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We introduce fusion bialgebras and their duals and system-
atically study their Fourier analysis. As an application, we 
discover new efficient analytic obstructions on the unitary cat-
egorification of fusion rings. We prove the Hausdorff-Young 
inequality, uncertainty principles for fusion bialgebras and 
their duals. We show that the Schur product property, Young’s 
inequality and the sum-set estimate hold for fusion bialge-
bras, but not always on their duals. If the fusion ring is the 
Grothendieck ring of a unitary fusion category, then these in-
equalities hold on the duals. Therefore, these inequalities are 
analytic obstructions of categorification. We classify simple 
integral fusion rings of Frobenius type up to rank 8 and of 
Frobenius-Perron dimension less than 4080. We find 34 ones, 
4 of which are group-like and 28 of which can be eliminated 
by applying the Schur product property on the dual. In gen-
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eral, these inequalities are obstructions to subfactorize fusion 
bialgebras.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Lusztig introduced fusion rings in [26]. Etingof, Nikshych and Ostrik studied fusion 
categories [9] as a categorification of fusion rings, see also [8,6,30,31]. A central question 
is whether a fusion ring can be unitarily categorified, namely it is the Grothendieck ring 
of a unitary fusion category.

Jones introduced subfactor planar algebras as an axiomatization of the standard 
invariant of a subfactor in [16]. Planar algebras and fusion categories have close connec-
tions. There are various ways to construct one from the other. For example, if N ⊂ N�G

is the group crossed product subfactor of a finite group G, then the 2-box space P2,+

of its planar algebra captures the unitary fusion category V ec(G) and its Fourier dual 
P2,− captures the unitary fusion category Rep(G). The Grothendieck ring of a unitary 
fusion category can be realized as the 2-box space of a subfactor planar algebra using 
the quantum double construction, such that the ring multiplication is implemented by 
the convolution of 2-boxes [28,22].
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Recently, Jiang, the first author and the third author formalized and proved numbers 
of quantum inequalities for subfactor planar algebras [21,14,13,25] inspired by Fourier 
analysis. These inequalities automatically hold for the Grothendieck rings of unitary 
fusion categories C as explained in [22], through the well-known quantum double con-
struction from unitary fusion categories to subfactors, see e.g. [28]. Moreover, the Fourier 
dual of a subfactor is still a subfactor. So these inequalities also hold on the Fourier dual 
of the Grothendieck ring, which can be regarded as representations of the Grothendieck 
ring.

This paper is inspired by three questions:

• Vaughan Jones [17]: What are the applications of these inequalities on subfactors to 
other areas?

• Zhenghan Wang [39]: Are these inequalities obstructions of categorification?
• Pavel Etingof [5]: Do the inequalities on Grothendieck rings hold on fusion rings?

In this paper, we prove that these quantum inequalities on subfactor planar algebras 
hold on fusion rings and partially, but not all, on the Fourier dual of fusion rings. There-
fore, the inequalities that fail on the dual of the fusion rings are new analytic obstructions 
for unitary categorification of fusion rings. For examples, the quantum Schur product 
theorem [[21], Theorem 4.1] holds on the Fourier dual of Grothendieck rings, but not on 
the Fourier dual of fusion rings. It turns out to be a surprisingly efficient obstruction of 
unitary categorification of fusion rings. Moreover, it is easy to check the Schur product 
property on the dual of a commutative fusion ring in practice. In this way, we find many 
fusion rings which admit no unitary categorification, due to the Schur product property, 
and which cannot be ruled out by previous obstructions.

In §2, we introduce fusion bialgebras as a generalization of fusion rings and their duals 
over the field C. The definition of fusion bialgebras is inspired by the 2-box spaces P2,±
of subfactor planar algebras. We show that if P2,+ is commutative, then it is a fusion 
bialgebra. If a fusion bialgebra arises in this way, then we say that it is subfactorizable. 
We classify fusion bialgebras up to dimension three. The classification of the two dimen-
sional subfactorizable fusion bialgebras is equivalent to the remarkable classification of 
the Jones index of subfactors [15]. It remains challenging to classify three dimensional 
subfactorizable fusion bialgebras.

In §3-§6, we systematically study quantum Fourier analysis on fusion bialgebras. We 
show that the Hausdorff-Young inequalities, uncertainty principles hold for fusion bial-
gebras and their duals; Young’s inequalities and the sum-set estimate hold for fusion 
bialgebras, but not necessarily on their duals. We characterize their extremizers in §6. 
In fact, for the dual of a fusion bialgebra, Young’s inequality implies Schur product 
property, and Schur product property implies the sum-set estimate. Therefore, Young’s 
inequality is also an obstruction to unitary categorify a fusion ring or to subfactorize a 
fusion bialgebra, and the sum-set estimate is a potential obstruction. It is worth men-
tioning that the Schur product property (or Young’s inequality) holds on arbitrary n-box 
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space of the Temperley-Lieb-Jones planar algebra if and only if it is a subfactor planar 
algebras, namely the circle parameter is the square root of the Jones index [15].

In §8, we reformulate Schur product property (on the dual) in terms of irreducible 
representations of the fusion ring/algebra, especially in terms of the character table for 
the commutative case. In the family of fusion algebras of rank 3 with every object self-
dual, we observe that about 30% of over 10000 samples do not have the Schur product 
property (on the dual). So they cannot be subfactorized. We consider families of rank 4 or 
5 fusion rings, and we compare (visually) Schur product criterion and Ostrik’s criterion 
[32, Theorem 2.21].

Next, we give a classification of simple integral fusion rings of Frobenius type with 
the following bounds of Frobenius-Perron dimensions (with FPdim �= paqb, pqr, by [10]).

rank ≤ 5 6 7 8 9 10 all
FPdim < 1000000 150000 15000 4080 504 240 132

First, given a Frobenius-Perron dimension, we classify all possible types (the list of 
dimensions of the “simple objects”). Secondly, we classify the fusion matrices for a given 
type. We derive several inequalities from Fourier analysis on fusion rings which bound 
the fusion coefficients using the dimensions. These inequalities are efficient in the second 
step of the classification. For some specific types, the use of these inequalities reduced 
drastically the computation time (from 50 hours to 5 seconds). We end up with 34 simple 
integral fusion rings in the classification (all commutative), 4 of which are group-like and 
28 of which cannot be unitarily categorified by showing that the Schur product property 
(on the dual) does not hold. It remains 2 ones. None of these 28+2 ones can be ruled 
out by already known methods.

Question 1.1. Do the remaining two fusion rings admit a unitary categorification?

It has two motivations, first the categorification of a simple integral non group-like fusion 
ring would be non weakly-group-theoretical and so would provide a positive answer to 
Etingof-Nikshych-Ostrik [10, Question 2], next there is no known non group-like examples 
of irreducible finite index maximal depth 2 subfactor [33, Problem 4.12], but its fusion 
category would be unitary, simple, integral (and of Frobenius type, assuming Kaplansky’s 
6th conjecture [19]).

In summary, Fourier analysis on subfactors provides efficient analytic obstructions of 
unitary categorification or of subfactorization.

2. Fusion bialgebras

In this section, we introduce fusion bialgebras which capture fusion algebras of fusion 
rings over C and their duals, namely representations. The definition of fusion bialge-
bras is motivated by a connection between subfactor planar algebras and unitary fusion 
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categories based on the quantum double construction. Its algebraic aspects have been 
discussed in [22]. In this paper, we investigate its analytic aspects and study Fourier 
analysis on fusion bialgebras.

The fusion bialgebra has a second multiplication � and involution # on the fusion 
algebra. Several basic results on fusion rings, see for example [6], can be generalized to 
fusion bialgebras. Many examples of fusion bialgebras come from subfactor theory, and 
we say that they can be subfactorized. It is natural to ask whether a fusion bialgebra 
can be subfactorized. The question for the two dimensional case is equivalent to the 
classification of the Jones index. If a fusion ring has a unitary categorification, then the 
corresponding fusion bialgebra has a subfactorization. We introduce analytic obstructions 
of subfactorization from Fourier analysis on subfactors, so they are also obstructions of 
unitary categorification. We discuss their applications in §8.

2.1. Definitions

Let N = Z≥0 be the set of all natural numbers. Let R≥0 be the set of non-negative 
real numbers.

Definition 2.1. Let B be a unital *-algebra over the complex field C. We say B has a 
R≥0-basis B = {x1 = 1B, x2, . . . , xm}, m ∈ Z≥1, if

(1) {x1, . . . , xm} is a linear basis over C;

(2) xjxk =
m∑
s=1

Ns
j,kxs, Ns

j,k ∈ R≥0;

(3) there exists an involution ∗ on {1, 2, . . . , m} such that x∗
k := xk∗ and N1

j,k = δj,k∗ .

We write the identity 1B as 1 for short, if there is no confusion. When Ns
j,k ∈ N, B

gives a fusion ring, and B is called a fusion algebra. The *-algebra B with a R≥0-basis 
B can be considered as a fusion algebra over the field C.

Definition 2.2. For a unital *-algebra B with a R≥0-basis B, we define a linear functional 
τ : B → C by τ(xj) = δj,1.

Then τ(xjxk) = N1
j,k = δj,k∗ and τ(xy) = τ(yx) for any x, y ∈ B. Moreover

Ns∗

j,k = τ(xjxkxs) = τ(xsxjxk) = Nk∗

s,j = τ(xkxsxj) = N j∗

k,s. (1)

Note that xk∗xj∗ = (xjxk)∗. We obtain Frobenius reciprocity

Ns
j,k = Ns∗

k∗,j∗ = Nk
j∗,s. (2)

Therefore τ is a faithful tracial state on the *-algebra B. Following the Gelfand-Naimark-
Segal construction, we obtain a Hilbert space H = L2(B, τ) with the inner product
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〈x, y〉 = τ(y∗x),

and a unital *-representation π of the ∗-algebra B on H. Moreover B forms an or-
thonormal basis of H. On this basis, we obtain a representation πB : B → Mm(C). In 
particular,

πB(xj)k,s = Ns
j,k.

We denote the matrix πB(xj) by Lj . Then

LjLk =
m∑
s=1

Ns
j,kLs,

and

L∗
j = Lj∗ .

Remark 2.3. Under the Gelfand-Naimark-Segal construction, the ∗-algebra B forms a 
C∗-algebra, which is also a von Neumann algebra. In this paper, we only consider the 
finite dimensional case, so we do not distinguish C∗-algebras and von Neumann algebras.

Definition 2.4. For a unital *-algebra B with a R≥0-basis B, we define a linear functional 
d : B → C by setting d(xj) to be the operator norm ‖Lj‖∞ of Lj , below denoted by 
‖xj‖∞,B.

Recall the Perron-Frobenius theorem for matrices:

Theorem 2.5 (Perron-Frobenius theorem, [9] Theorem 8.1). Let A be a square matrix 
with nonnegative entries.

(1) A has a nonnegative real eigenvalue. The largest nonnegative real eigenvalue λ(A)
of A dominates absolute values of all other eigenvalues of A.

(2) If A has strictly positive entries then λ(A) is a simple positive eigenvalue, and the 
corresponding eigenvector can be normalized to have strictly positive entries.

(3) If A has an eigenvector f with strictly positive entries, then the corresponding eigen-
value is λ(A).

Proposition 2.6. Let B be a unital *-algebra with a R≥0-basis B. Then

d(xj)d(xk) =
m∑
s=1

Ns
j,kd(xs), d(xj) = d(xj∗) ≥ 1.

Proof. The right multiplication of xj on the orthonormal basis B defines a matrix Rj . 
Then R =

∑m
j=1 Rj has strictly positive entries. Let v =

∑m
j=1 λjxj be the simple positive 
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eigenvector of the right action R. By Theorem 2.5, we can normalize v, such that λ1 = 1
and λj > 0. As Ljv is also a positive eigenvector, we have that Ljv = ‖Lj‖∞v = d(xj)v
by Theorem 2.5. Since LjLkv = d(xk)Ljv = d(xk)d(xj)v, we obtain that

d(xj)d(xk) =
m∑
s=1

Ns
j,kd(xs).

Note that 
∑m

j=1 d(xj)xj is an eigenvector for R by the equation above, we see that 
λk = d(xk) for any 1 ≤ k ≤ m.

Note that L∗
j = Lj∗ , we have d(xj) = d(xj∗), and d(xj)2 = d(xj)d(xj∗) ≥ 1. Finally, 

we see that d(xj) ≥ 1. �
Definition 2.7 (An alternative C∗-algebra A). We define an abelian C∗-algebra A with 
the basis B, a multiplication � and an involution #,

xj � xk = δj,kd(xj)−1xj ,

(xj)# = xj .

The C∗-norm on A is given by ‖x‖∞,A = max
1≤j≤m

|d(x � xj)|
d(xj)

for any x ∈ A.

Proposition 2.8. The linear functional d is a faithful state on A.

Proof. Note that {d(xj)xj} are orthogonal minimal projections of A. By Proposition 2.6, 
d(xj) ≥ 1, so d is faithful. �
Definition 2.9. For any 1 ≤ t ≤ ∞, the t-norms on A and B are defined as follows:

‖x‖t,A = d(|x|t)1/t, x ∈ A, ‖x‖t,B = τ(|x|t)1/t, x ∈ B, |x| = (x∗x)1/2 1 ≤ t < ∞

and

‖x‖∞,A = max
1≤j≤m

|d(x � xj)|
d(xj)

, ‖x‖∞,B = sup
‖y‖2,B=1

‖xy‖2,B,

Remark 2.10. For any x ∈ A, |x| = (x# � x)1/2.

Definition 2.11. [Fourier transform] Let A, B be *-algebra with the same basis B, but 
different multiplications and involutions defined in Definition 2.1 and 2.7. The Fourier 
transform F : A → B is a linear map defined by

F(xj) = xj , ∀j.

Note that F is a bijection.
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Proposition 2.12 (Plancherel’s formula). The Fourier transform F : A → B is a unitary 
transformation:

‖F(x)‖2,B = ‖x‖2,A,

i.e.

τ(F(x)∗F(x)) = d(x# � x).

Proof. We only have to check the equation for the basis B. For any 1 ≤ j, k ≤ m, we 
have

d(xj � xk) = δj,kd(xk)−1d(xk) = δj,k = τ(xj∗xk) = τ(x∗
jxk).

Then the proposition is true. �
Under the Fourier transform, the multiplication on B induces the convolution on A. 

We denote the convolution of x, y ∈ A by

x ∗ y := F−1(F(x)F(y)).

The C∗-algebras A and B share the same vector spaces, but have different multiplications, 
convolutions and traces. These traces are non-commutative analogues of measures.

We axiomatize the quintuple (A, B, F, d, τ) as a fusion bialgebra in the following def-
inition. To distinguish the multiplications and convolutions on A and B, we keep the 
notations as above.

Definition 2.13 (Fusion bialgebras). Suppose A and B are two finite dimensional C∗-
algebras with faithful traces d and τ respectively, A is commutative, and F : A → B is a 
unitary transformation preserving 2-norms (i.e. τ(F(x)∗F(y)) = d(x# � y) for any x, y ∈
A). We call the quintuple (A, B, F, d, τ) a fusion bialgebra, if the following conditions 
hold:

(1) Schur Product: For operators x, y ≥ 0 in A, x ∗ y := F−1(F(x)F(y)) ≥ 0 in A.
(2) Modular Conjugation: The map J(x) := F−1(F(x)∗) is an anti-linear, *-isomorphism 

on A.
(3) Jones Projection: The operator F−1(1) is a positive multiple of a minimal projection 

in A.

Furthermore, if F−1(1) is a minimal projection and d(F−1(1)) = 1, then we call the fusion 
bialgebra canonical.

Remark 2.14. One can reformulate the definition of fusion bialgebras using the quintuple 
(A, ∗, J, d, τ).
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Remark 2.15. We show that subfactors provide fruitful fusion bialgebras in §2.2. One 
can compare the three conditions in Definition 2.13 with the corresponding concepts in 
subfactor theory.

Proposition 2.16 (Gauge transformation). Given a fusion bialgebra (A, B, F, d, τ), then 

(A, B, λ
1
2
1 λ

− 1
2

2 F, λ1d, λ2τ) is also a fusion bialgebra, with λ1, λ2 > 0. Therefore, any fusion 
bialgebra is equivalent to a canonical one up to a gauge transformation.

Proof. It follows from the definition of the fusion bialgebra in Definition 2.13. �
Theorem 2.17. If (A, B, F, d, τ) is a fusion bialgebra, then B has a unique R≥0-basis 
B = {x1 = 1, x2, . . . , xm}, such that F−1(xj) are multiples of minimal projections of A. 
Moreover, B is invariant under the gauge transformation. Conversely, any C∗-algebra B
with a R≥0-basis B can be extended to a canonical fusion bialgebra, such that F−1(xj)
are multiples of minimal projections of A.

Proof. By the above arguments, if a C∗-algebra B has a R≥0-basis B = {x1 =
1, x2, . . . , xm}, then we obtain a canonical fusion bialgebra (A, B, F, d, τ).

On the other hand, suppose (A, B, F, d, τ) is a fusion bialgebra. Let Pj , 1 ≤ j ≤ m, 
be the minimal projections of A, and F−1(1) = δBP1, for some δB > 0. The modular 
conjugation J is a *-isomorphism, so J(Pj) = Pj∗ , for some 1 ≤ j∗ ≤ m. Then F(Pj) =
F(Pj∗)∗ and J(P1) = P1. Moreover,

d(Pj) = d(P#
j � Pj) = τ(F(Pj)∗F(Pj))

= τ(F(Pj∗)∗F(Pj∗)) = d(Pj∗) .

By the Schur Product property,

Pj ∗ Pk =
m∑
s=1

Ñs
j,kPs , (3)

for some Ñs
j,k ∈ R≥0. Since the functional d is faithful, d(Pj) > 0. Taking the inner 

product with P1 on both sides of Equation (3), we have that

Ñ1
j,k∗ = d(P1 � (Pj ∗ Pk∗))

d(P1)
= τ(F(P1)∗F(Pj ∗ Pk∗))

d(P1)

= 1
d(P1)δB

τ(F(Pj ∗ Pk∗)) = 1
d(P1)δB

τ(F(Pj)F(Pk∗))

= 1
d(P1)δB

τ(F(Pj)F(Pk)∗) = 1
d(P1)δB

d(Pj � Pk)

= d(Pj)δj,k
d(P1)δB

.
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In particular, Ñ1
1,1 = δ−1

B . Take

xj = δ
1
2
B (Ñ1

j,j∗)−
1
2F(Pj) ,

Ns
j,k = δ

1
2
B (Ñ1

j,j∗)−
1
2 (Ñ1

k,k∗)−
1
2 (Ñ1

s,s∗)
1
2 Ñs

j,k .

Then

xjxk =
m∑
s=1

Ns
j,kxs, x∗

j = xj∗ , Ns
j,k ≥ 0 N1

j,k = δj,k∗ .

Therefore, {xj}1≤j≤m forms a R≥0-basis of B. Moreover, it is the unique R≥0-basis of B
such that F−1(xj) are positive multiples of minimal projections in A.

Furthermore, applying the gauge transformation, we obtain a canonical fusion bialge-
bra

(A,B, F̌, ď, τ̌) =
(
A,B, δBF,

d

d(P1)
,

τ

d(P1)δ2
B

)
.

In this fusion bialgebra, the minimal projections in A are still Pj , 1 ≤ j ≤ m. Their 
convolution becomes

Pj ∗ Pk = δB

m∑
s=1

Ñs
j,kPs .

The corresponding xj becomes

(δBÑ1
j,j∗)−

1
2 δBF(Pj) = xj .

Therefore, the R≥0-basis B is invariant under the gauge transformation. �
Definition 2.18 (Frobenius-Perron dimension). For a fusion bialgebra (A, B, F, d, τ), 
F−1(1) is a multiple of a minimal projection P1 in A. We define μ := d(1A)

d(P1) as the 
Frobenius-Perron dimension of the fusion bialgebra.

Remark 2.19. Note that the Frobenius-Perron dimension μ is invariant under the gauge 
transformations. When the fusion bialgebra is canonical, let B = {x1 = 1, x2, . . . , xm} be 
the basis of B in Theorem 2.17. Denote F−1(xj) ∈ A by xj (as in Definition 2.11). Then 
μ =

∑m
j=1 d(xj)2. This coincides with the definition of the Frobenius-Perron dimension 

of a fusion ring.

Remark 2.20. For a canonical fusion bialgebra (A, B, F, d, τ), one can consider τ as a 
Haar measure and μd ◦F−1 as a Dirac measure on B. On the dual side, one can consider 
μ−1d as a Haar measure and τ ◦ F as a Dirac measure on A.
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Proposition 2.21. Let (A, B, F, d, τ) be a fusion ring. Then for any x, y, z ∈ A, we have

d((x ∗ y) � z) = d((J(z) ∗ x#) � J(y))

Proof. We have

d((x ∗ y) � z) = τ(F(x ∗ y)F(z#)∗) = τ(F(x)F(y)F(z#)∗)

= τ(F(z#)∗F(x)F(y)) = τ(F(J(z#))F(x)F(J(y))∗)

= τ(F(J(z#) ∗ x)F(J(y))∗) = d((J(z#) ∗ x) � J(y)#)

= d((J(z) ∗ x#) � J(y))

This completes the proof of the proposition. �
2.2. Examples

Example 2.22. When the basis B forms a group under the multiplication of B, the C∗-
algebra B is the group algebra, H is its left regular representation Hilbert space, and 
τ is the normalized trace. On the other side, the C∗-algebra A is L∞(B) and d is the 
unnormalized Haar measure.

Example 2.23. When the basis B forms a fusion ring, the C∗-algebra B is the fusion 
algebra. The quintuple (A, B, F, d, τ) is a canonical fusion bialgebra.

Theorem 2.24. Suppose N ⊂ M is a finite-index subfactor and P• is its planar algebra 
[16]. If P2,+ is abelian, then (P2,+, P2,−, Fs, tr2,+, tr2,−) is a fusion bialgebra, and μ
is the Jones index. Moreover, we obtain a canonical one (P2,+, P2,−, F, d, τ), such that 
d = μtr2,+ is the unnormalized trace of P2,+, τ = tr2,− is the normalized trace of P2,−, 
and F = μ1/2Fs = δFs, where Fs : P2,+ → P2,− is the string Fourier transform.

Proof. Let Pj , j = 1, 2, . . . , m be the minimal projections of P2,+ and P1 be the Jones 
projection. Let Tr be the unnormalized trace of P2,+, namely Tr(P1) = 1. Take xj =

1√
Tr(Pi)

F(Pj) and xj∗ = 1√
Tr(Pi)

F(Pj), where Pj is the contragredient of Pj. Then

xjxk = Ns
j,kxs,

x1 is the identity, x∗
k = xk∗ , Ns

j,k ≥ 0, and N1
j,k = δj,k∗ . �

Remark 2.25. On the 2-box space P2,± of a subfactor planar algebra, the Fourier trans-
form is a 90◦ rotation and the contragredient is a 180◦ rotation, see e.g. §2.1 in [21].

Definition 2.26 (Subfactorization). We call (P2,+, P2,−, Fs, tr2,+, tr2,−) the fusion bial-
gebra of the subfactor N ⊂ M. We say a fusion bialgebra (A, B) can be subfactorized, 
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if it comes from a subfactor N ⊂ M in this way. We call N ⊂ M a subfactorization of 
the fusion bialgebra.

2.3. Classifications

In this section, we classify fusion bialgebras up to dimension three. By the gauge 
transformation, it is enough to classify canonical fusion bialgebras, which reduces to 
classify the R≥0-basis of C∗-algebra by Theorem 2.17. Recall in Theorem 2.24 that 
(P2,+, P2,−, Fs, tr2,+, tr2,−) of a subfactor planar algebra is a fusion bialgebra, if P2,+
is abelian. We refer the readers to [1–3,23,36,4] for known examples of three dimensional 
fusion bialgebras from 2-box spaces of subfactors planar algebras. In these examples, 
different subfactor planar algebras produce different fusion bialgebras.

In general, without assuming P2,+ to be abelian, (P2,+, P2,−, Fs, tr2,+, tr2,−) has 
been studied as the structure of 2-boxes of a planar algebra, see Definition 2.25 in [21]. 
One may ask when a subfactor planar algebra (generated by its 2-boxes) is determined 
by its structure of 2-boxes, equivalently by its fusion bialgebra when P2,+ is abelian. A 
positive answer is given in Theorem 2.26 in [21] for exchange relation planar algebras: 
exchange relation planar algebras are classified by its structure of 2-boxes. Classifying 
fusion bialgebras is a key step to classify exchange relation planar algebras. On the other 
hand, it would be interesting to find different subfactors planar algebras generated by 
2-boxes with the same fusion bialgebras (or structures of 2-boxes).

Proposition 2.27 (Rank-two classification). Two dimensional canonical fusion bialgebras 
are classified by the Frobenius-Perron dimension μ ≥ 2. Moreover, they can be subfac-
torized if and only if μ is a Jones index.

Proof. If {x1, x2} is a R≥0-basis, then x∗
2 = x2. By Proposition 2.6, d2 := d(x2) ≥ 1, 

and

x2
2 = x1 + d2

2 − 1
d2

x2 .

So μ ≥ 2. Conversely, when μ ≥ 2, we obtain a R≥0-basis in this way.
Furthermore, when μ is a Jones index, the canonical fusion bialgebra can be subfac-

torized by the Temperley-Lieb-Jones subfactors with index μ. �
Suppose {x1 = 1, x2, x3} is the R≥0-basis of a three-dimensional C∗-algebra B. Then B

is commutative. Take d2 = d(x2) and d3 = d(x3). There are two different cases: x∗
2 = x2

or x∗
2 = x3.

Proposition 2.28 (Rank-three classification, type I). In the case x∗
2 = x2, three dimen-

sional canonical fusion bialgebras are classified by three parameters d2, d3, a, such that 
d2, d3 ≥ 1, 0 ≤ a ≤ 1, b = 1 − a, d2

2 − 1 − ad2
3 ≥ 0, d2

3 − 1 − bd2
2 ≥ 0. Moreover,
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x2x2 = x1 + d2
2 − 1 − ad2

3
d2

x2 + ad3x3 ,

x2x3 = ad3x2 + bd2x3 ,

x3x3 = x1 + bd2x2 + d2
3 − 1 − bd2

2
d3

x3 .

Proof. Take parameters a, b, such that

x2x3 = ad3x2 + bd2x3 .

Then a, b ≥ 0. Computing d on both sides, we have that a +b = 1. So a ≤ 1. By Equation 
(1), N3

2,2 = N2
2,3. Hence

x2x2 = x1 + d2
2 − 1 − ad2

3
d2

x2 + ad3x3 ,

by computing d on both sides. Similarly N2
3,3 = N3

2,3, and

x3x3 = x1 + bd2x2 + d2
3 − 1 − bd2

2
d3

x3 .

As the coefficients are non-negative, we have that d2
2 − 1 − ad2

3 ≥ 0 and d2
3 − 1 − bd2

2 ≥ 0.
Conversely, with the above parameters, the multiplication is associative and (xjxk)∗ =

x∗
kx

∗
j by a direct computation. Therefore, we obtain the classification. �

Proposition 2.29 (Rank-three classification, type II). In the case x∗
2 = x3, three dimen-

sional canonical fusion bialgebras are classified by one parameter μ ≥ 3. Moreover, 
d2 = d3 =

√
μ−1

2 ,

x2x2 = d2
2 − 1
2d2

x2 + d2
2 + 1
2d2

x3 ,

x2x3 = x1 + d2
2 − 1
2d2

(x2 + x3) ,

x3x3 = d2
2 + 1
2d2

x2 + d2
2 − 1
2d2

x3 .

Proof. As x∗
2 = x3, we have that d2 = d3 =

√
μ−1

2 ≥ 1 and x2x3 is self-adjoint. So

x2x3 = x1 + λ(x2 + x3) ,

for some λ ≥ 0. Computing d on both sides, we have that λ = d2
2−1
2d2

. By Equation (1), 
N2

2,2 = N3
2,3. So
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x2x2 = d2
2 − 1
2d2

x2 + d2
2 + 1
2d2

x3 ,

by computing d on both sides. Similarly N3
3,3 = N2

2,3, and

x3x3 = d2
2 + 1
2d2

x2 + d2
2 − 1
2d2

x3 .

The coefficients are non-negative.
Conversely, with the above parameters, the multiplication is associative and (xjxk)∗ =

x∗
kx

∗
j by a direct computation. Therefore, we obtain the classification. �

The one-parameter family of three dimensional canonical fusion bialgebras in the 
above classification can be realized as the 2-box spaces of a one-parameter family of 
planar algebras constructed in [23]. For each d2 ≥ 1, there are a complex-conjugate pair 
of planar algebras to realize the fusion bialgebra as the 2-box spaces. So such a realization 
may not be unique. Moreover, these planar algebras arise from subfactors if and only if 
μ = cot2( π

2N+2 ) for some N ∈ Z+. Inspired by this observation, we conjecture that:

Conjecture 2.30. In the case II, the one-parameter family of three dimensional fusion 
bialgebras can be subfactorized if and only if μ = cot2( π

2N+2 ).

2.4. Duality

Definition 2.31. For a fusion bialgebra (A, B, F, d, τ), we define the quintuple (B, A, ̃F, τ, d)
as its Fourier dual, where F̃ = #F−1∗.

Remark 2.32. To be compatible with the examples from subfactor theory, this is the 
natural Fourier dual, not (B, A, F−1, τ, d).

Definition 2.33 (Contragredient). For any x ∈ A, we define its contragredient as

x :=F̃F(x) .

For any y ∈ B, we define its contragredient as

y :=FF̃(y) .

When B is commutative, it is natural to ask whether the dual (B, A, F−1, τ, d) is also a 
fusion bialgebra. We need to check the three conditions in Definition 2.13. The conditions 
(2) and (3) always hold on the dual, but condition (1) may not hold.

Proposition 2.34 (Dual modular conjugation). For a fusion bialgebra (A, B, F, d, τ), the 
map JB(x) := F̃−1(F̃(x)#) is an anti-linear, *-isomorphism on B.
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Proof. Note that the map JB is anti-linear and

JB(xj) = F̃−1(F̃(xj)#) = F(F−1(x∗
j )#)∗ = xj ,

so JB(xjxk) = xjxk, and JB is an anti-linear *-isomorphism on B. �
Proposition 2.35 (Dual Jones projection). For a fusion bialgebra (A, B, F, d, τ), F(1A) is 
a positive multiple of a central, minimal projection eB in B, where 1A is the identity of 
A. Moreover, μ = τ(1B)

τ(eB) .

Proof. Since the gauge transformation only changes the global scaler, without loss of 
generality, we assume that (A, B, F, d, τ) is a canonical fusion bialgebra. Then

F(1A) =
m∑
j=1

F(Pj) =
m∑
j=1

d(xj)xj .

Note that d(xj) = d(xj∗) ≥ 0 and x∗
j = xj∗ , so F(1A) = F(1A)∗. By Equation (1) and 

Proposition 2.6,

F(1A)xk =
m∑
j=1

d(xj)xjxk =
m∑

j,s=1
d(xj)Ns

j,kxs

=
m∑

j,s=1
d(xj∗)N j∗

k,s∗xs =
m∑
s=1

d(xkxs∗)xs

=d(xk)
m∑
s=1

d(xs)xs = d(xk)F(1A) .

So F(1A) ∗ F(1A) = μF(1A) and

eB = μ−1F̃(1A) = μ−1F(1A) = μ−1
m∑
j=1

d(xj)xj

is a central, minimal projection. Moreover,

τ(eB) = μ−1
m∑
j=1

d(xj)τ(xj) = μ−1, τ(1B) = τ(x1) = 1 .

We have τ(1)
τ(eB) = μ. �

2.5. Self duality

In this subsection, we will give the definition of the self-dual fusion bialgebra and 
study the S-matrix associated to it.
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Definition 2.36. Two fusion bialgebras (A, B, F, d, τ) and (A′, B′, F′, d′, τ ′) are called iso-
morphic, if there are *-isomorphisms ΦA : A → A′ and ΦB : B → B′, such that 
ΦBF = F′ΦA, d = d′ΦA and τ = τ ′ΦB.

Definition 2.37. A fusion bialgebra (A, B, F, d, τ) is called self-dual, if its dual (B, A, ̃F,
τ, d) is a fusion bialgebra and they are isomorphic. Furthermore, it is called symmetrically 
self-dual, if ΦBΦA = 1 on A.

The maps ΦA, ΦB implementing the self-duality may not be unique, even for finite 
abelian groups.

Proposition 2.38. Suppose (A, B, F, d, τ) is a self-dual canonical fusion bialgebra with a 
R≥0-basis B = {x1 = 1B, x2, . . . , xm} of B, then

∑
j

λjxj =
∑
j

λjxj∗ .

Consequently, the contragredient maps on A and B are anti-∗-isomorphisms.

Proof. The statements follow from the fact that the contragredient map is linear and

xj = FF̃(xj) = FF−1(x∗
j )# = xj∗ = x∗

j , ∀ 1 ≤ j ≤ m. �
Definition 2.39. Suppose (A, B, F, d, τ) is a self-dual canonical fusion bialgebra with a 
R≥0-basis B = {x1 = 1B, x2, . . . , xm} of B, we define the S-matrix S as an m × m

matrix with entries Sk
j , such that

FΦB(xj) =
m∑

k=1

Sk
j xk.

Proposition 2.40. For a self-dual canonical fusion bialgebra (A, B, F, d, τ), FΦB is a uni-
tary transformation on L2(B, τ), and the S matrix is a unitary.

Proof. Both F and ΦB are unitary transformations, so the composition is a unitary on 
L2(B, τ). Recall that B is an orthonormal basis of L2(B, τ), we have S is a unitary 
matrix. �
Proposition 2.41. A self-dual canonical fusion bialgebra is symmetrically self-dual if and 
only if Sk

j = Sj
k. In this case,

FΦB = ΦAF̃.
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Proof. For a self-dual canonical fusion bialgebra, we have that

ΦBFΦBF = F̃ΦAΦBF .

By Propositions 2.38 and 2.40, the fusion bialgebra is symmetrically self-dual if and only 
if (ΦBF)2 = F̃F if and only if (S2)kj = δj,k∗ if and only if Sk

j = Sj
k. In this case,

ΦBFΦBF = ΦBΦAF̃F .

So FΦB = ΦAF̃. �
Remark 2.42. For the group case, S is a bicharacter, see [24] for the discussion on self-
duality and symmetrically self-duality.

Theorem 2.43 (Verlinde formula). For a self-dual canonical fusion bialgebra (A, B, F,
d, τ),

SLjS
∗ = Dj , 1 ≤ j ≤ m,

where Ljx = xjx for x ∈ B and Djxk = Sk
j

d(xk)xk.

Proof. Assume that B = {x1 = 1, x2, . . . , xm} is a basis of B. We have

FΦBLj(FΦB)−1(xk)) = FΦB(xj(FΦB)−1(xk))

= F(ΦB(xj) � ΦB((FΦB)−1(xk)))

= F(F−1FΦB(xj) � F−1(xk))

=
m∑
s=1

Ss
jF(F−1(xs) � F−1(xk))

=
Sk
j

d(xk)
xk

This completes the proof of the theorem. �
3. Schur product property

In this section, we will study Schur product property for the dual of a fusion bialgebra.

Definition 3.1. For a fusion bialgebra (A, B, F, d, τ), the multiplication � on A induces a 
convolution ∗B on B: ∀x, y ∈ B,

x ∗B y :=F̃−1(F̃(x) � F̃(y)) = (F(F−1(y∗) � F−1(x∗)))∗ . (4)

We say B has the Schur product property, if x ∗B y ≥ 0, for any x, y ≥ 0 in B.
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Proposition 3.2 (Frobenius reciprocity). Let (A, B, F, d, τ) be a fusion bialgebra. Then for 
any x, y, z ∈ B, we have

τ((x ∗B y)z) = τ((JB(x) ∗B z∗)y∗)

Proof. We have

τ((x ∗B y)z) = τ((F(F−1(y∗) � F−1(x∗)))∗z)

= d(F−1(y∗)# � F−1(x∗)# � F−1(z))

= τ(yF(F−1(x∗)# � F−1(z)))

= τ(F(F−1(JB(x)∗) � F−1(z∗∗))∗y∗)

= τ((JB(x) ∗B z∗)y∗)

This completes the proof of the proposition. �
Proposition 3.3. Suppose the fusion bialgebra (A, B, F, d, τ) can be subfactorized. Then 
the Schur product property holds on the dual.

Proof. It follows from the quantum Schur product theorem on subfactors, Theorem 4.1 
in [21]. �
Proposition 3.4. Suppose the fusion bialgebra (A, B, F, d, τ) is self-dual. Then the Schur 
product property holds on the dual.

Proof. It follows from the definition of self-dual fusion bialgebras. �
We define a linear map Δ : B → B ⊗ B such that

Δ(xj) = 1
d(xj)

xj ⊗ xj , Δ(x∗) = Δ(x)∗, x ∈ B.

Then Δ is a ∗-preserving map. We say Δ is positive if Δ(x) ≥ 0 for any x ≥ 0.

Proposition 3.5. Let (A, B, F, d, τ) be a fusion bialgebra and suppose Δ is positive. Then 
the Schur product property holds for (B, A, ̃F, τ, d)

Proof. We denote by ι the identity map. Note that for any x =
∑m

j=1 λjxj , y =∑m
j=1 λ

′
jxj ∈ B, we have

(ι⊗ τ)(Δ(x)(1 ⊗ y)) = (ι⊗ τ)

⎛⎝ m∑
j=1

λj

d(xj)
xj ⊗ xj

⎛⎝1 ⊗
m∑
j=1

λ′
jxj∗

⎞⎠⎞⎠
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= (ι⊗ τ)

⎛⎝ m∑
j,k=1

λjλ
′
k

d(xj)
xj ⊗ xjxk∗

⎞⎠
=

m∑
j,k=1

λjλ
′
k

d(xj)
xjτ(xjxk∗)

=
m∑
j=1

λjλ
′
j

d(xj)
xj = x ∗B y.

Let y = y1y
∗
1 and x ≥ 0. Then (1 ⊗ y∗1)Δ(x)(1 ⊗ y1) ≥ 0. Hence

(ι⊗ τ) ((1 ⊗ y∗1)Δ(x)(1 ⊗ y1)) ≥ 0,

i.e. x ∗B y ≥ 0. �
Proposition 3.6. For a fusion bialgebra (A, B, F, d, τ), the Schur product property holds 
on B, if and only if

d((J(x) ∗ x) � (J(y) ∗ y) � (J(z) ∗ z)) ≥ 0, ∀x, y, z ∈ A.

Proof. By the Schur product property on A,

(J(x) ∗ x)∗ = J(x)# ∗ x∗ = J(x#) ∗ x∗, ∀x ∈ A.

Note that F(J(x) ∗ x) = |F(x)|2 ≥ 0, and any positive operator in B is of such form. 
Therefore, by Proposition 2.12 and Equation (4),

d((J(x) ∗ x) � (J(y) ∗ y) � (J(z) ∗ z)) ≥ 0, ∀x, y, z ∈ A,

⇐⇒ τ(F(J(x#) ∗ (x#)∗F((J(y) ∗ y) � (J(z) ∗ z)) ≥ 0, ∀x, y, z ∈ A,

⇐⇒ τ(|F(x∗)|2(|F(y)|2 ∗B |F(z)|2)∗) ≥ 0 ∀x, y, z ∈ A,

⇐⇒ |F(y)|2 ∗B |F(z)|2 ≥ 0 ∀y, z ∈ A,

if and only if the Schur product property holds on B. �
The Schur product property may not hold on the dual, even for a 3-dimensional fusion 

bialgebra. We give a counterexample. For this reason, Young’s inequality do not hold on 
the dual as well, see §5 for further discussions. As a preparation, we first construct the 
minimal projections in B.

Proposition 3.7. For the canonical fusion bialgebra (A, B, F, d, τ) in Proposition 2.28, the 
minimal projections of B are given by
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Q1 = μ−1(x1 + d2x2 + d3x3) ,

Q2 = ν−1
2 (x1 −

λ2

d2
x2 −

1 − λ2

d3
x3) ,

Q3 = ν−1
3 (x1 −

λ3

d2
x2 −

1 − λ3

d3
x3) ,

where λ2, λ3 are the solutions of

λ2 + λ3 = ad2
3 − bd2

2 + 1 ,

λ2λ3 = −bd2
2 ;

and νj = 1 + λ2
j

d2
2

+ (1−λj)2
d2
3

.

Proof. Note that μ = 1 + d2
2 + d2

3. By Proposition 2.35,

Q1 = eB = μ−1(x1 + d2x2 + d3x3) .

For j = 2, 3, d(Q1Qj) = 0, so

Q2 = ν−1
2 (x1 −

λ2

d2
x2 −

1 − λ2

d3
x3) ,

Q3 = ν−1
3 (x1 −

λ3

d2
x2 −

1 − λ3

d3
x3) ,

for some ν2, ν3 > 0. As Q2
j = Qj , we have that νj = 1 + λ2

j

d2
2

+ (1−λj)2
d2
3

. Furthermore, 
Q2Q3 = 0, so

x1 −
λ2 + λ3

d2
x2 −

2 − λ2 − λ3

d3
x3 + λ2λ3

d2
2

x2
2 + λ2 + λ3 − 2λ2λ3

d2d3
x2x3

+ (1 − λ2)(1 − λ3)
d2
3

x2
3 = 0.

The coefficient of xj is 0, for 1 ≤ j ≤ 3. So

1 + λ2λ3

d2
2

+ (1 − λ2)(1 − λ3)
d2
3

= 0 ,

−λ2 + λ3

d2
+ λ2λ3

d2
2

d2
2 − 1 − ad2

3
d2

+ λ2 + λ3 − 2λ2λ3

d2d3
ad3 + (1 − λ2)(1 − λ3)

d2
3

bd2 = 0 ,

−2 − λ2 − λ3

d3
+ λ2λ3

d2
2

ad3 + λ2 + λ3 − 2λ2λ3

d2d3
bd2 + (1 − λ2)(1 − λ3)

d2
3

d2
3 − 1 − bd2

2
d3

= 0 .

Take
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ω1 = λ2 + λ3 ,

ω2 = λ2λ3 .

Then

1 + ω2

d2
2

+ 1 − ω1 + ω2

d2
3

= 0 ,

−ω1

d2
+ ω2

d2
2

d2
2 − 1 − ad2

3
d2

+ ω1 − 2ω2

d2d3
ad3 + 1 − ω1 + ω2

d2
3

bd2 = 0 ,

−2 − ω1

d3
+ ω2

d2
2
ad3 + ω1 − 2ω2

d2d3
bd2 + 1 − ω1 + ω2

d2
3

d2
3 − 1 − bd2

2
d3

= 0 .

Solving the linear system, we have that

ω1 = ad2
3 − bd2

2 + 1 ;

ω2 = −bd2
2 .

Therefore, λ2, λ3 are the solutions of

λ2 + λ3 = ad2
3 − bd2

2 + 1 ,

λ2λ3 = −bd2
2 . �

Theorem 3.8. For the three dimensional canonical fusion bialgebras (A, B, F, d, τ) param-
eterized by d2, d3, a in Proposition 2.28, the Schur product property does not hold on the 
dual in general, for example, d2 = 1000, d3 = 500, a = 0.750001.

Proof. Fix 0 < a < 1, and b = 1 − a. Take d2 → ∞ and d2
3 − 1 = bd2

2, then λ3 →
b−1, λ2d

−2
2 → −b2. Moreover,

d−2
2 d

(
(F−1(ν2Q2))3

)
=d−2

2

(
1 −
(
λ2

d2

)3

d−2
2 d2 −

(
1 − λ2

d3

)3

d−2
3 d3

)

=d−2
2

(
1 −
(
λ2d

−2
2
)3

d2
2 −

(1 − λ2)3

d4
3

)
= −

(
λ2d

−2
2
)3 + d−2

2

(
1 − (1 − λ2)3

(1 + bd2
2)2

)
→b6 − b4 < 0

By Proposition 3.7, the Schur product property does not hold in general on the dual. 
Numerically, one can take d2 = 1000, d3 = 500, a = 0.750001, then d((F−1(ν2Q2))3)
< 0. �
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Remark 3.9. Subsection 8.3 provides a complementary approach for the study of this 
family of rank 3 fusion bialgebras, leading to visualize the areas of parameters where 
Schur product property (on the dual) does not hold, and to a character table whose 
matrix (function of the fusion coefficients) is equal to the inverse of the one underlying 
Theorem 3.7 (function of the Frobenius-Perron dimensions).

4. Hausdorff-Young inequality and uncertainty principles

In this section, we will recall some inequalities for general von Neumann algebras first 
and then we will prove the Hausdorff-Young inequalities and uncertainty principles for 
fusion bialgebras.

Proposition 4.1 (Hölder’s inequality, see for example Proposition 4.3, 4.5 in [14]). Let 
M be a von Neumann algebra with a normal faithful tracial state τ and 1 ≤ p, q ≤ ∞
with 1/p + 1/q = 1. Then for any x ∈ Lp(M), y ∈ Lq(M), we have

‖xy‖1 ≤ ‖x‖p‖y‖q

Moreover

(1) for 1 < p < ∞, ‖xy‖1 = ‖x‖p‖y‖q if and only if |x|p
‖x‖p

p
= |y∗|q

‖y‖q
q
;

(2) for p = ∞, ‖xy‖1 ≤ ‖x‖∞‖y‖1 if and only if the spectral projection of |x| corre-
sponding to ‖x‖∞ contains the projection R(y) as subprojection, where R(y) is the 
range projection of y.

Corollary 4.2. Let M be a von Neumann algebra with a normal faithful tracial state τ
and x ∈ M. Then ‖x‖2

2 = ‖x‖∞‖x‖1 if and only if x is a multiple of a partial isometry.

Proposition 4.3 (Interpolation theorem, see for example Theorem 1.2 in [20]). Let M, N
be finite von Neumann algebras with normal faithful states τ1, τ2. Suppose T : M → N
is a linear map. If

‖Tx‖p1,τ2 ≤ K1‖x‖q1,τ1 , and ‖Tx‖q1,τ2 ≤ K2‖x‖q2,τ1 ,

then

‖Tx‖pθ,τ2 ≤ K1−θ
1 Kθ

2‖x‖qθ,τ1 ,

where 1 = 1−θ + θ , 1 = 1−θ + θ , 0 ≤ θ ≤ 1.
pθ p1 p2 qθ q1 q2
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4.1. Hausdorff-Young inequality

Proposition 4.4. Let (A, B, F, d, τ) be a fusion bialgebra. Then

‖F(x)‖∞,B ≤ ‖x‖1,A, x ∈ A

and

‖F̃(x)‖∞,A ≤ ‖x‖1,B, x ∈ B.

Proof. Let x =
∑m

j=1 λjF
−1(xj) ∈ A. Then

‖F(x)‖∞,B =

∥∥∥∥∥∥
m∑
j=1

λjxj

∥∥∥∥∥∥
∞,B

≤
m∑
j=1

|λj | ‖xj‖∞,B

=
m∑
j=1

|λj |d(xj) = ‖x‖1,A.

This proves the first inequality.

For the second inequality, we let x =
∑m

j=1 λjxj . Then ‖F̃(x)‖∞,A = max
1≤j≤m

|λj |
d(xj)

. 

For any k such that λk �= 0, we have

τ

⎛⎝∣∣∣∣∣∣
m∑
j=1

λjxj

∣∣∣∣∣∣
⎞⎠ ≥

τ
(
λkxk∗

∑m
j=1 λjxj

)
|λk|d(xk∗) = |λk|

d(xk)
.

Hence ‖F̃(x)‖∞,A ≤ ‖x‖1,B. This completes the proof of the proposition. �
Theorem 4.5 (Hausdorff-Young inequality). Let (A, B, F, d, τ) be a fusion bialgebra. Then 
for any 1 ≤ p ≤ 2, 1/p + 1/q = 1, we have

‖F(x)‖q,B ≤ ‖x‖p,A, x ∈ A

and

‖F̃(x)‖q,A ≤ ‖x‖p,B, x ∈ B.

Proof. It follows from Proposition 2.12, 4.4 and Proposition 4.3. �
We divide the first quadrant into three regions RT , RF , RTF . Recall that μ =∑m
j=1 d(xj)2 is the Frobenius-Perron dimension of B. Let K be a function on [0, 1]2

given by
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Fig. 1. The norms of the Fourier Transform.

K(1/p, 1/q) =

⎧⎪⎨⎪⎩
1 for (1/p, 1/q) ∈ RF ,

μ1/p+1/q−1 for (1/p, 1/q) ∈ RT ,

μ1/q−1/2 for (1/p, 1/q) ∈ RTF ,

(5)

as illustrated in Fig. 1.

Theorem 4.6. Let (A, B, F, d, τ) be a fusion bialgebra and x ∈ B Then for any 1 ≤ p, q ≤
∞, we have

K(1/p, 1/q)−1‖x‖p,B ≤ ‖F̃(x)‖q,A ≤ K(1/p, 1/q)‖x‖p,B

Proof. It follows from the proof of Theorem 3.13 in [25]. We leave the details to the 
readers. �
4.2. Uncertainty principles

We will prove the Donoho-Stark uncertainty principle, Hirschman-Beckner uncertainty 
principle and Rényi entropic uncertainty principle for fusion bialgebras. For any x ∈ A, 
we let R(x) be the range projection of x and S(x) = d(R(x)). For any x ∈ B, S(x) =
τ(R(x)).

Lemma 4.7. Let (A, B, F, d, τ) be a fusion bialgebra. Then we have

S(x) = S(x#) = S(J(x)), x ∈ A

and

S(x) = S(x∗) = S(JB(x)), x ∈ B.
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Theorem 4.8 (Donoho-Stark uncertainty principle). Let (A, B, F, d, τ) be a fusion bialge-
bra. Then for any 0 �= x ∈ A, we have

S(x)S(F(x)) ≥ 1;

for any 0 �= x ∈ B, we have

S(x)S(F̃(x)) ≥ 1;

Proof. The second inequality is the reformulation of the first one. We only have to prove 
the first one. In fact,

‖F(x)‖∞,B ≤ ‖x‖1,A ≤ ‖R(x)‖2,A‖x‖2,A Proposition 4.4, 4.1

= S(x)1/2‖F(x)‖2,B

≤ S(x)1/2‖R(F(x))‖2,B‖F(x)‖∞,B Proposition 4.1

= S(x)1/2S(F(x))1/2‖F(x)‖∞,B,

i.e. S(x)S(F(x)) ≥ 1. This completes the proof of the theorem. �
For any x ∈ B, the von Neumann entropy H(|x|2) is defined by H(|x|2) =

−τ(x∗x log x∗x) and for any x ∈ A the von Neumann entropy is defined by H(|x|2) =
−d 
(
(x# � x) log(x# � x)

)
.

Theorem 4.9 (Hirschman-Beckner uncertainty principle). Let (A, B, F, d, τ) be a fusion 
bialgebra. Then for any x ∈ A, we have

H(|x|2) + H(|F(x)|2) ≥ −4‖x‖2
2,A log ‖x‖2,A.

Proof. We assume that x �= 0. Let f(p) = log ‖F(x)‖p,B − log ‖x‖q,A, where p ≥ 2 and 
1/p + 1/q = 1. By using the computations in the proof of Theorem 5.5 in [14], we have

d

dp
‖F(x)‖pp,B

∣∣∣∣
p=2

= −1
2H(|F(x)|2)

and

d

dp
log ‖F(x)‖p,B

∣∣∣∣
p=2

= −1
4 log ‖F(x)‖2

2,B − 1
4
H(|F(x)|2)
‖x‖2

2,A
.

We obtain that

f ′(2) = −1
2 log ‖x‖2

2,A − 1
4‖x‖2 (H(|F(x)|2) + H(|x|2)).
2,A
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By Proposition 2.12, we have that f(2) = 0. By Theorem 4.5, we have f(p) ≤ 0 for 
p ≥ 2. Hence f ′(2) ≤ 0 and

H(|F(x)|2) + H(|x|2) ≥ −4‖x‖2
2,A log ‖x‖2,A. �

Remark 4.10. Let (A, B, F, d, τ) be a fusion bialgebra. The Hirschman-Beckner uncer-
tainty principle is also true for x ∈ B with respect to the Fourier transform F̃.

We give a second proof of Theorem 4.8:

Proof. By using Theorem 4.9 and the inequality logS(x) ≥ H(|x|2), for any ‖x‖2,A = 1, 
we see that Theorem 4.8 is true. �

For any x ∈ A or B and t ∈ (0, 1) ∪ (1, ∞), the Rényi entropy Ht(x) is defined by

Ht(x) = t

1 − t
‖x‖t.

Then Ht(x) are decreasing function (see Lemma 4.3 in [25]) with respect to t for 
‖x‖∞,A ≤ 1 and ‖x‖∞,B ≤ 1 respectively.

Theorem 4.11 (Rényi entropic uncertainty principles). Let (A, B, F, d, τ) be a fusion bial-
gebra, 1 ≤ t, s ≤ ∞. Then for any x ∈ A with ‖x‖2,A = 1, we have

(1/t− 1/2)Ht/2(|F(x)|2) + (1/2 − 1/s)Hs/2(|x|2) ≥ − logK(1/t, 1/s).

Proof. The proof is similar to the proof of Proposition 4.1 in [25], using Theorem 4.6. �
5. Young’s inequality

In this section, we study Young’s inequality for the dual of fusion bialgebra and the 
connections between Young’s inequality and the Schur product property.

Proposition 5.1. Let (A, B, F, d, τ) be a fusion bialgebra. Then for any x, y ∈ A, we have

‖x ∗ y‖∞,A ≤ ‖x‖∞,A‖y‖1,A.

Proof. For any x =
∑m

j=1 λjF
−1(xj) and y =

∑m
j=1 λ

′
jF

−1(xj), we have

‖x ∗ y‖∞,A =

∥∥∥∥∥∥
m∑

j,k=1

λjλ
′
kF

−1(xjxk)

∥∥∥∥∥∥
∞,A

=

∥∥∥∥∥∥
m∑

j,k,s=1

λjλ
′
kN

s
j,kF

−1(xs)

∥∥∥∥∥∥
∞,A

= max

∣∣∣∑m
j,k=1 λjλ

′
kN

s
j,k

∣∣∣
≤ max

∑m
j,k=1

∣∣∣λjλ
′
kN

s
j,k

∣∣∣

1≤s≤m d(xs) 1≤s≤m d(xs)
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≤ max
1≤j≤m

|λj |
d(xj)

max
1≤s≤m

∑m
j,k=1

∣∣∣d(xj)λ′
kN

s
j,k

∣∣∣
d(xs)

= ‖x‖∞,A

m∑
k=1

|λ′
k|d(xk) = ‖x‖∞,A‖y‖1,A.

This completes the proof of the proposition. �
Remark 5.2. It would be natural to ask whether the following Young’s inequality for the 
dual (B, A, ̃F, τ, d)

‖x ∗B y‖∞,B ≤ ‖x‖∞,B‖y‖1,B (6)

holds in general, but it does not, because we will see that it implies the Schur product 
property on the dual, which does not hold on many examples provided by Theorem 3.8, 
Subsections 8.3 and 8.4.

Proposition 5.3. Suppose that F−1(x) > 0, x ∈ B, we actually have that Inequality (6) is 
true. Hence

‖x ∗B y‖∞,B ≤ 4‖x‖∞,B‖y‖1,B. (7)

Proof. Let x =
∑m

j=1 λjF(xj) with λj ≥ 0 and y =
∑m

j=1 λ
′
jF(xj). Then ‖x‖∞,B =∑m

j=1 λjd(xj) and

‖x ∗B y‖∞,B =

∥∥∥∥∥∥
m∑
j=1

λjλ
′
jd(xj)−1xj

∥∥∥∥∥∥
∞,B

≤
m∑
j=1

|λjλ
′
j |

=
m∑
j=1

λjd(xj)
|λ′

j |
d(xj)

≤ max
1≤j≤m

|λ′
j |

d(xj)

m∑
j=1

λjd(xj)

= ‖F−1(y)‖∞,A‖x‖∞,B ≤ ‖y‖1,B‖x‖∞,B Proposition 4.4

Inequality (7) follows directly by the fact that any element is a linear combination of 
four positive elements. �
Proposition 5.4. Let (A, B, F, d, τ) be a fusion bialgebra with B commutative. Then the 
Schur product property for the dual (B, A, ̃F, τ, d) implies inequality (6).

Proof. By Definition 2.13, (B, A, ̃F, τ, d) is a fusion bialgebra. The proposition follows 
from Proposition 5.1. �
Proposition 5.5. Let (A, B, F, d, τ) be a fusion bialgebra. If ‖Δ‖ ≤ 1 then Inequality (6)
holds.
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Proof. As in the proof of Proposition 3.5, for any x, y ∈ B, we have that x ∗B y =
(ι ⊗ τ)(Δ(x)(1 ⊗ y)). Then

‖(ι⊗ τ)(Δ(x)(1 ⊗ y))‖∞,B = sup
‖z‖1,B=1

|(τ ⊗ τ)(Δ(x)(z ⊗ y))|

≤ sup
‖z‖1,B=1

‖Δ(x)‖∞,B‖z‖1,B‖y‖1,B

≤ ‖x‖∞,B‖y‖1,B.

This completes the proof. �
Proposition 5.6. Let (A, B, F, d, τ) be a fusion bialgebra. Then for any x, y ∈ A, we have

‖x ∗ y‖1,A = ‖x‖1,A‖y‖1,A.

Proof. Suppose x =
∑m

j=1 λjF
−1(xj) and y =

∑m
j=1 λ

′
jF

−1(xj). Then

‖x ∗ y‖1,A =

∥∥∥∥∥∥
m∑

j=1,k=1,s=1

λjλ
′
kN

s
j,kF

−1(xs)

∥∥∥∥∥∥
1,A

=
m∑

j=1,k=1,s=1

|λjλ
′
k|Ns

j,kd(xs)

=
m∑

j=1,k=1

|λjλ
′
k|d(xj)d(xk) =

m∑
j=1

|λj |d(xj)
m∑

k=1

|λ′
k|d(xk)

= ‖x‖1,A‖y‖1,A,

i.e. ‖x ∗ y‖1,A = ‖x‖1,A‖y‖1,A. �
Proposition 5.7. The following two statements are equivalent for C > 0:

(1) For any x, y ∈ B, ‖x ∗B y‖∞,B ≤ C‖x‖1,B‖y‖∞,B.
(2) For any x, y ∈ B, ‖x ∗B y‖1,B ≤ C‖x‖1,B‖y‖1,B.

Proof. (1) ⇒ (2):

‖x ∗B y‖1,B = sup
‖z‖∞=1

τ((x ∗B y)z)

= sup
‖z̃‖∞=1

τ((JB(x) ∗B z∗)y∗) Proposition 3.2

≤ sup
‖z̃‖∞=1

‖JB(x) ∗B z̃∗‖∞,B‖y‖1,B

≤ C‖x‖1,B‖y‖1,B.
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(2) ⇒ (1):

‖x ∗B y‖∞,B = sup
‖z‖1=1

τ((x ∗B y)z)

= sup
‖z̃‖1=1

τ((JB(x) ∗B z∗)y∗) Proposition 3.2

≤ sup
‖z̃‖1=1

‖JB(x) ∗B z̃∗‖1,B‖y‖∞,B

≤ C‖x‖1,B‖y‖∞,B. �
Proposition 5.8. Let (A, B, F, d, τ) be a fusion bialgebra. The following statements:

(1) the Schur product property holds on the dual.
(2) ‖x ∗B y‖1,B = ‖x‖1,B‖y‖1,B, for any x ≥ 0, y ≥ 0 in B;
(3) ‖x ∗B y‖1,B ≤ ‖x‖1,B‖y‖1,B, for any x, y in B;
(4) ‖x ∗B y‖∞,B ≤ ‖x‖1,B‖y‖∞,B, for any x, y in B;

satisfy that (4) ⇔ (3) ⇒ (1) ⇔ (2).

Proof. Suppose x =
∑m

j=1 λjxj ≥ 0 and y =
∑m

j=1 λ
′
jxj ≥ 0 in B. Then

‖x ∗B y‖1,B ≥ |τ(x ∗B y)| = λ1λ
′
1 = τ(x)τ(y) = ‖x‖1,B‖y‖1,B.

(1) ⇒ (2): By the Schur product property, we have x ∗B y ≥ 0 and ‖x ∗B y‖1,B =
τ(x ∗B y). This implies (2).

(2) ⇒ (1): This implies that ‖x ∗B y‖1,B = τ(x ∗B y) for x, y ≥ 0. However this implies 
that x ∗B y ≥ 0, i.e. the Schur product property holds.

(3) ⇒ (1): (3) implies that ‖x ∗By‖1,B = τ(x ∗By) for x, y ≥ 0. Thus the Schur product 
property holds.

(3) ⇔ (4): It follows from Proposition 5.7. �
Proposition 5.9. Let (A, B, F, d, τ) be a fusion bialgebra. Then for any x, y ∈ A, 1 ≤ p ≤
∞, we have

‖x ∗ y‖p,A ≤ ‖x‖p,A‖y‖1,A.

Proof. It follows from Proposition 5.1, 5.6 and Proposition 4.3. �
Proposition 5.10. Let (A, B, F, d, τ) be a fusion bialgebra. Then for any x, y ∈ A, 1 ≤
p ≤ ∞, 1/p + 1/q = 1, we have

‖x ∗ y‖∞,A ≤ ‖x‖p,A‖y‖q,A.
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Proof. We have

‖x ∗ y‖∞,A = sup
‖z‖1,A=1

|d((x ∗ y) � z)|

= sup
‖z‖1,A=1

∣∣d((J(z) ∗ x#) � J(y))
∣∣ Proposition 2.21

≤ sup
‖z‖1,A=1

‖J(z) ∗ x#‖p,A‖J(y)‖q,A Proposition 4.1

≤ ‖x#‖p,A‖y‖q,A Proposition 5.9

= ‖x‖p,A‖y‖q,A.

This completes the proof of the proposition. �
Theorem 5.11 (Young’s inequality). Let (A, B, F, d, τ) be a fusion bialgebra. Then for any 
x, y ∈ A, 1 ≤ p, q, r ≤ ∞, 1/p + 1/q = 1 + 1/r, we have

‖x ∗ y‖r,A ≤ ‖x‖p,A‖y‖q,A.

Proof. It follows from Propositions 5.9, 5.10 and Proposition 4.3. �
Proposition 5.12. Let (A, B, F, d, τ) be a fusion bialgebra. Then for any x, y ∈ B, 2 ≤ r ≤
∞, 1 ≤ p, q ≤ 2, 1/p + 1/q = 1 + 1/r, we have

‖x ∗B y‖r,B ≤ ‖x‖p,B‖y‖q,B.

Proof. For any x, y ∈ B, 1/r + 1/r′ = 1, 1/p + 1/p′ = 1, 1/q + 1/q′ = 1, we have

‖x ∗B y‖r,B = ‖F(F̃(x) � F̃(y))‖r,B
≤ ‖F̃(x) � F̃(y)‖r′,A Proposition 4.5

= ‖F̃(x)‖p′,A‖F̃(y)‖q′,A Proposition 4.1

≤ ‖x‖p,B‖y‖q,B. Proposition 4.5

This completes the proof of the proposition. �
Proposition 5.13. Let (A, B, F, d, τ) be a self-dual fusion bialgebra. Then Young’s inequal-
ity holds on the dual.

Proof. It is directly from the definition. �
Proposition 5.14. Let (A, B, F, d, τ) be a fusion bialgebra. Then the following are equiva-
lent:



Z. Liu et al. / Advances in Mathematics 390 (2021) 107905 31
(1) ‖x ∗B y‖r,B ≤ ‖x‖p,B‖y‖q,B, 1 ≤ p, q, r ≤ ∞, 1/p + 1/q = 1 + 1/r for any x, y ∈ B;
(2) ‖x ∗B y‖1,B ≤ ‖x‖1,B‖y‖1,B for any x, y ∈ B;
(3) ‖x ∗B y‖∞,B ≤ ‖x‖∞,B‖y‖1,B for any x, y ∈ B.

We say the dual has Young’s property if one of the above statements is true.

Proof. It follows the similar proof of Proposition 5.7 and Proposition 5.9 and 5.10. �
Remark 5.15. By Proposition 5.8, we have that for the dual, Young’s property implies 
Schur product property.

Proposition 5.16. Let (A, B, F, d, τ) be a fusion bialgebra. Then for any x, y ∈ A, we have

R(x ∗ y) ≤ R(R(x) ∗ R(y)).

In particular, R(x ∗ y) = R(R(x) ∗ R(y)) if x ≥ 0, y ≥ 0.

Proof. It follows from the Schur product property. �
Remark 5.17. Let (A, B, F, d, τ) be a fusion bialgebra. Suppose that the dual has Schur 
product property. Then R(x ∗B y) = R(R(x) ∗B R(y)) if x > 0, y > 0 in B.

Proposition 5.18. Young’s property holds on a fusion bialgebra (A, B, F, d, τ) which can 
be subfactorized.

Proof. It follows from Theorem 4.13 in [14] for subfactors. �
Theorem 5.19 (Sum set estimate). Let (A, B, F, d, τ) be a fusion bialgebra. Then for any 
x, y ∈ A, we have

S(R(x) ∗ R(y)) ≥ max{S(x),S(y)}.

Proof. We have that

S(x)S(y) = ‖R(x)‖1,A‖R(y)‖1,A

= ‖R(x) ∗ R(y)‖1,A Proposition 5.6

≤ ‖R(R(x) ∗ R(y))‖2,A‖R(x) ∗ R(y)‖2,A Proposition 4.1

≤ S(R(x) ∗ R(y))1/2‖R(x)‖1,A‖R(y)‖2,A Proposition 5.9

= S(R(x) ∗ R(y))1/2S(x)S(y)1/2.

Hence S(R(x) ∗ R(y)) ≥ S(y). �
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Remark 5.20. We thank Pavel Etingof for noticing us another proof of Theorem 5.19
from an algebraic point of view [5].

Theorem 5.21 (Sum set estimate). Let (A, B, F, d, τ) be a fusion bialgebra. Suppose that 
the dual has the Schur product property. Then for any x, y ∈ B, we have

S(R(x) ∗B R(y)) ≥ max{S(x),S(y)}.

Proof. By Proposition 5.12 and 5.8, the proof is similar to the one of Theorem 5.19. �
6. Fusion subalgebras and bishifts of biprojections

In this section, we define fusion subalgebras, biprojections and bishifts of biprojec-
tions for fusion bialgebras. We prove a correspondence between fusion subalgebras and 
biprojections. We prove partially that bishifts of biprojections are the extremizers of the 
inequalities proved in the previous sections.

Definition 6.1 (Fusion subalgebra). Let (A, B, F, d, τ) be a fusion bialgebra. A subalgebra 
A0 of A is a fusion subalgebra if (A0, F(A0), F, d, τ) is a fusion bialgebra.

Definition 6.2 (Biprojection). Let (A, B, F, d, τ) be a fusion bialgebra. We say x ∈ A is a 
biprojection if x is projection and F(x) is a multiple of a projection in B.

Proposition 6.3. Let (A, B, F, d, τ) be a fusion bialgebra and P a biprojection. Then there 
is a fusion subalgebra A0 such that the range of P is A0.

Proof. We write F(P ) =
∑m

j=1 λjxj . By the fact that P is a projection and F(P ) is a 
multiple of a projection, we obtain that λj = 0 or λj = d(xj), and

F(P )2 = λF(P ), F(P )∗ = λ

λ
F(P ). (8)

Solving the Equation (8), we obtain that

λλj∗ = λλj , λλs =
m∑

j,k=1

λjλkN
s
j,k. (9)

Let

A0 = span{F−1(xj) : λj �= 0}

and

IA0 = {1 ≤ j ≤ m : λj �= 0} ⊂ {1, . . . ,m}.



Z. Liu et al. / Advances in Mathematics 390 (2021) 107905 33
Then F(P ) =
∑

j∈IA0
d(xj)xj . By Equations (9), we have that

λd(xs) =
∑

j,k∈IA0

d(xj)d(xk)Ns
j,k,

and

λ =
∑

j,k∈IA0

λjλkδj∗,k =
∑

j∈IA0

|λj |2 =
∑

j∈IA0

d(xj)2 > 0.

Let μA0 =
∑

j∈IA0
d(xj)2. We have

d(xs) = μ−1
A0

∑
j,k∈IA0

d(xj)d(xk)Ns
j,k, ∀s ∈ IA0 . (10)

By Equation (9) and (10), we have that the involution ∗ is invariant on IA0 and

μA0d(xs) =
∑

j,k∈IA0

d(xj)d(xk)Ns
j,k

=
∑

j∈IA0

d(xj)
∑

k∈IA0

d(xk∗)Nk∗

s∗,j

≤
∑

j∈IA0

d(xj)
m∑

k=1

d(xk∗)Nk∗

s∗,j

=
∑

j∈IA0

d(xj)d(xs∗)d(xj)

= μA0d(xs),

i.e. Nk
s,j = 0 for any k /∈ IA0 . Therefore xjxk =

∑
s∈IA0

Ns
j,kxs for any j, k ∈ IA0 , i.e. 

F(A0) is a ∗-algebra and (A0, F(A0), F, d, τ) is a fusion bialgebra. �
Proposition 6.4. Let (A, B, F, d, τ) be a fusion bialgebra and (A0, F(A0), F, d, τ) is a fusion 
subalgebra. Then there is a biprojection P such that the range of P is A0.

Proof. Let {y1, . . . , ym′} be a R≥0-basis of F−1(A0) such that y1 = 1, yj ∈ B and yjyk =∑m′

s=1 M
s
j,kys, where Ms

j,k ∈ N and M1
j,k = δy∗

j ,yk
. Suppose that yj =

∑m
k=1 Cj,kxk, 

Cj,k ∈ Z. Then

1 = M1
j∗,j = τ(y∗j yj) =

m∑
k=1

C2
j,k.

Hence yj = xmj
for some 1 ≤ mj ≤ m and Ms

j,k = Nms
mj ,mk

for 1 ≤ j, k, s ≤ m′. Let 
P =

∑m′

j=1 d(yj)F−1(yj). Then
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F(P )2 = μA0F(P ), F(P )∗ = F(P ).

Then P is a biprojection. �
Theorem 6.5. Let (A, B, F, d, τ) be a fusion bialgebra. Then there is a bijection between 
the set of fusion subalgebras and the set of biprojections.

Proof. It follows from Proposition 6.3 and 6.4. �
Definition 6.6 (Left and right shifts). Let (A, B, F, d, τ) be a fusion bialgebra and B a 
biprojection. A projection P ∈ B is a shift of R(F(B)) if τ(P ) = τ(R(F(B))) and 
P ∗B R(F(B)) = τ(R(F(B)))P . A projection P ∈ A is a left shift of B if d(B) = d(P )
and P ∗ B = d(B)P ; A projection P ∈ A is a right shift of B if d(B) = d(P ) and 
B ∗ P = d(B)P .

Lemma 6.7. Let (A, B, F, d, τ) be a fusion bialgebra and B a biprojection. Then

(1) R(F(B)) is a shift of R(F(B)), B is a left (right) shift of B;
(2) JB(P ) is a shift of R(F(B)) when P is a shift of R(F(B));
(3) J(P ) is a left (right) shift of B when P is a right (left) shift of B;
(4) S(P )S(F(P )) = 1 when P is a left (right) shift of B or S(F−1(P ))S(P ) = 1 when 

P is a shift of R(F(B));
(5) R(F−1(P )) = B if P is a left (right) shift of R(F(B)) and R(F(P )) = R(F(B)) if 

P is a shift of B.

Proof. (1) By Proposition 6.3, we have R(F(B)) = d(B)−1F(B),

B ∗B = d(B)B, R(F(B)) ∗B R(F(B)) = d(B)−1R(F(B))

and

S(B)S(F(B)) = τ(R(F(B)))d(B) = 1
d(B)d(B) = 1.

It indicates that R(F(B)) is a shift of R(F(B)) and B is a left (right) shift of B
(2) and (3) can be followed by the property of J and JB.
(4) Suppose P is a shift of R(F(B)). Then R(F−1(P )) ≤ B and

1 ≤ S(P )S(F−1(P )) = τ(P )d(R(F−1(P ))) ≤ S(F(B))d(B) = 1,

i.e. S(P )S(F−1(P )) = 1 and R(F−1(P )) = B.
Suppose P is a right shift of B. Then R(F(P )) ≤ R(F(B)) and

1 ≤ S(P )S(F(P )) ≤ S(B)S(F(B)) = 1,
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i.e. S(P )S(F(P )) = 1. Hence R(F(P )) = R(F(B)).
Suppose P is a left shift of B. Then J(P ) is a right shift of B. By Lemma 4.7, we 

have S(P )S(F(P )) = 1. �
Definition 6.8 (Bishift of biprojection). Let (A, B, F, d, τ) be a fusion bialgebra and B a 
biprojection. A nonzero element x is a bishift of the biprojection B if there is y ∈ A, a 
shift B̃g of R(F(B)) and a right shift Bh of B such that x = F−1(B̃g) ∗ (y �Bh).

Lemma 6.9. Let (A, B, F, d, τ) be a fusion bialgebra and B a biprojection. Suppose x =
F−1(B̃g) ∗ (y �Bh) is a bishift of a biprojection B. Then R(x) = B̃g, R(F(x)) = Bh and

S(x)S(F(x)) = 1.

Proof. By Proposition 5.16, we have

R(x) ≤ R(R(F−1(Bg)) ∗ R(y �Bh)) ≤ R(B ∗Bh) = Bh

Then we obtain that

1 ≤ S(x)S(F(x)) ≤ S(Bh)S(B̃g) = S(B)S(F(B)) = 1.

Hence the inequalities above are equalities, i.e. R(x) = Bh, R(F(x)) = B̃g. �
Definition 6.10. Let (A, B, F, d, τ) be a fusion bialgebra. An element x ∈ B is said to 
be extremal if ‖F−1(x)‖∞,A = ‖x‖1,B. An element x ∈ A is said to be extremal if 
‖F(x)‖∞,B = ‖x‖1,A.

Definition 6.11. Let (A, B, F, d, τ) be a fusion bialgebra. An element x ∈ A is a bi-partial 
isometry if x and F(x) are multiples of partial isometries. An element x ∈ A is an 
extremal bi-partial isometry if x is a bi-partial isometry and x, F(x) are extremal.

Theorem 6.12. Let (A, B, F, d, τ) be a fusion bialgebra. Then the following statements are 
equivalent:

(1) H(|x|2) + H(|F(x)|2) = −4‖x‖2
2,A log ‖x‖2,A;

(2) S(x)S(F(x)) = 1;
(3) x is an extremal bi-partial isometry.

Proof. The arguments are similar to the one of Theorem 6.4 in [14], since only the 
Hausdorff-Young inequality is involved. �
Proposition 6.13. Let (A, B, F, d, τ) be a fusion bialgebra and w an extremal bi-partial 
isometry. Suppose that w is a projection. Then w̃ is a right shift of a biprojection.
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Proof. Let w =
∑

j∈J d(xj)F−1(xj). Then

‖w‖∞,A = 1, ‖w‖2,A = ‖F(w)‖2,B =

⎛⎝∑
j∈J

d(xj)2
⎞⎠1/2

, ‖w‖1,A =
∑
j∈J

d(xj)2. (11)

By the assumption, we have

‖F(w)‖1,B = ‖w‖∞,A = 1, ‖F(w)‖∞,B = ‖w‖1,A =
∑
j∈J

d(xj)2. (12)

Let P = F(w)F(w)∗. Then P is a multiple of a projection in B and

‖P‖∞,B =

⎛⎝∑
j∈J

d(xj)2
⎞⎠2

, ‖P‖1,B = ‖w‖2
2,A =

∑
j∈J

d(xj)2, ‖P‖2,B =

⎛⎝∑
j∈J

d(xj)2
⎞⎠3/2

(13)
We will show that F−1(P ) is a multiple of partial isometry. By Corollary 4.2, we have 
to check ‖F−1(P )‖2

2,A = ‖F−1(P )‖∞,A‖F−1(P )‖1,A. In fact,

⎛⎝∑
j∈J

d(xj)2
⎞⎠3

= ‖F−1(P )‖2
2,A

≤ ‖F−1(P )‖∞,A‖F−1(P )‖1,A Equation (13) and Proposition 4.1

≤ ‖P‖1,B‖w ∗ J(w)‖1,A Proposition 4.4

=

⎛⎝∑
j∈J

d(xj)2
⎞⎠ ‖w‖2

1,A Proposition 5.6

=

⎛⎝∑
j∈J

d(xj)2
⎞⎠3

,

i.e. ‖F−1(P )‖2
2,A = ‖F−1(P )‖∞,A‖F−1(P )‖1,A and F−1(P ) is a multiple of a partial 

isometry. By Schur product property, we have that F−1(P ) > 0 and F−1(P ) is a multiple 
of a projection. Hence

‖F−1(P )‖∞,A =
∑
j∈J

d(xj)2,

R(F−1(P )) =

⎛⎝∑
j∈J

d(xj)2
⎞⎠−1

F−1(P ),

d(R(F−1(P ))) =
∑

d(xj)2

(14)
j∈J
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and 
(∑

j∈J d(xj)2
)−1

F−1(P ) is a biprojection
By Equation (14), we have

R(F−1(P )) ∗ w =

⎛⎝∑
j∈J

d(xj)2
⎞⎠−1

F−1(P ) ∗ w =

⎛⎝∑
j∈J

d(xj)2
⎞⎠−1

F−1(PF(w))

= ‖w‖2
∞,B

⎛⎝∑
j∈J

d(xj)2
⎞⎠−1

w =

⎛⎝∑
j∈J

d(xj)2
⎞⎠w

= d(R(F−1(P )))w = ‖w‖1,Aw.

Hence w is a right shift of R(F−1(P )). �
Corollary 6.14. Let (A, B, F, d, τ) be a fusion bialgebra. Then a left shift of a biprojection 
is a right shift of a biprojection.

Proof. It follows from Lemma 6.7 and Proposition 6.13. �
Question 6.15. Are the minimizers of the Donoho-Stark uncertainty principle bishifts of 
biprojections?

Theorem 6.16. Let (A, B, F, d, τ) be a fusion bialgebra. Suppose that the dual has Young’s 
property. Then the minimizers of the Donoho-Stark uncertainty principle are bishifts of 
biprojections.

Proof. The proof is similar to the proof of Proposition 6.13. We leave the details to the 
reader. �
Theorem 6.17 (Exact inverse sum set theorem). Let (A, B, F, d, τ) be a fusion bialgebra 
and P, Q projections in A. Then the following are equivalent:

(1) S(P ∗Q) = S(P );
(2) 1

S(Q)P ∗Q is a projection;
(3) there is a biprojection B such that Q ≤ Bh and P = R(x ∗B) for some x �= 0 in A, 

where Bh is a right shift of B.

Proof. (1) ⇒ (2) By Theorem 5.19, we have that S(P ∗Q) ≥ S(P ). By the assumption 
and the proof of Theorem 5.19, we have

‖P ∗Q‖1,A = ‖R(P ∗Q)‖2,A‖P ∗Q‖2,A, ‖P ∗Q‖2,A = ‖P‖2,A‖Q‖1,A. (15)

By Proposition 4.1, we have that
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P ∗Q = λR(P ∗Q)

and

λS(P ∗Q)1/2 = ‖P ∗Q‖2,A = S(P )1/2S(Q).

Therefore λ = S(Q) and 1
S(Q)P ∗Q is a projection.

(2) ⇒ (1) By the assumption and Proposition 5.6, we have

S(P ∗Q) = S
(

1
S(Q)P ∗Q

)
= 1

S(Q)d(P ∗Q) = S(P )S(Q)
S(Q) = S(P ).

(2) ⇒ (3) Let P1 = R(P ∗Q). Then by Proposition 2.21, we have

d((P1 ∗ J(Q)) � P ) = d((J(P ) ∗ P1) �Q) = d((J(Q) ∗ J(P )) � J(P1))

= d((P ∗Q) � P1) = d(P ∗Q)

= d(P )d(Q) = d(P1 ∗ J(Q)).

Hence R(P1 ∗ J(Q)) ≤ P . But by Theorem 5.19, we have

d(R(P1 ∗ J(Q))) = S(P1 ∗ J(Q)) ≥ S(P1) = S(P ).

Then

1
S(J(Q))P1 ∗ J(Q) = R(P1 ∗ J(Q)) = P.

Expanding the expression, we have

1
S(Q)2P ∗Q ∗ J(Q) = P.

Note that ‖F(Q)‖∞,B ≤ ‖Q‖1,A = S(Q). Let

F(B) = lim
n→∞

1
S(Q)2n (F(Q)F(Q)∗)n. (16)

Then F(B) is the spectral projection of S(Q)−2F(Q)F(Q)∗ corresponding to 
‖F(Q)‖2

∞,B
S(Q)2 . 

Moreover B > 0, P ∗B = P , P = R(P ∗B), B �= 0 and

‖F(B)‖∞,B = 1 = ‖B‖1,A, ‖B‖∞,A ≤ ‖F(B)‖1,B = ‖F(B)‖2
2,B = ‖B‖2

2,A (17)

Hence

‖B‖∞,A‖B‖1,A ≤ ‖B‖2
2,A ≤ ‖B‖∞,A‖B‖1,A.
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By Corollary 4.2, we have that B is a multiple of a partial isometry and then B is a 
multiple of a projection. Therefore ‖B‖−2

2,AB is a biprojection.
Let Q1 = R(B ∗Q). Then

R(Q1 ∗ J(Q1)) = R(R(B ∗Q)J(R(B ∗Q)))

= R(R(B ∗Q)R(J(Q) ∗B))

= R(B ∗Q ∗ J(Q) ∗B) Proposition 5.16

= R(B).

Hence S(Q1 ∗ J(Q1)) = S(B). On the other hand, by Theorem 5.19, we have

S(Q1 ∗ J(Q1)) ≥ S(Q1) = S(B ∗Q) ≥ S(B).

Now we obtain that S(B ∗ Q) = S(B). By “(1) ⇒ (2)”, we have Q1 = 1
S(Q)R(B) ∗ Q. 

Note that

d(Q1) = S(Q1) = S(B) = d(R(B))

and

R(B) ∗Q1 = ‖B‖−2
2,AB ∗Q1 = d(R(B))Q1.

We see Q1 is a right shift of R(B).
Now we have to check Q ≤ Q1. Note that F−1(1B) ≤ ‖B‖∞,�B. Then by Proposi-

tion 5.16, we have Q ≤ Q1.
(3) ⇒ (1) By the assumption and Proposition 5.16, we have

P ∗B = R(x ∗B ∗B) = P.

By Proposition 6.13, we have

Q ∗ J(Q) ≤ Bh ∗ J(Bh) = S(B)B.

Then by Proposition 5.16 and Theorem 5.19, we have

S(P ) ≤ S(P ∗Q) = S(R(P ∗Q))

≤ S(R(P ∗Q) ∗ J(Q)) = S(P ∗Q ∗ J(Q))

≤ S(P ∗B) = S(P ).

Hence S(P ∗Q) = S(P ). �
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Remark 6.18. Let (A, B, F, d, τ) be a fusion bialgebra. If the Schur product property 
holds on the dual, the results in Theorem 6.17 are true for projections in B.

Following the proofs in [13], one can obtain the following theorems:

Theorem 6.19 (Extremizers of Young’s inequality). Let (A, B, F, d, τ) be a fusion bialge-
bra. Suppose the dual has Young’s property. Then the following are equivalent:

(1) ‖x ∗ y‖r,A = ‖x‖t,A‖y‖s,A for some 1 < r, t, s < ∞ such that 1/r + 1 = 1/t + 1/s;
(2) ‖x ∗ y‖r,A = ‖x‖t,A‖y‖s,A for any 1 ≤ r, t, s ≤ ∞ such that 1/r + 1 = 1/t + 1/s;
(3) x, y are bishifts of biprojection such that R(F(x)) = R(F(y)).

Theorem 6.20 (Extremizers of the Hausdorff-Young inequality). Let (A, B, F, d, τ) be a 
fusion bialgebra. Suppose the dual has Young’s property, then the following are equivalent:

(1) ‖x‖ t
t−1 ,B = ‖x‖t,A for some 1 < t < 2;

(2) ‖x‖ t
t−1 ,B = ‖x‖t,A for any 1 ≤ t ≤ 2;

(3) x is a bishift of a biprojection.

7. Quantum Schur product theorem on unitary fusion categories

In this section, we reformulate the quantum Schur product theorem (Theorem 4.1 in 
[21]) in categorical language. Planar algebras can be regarded as a topological axiomati-
zation of pivotal categories (or 2-category in general). Subfactor planar algebras satisfy 
particular conditions designed for subfactor theory, see Page 9-13 of [16] for Jones’ orig-
inal motivation. A subfactor planar algebra is equivalent to a rigid C∗-tensor category 
with a Frobenius *-algebra. The correspondence between subfactor planar algebras and 
unitary fusion categories was discussed by Müger, particularly for Frobenius algebras in 
[27] and for the quantum double in [28].

Let D be a unitary fusion category, (or a rigid C∗-tensor category in general). Let 
(γ, m, η) be a Frobenius *-algebra of D , γ is an object of D , m ∈ homD(γ ⊗ γ, γ), 
η ∈ homD(1, γ), where 1 is the unit object of D , such that (γ, m, η) is a monoid object 
and (γ, m∗, η∗) is a comonoid object. Let ∪γ = η∗m be the evaluation map and ∩γ = m∗η

be the co-evaluation map. Then ∪∗
γ = ∩γ .

We construct a quintuple (A, ∗, J, d, τ) from the Frobenius algebra: Take the C∗ alge-
bra

A = homD(γ, γ),

with the ordinary multiplication and adjoint operation. For x, y ∈ A, their convolution 
is

x ∗ y = m(x⊗ y)m∗.
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The modular conjugation J is the restriction of the dual map of D on A. The Haar 
measure is

d(x) = ∪γ(x⊗ 1γ)∩γ ,

where 1· is the identity map on the object ·. The Dirac measure is

τ(x) = η∗xη.

We reformulate the quantum Schur product theorem on subfactor planar algebras and 
its proof as follows:

Theorem 7.1 (Theorem 4.1 in [21]). Given a Frobenius algebra (γ, m, η) of a rigid C∗-
tensor category, for any x, y ∈ A := homD(γ, γ), x, y > 0, we have that

x ∗ y := m(x⊗ y)m∗ > 0.

Proof. Let 
√
x and 

√
y be the positive square roots of the positive operators x and y

respectively. Then

x ∗ y = ((
√
x⊗√

y)m∗)∗((
√
x⊗√

y)m∗) ≥ 0.

Note that d is a faithful state, so d(x), d(y) > 0. Moreover, d(x ∗ y) is a positive multiple 
of d(x)d(y), so d(x ∗ y) > 0 and x ∗ y > 0. �

By the associativity of m and J(m) = m, the vector space homD(γ, γ) forms another 
C∗-algebra B, with a multiplication ∗ and involution J . The identity map induces a 
unitary transformation F : A → B, due to the Plancherel’s formula,

τ(x ∗ J(x)) = ∪γ(x⊗ J(x))∩γ = ∪γ(x∗x⊗ 1γ)∩γ = d(x∗x).

Proposition 7.2. When A is commutative, the quintuple (A, B, F, d, τ) is a canonical fu-
sion bialgebra.

Proof. The Schur product property follows from Theorem 7.1. The modulo conjugation 
property holds, as the duality map is an anti-linear *-isomorphism. The Jones projection 
property holds, as F(11) is the identity of B. Moreover, 11 is a minimal central projection 
and d(11) = 1, so (A, B, F, d, τ) is a canonical fusion bialgebra. �

Following the well-known correspondence between subfactor planar algebras and a 
rigid C∗ tensor category with a Frobenius *-algebra, we reformulate the subfactorization 
of a fusion bialgebra as follows:
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Definition 7.3. A fusion bialgebra is subfactorizable if and only if it is the quintuple 
(A, B, F, d, τ) arisen from a Frobenius *-algebra in a rigid C∗ tensor category constructed 
above.

There is another way to construct the dual B using the dual of D w.r.t. the Frobenius 
algebra γ, which is compatible with the Fourier duality of subfactor planar algebras. 
The dual D̂ of D w.r.t. the Frobenius algebra (γ, m, η) is defined as the γ − γ bimodule 
category over D , with the unit object γ. The dual Frobenius *-algebra of (γ, m, η) is 
(γ̂, m̂, η̂), γ̂ = γ ⊗ γ, m̂ = 1γ ⊗∪γ ⊗ 1γ , η̂ = m∗. Then the quintuple from the Frobenius 
algebra γ̂ of D̂ is dual to the quintuple from the Frobenius algebra γ of D . In particular, 
the C∗-algebra B can be implemented by homD̂(γ̂, ̂γ) with ordinary multiplication and 
adjoint operation.

Let C be a unitary fusion category. Take D = C �C , then D has a canonical Frobenius 

algebra (γ, m, η). Here γ =
m⊕
j=1

Xj⊗Xj , where {X1, X2, . . . , Xm} is the set of irreducible 

(or simple) objects of C , X1 is the unit and Xj = Xj∗ ;

m = FPdim(C )1/4
m⊕

j,k,s=1

(FPdim(Xj)FPdim(Xk)FPdim(Xs))1/2
∑

α∈ONB(Xj ,Xk;Xs)

α�α,

where FPdim(Xj) is the Frobenius-Perron dimension of Xj ,

FPdim(C ) =
m∑
j=1

FPdim(Xj)2

is the Frobenius-Perron dimension of C and ONB(Xj , Xk; Xs) is an orthonormal basis 
of homC (Xj ⊗Xk, Xs); and FPdim(C )1/4η ∈ homD(1, γ) is the canonical inclusion (in 
particular, γ̂ is the image of the unit of C under the action of the adjoint functor of 
the forgetful functor from Z(C ) to C ). Its dual D̂ is isomorphic to the Drinfeld center 
Z(C ) of C as a fusion category. This construction is well-known as the quantum double 
construction. Consequently,

Proposition 7.4. Let R be the Grothendieck ring of a unitary fusion category C . Then 
the canonical fusion bialgebra associated to the fusion ring R is isomorphic to the one 
(A, B, F, d, τ) associated to the canonical Frobenius algebra γ of C ⊗ C in the quantum 
double construction. So it is subfactorizable.

Proof. Following the notations above, we take xj := FPdim(X)−11Xj
� 1Xj

. Then

d(xj) = PF (Xj)

xj � xk = δj,kd(xj)−1xj ;
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(xj)# = xj ;

τ(xj) = δ1,j ;

J(xj) = xj∗ ;

xj ∗ xk =
∑

k∈Irr

dim |Z〉 ,

where � and # are the ordinary multiplication and adjoint operator on the commuta-
tive C∗-algebra A = homC (γ, γ) respectively, δj,k is the Kronecker delta and Ns

j,k =
homC (Xj ⊗Xk, Xs). Therefore, the fusion bialgebra associated to the Grothendieck ring 
is isomorphic to the fusion bialgebra arisen from the canonical Frobenius algebra (γ, m, η)
of C � C in the quantum double construction. So it is subfactorizable. �
Remark 7.5. To encode the fusion rule of C as the convolution on A exactly, our normal-
ization of the Frobenius algebra (γ, m, η) is slightly different from the usual one identical 
to planar tangles in planar algebras, see e.g. Equation (18), Propositions 4.1 and 4.2 
in [22].

Proposition 7.6. Let (A, B, F, d, τ) be the canonical fusion bialgebra associated with the 
Grothendieck ring R of the unitary fusion category C . Then the Schur product property 
holds on B, the dual of the fusion ring R.

Proof. Applying the quantum Schur product theorem, Theorem 7.1, to the Frobenius 
algebra (γ̂, m̂, η̂) of the Drinfeld center Z(C ), we obtain the Schur product property 
on B. �

We obtain an equivalent statement on A as follows (see another equivalent statement 
in Proposition 8.3):

Proposition 7.7. Let (A, B, F, d, τ) (or (A, ∗, J, d, τ) as in Remark 2.14) be the canonical 
fusion bialgebra associated with the Grothendieck ring R of the unitary fusion category C . 
Then

d((J(x) ∗ x) � (J(y) ∗ y) � (J(z) ∗ z)) ≥ 0, ∀x, y, z ∈ A.

Proof. It follows from Propositions 3.6 and 7.6.
We give a second proof without passing through the Drinfeld center Z(C ).

d((J(x) ∗ x) � (J(y) ∗ y) � (J(z) ∗ z))
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=
m∗

m∗

m∗

m

m

m

J(x)

J(y)

J(z)

x

y

z

=

J(x)

J(y)

J(z)

x

y

z

m

m

m

m∗

m∗

m∗

≥ 0.

The last inequality follows from reflection positivity of the horizontal reflection, namely 
the dual functor on C . �
Remark 7.8. Let us mention [11] which contains a reformulation of our first proof together 
with a discussion on some integrality properties of the numbers appearing in the Schur 
product criterion.

In particular, if Grothendieck ring R is commutative, then B is commutative. There 
is a one-to-one correspondence between minimal projections Pj in B and characters χj

of R, j = 1, 2, . . . , m:

Pj =
n∑

k=1

d(xk)−1χj(xk)xk∗ .

Take

Pj ∗B Pk =
m∑
s=1

N̂s
j,kPs,

then N̂s
j,k ≥ 0, due to the Schur product property on B.

The dual of the fusion ring R is independent of its categorification. The Schur product 
property may not hold on the dual of a fusion ring in general. Therefore, the Schur 
product property is an analytic obstruction of unitary categorification of fusion rings. 
We discuss its applications in §8. Similarly, Young’s inequality and sumset estimates are 
also analytic obstructions of unitary categorification of fusion rings.

8. Applications and conclusions

In this section, we show that the Schur product property on the dual is an analytic 
obstruction for the unitary categorification of fusion rings. Furthermore, this obstruction 
is very efficient to rule out the fusion rings of high ranks (we apply it on simple integral 
fusion rings). The inequalities for the fusion coefficients (Proposition 8.1) in the next 
subsection are essential for finding new fusion rings more efficiently.
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8.1. Upper bounds on the fusion coefficients

In this subsection, we obtain inequalities for fusion rings from the inequalities proved 
in previous sections.

Proposition 8.1. Let A be a fusion ring. Then

(1)
∑m

�=1

(
N �

j,k

)2
≤ min{d(xj)2, d(xk)2};

(2) N �
j,k ≤ d(x�)d(xj)

2−t
t d(xk)

t−2
t for any t ≥ 1;

(3) N �
j,k ≤ min{d(xj), d(xk), d(x�)};

(4)
∑m

s=1 N
s
j1,j2

Ns
j3,j4

≤ minj �=j′∈{j1,j2,j3,j4} d(xj)d(xj′).

Proof. Let (A, B, F, d, τ) be the fusion bialgebra arising from the fusion ring A. By 
Theorem 5.11, we have for any 1/r + 1 = 1/p + 1/q,∥∥∥∥∥

m∑
�=1

N �
j,kF

−1(x�)

∥∥∥∥∥
r,A

= ‖F−1(xj) ∗ F−1(xk)‖r,A ≤ ‖F−1(xj)‖p,A‖F−1(xk)‖q,A.

If r < ∞, then we obtain that

(
m∑
�=1

d(x�)2−r
(
N �

j,k

)r)1/r

≤ d(xj)
2−p
p d(xk)

2−q
q . (18)

If r = ∞, then we have

max
1≤�≤m

N �
j,k

d(x�)
≤ d(xj)

2−p
p d(xk)

2−q
q . (19)

In Inequality (18), let r = 2, p = 1, q = 2, we have 
∑m

�=1

(
N �

j,k

)2
≤ d(xj)2; let r = 2, 

p = 2, q = 1, we have 
∑m

�=1

(
N �

j,k

)2
≤ d(xk)2. Hence

m∑
�=1

(
N �

j,k

)2 ≤ min{d(xj)2, d(xk)2}.

This proves (1).
In Inequality (19), let p = t and q = t

t−1 for any t ≥ 1. Then

N �
j,k ≤ d(x�)d(xj)

2−t
t d(xk)

t−2
t .

This shows (2) is true.
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Take p = q = 2 in Inequality (19), we have N �
j,k ≤ d(x�). By Equation (1), we have

N �
j,k ≤ min{d(xj), d(xk), d(x�)}.

This indicates that (4) is true.
By Theorem 5.11 again, we have∥∥∥∥∥

m∑
t=1

m∑
s=1

Ns
j,kN

t
s,�F

−1(xt)

∥∥∥∥∥
∞,A

= ‖F−1(xj) ∗ F−1(xk) ∗ F−1(x�)‖∞,A

≤ ‖F−1(xj)‖1,A‖F−1(xk)‖2,A‖F−1(x�)‖2,A.

Then ∑m
s=1 N

s
j,kN

t
s,�

d(xt)
≤ d(xj).

We have 
∑m

s=1 N
s
j,kN

t
s,� ≤ d(xt)d(xj). By Equation (1), we have

m∑
s=1

Ns
j,kN

s
�,t ≤ d(xt)d(xj).

Note that j, k, �, t can be interchanged, we see (5) is true. �
Proposition 8.2. Let A be a fusion ring. Suppose that the fusion bialgebra arising from A is 
self-dual. Let S be the S-matrix associated to A. Then we have the following inequalities:

(1)
∑m

j=1 d(xj)
t−2
t−1 |Skj |

t
t−1 ≤ d(xk)

2−t
t−1 d(A)

t−2
2t−2 , 1 < t ≤ 2;

(2) d(xj)t−2d(A)1−t/2 ≤
∑m

k=1 |Sjk|td(xk)2−t, 1 < t ≤ 2;
(3) |Sjk| ≤ d(xj)d(xk)d(A)−1/2,

where d(A) is the Frobenius-Perron dimension of A.

Proof. It follows from the Hausdorff-Young inequalities. �
8.2. Schur product property reformulated

In this subsection we reformulate Schur product property (on the dual) using the 
irreducible complex representation of the fusion algebra, which in the commutative case, 
becomes a purely combinatorial property of the character table.

Note that Proposition 3.3 states that if the fusion ring A is the Grothendieck ring of 
unitary fusion category, then Schur product property holds on the dual of A, so it can 
be seen as a criterion for unitary categorification.
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Proposition 8.3 (Non-commutative Schur product criterion). The Schur product property 
holds on the dual of a fusion ring/algebra A with basis {x1 = 1, . . . , xr} if and only if for 
all triple of irreducible unital *-representations (πs, Vs)s=1,2,3 of the fusion ring/algebra 
A over C, and for all vs ∈ Vs, we have

∑
i

1
d(xi)

3∏
s=1

(v∗sπs(xi)vs) ≥ 0. (20)

Proof. Let A be a fusion ring/algebra with basis {x1 = 1, . . . , xr} and (A, B, F, d, τ) the 
fusion bialgebra arising from A. By Proposition 3.6 and the fact that d is multiplicative, 
the Schur product property holds on B if and only if

d

( 3∏
s=1

Xs ∗A X∗
s

)
≥ 0

for all Xs ∈ A. Now, Xs =
∑

i αs,ixi, so it is equivalent to

∑
i

1
d(xi)

3∏
s=1

⎛⎝∑
j,k

αs,kαs,j∗N
i
k,j∗

⎞⎠ ≥ 0

for all αs,i ∈ C. Now let Mi be the matrix (N i
k,j∗) which is also (Nk

i,j) by Frobenius 
reciprocity, so that Mi is the fusion matrix of xi. Let us be the vector (αs,i). Then∑

j,k

αs,kαs,j∗N
i
k,j∗ = u∗

sMius.

Then the criterion is equivalent to have

∑
i

1
d(xi)

3∏
s=1

(u∗
sMius) ≥ 0. (21)

for all us ∈ Cr. Recall that the map π : xi → Mi is a unital *-representation of A. So 
Equation (20) implies Equation (21). On the other hand, π is faithful, so Equation (21)
implies Equation (20). �

Assume that the fusion ring/algebra A is commutative, then for all i, xixi∗ = xi∗xi, 
so that the fusion matrices Mi are normal (so diagonalizable) and commuting, so 
they are simultaneously diagonalizable, i.e. there is an invertible matrix P such that 
P−1MiP = diag(λi,1, . . . , λi,r), so that the maps πj : Mi �→ λi,j completely characterize 
the irreducible complex representations πj of A. We can assume that π1 = d, so that 
λi,1 = d(xi) = ‖Mi‖.
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Definition 8.4. The matrix Λ(A) := (λi,j) is called the character table of the commutative 
fusion ring A.

Note that for a finite group G, if AG is the Grothendieck ring of the unitary fusion 
category Rep(G), then Λ(AG) is the usual character table of G.

Corollary 8.5 (Commutative Schur product criterion). The Schur product property holds 
on the dual of a commutative fusion ring/algebra A with character table Λ = (λi,j) if 
and only if for all triple (j1, j2, j3)

∑
i

λi,j1λi,j2λi,j3

λi,1
≥ 0.

Proof. Immediate from Proposition 8.3, because here the irreducible representations are 
one-dimensional, so that there we have v∗sπs(Mi)vs = ‖vs‖2πs(Mi). �
Remark 8.6. The formula in [38, Theorem 7.2.1] looks similar to the one in Corollary 8.5
(applied to the group case), because the underlying planar diagrams are the same. How-
ever, the results are different as the underlying planar algebras are so: the subfactor 
planar algebra of a finite group G for the first formula, and for the second one, the dual 
of the quantum double of V ec(G), namely the Drinfeld center of V ec(G).

In order to test the efficiency of Schur product criterion, we wrote a code computing 
the character table of a commutative fusion ring/algebra and checking whether Schur 
product property holds (on the dual) using Corollary 8.5. The next two subsections 
present the first results.

8.3. Fusion algebras of small rank

Ostrik [32] already classified the pivotal fusion category of rank 3. In this section we 
would like to show how efficient is Schur product criterion in this case. We will next 
consider two families of rank 4 fusion rings/algebras found by David Penneys and his 
collaborators1[35], and finally look to a family of rank 5 fusion rings/algebras.

Recall [32, Proposition 3.1] that a fusion ring A of rank 3 and basis {x1 = 1, x2, x3}
satisfies either x∗

2 = x3 and then is CC3, or x∗
i = xi and then is of the following form 

(extended to fusion algebras):⎧⎪⎨⎪⎩
x2x2 = x1 + px2 + mx3,

x2x3 = mx2 + nx3,

x3x3 = x1 + nx2 + qx3,

1 At the 2014 AMS MRC on Mathematics of Quantum Phases of Matter and Quantum Information.
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with m, n, p, q ∈ R≥0 and m2 + n2 = 1 + mq + np (given by associativity). Note that 
x3x2 = x2x3 by Frobenius reciprocity, so that the fusion algebra is commutative. We 
can assume (up to equivalence) that m ≤ n, and then n > 0 (because if n = 0 then 
m = 0 and the above associativity relation becomes 0 = 1, contradiction), so that p =
(m2+n2−1 −mq)/n; and it is a fusion ring if and only if in addition m, n, p, q ∈ Z≥0 and 
n divides (m2 − 1 −mq). Recall [32, Section 4.5] that it admits a pivotal categorification 
if and only if (m, n, q) = (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 1, 1), and there is a unitary model 
for all of them.

Let Mi be the fusion matrix of xi, written below (with p = (m2 + n2 − 1 −mr)/n):(1 0 0
0 1 0
0 0 1

)
,

(0 1 0
1 p m
0 m n

)
,

(0 0 1
0 m n
1 n q

)

Let χi be the characteristic polynomial of Mi:

χ2(x) = x3 − (p + n)x2 + (pn− 1 −m2)x + n

χ3(x) = x3 − (q + m)x2 + (qm− 1 − n2)x + m

The matrix Mi is self-adjoint thus its eigenvalues (and so the roots of χi) are real. By 
using [12, Theorem A.4], we can deduce the following character table:⎡⎣ 1 1 1

b2
3 + 2r2c2 b2

3 − r2(c2 −
√

3s2) b2
3 − r2(c2 +

√
3s2)

b3
3 + 2r3c3 b3

3 − r3(c3 +
√

3s3) b3
3 − r3(c3 −

√
3s3)

⎤⎦
with ci = cos(ϕi

3 ), si = sin(ϕi

3 ), ϕi = arccos
(

qi/2
(pi/3)3/2

)
, ri =

√
pi

3 , pi = b2i
3 − ai, 

qi = 2b3i
27 − biai

3 − di, a2 = pn − 1 −m2, b2 = p +n, d2 = n, a3 = qm − 1 −n2, b3 = q +m

and d3 = m.
We observe that about 30% of over 10000 samples can be ruled out by Schur’s cri-

terion.2 Note that Ostrik used the inequality in [32, Theorem 2.21] to rule out some 
fusion rings. See Fig. 2 to visualize the efficienty of Schur product criterion and Ostrik’s 
criterion for this family. Note that Ostrik’s criterion works for the fusion rings only (not 
algebras3) and is no more efficient for higher ranks, whereas Schur product criterion does 
(see Subsection 8.4).

2 It is nontrivial to characterize the set of all the triples (m, n, q) for which Schur product property (on the 
dual) does not hold. Using the above character table together with Theorem 8.5 and computer assistance, 
for q, n, m ∈ Z, 0 ≤ q ≤ 30, 1 ≤ n ≤ 30 and 0 ≤ m ≤ n, there are exactly 14509 fusion bialgebras (resp. 542
fusion rings), and among them, 4757 (resp. 198) ones can be ruled out from subfactorization (resp. unitary 
categorification) by Schur product criterion.
3 Consider the (δ1, δ2)-Bisch-Jones subfactor, its 2-box space provides a fusion algebra in this family with

(m,n, q) = (0, (δ2
2 − 1)

1
2 , δ2(δ2

1 − 2)(δ2
1 − 1)−

1
2 ),
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Fig. 2. Rank 3: for q = 5, the set of (m, n) such that Schur product property on the dual (resp. Ostrik’s 
inequality) does not hold is (numerically) given by the right (resp. left) figure (where, for clarity, neither 
m ≤ n nor m2 +n2−1 −mq ≥ 0 is assumed). About the right one, there are two areas, one (at the bottom) 
is finite, the other infinite; moreover, the projection of these two areas on the m-axis overlap around m = q. 
Each area corresponds to the application of Theorem 8.5 on one column. The form appears for all the 
samples of q we tried, so it is not hard to believe that it is the generic form, and in particular that Schur 
product property (on the dual) does not hold if q + 1 ≤ m ≤ n and n ≥ 2q + 2, with m, n, q ∈ R≥0 (so 
that the corresponding fusion bialgebras admit no subfactorization); it should be provable using the given 
character table (we did not make the computation).

Fig. 3. Rank 4, family of fusion algebras K3(b, d):⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ ,

⎛⎜⎝0 1 0 0
1 d− b b 0
0 b d 1
0 0 1 0

⎞⎟⎠ ,

⎛⎜⎝0 0 1 0
0 b d 1
1 d d + b 1
0 1 1 0

⎞⎟⎠ ,

⎛⎜⎝0 0 0 1
0 0 1 0
0 1 1 0
1 0 0 1

⎞⎟⎠
Schur product property on the dual (resp. Ostrik’s inequality) does not hold for (b, d) in the right (resp. 
left) figure. The area b > d is not considered because d − b ≥ 0.

Then, let us mention two families (denoted K3 and K4) of fusion algebras of rank 4
with self-adjoint objects provided by David Penneys and his collaborators [35]. Visualize 
the obstructions on Figs. 3 and 4.

which is often in the colored area of the figure for Ostrik’s criterion, for example if (δ1, δ2) = (
√

2, 10/3)
then (m, n, q) = (0, 

√
91/3, 5). Let us also mention here that for a fusion ring, subfactorizable is strictly 

weaker than unitarily categorifiable, because if (δ2
1 , δ2

2) = (6 + 2
√

6, 2) then (m, n, q) = (0, 1, 4), which is 
ruled out from pivotal categorification by Ostrik’s paper [32].
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Fig. 4. Rank 4, family K4(a, b, d, g) with bd > 0 and a = (b2 + d2 − 2 − bg)/d:⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ ,

⎛⎜⎝0 1 0 0
1 a b 1
0 b d 0
0 1 0 0

⎞⎟⎠ ,

⎛⎜⎝0 0 1 0
0 b d 0
1 d g 1
0 0 1 0

⎞⎟⎠ ,

⎛⎜⎝0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞⎟⎠
Same convention as above (to simplify, a is not assumed non-negative) with g = 10. It should be the generic 
shape for fixed g. Ostrik’s inequality always holds, so the left figure is empty. About the figure for Schur 
product criterion on the right, the structure is similar to Fig. 2, one finite area on the bottom, one infinite 
area, and the projection of both on the b-axis should overlap around b = g.

Finally, let us consider the family of fusion rings of rank 5 with exactly three self-
adjoint simple objects. By Frobenius reciprocity, the fusion rules must be as follows (with 
16 parameters):

⎛⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 1 0 0 0
0 a k f j

1 a a b c

0 d f g h

0 e j i l

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 1 0 0
1 a a d e

0 k a f j

0 f b g i

0 j c h l

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 0 1 0
0 b f g i

0 f d g h

1 g g m o

0 i h o p

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 0 0 1
0 c j h l

0 j e i l

0 h i o p

1 l l p n

⎞⎟⎟⎠
such that nk

i,j ∈ Z≥0, and 
∑

s n
s
i,jn

t
s,k =

∑
s n

s
j,kn

t
i,s (associativity). We found (up to 

equivalence) exactly 47 ones at multiplicity ≤ 4 (by brute-force computation), 4 of which 
are simple. The Schur product property on the dual (resp. Ostrik’s inequality) does not 
hold on exactly 6 (resp. 1) among the 47 ones, and on exactly 2 (resp. 1) among the 4
simple ones. Schur product criterion may be more efficient at higher multiplicity. Here 
are the two simple ones on which the Schur product property on the dual (and Ostrik’s 
inequality) holds (note that they are also of Frobenius type).

⎛⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 1 0 0 0
0 0 1 1 0
1 0 0 0 1
0 0 1 0 1
0 1 0 1 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 1 0 0
1 0 0 0 1
0 1 0 1 0
0 1 0 0 1
0 0 1 1 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 0 1 0
0 0 1 0 1
0 1 0 0 1
1 0 0 1 1
0 1 1 1 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 0 0 1
0 1 0 1 1
0 0 1 1 1
0 1 1 1 1
1 1 1 1 2

⎞⎟⎟⎠
Note that (d(b1), d(b2), d(b3), d(b4), d(b5)) = (1, α, α, β, γ) with α = 1 + 2 cos(2π/7) �
2.2469, β = 1 − 2 cos(6π/7) � 2.8019, γ = α + β − 1 � 4.0489, so that FPdim � 36.650.
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⎛⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 1 0 0 0
0 0 2 0 1
1 0 0 2 0
0 2 0 1 2
0 0 1 2 2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 1 0 0
1 0 0 2 0
0 2 0 0 1
0 0 2 1 2
0 1 0 2 2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 0 1 0
0 2 0 1 2
0 0 2 1 2
1 1 1 4 3
0 2 2 3 4

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 0 0 1
0 0 1 2 2
0 1 0 2 2
0 2 2 3 4
1 2 2 4 4

⎞⎟⎟⎠
Note that (d(b1), d(b2), d(b3), d(b4), d(b5)) = (1, α, α, β, γ) with α = 3 +

√
6 � 5.4494, 

β = 4 + 2
√

6 � 8.8989, γ = 5 + 2
√

6 � 9.8989, so that FPdim = 120 + 48
√

6 � 237.57.

8.4. Simple integral fusion rings (high rank)

A fusion category (resp. ring) is called simple if it has no nontrivial proper fusion 
subcategories (resp. subrings). Here is a result of Etingof, Nikshych and Ostrik [10, 
Proposition 9.11]:

Proposition 8.7. A weakly group-theoretical simple fusion category has the Grothendieck 
ring of Rep(G), with G a finite simple group.

A fusion category (resp. ring) is called integral if the Frobenius-Perron dimension of 
every (simple) object is an integer. Here is the strong version of [10, Question 2]:

Question 8.8. Is there an integral fusion category which is not weakly group-theoretical?

Then it seems relevant to look for integral simple fusion rings which are not 
Grothendieck rings of any Rep(G) with G finite (simple) group, because according to 
Proposition 8.7, the categorification of one of them would provide a positive answer to 
Question 8.8.

Definition 8.9. Let A be a fusion ring of basis {x1 = 1, . . . , xr} with d(x1) ≤
d(x2) ≤ · · · ≤ d(xr). Let us call r its rank, 

∑
i d(xi)2 its Frobenius-Perron dimen-

sion (or FPdim(A)), and [d(x1), d(x2), . . . , d(xr)] its type, which will also be written by 
[[n1, m1], [n2, m2], . . . , [ns, ms]] where mi is the number of xj with d(xj) = ni, 

∑
i mi = r

and 1 = n1 < n2 < · · · < ns.

Recall that the Grothendieck ring of Rep(G) is simple if and only if G is simple 
because every fusion subring is given by Rep(G/N) with N a normal subgroup. Now a 
non-abelian simple group is perfect (i.e. [G, G] generates G), and there is also a way to 
characterize the perfect groups at the fusion ring level:

Proposition 8.10. A finite group G is perfect if and only if the type of the Grothendieck 
ring of Rep(G) satisfies m1 = 1 (i.e. every one-dimensional representation must be 
trivial).
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Proof. Let G be a perfect group and let π be a one-dimensional representation of G. By 
assumption, every g ∈ G is a product of commutators, but π(G) is abelian (because π is 
one-dimensional), so that π(g) = π(1). It follows that π is trivial.

Now assume that every one-dimensional representation is trivial, and consider the 
quotient map p : G → Z with Z = G/〈[G, G]〉 which is abelian. Then p induces a 
representation π of G with π(G) abelian, so that π is a direct sum of one-dimensional 
representations. It follows by assumption that Z = π(G) is trivial, which means that G
is perfect. �

This proposition leads us to call perfect a fusion ring with m1 = 1. Note that a 
non-perfect simple fusion ring is given by a prime order cyclic group. The fusion ring 
A is called of Frobenius type if FPdim(A)

d(xi) is an algebraic integer for all i, and if A is 
integral, this means that d(xi) divides FPdim(A). Kaplansky’s 6th conjecture [19] states 
that for every finite dimensional semisimple Hopf algebra H over C, the integral fusion 
category Rep(H) is of Frobenius type. If in addition H has a ∗-structure (i.e. is a Kac 
algebra), then Rep(H) is unitary. For a first step in the proof of this conjecture, see 
[18, Theorem 2]. Note that there exist simple integral fusion rings which are not of 
Frobenius type (see Subsection A.2). The integral simple (and perfect) fusion rings of 
Frobenius type are classified in the following cases (with FPdim �= paqb, pqr, by [10]), 
with computer assistance, significantly boosted by Proposition 8.1.4

rank ≤ 5 6 7 8 9 10 all
FPdim < 1000000 150000 15000 4080 504 240 132

We found exactly 34 ones, and each of them is commutative; which leads to:

Question 8.11. Is there a non-commutative simple integral fusion ring (of Frobenius 
type)?

Let us first summarize these results of the computer search: four of them are 
Grothendieck rings of Rep(G) with G a non-abelian finite simple group, 28 (among the 
remaining 30) are ruled out (from unitary categorification) by Schur product property 
(on the dual), and none can be ruled out by already known obstructions (as Ostrik’s in-
equality); the existence of a unitary categorification is unknown for each of the remaining 
two. Here are the results in details, where # counts the number of fusion rings, whereas 
#Schur counts those checking the commutative Schur product criterion (all the fusion 
matrices are available in Appendix):

4 In preparing this paper, we first had a classification up to some smaller dimensions, given by a previous 
version of the computer program. Then the use of inequalities in Proposition 8.1 boosted the computation, 
allowing us to extend the bounds significantly.
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# rank FPdim type #Schur group
1 5 60 [[1,1],[3,2],[4,1],[5,1]] 1 PSL(2, 5)
1 6 168 [[1,1],[3,2],[6,1],[7,1],[8,1]] 1 PSL(2, 7)
2 7 210 [[1,1],[5,3],[6,1],[7,2]] 1
2 7 360 [[1,1],[5,2],[8,2],[9,1],[10,1]] 1 PSL(2, 9)
4 7 7980 [[1,1],[19,1],[20,1],[21,1],[42,2],[57,1]] 0
15 8 660 [[1,1],[5,2],[10,2],[11,1],[12,2]] 2 PSL(2, 11)
5 8 990 [[1,1],[9,1],[10,1],[11,4],[18,1]] 0
2 8 1260 [[1,1],[6,1],[7,2],[10,1],[15,1],[20,2]] 0
2 8 1320 [[1,1],[6,2],[10,1],[11,1],[15,2],[24,1]] 0

Question 8.12. Are there only finitely many simple integral fusion rings of a given rank 
(assuming Frobenius type and perfect)? Is the above list the full classification at rank 
≤ 6? If the Schur product property (on the dual) is assumed to hold, is it full at rank 
≤ 8?

Let us write here the fusion matrices and character tables for the first fusion ring 
ruled out written above, and for the two which were not.

First the simple integral fusion ring of rank 7, FPdim 210, type [[1, 1], [5, 3], [6, 1], [7, 2]]
and fusion matrices:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 0 1 0 1 1
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 1 0 0 0 0
0 0 1 0 1 1 1
1 1 1 0 0 1 1
0 0 0 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 1 0 0 0
0 1 0 0 1 1 1
0 0 0 1 1 1 1
1 0 1 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

Its character table is the following:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
5 −1 −ζ7 − ζ6

7 −ζ5
7 − ζ2

7 −ζ4
7 − ζ3

7 0 0
5 −1 −ζ5

7 − ζ2
7 −ζ4

7 − ζ3
7 −ζ7 − ζ6

7 0 0
5 −1 −ζ4

7 − ζ3
7 −ζ7 − ζ6

7 −ζ5
7 − ζ2

7 0 0
6 0 −1 −1 −1 1 1
7 1 0 0 0 0 −3
7 1 0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
It is possible to see why it was ruled out by Schur product criterion by observing this 
character table (in particular its last column) together with Corollary 8.5:

13

1 + 03

5 + 03

5 + 03

5 + 13

6 + (−3)3

7 + 23

7 = −65
42 < 0.

Remark 8.13. Here we applied Corollary 8.5 by using three times the same block (i.e. 
irreducible representation, or column here), but it is not always possible. For example, the 
simple fusion ring of type [[1, 1], [5, 2], [8, 2], [9, 1], [10, 1]] (the one not given by PSL(2, 9)) 
required two blocks to be ruled out.

Next, the fusion matrices of the simple integral fusion ring of same type as above, for 
which Schur product property (on the dual) holds:
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1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 0 1 0 1 1
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 1 0 0 0 0
0 0 1 0 1 1 1
1 1 1 0 0 1 1
0 0 0 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 1 0 0 0
0 1 0 0 1 1 1
0 0 0 1 1 1 1
1 0 1 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 1 2
0 1 1 1 1 2 2

,

0 0 0 0 0 0 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 2 2
1 1 1 1 2 2 1

Let us call F210 the corresponding fusion ring (mentioned after [33, Problem 4.12]). Its 
character table is:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
5 −1 −ζ7 − ζ6

7 −ζ5
7 − ζ2

7 −ζ4
7 − ζ3

7 0 0
5 −1 −ζ5

7 − ζ2
7 −ζ4

7 − ζ3
7 −ζ7 − ζ6

7 0 0
5 −1 −ζ4

7 − ζ3
7 −ζ7 − ζ6

7 −ζ5
7 − ζ2

7 0 0
6 0 −1 −1 −1 1 1
7 1 0 0 0 ζ5 + ζ4

5 ζ2
5 + ζ3

5
7 1 0 0 0 ζ2

5 + ζ3
5 ζ5 + ζ4

5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Finally, the fusion matrices of the only simple integral fusion ring (not given by a 

group) of rank 8, FPdim 660, type [[1, 1], [5, 2], [10, 2], [11, 1], [12, 2]] on which Schur prod-
uct property (on the dual) holds:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
1 0 0 3 1 1 2 2
0 1 1 1 1 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 1 1 1 1 2 2 2
1 0 0 1 3 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 2 3
0 1 1 2 2 2 3 3

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 3 3
1 1 1 2 2 3 3 2

Let us call F660 the corresponding fusion ring. Its character table is:

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
5 0 −1 1 −1 0 ζ11 + ζ3

11 + ζ4
11 + ζ5

11 + ζ9
11 ζ2

11 + ζ6
11 + ζ7

11 + ζ8
11 + ζ10

11
5 0 −1 1 −1 0 ζ2

11 + ζ6
11 + ζ7

11 + ζ8
11 + ζ10

11 ζ11 + ζ3
11 + ζ4

11 + ζ5
11 + ζ9

11
10 0 1 +

√
3 0 1 −

√
3 0 −1 −1

10 0 1 −
√

3 0 1 +
√

3 0 −1 −1
11 1 −1 −1 −1 1 0 0
12 ζ5 + ζ4

5 0 0 0 ζ2
5 + ζ3

5 1 1
12 ζ2

5 + ζ3
5 0 0 0 ζ5 + ζ4

5 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
Question 8.14. Do F210 or F660 admit a unitary categorification?

Subsection A.3 of Appendix mentions 2561 extra perfect integral fusion rings of rank 
≤ 10. Among them, 7 ones are simple and 9 ones are noncommutative (none both). 
In the commutative case, 2072 ones can be ruled out from unitary categorification by 
Corollary 8.5 (more than 80%).
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Appendix A

A.1. List of simple integral fusion rings of Frobenius type

We provide here the fusion matrices for the 34 simple integral fusion rings mentioned 
above (all commutative) together with what we know about them. Those ruled out have 
no additional data.

• Rank 5, FPdim 60, one of type [[1, 1], [3, 2], [4, 1], [5, 1]], given by the group PSL(2, 5):

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,

0 1 0 0 0
1 1 0 0 1
0 0 0 1 1
0 0 1 1 1
0 1 1 1 1

,

0 0 1 0 0
0 0 0 1 1
1 0 1 0 1
0 1 0 1 1
0 1 1 1 1

,

0 0 0 1 0
0 0 1 1 1
0 1 0 1 1
1 1 1 1 1
0 1 1 1 2

,

0 0 0 0 1
0 1 1 1 1
0 1 1 1 1
0 1 1 1 2
1 1 1 2 2

• Rank 6 and FPdim 168, one of type [[1, 1], [3, 2], [6, 1], [7, 1], [8, 1]], given by PSL(2, 7):

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,

0 1 0 0 0 0
0 0 1 1 0 0
1 0 0 0 0 1
0 0 1 0 1 1
0 0 0 1 1 1
0 1 0 1 1 1

,

0 0 1 0 0 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 1 1
0 0 0 1 1 1
0 0 1 1 1 1

,

0 0 0 1 0 0
0 0 1 0 1 1
0 1 0 0 1 1
1 0 0 2 1 2
0 1 1 1 2 2
0 1 1 2 2 2

,

0 0 0 0 1 0
0 0 0 1 1 1
0 0 0 1 1 1
0 1 1 1 2 2
1 1 1 2 2 2
0 1 1 2 2 3

,

0 0 0 0 0 1
0 1 0 1 1 1
0 0 1 1 1 1
0 1 1 2 2 2
0 1 1 2 2 3
1 1 1 2 3 3

• Rank 7 and FPdim 210, two of type [[1, 1], [5, 3], [6, 1], [7, 2]]:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 0 1 0 1 1
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 1 0 0 0 0
0 0 1 0 1 1 1
1 1 1 0 0 1 1
0 0 0 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 1 0 0 0
0 1 0 0 1 1 1
0 0 0 1 1 1 1
1 0 1 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

The one satisfying Schur product property (on the dual):

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 0 1 0 1 1
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 1 0 0 0 0
0 0 1 0 1 1 1
1 1 1 0 0 1 1
0 0 0 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 1 0 0 0
0 1 0 0 1 1 1
0 0 0 1 1 1 1
1 0 1 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 1 2
0 1 1 1 1 2 2

,

0 0 0 0 0 0 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 2 2
1 1 1 1 2 2 1

• Rank 7 and FPdim 360, two of type [[1, 1], [5, 2], [8, 2], [9, 1], [10, 1]]:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

,

0 1 0 0 0 0 0
1 1 0 0 0 1 1
0 0 0 1 1 1 0
0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 1 0 0 0 0
0 0 0 1 1 1 0
1 0 1 0 0 1 1
0 1 0 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 1 0 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
1 1 1 1 2 1 2
0 1 1 2 0 2 2
0 1 1 1 2 2 2

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 2 0 2 2
1 1 1 0 3 1 2
0 1 1 2 1 2 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 2 2 2
0 1 1 2 1 2 2
1 1 1 2 2 2 2

,

0 0 0 0 0 0 1
0 1 0 1 1 1 2
0 0 1 1 1 1 2
0 1 1 2 2 2 2
0 1 1 2 2 2 2
0 1 1 2 2 2 3
0 0 0 0 0 0 1 0 1 0 1 1 1 2 0 0 1 1 1 1 2 0 1 1 2 2 2 2 0 1 1 2 2 2 2 0 1 1 2 2 2 3 1 2 2 2 2 3 2
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The one given by the finite simple group PSL(2, 9):

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 0 0 0 1 1
0 0 0 1 1 1 0
0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 0 1 1 1 2

,

0 0 1 0 0 0 0
0 0 0 1 1 1 0
1 0 1 0 0 1 1
0 1 0 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 0 1 1 1 1 2

,

0 0 0 1 0 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
1 1 1 2 1 1 2
0 1 1 1 1 2 2
0 1 1 1 2 2 2
0 1 1 2 2 2 2

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 2 2
1 1 1 1 2 1 2
0 1 1 2 1 2 2
0 1 1 2 2 2 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 2 2 2
0 1 1 2 1 2 2
1 1 1 2 2 2 2
0 1 1 2 2 2 3

,

0 0 0 0 0 0 1
0 1 0 1 1 1 2
0 0 1 1 1 1 2
0 1 1 2 2 2 2
0 1 1 2 2 2 2
0 1 1 2 2 2 3
1 2 2 2 2 3 2

• Rank 7 and FPdim 7980, four of type [[1, 1], [19, 1], [20, 1], [21, 1], [42, 2], [57, 1]]:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 0 0 1 2 2 3
0 0 1 1 2 2 3
0 1 1 1 2 2 3
0 2 2 2 4 4 6
0 2 2 2 4 4 6
0 3 3 3 6 6 7

,

0 0 1 0 0 0 0
0 0 1 1 2 2 3
1 1 1 1 2 2 3
0 1 1 2 2 2 3
0 2 2 2 5 4 6
0 2 2 2 4 5 6
0 3 3 3 6 6 8

,

0 0 0 1 0 0 0
0 1 1 1 2 2 3
0 1 1 2 2 2 3
1 1 2 2 0 4 3
0 2 2 0 9 2 6
0 2 2 4 2 7 6
0 3 3 3 6 6 9

,

0 0 0 0 1 0 0
0 2 2 2 4 4 6
0 2 2 2 5 4 6
0 2 2 0 9 2 6
1 4 5 9 2 15 12
0 4 4 2 15 6 12
0 6 6 6 12 12 18

,

0 0 0 0 0 1 0
0 2 2 2 4 4 6
0 2 2 2 4 5 6
0 2 2 4 2 7 6
0 4 4 2 15 6 12
1 4 5 7 6 12 12
0 6 6 6 12 12 18

,

0 0 0 0 0 0 1
0 3 3 3 6 6 7
0 3 3 3 6 6 8
0 3 3 3 6 6 9
0 6 6 6 12 12 18
0 6 6 6 12 12 18
1 7 8 9 18 18 22

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 0 0 1 2 2 3
0 0 1 1 2 2 3
0 1 1 1 2 2 3
0 2 2 2 4 4 6
0 2 2 2 4 4 6
0 3 3 3 6 6 7

,

0 0 1 0 0 0 0
0 0 1 1 2 2 3
1 1 1 1 2 2 3
0 1 1 2 2 2 3
0 2 2 2 5 4 6
0 2 2 2 4 5 6
0 3 3 3 6 6 8

,

0 0 0 1 0 0 0
0 1 1 1 2 2 3
0 1 1 2 2 2 3
1 1 2 2 0 4 3
0 2 2 0 7 4 6
0 2 2 4 4 5 6
0 3 3 3 6 6 9

,

0 0 0 0 1 0 0
0 2 2 2 4 4 6
0 2 2 2 5 4 6
0 2 2 0 7 4 6
1 4 5 7 7 11 12
0 4 4 4 11 9 12
0 6 6 6 12 12 18

,

0 0 0 0 0 1 0
0 2 2 2 4 4 6
0 2 2 2 4 5 6
0 2 2 4 4 5 6
0 4 4 4 11 9 12
1 4 5 5 9 10 12
0 6 6 6 12 12 18

,

0 0 0 0 0 0 1
0 3 3 3 6 6 7
0 3 3 3 6 6 8
0 3 3 3 6 6 9
0 6 6 6 12 12 18
0 6 6 6 12 12 18
1 7 8 9 18 18 22

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 0 0 1 2 2 3
0 0 1 1 2 2 3
0 1 1 1 2 2 3
0 2 2 2 4 4 6
0 2 2 2 4 4 6
0 3 3 3 6 6 7

,

0 0 1 0 0 0 0
0 0 1 1 2 2 3
1 1 1 1 2 2 3
0 1 1 2 2 2 3
0 2 2 2 5 4 6
0 2 2 2 4 5 6
0 3 3 3 6 6 8

,

0 0 0 1 0 0 0
0 1 1 1 2 2 3
0 1 1 2 2 2 3
1 1 2 2 0 4 3
0 2 2 0 5 6 6
0 2 2 4 6 3 6
0 3 3 3 6 6 9

,

0 0 0 0 1 0 0
0 2 2 2 4 4 6
0 2 2 2 5 4 6
0 2 2 0 5 6 6
1 4 5 5 8 11 12
0 4 4 6 11 8 12
0 6 6 6 12 12 18

,

0 0 0 0 0 1 0
0 2 2 2 4 4 6
0 2 2 2 4 5 6
0 2 2 4 6 3 6
0 4 4 6 11 8 12
1 4 5 3 8 12 12
0 6 6 6 12 12 18

,

0 0 0 0 0 0 1
0 3 3 3 6 6 7
0 3 3 3 6 6 8
0 3 3 3 6 6 9
0 6 6 6 12 12 18
0 6 6 6 12 12 18
1 7 8 9 18 18 22

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 0 0 1 2 2 3
0 0 1 1 2 2 3
0 1 1 1 2 2 3
0 2 2 2 4 4 6
0 2 2 2 4 4 6
0 3 3 3 6 6 7

,

0 0 1 0 0 0 0
0 0 1 1 2 2 3
1 1 1 1 2 2 3
0 1 1 2 2 2 3
0 2 2 2 5 4 6
0 2 2 2 4 5 6
0 3 3 3 6 6 8

,

0 0 0 1 0 0 0
0 1 1 1 2 2 3
0 1 1 2 2 2 3
1 1 2 2 0 4 3
0 2 2 0 3 8 6
0 2 2 4 8 1 6
0 3 3 3 6 6 9

,

0 0 0 0 1 0 0
0 2 2 2 4 4 6
0 2 2 2 5 4 6
0 2 2 0 3 8 6
1 4 5 3 5 15 12
0 4 4 8 15 3 12
0 6 6 6 12 12 18

,

0 0 0 0 0 1 0
0 2 2 2 4 4 6
0 2 2 2 4 5 6
0 2 2 4 8 1 6
0 4 4 8 15 3 12
1 4 5 1 3 18 12
0 6 6 6 12 12 18

,

0 0 0 0 0 0 1
0 3 3 3 6 6 7
0 3 3 3 6 6 8
0 3 3 3 6 6 9
0 6 6 6 12 12 18
0 6 6 6 12 12 18
1 7 8 9 18 18 22

• Rank 8 and FPdim 660, fifteen of type [[1, 1], [5, 2], [10, 2], [11, 1], [12, 2]]:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
1 0 0 2 2 1 2 2
0 1 1 2 0 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 1 1 2 0 2 2 2
1 0 0 0 4 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 0 5
0 1 1 2 2 2 5 1

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 5 1
1 1 1 2 2 3 1 4

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
1 0 0 2 2 1 2 2
0 1 1 2 0 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 1 1 2 0 2 2 2
1 0 0 0 4 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 1 4
0 1 1 2 2 2 4 2

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 4 2
1 1 1 2 2 3 2 3

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
1 0 0 2 2 1 2 2
0 1 1 2 0 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 1 1 2 0 2 2 2
1 0 0 0 4 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 2 3
0 1 1 2 2 2 3 3

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 3 3
1 1 1 2 2 3 3 2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
1 0 0 3 1 1 2 2
0 1 1 1 1 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 1 1 1 1 2 2 2
1 0 0 1 3 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 0 5
0 1 1 2 2 2 5 1

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 5 1
1 1 1 2 2 3 1 4

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
1 0 0 3 1 1 2 2
0 1 1 1 1 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 1 1 1 1 2 2 2
1 0 0 1 3 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 1 4
0 1 1 2 2 2 4 2

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 4 2
1 1 1 2 2 3 2 3

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1
0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 1 1 0 3 1 2 2
0 0 0 3 0 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 0 3 0 2 2 2
1 1 1 0 3 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 0 5
0 1 1 2 2 2 5 1

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 5 1
1 1 1 2 2 3 1 4

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1
0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 1 1 0 3 1 2 2
0 0 0 3 0 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 0 3 0 2 2 2
1 1 1 0 3 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 1 4

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 4 2
0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 2 2 2 2 2 0 1 1 2 2 2 2 2 0 1 1 2 2 2 2 3 0 1 1 2 2 2 4 2 1 1 1 2 2 3 2 3
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1
0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 1 1 0 3 1 2 2
0 0 0 3 0 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 0 3 0 2 2 2
1 1 1 0 3 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 2 3
0 1 1 2 2 2 3 3

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 3 3
1 1 1 2 2 3 3 2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1
0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 1 1 1 2 1 2 2
0 0 0 2 1 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 0 2 1 2 2 2
1 1 1 1 2 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 0 5
0 1 1 2 2 2 5 1

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 5 1
1 1 1 2 2 3 1 4

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1
0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 1 1 1 2 1 2 2
0 0 0 2 1 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 0 2 1 2 2 2
1 1 1 1 2 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 1 4
0 1 1 2 2 2 4 2

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 4 2
1 1 1 2 2 3 2 3

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 1 1 2 0 2 2 2
1 0 0 2 2 1 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 0 0 2 2 1 2 2
0 1 1 0 2 2 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 0 5
0 1 1 2 2 2 5 1

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 5 1
1 1 1 2 2 3 1 4

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 1 1 2 0 2 2 2
1 0 0 2 2 1 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 0 0 2 2 1 2 2
0 1 1 0 2 2 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 1 4
0 1 1 2 2 2 4 2

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 4 2
1 1 1 2 2 3 2 3

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 1 1 2 0 2 2 2
1 0 0 2 2 1 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 0 0 2 2 1 2 2
0 1 1 0 2 2 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 2 3
0 1 1 2 2 2 3 3

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 3 3
1 1 1 2 2 3 3 2

The one given by the finite simple group PSL(2, 11):

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1
0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 1 1 1 2 1 2 2
0 0 0 2 1 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 0 2 1 2 2 2
1 1 1 1 2 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 2 3
0 1 1 2 2 2 3 3

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 3 3
1 1 1 2 2 3 3 2

The one (non group-like) satisfying Schur product property (on the dual):

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
1 0 0 3 1 1 2 2
0 1 1 1 1 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 1 1 1 1 2 2 2
1 0 0 1 3 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 2 3
0 1 1 2 2 2 3 3

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 3 3
1 1 1 2 2 3 3 2

• Rank 8 and FPdim 990, five of type [[1, 1], [9, 1], [10, 1], [11, 4], [18, 1]]:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
1 4 0 1 1 1 1 0
0 0 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 0 2 2 2 2 2 3

,

0 0 1 0 0 0 0 0
0 0 1 1 1 1 1 2
1 1 1 1 1 1 1 2
0 1 1 2 1 1 1 2
0 1 1 1 2 1 1 2
0 1 1 1 1 2 1 2
0 1 1 1 1 1 2 2
0 2 2 2 2 2 2 3

,

0 0 0 1 0 0 0 0
0 1 1 1 1 1 1 2
0 1 1 2 1 1 1 2
1 1 2 0 0 2 3 2
0 1 1 0 2 2 2 2
0 1 1 2 2 1 1 2
0 1 1 3 2 1 0 2
0 2 2 2 2 2 2 4

,

0 0 0 0 1 0 0 0
0 1 1 1 1 1 1 2
0 1 1 1 2 1 1 2
0 1 1 0 2 2 2 2
1 1 2 2 0 1 2 2
0 1 1 2 1 2 1 2
0 1 1 2 2 1 1 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 1 0 0
0 1 1 1 1 1 1 2
0 1 1 1 1 2 1 2
0 1 1 2 2 1 1 2
0 1 1 2 1 2 1 2
1 1 2 1 2 0 2 2
0 1 1 1 1 2 2 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 0 1 0
0 1 1 1 1 1 1 2
0 1 1 1 1 1 2 2
0 1 1 3 2 1 0 2
0 1 1 2 2 1 1 2
0 1 1 1 1 2 2 2
1 1 2 0 1 2 2 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 0 0 1
0 0 2 2 2 2 2 3
0 2 2 2 2 2 2 3
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
1 3 3 4 4 4 4 5

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
1 4 0 1 1 1 1 0
0 0 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 0 2 2 2 2 2 3

,

0 0 1 0 0 0 0 0
0 0 1 1 1 1 1 2
1 1 1 1 1 1 1 2
0 1 1 2 1 1 1 2
0 1 1 1 2 1 1 2
0 1 1 1 1 2 1 2
0 1 1 1 1 1 2 2
0 2 2 2 2 2 2 3

,

0 0 0 1 0 0 0 0
0 1 1 1 1 1 1 2
0 1 1 2 1 1 1 2
1 1 2 1 1 1 2 2
0 1 1 1 2 2 1 2
0 1 1 1 2 1 2 2
0 1 1 2 1 2 1 2
0 2 2 2 2 2 2 4

,

0 0 0 0 1 0 0 0
0 1 1 1 1 1 1 2
0 1 1 1 2 1 1 2
0 1 1 1 2 2 1 2
1 1 2 2 1 1 1 2
0 1 1 2 1 1 2 2
0 1 1 1 1 2 2 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 1 0 0
0 1 1 1 1 1 1 2
0 1 1 1 1 2 1 2
0 1 1 1 2 1 2 2
0 1 1 2 1 1 2 2
1 1 2 1 1 2 1 2
0 1 1 2 2 1 1 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 0 1 0
0 1 1 1 1 1 1 2
0 1 1 1 1 1 2 2
0 1 1 2 1 2 1 2
0 1 1 1 1 2 2 2
0 1 1 2 2 1 1 2
1 1 2 1 2 1 1 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 0 0 1
0 0 2 2 2 2 2 3
0 2 2 2 2 2 2 3
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
1 3 3 4 4 4 4 5

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
1 4 0 1 1 1 1 0
0 0 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 0 2 2 2 2 2 3

,

0 0 1 0 0 0 0 0
0 0 1 1 1 1 1 2
1 1 1 1 1 1 1 2
0 1 1 2 1 1 1 2
0 1 1 1 2 1 1 2
0 1 1 1 1 2 1 2
0 1 1 1 1 1 2 2
0 2 2 2 2 2 2 3

,

0 0 0 1 0 0 0 0
0 1 1 1 1 1 1 2
0 1 1 2 1 1 1 2
1 1 2 1 1 1 2 2
0 1 1 1 1 2 2 2
0 1 1 1 2 1 2 2
0 1 1 2 2 2 0 2
0 2 2 2 2 2 2 4

,

0 0 0 0 1 0 0 0
0 1 1 1 1 1 1 2
0 1 1 1 2 1 1 2
0 1 1 1 1 2 2 2
1 1 2 1 1 2 1 2
0 1 1 2 2 0 2 2
0 1 1 2 1 2 1 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 1 0 0
0 1 1 1 1 1 1 2
0 1 1 1 1 2 1 2
0 1 1 1 2 1 2 2
0 1 1 2 2 0 2 2
1 1 2 1 0 3 1 2
0 1 1 2 2 1 1 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 0 1 0
0 1 1 1 1 1 1 2
0 1 1 1 1 1 2 2
0 1 1 2 2 2 0 2
0 1 1 2 1 2 1 2
0 1 1 2 2 1 1 2
1 1 2 0 1 1 3 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 0 0 1
0 0 2 2 2 2 2 3
0 2 2 2 2 2 2 3
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
1 3 3 4 4 4 4 5

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
1 4 0 1 1 1 1 0
0 0 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 0 2 2 2 2 2 3

,

0 0 1 0 0 0 0 0
0 0 1 1 1 1 1 2
1 1 1 1 1 1 1 2
0 1 1 2 1 1 1 2
0 1 1 1 2 1 1 2
0 1 1 1 1 2 1 2
0 1 1 1 1 1 2 2
0 2 2 2 2 2 2 3

,

0 0 0 1 0 0 0 0
0 1 1 1 1 1 1 2
0 1 1 2 1 1 1 2
1 1 2 1 1 1 2 2
0 1 1 1 1 2 2 2
0 1 1 1 2 1 2 2
0 1 1 2 2 2 0 2
0 2 2 2 2 2 2 4

,

0 0 0 0 1 0 0 0
0 1 1 1 1 1 1 2
0 1 1 1 2 1 1 2
0 1 1 1 1 2 2 2
1 1 2 1 2 1 1 2
0 1 1 2 1 1 2 2
0 1 1 2 1 2 1 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 1 0 0
0 1 1 1 1 1 1 2
0 1 1 1 1 2 1 2
0 1 1 1 2 1 2 2
0 1 1 2 1 1 2 2
1 1 2 1 1 2 1 2
0 1 1 2 2 1 1 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 0 1 0
0 1 1 1 1 1 1 2
0 1 1 1 1 1 2 2
0 1 1 2 2 2 0 2
0 1 1 2 1 2 1 2
0 1 1 2 2 1 1 2
1 1 2 0 1 1 3 2
0 2 2 2 2 2 2 4

,

0 0 0 0 0 0 0 1
0 0 2 2 2 2 2 3
0 2 2 2 2 2 2 3
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
1 3 3 4 4 4 4 5

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

,

0 1 0 0 0 0 0 0
1 4 0 1 1 1 1 0
0 0 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2

,

0 0 1 0 0 0 0 0
0 0 1 1 1 1 1 2
1 1 1 1 1 1 1 2
0 1 1 2 1 1 1 2
0 1 1 1 2 1 1 2
0 1 1 1 1 2 1 2
0 1 1 1 1 1 2 2

,

0 0 0 1 0 0 0 0
0 1 1 1 1 1 1 2
0 1 1 2 1 1 1 2
1 1 2 2 1 1 1 2
0 1 1 1 1 2 2 2
0 1 1 1 2 1 2 2
0 1 1 1 2 2 1 2

,

0 0 0 0 1 0 0 0
0 1 1 1 1 1 1 2
0 1 1 1 2 1 1 2
0 1 1 1 1 2 2 2
1 1 2 1 2 1 1 2
0 1 1 2 1 1 2 2
0 1 1 2 1 2 1 2

,

0 0 0 0 0 1 0 0
0 1 1 1 1 1 1 2
0 1 1 1 1 2 1 2
0 1 1 1 2 1 2 2
0 1 1 2 1 1 2 2
1 1 2 1 1 2 1 2
0 1 1 2 2 1 1 2

,

0 0 0 0 0 0 1 0
0 1 1 1 1 1 1 2
0 1 1 1 1 1 2 2
0 1 1 1 2 2 1 2
0 1 1 2 1 2 1 2
0 1 1 2 2 1 1 2
1 1 2 1 1 1 2 2

,

0 0 0 0 0 0 0 1
0 0 2 2 2 2 2 3
0 2 2 2 2 2 2 3
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 2 2 2 2 2 2 4
0 0 0 0 0 0 0 1 0 0 2 2 2 2 2 3 0 2 2 2 2 2 2 3 0 2 2 2 2 2 2 4 0 2 2 2 2 2 2 4 0 2 2 2 2 2 2 4 0 2 2 2 2 2 2 4 1 3 3 4 4 4 4 5
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• Rank 8 and FPdim 1260, two of type [[1, 1], [6, 1], [7, 2], [10, 1], [15, 1], [20, 2]]:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 1
0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 1
0 0 0 0 0 0 2 1
0 1 1 1 0 2 0 2
0 0 0 0 2 0 3 2
0 1 1 1 1 2 2 1

,

0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 1
1 1 0 1 0 1 0 1
0 0 1 1 0 1 0 1
0 0 0 0 1 0 2 1
0 1 1 1 0 3 0 2
0 0 0 0 2 0 4 2
0 1 1 1 1 2 2 2

,

0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 1 0 1 0 1
1 1 1 0 0 1 0 1
0 0 0 0 1 0 2 1
0 1 1 1 0 3 0 2
0 0 0 0 2 0 4 2
0 1 1 1 1 2 2 2

,

0 0 0 0 1 0 0 0
0 0 0 0 0 0 2 1
0 0 0 0 1 0 2 1
0 0 0 0 1 0 2 1
1 0 1 1 2 3 0 1
0 0 0 0 3 0 4 2
0 2 2 2 0 4 1 4
0 1 1 1 1 2 4 3

,

0 0 0 0 0 1 0 0
0 1 1 1 0 2 0 2
0 1 1 1 0 3 0 2
0 1 1 1 0 3 0 2
0 0 0 0 3 0 4 2
1 2 3 3 0 6 0 4
0 0 0 0 4 0 9 4
0 2 2 2 2 4 4 5

,

0 0 0 0 0 0 1 0
0 0 0 0 2 0 3 2
0 0 0 0 2 0 4 2
0 0 0 0 2 0 4 2
0 2 2 2 0 4 1 4
0 0 0 0 4 0 9 4
1 3 4 4 1 9 2 7
0 2 2 2 4 4 7 6

,

0 0 0 0 0 0 0 1
0 1 1 1 1 2 2 1
0 1 1 1 1 2 2 2
0 1 1 1 1 2 2 2
0 1 1 1 1 2 4 3
0 2 2 2 2 4 4 5
0 2 2 2 4 4 7 6
1 1 2 2 3 5 6 7

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 1
0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 1
0 0 0 0 0 0 2 1
0 1 1 1 0 2 0 2
0 0 0 0 2 0 2 3
0 1 1 1 1 2 3 0

,

0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 1
1 1 0 1 0 1 0 1
0 0 1 1 0 1 0 1
0 0 0 0 1 0 2 1
0 1 1 1 0 3 0 2
0 0 0 0 2 0 3 3
0 1 1 1 1 2 3 1

,

0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 1 0 1 0 1
1 1 1 0 0 1 0 1
0 0 0 0 1 0 2 1
0 1 1 1 0 3 0 2
0 0 0 0 2 0 3 3
0 1 1 1 1 2 3 1

,

0 0 0 0 1 0 0 0
0 0 0 0 0 0 2 1
0 0 0 0 1 0 2 1
0 0 0 0 1 0 2 1
1 0 1 1 2 3 0 1
0 0 0 0 3 0 4 2
0 2 2 2 0 4 2 3
0 1 1 1 1 2 3 4

,

0 0 0 0 0 1 0 0
0 1 1 1 0 2 0 2
0 1 1 1 0 3 0 2
0 1 1 1 0 3 0 2
0 0 0 0 3 0 4 2
1 2 3 3 0 6 0 4
0 0 0 0 4 0 7 6
0 2 2 2 2 4 6 3

,

0 0 0 0 0 0 1 0
0 0 0 0 2 0 2 3
0 0 0 0 2 0 3 3
0 0 0 0 2 0 3 3
0 2 2 2 0 4 2 3
0 0 0 0 4 0 7 6
1 2 3 3 2 7 2 9
0 3 3 3 3 6 9 2

,

0 0 0 0 0 0 0 1
0 1 1 1 1 2 3 0
0 1 1 1 1 2 3 1
0 1 1 1 1 2 3 1
0 1 1 1 1 2 3 4
0 2 2 2 2 4 6 3
0 3 3 3 3 6 9 2
1 0 1 1 4 3 2 13

• Rank 8 and FPdim 1320, two of type [[1, 1], [6, 2], [10, 1], [11, 1], [15, 2], [24, 1]]:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 0 1 1 0 1 0
1 0 0 0 1 0 0 1
0 0 1 0 0 1 1 1
0 1 1 0 0 1 1 1
0 0 1 1 1 1 0 2
0 0 0 1 1 2 1 1
0 1 0 1 1 1 2 3

,

0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 1
0 0 0 1 1 1 0 0
0 1 0 0 0 1 1 1
0 1 1 0 0 1 1 1
0 0 0 1 1 1 2 1
0 1 0 1 1 0 1 2
0 0 1 1 1 2 1 3

,

0 0 0 1 0 0 0 0
0 0 1 0 0 1 1 1
0 1 0 0 0 1 1 1
1 0 0 1 1 1 1 2
0 0 0 1 2 1 1 2
0 1 1 1 1 1 2 3
0 1 1 1 1 2 1 3
0 1 1 2 2 3 3 4

,

0 0 0 0 1 0 0 0
0 1 1 0 0 1 1 1
0 1 1 0 0 1 1 1
0 0 0 1 2 1 1 2
1 0 0 2 2 1 1 2
0 1 1 1 1 2 2 3
0 1 1 1 1 2 2 3
0 1 1 2 2 3 3 5

,

0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 2
0 0 0 1 1 1 2 1
0 1 1 1 1 1 2 3
0 1 1 1 1 2 2 3
0 2 0 2 2 2 3 4
1 1 1 1 2 2 2 5
0 1 2 3 3 5 4 6

,

0 0 0 0 0 0 1 0
0 0 0 1 1 2 1 1
0 1 0 1 1 0 1 2
0 1 1 1 1 2 1 3
0 1 1 1 1 2 2 3
1 1 1 1 2 2 2 5
0 0 2 2 2 3 2 4
0 2 1 3 3 4 5 6

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 2 3
0 0 1 1 1 2 1 3
0 1 1 2 2 3 3 4
0 1 1 2 2 3 3 5
0 1 2 3 3 5 4 6
0 2 1 3 3 4 5 6
1 3 3 4 5 6 6 11

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0
1 0 0 0 1 0 0 1
0 0 1 0 0 1 1 1
0 1 1 0 0 1 1 1
0 0 0 1 1 1 2 1
0 0 1 1 1 0 1 2
0 1 0 1 1 2 1 3

,

0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 1
0 0 0 1 1 0 1 0
0 1 0 0 0 1 1 1
0 1 1 0 0 1 1 1
0 1 0 1 1 1 0 2
0 0 0 1 1 2 1 1
0 0 1 1 1 1 2 3

,

0 0 0 1 0 0 0 0
0 0 1 0 0 1 1 1
0 1 0 0 0 1 1 1
1 0 0 1 1 1 1 2
0 0 0 1 2 1 1 2
0 1 1 1 1 1 2 3
0 1 1 1 1 2 1 3
0 1 1 2 2 3 3 4

,

0 0 0 0 1 0 0 0
0 1 1 0 0 1 1 1
0 1 1 0 0 1 1 1
0 0 0 1 2 1 1 2
1 0 0 2 2 1 1 2
0 1 1 1 1 2 2 3
0 1 1 1 1 2 2 3
0 1 1 2 2 3 3 5

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 2 1
0 1 0 1 1 1 0 2
0 1 1 1 1 1 2 3
0 1 1 1 1 2 2 3
0 0 2 2 2 2 3 4
1 1 1 1 2 2 2 5
0 2 1 3 3 5 4 6

,

0 0 0 0 0 0 1 0
0 0 1 1 1 0 1 2
0 0 0 1 1 2 1 1
0 1 1 1 1 2 1 3
0 1 1 1 1 2 2 3
1 1 1 1 2 2 2 5
0 2 0 2 2 3 2 4
0 1 2 3 3 4 5 6

,

0 0 0 0 0 0 0 1
0 1 0 1 1 2 1 3
0 0 1 1 1 1 2 3
0 1 1 2 2 3 3 4
0 1 1 2 2 3 3 5
0 2 1 3 3 5 4 6
0 1 2 3 3 4 5 6
1 3 3 4 5 6 6 11

A.2. Examples of simple integral fusion rings not of Frobenius type

There is a simple integral fusion ring of rank 6, FPdim 143 and type [[1, 1], [4, 2], [5, 1],
[6, 1], [7, 1]] which is not of Frobenius type. Here are its fusion matrices:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,

0 1 0 0 0 0
1 0 1 1 1 0
0 1 0 1 0 1
0 1 1 1 0 1
0 1 0 0 1 2
0 0 1 1 2 1

,

0 0 1 0 0 0
0 1 0 1 0 1
1 0 2 0 0 1
0 1 0 2 1 0
0 0 0 1 2 1
0 1 1 0 1 2

,

0 0 0 1 0 0
0 1 1 1 0 1
0 1 0 2 1 0
1 1 2 1 0 1
0 0 1 0 2 2
0 1 0 1 2 2

,

0 0 0 0 1 0
0 1 0 0 1 2
0 0 0 1 2 1
0 0 1 0 2 2
1 1 2 2 1 1
0 2 1 2 1 2

,

0 0 0 0 0 1
0 0 1 1 2 1
0 1 1 0 1 2
0 1 0 1 2 2
0 2 1 2 1 2
1 1 2 2 2 2

Note that 143 = 11 ·13, so it admits no categorification because by [7], any fusion category 
of Frobenius-Perron dimension pq (with p, q different odd primes) is group-theoretical, 
whereas by [10], a (weakly) group-theoretical fusion category is of Frobenius type (or 
alternatively, cannot be both simple and non group-like).

There are 21 simple integral fusion rings not of Frobenius type, of rank ≤ 7 and 
FPdim ≤ 1500 (with FPdim �= paqb, pqr, by [10]), and exactly 4 ones (below) pass the 
Schur product criterion:

• rank 6, FPdim 924 = 22 · 3 · 7 · 11, type [[1, 1], [7, 1], [8, 1], [12, 1], [15, 1], [21, 1]] and 
fusion matrices:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,

0 1 0 0 0 0
1 0 0 1 1 1
0 0 1 1 1 1
0 1 1 1 1 2
0 1 1 1 1 3
0 1 1 2 3 3

,

0 0 1 0 0 0
0 0 1 1 1 1
1 1 1 1 1 1
0 1 1 2 1 2
0 1 1 1 2 3
0 1 1 2 3 4

,

0 0 0 1 0 0
0 1 1 1 1 2
0 1 1 2 1 2
1 1 2 1 3 3
0 1 1 3 3 4
0 2 2 3 4 6

,

0 0 0 0 1 0
0 1 1 1 1 3
0 1 1 1 2 3
0 1 1 3 3 4
1 1 2 3 4 5
0 3 3 4 5 7

,

0 0 0 0 0 1
0 1 1 2 3 3
0 1 1 2 3 4
0 2 2 3 4 6
0 3 3 4 5 7
1 3 4 6 7 10

• rank 6, FPdim 1320 = 23 · 3 · 5 · 11, type [[1, 1], [9, 1], [10, 1], [11, 1], [21, 1], [24, 1]] and 
fusion matrices:
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1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,

0 1 0 0 0 0
1 0 0 1 1 2
0 0 1 1 1 2
0 1 1 1 1 2
0 1 1 1 3 4
0 2 2 2 4 3

,

0 0 1 0 0 0
0 0 1 1 1 2
1 1 0 0 2 2
0 1 0 1 2 2
0 1 2 2 3 4
0 2 2 2 4 4

,

0 0 0 1 0 0
0 1 1 1 1 2
0 1 0 1 2 2
1 1 1 1 2 2
0 1 2 2 4 4
0 2 2 2 4 5

,

0 0 0 0 1 0
0 1 1 1 3 4
0 1 2 2 3 4
0 1 2 2 4 4
1 3 3 4 7 8
0 4 4 4 8 9

,

0 0 0 0 0 1
0 2 2 2 4 3
0 2 2 2 4 4
0 2 2 2 4 5
0 4 4 4 8 9
1 3 4 5 9 11

• rank 7, FPdim 560 = 24 · 5 · 7, type [[1, 1], [6, 1], [7, 2], [10, 2], [15, 1]] and fusion ma-
trices:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 0 0 0 1 1 1
0 0 1 0 1 1 1
0 0 0 1 1 1 1
0 1 1 1 0 1 2
0 1 1 1 1 0 2
0 1 1 1 2 2 2

,

0 0 1 0 0 0 0
0 0 1 0 1 1 1
1 1 0 1 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 1 2
0 1 1 1 2 2 3

,

0 0 0 1 0 0 0
0 0 0 1 1 1 1
0 0 1 1 1 1 1
1 1 1 0 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 1 2
0 1 1 1 2 2 3

,

0 0 0 0 1 0 0
0 1 1 1 0 1 2
0 1 1 1 1 1 2
0 1 1 1 1 1 2
0 1 1 1 2 3 2
1 0 1 1 2 2 3
0 2 2 2 3 2 4

,

0 0 0 0 0 1 0
0 1 1 1 1 0 2
0 1 1 1 1 1 2
0 1 1 1 1 1 2
1 0 1 1 2 2 3
0 1 1 1 3 2 2
0 2 2 2 2 3 4

,

0 0 0 0 0 0 1
0 1 1 1 2 2 2
0 1 1 1 2 2 3
0 1 1 1 2 2 3
0 2 2 2 3 2 4
0 2 2 2 2 3 4
1 2 3 3 4 4 6

• rank 7, FPdim 798 = 2 · 3 · 7 · 19, type [[1, 1], [7, 1], [8, 1], [9, 3], [21, 1]] and fusion 
matrices:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 0 0 1 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 5

,

0 0 1 0 0 0 0
0 0 1 1 1 1 1
1 1 1 1 1 1 1
0 1 1 2 1 1 1
0 1 1 1 2 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 6

,

0 0 0 1 0 0 0
0 1 1 1 1 1 1
0 1 1 2 1 1 1
1 1 2 1 1 2 1
0 1 1 1 2 2 1
0 1 1 2 2 1 1
0 1 1 1 1 1 7

,

0 0 0 0 1 0 0
0 1 1 1 1 1 1
0 1 1 1 2 1 1
0 1 1 1 2 2 1
1 1 2 2 1 1 1
0 1 1 2 1 2 1
0 1 1 1 1 1 7

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 2 2 1 1
0 1 1 2 1 2 1
1 1 2 1 2 1 1
0 1 1 1 1 1 7

,

0 0 0 0 0 0 1
0 1 1 1 1 1 5
0 1 1 1 1 1 6
0 1 1 1 1 1 7
0 1 1 1 1 1 7
0 1 1 1 1 1 7
1 5 6 7 7 7 8

A.3. Extra perfect fusion rings

The computer program uses several necessary conditions for a fusion ring A to be 
simple, perfect, of Frobenius type, and categorifiable, mainly collected in [10,29]:

• FPdim(A) not of the form paqb or pqr, with p, q, r prime,
• d(x2) ≥ 3 (in particular, m1 = 1, i.e. A is perfect).
• s ≥ 3 (in particular rank r ≥ 3),
• nr+1 < n2

r for all r > 1 (otherwise it trivially cannot be simple (and perfect)),
• (Frobenius type) ni divides FPdim(A) for all i (idem for the fusion subrings5),
• gcd(n2, . . . , ns) = 1 (consequence of Frobenius type).

Now, all these necessary conditions together are not sufficient for having a simple fusion 
ring, so that the computer search provided also 319 new perfect non-simple fusion rings 
(4 of which being noncommutative), see Table 1. Each of them contains the Grothendieck 
ring of Rep(G) as a proper subring (with G = PSL(2, q), q = 5, 7, 9). None of them comes 
from a perfect group. Ostrik’s inequality holds on all of them. In the commutative case, 
the Schur product property (on the dual) holds on exactly 114 ones.

Let us mention finally that we also found extra 2242 perfect integral fusion rings out 
the bounds of the above table (among them, 7 are simple, 5 are noncommutative, none 
both), see Table 2. In the commutative case, the Schur product property (on the dual) 
holds on exactly 480 of them (none of which is simple), and Ostrik’s inequality holds on 
all of them.

5 There are fusion rings of rank 9, FPdim 4620 and type [[1, 1], [4, 2], [5, 1], [6, 1], [7, 1], [11, 1], [66, 1]]
(Frobenius type) with a simple fusion subring of rank 8, FPdim 264 and type [[1, 1], [4, 2], [5, 1], [6, 1],
[7, 1], [11, 1]] (not Frobenius type).
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# rank FPdim type #Schur note
1 7 7224 [[1,1],[3,2],[6,1],[7,1],[8,1],[84,1]] 1 84 > 82

16 8 360 [[1,1],[3,2],[4,1],[5,1],[10,3]] 6
26 8 660 [[1,1],[3,2],[4,1],[5,1],[10,2],[20,1]] 5
24 8 960 [[1,1],[3,2],[4,1],[5,1],[10,1],[20,2]] 14
47 8 1260 [[1,1],[3,2],[4,1],[5,1],[20,3]] 7
1 8 1440 [[1,1],[3,2],[4,1],[5,1],[10,1],[16,1],[32,1]] 1
1 8 1680 [[1,1],[3,2],[4,1],[5,1],[12,1],[24,1],[30,1]] 1
2 8 2160 [[1,1],[3,2],[4,1],[5,1],[10,1],[20,1],[40,1]] 2
1 8 3120 [[1,1],[3,2],[4,1],[5,1],[10,1],[16,1],[52,1]]] 1
60 8 3360 [[1,1],[3,2],[4,1],[5,1],[10,1],[40,2]] 32
120 8 3696 [[1,1],[3,2],[6,1],[7,1],[8,1],[42,2]] 40
2 8 3960 [[1,1],[5,2],[8,2],[9,1],[10,1],[60,1]] 1
7 9 360 [[1,1],[3,2],[4,1],[5,4],[15,1]] 2
11 9 420 [[1,1],[3,2],[4,1],[5,1],[6,2],[12,2]] 1 +4NC

Table 1
Perfect extra ones.

# rank FPdim type #Schur note
1 7 28392 [[1,1],[3,2],[6,1],[7,1],[8,1],[168,1]] 1 168 > 82

4 8 4620 [[1,1],[4,2],[5,1],[6,1],[7,1],[11,1],[66,1]] 0
1 8 5460 [[1,1],[3,2],[4,1],[5,1],[10,1],[20,1],[70,1]] 1
8 8 5460 [[1,1],[6,1],[7,2],[10,2],[15,1],[70,1]] 1
1 8 6960 [[1,1],[3,2],[4,1],[5,1],[10,1],[20,1],[80,1]] 1
5 8 8160 [[1,1],[3,2],[4,1],[5,1],[10,1],[40,1],[80,1]] 5
250 8 14280 [[1,1],[3,2],[6,1],[7,1],[8,1],[84,2]] 78 84 > 82

2 8 44310 [[1,1],[5,3],[6,1],[7,2],[210,1]] 1 210 > 72

1 9 1080 [[1,1],[5,2],[8,2],[9,1],[10,1],[12,1],[24,1]] 0
22 9 1260 [[1,1],[3,2],[4,1],[5,1],[10,3],[30,1]] 10
1 9 1320 [[1,1],[5,2],[6,2],[10,1],[11,1],[20,1],[24,1]] 0 simple
111 9 1344 [[1,1],[3,2],[6,1],[7,1],[8,1],[14,2],[28,1]] 26
4 9 1512 [[1,1],[6,1],[7,1],[8,4],[21,1],[27,1]] 0 simple
52 9 1560 [[1,1],[3,2],[4,1],[5,1],[10,2],[20,1],[30,1]] 9
56 9 2160 [[1,1],[3,2],[4,1],[5,1],[20,3],[30,1]] 17
69 9 2160 [[1,1],[5,2],[8,2],[9,1],[10,1],[30,2]] 10
1086 9 2520 [[1,1],[3,2],[6,1],[7,1],[8,1],[28,3]] 221
5 9 2760 [[1,1],[3,2],[4,1],[5,1],[10,2],[30,1],[40,1]] 2
13 9 3696 [[1,1],[3,2],[6,1],[7,1],[8,1],[14,2],[56,1]] 5
16 9 3960 [[1,1],[3,2],[4,1],[5,1],[10,3],[60,1]] 6
52 9 4200 [[1,1],[3,2],[4,1],[5,1],[24,1],[30,2],[42,1]] 4
29 9 4260 [[1,1],[3,2],[4,1],[5,1],[10,2],[20,1],[60,1]] 6
24 9 4560 [[1,1],[3,2],[4,1],[5,1],[10,1],[20,2],[60,1]] 14
404 9 4872 [[1,1],[3,2],[6,1],[7,1],[8,1],[28,2],[56,1]] 56
2 10 720 [[1,1],[4,2],[5,2],[9,1],[10,3],[16,1]] 0 simple
1 10 1200 [[1,1],[3,2],[4,3],[5,1],[8,1],[12,1],[30,1]] 0
7 10 1260 [[1,1],[3,2],[4,1],[5,4],[15,1],[30,1]] 2
12 10 1320 [[1,1],[3,2],[4,1],[5,1],[6,2],[12,2],[30,1]] 3 +3NC
3 10 1920 [[1,1],[3,2],[4,1],[5,1],[8,2],[16,1],[24,1],[30,1]] 1 +2NC

Table 2
Out of the bounds.

The fusion matrices of all the (2595) perfect integral fusion rings mentioned in this 
paper, together with the computer programs (written in SageMath [37]) and checks, are 

available in the second author’s webpage [34].
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