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Classification of Thurston relation subfactor planar algebras
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Abstract. Bisch and Jones proposed the classification of planar algebras by simple gen-

erators and relations. They investigated with the second author the classification of planar

algebras generated by 2-boxes. In this paper, we classify singly-generated Thurston-relation

planar algebras, defined as subfactor planar algebras generated by a 3-box satisfying a rela-

tion proposed by Dylan Thurston. Our main result shows that such subfactor planar algebras

are either the E6 subfactor planar algebras or belong to a two-parameter family of planar

algebras arising from the representations of type A quantum groups. We introduce a new

method for determining positivity of the Markov trace of planar algebras in this family.
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1. Introduction

We classify singly-generated Thurston-relation subfactor planar algebras, using a

new method for determining positivity of the Markov trace for planar algebras in

this family.
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Background. With his seminal index theorem, Vaughan Jones initiated the

modern theory of subfactors [12]. The standard invariant of a subfactor is the
lattice of higher relative commutants of the Jones tower. A deep theorem of
Popa shows that the standard invariant completely classifies strongly amenable
subfactors of the hyperfinite II1 factor [28]. Popa introduced standard �-lattices
as an axiomatization of the standard invariant [29]. Ocneanu also introduced
paragroups for characterizations of finite depth subfactors [24].

Vaughan Jones introduced subfactor planar algebras as an alternative axioma-
tization of the standard invariant of a subfactor [14]. Planar algebras are described
by a sequence of finite dimensional vector spaces Pm;˙ (which we call the m-box
spaces), m 2 N, together with an natural action of the operad of planar tangles.
This perspective displays the implicit topological properties of subfactors, and
reveals deep connections to topological quantum field theory [2, 25].

Motivated by Conway’s linear skein relation in knot theory, Vaughan Jones
introduced a more general framework of skein theories for planar algebras. A skein
theory is a collection of generators and relations, together with an evaluation
algorithm. Skein theories are familiar in the paradigm of quantum link invariants.

� The generators of a planar algebra P� correspond to string crossings, skein
relations correspond to Reidemeister moves together with possible linear
relations, such as the Kauffman bracket and the HOMFLY-PT skein relation
[17, 11].

� A braided tangle diagram is given by the image of a planar tangle acting on
generators.

� The vectors in Pm;˙ are given by linear combinations of braided tangle
diagrams in a disc with 2m boundary points. Skein relations of braids induce
equalities of vectors in Pm;˙.

Crucially, an evaluation algorithm is required such that the each vector in P0;˙

can be evaluated to an element in the ground field using prescribed skein relations.
Furthermore, the relations must be consistent in the sense that the evaluation of a
vector in P0;˙ should be the same modulo different sequences of skein relations.

The Yang-Baxter relation as a linearization of the Reidemeister moves was in-
troduced in [20]. In addition, there are skein theories arising from the discharging
method in graph theory. For example, Landau introduced the exchange relation
for 2-boxes [19] generalizing Bisch’s exchange relation of a biprojection [5], see
other relations in [27, 22]. Bigelow gave skein theory for ADE planar algebras
using half-braidings [3]. This idea was generalized to the Jellyfish relation [10].
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A skein theory uniquely determines a subfactor planar algebra, therefore one
can ask for a skein theoretic classification of subfactor planar algebras. From
this perspective of skein theory, the simplest planar algebras are the Temperley–
Lieb–Jones planar algebras which have neither generators nor relations and are
determined by the circle parameter. Planar algebras generated by 1-boxes were
completely analyzed by Vaughan Jones [14]. Bisch and Jones proposed the classi-
fication of planar algebras by simple generators and relations in [7, 8] and consider
the dimensions as complexity. The smallness of dimensions forces a simple skein
theory in their classication. Motivated by their work, the second author investi-
gated the classification of planar algebras by skein theory in [21], where commute
relation planar algebras were completely analyzed without dimension restrictions.
Exchange relation planar algebras with two 2-box generators were classified there.
Based on the subsequent work of Bisch, Jones and the second author [8, 9], a clas-
sification of singly generated Yang-Baxter relation planar algebra was achieved
in [20], where a new one-parameter family of planar algebras was constructed.

Main results. In this paper, we study planar algebras generated by a single 3-
box. There is a known two parameter family of planar algebras P

H
� .q; r/ related

to type A quantum groups, see Example 2.5 in [14]. We classify all q; r for which
P

H
� .q; r/ has a semi positive definite partition function, (see Theorem 5.3). Its

semisimple quotient zP H
� .q; r/ is a subfactor planar algebra. The corresponding

subfactors are known as Jones-Wenzl subfactors [13, 33]. The subfactor planar
algebras were constructed by Xu [34]. The skein theory of P

H
� .q; r/ is inherited

from the HOMFLY-PT skein relations [11, 30]. Dylan Thurston provided an
intrinsic skein theory of P

H
� .q; r/ designed for 6-valent planar graphs [32], which

we call the Thurston relation.

Definition 1.1 (Thurston relation [32]). We say a 3-box S satisfies the Thurston
relation if the four following axioms are safisfied:

� chirality:

S � �.S/ D (lower terms); (1)

� 1 ! 0 move:

S$

;
S$ D (lower terms); (2)
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� unshaded 2 $ 2 move:

S

S

$

$

D a SS $$ C (lower terms), a ¤ 0I (3)

� shaded 2 $ 2 move:

S

S

$

$ D b
S

S

$

$ C (lower terms), b ¤ 0I (4)

where lower terms are a linear combination of diagrams with fewer generators and
the coefficients in equations (1)–(4) are called parameters of the Thurston relation.

Dylan Thurston found nŠ standard forms in the n-box space P
H
n;C. His eval-

uation algorithm implies that the nŠ standard forms form a generating set of the
vector space P

H
n;C . Therefore the dimension of P

H
n;C is bounded by nŠ.

It is clear from the definition that the generator R of P
H
� .q; r/,

R D ;

satisfies the Thurston relation, but it is natural to wonder if these are the only
possibilities. In this paper, we classify subfactor planar algebras generated by
a non-Templeley–Lieb 3-box with a Thurston relation, which we call singly-
generated Thurston-relation planar algebras (TRPA). Our main theorem is the
following:

Theorem 1.2 (main theorem). Any singly-generated Thurston-relation planar
algebra is either an E6 subfactor planar algebra or zP H

� .q; r/, where r D qN

for some N 2 N, N � 3, and q D e
i�

NCl for some l 2 N, l � 3, or q � 1.

We remark that the appearance of E6 subfactor planar algebras in our clas-
sification is exceptional, since it is not included in a parameterized family.
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A similar phenomena had appeared in the classification of subfactor planar al-
gebras generated by a single 2-box. The Z3 group subfactor planar algebra was
neither a Bisch–Jones planar algebra [6] nor a Birman–Murakami–Wenzl planar
algebra [4, 23] in the classification [7, 8, 9]. Surprisingly it turns out to be the
first example in another family of subfactor planar algebras discovered in [20].
Inspired by this phenomenon, we propose the following conjecture:

Conjecture. There exists a parametrized skein theory for a family of subfactor
planar algebras generated by a single 3-box, such that the E6 subfactor planar
algebras are in this family.

The paper is organized as follows. In §2 , we recall the definitions of planar
algebras, HOMFLY-PT skein theory, and Dylan Thurston’s skein theory. In §3 , we
classify singly generated TRPA for the generic case, namely dim P4;˙ D 4Š D 24.
We set up five formal variables for the Thurston relation using 3-box relations. We
prove that only two variables survive after considering the consistency of skein
relations in P4;˙ (theorems 3.10 and 3.11). Then we identify the two-parameter
family with P

H
� .q; r/ (Theorem 3.13). Technically we simplify the computation

by working on the reduced planar algebra with respect to the second Jones-
Wenzl idempotent f2. The reduced planar algebra has smaller m-box spaces and
their generic dimensions are 1; 0; 1; 2; 9; : : : . In §4 , we classify singly generated
TRPA for the reduced case, namely dim P4;˙ � 23. We obtain subfactor planar
algebra zP H .q; r/ subject to an equation of q and r as well as the E6 subfactor
planar algebras. In §5, we classify all q; r and involutions on P

H
� .q; r/ for which

P
H
� .q; r/ has a positive semi-definite Markov trace, and thus the semisimple

quotient zP H
� .q; r/ is a subfactor planar algebra. Therefore, we complete our

classification, Theorem 1.2.

Acknowledgements. The authors would like to thank Vaughan Jones for support,
encouragement, and many helpful conversations. The research of the second
author was supported by TRT 0080 and 0159 from the Templeton Religion Trust.
All authors were supported by NSF Grant DMS-1362138.

2. Preliminaries

As emphasized in the introduction, skein theory provides an important perspective
from which to understand a planar algebra for many reasons. Skein theories are
important starting points for the construction and classification of planar algebras.



446 C. Jones, Z. Liu, and Y. Ren

In this paper we will study subfactor planar algebras generated by a 3-box. In
this section, we recall HOMFLY-PT planar algebras, and some properties of the
Thurston relation. We refer the readers to [14] for the definition and properties of
planar algebras. One can also find other interesting examples and skein theories
there.

2.1. HOMFLY-PT planar algebras. The HOMFLY-PT polynomial is a link
invariant which is defined using the following skein relations:

� Hecke relation:

� D .q � q�1/ I

� Reidemeister moves I:

D r ; D r�1 ;

D r ; D r�1 I

� Reidemeister moves II:

D ; D ;

D ; D I

� Reidemeister moves III:

D ; D I

� circle parameter:

D D ıI

� r � r�1 D ı.q � q�1/:

Remark 1. When q D ˙1, we have r D ˙1. Then the skein relation is determined
by the circle parameter ı. When q ¤ ˙1, ı D r�r�1

q�q�1 .
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Let �i , i � 1, be the diagram obtained by adding i � 1 oriented (from bottom
to top) through-strings on the left of

:

The Hecke algebra of type A is a (unital) filtered algebra H�. The algebra Hn

is generated by �i , 1 � i � n � 1 and Hn is identified as a subalgebra of
HnC1 by adding an oriented through string on the right. Over the field C.q; r/,
the equivalence classes of minimal idempotents of Hn are indexed by Young-
diagrams with n cells. The trace formula of minimal idempotents is as follows:

Theorem 2.1 ([31, 1]). Let � be a Young diagram and m� the minimal idempotent
corresponding to �, then

Tr.m�/ D
Y

i;j

rqc.i;j / � r�1q�c.i;j /

qh.i;j / � q�h.i;j /
;

where c.i; j / D j � i is the content of the cell .i; j / in � and h.i;j / is its hook
length.

V. Jones studied the planar algebras P
H
� .q; r/ associated with HOMFLY-PT

skein relation [14]. Its n-box space consists of HOMFLY-PT diagrams which have
2n boundary points and alternating orientations on the boundary as follows:

:

Moreover, he proved that P
H
� .q; r/ is generated by a 3-box:

Theorem 2.2 (Jones). The planar algebra P
H
� .q; r/ is generated by

;

denoted by R.
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When r D qN for some N 2 N and q D e
i�

NCl for some l 2 N or
q � 1, P H

� .q; r/ admits an involution * such that the Markov trace is positive
semi-definite. Therefore, the semisimple quotient zP H

� .q; r/ is a subfactor planar
algebra, which can be constructed from the representation category of quantum
group Uqsl.N / [34]. (When q D 1, we have r D 1 and ı D N , corresponding to
the representation category of the Lie group SU.N /.)

Remark 2. When q D ˙1; r D ˙1, the planar algebra in Theorem 2.2 is
determined by the circle parameter ı. Therefore, we use the notation P

H
� .1; 1; ı/

for the planar algebra.

We prove that these are the only possibilities such that P
H
� .q; r/ has positivity

in Theorem 5.3. First, we identify the isomorphism classes of P
H
� .q; r/:

Proposition 2.3. The eight planar algebras

P
H
� .q; r/; P

H
� .q; �r�1/; P

H
� .�q�1; r/; P

H
� .�q�1; �r�1/;

P
H
� .�q; r�1/; P

H
� .�q; �r/; P

H
� .q�1; r�1/; P

H
� .q�1; �r/

are isomorphic.

Proof. The planar algebras P
H
� .q; r/ and P

H
� .�q�1; r/ are isomorphic, as the

generators satisfy the same skein relations. The isomorphism between P
H
� .q; r/

and P
H
� .q; �r�1/ is induced by sending

7�! � :

The isomorphism between P
H
� .q; r/ and P

H
� .q�1; r�1/ is induced by sending

7�! :

From the three isomorphisms, the eight planar algebras in the statement are
isomorphic. �

2.2. Thurston relations. Recall that P
H
� .q; r/ is generated by the 3-box

:
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One can evaluate a vector in P
H
0;˙.q; r/ using the HOMFLY-PT skein relation.

Dylan Thurston provides an intrinsic skein relations for the 3-box generator as
shown in Definition 1.1, which we call the Thurston relation. He also provides an
intrinsic evaluation algorithm in [32]. One can generalize the Thurston relation
and his evaluation algorithm to multiple 3-box generators. We recall some results
of Dylan Thurston:

Theorem 2.4 (Thurston [32]). Suppose P� admits the Thurston relation. Then
Pn;˙ is spanned by the standard forms and dim Pn;˙ � nŠ.

Corollary 2.5 (Thurston [32]). In the generic case, namely P4;˙ D 24, we have
the basis of the 4-box space given by the standard form as follows:

� 14 Temperley–Lieb diagrams;

� 8 diagrams in the annular consequences, which we denote by AC;

� 2 diagrams with two generators:

S

S

$

$

and
S

S

$

$ :

Moreover, one can replace them by the other diagrams with two generators using
the Thurston relation (3) and (4).

Remark 3. The annular consequences AC consists of diagrams obtained by the
applying the following eight annular tangles to the generator S :

$$ $$ � � � , $$, , .

The main purpose of this paper is to classify all subfactor planar algebras
generated by a 3-box S satisfying the Thurston relation. We give the classification
for the generic case in §3 and for the reduced case in §4.

3. Generic case

Let P� be a singly-generated Thurston-relation planar algebra (TRPA). In this
section, we classify such singly-generated TRPA for the generic case, namely
dim.P4;˙/ D 24. Most results in this section also work for case dim.P4;˙/ D 23.
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When the Jones index ı2 is at most 4, the E6 and E
.1/
6 subfactor planar algebras

are the only subfactor planar algebras with Jones index ı2 at most 4 generated by
a 3-box. The dimensions of their 4-box spaces are 21 and 22 respectively. So we
only need to consider the case ı2 > 4. By Theorem 2.4, dim.P3;˙/ � 6. When
ı2 > 4, the 5 Temperley–Lieb diagrams are linearly independent. The generator
S is non-Temperley–Lieb, so dim.P3;˙/ D 6.

3.1. Generators

Notation 3.1. For a subfactor planar algebra P�, we use the following notations:
en is the nth Jones projection; fn is the nth Jones-Wenzl idempotent; and In;˙ is
the basic construction ideal in Pn;˙.

Since dim.P3;C/ D 6, there exist two minimal idempotents P and Q in
P3;C=I3;C and P C Q D f3. Since Tr.f3/ ¤ 0, we assume that Tr.Q/ ¤ 0.
We take S D P � Q, where  D Tr.P /

Tr.Q/
, as the generator for P�. Then S satisfies

the following relations:

(1) S is an eigenvector of the (2-click) rotation �. i.e.,

.S/ D !S; !3 D 1: (5)

Here ! is called the rotation eigenvalue for the generator S .

(2) S is totally uncappable, i.e.,

S$ D S$ D 0: (6)

(3) S satisfies a quadratic relation:

S2 D . � 1/S C f3: (7)

Note that equation (6) is the 1 ! 0 move in the Thurston relation as in Defini-
tion 1.1.

Now we focus on the f2-cutdown of Pn;C instead of the entire subfactor planar
algebra. Technically, this reduces the dimension of the n-box space and simplify
the computation. Elements in the n-box cutdown space will be elements x 2 Pn;C
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of the following form

f2$ f2$ f2$

$ x

:

Then the f2-cutdown of P3;C has a basis
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

S;

f2$ f2$

f2$

9

>

>

>

=

>

>

>

;

:

Notation 3.2. We simplify the notations in the f2-cutdown by rewriting f2 as a
single string labeled by f2. (We ignore the label if there is no confusion.) In this
setting, we express S and

f2$ f2$

f2$

as follows:

WD
f2$ f2$

f2$

;

S WD S
$ :

where the position of S indicates the position of the dollar sign $.

The even part of a planar algebra is a monoidal category. One can consider
the even part of a singly-generated Thurston-relation planar algebra as a monoidal
category generated by two trivalent vertices as above. The Thurston relation looks
similar to the H-I relation, also known as 6j -symbols, in a monoidal category.
The 6j -symbol in a monoidal category are the coefficients of the change of basis
matrix in the morphism spaces, and a monoidal category is determined by the
6j -symbol up to monoidal equivalence, however it seems hopeless to determine
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the 6j -symbol in general. Even for the example P
H
� .q; r/ appearing in our

classification, it is difficult to compute the 6j -symbol.

The Thurston relation provides an evaluation algorithm which only requires
partial information about the 6j -symbol for two objects, together with the data
for the dual planar algebra. This combination, rather than considering only one
shading, appears to be powerful, and determines the planar algebra completely.

3.2. Relations in 3-boxes. Now let us set up the formal variables as coefficients
in the Thurston relation of

and S

in P3;C additional to relations (5)–(7). We solve for the possible coefficients in
terms of four formal variables.

Lemma 3.3. We have the following skein relations in the f2 cut-down of P� in
terms of ı; !;  and one new parameter ":

S

D ! S I(i)

S D D 0I(ii)

S D 0I(iii)

D ı2 � 2

ı
I(iv)

S S D 
ı3 � 2ı

ı2 � 1
I(v)
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D ı2 � 3

ı
I(vi)

S D �1

ı
S

I(vii)

S S

D . � 1/

S

� 
ı

ı2 � 1
I(viii)

S S

S D ı!;1"

S

C . � 1/
ı2

ı2 � 1
;(ix)

where " 2 C is a formal variable.

Proof. The relations (i)–(viii) follow from relations (6) and (7) in the planar
algebra P�.

For the relation (ix), since

S

and

form an orthogonal basis of the f2-cutdown of P3;C, we assume that

S S

S D a

S

C b : (8)
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Note that both

S S

S and

are invariant under 1-click rotation, while

S

is invariant under 1-click rotation if and only if ! D 1, thus a D ı!;1", where ı!;1

is the Kronecker delta.

For the coefficient b, we multiply

from the bottom of both sides of equation (8). Since the f2-cutdown of P1;C is
one-dimensional, applying relation (viii), we have

b D . � 1/
ı2

ı2 � 1
: �

3.3. Relations in 4-boxes. We proceed to discuss the Thurston relation in the
f2-cutdown of P4;C.

Notation 3.4. We define

WD
f2

f2 f2$

$

$

$

f2f2

f2f2

:
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Lemma 3.5. The following set B is a basis of the f2-cutdown of P4;C,

.

S

S

S S

S

S

S

S

Proof. Note that the f2-cutdown of any standard form of P4;C in Corollary 2.5 is
in the linear span of B , thus the f2-cutdown of P4;C is spanned by B . Suppose

a S

S
C b

S

S

C c S C d S

C e

S

C f

S

C g C h C i D 0;

(9)

for some a; b; c; d; e; f; g; h; i 2 C. Recall that each string in equation (9) repre-
sents

$ f2

in P�. We consider it as an equation in P4;C and rewrite it in terms of the basis
of P4;C in Corollary 2.5. The coefficients of

S

S

$

$
and

S

S

$

$

are a and b respectively, thus a D b D 0. Furthermore, the coefficients of

S $ ; S$ ;
S

$

;
S
$
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are c, d , e, and f respectively, thus c D d D e D f D 0. Finally, the coefficients
of the Temperley–Lieb diagrams

; ;

in P4;C are g, h, and i respectively, thus g D h D i D 0. Therefore B is linearly
independent, and B is a basis. �

Since B is a basis, we have the unshaded 2 $ 2 move (3) for S in terms of
formal variables:

SS D a

S

S

C b1 S C b2

S

C b3 S C b4

S

C c1

C c2 C d :

(10)

Using the rotational symmetry, we can immediately simplify the formal vari-
ables.

Lemma 3.6. Either a D 1 and

SS D
S

S

C b

 

S �
S

C S �
S !

C c

 

�
!

;

(11)
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or a D �1 and

SS D �
S

S

C b

 

S C
S

C S C
S !

C c

 

C
!

C d :

(12)

Proof. If a D �1, then we apply rotation by �
2

to equation (10) and obtain

S

S

D � SS C b4 S C b1

S

C b2 S C b3

S

C c2

C c1 C d :

(13)

Subtracting equations (10) from (13) yields

0 D .b4 � b1/ S C .b1 � b2/

S

C .b2 � b3/ S C .b3 � b4/

S

C .c1 � c2/

 

C
!

:

Thus b1 D b2 D b3 D b4 and c1 D c2 and we obtain equation (12).
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If a ¤ �1, then we apply rotations by k�
2

; k D 0; 1; 2; 3; to equation (10) and
take the alternating sum of the four resultant equations. We have

2.1 C a/ SS

D 2.1 C a/

S

S

C .b1 � b2 C b3 � b4/

 

S �
S

C S �
S !

C 2.c1 � c2/

 

�
!

:

Taking the quotient by 2.1 C a/, we obtain equation (11). �

Furthermore, we solve for the coefficients b; c; d in Lemma 3.6 in terms of
ı; ; !.

Lemma 3.7. If a D 1, then

8

ˆ

ˆ

<

ˆ

ˆ

:

b D �. � 1/
ı

ı2 � 2 C ! C !�1
;

c D �
ı

ı2 � 1
:

(14)

If a D �1, then

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

b D . � 1/ı

ı2 � 2 � ! � !�1
;

c D ı
�

2
ı2 � 2

ı4 � 3ı2 C 1
� 1

ı2 � 1

�

;

d D �2
ı2

ı4 � 3ı2 C 1
:

(15)
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Proof. When a D 1, applying

to the bottom on both sides of equation (11), we obtain

. � 1/

S

� 
ı

ı2 � 1

D b

 

.! C !�1/
�

� 1

ı

�

S

� ı2 � 2

ı

S
!

C c :

By comparing the coefficients of

and

S

;

we solve for b; c as in equation (14).
When a D �1, we apply

to the bottom on both sides of equation (12). By a similar computation, we solve
for b; c; d as in equation (15). �

Corollary 3.8. The formal varible � in Lemma 3.3 satisfies the following equa-
tions:

(1) if a D 1, then

ı.ı2 � 3/

ı2 � 1
� 2. � 1/2ı

ı2 � 2 C ! C !�1
D ı!;1�I (16)

(2) if a D �1, then

ı
�

2
ı2 � 2

ı4 � 3ı2 C 1
� 1

�

C 2. � 1/ı

ı2 � 2 � ! � !�1
D ı!;1�: (17)
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Proof. By relation (i) in Lemma 3.3, we have

D
.

S S

SSS S

Suppose a D 1. By applying the unshaded 2$2 move, namely equation (11), in
the dotted circle and relations (i)�(viii) in Lemma 3.3, we obtain

S

SS

D
�ı.ı2 � 3/

ı2 � 1
� 2. � 1/2ı

ı2 � 2 C ! C !�1

�

S

C . � 1/
ı2

ı2 � 1
:

By relation (ix) in Lemma 3.3, we have that equation (16) holds.
Suppose a D �1. It follows similarly that equation (17) holds. �

Theorem 3.9. Suppose P� is a planar algebra generated by a non-trivial 3-box
satisfying the Thurston relation, then P� is determined by .ı; ; !; a; a0/, where ı2

is the index,  the ratio of the trace of the two orthogonal minimal idempotents,
! is the rotation eigenvalue and a; a0 are the signs in the unshaded and shaded
2 $ 2 moves.

Proof. Suppose P� and P
0
� are two planar algebras and there exist orthogonal

minimal idempotents P; Q 2 P� and P 0; Q0 2 P 0
�. Then we can construct

uncappable rotation eigenvectors S and S 0 as in section 3 satisfying the same
quadratic relation. Since the planar algebra is generated by a 3-box, we define a
map � W P3 ! P

0
3 by sending S to S 0. Since all the coefficients in the skein theory

are determined by .ı; ; !; a; a0/, � extends to a planar algebra isomorphism. �

3.4. Classification. In this subsection, we prove our classification result (Theo-
rem 1.2) for the generic case. In Theorem 3.9, we show that P� is determined by
ı > 2; ; !; a and a0. First we prove that ! D 1 and a; a0 D 1, so P� is determined
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by ı;  . Then we identify the planar algebra P� parameterized by ı and  with
P

H
� .q; r/.

Theorem 3.10. Suppose P� is a singly-generated Thurston-relation planar alge-
bra and dim.P4;C/ D 24 with parameters .ı; ; !; a; a0/ as in Theorem 3.9. Then
the rotation eigenvalue ! D 1.

Proof. A direct computation by Lemma 3.3 shows that

S

S

D . � 1/ S C 

� ı

ı2 � 1
� 1

ı
S

S

:

(18)

Suppose a D 1. We have two different approaches to rewrite the element

SS

S
(19)

as a linear combination of the basis B as stated in Lemma 3.5.

Approach 1. By relation (i) in Lemma 3.3, we have

SS

S
D !!�1 SS

S
D SS

S
:

By applying equation (11) in the dotted circle, we obtain the following equation:

SS

S
D

S

S
S

C b S

S
� b S

S
C b

S

S

� b

S

S
C c

S

� c
S

:

(20)
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The right hand side of equation (20) can be expressed as a linear combination in
terms of the basis B using Lemma 3.3 and equation (18). By a direct computation,
the coefficient of

S

S (21)

in the linear expression is b!�1.

Approach 2. By relation (i) in Lemma 3.3, we also have

SS

S
D !!�1

S

S

S D
S

S

S :

By applying equation (12) in the dotted circle, we obtain the following equation:

SS

S
D S

S S C b S
S � b

S

S C b S
S

� b

S

S C c
S C c

S
:

(22)

The right hand side of equation (22) can be exprresed as a linear combination in
terms of the basis B using Lemma 3.3 and equation (18). By a direct computation
the coefficient of (21) in the linear expression is b!.

Therefore by equating the coefficients of (21) in Approach 1 and Approach 2,
we obtain the following equation,

b! D b!�1: (23)

If ! ¤ 1, then ! is e
2�

p
�1

3 or e
4�

p
�1

3 . Therefore we have that b D 0. Combined
with equation (14), we have

�. � 1/
ı

ı2 � 3
D 0:

This implies that  D 1 and thus equation (16) yields to

ı.ı2 � 3/

ı2 � 1
D 0:
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It follows that the above equation does not have a solution when ı > 2 and thus it
leads to a contradiction. Thus ! D 1.

Now suppose a D �1. Similar to the case in which a D 1, we can rewrite the
element (19) as a linear comination of the basis B in two different approaches.
By comparing the coefficients of (21) in the linear combinations, we obtain that
b D 0 if ! ¤ 1. Combined with equation (12), we have

. � 1/
ı

ı2 � 1
D 0:

This implies that  D 1 and thus equation (17) yields to

ı
�

2
ı2 � 2

ı4 � 3ı2 C 1
� 1

�

D 0:

It follows that the above equation does not have a solution when ı > 2 and thus it
leads to a contradiction. This concludes that ! D 1. �

Theorem 3.11. If P� is a singly-generated Thurston-relation planar algebra and
dim.P4;C/ D 24 with parameters .ı; ; 1; a; a0/ in Theorem 3.9, then a D a0 D 1.

Proof. We prove that a must take the value 1 and it follows from the same proof
in the f2 cut-down in the dual planar algebra that a0 must also take the value 1.

Suppose a D �1. Similar to the proof of Theorem 3.10, we rewrite the
element (21) in two different approaches.

Approach 1. By relation (i) in Lemma 3.3, we have

SS

S
D SS

S
:

By applying equation (12) in the dotted circle, equation (18) and relations (i)–(ix)
in Lemma 3.3, we obtain the following equation:
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SS

S
D b

PSfrag

S

S C
�

� . � 1/ C
�

� 2

ı

��

S

S

C ı

ı2 � 1

S

C .b. � 1/ C c/ S

C
�

b. � 1/ C d
�

� 1

ı

��

S

C b C b

ı2 � 1
� 2b

ı

ı2 � 1
:

(24)

Approach 2. By relation (i) in Lemma 3.3, we also have

SS

S
D

S

S

S :

By applying equation (12) in the dotted circle, equation (18) and relation (i)�(ix)
in Lemma 3.3, we obtain the following equation:

SS

S
D b

S

S C
�

� . � 1/ C b
�

� 2

ı

��

SS

C ı

ı2 � 1
S C .b. � 1/ C c/

S

C
�

b. � 1/ C d
�

� 1

ı

��

S

C b C b

ı2 � 1
� 2b

ı

ı2 � 1
:

(25)
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Note that the f2-cutdown of P4;C has the basis B as in Lemma 3.5. From
equation (24), we deduce that the coefficient of

S

S

(26)

in the linear expression of (19) with respect to the basis B is

�. � 1/ C b
�

� 2

ı

�

:

While from equation (25), we deduce that the coefficient of (26) in the linear
expression of (19) with respect to the basis B is

. � 1/ � b
�

� 2

ı

�

;

since a D �1. This implies that

� . � 1/ C b
�

� 2

ı

�

D 0: (27)

Note that

b D . � 1/ı

ı2 � 4
;

when ! D 1 by equation (15) in Lemma 3.7. Therefore, the above equation yields
to

�. � 1/ C . � 1/ı

ı2 � 4

�

� 2

ı

�

D 0;

. � 1/
�ı2 � 2

ı2 � 4

�

D 0:

Since ı > 2, we have that  D 1 and thereby b D 0.
Now equations (24) and (25) reduce to the following equations:

SS

S
D ı

ı2 � 1

S

C c S C d
�

� 1

ı

�

S

; (28)

SS

S
D ı

ı2 � 1
S C c

S

C d
�

� 1

ı

�

S : (29)
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By comparing the coefficients of

S

in the two expressions as in equations (28) and (29), we obtain that

d
�

� 1

ı

�

D 0:

Note that

d D �2
ı2

ı4 � 3ı2 C 1

by equation (15) in Lemma 3.7. However, this implies ı D 0 since  D 1 and this
is a contradiction. �

Remark 4. In the reduced case, one can always assume that (26) is in the basis
of P4;C and (21) is not. Therefore we still obtain equation (27) since the coef-
ficients of (26) in the linear expression of (19) are the same obtained from two
different approaches. Thus the above proof works for the reduced case in which
dim.P4;C/=23.

These two theorems show that a singly-generated Thurston-relation planar
algebra with parameters .ı; ; !; a; a0/ satisfies ! D a D a0 D 1. Thus the
planar algebra is parameterized by .ı; /. With the following lemma and theorem,
we identify any singly-generated Thurston-relation planar algebra as P

H
� .q; r/ for

some .q; r/. Note that the Jones-Wenzl idempotent f3 is a sum of two minimal
idempotents P and Q in P

H
3;C.q; r/. In the following lemma, we compute the trace

formula for the two minimal idempotents.

Lemma 3.12. The two minimal idempotents P; Q 2 P
H
3;C.q; r/ with P C Q D f3

statisfy the following trace formulas:

Tr.P / D .r � r�1/.rq � r�1q�1/.rq�2 � r�1q2/

.q C q�1/.q � q�1/3
;

Tr.Q/ D .r � r�1/.rq2 � r�1q�2/.rq�1 � r�1q/

.q C q�1/.q � q�1/3
:
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Proof. Note that the 5 Temperley–Lieb diagrams and the generator R of P
H
� .q; r/

as stated in Theorem 2.2 form a basis of P
H
3;C.q; r/. We assume that

Q D aR C b C c

 

C
!

C e C f :

Since Q is a minimal subprojection of the Jones-Wenzl idempotent f3, i.e., ekQ D
Qek D 0 for k D 1; 2 where ek is the Jones proejctions, by comparing the
coefficients with respect to B of ekQ D Qek D 0 for k D 1; 2 we obtain the
following equations:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

ar C c C e
r � r�1

q � q�1
D 0;

b C c
r � r�1

q � q�1
C f D 0;

ar�1 C c C f
r � r�1

q � q�1
D 0;

a.q � q�1/ C b C c
r � r�1

q � q�1
C e D 0:

The above linear system have a solution in terms of a; b; r and q:
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

c D a
r�1.q � q�1/2

r2 C r�2 � q2 � q�2
� b

.r � r�1/.q � q�1/

r2 C r�2 � q2 � q�2
;

e D �q � q�1

r � r�1

�

ar C ar�1 .q � q�1/2

r2 C r�2 � q2 � q�2
� b

.r � r�1/.q � q�1/

r2 C r�2 � q2 � q�2

�

;

f D �q � q�1

r � r�1

�

ar�1 .r � r�1/2

r2 C r�2 � q2 � q�2
C b

.r � r�1/.q � q�1/

r2 C r�2 � q2 � q�2

�

:

Since Q is an idempotent, so we set up equations by comparing the coefficients
of Q2 and Q and find two solutions:

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

a D 1

q C q�1
;

b D q�1

q C q�1
I

or

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

a D � 1

q C q�1
;

b D q

q C q�1
:

(30)
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Without loss of generality, we choose the first solution in equation (30) to deter-
mine the coefficient of the linear expression of the minimal idempotent Q. Then
we have

Tr.Q/ Dar
� r � r�1

q � q�1

�2

C b
� r � r�1

q � q�1

�3

C c2
� r � r�1

q � q�1

�2

C .e C f /
r � r�1

q � q�1

D r

q C q�1

� r � r�1

q � q�1

�2

C q�1

q C q�1

� r � r�1

q � q�1

�3

C q � q�1

q C q�1

r�1q � r�1q

r2 C r�2 � q2 � q�2
2
� r � r�1

q � q�1

�2

C
�

� r C r�1

q C q�1
� 2

q � q�1

q C q�1

r�1q � r�1q

r2 C r�2 � q2 � q�2

�

D r

q C q�1

� r � r�1

q � q�1

�2

C q�1

q C q�1

� r � r�1

q � q�1

�3

� r C r�1

q C q�1
C 2

q � q�1

q C q�1

r�1q � r�1q

r2 C r�2 � q2 � q�2

�� r � r�1

q � q�1

�2

� 1
�

D 1

.q C q�1/.q � q�1/3
.r.r � r�1/2.q � q�1/ C q�1.q � q�1/3

� .r C r�1/.q � q�1/3

C 2.r�1q � rq�1/.q � q�1/2/

D .r � r�1/.r2q C r�2q�1 � q3 � q�3/

.q2 � q�2/.q � q�1/

D .r � r�1/.rq2 � r�1q�2/.rq�1 � r�1q/

.q C q�1/.q � q�1/3

Applying a similar computation, we see that P D f3 � Q is an idempotent with

Tr.P / D .r � r�1/.rq � r�1q�1/.rq�2 � r�1q2/

.q C q�1/.q � q�1/3
:

We remark that the second solution in equation (30) simply switches P and Q. �

Now we identify the two-parameter family of singly-generated TRPA with the
HOMFLY-PT planar algebras P

H
� .q; r/.

Theorem 3.13. Suppose P� is a singly-generated Thurston-relation planar al-
gebra and dim P4;˙ D 24. Then it is isomorphic to the semisimple quotient of
P

H
� .q; r/ for some .q; r/.

Proof. Suppose P� is a singly-generated Thurston-relation planar algebra as
stated in the theorem. We find .q; r/ such that P

H
� .q; r/ has the same parame-

ter .ı; /.
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Case 1:  D ..ı C 2/.ı � 1//=..ı � 2/.ı C 1//. In this case, we show that that
P

H
� .1; 1/ with a circle parameter ı is a solution. First note that this planar algebra

has the desired ı. Therefore, we only need to show that the ratio of two traces of
the two minimal idempotents in P

H
3 .1; 1/ equals to  . By Lemma 3.12, we know

that P
H
3 .1; 1/ with circle parameter ı has two minimal idempotents P; Q with

Tr.P / D ı.ı C 2/.ı � 1/

2
;

Tr.Q/ D ı.ı � 2/.ı C 1/

2
:

The ratio equals to

.ı C 2/.ı � 1/

.ı � 2/.ı C 1/
:

Therefore, P
H
� .1; 1/ with circle parameter ı gives a solution.

Case 2:  ¤ ..ı C 2/.ı � 1//=..ı � 2/.ı C 1//. Let .q; r/ be the solution of

q2 C q�2 D 2.ı2 � 2/=
�

ı2 �
�ı2 � 2

ı

 � 1

 C 1

�2�

� 2; (31)

r � r�1 D ı.q � q�1/: (32)

(Note that the assumption  ¤ .ıC2/.ı�1/
.ı�2/.ıC1/

implies that q ¤ ˙1.) From equa-
tion (31), we see that

ı2.q2 C q�2 � 2/ C 2 D
�ı2 � 2

ı

 � 1

 C 1
.q C q�1/

�2

� 2;

ı2.q � q�1/2 C 4 D
�ı2 � 2

ı

 � 1

 C 1
.q C q�1/

�2

;

.r � r�1/2 C 4 D
�ı2 � 2

ı

 � 1

 C 1
.q C q�1/

�2

: (33)

From equation (33), we obtain

r C r�1 D ˙ı2 � 2

ı

 � 1

 C 1
.q C q�1/:
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Then we have the following equations:

r2 � r�2 D ˙.ı2 � 2/
 � 1

 C 1
.q2 � q�2/; (34)

r2 C r�2 D ı2.q2 C q�2 � 2/ C 2: (35)

Recall that q ¤ ˙1, we define A; B by the formulas in Lemma 3.12

A D .r � r�1/.rq � r�1q�1/.rq�2 � r�1q2/

.q C q�1/.q � q�1/3
;

B D .r � r�1/.rq2 � r�1q�2/.rq�1 � r�1q/

.q C q�1/.q � q�1/3
:

Then we have

A C B D .r � r�1/..r2 C r�2/.q C q�1/ C 2.q3 C q�3//

.q C q�1/.q � q�1/3
;

A � B D .r � r�1/.r2 � r�2/.q � q�1/

.q C q�1/.q � q�1/3
:

Combined with the equations (32), (34), and (35), we have the following two
solutions:

8

ˆ

ˆ

<

ˆ

ˆ

:

A D .ı3 � 2ı/
1

1 C 
;

B D .ı3 � 2ı/


1 C 
I

or

8

ˆ

ˆ

<

ˆ

ˆ

:

A D .ı3 � 2ı/


1 C 
;

B D .ı3 � 2ı/
1

1 C 
:

In both cases, the singly-generated Thurston-relation planar algebra with .ı; /

and P
H
� .q; r/ have the same skein theory. Therefore, P� is isomorphic to the

semisimple quotient of the planar algebra P H
� .q; r/. �

Remark 5. There are eight solutions .q; r/ in the above theorem. Proposition 2.3
shows that the eight corresponding planar algebras are isomorphic.

4. Reduced case

In this section, we will classify subfactor planar algebras P� generated by a 3-box
with the Thurston relation for the reduced case, namely P4;˙ � 23.



Classification of Thurston relation subfactor planar algebras 471

4.1. The case for at most 22 dimensional 4-box space. We classify the singly-
generated TRPA with dim.P4;C/ � 22.

Proposition 4.1. Suppose P� is a singly-generated TRPA. Then dim P4;˙ � 22 if
and only if P� is either the E6 or E

.1/
6 subfactor planar algebra.

Proof. If ı > 2, it is shown in [15] that the 14 Temperley–Lieb diagrams and
the 8 elements in the annular consequence AC are linearly independent. Since
dim.P4;C/ � 22, the annular multiplicity sequence has to be 0210. By Theo-
rem 5.1.11 in [16], there is no such subfactor planar algebras. If ı � 2, then the
2-supertransitive subfactor planar algbera has principal graph E6 or E

.1/
6 .

Conversely, E6 or E
.1/
6 subfactor planar algebras are generated by a 3-box, and

the 4-box space P4;C is spanned by Temperley–Lieb diagrams and the annular
consequence AC. So the generator statisfies the Thurston relation. Therefore,
E6 or E

.1/
6 subfactor planar algebras are sinlgy-generated TRPA. Moreover, the

dimensons of their 4-box spaces are 21 and 22 respectively. �

Thus the main Theorem 1.2 holds for the reduced case in which dim P4;˙ �
22 by noting that E

.1/
6 is the HOMFLY-PT planar algebra P

H
� .q; r/ with q D

exp
p

�1�
6 and r D

p
�1.

4.2. The case for 23 dimensional 4-box space. In this section, we classify
subfactor planar algebras P� generated by a 3-box S with the Thurston relation,
such that dim.P4;˙/ D 23. In this case, we have ı > 2 and P3;C D 6. By the
result of Vaughan Jones [15], the 14 Temperley–Lieb diagrams and the 8 diagrams
in the annular consequence are linearly independent. Then one of the diagram
with two generators

S

S

$

$

; SS $$ ;
S

S

$

$ ;
S

S

$

$

is linearly independent with 22 lower terms. Otherwise P4;˙ D 22.

Up to rotation and the duality of the shading, we can assume that

S

S

$

$
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and the 22 lower terms form a basis. Similarly to Lemma 3.5, the basis for the
f2-cutdown of P4;C is given by

.

B
0
D

S

S S

SS

S

Note that all results in §3 work for the case dim.P4;˙/ D 23, except for
Theorem 3.10. There we used the fact that

S

S

is linearly independent with B 0, which is no longer true for the reduced case here.
Now we give a different proof of ! D 1 for the reduced case. Consequently the
main Theorem 1.2 holds for the reduced case dim P4;˙ � 23.

Theorem 4.2. If P� is a singly-generated Thurston-relation subfactor planar
algebra with parameters .ı; ; !; a; a0/ and dim.P4;˙/ D 23, then ! D 1.

Proof. By Proposition 4.1, we have that ı > 2 and thus P� has annnular multi-
plicity 0211. Since dim.P4;C/ D 23, we know that there exists one vertex of the
principal graph for P� at depth 3 whose degree is at most 2. Let P be the corre-
sponding minimal projection in P3;C and Q D f3 � P . We define P 0 2 P4;C to
be the following projection:

$ D $ � Œ3�

TrŒP �

$

$

P 0 P

P

P

;

where Œn� D qn�q�n

q�q�1 is the nth quantum number (where q is defined so that

ı D Œ2� D q C q�1 and q > 1). Let P 0 be the contragredient of P 0 and
T

4 P 0 be
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the following element

$ P 0 :

It follows that
T

4 P 0 belongs to the subspace in P3;C spanned by ¹S; f3º and thus
let Coeff

2
T

4 P 0.S/ be the coefficient of S in the linear expression of
T

4 P 0 with
respect to ¹S; f3º. By Theorem 3.3 in [26], we have that

. � 1/ � � C ��1

Œ3�
D �.1 C /

Œ4�

Œ3�
.Coeff

2
T

4 P 0.S//; (36)

where �2 D !.

If ! ¤ 1, then ! D e
2�

p
�1

3 or e
4�

p
�1

3 . We have that � C ��1 D ˙1. We
determine Coeff

2
T

nC1
NP 0.S/ in equation (36) for two cases:

Case 1: P 0 D P 0. Then we have

T

4P 0 D Tr.P 0/

Tr.P /
P:

By the definition of P 0, we know that Tr.P 0/ D Œ2� Tr.P / � Œ3�. Since

Tr.P / D Œ4�
1

1 C 
and P D 1

1 C 
S C 1

1 C 
f3;

we have that

Coeff
2
T

4 P 0.S/ D
�

Œ2� � Œ3�

Œ4�
.1 C /

� 1

1 C 
:

Therefore, equation (36) yields to

. � 1/ ˙ 1

Œ3�
D � Œ4�Œ2�

Œ3�
C 1 C :

From the definition of quantum numbers and ı D Œ2�, we have

ı4 � 4ı2 C 2 ˙ 1 D 0: (37)

But that equation (37) has no solution ı such that ı > 2 and thus it is a contradic-
tion. So ! D 1.
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Case 2: P 0 ¤ P 0. Then we have

T

4P 0 D Tr.P 0/

Tr.Q/
Q:

By the definition of P 0, we know that Tr.P 0/ D Œ2� Tr.P / � Œ3�. Since

Tr.P / D Œ4�
1

1 C 
; Tr.Q/ D Œ4�



1 C 

and

Q D � 1

1 C 
S C 

1 C 
f3;

we have that

Coeff
2
T

4 P 0.S/ D �
�

Œ2� � Œ3�

Œ4�
.1 C /

� 1

.1 C /
:

Therefore, equation (36) yields to

. � 1/ ˙ 1

Œ3�
D 1



� Œ2�Œ4�

Œ3�
� .1 C /

�

:

From the definition of quantum numbers, we have

Œ3�2 ˙  � Œ5� D 0: (38)

This is an equation for ı and  . When ! ¤ 1, we have another equation for ı and
 in Corollary 3.8.

Subcase 1. When a D 1, by equations (38) and (16), we have
8

ˆ

<

ˆ

:

Œ3�2 ˙  � Œ5� D 0;

ı.ı2 � 3/

ı2 � 1
� 2. � 1/2ı

ı2 � 3
D 0:

We use Mathematica to solve numerical solutions for .ı; /. For all solutions, the
value of ı is far below 2 and this contradicts that ı > 2.

Subcase 2. When a D �1, by equations (38) and (17), we have
8

ˆ

<

ˆ

:

Œ3�2 ˙  � Œ5� D 0;

ı
�

2
ı2 � 2

ı4 � 3ı2 C 1
� 1

�

C 2. � 1/ı

ı2 � 1
D 0:

(39)
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The linear system (39) does not have a solution in which the value of ı is greater
than 2 by checking the numerical solutions using Mathematica and this leads to a
contradiction.

We conclude that ! D 1 for the reduced case in which dim.P4;C/ D 23. �

Theorem 4.3. Suppose P� is a singly-generated Thurston-relation planar algebra
and dim P4;˙ D 23, then it is isomorphic to the semisimple quotient of zP H

� .q; r/,
where r D qN for some q; r .

Proof. It follows from theorems 4.2 and 3.11 and the proof of Theorem 3.13. �

Remark 6. We notice that in the case of 24 dimensional 4-box spaces, our proof
did not need the full strength of the assumption that we had a subfactor planar
algebra. In particular, we did not need that the canonical inner product on the box
spaces induces a positive definite inner product on the hom spaces in any essential
way, and it would have been sufficient in principal to assume that this inner product
was simply non-degenerate and ı > 2. For the cases in this section, when the 4-
box space has dimension less than 24, we appealed to triple point obstructions and
classification of subfactors, which are theorems for subfactor planar algebras, and
thus we used the subfactor assumption in an essential way.

5. Positivity

Convention: We say a planar algebra has positivity, if it has a positive semi-
definite Markov trace with respect to an involution.

In this section, we determine the positivity of P
H
� .q; r/: We classify q, r in C

and involutions on P
H
� .q; r/, so that the Markov trace is positive semi-definite.

Definition 5.1. We define the map

�nW Hn.q; r/ �! P
H
2n;C.q; r/;

for x 2 Hn.q; r/ defined �n.x/ as follows:

�nW x 7�! $ x
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Proposition 5.2. The map �n is an algebra homomorphism from Hn.q; r/ to
P

H
2n;C.q; r/ preserving the normalized Markov trace.

Proof. This follows from the HOMFLY-PT skein relations. �

Recall that when r D qN for some N 2 N and q D e
i�

NCl for some l 2 N,
P

H
� .q; r/ admits an involution � such that

� ��

D :

When q � 1, P
H
� .q; r/ admits an involution � such that

� ��

D :

In both case, the Markov trace is semi positive-definite. Therefore the semisimple
quotient of P

H
� .q; r/ is a subfactor planar algebra, denoted by zP H

� .q; r/.

We show that they are the only values of .q; r/ and involution such that the
positivity holds.

Theorem 5.3. The planar algebra P
H
� .q; r/ has positivity if and only if r D qN

for some N 2 N, and q D e
i�

NCl for some l 2 N or q � 1, and the involution is
unique.

Proof. If P
H
� .q; r/ has positivity, then the idempotents P and Q in Lemma 3.12

are projections, therefore the generator S is self-adjoint. Since P
H
� .q; r/ is gen-

erated by S , the involution � is uniquely determined.

In theorems 3.13 and 4.3, we show that a singly-generated Thurston-relation
planar algebra with parameters .ı; / and ı > 2 is isomorphic to P

H
� .q; r/ for

some .q; r/. By Lemma 2.3, we can assume that <q � 0, =q � 0. Note that ı > 2

and  > 0, then by equation (31), we have

q C q�1 D

s

2.ı2 � 2/=
�

ı2 �
�ı2 � 2

ı

 � 1

 C 1

�2�

: (40)

Note that the term in the square root is positive, so q C q�1 > 0. We have q D ei�

with 0 � � � �=2 or q � 1.
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Let Œn� denote the Young diagram with 1 row and n columns and Œ1n� denote
the Young diagram with n rows and 1 column.

Case 1: q > 1. By Lemma 2.3, we can assume that <r � 0. By

r � r�1

q � q�1
D ı > 2;

we have that r > 1. If r D qN , for some N 2 N, then we know that P
H
� .q; r/

has positivity. Otherwise, qN < r < qN C1. Then the idempotent mŒN C2� is well-
defined and Tr.mŒN C2�/ < 0. By Proposition 5.2, �N C2.mŒN C2�/ is an idempotent
with a negative trace. So P

H
� .q; r/ does not have positivity.

Case 2: q D ei� and q ¤ 1. By Lemma 2.3, we can assume that =r � 0. By
r � r�1

q � q�1
D ı > 2, we have r D ei˛, for some � < ˛ < � � � .

Subcase 1. If N� < ˛ < .N C 1/� , for some N 2 N, then the idempotent
mŒN C2� is well-defined and Tr.mŒN C2�/ < 0. By Proposition 5.2, P

H
� .q; r/ does

not have positivity.

Subcase 2. If ˛ D N� and �
N ClC1

< � < �
N Cl

, for some N; l 2 N, then
the idempotent mŒ1lC1� is well-defined and Tr.m1ŒlC1�/ < 0. By Proposition 5.2,
P

H
� .q; r/ does not have positivity.

Subcase 3. If ˛ D N� and � D �
N Cl

, for some N; l 2 N, then we know that
P

H
� .q; r/ has positivity.

Case 3: q D 1. By r � r�1 D ı.q �q�1/, we have r D 1. By a similar argument
in Case 1, one can show that ı D N , for some N 2 N. In this case, we know that
P

H
� .q; r; ı/ D P

H
� .1; 1; N / has positivity. �

By Proposition 4.1 and theorems 3.13, 4.3, and 5.3, we obtain our classification
result Theorem 1.2.
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