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Abstract: Inspired by the quantum McKay correspondence, we consider the classical
ADE Lie theory as a quantum theory over sl2. We introduce anti-symmetric characters
for representations of quantum groups and investigate the Fourier duality to study the
spectral theory. In the ADE Lie theory, there is a correspondence between the eigenval-
ues of the Coxeter element and the eigenvalues of the adjacency matrix. We formalize
related notions and prove such a correspondence for representations of Verlinde alge-
bras of quantum groups: this includes generalized Dynkin diagrams over any simple Lie
algebra g at any level k. This answers a recent comment of Terry Gannon on an old
question posed by Victor Kac in 1994.

1. Introduction

In 1980, McKay found his correspondence between subgroups of SU (2) and the affine
ADE Dynkin diagrams [48]. In 1987, Cappelli, Itzykson and Zuber found a correspon-
dence between ADE Dynkin diagrams and the modular invariant of quantum sl2 [8],
which was further formulated by Ocneanu as a correspondence to subgroups of quantum
sl2 [55]. This has been considered as a quantum analogue of theMcKayCorrespondence.
We elaborate this idea in §2.

In ADE Lie theory, the action of the Coxeter element on the root system has period-

icity equal to the Coxeter number ck = 2 + k, for some k ∈ N
+. Its eigenvalue is e

j2π i
ck ,

for some j ∈ Zck , and j is called a Coxeter exponent. On the other hand, the eigenvalues

of the adjacency matrix of the ADE Dynkin diagram are given by e
jπ i
ck + e

− jπ i
ck , where

j is an exponent with the same multiplicity.
Kac asked the question, whether the Coxeter exponents for the ADE quivers can be

generalized beyond SU (2) theory in a talk given by Terry Gannon in 1994 at MIT [36].
Gannon commented in his lecture at the Shanks workshop at Vanderbilt University in
September 2017, that if such a generalization exists, then the correspondence between
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the Coxeter exponents and the spectrum of the adjacency matrices should work for all
quivers (or NIM-reps) of module categories acted on by the representation category of
quantum sln , and it may even be true over any simple Lie algebra g at level k [23]. These
quivers were called higher Dynkin diagrams by Ocneanu around 2000, see also [56].

The generalization of adjacency matrices and their spectrum are straightforward
and well-understood. The generalizations of roots and the Coexter element have been
considered by Di Francesco and Zuber for generalized Dynkin diagrams in [13] and by
Ocneanu for higher Dynkin diagrams in [55] using different approaches. The spectrum
of the adjacency matrices and the spectrum of the generalized Coxeter elements have
been considered as two different generalizations of the Coxeter exponents.

In this paper, we study a generalization of the adjacency matrices and the Coxeter
elements for any unital *-representation � of the Verlinde algebra [63] of any simple
Lie algebra g at any level k, including generalized Dynkin diagrams and higher Dynkin
diagrams as special cases. We prove a general correspondence between the spectrum of
adjacency matrices and the spectrum of Coxeter elements for �. The relation between
the multiplicities of the two spectra are computed in Theorem 8.28. In particular, when
g is of type ADE and � is graded by the center of g, we prove that the multiplicities
of the two spectrums are the same. This answers Gannon’s comment on Kac’s question,
by generalizing the equality of the multiplicities for Coxeter exponents associated with
classical ADE Dynkin diagrams, see our dictionary after Theorem 8.28.

Many concepts in this paper were well studied in literature related to quantum
McKay correspondence, from conformal field theory to category theory. We explain
these concepts using classical Lie theory in an elementary and self-contained way, in-
stead of using the fruitful approach of quantum groups and the McKay correspondence.
We hope our approach will be helpful for many readers. We refer to §2 for further
background and extensive, but definitely not encyclopedic, references.

We study the notions related to affine Lie algebras and quantum groups using Lie
groups and their subgroups.We consider a quantum group as a simple Lie algebra gwith
a natural number k, corresponding to the level. We construct its Verlinde algebra by anti-
symmetric characters defined in §5. For each level k, the anti-symmetric characters are
defined by theWeyl denominators on a domain Tk,0, a subset of the maximal torus of the
corresponding Lie group. From the choice of the domain, we obtain a natural cutoff of
the fusion rule of representations from the Lie algebra g to the quantum group at level k,
also known as the Wess–Zumino–Witten cutoff [51,66–68]. We attempt to understand
the connection between the McKay correspondence and the quantum McKay corre-
spondence with this approach. Another motivation for introducing the anti-symmetric
characters is understanding the fusion rule and their generating functions in a closed
form for the representations of two families of quantum subgroups constructed in [44].

Additive functions on Auslander–Reiten quivers were studied by Gabriel in [20].
For an ADE Dynkin diagram, the root system can be realized as additive functions on
the Auslander–Reiten quiver, and the Coxeter element is given by a translation functor.
The adjacency matrix of the ADE Dynkin diagram can be extended to a Z2-graded
unital *-representation of the Verlinde algebra of sl2 at level k, and k = ck − 2. We
study a generalization of related concepts for any (graded) unital *-representation � of
the Verlinde algebra of a simple Lie algebra g at level k. We define the corresponding
adjacency matrices, quantum Dynkin diagram, quantum root spaces, quantum Coxeter
elements and quantum Coxeter exponents. See the end of §8 for a dictionary.

We study the spectral theory using the Fourier duality in §4. We apply the Fourier
transform to diagonalize the actions of the adjacency matrices, and identify their simul-
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taneous eigenvalues as elements in Tk,0 modulo theWeyl group action, which we call the
spectrum. On the other hand, we apply the Fourier transform to diagonalize the actions
of quantum Coxeter elements, and identify their simultaneous eigenvalues as elements
in Tk,0. Moreover, we introduce the quantum Coxeter exponents for the elements in
Tk,0. Then we can compare their multiplicities using these two identifications and obtain
an equality in Theorem 8.28. This equality generalizes the known correspondence of
Coxeter exponents for the ADE Dynkin diagrams over g = sl2, and in this theorem we
answer the Gannon’s comment on Kac’s question.

2. Background

It is well known that the simple Lie algebras are classified by Dynkin diagrams as their
underlying symmetry. The construction fromDynkin diagrams to Lie algebras was given
by Chevalley. The simply-laced Dynkin diagrams are the ADE Dynkin diagrams and
one can obtain the others from an orbifold construction of the ADE ones.

In 1980, McKay found a one-to-one correspondence between subgroups of SU (2)
and the affine ADE Dynkin diagrams [48]. The affine Dynkin diagrams appeared as
the quivers of the irreducible representations (irreps) of SU (2) tensoring the standard
representation. The Mckay correspondence relates subgroups of SU (2) and ADE Lie
theory.

Around 1968, Kac and Moody studied infinite dimensional Lie algebras, known as
Kac–Moody Lie algebras, see [34,35,50]. The type Ak+1 Dynkin diagrams appeared
as the quivers of the semisimple irreps of the affine Lie algebra sl(2) at level k. In
1983, Jones classified the indices of a subfactorN ⊂ M, an inclusion of von Neumann
algebras with trivial center [31]:

{
4 cos2

π

2 + k
, k = 1, 2, · · ·

}
∪ [4,∞].

For each k, he constructed a subfactor with index 4 cos2 π
2+k , whose principal graphs,

namely the quiver of bimodules, is the Ak+1 Dynkin diagram. The Ak+1 Dynkin diagram
also appeared as the quiver of semisimple irreps of the Drinfeld-Jimbo quantum group

Uqsl2, q = e
π i
2+k [15,30]. The correspondence between the two representation theories

is given in [32]. Wassermann found another conceptual connection between subfactor
theory and representation theory of quantum groups in conformal field theory [64]. The
correspondence between representations of affine Lie algebras and representations of
quantum groups is given by Kazhdan and Lusztig in [39]. The Ak+1 Dynkin diagram
appeared as a cutoff of A∞. This is a general phenomenon also known as the Wess–
Zumino–Witten cutoff [51,66–68]. See the book [2] of Bakalov and Kirillov Jr. for
general situations and further connections.

In 1987, Cappelli, Itzykson and Zuber classified the modular invariants of quantum
sl2 at level k by ADE Dynkin diagrams with Coxeter number 2+k. The diagonals of the
modular invariants matched the multiplicities of the Coxeter exponents, which was first
observed by Kac for the E6 case, see further discussion in [8]. A connection between
the diagonals of the modular invariants and the spectrum of the adjacency matrices of
representations of the Verlinde algebra of quantum sln has been studied by Di Francesco
and Zuber in [13]. In 1988, Ocneanu outlined the surprising An, D2n, E6, E8 classifica-
tion of the standard invariants of subfactors with index less than 4 in [52]. The proof of
the classification is given in [3,24,28,29,38]. This ADE classification is also a classi-
fication of subfactors due to Popa’s reconstruction theorem [60]. See the survey paper
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[33] for more details. In 1994, Ocneanu proposed a connection between subfactors and
extended Turaev-Viro TQFT [53]. Given a subfactor N ⊂ M, if the N − N bimodule
category is isomorphic to the representation category of quantum sl2, which defines a
Turaev-Viro TQFT [62], then the subfactor defines an extended TQFT. Ocneanu consid-
ered this subfactor (or theM−M bimodule category) as a subgroup of quantum sl2 and
the N − M module category as a module of quantum sl2, see [54]. All ADE Dynkin
diagrams appeared as the quiver of the generating N − N bimodule, corresponding to
the fundamental representation of quantum sl2, acting on irreducible N − M bimod-
ules. The correspondence between ADE subfactors and modular invariants is given by
Böckenhauer, Evans andKawahigashi based on theα-induction [5,6,46,54,69]. A corre-
sponding categorical formalization of module categories and the classification has been
done by Kirillov and Ostrik with independent proofs in [40,57]. The ADE classification
related to quantum sl2 has become known as the quantum McKay correspondence.

Inspired by Chevalley’s construction and McKay correspondence, one can consider
the ADE Lie theory as a mathematical theory over sl2. It turns out to be natural to study
the notions in Lie theory over quantum sl2 and other quantum groups. In this direction,
Zuber introduced generalized Dynkin diagrams over sln at level k and a generalization
of Coxeter elements and Coxeter exponents in [70,71]. Many examples of generalized
Dynkin diagrams appeared in conformal field theory, see the book of Di Francesco,
Mathieu, and Sénéchal [12]. Ocneanu reformulated the generalized Dynkin diagrams as
the quivers of modules of sln at level k and proposed a classification for sl2, sl3 and sl4
in [55], and he called these quivers higher Dynkin diagrams [56]. Another approach is
given by Etingof and Khovanov in terms of integer modules over the Verlinde algebras
of quantum groups [17].

Zuber’s motivation for studying his generalized Dynkin diagrams arises from confor-
mal field theory [70,71]. Xu constructed type E quantum subgroups of quantum groups
through conformal inclusions in chiral conformal field theory [69], and the quantum
subgroup is implemented as the (bi-)module category of commutative Frobenius alge-
bras in the unitary modular tensor category of the quantum group. He also computed the
corresponding quivers, namely higher Dynkin diagrams, for small rank quantum groups.
The analogous construction for orbifolds, namely type D module categories, was given
in [4] and the remaining E7 modular invariant and module category was constructed in
[6]. In general, it requires the modular invariant and 6j symbols to construct irreducible
modules and to compute the quivers as shown in [5,6,54]. However, it remains a difficult
problem to compute the 6j symbols in a closed form. It is also challenging to compute
the corresponding quivers in closed forms when the quantum groups have large rank.

The first author introduced a new type of Schur-Weyl duality for families of type
E quantum subgroups in [44]. This provides new methods to compute the quivers of
module categories without computing the modular invariant and quantum 6j symbols.
See further discussion in [45]. It would be interesting to compute the quantum Coxeter
exponents and multiplicities for these families of examples.

For the sl3 case, Di Francesco and Zuber investigated the McKay correspondence
both in the classical and quantum sense in [13]. Gannon classified the modular invariants
for quantum sl3 in [21]. Ocneanu proposed in [55] a classification of unitary module
categories of quantum sl3 , relying on the existence of a cell system, and asserted the non-
existence of such a cell system for a particular NIM-rep of the list given byDi Francesco–
Zuber in [13]. The existence of the Ocneanu cell systems for sl3 was computed by Evans
and Pugh in [16] and by Coquereaux, Schieber and Isasi in [9]; the non-existence of the
cell system for the previously mentioned particular NIM-rep was also detailed in [9].
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Recently Evans and Pugh classified modular invariants and unitary module categories
for SO(3)2m in [18].

Following the quantumMcKay correspondence, Ocneanu proposed a generalization
of the Lie theory in [55] and gave a course “higher representation theory” at Harvard
in the 2017 fall term. For Ocneanu’s blueprint shown in his course, we refer readers to
the lecture notes in [56]. Some motivating examples including higher Dynkin diagrams,
higher roots, higher Coxeter elements over sl3 were discussed in [56], see also hyper
roots over sl3 in [11]. There are different approaches to generalize Lie theory, which we
do not discuss in this paper.

Gabriel constructed the root category using the quiver representations of ADE
Dynkin diagrams in [19]. Using the root category, Ringle constructed the positive part of
the corresponding Lie algebras in his seminal work [61]. Happel gave another construc-
tion of the root category using 2-periodic derived categories of quiver representations
in [26,27]. Remarkably, Peng and Xiao constructed simple Lie algebras in [58] and
symmetrizable Kac–Moody Lie algebras using these derived categories in [59]. Dorey
constructed the ADE root system and the Coxeter element using the corresponding
NIM-rep data of quantum sl2 in [14]. Ocneanu proposed a construction of the root cat-
egory using the module category over quantum sl2 in [55,56], see further discussion by
Kirillov and Thind in [41,42]. Furthermore, Kirillov and Thind constructed the corre-
sponding derived category in [43]. It will be interesting to generalize the construction
of the Lie algebras for quivers over a quantum group g beyond sl2. It would require a
generalization of Lie bracket and the Jacob identity.

Around 1986,Kac observed a correspondence between the diagonal of an sl2 modular
invariant and the Coxeter exponents of E6, which turned out to be a general phenomenon
for all sl2 modular invariants as discussed in [7,8,37]. The diagonal of a modular in-
variant is also a natural generalization of the Coxeter exponent. It is natural to ask for
a generalization of this correspondence over a simple Lie algebra g at level k as well.
Kac and Gannon asked whether for any module category of the representation category
of quantum sln , there is a correspondence between the diagonal of its modular invariant
and the spectrum of its adjacency matrices.

3. Preliminaries

Let g be a simple complex Lie algebra, that is the complexification of the Lie algebra k
of a simply-connected compact Lie group K . Let t be a maximal abelian subalgebra of
k, and let T be the maximal torus, a Lie subgroup of K whose Lie algebra is t. Then
h = t + it is a Cartan subalgebra of g. Denote by 〈·, ·〉 an inner product on g such that
it is invariant under the adjoint action of K and taking real values on k. Let � be the rank
of g.

Denote the set of roots of g by �. Let {α1, . . . , α�} be the set of simple roots in �.
We denote by Q the root lattice,

Q =
⎧⎨
⎩

�∑
j=1

k jα j : k j ∈ Z

⎫⎬
⎭ .

The set ofpositive roots is denotedby�+.Let θ be thehighest positive root, namely θ+α

is not a root for any simple root α. We assume that the inner product 〈·, ·〉 is normalized

such that 〈θ, θ〉 = 2. For any root α ∈ �, let α∨ := 2

〈α, α〉α be the coroot of α for g.
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Denote by Q∨ the coroot lattice of g. Let θ =
∑�

j=1
a jα j and θ∨ =

∑�

j=1
a∨
j α j .

Then h = 1 +
∑�

j=1
a j is the Coxeter number of g and h∨ = 1 +

∑�

j=1
a∨
j is the

dual Coxeter number.
Let� = {ω1, . . . , ω�} be the set of fundamental weights, such that 〈ω j , Hαi 〉 = δ j,i

for any 1 ≤ j, i ≤ �. Let P be the weight lattice of g. The root lattice Q is a subgroup
of P . It is known that

Z(g) := P/Q

is isomorphic to the center Z(K ) of the Lie group K . Denote its order by nz := |Z(g)|.
Let C be the closed fundamental Weyl chamber of P , i.e.

C =
⎧⎨
⎩λ =

�∑
j=1

k jω j : k j ∈ N, 1 ≤ j ≤ �

⎫⎬
⎭ .

For any λ ∈ C, we denote byW(λ) theweight diagram of the irreducible representation
with the highest weight λ. The Weyl vector ρ is the sum of fundamental weights,

ρ =
∑�

j=1
ω j . Another expression of ρ is half the sum of positive roots,

ρ = 1

2

∑
α∈�+

α . (1)

For any α ∈ �, we denote by rα the reflection rα(λ) = λ−〈λ, α∨〉α for any λ ∈ P .
Let W be the Weyl group of g generated by the reflections rα(λ). For any r ∈ W , we
denote by det(r) the sign of r .

For anyλ ∈ C, we denoteVλ the irreducible representationof K with highestweight
λ. Let χλ be the character of the Lie group K associated to Vλ. Suppose Vμ ⊗ Vλ

∼=⊕
ν∈C

N ν
μ,λVν , where N ν

μ,λ ∈ N is called a fusion coefficient. Then

χμχλ =
∑
ν∈C

N ν
μ,λχν. (2)

For any λ ∈ C and H ∈ t, theWeyl character formula states

χλ(e
H ) =

∑
r∈W det(r)ei〈r(λ+ρ)−ρ,H〉
∏

α∈�+

(
1 − e−i〈α,H〉) =

∑
r∈W det(r)ei〈r(λ+ρ),H〉

∏
α∈�+

(
ei〈α,H〉/2 − e−i〈α,H〉/2) .

Moreover, the Weyl denominator formula states
∑
r∈W

det(r)ei〈r(ρ),H〉 = ei〈ρ,H〉 ∏
α∈�+

(
1 − e−i〈α,H〉) =

∏
α∈�+

(
ei〈α,H〉/2 − e−i〈α,H〉/2) ,

(3)

see e.g. Theorem 10.4 and Equation 10.4.4 in [35]. The Weyl character formula can be
rewritten as

χλ(e
H ) =

∑
r∈W det(r)ei〈r(λ+ρ),H〉
∑

r∈W det(r)ei〈r(ρ),H〉 .



Antisymmetric Characters and Fourier Duality 83

Now let us recall the notions related to a level k ∈ N of g. Let ck = h∨ + k be the
altitude, which plays the role of quantum Coxeter number over g at level k in this
paper. Define

Qh := {r(θ)|r ∈ W };
Q∨

k := ck Q
∨.

Then Q∨ = spanZQh .

For any λ ∈ P , define a translation ϑλ on P by

ϑλ(μ) = λ + μ, μ ∈ P.

Then the set {ϑλ}λ∈P is a free abelian group using composition. For a level k ∈ N, the
affine Weyl group Ŵ is generated by the Weyl group W and the translation ϑckθ . The
translation subgroup Wt of Ŵ is given by

Wt := {ϑα | α ∈ Q∨
k }.

Then Ŵ = Wt � W . For any r ∈ Ŵ , we denote by det(r) the sign of r in Ŵ/Wt ∼= W .
The alcove Ck is defined as

Ck =
⎧⎨
⎩λ =

�∑
j=1

k jω j ∈ C : k j ∈ N
+, j = 1, . . . , �, 〈λ, Hθ 〉 < ck

⎫⎬
⎭ ⊂ C.

The finite dimensional irreducible representations (with non-vanishing quantum dimen-
sion) of the quantum group g at level k are denoted by {Ṽλ | λ ∈ Ck}, and Ṽλ corre-
sponds to Vλ−ρ . They form a unitary fusion category, after a semisimplification of the
representation category of the quantum group. Their fusion rule, known as the Wess–
Zumino–Witten cutoff, can be computed using the Kac-Walton algorithm [35,65].

Ṽλ ⊗ Ṽμ =
∑
ν∈Ck

Ñ ν
λ,μṼν =

∑
ν∈Ck ,r∈Ŵ ,

r(ν)−ρ∈C

det(r)Nr(ν)−ρ
λ−ρ,μ−ρ Ṽν, (4)

The fusion algebra is known as the Verlinde algebra of the quantum group [63]. These
irreps form a Z(g)-graded fusion ring [47], such that Ṽλ is graded by λ − ρ in Z(g).

For ADE Dynkin diagrams, Gabriel constructed the root system using additive func-
tions on the Auslander–Reiten quiver [20], see also [26]. We briefly recall this construc-
tion and formalize related concepts in a general situation in §8. Take an ADE Dynkin
diagram G as a bipartite graph and let ε : Gv → Z2 be a Z2 grading of the vertices
Gv of G. The vertices of the Auslander–Reiten quiver is � = {(i, x) ∈ Z2ck × Gv :
i + ε(x) = 0 ∈ Z2}. A function f on � is called additive, if f (i, x) ∈ Z and

f (i, x) + f (i + 2, x) =
∑

y∈N (x)

f (i + 1, y), ∀ (i, x) ∈ � , (5)

where N (x) is the set of vertices adjacent to x . LetH be the space of additive functions
with the discretemeasure on�,PH be the orthogonal projection from L2(�) ontoH, and
δi,x be the delta function at (i, x). Then 2ckPH(δi,x ) is an additive function. Moreover,

{√2ckPH(δi,x ) : (i, x) ∈ �}
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forms the root system of G. Furthermore the translation ϑ on �, ϑ(i, x) = (i + 2, x),
induces a Coxeter transformation on the root system. This construction was rediscovered
and used by Dorey in [14] using a NIM-rep of quantum sl2. An explicit description, for
several root systems, of this periodic quiver was given in [10].

4. Fourier Duality

In Lie theory, the exponential map H �→ e2πH is a group isomorphism t/Q∨ ∼= T . For
any λ ∈ P , the Fourier transformˆ : λ �→ λ̂, given by

λ̂(e2πH ) = e2π i〈λ,H〉 , (6)

is well defined on e2πH ∈ T . The map ˆ is a group isomorphism from P to the dual of
the abelian group T . The weight lattice P is the dual of the coroot lattice Q∨:
(1) λ ∈ P iff 〈λ, H〉 ∈ Z, ∀H ∈ Q∨;
(2) H ∈ Q∨ iff 〈λ, H〉 ∈ Z, ∀λ ∈ P .

Definition 4.1. Suppose A is a sub lattice of P and P/A is finite. We define the dual
lattice of A in t as

tA = {H ∈ t|〈α, H〉 ∈ Z,∀α ∈ A}.
Define the corresponding subgroup of T as

TA =
{
e2πH ∈ T : H ∈ tA

}
.

Then TA ∼= tA/Q∨. By the duality of lattices, we have the following result:

Proposition 4.2. For any α ∈ t, α ∈ A iff 〈α, H〉 ∈ Z, ∀H ∈ tA.

Theorem 4.3. The map ˆ induces a group isomorphism from P/A to the dual of the
abelian group TA.

Proof. If λ ∈ A, then by the definition of TA, we have λ̂(eH ) = 1, for any eH ∈ TA.
So ˆ is well-defined from P/A to the dual of TA. Conversely, for any λ ∈ P , if
λ̂(e2πH ) = 1, ∀ H ∈ tA, then 〈λ, H〉 ∈ Z. By Proposition 4.2, λ ∈ A. So ˆ is injective.
Suppose that f is a character of TA. Then f (eH ) = ei〈λ,H〉, for some λ ∈ t. For any
H ∈ 2πQ∨, we have eH = 1 ∈ TA. So f (eH ) = 1 and 〈λ, H〉 ∈ 2πZ. By the duality
between the lattices P and Q∨, we have λ ∈ P . So the map ˆ is surjective. Therefore, ˆ
is a group isomorphism from P/A to the dual of the abelian group TA. ��

For any k ∈ N, consider the case A = Q∨
k = ckQ∨.

Definition 4.4. The lattice tk in t is

tk = {H ∈ t|〈α, H〉 ∈ Z,∀α ∈ Q∨
k }.

The subgroup Tk of T is

Tk =
{
e2πH : H ∈ tk

}
⊂ T .

We call the quotient group Pk := P/Q∨
k a weight torus.
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Corollary 4.5. The map ˆ induces a group isomorphism from Pk to the dual of the
abelian group Tk.

Corollary 4.6. The order of the group Tk is

|Tk | = |Pk | = |P/Q| · |Q/Q∨| · |Q∨/Q∨
k | = nzc

�
k |Q/Q∨|.

Remark 4.7. When g = sln , Q∨
k = ck Q. So |Tk | = |Pk | = n(n + k)n−1.

Let L2(Pk) be the complex L2 functions on Pk with counting measure. Let L2(Tk)
be the complex L2 functions on Tk with Haar measure. Recall that Pk and Tk are dual
to each other. For any f ∈ L2(Pk), its Fourier transform F( f ) in L2(Tk) is

F( f )(eH ) =
∑
λ∈Pk

f (λ)ei〈λ,H〉, eH ∈ Tk .

Then F is a unitary transformation:

〈F( f ),F( f ′)〉 = 〈 f, f ′〉, f, f ′ ∈ L2(Pk).

For any g ∈ L2(Tk), the inverse Fourier transform F−1(g) of f is

F−1(g)(λ) = 1

|Tk |
∑

eH∈Tk
g(eH )e−i〈λ,H〉, λ ∈ Pk .

For any f ∈ L2(Pk) and r ∈ W , we define r( f ) as r( f )(λ) = f (r−1(λ)) for any
λ ∈ Pk .

Definition 4.8. Let L2(Pk)W be the space of all anti-symmetric functions on Pk :

L2(Pk)
W = { f ∈ L2(Pk) : r( f ) = det(r) f, ∀r ∈ W }.

For any g ∈ L2(Tk) and r ∈ W , we define r(g) as r(g)(eH ) = g(er
−1(H)) for any

eH ∈ Tk .

Definition 4.9. Let L2(Tk)W be the space of all anti-symmetric functions on Tk :

L2(Tk)
W = {g ∈ L2(Tk) : r(g) = det(r)g, ∀r ∈ W }.

Proposition 4.10. We have

F(L2(Pk)
W ) = L2(Tk)

W .

Proof. Suppose f is an anti-symmetric function in L2(Pk). Then for any eH ∈ Tk and
r ∈ W ,

r(F( f ))(eH ) =
∑
λ∈Pk

f (λ)ei〈λ,r−1(H)〉 =
∑
λ∈Pk

f (λ)ei〈r(λ),H〉

=
∑
λ∈Pk

f (r−1(λ))ei〈λ,H〉 =
∑
λ∈Pk

det(r) f (λ)ei〈λ,H〉

= det(r)F( f )(eH ).

Hence F( f ) is anti-symmetric.
Conversely, if g is an anti-symmetric function in L2(Tk), then F−1(g) is anti-

symmetric by a similar computation. Therefore, F is a unitary transformation from
L2(Pk)W to L2(Tk)W . ��
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5. Anti-symmetric k-Characters

In this section, we introduce anti-symmetric characters for a simple Lie algebra g and
a level k. We construct a C∗-algebra of those characters which represents the Verlinde
algebra of the corresponding quantum group. Therefore, we call it the k-character Ver-
linde algebra of gat level k. We reformulate some well-known properties of the Verlinde
algebra and its S matrix in term of anti-symmetric characters. To be self-contained, we
prove these results using basic properties of Lie algebras.

Definition 5.1. We say λ ∈ Pk is in a mirror, if it is in M(Pk) := {λ ∈ Pk : rα(λ) =
λ, for some α ∈ �}. We say eH ∈ Tk is in a mirror if it is in M(Tk) := {eH ∈ Tk :
erα(H) = eH , for some α ∈ �}. Furthermore,

Pk,0 = Pk\M(Pk);
Tk,0 = Tk\M(Tk).

Note that the Weyl group W action fixes M(Tk) and M(Pk), so it also fixes Pk,0 and
Tk,0. Moreover, the action of W is transitive on each orbit in Pk,0 and Tk,0. Recall that
the alcove Ck is defined as

Ck =
⎧⎨
⎩λ =

�∑
j=1

k jω j ∈ C : k j ∈ N
+, j = 1, . . . , �, 〈λ, Hθ 〉 < ck

⎫⎬
⎭ ⊂ C.

In affine Lie algebras, it is known that Ck is a fundamental domain of Pk,0 under the
action of W .

Remark 5.2. If the Lie algebra g = sln , then |Ck | is the binomial coefficient

|Ck | =
(
ck − 1

n − 1

)
.

Definition 5.3. (k-characters) For any λ ∈ Pk , eH ∈ Tk , we define χ̂λ at λ by

χ̂λ = F(
∑
r∈W

det(r)δr(λ)),

where δλ is 1 on λ and 0 elsewhere. Then

χ̂λ(e
H ) =

∑
r∈W

det(r)ei〈r(λ),H〉.

We define the k-character χ̃λ to be the restriction of χ̂λ on Tk,0.

Proposition 5.4. The function χ̂ is anti-symmetric on Pk and Tk, namely, for any λ ∈ Pk,
r ∈ W,

χ̂r(λ) = det(r)χ̂λ,

r(χ̂λ) = det(r)χ̂λ.

Consequently, χ̂λ is supported in Tk,0.

Proof. By the definition of χ̂ , it is anti-symmetric on Pk . By Proposition 4.10, χ̂ is
anti-symmetric on Tk . ��
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Corollary 5.5. If λ is in a mirror, then χ̂λ = 0. For any λ ∈ Pk, if eH is in a mirror, then
χ̂λ(eH ) = 0.

Proof. By Proposition 5.4, if rα(λ) = λ for some α ∈ �, then

χ̂λ = χ̂rα(λ) = det(rα)χ̂λ = −χ̂λ,

and we obtain χ̂λ = 0. For any λ ∈ Pk and erα(H) = eH for some α ∈ �, we have

χ̂λ(e
H ) = χ̂λ(e

rα(H)) = −χ̂λ(e
H ),

and hence χ̂λ(eH ) = 0. ��
Theorem 5.6. The set {|W |− 1

2 χ̂λ}λ∈Ck forms an orthonormal basis (ONB) of L2(Tk)W .
In particular,

dim L2(Tk)
W = |Ck |.

Proof. Note that {|W |−1/2∑
r∈W det(r)δr(λ)}λ∈Ck formanorthonormal basis of L2(Pk)W .

By the definition of χ̂ and Proposition 4.10, {|W |− 1
2 χ̂λ}λ∈Ck forms an orthonormal basis

of L2(Tk)W . ��
Definition 5.7. Define the space L2(Tk,0)W as anti-symmetric functions on Tk,0:

L2(Tk,0)
W = {g ∈ L2(Tk,0) : r(g) = det(r)g, ∀r ∈ W }.

Byanti-symmetry, any function in L2(Tk)W is supported inTk,0. So L2(Tk)W ∼= L2(Tk,0)W .

Corollary 5.8. The set of multiples of k-characters {|W |− 1
2 χ̃λ}λ∈Ck forms an orthonor-

mal basis of L2(Tk,0)W .

Fact 5.9. Recall that ρ is the Weyl vector. By the Weyl denominator formula (3), for any
eH ∈ Tk, χ̂ρ(eH ) �= 0 iff eH ∈ Tk,0. Equivalently, χ̃ρ is invertible in L2(Tk,0).

Recall that χ̃ is the restriction of χ̂ on Tk,0.

Definition 5.10. We define the multiplication � of χ̃λ and χ̃μ for any λ,μ ∈ Pk to be

χ̃λ � χ̃μ = χ̃λχ̃μ

χ̃ρ

.

Then χ̃ρ is the identity under this multiplication.
Recall that the fusion coefficients Ñ ν

λ,μ of the representations {Ṽλ : λ ∈ Ck} of g at
level k is given in Eq. (4).

Definition 5.11. For λ,μ, ν ∈ Ck , we define the fusion coefficient Ñ ν
λ,μ as

Ñ ν
λ,μ =

∑
ν′−ρ∈C,r∈W
r(ν′)−ν∈Q∨

k

det(r)N ν′−ρ
λ−ρ,μ−ρ. (7)
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By Eq. (4), the fusion rule of representations of quantum g at level k is given by

Vλ−ρ ⊗ Vμ−ρ =
⊕
ν∈Ck

Ñ ν
λ,μVν−ρ.

Consequently, Ñ ν
λ,μ ∈ N.

Theorem 5.12. For any λ,μ, ν ∈ Ck ,

χ̃λ � χ̃μ =
∑
ν∈Ck

Ñ ν
λ,μχ̃ν .

Equivalently,

Ñ ν
λ,μ = 1

|W | 〈χ̃λ � χ̃μ, χ̃ν〉.

Proof. Note that
χ̃λ

χ̃ρ

= χλ−ρ on Tk,0. Then in L2(Tk,0), one has

χ̃λ � χ̃μ = χ̃λχ̃μ

χ̃ρ

= χλ−ρχμ−ρχ̃ρ

=
∑

ν′−ρ∈C
N ν′−ρ

λ−ρ,μ−ρχν′−ρχ̃ρ

=
∑

ν′−ρ∈C
N ν′−ρ

λ−ρ,μ−ρχ̃ν′

=
∑
ν∈Ck

Ñ ν
λ,μχ̃ν.

The last equality uses the anti-symmetry established in Proposition 5.4, χ̃ν′ = det(r)χ̃ν ,
when r ∈ W and r(ν′) − ν ∈ Q∨

k . ��
Recall that α1, · · · , α� are simple roots in �. Then {−α1, · · · ,−α�} is also a set

of simple roots. So there is an element κ ∈ W , such that κ(ρ) = −ρ. Moreover,
κ(Ck) = −Ck .
Remark 5.13. It is known that ε(κ) = (−1)|�+|. If the Lie algebra g is sln , we have for
any λ ∈ Ck ,

ε(κ) = (−1)
n(n−1)

2 .

Definition 5.14. Define an involution ∗ : λ �→ κ(−λ) on Ck . Then it is well defined on
Pk , and ρ∗ = ρ.

For any λ ∈ Pk , by the definition of χ̃ and its anti-symmetry, we have

χ̃λ∗ = χ̃κ(−λ) = ε(κ)χ̃−λ = ε(κ)χ̃λ. (8)

The involution * on Ck induces an involution on L2(Tk,0)W :

χ̃∗
λ := χ̃λ∗ , λ ∈ Ck .
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Proposition 5.15. For any λ,μ ∈ Ck , Ñρ
λ,μ = 1 iff λ = μ∗. Moreover, * induces an

anti-isomorphism on L2(Tk,0)W with multiplication �.

Proof. By Corollary 5.8 and Theorem 5.12, for any λ,μ ∈ Ck ,

Ñρ
λ,μ = |W |−1〈χ̃λ � χ̃μ, χ̃ρ〉 = |W |−1〈χ̃λ, χ̃ρ � χ̃∗

μ〉 = |W |−1〈χ̃λ, χ̃
∗
μ〉 = δλ,μ∗ .

Moreover,

(χ̃λ � χ̃μ)∗ = ε(κ)χ̃λ � χ̃μ = ε(κ)
χ̃λχ̃μ

χ̃ρ

= χ̃∗
λ χ̃∗

μ

χ̃ρ

= χ̃∗
μ � χ̃∗

λ .

��
Corollary 5.16. For any λ,μ, ν ∈ Ck , Ñ ν

λ,μ = Ñ ν∗
λ∗,μ∗ .

Recall that the Weyl character χλ is graded by λ in Z(g) = P/Q. Therefore, the
coefficient N ν

μ,λ is non-zero only if the grading matches, namely μ + λ − ν ∈ Q.

Definition 5.17. We define the grading of χ̃λ to be λ − ρ in Z(g) = P/Q.

By Definition 5.11, Ñ ν
μ,λ is non-zero only if the grading matches. So the grading is

additive under the multiplication �.

Definition 5.18. Let Rk denote the Z(g)-graded fusion ring with basis {χ̃λ}λ∈Ck .

Proposition 5.19. For any g, g′ ∈ L2(Tk,0)W , λ ∈ Ck , we have

〈χ̃λ � g, g′〉 = 〈g, χ̃∗
λ � g′〉.

Proof. By Eq. (8), we have

〈χ̃λ � g, g′〉 =〈 χ̃λ

χ̃ρ

g, g′〉 = 〈g,
(

χ̃λ

χ̃ρ

)
g′〉 = 〈g, χ̃λ∗

χ̃ρ

g′〉 = 〈g, χ̃λ∗ � g′〉.

��
As a consequence, L2(Tk,0)W is a faithful Z(g)-graded, unital *-representation of the

*-algebra L2(Tk,0)W . So L2(Tk,0)W is an abelian Z(g)-graded, unital C∗-algebra with
the multiplication �, and involution ∗.
Definition 5.20. We call the Z(g)-graded, unital C∗-algebra L2(Tk,0)W the k-character
Verlinde algebra.

Remark 5.21. By Theorem 5.12, one sees that L2(Tk,0)W is isomorphic to the Verlinde
algebra of quantum g at level k, and Rk is the Z(g)-graded fusion ring. Therefore, one
can consider the anti-symmetric k-characters as the characters of the corresponding
irreps. The grading is the usual one for irreps of quantum groups. Theorems 5.6 and 5.12
correspond to the unitarity of the S matrix and the Verlinde formula respectively. (See
[1] for a construction of the corresponding fusion category.)



90 Z. Liu, J. Wu

6. GUS-Representations

In this section, we recall some well-known, elementary properties of generalizations of
Dynkin diagrams over g at level k. Such notions have been well studied by many people,
as referred in §2 by slight different conditions for different settings. Taking into account
the already existing closely related terminological variants that refer to slightly distinct
concepts generalizing Dynkin diagrams, we decided to use the words quantum Dynkin
diagrams in our own work.

For our purpose, we consider the general case for a (Z(g)-graded,) unital,
*-representations � of R� and we prove our main results about the correspondence
of quantum Coxeter exponents for� in §8. The results for different kinds of generalized
Dynkin diagrams appear to be special cases. In particular, we define quantum Dynkin
diagrams in this section, such that the multiplicities of Coxeter exponents in the two
different generalizations are identical for such Dynkin diagrams.

A major difference between Di Francesco-Zuber generalized Dynkin diagram and
Ocneanu’s higher Dynkin diagram is that the later one requires a categorification. The
quantum Dynkin diagrams in this paper are slightly different from the generalized
Dynkin diagrams. The quantum Dynkin diagram requires a grading in the definition,
and it requires the adjacent matrix for the fundamental representations to be matrices of
natural numbers, but not for all irreducible representations. We define quantum Dynkin
diagrams in thisway tominimize the assumptions such that themain result Theorem8.28
holds. Because of the difference among the three generalizations of Dynkin diagrams,
we used different terminologies, so that there would be no confusions.

Recall that the fusion ring Rk of g at level k has a Z(g) = P/Q grading, and χ̃μ ∈ Rk
is graded by μ − ρ ∈ Z(g). Moreover, {χ̃μ}μ∈Ck is a basis of Rk and {χ̃ω+ρ}ω∈� are
generators of the fusion ring Rk .

Definition 6.1 (GUS-rep.) For a finite dimensional Hilbert space H, a representation
� : Rk → hom(H) is called a unital, *-representation, abbreviated as US-rep, if for any
χ̃μ ∈ Rk , λ ∈ Z(g), the following properties are satisfied:

(1) �(χ̃ρ) = I ;
(2) 〈�(χ̃μ)v, v′〉 = 〈v,�(χ̃∗

μ)v′〉 for any v, v′ ∈ H.

Furthermore, ifH =
⊕

λ∈Z(g)

Hλ is Z(g)-graded, and

(3) �(χ̃μ)Hλ ⊆ Hλ+μ−ρ, ∀ λ ∈ Z(g),

then � is called a Z(g)-graded, unital, *-representation, abbreviated as GUS-rep.
Equivalently, � is a (Z(g)-graded,) unital, *-representation of the k-character Verlinde
algebra.

Definition 6.2. For a d-dimensional US-rep �, an ONB B of H is called a K basis,
K = C, R, Z, or N, if �ω := �(χ̃ω+ρ) ∈ Md(K), for any ω ∈ �. If � is a GUS-rep,

B =
⊔

λ∈Z(g)

Bλ and each Bλ is an ONB of Hλ. then B is called Z(g)-graded.

Remark 6.3. If �(χ̃μ) ∈ Md(N), for any μ ∈ Ck , then � is called a NIM-rep, see e.g.
Definition 3 in [22].

A quiver G consists of a set Gv of vertices, a set Ge of oriented edges, a function
s : Ge �→ Gv giving the start of the edge and another function t : Ge �→ Gv giving the
target of the edge.
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Definition 6.4. We call a quiver G g-graded, if there is a grading map ε, ε : Gv → Z(g)
and ε : Ge �→ �, such that for any e ∈ Ge, it is true that ε(s(e)) + ε(e) = ε(t (e)) in
Z(g). Moreover, the adjacency matrix �ω, ω ∈ � is defined as a matrix acting on Gv ,
whose v1, v2 entry is the number of edges graded by ω from the vertex v2 to the vertex
v1.

Remark 6.5. Similar notions without grading have been studied by Etingof and Kho-
vanov in [17],

Definition 6.6 (Quantum Dynkin diagrams). Let G be a g-graded quiver and k ∈ N.
We call G a quantum Dynkin diagram over g at level k, if there is a Z(g)-graded unital
*-homomorphism �G : Rk → MGv (Z), such that

�ω = �ω, ∀ ω ∈ �.

Furthermore, we say G is a g-graded NIM-rep if �(χ̃λ) ∈ MGv (N), ∀ λ ∈ Ck . We call
G simple, if G is a connected quiver.

Proposition 6.7. If G is a quantum Dynkin diagram, then the *-homomorphism �G is
unique.

Proof. For anyω ∈ �, the adjacency matrix�ω = �ω is determined byG by definition.
Since {χ̃ω+ρ |ω ∈ �} generate the ring of Rk , � is uniquely determined by G. ��

The multiplication � of χ̃λ, λ ∈ Ck , on L2(Tk,0)W defines a GUS-rep �A of Rk .
Recall that { 1

|W | χ̃μ}μ∈Ck is an orthonormal basis of L2(Tk,0)W . Acting on this basis, we
have the regular representation

�A(χ̃λ)χ̃μ := χ̃λ � χ̃μ =
∑
ν∈Ck

Ñ ν
λ,μχ̃ν .

In particular �A(χ̃λ)ν,μ = Ñ ν
λ,μ.

The fusion graph of the Verlinde algebra with respect to the fundamental represen-
tations is a quantum Dynkin diagram, which is usually referred as the type A graph in
different formulations:

Definition 6.8 (Type A quantum Dynkin diagrams). For any simple Lie algebra g and
level k, we define the type A quantum Dynkin diagram Ak(g) as follows:

(1) The vertices of Ak(g) is {χ̃λ : λ ∈ Ck} graded by Z(g).
(2) For any ω ∈ �, the multiplicity of the edge from μ to ν graded by ω is Ñ ν

ω+ρ,μ.

We do not need the well-known construction of NIM-reps from module categories
in our approach in this paper. We recall this construction here for readers who might
be interested in this connection. For further literature, we refer the readers to references
mentioned in §2. Let C be the unitary modular tensor category obtained by the semi-
simplification of the representation category of quantum g at level k. (The category C
can also be realized as the representation category of projective positive energy rep-
resentations of the corresponding loop groups or vertex operator algebras.) Let M be
a module category of C . We recall the following well-known construction of a quiver
GM , or a NIM-rep, from the action of C on M :

(1) The vertices of GM are (representatives of) irreducible modules in M , denoted by
I rrM .
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(2) For any ω ∈ �, and irreducible modules m1,m2 in M , the multiplicity of the edge
from m1 to m2 graded by ω is dim homM (Vω ⊗ m1,m2).

Proposition 6.9. For any λ ∈ Ck , and m1 ∈ I rrM , we define

�M (χ̃λ)m1 =
∑

m2∈I rrM
dim homM (Vλ−ρ ⊗ m1,m2)m2.

Then �M is a US-rep and IrrM is a NIM-rep basis.

Proof. Since V0 is the trivial representation, �M (χ̃ρ) is the identity. The associativity
of the action ofC onM implies that� is a representation. By the Frobenius reciprocity

dim homM (Vλ−ρ ⊗ m1,m2) = dim homM (m1, Vλ∗−ρ ⊗ m2),

we have that � is a US-rep. Furthermore, dim homM (Vλ−ρ ⊗ m1,m2) ∈ N, so I rrM
is a NIM-rep basis. ��

In the rest of the paper, we deal with the general case for any US-rep or GUS-rep
of Rk for any simple Lie algebra g at any level k ∈ N. In particular, the results for the
general case hold for quantumDynkin diagrams over g at level k. This provides a general
theory in the study of quantum Dynkin diagrams.

7. Spectrum of Representations

In this section, we investigate the spectral theory of a GUS-rep � of Rk defined in Defi-
nition 6.1. We give an explicit construction of the spectrum of the regular representation
�A in T . We prove that the spectrum for a GUS-rep� is contained in the spectrum of the
type A quantum Dynkin diagram. The results in this section are well-known properties
of the spectrum of the Verlinde algebra [63] and representations of C∗-algebras.
Definition 7.1. Recall that the Weyl group W acts on each orbit of Tk,0 transitively.
Define Speck :∼= Tk,0/W .

For any eH ∈ Tk,0, let δeH be the delta function at eH . For any λ ∈ Ck , define

�eH =
∑
r∈W

det(r)δer(H) . (9)

Then �eH ∈ L2(T0,k)W . Moreover,

�A(χ̃λ)�eH = χ̃λ � �eH = χ̃λ�eH

χ̃ρ

= χλ−ρ(eH )�eH .

So �eH is a common eigenvector of �A(χ̃λ) with eigenvalue χλ−ρ(eH ).
Note that �er (H) = det(r)�(eH ), so C(�eH ) is a well-defined eigenspace for eH ∈

Speck . TheWeyl characterχλ−ρ is symmetric, so it is alsowell-defined on eH ∈ Tk,0/W .

Lemma 7.2. For any eH , eH
′ ∈ Tk,0, the following are equivalent:

(1) eH = er(H
′), for some r ∈ W;

(2) χλ(eH ) = χλ(eH
′
), for any λ ∈ C;

(3) χω(eH ) = χω(eH
′
), for any ω ∈ �.
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Proof. (1) → (2): It follows from the fact that Weyl characters are symmetric under the
Weyl group action.

(2) → (1): The Weyl characters {χλ}λ∈C are a basis of symmetric functions on the
maximal torus T with respect to the Weyl group W action. So any symmetric function
has the same value on eH and eH

′
. By the Stone-Weierstrass theorem, eH = er(H

′), for
some r ∈ W .

(2) ↔ (3): It follows from the fact that {χω|ω ∈ �} generate the ring of Weyl
characters. ��

The adjacency matrices of the Verlinde algebra commute with each other, and they
can be diagonalized simultaneously, this is equivalent to the Verlinde formula [63]. Their
common eigenvectors are captured by the modular S matrix. For a common eigenvec-
tor, we call the corresponding eigenvalues of the adjacency matrices a simultaneous
eigenvalue. Now we represent these simultaneous eigenvalues using eH ∈ Speck :

Theorem 7.3. When � = �A, for any eH ∈ Speck , C(�eH ) is the common eigenspace
of the adjacency matrices �ω, ω ∈ �, with eigenvalue χω(eH ). Any simultaneous
eigenvalue of the adjacency matrices is of this form and it has multiplicity one.

Proof. We have shown that for any eH ∈ Speck , C(�eH ) is the common eigenspace of
the adjacency matrices �ω, ω ∈ �, with eigenvalue χω(eH ). By Lemma 7.2, if eH and
eH

′
are different in Speck , then the corresponding eigenvalues are different.
Note that dim(L2(Pk)W ) = |Wk,0|

|W | and dim(L2(Tk)W ) = |Tk,0|
|W | . By Proposition 4.10,

their dimensions are the same. So

|Speck | = |Tk,0|
|W | = |Wk,0|

|W | = |Ck |.

Therefore, each eigenvalue corresponding to eH ∈ Speck has multiplicity one, and they
are all eigenvalues. ��
Theorem 7.4. Suppose � is a US-rep of Rk over g at level k. Then for any common
eigenvector v of the adjacency matrices �ω, ω ∈ �, there is eH ∈ Speck such that

�ωv = χω(eH )v.

Proof. Since L2(Tk,0)W is an abelianC∗ algebra, all its one dimensional representations
are sub-representations of the regular representation�A. So any simultaneous eigenvalue
of � is always a simultaneous eigenvalue of �A. By Theorem 7.3, the statement holds.

��
The following result is well-known in different formulations, see e.g. [12,17]:

Fact 7.5. Quantum Dynkin diagrams over sl2 at level k ∈ N are ADE Dynkin diagrams
with Coxeter number 2 + k.

Proof. If G is an ADE Dynkin diagram, then they are Z2-graded quivers of modules
of quantum sl2. So they are quantum Dynkin diagrams over sl2 at level k, and k + 2 is
the Coxeter number of G.

IfG be a quantumDynkin diagram over sl2 at level k, then�1 is the adjacencymatrix

of the bipartite graph G. By Theorem 7.4, any eigenvalue of �1 is e
π i
k+2 t − e− π i

k+2 t , for
some t ∈ Z2(k+2), t �= 0 and t �= k + 2. So ‖�1‖ < 2. Therefore, G is an ADE Dynkin
diagram, a well known result. Moreover, Rk is determined by �1, so k is determined. ��
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Definition 7.6. Suppose� is a US-rep of Rk over g at level k. For a common eigenvector
v of the adjacency matrices, we call the corresponding eH ∈ Speck in Theorem 7.4 the
spectrum of v, denoted by sp(v).

Definition 7.7. Suppose � is a US-rep of Rk over g at level k. Let B be a common
eigenbasis of the adjacency matrices. We define the spectrum of � to be {sp(v), v ∈ B},
a subset of Speck . We define B(eH ) to be the subset of B with spectrum eH . The
multiplicity of the spectrum eH ∈ Speck is the order |B(eH )|, denoted by m�(eH ).

Since the Weyl Character is symmetric under the action of W , we can lift the spectrum
from Speck to Tk,0. We identify Speck as a fundamental domain in Tk,0, still denoted by
Speck . Then for any eH ∈ Tk,0, r ∈ W , we have m�(eH ) = m�(er(H)).

Notation 7.8. Furthermore, if V and � are Z(g) graded, then for any v ∈ L2(B), we
have the decomposition

v =
∑

λ∈Z(g)

vλ,

where vλ ∈ Vλ, called a λ-graded vector.

Definition 7.9. Suppose� is a GUS-rep of Rk over g at level k. We define a group action
of TQ on L2(B): For any eH

′ ∈ TQ and any λ-graded vector vλ,

eH
′ ◦ vλ := ei〈λ,H ′〉vλ.

Theorem 7.10. Suppose� is a GUS-rep of Rk over g at level k. For anyω ∈ �, eH ∈ Tk
and eH

′ ∈ TQ, the following are equivalent:

(1) �ω(v) = χω(eH )v;
(2) �ω(eH

′ ◦ v) = χω(eH−H ′
)eH

′ ◦ v.

Consequently, m�(eH ) = m�(eH−H ′
).

Proof. Suppose v =
∑

λ∈Z(g)

vλ, where vλ is graded by λ. If �ω(v) = χω(eH )v, then

χω(eH )v = �ωv =
∑

λ∈Z(g)

�ωvλ.

So �ωvλ = χω(eH )vλ+ω. For any eH
′ ∈ TQ ,

�ω(eH
′ ◦ v) =

∑
λ∈Z(g)

ei〈λ,H ′〉�ωvλ =
∑

λ∈Z(g)

ei〈λ,H ′〉χω(eH )vλ+ω = χω(eH )ei〈−ω,H ′〉(eH ′ ◦ v).

For any λ ∈ Pk , r ∈ W , we have r(λ) − λ ∈ Q∨
k . For any eH

′ ∈ TQ ,

χ̃λ(e
H+H ′

) = χ̃λ(e
H )ei〈λ,H ′〉.

So,

χω(eH )ei〈ω,H ′〉 = χ̃ω+ρ(eH )ei〈ω+ρ,H ′〉

χ̃ρ(eH )ei〈ρ,H ′〉 = χ̃ω+ρ(eH+H ′
)

χ̃ρ(eH+H ′
)

= χω(eH+H ′
).

Therefore,

�ω(eH
′ ◦ v) = χω(eH−H ′

)eH
′ ◦ v.

��
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8. Quantum Coxeter Exponents

As mentioned in the introduction and §2, Gabriel constructed the root system using the
quiver representations of ADE Dynkin diagrams in [19], and using additive functions
on the Auslander–Reiten quiver in [20]. This construction is recovered by Dorey [14]
in terms of NIM-reps of g = sl2. Ocneanu proposed a generalization of roots, called
higher roots, with an inner product formula for higher Dynkin diagrams over other types
of Lie algebras g in [55], also called hyper roots in [11] when g = sl3.

In §8.1, we explain how additive functions, the i.e., root space, Coxeter elements and
exponents can be generalized for a US-rep� over g at level k. We prove an inner product
formula for additive functions in Theorem 8.9, which has a similar form as Ocneanu’s
inner product formula for higher roots. In §8.2, we prove the one to one correspondence
between the spectrum of � and the spectrum of the generalized Coxeter elements asso-
ciated with �. Furthermore, we prove an identity between their multiplicities, when �

is a GUS-rep over g and g is of type ADE . This generalizes the identity of multiplicities
of Coxeter exponents for the classical ADE Dynkin diagrams and answers Gannon’s
comment on Kac’s question. The identity of multiplicities does not hold when g is not
of type ADE , see Theorem 8.28.

8.1. Quantum Root System. Suppose � is a US-rep of Rk over g at level k, and B is a
common eigenbasis of �ω, ω ∈ �. We define the quantum root system SB,0 in 8.15,
when � and B are Z(g)-graded. First we lift the spectrum of � from Speck to Tk,0 and
define the corresponding eigenspace:

Definition 8.1. We define the lifted eigenspace Eπ as

Eπ := {g̃ ∈ L2(Tk) ⊗ H : (χω ⊗ I − I ⊗ �ω)g̃ = 0, ∀ ω ∈ �}.
Proposition 8.2. The set Bπ := {δeH ⊗ v : eH ∈ Tk,0, v ∈ B(eH )} is an ONB of Eπ .

Proof. Note that the set

{δeH ⊗ v : eH ∈ Tk, v ∈ B}
is an ONB of L2(Tk) ⊗ H, so for any g̃ ∈ L2(Tk) ⊗ H, we have the decomposition

g̃ =
∑

eH∈Tk

∑
v∈B

βeH ,vδeH ⊗ v,

for some βeH ,v ∈ C. If g̃ ∈ Eπ , namely (χω ⊗ I )g̃ = (I ⊗ �ω)g̃, for any ω ∈ �, then
∑

eH∈Tk

∑
v∈B

χω(eH )βeH ,vδeH ⊗ v =
∑

eH∈Tk

∑
v∈B

χω(sp(v))βeH ,vδeH ⊗ v.

If βeH ,v �= 0, then χω(eH ) = χω(sp(v)), ∀ ω ∈ �. By Lemma 7.2, there is an r ∈ W ,
such that sp(v) = er(H), equivalently v ∈ B(eH ).

On the other hand, for any v ∈ B(eH ), we have

(χω ⊗ I − I ⊗ �ω)(δeH ⊗ v) = (χω(eH ) − χω(eH ))(δeH ⊗ v) = 0,

so δeH ⊗ v ∈ Eπ . Therefore, Bπ is an ONB of Eπ . ��
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Definition 8.3. For any f ∈ L2(Pk), we define

(�λ f )(μ) =
∑

ν∈W(λ)

mλ(ν) f (μ + ν),∀ j ∈ Pk,

where W(λ) is the weight diagram of λ ∈ C, and mλ is the multiplicity function.

Lemma 8.4. Let F : L2(Pk) → L2(Tk) be the Fourier transform in Eq. (6). Then for
any ω ∈ �, we have

F�ω = χωF .

Proof. For any λ ∈ Pk ,

F�ω(δλ) =
∑

eH∈Tk

∑
ν∈ω

mω(ν)ei〈λ+ν,H〉δeH =
∑

eH∈Tk
χω(eH )ei〈λ,H〉δeH = χωF(δλ).

��
Definition 8.5. For a US-rep �, we define the full quantum root space Rπ as

Rπ := { f̃ ∈ L2(Pk) ⊗ H : (�ω ⊗ I − I ⊗ �ω) f̃ = 0,∀ ω ∈ �}.
Furthermore, if � is Z(g)-graded, we define the quantum root space Rπ,0 as

Rπ,0 := { f̃ ∈
⊕
λ∈Pk

Cδλ ⊗ H−λ : (�ω ⊗ I − I ⊗ �ω) f̃ = 0,∀ ω ∈ �}.

Remark 8.6. When G is an ADE Dynkin diagram, �G is a GUS-rep graded by Z2 =
Z(sl2), and Rπ,0 is the space of additive functions on the corresponding Auslander–
Reiten quiver, isomorphic to the root space.

Notation 8.7. Let PEπ
be the orthogonal projection from L2(Tk) ⊗ H to Eπ . Let PRπ

be the orthogonal projection from L2(Pk) ⊗ H toRπ .

Proposition 8.8. The Fourier transform F ⊗ I is a unitary transformation from Rπ to
Eπ , namely

(F ⊗ I )PRπ
= PEπ

(F ⊗ I ).

Proof. It follows from Lemma 8.4 and Definitions 8.1 and 8.5. ��
Now we give the inner product formula on Rπ using Fourier duality between Rπ

and Eπ .

Theorem 8.9. For any λ,μ ∈ Pk and v1, v2 ∈ H, we have

〈PRπ
(δλ ⊗ v1),PRπ

(δμ ⊗ v2)〉 = 1

|Tk |
∑
r∈W

det(r)〈v1,�(χ̃μ−λ+r(ρ))v2〉. (10)
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Proof. For any eH ∈ Speck , B(eH ) is an eigenbasis of the eigenspace in L2(Tk,0)W

with spectrum eH . Then

PEπ
(Fδλ ⊗ v1) = PEπ

(
∑

eH∈Tk
ei〈λ,H〉δeH ⊗ v1) =

∑

eH∈Tk,0

∑

v∈B(eH )

ei〈λ,H〉〈v, v1〉δeH ⊗ v.

By Proposition 8.8,

〈PRπ
(δλ ⊗ v1),PRπ

(δμ ⊗ v2)〉
=〈PEπ

(Fδλ ⊗ v1),PEπ
(Fδμ ⊗ v2)〉

= 1

|Tk |
∑

eH∈Tk,0

∑

v∈B(eH )

ei〈λ,H〉〈v, v1〉ei〈μ,H〉〈v, v2〉

= 1

|Tk |
∑

eH∈Tk,0

∑

v∈B(eH )

ei〈μ−λ,H〉〈v1, v〉〈v, v2〉

= 1

|Tk |
∑

eH∈Speck

∑

v∈B(eH )

∑
r ′∈W

ei〈μ−λ,r ′(H)〉〈v1, v〉〈v, v2〉

= 1

|Tk |
∑
r∈W

∑

eH∈Speck

∑

v∈B(eH )

∑
r ′∈W

det(r)
ei〈μ−λ+r(ρ),r ′(H)〉

χ̃ρ(er ′(H))
〈v1, v〉〈v, v2〉

= 1

|Tk |
∑
r∈W

∑

eH∈Speck

∑

v∈B(eH )

∑
r ′∈W

det(rr ′)e
i〈r ′(μ−λ+r(ρ)),H〉

χ̃ρ(eH )
〈v1, v〉〈v, v2〉

= 1

|Tk |
∑
r∈W

∑

eH∈Speck

∑

v∈B(eH )

det(r)
χ̃μ−λ+r(ρ)(eH )

χ̃ρ(eH )
〈v1, v〉〈v, v2〉

= 1

|Tk |
∑
r∈W

∑

eH∈Speck

∑

v∈B(eH )

det(r)〈v1,�(χ̃μ−λ+r(ρ))v〉〈v, v2〉

= 1

|Tk |
∑
r∈W

det(r)〈v1,�(χ̃μ−λ+r(ρ))v2〉.

��
Remark 8.10. Ocneanu calledRπ the space of biharmonic functions and outlined a proof
of the inner product formula (10) for higher Dynkin diagrams over sln in the course [56].
Our statement and proof are different from the one outlined by Ocneanu.

Corollary 8.11. For any μ ∈ Pk and v ∈ H, we have

PRπ
(δμ ⊗ v) = 1

|Tk |
∑
λ∈Pk

∑
r∈W

det(r)δλ ⊗ �(χ̃μ−λ+r(ρ))v.

Proof. It follows from checking the inner product with δλ ⊗ v1 on both sides using
Theorem 8.9. ��
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Remark 8.12. If B is a Z-basis, then the functions {|Tk |PRπ
(δμ ⊗ v) ∈ Rπ : μ ∈

Pk, v ∈ B} have integer coefficients on the ONB {δλ : λ ∈ Pk} ⊗ B. We consider
them as a generalization of additive functions on the Auslander–Reiten quivers given in
Eq. (5).

Corollary 8.13. When� is aGUS-rep, letP0 be theorthogonal projection from L2(Pk)×
H onto the neutral subspace

⊕
λ∈Pk

Cδλ ⊗ H−λ. Then

PRπ
P0 = P0PRπ

,

and it is the projection onto Rπ,0.

Proof. When � is a GUS-rep, by Corollary 8.11, for any μ ∈ Pk and v ∈ H−μ, we
have that

PRπ
(δμ ⊗ v) = P0PRπ

(δμ ⊗ v).

Therefore, PRπ
P0 = P0PRπ

P0. Both PRπ
and P0 are projections, so

PRπ
P0 = P0PRπ

.

By definition, it is the projection onto Rπ,0. ��
Therefore, we also call Rπ,0 the neutral subspace of Rπ , as its total grading is 0 in

Z(g).

Corollary 8.14. For any μ ∈ Pk and v ∈ H, we have

‖PRπ
(δμ ⊗ v)‖22 = |W |

|Tk | ‖v‖22.

Proof. It follows from Theorem 8.9 and that det(r)�r(ρ) = �ρ is the identity. ��
Definition 8.15. We define the quantum root sphere as

Sπ := {√|Tk |PRπ
(δλ ⊗ v) : λ ∈ Pk, v ∈ H, ‖v‖2 = 1}.

For an ONB B ofH, we define the full quantum root system as

SB := {√|Tk |PRπ
(δλ ⊗ v) : λ ∈ Pk, v ∈ B, ‖v‖2 = 1}.

When � and B are Z(g)-graded, we define the quantum root system as

SB,0 := {√|Tk |PRπ
(δλ ⊗ v) : λ ∈ Pk, v ∈ B−λ, ‖v‖2 = 1}.

(Recall that B−λ is defined in 6.2 as the graded basis.)

By Corollary 8.14, any vector inSπ has length
√|W |. By Theorem 8.9, the inner product

of vectors in SB is determined by the adjacency matrices. Moreover, the (full) quantum
root space is spanned by the (full) quantum root system.

Remark 8.16. When G is an ADE Dynkin diagram, SB,0 is a standard realization of the
root system by additive functions, see [20,26]
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8.2. Quantum Coxeter Exponents. Coxeter elements and Coxeter exponents can be de-
fined through additive functions on the Auslander–Reiten of ADE Dynkin diagrams.
In this section, we generalize them for the quantum root space of a US-rep � over g at
level k. We identify a quantum Coxeter exponent with a spectrum eH of�, and compare
their multiplicities in Theorem 8.28. We prove that two multiplicities are the same for
quantum Dynkin diagrams over g at level k, when g is a type ADE Lie algebra, but
not the same, when g is not of type ADE . This gives a positive answer to the Gannon’s
commnent on Kac’s question when g is of type ADE , and a negative answer when g is
not of type ADE in our approach. There may be other approaches, such that the identity
between different generalizations of Coxeter exponents and their multiplicities holds for
some generalizations of Dynkin diagrams over all types of quantum groups.

For any μ ∈ Pk , the translation ϑμ : λ �→ λ + μ on Pk induces a dual action on
L2(Pk), still denoted by ϑμ:

ϑμ(δλ) = δλ−μ, ∀ λ ∈ Pk .

We define the corresponding translation on L2(Pk) ⊗ H as

ϑ̃μ := ϑμ ⊗ I.

Then ϑ̃μ is well-defined on Rπ as well. Moreover, {ϑ̃μ}μ∈Pk is a finite abelian group.

Proposition 8.17. The quantum root sphere Sπ and quantum root system SB are trans-
lation invariant by ϑ̃μ, μ ∈ Pk.

Proof. It follows from Definition 8.15. ��
Theorem 8.18. The set Bπ = {δeH ⊗v : eH ∈ Tk,0, v ∈ B(eH )} is a common eigenbasis
of {FϑμF−1 ⊗ I }μ∈Pk and {I ⊗ �ω}ω∈� in Eπ .

Proof. By Proposition 8.2, Bπ is a basis of Eπ . By Fourier duality,

ϑμF−1δeH = ei〈−μ,H〉F−1δeH , ∀μ ∈ Pk, eH ∈ Tk,0.

So

(FϑμF−1 ⊗ I )(δeH ⊗ v) = ei〈−μ,H〉δeH ⊗ v.

On the other hand,

(I ⊗ �ω)(δeH ⊗ v) = χω(eH )δeH ⊗ v.

Therefore, Bπ is a common eigenbasis. ��
Definition 8.19. By Theorem 8.18, if f̃ is a common eigenvector of the translations,
then

ϑ̃μ f̃ = ei〈−μ,H〉 f̃ , ∀ μ ∈ Pk,

for some eH ∈ Tk,0. We call eH the spectrum of f̃ , denoted by spϑ( f̃ ) = eH .

Definition 8.20. Suppose � is a US-rep and A is a subgroup of Pk . We define the mul-
tiplicity mA of eH to be dimension of the common eigenspace inRπ of the translations
{ϑμ}μ∈A with spectrum eH , namely

mA(eH ) := dim
{
f̃ ∈ Rπ : ϑμ f̃ = ei〈−μ,H〉 f̃ , ∀ μ ∈ A

}
.
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For a subgroup A of Pk = P/Q∨
k , we consider it as an intermediate subgroup of

Q∨
k ⊂ P . By Definition 4.1,

tA = {H ∈ t : 〈α, H〉 ∈ Z, ∀ α ∈ A},
TA =

{
e2πH ∈ T : H ∈ tA

}
⊆ Tk .

Theorem 8.21. Suppose � is a US-rep and A is a subgroup of Pk. For any eH ∈ Tk,0,

mA(eH ) =
∑

eH ′ ∈TA
m�(eH+H ′

). (11)

In particular,

mP (eH ) = m�(eH ) = mP (er(H)), ∀ r ∈ W.

Proof. Note that for any eH1 ∈ Tk,0 and v ∈ B(eH1), the following are equivalent:

(1) ϑ̃μ(δeH1 ⊗ v) = ei〈−μ,H〉δeH1 ⊗ v, ∀ μ ∈ A;
(2) ϑ̃μ(eH1) = ϑ̃μ(eH ), ∀ μ ∈ A;
(3) ϑ̃μ(eH1−H ) = 1, ∀ μ ∈ A;
(4) eH1−H ∈ TA,

where (3) ⇐⇒ (4) follows from Theorem 4.3. By Theorem 8.18, we obtain Eq. (11).
Furthermore, if A = P , then TP is the trivial group. So

mP (eH ) = m�(eH ) = m�(er(H)) = mP (er(H)), ∀ r ∈ W.

��
If � is a GUS-rep, then Rπ,0 is the neutral subspace of Rπ , and Rπ,0 is translation

invariant under the action of ϑ̃μ, μ ∈ Q.

Definition 8.22. Suppose � is a GUS-rep, and A is a subgroup of Q/Q∨
k . We define

mA,0(e
H ) = dim{ f̃ ∈ Rπ,0 : ϑμ f̃ = ei〈−μ,H〉 f̃ , ∀ μ ∈ A}.

Corollary 8.23. Moreover, mA(eH ) = mA(eH+H ′
) for any eH

′ ∈ TQ∨ .

Proof. It follows from Theorems 8.21 and 7.10. ��
Theorem 8.24. Suppose � is a GUS-rep, and A is a subgroup of Q/Q∨

k . For any e
H ∈

Tk,0, and eH
′ ∈ TQ,

mA(eH ) = mA(eH+H ′
) = nzmA,0(e

H ).

In particular,

mQ,0(e
H ) = m�(eH ).
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Proof. By Theorem 7.10 and Theorem 8.21, we have that

m�(eH ) = m�(eH+H ′
);

mA(eH ) = mA(eH+H ′
).

Note that Rπ =
⊔

λ∈Z(g)

ϑλRπ,0, so

mA(eH ) = nzmA,0(e
H ).

When A = Q, by Theorem 8.21,

mQ(eH ) =
∑

eH ′ ∈TQ
m�(eH+H ′

) = |TQ |m�(eH ) = nzm�(eH ).

Therefore,

mQ,0(e
H ) = m�(eH ).

��
Recall that Qh is the set of highest positive roots of g. For any η ∈ Qh , its order in

the group Pk is the quantum Coxeter number ck . So the translation ϑ̃η onRπ (orRπ,0)
has periodicity ck .

Definition 8.25. For any η ∈ Qh , we call the translation ϑ̃η on Rπ a quantum Coxeter
element.

Definition 8.26. We define the exponent map � : Tk,0 × Qh → Zck as

�(eH , η) = 〈η, H〉
2π

.

Equivalently,

e
2π i
ck

�(eH ,η) = ei〈η,H〉.

We call �(eH , η) the quantum Coxeter exponent of the quantum Coxeter element η

at spectrum eH ∈ Tk,0. We call the map �(eH , ·) : Qh → Zck the quantum Coxeter
exponent at the spectrum eH .

SinceQh ⊂ Q,SB,0 is invariant under the actionof quantumCoxeter elements {ϑη}η∈Qh =
{ϑr(θ)}r∈W . For the sl2 case, ϑ−θ is also a Coxeter element on the root system. This in-
duces aZ2 symmetry on the eigenvalue of theCoxeter element. In general, the eigenvalue
of the quantum Coxeter elements has a Weyl group W symmetry.

Definition 8.27. Suppose � is a US-rep. For any eH ∈ Tk,0, we define the multiplicity
of the quantum Coxeter exponent �(eH , ·) for the action of quantum Coxeter elements
on Rπ as

m�(eH ) := dim
{
f̃ ∈ Rπ : ϑ̃η f̃ = ei〈η,H〉 f̃ , ∀ η ∈ Qh

}
.

When � is a GUS-rep, we define the multiplicity for the action on Rπ,0 as

m�,0(e
H ) := dim

{
f̃ ∈ Rπ,0 : ϑ̃η f̃ = ei〈η,H〉 f̃ , ∀ η ∈ Qh

}
.
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Theorem 8.28. Suppose � is a US-rep over quantum g at level k. For any eH ∈ Tk,0,

m�(eH ) = mQ∨(eH ) =
∑

eH ′ ∈TQ∨

m�(eH+H ′
).

When � is a GUS-rep,

m�,0(e
H ) = mQ∨,0(e

H ) =
∑

eH ′ ∈TQ∨/TQ

m�(eH+H ′
).

In particular, if g is an ADE Lie algebra, then TQ = TQ∨ . We have that

m�(eH ) = m�(eH ).

Proof. Since Q∨ is generated by Qh , for any eH ∈ Tk ,m�(eH ) = mQ∨,0(eH ). ByTheo-

rem8.24,mQ∨,0(e
H ) = 1

nz
mQ∨(eH ). ByTheorems8.21,mQ∨(eH ) =

∑

eH ′ ∈TQ∨

m�(eH+H ′
).

By Theorem 7.10,
1

nz

∑

eH ′ ∈TQ∨

m�(eH+H ′
) =

∑

eH ′ ∈TQ∨/TQ

m�(eH+H ′
). ��

Case for g = sl2: When g = sl2 and G is an ADE Dynkin diagram, we have the
following correspondence:

(1) ck is the Coxeter number;
(2) � is a GUS-rep;
(3) �ω is the adjacency matrix of G, where ω is the fundamental weight;

(4) Tk,0 =
⎧⎨
⎩e

H =
⎡
⎣ e

jπ i
2ck 0

0 e
− jπ i
2ck

⎤
⎦ : j = 1, 2, · · · , ck − 1, ck + 1, ck + 2, · · · , 2ck − 1

⎫⎬
⎭ ;

(5) Speck =
⎧⎨
⎩

⎛
⎝
⎡
⎣ e

jπ i
2ck 0

0 e
− jπ i
2ck

⎤
⎦ ,

⎡
⎣ e

− jπ i
2ck 0

0 e
jπ i
2ck

⎤
⎦
⎞
⎠ : j = 1, 2, · · · , ck − 1

⎫⎬
⎭ ;

(6) The eigenvalue of the adjacency matrix �ω at eH is χω(eH ) = e
jπ i
2ck + e

− jπ i
2ck with

multiplicity m�(eH );
(7) SB,0 is the root system;
(8) Rπ,0 is the root space;
(9) {ϑ̃η : η ∈ Qh} = {±θ} is an opposite pair of Coxeter elements;

(10) The eigenvalue of the Coxeter element ϑ̃±θ at eH is χω(eH ) = e
± jπ i
ck with multi-

plicity mQ∨,0(eH );
(11) �(±θ) = ± j , where j is the Coxeter exponent, with multiplicity m�,0(eH ).

The classical correspondence of Coxeter exponents in the ADE Lie theory is given
by

m�(eH ) = mQ∨,0(e
H ) = m�,0(e

H ).

Theorem 8.28 is a generalization of this correspondence for any GUS-rep of the Verlinde
algebra of any ADE Lie algebra g at any level k. We answer the recent comment posed
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by Gannon at Vanderbilt University in 2017 on the question posed by Kac at MIT in
1994 positively.

Note that the Dynkin diagram of type T , a chain with a self-loop at the end, induces
a US rep of the Verlinde algebra of g = sl2, but not a GUS rep. The identity

m�(eH ) = m�(eH )

of the multiplicities of Coxeter exponents of ADE Dynkin diagrams cannot be gener-
alized to the tadpole diagram directly. A modified correspondence for any US-rep or
GUS-rep of the Verlinde algebra of any simple Lie algebra g at any level k is proved in
Theorems 8.21 and 8.24 respectively.

When g = sln , we have Q = Q∨, and

Tk,0 =
⎧⎨
⎩diag(p1, p2, . . . , pn) :

n∏
j=1

p j = 1, p j �= pi , pckj = pcki

⎫⎬
⎭ .

Let v1, v2, · · · , vn be the weights corresponding to the ONB of the standard represen-

tation of sln . Then
n∑
j=1

v j = 0. For any eH ∈ Tk , ei〈v j ,H〉 = p j . Moreover, for any

r ∈ W ∼= Sn , its action on {v1, v2, · · · , vn} is a permutation: r(vi ) = vr(i). Note that
θ = v1 − vn The quantum Coxeter exponent is given by �(eH , r(θ)) = 〈r(θ),H〉

2π , and

e
2π i
ck

�(eH ,r) = ei〈η,H〉 = pr(1)
pr(n)

.

9. Summary

Notations and Results: Let g be a simple complex Lie algebra such that it is the com-
plexification of the Lie algebra k of a simply-connected compact Lie group K . Let t be
a Cartan subalgebra and T = {eH |H ∈ t} be the maximal torus in K . Let h∨ be the
dual Coxeter number, � be the fundamental weights, ρ be the Weyl vector, P be the
weight lattice and Q be the root lattice, W be the Weyl group, and Q∨ be the coroot
lattice, which is generated by Qh := {r(θ)|r ∈ W }, where θ is a highest positive root.
Take Z(g) = P/Q and nz = |Z(g)|. The exponential map H �→ e2πH is a group
isomorphism t/Q∨ ∼= T . Therefore, the mapˆ : λ �→ λ̂ given by

λ̂(eH ) = e2π i〈λ,H〉, λ ∈ P,

is well defined on eH ∈ T . The Fourier transform ˆ is a group isomorphism from P to
the dual of the abelian group T .

For any level k ∈ N, take the quantumCoxeter number ck = h∨+k and Q∨
k := ck Q∨.

We call Pk = P/Q∨
k the weight torus. We define its Fourier dual Tk as a finite subgroup

of T , which admits a Weyl group W action. Let Pk,0 and Tk,0 be the corresponding
subsets of elements off the Weyl mirrors. Take an alcove Ck containing � and Speck to
be the fundamental domains of Pk and Tk,0 subject to theWeyl group action respectively.

Let L2(Tk,0)W be the Hilbert space of anti-symmetric functions with respect to the
Weyl group action and the measure is a Haar measure. We introduce a multiplication
� and an involution ∗ on L2(Tk,0)W and show that L2(Tk,0)W becomes an abelian C∗



104 Z. Liu, J. Wu

algebra. We construct an orthonormal basis (ONB) {|W |− 1
2 χ̃λ, λ ∈ Ck} of L2(Tk,0)W ,

and prove that {χ̃λ, λ ∈ Ck} form a Z(g)-graded fusion ring Rk , and the corresponding
C∗-algebra is isomorphic to the Verlinde algebra of quantum g at level k. Therefore,
we call the anti-symmetric function χ̃λ an k-character, and L2(Tk,0)W the k-character
Verlinde algebra. In particular, the fusion coefficients of representations can be computed
from the inner product of k-characters:

Ñ ν
λ,μ = 1

|W | 〈χ̃λ � χ̃μ, χ̃ν〉.

Suppose H is a finite dimensional Hilbert space and � : Rk → hom(H) is a unital,
*-representation. We prove that for any common eigenvector v ∈ H of the matrices
{�ω := �(χ̃ω+ρ)}ω∈�, there is a eH ∈ Speck , such that

�ωv = χω(eH )v, ω ∈ �,

where χω is the Weyl character. Therefore, we call Speck the spectrum of Rk and eH

the spectrum of v. We define the multiplicity m� of eH to be the dimension of the
corresponding eigenspace inH:

m�(eH ) = dim{v ∈ H | �ωv = χω(eH )v, ∀ ω ∈ �}.
We lift the spectrum from Speck to Tk,0 and define the corresponding eigenspace

Eπ := {g̃ ∈ L2(Tk) ⊗ H | (χω ⊗ I − I ⊗ �ω)g̃ = 0, ∀ ω ∈ �}.
The Fourier dual of Eπ is

Rπ := { f̃ ∈ L2(Pk) ⊗ H | (�ω ⊗ I − I ⊗ �ω) f̃ = 0, ∀ ω ∈ �},
generalizing additive functions on the Auslander–Reiten quiver. We call Rπ the full
quantum root space. Take the orthogonal projection PRπ

: L2(Pk) ⊗ H → Rπ . We
prove the following inner product formula in Theorem 8.9: For any λ,μ ∈ Pk and
v1, v2 ∈ H, we have

〈PRπ
(δλ ⊗ v1),PRπ

(δμ ⊗ v2)〉 = 1

|Tk |
∑
r∈W

det(r)〈v1,�(χ̃μ−λ+r(ρ))v2〉.

Based on the inner product formula, we define the quantum root sphere and quantum
root system.

Furthermore, if the representation� is Z(g)-graded, then the full quantum root space
Rπ is also Z(g)-graded. Moreover, Rπ decomposes into nz copies of Rπ,0, called the
quantum root space, where Rπ,0 is the neutral subspace.

Let ϑμ,μ ∈ Pk be the translation byμ on Pk and the induced action onRπ is denoted
by ϑ̃μ. BothRπ andRπ,0 are invariant under the action of ϑ̃μ, for anyμ ∈ Q. We prove
that if f̃ is a common eigenvector of the translations, then

ϑ̃μ f̃ = ei〈−μ,H〉 f̃ , ∀ μ ∈ Pk

for some eH ∈ Tk,0. We call eH the spectrum of f̃ .
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For any η ∈ Qh , the order of η in the group Pk is the quantum Coxeter number ck .
So the translation ϑ̃η has periodicity ck , and we call it a quantum Coxeter element. In
particular, Rπ,0 is invariant under the action of quantum Coxeter elements {ϑη}η∈Qh .

We define the exponent map � : Tk,0 × Qh → Zck , such that

e
2π i
ck

�(eH ,η) = ei〈η,H〉.

We define the multiplicity of the quantum Coxeter exponent �(eH , ·) for the action of
quantum Coxeter elements onRπ , and onRπ,0 for the graded case respectively, as

m�(eH ) = dim{ f ∈ Rπ | ϑ̃η f = ei〈η,H〉 f, ∀ η ∈ Qh};
m�,0(e

H ) = dim{ f ∈ Rπ,0 | ϑ̃η f = ei〈η,H〉 f, ∀ η ∈ Qh}.
Then

m�(eH ) = mQ∨(eH ) =
∑

eH ′ ∈TQ∨

m�(eH+H ′
).

For any intermediate group A of Q∨
k ⊂ P , we define the Fourier dual of P/A as

TA =
{
e2πH ∈ T |H ∈ tA

}
⊂ Tk,

where tA = {H ∈ t|〈α, H〉 ∈ Z,∀α ∈ A}. We define the multiplicitymA of eH to be the
dimension of the common eigenspace inRπ of the translations {ϑ̃μ}μ∈A with spectrum
eH . We prove our main theorem that, for any eH ∈ Tk,0,

mA(eH ) =
∑

eH ′ ∈TA
m�(eH+H ′

).

In particular, mP (eH ) = m�(eH ).
Furthermore, if � is Z(g)-graded and A ⊆ Q, we define the multiplicity mA,0 of eH

to be the dimension of the corresponding eigenspace in Rπ,0. Then mA = nzmA,0 and
mA(eH ) = mA(eH+H ′

) for any eH
′ ∈ TQ∨ . In particular,

mQ,0(e
H ) = m�(eH ).

Finally, we prove in Theorem 8.28 that

m�,0(e
H ) = mQ∨,0(e

H ) =
∑

eH ′ ∈TQ∨/TQ

m�(eH+H ′
).

In particular, if g is an ADE Lie algebra, then TQ = TQ∨ . We have that

m�,0(e
H ) = m�(eH ).

This generalizes the correspondence of Coxeter exponents with multiplicities in the
ADE Lie theory and answers the Gannon’s comment on Kac’s question.
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