⊥) =

√
tr(eP − eN )

{√
tr(eP − eN )−

√
tr(eQ − eN )

}
.

• Recall that a finite index subfactor N ⊂ M is called 2-supertransitive if
N ′∩M1 = {1, eN}′′. Now let us discuss the two notions of angles for the 2-
supertransitive case which was extensively studied in [GJ07,GI08]. Suppose
that (N,P,Q,M) is a quadrilateral such that N ⊂ M is an irreducible,
finite index subfactor and N ⊂ P and N ⊂ Q are 2-supertransitive. Then
by [GJ07, Lemma 4.14] we see that eP eQeP − eN = λ(eP − eN ), where λ =
tr(eP1Q1

)−1−1

[P :N ]−1 . Therefore, we get that s2 = λs. If λ 
= 0, then AngM (P,Q)

is a singleton θ(P,Q), and cos2(θ(P,Q)) = λ. On the other hand, an easy

calculation shows that cos(α(P,Q)) = λ
√

[P :N ]−1
[Q:N ]−1 . If the quadrilateral is

not a commuting square, then by [GJ07, Lemma 4.8] we have [P : N ] =
[Q : N ]. Therefore, in this case cos(α(P,Q)) = cos2(θ(P,Q)).

Furthermore, if the quadrilateral is a co-commuting square, then tr(eP eQ)
= 1

[M :P ][M :Q] by the first fact in Remark 2.9. Therefore, by Theorem 2.8
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and the fact that cos(α(P,Q)) = cos2(θ(P,Q)), we see that

cos2(θ(P,Q) =
[P : N ]− [M : Q]

[M : Q]

(
[P : N ]− 1

) =
[P : N ]− [M : P ]

[M : P ]

(
[P : N ]− 1

) .

This result is [GI08, Lemma 2.1]. Here we have reproved this result by
relating our angle to the Sano–Watatani angle.
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