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eral, these inequalities are obstructions to subfactorize fusion

bialgebras.
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1. Introduction

Lusztig introduced fusion rings in [26]. Etingof, Nikshych and Ostrik studied fusion
categories [9] as a categorification of fusion rings, see also [8,6,30,31]. A central question
is whether a fusion ring can be unitarily categorified, namely it is the Grothendieck ring
of a unitary fusion category.

Jones introduced subfactor planar algebras as an axiomatization of the standard
invariant of a subfactor in [16]. Planar algebras and fusion categories have close connec-
tions. There are various ways to construct one from the other. For example, if N C N xG
is the group crossed product subfactor of a finite group G, then the 2-box space & 4
of its planar algebra captures the unitary fusion category Vec(G) and its Fourier dual
P, — captures the unitary fusion category Rep(G). The Grothendieck ring of a unitary
fusion category can be realized as the 2-box space of a subfactor planar algebra using
the quantum double construction, such that the ring multiplication is implemented by
the convolution of 2-boxes [28,22].
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Recently, Jiang, the first author and the third author formalized and proved numbers
of quantum inequalities for subfactor planar algebras [21,14,13,25] inspired by Fourier
analysis. These inequalities automatically hold for the Grothendieck rings of unitary
fusion categories ¢ as explained in [22], through the well-known quantum double con-
struction from unitary fusion categories to subfactors, see e.g. [28]. Moreover, the Fourier
dual of a subfactor is still a subfactor. So these inequalities also hold on the Fourier dual
of the Grothendieck ring, which can be regarded as representations of the Grothendieck
ring.

This paper is inspired by three questions:

o Vaughan Jones [17]: What are the applications of these inequalities on subfactors to
other areas?

o Zhenghan Wang [39]: Are these inequalities obstructions of categorification?

o Pavel Etingof [5]: Do the inequalities on Grothendieck rings hold on fusion rings?

In this paper, we prove that these quantum inequalities on subfactor planar algebras
hold on fusion rings and partially, but not all, on the Fourier dual of fusion rings. There-
fore, the inequalities that fail on the dual of the fusion rings are new analytic obstructions
for unitary categorification of fusion rings. For examples, the quantum Schur product
theorem [[21], Theorem 4.1] holds on the Fourier dual of Grothendieck rings, but not on
the Fourier dual of fusion rings. It turns out to be a surprisingly efficient obstruction of
unitary categorification of fusion rings. Moreover, it is easy to check the Schur product
property on the dual of a commutative fusion ring in practice. In this way, we find many
fusion rings which admit no unitary categorification, due to the Schur product property,
and which cannot be ruled out by previous obstructions.

In §2, we introduce fusion bialgebras as a generalization of fusion rings and their duals
over the field C. The definition of fusion bialgebras is inspired by the 2-box spaces 5 1
of subfactor planar algebras. We show that if &%, ; is commutative, then it is a fusion
bialgebra. If a fusion bialgebra arises in this way, then we say that it is subfactorizable.
We classify fusion bialgebras up to dimension three. The classification of the two dimen-
sional subfactorizable fusion bialgebras is equivalent to the remarkable classification of
the Jones index of subfactors [15]. It remains challenging to classify three dimensional
subfactorizable fusion bialgebras.

In §3-§6, we systematically study quantum Fourier analysis on fusion bialgebras. We
show that the Hausdorff-Young inequalities, uncertainty principles hold for fusion bial-
gebras and their duals; Young’s inequalities and the sum-set estimate hold for fusion
bialgebras, but not necessarily on their duals. We characterize their extremizers in §6.
In fact, for the dual of a fusion bialgebra, Young’s inequality implies Schur product
property, and Schur product property implies the sum-set estimate. Therefore, Young’s
inequality is also an obstruction to unitary categorify a fusion ring or to subfactorize a
fusion bialgebra, and the sum-set estimate is a potential obstruction. It is worth men-
tioning that the Schur product property (or Young’s inequality) holds on arbitrary n-box
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space of the Temperley-Lieb-Jones planar algebra if and only if it is a subfactor planar
algebras, namely the circle parameter is the square root of the Jones index [15].

In §8, we reformulate Schur product property (on the dual) in terms of irreducible
representations of the fusion ring/algebra, especially in terms of the character table for
the commutative case. In the family of fusion algebras of rank 3 with every object self-
dual, we observe that about 30% of over 10000 samples do not have the Schur product
property (on the dual). So they cannot be subfactorized. We consider families of rank 4 or
5 fusion rings, and we compare (visually) Schur product criterion and Ostrik’s criterion
[32, Theorem 2.21].

Next, we give a classification of simple integral fusion rings of Frobenius type with
the following bounds of Frobenius-Perron dimensions (with FPdim # p%q®, pgr, by [10]).

rank <5 6 7 8 9 10 all
FPdim < 1000000 150000 15000 4080 504 240 132

First, given a Frobenius-Perron dimension, we classify all possible types (the list of
dimensions of the “simple objects”). Secondly, we classify the fusion matrices for a given
type. We derive several inequalities from Fourier analysis on fusion rings which bound
the fusion coefficients using the dimensions. These inequalities are efficient in the second
step of the classification. For some specific types, the use of these inequalities reduced
drastically the computation time (from 50 hours to 5 seconds). We end up with 34 simple
integral fusion rings in the classification (all commutative), 4 of which are group-like and
28 of which cannot be unitarily categorified by showing that the Schur product property
(on the dual) does not hold. It remains 2 ones. None of these 2842 ones can be ruled
out by already known methods.

Question 1.1. Do the remaining two fusion rings admit a unitary categorification?

It has two motivations, first the categorification of a simple integral non group-like fusion
ring would be non weakly-group-theoretical and so would provide a positive answer to
Etingof-Nikshych-Ostrik [10, Question 2], next there is no known non group-like examples
of irreducible finite index maximal depth 2 subfactor [33, Problem 4.12], but its fusion
category would be unitary, simple, integral (and of Frobenius type, assuming Kaplansky’s
6th conjecture [19]).

In summary, Fourier analysis on subfactors provides efficient analytic obstructions of
unitary categorification or of subfactorization.

2. Fusion bialgebras
In this section, we introduce fusion bialgebras which capture fusion algebras of fusion

rings over C and their duals, namely representations. The definition of fusion bialge-
bras is motivated by a connection between subfactor planar algebras and unitary fusion
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categories based on the quantum double construction. Its algebraic aspects have been
discussed in [22]. In this paper, we investigate its analytic aspects and study Fourier
analysis on fusion bialgebras.

The fusion bialgebra has a second multiplication ¢ and involution # on the fusion
algebra. Several basic results on fusion rings, see for example [6], can be generalized to
fusion bialgebras. Many examples of fusion bialgebras come from subfactor theory, and
we say that they can be subfactorized. It is natural to ask whether a fusion bialgebra
can be subfactorized. The question for the two dimensional case is equivalent to the
classification of the Jones index. If a fusion ring has a unitary categorification, then the
corresponding fusion bialgebra has a subfactorization. We introduce analytic obstructions
of subfactorization from Fourier analysis on subfactors, so they are also obstructions of
unitary categorification. We discuss their applications in §8.

2.1. Definitions

Let N = Z>( be the set of all natural numbers. Let R>o be the set of non-negative
real numbers.

Definition 2.1. Let B be a unital *-algebra over the complex field C. We say B has a
Rso-basis B = {z1 = 1g,2Z2,...,Tm},m € Z>1, if

(1) {x1,...,zm} is a linear basis over C;
m
(2) zjxy = ZN;kaS’ N:p € Rxos
(3) there exsisztls an involution * on {1,2,...,m} such that =} := zg- and Nj, = ;-
We write the identity 15 as 1 for short, if there is no confusion. When N7, € N, B

gives a fusion ring, and B is called a fusion algebra. The *-algebra B with a R>(-basis
B can be considered as a fusion algebra over the field C.

Definition 2.2. For a unital *-algebra B with a R>(-basis B, we define a linear functional
T:B—=C by 7(x;) =0;1.
Then 7(zjzi) = le,k =0, 1+ and 7(zy) = 7(yx) for any z,y € B. Moreover

*

N;; =T1(zjrpes) = T(Tx08) = Nsk’j = 71(zpxst;) = N,is. (1)

Note that xg-z,« = (r;x)*. We obtain Frobenius reciprocity

Njy=Nj o =Np . (2)

Therefore 7 is a faithful tracial state on the *-algebra B. Following the Gelfand-Naimark-
Segal construction, we obtain a Hilbert space H = L?(B,7) with the inner product
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(z,y) = 7(y"z),

and a unital *-representation m of the x-algebra B on H. Moreover B forms an or-
thonormal basis of 7. On this basis, we obtain a representation 75 : B — M,,(C). In
particular,

T5(T))k,s _Ng

We denote the matrix mg(z;) by L;. Then

m
LiLy =) NjiLs,
s=1

and

L= Lj-.
Remark 2.3. Under the Gelfand-Naimark-Segal construction, the x-algebra B forms a
C*-algebra, which is also a von Neumann algebra. In this paper, we only consider the
finite dimensional case, so we do not distinguish C*-algebras and von Neumann algebras.

Definition 2.4. For a unital *-algebra B with a R>¢-basis B, we define a linear functional
d: B — C by setting d(z;) to be the operator norm ||L;|s of L;, below denoted by

2 llo0,B-
Recall the Perron-Frobenius theorem for matrices:

Theorem 2.5 (Perron-Frobenius theorem, [9] Theorem 8.1). Let A be a square matrix
with nonnegative entries.

(1) A has a nonnegative real eigenvalue. The largest nonnegative real eigenvalue A(A)
of A dominates absolute values of all other eigenvalues of A.

(2) If A has strictly positive entries then A(A) is a simple positive eigenvalue, and the
corresponding eigenvector can be normalized to have strictly positive entries.

(3) If A has an eigenvector f with strictly positive entries, then the corresponding eigen-

value is A(A).

Proposition 2.6. Let B be a unital *-algebra with a R>q-basis B. Then

Z Spd(zs), d(xj) =d(z;) > 1.

Proof. The right multiplication of x; on the orthonormal basis B defines a matrix R;.
Then R = Zm_l R; has strictly positive entries. Let v = Z;”:l A;jx; be the simple positive
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eigenvector of the right action R. By Theorem 2.5, we can normalize v, such that \; =1
and A\; > 0. As L;v is also a positive eigenvector, we have that L;v = || L;|lecv = d(z;)v
by Theorem 2.5. Since L;Lyv = d(zx)L;v = d(xi)d(z;)v, we obtain that

m

Z S pd(zs).

Note that Z;n:l d(zj)z; is an eigenvector for R by the equation above, we see that
A = d(xy) for any 1 < k < m.

Note that L} = L;-, we have d(z;) = d(x;-), and d(x;)* = d(z;)d(z;+) > 1. Finally,
we see that d(z;) > 1. O

Definition 2.7 (An alternative C*-algebra A). We define an abelian C*-algebra A with
the basis B, a multiplication ¢ and an involution #,

ZjOT = (5j7kd($j)_1$j,

()" = ;.

d ,
The C*-norm on A is given by [|2|co,4 = max ld(z o ;)] for any x € A.

1<i<m d(xj)
Proposition 2.8. The linear functional d is a faithful state on A.

Proof. Note that {d(x;)z;} are orthogonal minimal projections of .A. By Proposition 2.6,
d(z;) > 1, so d is faithful. O

Definition 2.9. For any 1 <t < 0o, the t-norms on A and B are defined as follows:
|2lle.a = d(|z[)", we A zlles = r(l2[)V!, 2 €B, o = (z*2)"/? 1<t<oo
and

|d(z o x;)|
= ma —_— =
”‘THoo A= 1<J<X d(xj) ) Hx”w,B |

sup
yll2,5=1

Remark 2.10. For any z € A, |z| = (27 o 2)/2.

Definition 2.11. [Fourier transform] Let A, B be *-algebra with the same basis B, but
different multiplications and involutions defined in Definition 2.1 and 2.7. The Fourier
transform § : A — B is a linear map defined by

S(xj) = x5, Vj.

Note that § is a bijection.
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Proposition 2.12 (Plancherel’s formula). The Fourier transform § : A — B is a unitary
transformation:

1§ (@)ll2,8 = [|z]]2,4,
7(F(2)'F(x)) = d(:v# ox).

Proof. We only have to check the equation for the basis B. For any 1 < j, k < m, we
have

d(zjomxy) = jykd(xk)fld(xk) =0j = T(xjox) = T(T]T8).
Then the proposition is true. 0O

Under the Fourier transform, the multiplication on B induces the convolution on A.
We denote the convolution of z,y € A by

zry =F (F(@)T()).

The C*-algebras A and B share the same vector spaces, but have different multiplications,
convolutions and traces. These traces are non-commutative analogues of measures.

We axiomatize the quintuple (A, B, §,d, 7) as a fusion bialgebra in the following def-
inition. To distinguish the multiplications and convolutions on 4 and B, we keep the
notations as above.

Definition 2.13 (Fusion bialgebras). Suppose A and B are two finite dimensional C*-
algebras with faithful traces d and 7 respectively, A is commutative, and § : A — B is a
unitary transformation preserving 2-norms (i.e. 7(F(2)*F(y)) = d(z* o y) for any z,y €
A). We call the quintuple (A, B,§,d, 7) a fusion bialgebra, if the following conditions
hold:

(1) Schur Product: For operators z,y > 0 in A, z xy := § (F(2)T(y)) > 0 in A.

(2) Modular Conjugation: The map J(z) := F~1(F(x)*) is an anti-linear, *-isomorphism
on A.

(3) Jones Projection: The operator §1(1) is a positive multiple of a minimal projection

in A.

Furthermore, if §~!(1) is a minimal projection and d(F~1(1)) = 1, then we call the fusion
bialgebra canonical.

Remark 2.14. One can reformulate the definition of fusion bialgebras using the quintuple

(A, *,J,d,T).
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Remark 2.15. We show that subfactors provide fruitful fusion bialgebras in §2.2. One
can compare the three conditions in Definition 2.13 with the corresponding concepts in
subfactor theory.

Proposition 2.16 (Gauge transformation). Given a fusion bialgebra (A, B,§,d,T), then
11

(A, B, A2\, 25, A1d, AaT) is also a fusion bialgebra, with Ay, A2 > 0. Therefore, any fusion

bialgebra is equivalent to a canonical one up to a gauge transformation.

Proof. It follows from the definition of the fusion bialgebra in Definition 2.13. O

Theorem 2.17. If (A,B,§,d,7) is a fusion bialgebra, then B has a unique R>q-basis
B ={z1 =1,29,...,2p}, such that §'(z;) are multiples of minimal projections of A.
Moreover, B is invariant under the gauge transformation. Conversely, any C*-algebra B
with a R>o-basis B can be extended to a canonical fusion bialgebra, such that 3’1(:16]-)
are multiples of minimal projections of A.

Proof. By the above arguments, if a C*-algebra B has a Rx¢-basis B = {z1 =
1,29,...,2m}, then we obtain a canonical fusion bialgebra (A, B, §,d, 7).

On the other hand, suppose (A, B,§,d, ) is a fusion bialgebra. Let P;, 1 < j < 'm,
be the minimal projections of A, and F~1(1) = 5P, for some 65 > 0. The modular
conjugation J is a *-isomorphism, so J(P;) = Pj«, for some 1 < j* < m. Then §(P;) =
§(Pj+)* and J(P;) = P;. Moreover,

d(P;) = d(P} o Py) = 7(3(F;)"§(F;))

=7(5(P;-)"§(F;-)) = d(Pj-) .
By the Schur Product property,
PjxPy=> N;Ps, (3)
s=1

for some ]\Nfﬁk € R>g. Since the functional d is faithful, d(P;) > 0. Taking the inner
product with P; on both sides of Equation (3), we have that

d(Plo(Pj*Pk*)) T(S(Pl)*S(P]*Pk*))

O R d(Py)
1 1
= TBeT BB # o)) = S (B(P)F(Pis)
1 !
- d(pl)égT(g(Pj)S(Pk) )= d(Pl)égd(Pj o Py)
d(P5)9;,k
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In particular, ]\711’1 = 6,'. Take

RN _1
wj = 05(Nj ;) 28 (Py)
; Y 1l 1 1~
N;,k:‘sé(le,j*) 2(Nl%,k*) 2(Ns1,s*)2 ;k
Then
m
TjT = ZN;’,ka, TP =T, k>0 le’k =0k -
s=1

Therefore, {z;}1<;<m forms a R>¢-basis of B. Moreover, it is the unique R>q-basis of B
such that S_l(xj) are positive multiples of minimal projections in A.

Furthermore, applying the gauge transformation, we obtain a canonical fusion bialge-
bra

L 4T
(A,B,§,d,7) = (Av B.95%, Grpy d(P1)5%> ‘

In this fusion bialgebra, the minimal projections in A are still P;, 1 < j < m. Their
convolution becomes

m
Pjx Py =065 NP,
s=1
The corresponding x; becomes
~ 1
(68N} ;)2 083(P;) = x; .
Therefore, the R>-basis B is invariant under the gauge transformation. O

Definition 2.18 (Frobenius-Perron dimension). For a fusion bialgebra (A,B,§,d, 1),

F7 (1) is a multiple of a minimal projection P; in A. We define p := Z((;“;‘)) as the

Frobenius-Perron dimension of the fusion bialgebra.

Remark 2.19. Note that the Frobenius-Perron dimension y is invariant under the gauge
transformations. When the fusion bialgebra is canonical, let B = {1 = 1,za,..., 2} be
the basis of B in Theorem 2.17. Denote §~!(x;) € A by x; (as in Definition 2.11). Then
w= ZT:1 d(x;)?. This coincides with the definition of the Frobenius-Perron dimension
of a fusion ring.

Remark 2.20. For a canonical fusion bialgebra (A, B,§,d, ), one can consider 7 as a
Haar measure and pudoF ! as a Dirac measure on B. On the dual side, one can consider
1~ 1d as a Haar measure and 7 o § as a Dirac measure on A.
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Proposition 2.21. Let (A, B,§,d, ) be a fusion ring. Then for any x,y,z € A, we have

d((z xy) o z) =d((J(2) *2#) o J(y))
Proof. We have

d((z*y) o z) = 7(F(z *y)F(=")")
F)F(@)3 (W) = 7(F(I(=7))F(x
FJ (") * 2)F(I(y))") = d((J () = z) 0 T (1))

(J(2) x a#) o J(y))

|
ﬁ

7(
(
=
d(
This completes the proof of the proposition. 0O

2.2. Ezxamples

Example 2.22. When the basis B forms a group under the multiplication of B, the C*-
algebra B is the group algebra, H is its left regular representation Hilbert space, and
7 is the normalized trace. On the other side, the C*-algebra A is L*>°(B) and d is the
unnormalized Haar measure.

Example 2.23. When the basis B forms a fusion ring, the C*-algebra B is the fusion
algebra. The quintuple (A, B,§,d, ) is a canonical fusion bialgebra.

Theorem 2.24. Suppose N' C M is a finite-index subfactor and P, is its planar algebra
[16]. If Po 4 is abelian, then (Pay, Pa,—,Fs,tra +,tra,_) is a fusion bialgebra, and u
is the Jones index. Moreover, we obtain a canonical one (P +, P2 _,F,d,T), such that
d = ptry 4 is the unnormalized trace of Pa 4, T = tro _ is the normalized trace of P _,
and § = MI/QSS = 0%, where §s: Po 4 — Yo _ is the string Fourier transform.

Proof. Let P;, j = 1,2,...,m be the minimal projections of &>  and P; be the Jones
projection. Let T'r be the unnormalized trace of P, 4, namely Tr(P;) = 1. Take z; =

ﬁ&(ﬂ) and - \/WS’( ), where P; is the contragredient of P;. Then

_ S
TiTE = Njﬁkxs,

xy is the identity, z = xp-, N7, >0, andN =0k O

Remark 2.25. On the 2-box space &5 + of a subfactor planar algebra, the Fourier trans-
form is a 90° rotation and the contragredient is a 180° rotation, see e.g. §2.1 in [21].

Definition 2.26 (Subfactorization). We call (P2 +, P2 _,§s,tra 4, tra ) the fusion bial-
gebra of the subfactor N' C M. We say a fusion bialgebra (A, B) can be subfactorized,
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if it comes from a subfactor A C M in this way. We call N' C M a subfactorization of
the fusion bialgebra.

2.3. Classifications

In this section, we classify fusion bialgebras up to dimension three. By the gauge
transformation, it is enough to classify canonical fusion bialgebras, which reduces to
classify the R>(-basis of C*-algebra by Theorem 2.17. Recall in Theorem 2.24 that
(P +, Pa_,Fs,tra 4, tra _) of a subfactor planar algebra is a fusion bialgebra, if &5 4
is abelian. We refer the readers to [1-3,23,36,4] for known examples of three dimensional
fusion bialgebras from 2-box spaces of subfactors planar algebras. In these examples,
different subfactor planar algebras produce different fusion bialgebras.

In general, without assuming % 4 to be abelian, (P 1, P _, s, tra +,trs, ) has
been studied as the structure of 2-boxes of a planar algebra, see Definition 2.25 in [21].
One may ask when a subfactor planar algebra (generated by its 2-boxes) is determined
by its structure of 2-boxes, equivalently by its fusion bialgebra when &, , is abelian. A
positive answer is given in Theorem 2.26 in [21] for exchange relation planar algebras:
exchange relation planar algebras are classified by its structure of 2-boxes. Classifying
fusion bialgebras is a key step to classify exchange relation planar algebras. On the other
hand, it would be interesting to find different subfactors planar algebras generated by
2-boxes with the same fusion bialgebras (or structures of 2-boxes).

Proposition 2.27 (Rank-two classification). Two dimensional canonical fusion bialgebras
are classified by the Frobenius-Perron dimension p > 2. Moreover, they can be subfac-
torized if and only if p is a Jones index.

Proof. If {x1,25} is a R>¢-basis, then x5 = x2. By Proposition 2.6, dy := d(z2) > 1,
and

-1
da

x% =z + T2 .
So i1 > 2. Conversely, when g > 2, we obtain a R>-basis in this way.

Furthermore, when g is a Jones index, the canonical fusion bialgebra can be subfac-
torized by the Temperley-Lieb-Jones subfactors with index p. O

Suppose {x1 = 1,2, x3} is the R>-basis of a three-dimensional C*-algebra . Then B
is commutative. Take do = d(x3) and d3 = d(x3). There are two different cases: x5 = xo
or T3 = T3.

Proposition 2.28 (Rank-three classification, type I). In the case x3 = xo, three dimen-
sional canonical fusion bialgebras are classified by three parameters do,ds,a, such that
de,d3 >1,0<a<1,b=1-aqa,d?—1—ad%>0,d3—1—bd3 > 0. Moreover,
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d3 — 1 — ad?
Toxg = Ty + 21y + adss
d>
Tox3 = adsrs + bdsxs
d2 — 1 — bd?
r3x3 = 1 + bd2$2 + %1’3 .
3

Proof. Take parameters a, b, such that
Tolsy = ad3$2 + bdQl’g .

Then a,b > 0. Computing d on both sides, we have that a+b = 1. So a < 1. By Equation
(1), N3y = N3 5. Hence

A2 —1—ad?
ToXo = T1 + %xz + adsxs
2

by computing d on both sides. Similarly N§,3 = N2373, and

2_1_ 2
& bd3

T3T3 = X1 + bdaxo +
ds

3 .

As the coefficients are non-negative, we have that d3 — 1 —ad3 > 0 and d3 — 1 — bd3 > 0.
Conversely, with the above parameters, the multiplication is associative and (z;z1)* =

zypx; by a direct computation. Therefore, we obtain the classification. O

Proposition 2.29 (Rank-three classification, type II). In the case x5 = x5, three dimen-
stonal canonical fusion bialgebras are classified by one parameter p > 3. Moreover,
dy = dg = /15,

-1 d3+1

Tokg = 2, 2 oy z3 ,
d3 —
Tolz = T + 25 (z2 + x3) ,
B+l dB-1
T3T3 = o T o x3 .

Proof. As a3 = x5, we have that do = d3 = \/“T_l > 1 and zox3 is self-adjoint. So

Toks = X1 + )\(.’172 + .’1)‘3) R

d2—

2d21. By Equation (1),

for some A > 0. Computing d on both sides, we have that A\ =
N3, = N3 3. So




14 Z. Liu et al. / Advances in Mathematics 390 (2021) 107905

d3—1 d3+1
T2
2d; 2ds

ToXo = xs3 ,

by computing d on both sides. Similarly N§73 = ]\722,37 and

d3+1 d3—1
T2
2ds 2ds

xr3xs = X3 .
The coefficients are non-negative.

Conversely, with the above parameters, the multiplication is associative and (zjz1)* =
zyx; by a direct computation. Therefore, we obtain the classification. O

The one-parameter family of three dimensional canonical fusion bialgebras in the
above classification can be realized as the 2-box spaces of a one-parameter family of
planar algebras constructed in [23]. For each dy > 1, there are a complex-conjugate pair
of planar algebras to realize the fusion bialgebra as the 2-box spaces. So such a realization

may not be unique. Moreover, these planar algebras arise from subfactors if and only if

™

w= cotQ(W) for some N € Z . Inspired by this observation, we conjecture that:

Conjecture 2.30. In the case II, the one-parameter family of three dimensional fusion
bialgebras can be subfactorized if and only if p = cotZ(ﬁ).

2.4. Duality

Definition 2.31. For a fusion bialgebra (A, B, §, d, 7), we define the quintuple (5, A, 3.7, d)
as its Fourier dual, where § = #F .

Remark 2.32. To be compatible with the examples from subfactor theory, this is the
natural Fourier dual, not (B, A,§~ %, 7,d).

Definition 2.33 (Contragredient). For any x € A, we define its contragredient as
T =33 (x) .

For any y € B, we define its contragredient as
7 :=55(y) .

When B is commutative, it is natural to ask whether the dual (B, A,F~!,7,d) is also a
fusion bialgebra. We need to check the three conditions in Definition 2.13. The conditions
(2) and (3) always hold on the dual, but condition (1) may not hold.

Proposition 2.34 (Dual modular conjugation). For a fusion bialgebra (A, B,§,d,T), the
map Jp(x) :=F HF(2)¥) is an anti-linear, *-isomorphism on B.
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Proof. Note that the map Jp is anti-linear and

Ja(x;) =F 1 (F(2)*) =FEF (@)F)" =y,
so Jg(z;x) = xjzK, and Jp is an anti-linear *-isomorphism on B. O

Proposition 2.35 (Dual Jones projection). For a fusion bialgebra (A, B,F,d, ), F(14) is
a positive multiple of a central, minimal projection eg in B, where 14 is the identity of
A. Moreover, y = Z18)

T(eB) "

Proof. Since the gauge transformation only changes the global scaler, without loss of
generality, we assume that (A, B,§,d, ) is a canonical fusion bialgebra. Then

m m

Fa) =D F(P) = dlw;)a; .

=1 j=1

Note that d(z;) = d(z;.) > 0 and z} = z;+, so F(14) = §F(1a)". By Equation (1) and
Proposition 2.6,

S(1a)zk :Zd(xj)xjxk = d(:rj)N;,kxs
j=1 Jrs=1
m . m
= Z d(xj*)Ngys*xs = Zd(wkacs*)xs
7,s=1 s=1
=d(zx) Y d(ws)re = d(2)F(1a) -
s=1
So F(14) * S(lA) = M%(lA) and
e =p ' §(1a) = p 1 F1a) = p D d(x))a;
j=1
is a central, minimal projection. Moreover,
T(ep) =p 'Y _dlx)r(x;) =p~", T(lp)=7(z1)=1.
j=1
1) _
We have Tlem) = M- O

2.5. Self duality

In this subsection, we will give the definition of the self-dual fusion bialgebra and
study the S-matrix associated to it.
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Definition 2.36. Two fusion bialgebras (A, B,§,d, 7) and (A", B',§,d', ') are called iso-
morphic, if there are *-isomorphisms ®4 : A — A’ and &5 : B — B’, such that
PF=F Py, d=d'®4 and 7 = 7' Pp.

Definition 2.37. A fusion bialgebra (A, B, F,d, 1) is called self-dual, if its dual (B, A, 3,
T, d) is a fusion bialgebra and they are isomorphic. Furthermore, it is called symmetrically

self-dual, if PpP4 =1 on A.

The maps ¢ 4, P implementing the self-duality may not be unique, even for finite
abelian groups.

Proposition 2.38. Suppose (A, B,§,d, ) is a self-dual canonical fusion bialgebra with a
R>o-basis B = {x1 = 15,%2,...,%m} of B, then

Z Az = Z Aj e
J J
Consequently, the contragredient maps on A and B are anti-x-isomorphisms.
Proof. The statements follow from the fact that the contragredient map is linear and
T; = 3%(:53) = 53_1(:5;)# =rp =27, V1<j<m. O
Definition 2.39. Suppose (A, B,F,d, 7) is a self-dual canonical fusion bialgebra with a

Rso-basis B = {z1 = 1p,%2,...,ZTm} of B, we define the S-matrix S as an m x m
matrix with entries S ]’?, such that

§Pp(z;) = Z Ska.
k=1

Proposition 2.40. For a self-dual canonical fusion bialgebra (A, B,F,d, ), §Pp is a uni-
tary transformation on L*(B,T), and the S matriz is a unitary.

Proof. Both § and ®5 are unitary transformations, so the composition is a unitary on
L?(B,7). Recall that B is an orthonormal basis of L?(B,7), we have S is a unitary

matrix. O

Proposition 2.41. A self-dual canonical fusion bialgebra is symmetrically self-dual if and
only if S’JlC = 5]. In this case,

s = BT
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Proof. For a self-dual canonical fusion bialgebra, we have that

DpFOET = FOAPET .

By Propositions 2.38 and 2.40, the fusion bialgebra is symmetrically self-dual if and only
if (?5%)? = FF if and only if (52)2? =0~ if and only if SjlC = 57. In this case,

PpFOpT = PP ATT -
So bz = P4F. O

Remark 2.42. For the group case, S is a bicharacter, see [24] for the discussion on self-
duality and symmetrically self-duality.

Theorem 2.43 (Verlinde formula). For a self-dual canonical fusion bialgebra (A, B, 5,
d, ),

SL;S*=D;, 1<j<m,

k
where Ljx = xjx for x € B and Djx), = %azk.
Proof. Assume that B = {x; = 1,22,...,z,,} is a basis of B. We have

FPsL;(FPs) (k) = FPs(x;(FPs) " (z1))
= 3(®p(z;) o Pp((FP5) " (zx)))
=F(F 'FPs(z;) oF " (2k))

m

=) SBE (ws) o5 (2n))
s=1
Sk

= J fk

d(zy)

This completes the proof of the theorem. 0O

3. Schur product property

In this section, we will study Schur product property for the dual of a fusion bialgebra.

Definition 3.1. For a fusion bialgebra (A, B,§,d, 7), the multiplication ¢ on A induces a
convolution *z on B: Vz,y € B,

wrpy=§ (F@)oF(y) = FEF (W) oF )" (4)

We say B has the Schur product property, if x gy > 0, for any x,y > 0 in B.
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Proposition 3.2 (Frobenius reciprocity). Let (A, B,F,d, ) be a fusion bialgebra. Then for
any x,y, z € B, we have

T((z x5 y)z) = 7((J(x) *5 2*)y*)

Proof. We have

FE ) o (@) 2)
Sy )T o3 @) 0T ()

T((z *5 y)2) = 7(
d(
USE (@) 0F71(2)))
(
(

|
\]

T

S@ 1 (Is(2)*) 0 T (z")) y")
(Js(x) *B 2*)y*)

|
\]

This completes the proof of the proposition. O

Proposition 3.3. Suppose the fusion bialgebra (A,B,T,d, ) can be subfactorized. Then
the Schur product property holds on the dual.

Proof. It follows from the quantum Schur product theorem on subfactors, Theorem 4.1
n[21]. O

Proposition 3.4. Suppose the fusion bialgebra (A, B,§,d, ) is self-dual. Then the Schur
product property holds on the dual.

Proof. It follows from the definition of self-dual fusion bialgebras. O

We define a linear map A : B — B ® B such that

1

A(zj) = i)

rjRz;, A(z")=A(z)", zebB.

Then A is a *-preserving map. We say A is positive if A(z) > 0 for any = > 0.

Proposition 3.5. Let (A, B,F,d, ) be a fusion bialgebra and suppose A is positive. Then
the Schur product property holds for (B, A,§,T,d)

Proof. We denote by ¢ the identity map. Note that for any x = 2211 Ajxj,y =
dojey Njxj € B, we have

t@r)(A@)(1@7)=(®r) Zd(% ;) ® 1®Z)\ L
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Let ¥ = y1y} and x > 0. Then (1 ® y)A(z)(1 ® y1) > 0. Hence

o) (1Tey)A@)(1®y)) =0,
ie.zxpy>0. O

Proposition 3.6. For a fusion bialgebra (A, B,§,d, ), the Schur product property holds
on B, if and only if

d((J(z) xx) o (J(y) *y) o (J(2) x 2)) 2 0, Va,y,z € A.
Proof. By the Schur product property on A,
(J(z) xz)* = J(x)# x2* = J(z¥) x2*, Yz € A.

Note that F(J(x) * x) = |F(x)|*> > 0, and any positive operator in B is of such form.
Therefore, by Proposition 2.12 and Equation (4),

d((J(z)xz)o (J(y) *xy) o (J(2) x2)) >0, Va,y,z € A,
= 7(F(J (@) * @) F((J(y) *y) o (J(2) *2)) >0, Va,y,z € A,
= (1) P31 *8 [3(2)]7)*) > 0V, y, 2 € A,
= [FW)**5[3(2)]> > 0 Vy,z € 4,

if and only if the Schur product property holds on B. O

The Schur product property may not hold on the dual, even for a 3-dimensional fusion
bialgebra. We give a counterexample. For this reason, Young’s inequality do not hold on
the dual as well, see §5 for further discussions. As a preparation, we first construct the
minimal projections in B.

Proposition 3.7. For the canonical fusion bialgebra (A, B, §,d, ) in Proposition 2.28, the
minimal projections of B are given by
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Q1 = p (21 + doxo + d3z3) |

Ao 1— )Xo
Q2 = Vy (3?1 - d—2$2 ds $3) ,

A 1— A
Q3=V31($1—d—2$2— ds 3553),

where Ao, A3 are the solutions of

Ao+ A3 =ad2 —bd3+1,
o3 = —bd3 ;

A2 .
. = 2
andyj—l—l—d%—i— z
Proof. Note that y =1+ d3 + d3. By Proposition 2.35,
Q1=ep= /J_l(l'1 + daxo + d3zs) .

Forj =2,3, d(QlQ]) =0, so

- Ne 1o

Q2 =1y (fUl—d—Qﬂfz— a x3) ,
A 1-A

Qs =v3' (@1 — Gowe = — =),

2 N2
for some vo,v3 > 0. As Q2 Qj, we have that v; = 1 + d2 + (17;2") . Furthermore,
3

Q203 =0, so
A2+ A3 2— )Xy — A3 A2z o Ao+ Az — 2X2)3

T — d2 To — d3 I3 =+ d% fE2 d2d3 T2X3
1—=X)(1—=AX
L 1=2)(1 =) Zzlé 3)x§ — 0.

The coeflicient of z; is 0, for 1 < j < 3. So

Mada (1= a)(1-Ao)

1 =0
T B ’
Ao+ A3 Ao A3 d% —1- ad% Ao + A3 — 29 \3 (1 — )\2)(1 — )\3)
- d bdy = 0
ds & v A &2 2=0,
2-da—As  Aohs Ao+ Az — 223 (1= Ao)(1 = Ag) d2 — 1 — b3
- d bd =0.
4 @ et dods 2 2 ds

Take
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w) = Ay + As,
wo = A3 .
Then
1+Z—§+1_°‘;%=0,
Syt d - 22’ ads wld;dim A “%* “pdy =0,
2 ;:“ + Z—gadg + wld;diwzbdQ +1 _oill; wa ds _;3_ b _y.

Solving the linear system, we have that

wy = ad3 — bds +1;
Wy = —bd% .
Therefore, Ao, A3 are the solutions of
Ao+ A3 =ad2 —bd3+1,

/\2)\3 = —bd% . O

Theorem 3.8. For the three dimensional canonical fusion bialgebras (A, B,§,d, ) param-
eterized by ds, ds, a in Proposition 2.28, the Schur product property does not hold on the
dual in general, for example, dy = 1000, ds = 500, a = 0.750001.

Proof. Fix 0 < a < 1, and b = 1 — a. Take dy — oo and d% — 1 = bd3, then \3 —
b=, Xady? — —b?. Moreover,

dy?d ((F ' (12Q2))?)

_ - 1-)\°
d22<1<d2> d22d2< o, ) dy?ds

1—X)3
—=d;? (1 ~ (had3?)’ d3 - “.;42))
3

v )3
= — (\dy?)’ +d57? (1 - 7((1: Ii%))ﬂ

=5 —pt <0

By Proposition 3.7, the Schur product property does not hold in general on the dual.
Numerically, one can take do = 1000,d3 = 500,a = 0.750001, then d((F~1(12Q2))?)
<0. O
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Remark 3.9. Subsection 8.3 provides a complementary approach for the study of this
family of rank 3 fusion bialgebras, leading to visualize the areas of parameters where
Schur product property (on the dual) does not hold, and to a character table whose
matrix (function of the fusion coefficients) is equal to the inverse of the one underlying
Theorem 3.7 (function of the Frobenius-Perron dimensions).

4. Hausdorff-Young inequality and uncertainty principles

In this section, we will recall some inequalities for general von Neumann algebras first
and then we will prove the Hausdorfl-Young inequalities and uncertainty principles for
fusion bialgebras.

Proposition 4.1 (Hélder’s inequality, see for example Proposition 4.3, 4.5 in [1/]). Let
M be a von Neumann algebra with a normal faithful tracial state 7 and 1 < p,q < oo
with 1/p+1/q = 1. Then for any x € LP(M), y € LY(M), we have

eyl < llllpllyllq

Moreover

. . P *1q
(1) for 1 < p < oo, |lzylly = lelpllyly if and only if J2b = bl

(2) for p = oo, |lzyll1 < ||zllsollylly if and only if the spectral projection of |x| corre-
sponding to ||z||eo contains the projection R(y) as subprojection, where R(y) is the

range projection of y.

Corollary 4.2. Let M be a von Neumann algebra with a normal faithful tracial state T
and x € M. Then ||z||3 = ||z| s |lz||1 if and only if x is a multiple of a partial isometry.

Proposition 4.3 (Interpolation theorem, see for example Theorem 1.2 in [20]). Let M, N
be finite von Neumann algebras with normal faithful states T, 1o. Suppose T : M — N
is a linear map. If

HTx||p1,T2 < KIHxHQLTU and HTxH!h,Tz < K2||x||l127717

then

—0 760
”Tx”]?eﬂ'z S I(l1 K2||17qu77'1’
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4.1. Hausdorff-Young inequality
Proposition 4.4. Let (A, B,§,d, ) be a fusion bialgebra. Then

I8(@) 0,5 < |l

|1,.A7 UAES A

and

I3(@)lloe,a < llzll15, =€ B.

Proof. Let z = 37", \;§ '(z;) € A. Then

I3(@)lle,5 = || > Ass <> illlzslle s
j=1 j=1

co,B
m

> ld(z;) = llzl.a.

Jj=1

This proves the first inequality.

~ s
For the second inequality, we let = = 7", A\ja;. Then [|F(2)]oc,a = max d|( J)
sjs=m a(T;

For any k such that Ay # 0, we have

o e,
R | e et e

Hence H%(x)HOOA < ||z||l1,8- This completes the proof of the proposition. 0O

Theorem 4.5 (Hausdorff- Young inequality). Let (A, B,§,d, T) be a fusion bialgebra. Then
forany1<p<2 1/p+1/q=1, we have

15(@)llg. < llzllpa, ze€A

and

IF@)lg.a < |z

p,B, T E B.
Proof. It follows from Proposition 2.12, 4.4 and Proposition 4.3. O

We divide the first quadrant into three regions Ry, Rp, Rrp. Recall that u =

>oiyd(xz;)? is the Frobenius-Perron dimension of B. Let K be a function on [0, 1]

given by
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N[ =

[ N I

§
1

Fig. 1. The norms of the Fourier Transform.

1 for (1/p,1/q) € RF,
K(1/p,1/q) = § pt/P*1/a=1 for  (1/p,1/q) € Rr, (5)
pt/a=1/2 for (1/p,1/q) € Rrp,

as illustrated in Fig. 1.

Theorem 4.6. Let (A, B,§,d, ) be a fusion bialgebra and x € B Then for any 1 < p,q <
00, we have

K(1/p.1/a) ey < [§(@)llg.a < K(1/p,1/a)l|x]p.5

Proof. It follows from the proof of Theorem 3.13 in [25]. We leave the details to the
readers. O

4.2. Uncertainty principles

We will prove the Donoho-Stark uncertainty principle, Hirschman-Beckner uncertainty
principle and Rényi entropic uncertainty principle for fusion bialgebras. For any = € A,
we let R(z) be the range projection of z and S(x) = d(R(x)). For any = € B, S(x) =
T(R(x)).

Lemma 4.7. Let (A, B,§,d, 7) be a fusion bialgebra. Then we have
S(z)=S@*)=8(J(x)), zcA

and

S(z) = S(z*) =S(Jg(x)), =xe€B.
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Theorem 4.8 (Donoho-Stark uncertainty principle). Let (A, B,§,d, ) be a fusion bialge-
bra. Then for any 0 # x € A, we have

S(@)5(3(x) = 1;
for any 0 # x € B, we have
S(x)S(F(x) = 1;

Proof. The second inequality is the reformulation of the first one. We only have to prove
the first one. In fact,

I15(2)]lo0, < ll2ll1.4 < [IR(@)l|2,4]l%]|2,4 Proposition 4.4, 4.1
= 8()"?3(@) |25
< 8(@)'?IR(F(x))|
= 8()' 28 (F (@) 2|IF(2)]] 0,5,

2.8|15(z)|lco,8  Proposition 4.1

i.e. S(x)S(F(x)) > 1. This completes the proof of the theorem. O

For any z € B, the von Neumann entropy H(|z|?) is defined by H(|z|?) =
—7(z*zlogx*z) and for any x € A the von Neumann entropy is defined by H(|z|?) =
—d ((z# o z) log(z# o x)).

Theorem 4.9 (Hirschman-Beckner uncertainty principle). Let (A, B,§,d,T) be a fusion
bialgebra. Then for any x € A, we have

H(jz|*) + H(I§(@)]*) = —4l|=[|3 4 log [|z]2..

Proof. We assume that = # 0. Let f(p) = log||§(z)||p,58 — log ||x|/q,4, where p > 2 and
1/p+1/q = 1. By using the computations in the proof of Theorem 5.5 in [14], we have

d » B _l 9
d—p||§($)|| B~ SH(3())
and
d _ 1 o LH(S(=)?)
% log ||{§($)HP73 - - 4 IOg ||3:('T)||2,B 4 Hx”%,A

We obtain that

1
413

f'2) = —%log\\xllg,f\— (H(|3@)?) + H(Jz*)).-
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By Proposition 2.12, we have that f(2) = 0. By Theorem 4.5, we have f(p) < 0 for
p > 2. Hence f/(2) <0 and

H(I§(2)) + H(|2?) > —4|x

salogllzllz,a. O

Remark 4.10. Let (A, B,§,d,7) be a fusion bialgebra. The Hirschman-Beckner uncer-
tainty principle is also true for x € B with respect to the Fourier transform F.

We give a second proof of Theorem 4.8:

Proof. By using Theorem 4.9 and the inequality log S(x) > H(|z|?), for any ||z||2,4 = 1,
we see that Theorem 4.8 is true. O

For any z € Aor Band t € (0,1) U (1,00), the Rényi entropy H;(x) is defined by

4
Hy(z) = m”ﬂfnt-

Then Hy(x) are decreasing function (see Lemma 4.3 in [25]) with respect to ¢ for
|z]|co,.a <1 and ||z]leo,s < 1 respectively.

Theorem 4.11 (Rényi entropic uncertainty principles). Let (A, B,§,d, ) be a fusion bial-
gebra, 1 <t s < oo. Then for any v € A with ||z|j2,4 = 1, we have

(1/t = 1/2)Hy o (§(@)[2) + (1/2 = 1/5) Hya(lal?) = —log K(1/£,1/5).
Proof. The proof is similar to the proof of Proposition 4.1 in [25], using Theorem 4.6. O
5. Young’s inequality

In this section, we study Young’s inequality for the dual of fusion bialgebra and the
connections between Young’s inequality and the Schur product property.

Proposition 5.1. Let (A, B,§,d, ) be a fusion bialgebra. Then for any x,y € A, we have

2% Ylloo,a < [[2]lco,allyll1, a-

Proof. For any = = 37" | \;§ ' (z;) and y = 37| N;F " (x;), we have

Jj=17"3J
m m
2% yllooa = || D AAS ™ (k) = D MNNS T (w)
Jk=1 0o, A Jok,s=1 00, A
o] s o
= max

1<s<m d(ﬂfs) T 1<s<m d(iL’s)
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i 2 k=1 A AN
< max

T 1<j<m d(xj) 1<s<m d(zs)

m
l2lloo,a D Neld(@r) = llzlloo,allyll,a.
k=1

This completes the proof of the proposition. 0O

Remark 5.2. It would be natural to ask whether the following Young’s inequality for the
dual (B, A,§,7,d)

12 %5 Ylloo,5 < [|#[loo,5/lyll1,5 (6)

holds in general, but it does not, because we will see that it implies the Schur product
property on the dual, which does not hold on many examples provided by Theorem 3.8,
Subsections 8.3 and 8.4.

Proposition 5.3. Suppose that F~1(z) > 0, x € B, we actually have that Inequality (6) is
true. Hence

1248 Ylloo.5 < 4[7llc0.8Yll1.5- (7)

Proof. Let x = 77" \;&(z;) with \; > 0 and y = 377", N;§(x;). Then ||z]ep =

Jj=1

ZT:l Ajd(z;) and

55 Ylloo,s = || D Ay Njd(a) L <IN

ji=1 co.B j=1
- A5 N &

= Nid(z;) -2~ < max —-2 A;d(x4)
j; T () T asigm d(%); T

= 57 W)l allzllsc,5 < lyll1.5ll2]lc0,5 Proposition 4.4

Inequality (7) follows directly by the fact that any element is a linear combination of
four positive elements. 0O

Proposition 5.4. Let (A, B,§,d, ) be a fusion bialgebra with B commutative. Then the
Schur product property for the dual (B, A,§,T,d) implies inequality (6).

Proof. By Definition 2.13, (B, A, %, 7,d) is a fusion bialgebra. The proposition follows
from Proposition 5.1. O

Proposition 5.5. Let (A, B,§,d, ) be a fusion bialgebra. If |Al| < 1 then Inequality (6)
holds.
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Proof. As in the proof of Proposition 3.5, for any z,y € B, we have that Ty =
(t®7)(A(z)(1®7)). Then

1@ T)(A(@) (1@ Y))|loos = o (T ®7)(A(2)(2 ©7))|

< sup [JA@)[loosll2ll5lY]18
Izl 5=1

This completes the proof. 0O
Proposition 5.6. Let (A, B,F,d, 7) be a fusion bialgebra. Then for any x,y € A, we have

|z *yll1,a = [[zll1,allyl1,4

Proof. Suppose z = > 7", NF Hzj) and y = Do NS Y(x;). Then

m m
2 yll1,4 = STONNNGE )| = DD NING d(z)
j=1,k=1,s=1 LA d=Lk=ls=1
= Y INANd@)d(e) =D Ild() Y [Mld()
j=1,k=1 j=1 k=1

Le. [lzxyllia = llzllialylia. ©
Proposition 5.7. The following two statements are equivalent for C' > 0:

(1) For any ,y € B, ||z %5 y|loo5 < Cllz[l1,5]loc,5-

Proof. (1) = (2):
lz*5 yll1,6 = T\UP 7((z %5 y)?)
Z||oco=1

= sup 7((Jg(x)*g 2z*)y*) Proposition 3.2
IZllc=1

< ” s”up |J8(2) *5 2" ||lc0,8lYll1,5
Z|[oo=1

< Cllzllslylh5-
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[ 55 Ylloo.s = sup 7((z +5y)z)
lelli=1

= sup 7((Jp(z)*p2")y*) Proposition 3.2

lIZl=1

< sup |[[Js(2) x5 27 [|15]ylloc.5

< s 1,8
IIZ]l1=1

< Cllzllsllyllccs. O
Proposition 5.8. Let (A, B,§,d, ) be a fusion bialgebra. The following statements:

(1) the Schur product property holds on the dual.

(2) =5yl = llzllslyls. for any x>0,y >0 in B;
(3) syl < llzlls8lyls. for any x,y in B;

(4) 1z *8 yllso,8 < [|2[|1,8l1Yll00,5, for any x,y in B;

satisfy that (4) < (3) = (1) & (2).

Proof. Suppose = = 377" \jz; > 0 and y = 37" Mx; > 0 in B. Then

o8 ylls = 7@ 48 ) = WX, = 7(@)7(@) = lz]slyls

(1) = (2): By the Schur product property, we have z xgy > 0 and ||z %5 y|1.8 =
7(z *p y). This implies (2).

(2) = (1): This implies that |z xgy
that x xg y > 0, i.e. the Schur product property holds.

(3) = (1): (3) implies that ||x*gy|1,8 = T(x*py) for z,y > 0. Thus the Schur product
property holds.

(3) & (4): Tt follows from Proposition 5.7. O

|18 = T(x*py) for z,y > 0. However this implies

Proposition 5.9. Let (A, B,§,d, ) be a fusion bialgebra. Then for any z,y € A, 1 <p <
00, we have

2% yllpa < [lzllp.allyl.a-
Proof. It follows from Proposition 5.1, 5.6 and Proposition 4.3. O

Proposition 5.10. Let (A, B,§,d,7) be a fusion bialgebra. Then for any x,y € A, 1 <
p<oo, 1/p+1/g=1, we have

[ % Ylloo,.a < [|2[lp,allyllq,a-
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Proof. We have

[ % Ylloo,a = sup |d((z*y)o2)]

llzll1,a=1

= sup ’d((J(z)*x#)oJ(ym Proposition 2.21

lzll1,a=1

< sup || J(2) * 2% |p.allJ(y)|lqa Proposition 4.1

lIzll1,.a=1

< [la#||p,allyllq.a  Proposition 5.9

= [|zllp.allyllg.a-

This completes the proof of the proposition. O

Theorem 5.11 (Young’s inequality). Let (A, B,§,d, ) be a fusion bialgebra. Then for any
z,ye A, 1<p,qr<oo, 1/p+1/¢g=1+1/r, we have

[z % yllr.a < [lz]lpallyllq,a-

Proof. It follows from Propositions 5.9, 5.10 and Proposition 4.3. O

Proposition 5.12. Let (A, B,§,d, ) be a fusion bialgebra. Then for any x,y € B, 2 <r <
00, 1<p,¢<2,1/p+1/¢g=1+1/r, we have

lz*5 yllrs < l2llp5lYles5-

Proof. For any z,y € B, 1/r+1/r" =1,1/p+1/p' =1,1/¢+1/¢ =1, we have

25 yllr.5 = IFE (@) 0 FW)lr5
< ||§(JU) 0§(y)|\,«/,,4 Proposition 4.5
= 3(@)lp.4lS@)llq.a  Proposition 4.1

< [l]

».8l1Yllq. 8- Proposition 4.5
This completes the proof of the proposition. O

Proposition 5.13. Let (A, B,§, d, ) be a self-dual fusion bialgebra. Then Young’s inequal-
ity holds on the dual.

Proof. It is directly from the definition. O

Proposition 5.14. Let (A, B,F,d, ) be a fusion bialgebra. Then the following are equiva-
lent:
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(1) Nz *yllrs < lzllpsllylles, 1 <p,gr < oo, 1/p+1/¢=1+1/r for any x,y € B;
(2) lle*pyllhs < llzlhsllyls for any z,y € B;

(3) llz 5 ylloo.s < [[xlloc.5llyll1.5 for any z,y € B.

We say the dual has Young’s property if one of the above statements is true.

Proof. It follows the similar proof of Proposition 5.7 and Proposition 5.9 and 5.10. O

Remark 5.15. By Proposition 5.8, we have that for the dual, Young’s property implies
Schur product property.

Proposition 5.16. Let (A, B, T, d, ) be a fusion bialgebra. Then for any x,y € A, we have
R(z#y) < R(R() + R(y)).

In particular, R(xz xy) = R(R(x) * R(y)) if x > 0, y > 0.

Proof. It follows from the Schur product property. O

Remark 5.17. Let (A, B,5,d, 7) be a fusion bialgebra. Suppose that the dual has Schur
product property. Then R(x g y) = R(R(x) *g R(y)) if x >0, y > 0 in B.

Proposition 5.18. Young’s property holds on a fusion bialgebra (A, B,§,d, ) which can
be subfactorized.

Proof. It follows from Theorem 4.13 in [14] for subfactors. O

Theorem 5.19 (Sum set estimate). Let (A, B,§,d, ) be a fusion bialgebra. Then for any
x,y € A, we have

S(R(x) * R(y)) = max{S(x),S(y)}-

Proof. We have that

LAl R®)l1,4

*R(y)|l1,4 Proposition 5.6

< [R(R(z) * R(y))ll2,4lR(x) * R(y)|l2,4  Proposition 4.1
) * R(y) 2R ()11, 4l R(y)

R(z) * R(y))"/*S()S(y)"/>.

|2,4  Proposition 5.9

Hence S(R(z) *R(y)) > S(y). O
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Remark 5.20. We thank Pavel Etingof for noticing us another proof of Theorem 5.19
from an algebraic point of view [5].

Theorem 5.21 (Sum set estimate). Let (A, B,§,d, ) be a fusion bialgebra. Suppose that
the dual has the Schur product property. Then for any x,y € B, we have

S(R(z) #5 R(y)) = max{S(x), S(y)}-
Proof. By Proposition 5.12 and 5.8, the proof is similar to the one of Theorem 5.19. O
6. Fusion subalgebras and bishifts of biprojections

In this section, we define fusion subalgebras, biprojections and bishifts of biprojec-
tions for fusion bialgebras. We prove a correspondence between fusion subalgebras and
biprojections. We prove partially that bishifts of biprojections are the extremizers of the
inequalities proved in the previous sections.

Definition 6.1 (Fusion subalgebra). Let (A, B, T, d, 7) be a fusion bialgebra. A subalgebra
Ap of A is a fusion subalgebra if (Ao, F(Ao),S,d, T) is a fusion bialgebra.

Definition 6.2 (Biprojection). Let (A, B,§,d, ) be a fusion bialgebra. We say x € 2 is a
biprojection if x is projection and §(x) is a multiple of a projection in B.

Proposition 6.3. Let (A, B,§,d, T) be a fusion bialgebra and P a biprojection. Then there
is a fusion subalgebra Ay such that the range of P is Ayg.

Proof. We write F(P) = >_7_, A\jo;. By the fact that P is a projection and F(P) is a
multiple of a projection, we obtain that A\; =0 or A\; = d(x;), and

SR = 3(P). 3P = 5(P) ®

Solving the Equation (8), we obtain that

Mg =2 A= ) NN (9)

Jik=1

Let
Ao = span{F '(z;) : \; # 0}
and

Iy ={1<j<m:X\#0}cC{l,...,m}.
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Then §(P) = ZjEIAO d(z;)z;. By Equations (9), we have that

Z d(z;)d NZ s

VILIST 'Y

and

Yo oNNGE= > NP =Y dy)? >0

J,k€la, JE€EIA, NS

Let pa, = ZjGI.AO d(x;)*. We have

d(xs) = py! Z d(z;)d(zk) NSy, Vs € Lg,. (10)
J,k€la,

By Equation (9) and (10), we have that the involution * is invariant on I 4, and

ta,d Z d(z;)d

|
.
8
AN
=
—
8
%

| A
U =3
—
8 &
< u
=3
N
—~ B
*

ie. Nsk,j = 0 for any k ¢ I4,. Therefore z;x; = ZSEI,AO NZpas for any j,k € L4, ie.

F(Ap) is a x-algebra and (Ao, F(Ao),§,d, 7) is a fusion bialgebra. 0O

Proposition 6.4. Let (A, B,§,d, 7) be a fusion bialgebra and (Ag, §(Ao), T, d, T) is a fusion
subalgebra. Then there is a biprojection P such that the range of P is Ayp.

Proof. Let {y1,...,ym’ } be a R>q-basis of 7! (Ag) such that y; =1, y; € B and yjyx =
>oey M3 yys, where M2y € N and Mj, = dyx,,. Suppose that y; = 333", Cjpay,
Cjx € Z. Then

1= Mjl*’ yjyj Z

Hence y; = @, for some 1 < m; < m and M;k = N;’f]imk for 1 < j,k,s < m'. Let
P =371 d(y;)§ ' (y;)- Then
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F(P)? = pa,3(P), F(P)" =3F(P).
Then P is a biprojection. O

Theorem 6.5. Let (A, B,§,d, 7) be a fusion bialgebra. Then there is a bijection between
the set of fusion subalgebras and the set of biprojections.

Proof. It follows from Proposition 6.3 and 6.4. O

Definition 6.6 (Left and right shifts). Let (A, B,§,d,7) be a fusion bialgebra and B a
biprojection. A projection P € B is a shift of R(F(B)) if 7(P) = 7(R(F(B))) and
P+ R(F(B)) = 7(R(F(B)))P. A projection P € A is a left shift of B if d(B) = d(P)
and P x B = d(B)P; A projection P € A is a right shift of B if d(B) = d(P) and
B+ P =d(B)P.

Lemma 6.7. Let (A, B,T,d,7) be a fusion bialgebra and B a biprojection. Then

(1) R(F(B)) is a shift of R(F(B)), B is a left (right) shift of B;

(2) Jg(P) is a shift of R(F(B)) when P is a shift of R(F(B));

(3) J(P) is a left (right) shift of B when P is a right (left) shift of B;

(4) S(P)S(F(P)) = 1 when P is a left (right) shift of B or S(F~1(P))S(P) = 1 when
P is a shift of R(F(B));

(5) R(3(P)) = B if P is a left (right) shift of R(3(B)) and R(F(P)) = R(F(B)) if
P is a shift of B.

Proof. (1) By Proposition 6.3, we have R(F(B)) = d(B)~'J(B),
BxB=d(B)B, R(§(B))*sR(S(DB))=d(B) '"R(F(B))

and
S(B)S(3(B)) = r(R(F(B)))d(B) = @dw) 1

It indicates that R(F(B)) is a shift of R(F(B)) and B is a left (right) shift of B
(2) and (3) can be followed by the property of J and Jz.
(4) Suppose P is a shift of R(F(B)). Then R(F~1(P)) < B and

1< S(P)S(FH(P)) = 7(P)A(R(F(P))) < S(F(B))d(B) =1,

ie. S(P)S(F1(P)) =1and R(F*(P)) = B.
Suppose P is a right shift of B. Then R(F(P)) < R(F(B)) and

1 < S(P)S(F(P)) < S(B)S(F(B)) = 1.
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ie. S(P)S(F(P)) = 1. Hence R(F(P)) = R(F(B)).
Suppose P is a left shift of B. Then J(P) is a right shift of B. By Lemma 4.7, we
have S(P)S(F(P))=1. O

Definition 6.8 (Bishift of biprojection). Let (A, B,§,d, ) be a fusion bialgebra and B a
biprojection. A nonzero element x is a bishift of the biprojection B if there is y € A, a
shift B, of R(F(B)) and a right shift By, of B such that z = F~1(By) * (y © By).

Lemma 6.9. Let (A, B,F,d,7) be a fusion bialgebra and B a biprojection. Suppose x =
F71(By) * (y o By) is a bishift of a biprojection B. Then R(x) = By, R(F(x)) = Bj, and

S(x)S(F(x)) = 1.
Proof. By Proposition 5.16, we have
R(z) < R(R(F~'(By)) * R(y o Bn)) < R(B* By) = By
Then we obtain that
1< 8(@)8(F(x)) < S(Bu)S(By) = S(B)S(F(B)) = 1.
Hence the inequalities above are equalities, i.e. R(x) = By, R(F(x)) = Eg. O

Definition 6.10. Let (A, B,§,d, ) be a fusion bialgebra. An element x € B is said to
be extremal if |§7!(2)|lco.a = ||z|[1,5- An element z € A is said to be extremal if

I8(@) [0, = ll[l1,4-

Definition 6.11. Let (A, B,§,d, 7) be a fusion bialgebra. An element x € A is a bi-partial
isometry if  and §(z) are multiples of partial isometries. An element x € A is an
extremal bi-partial isometry if  is a bi-partial isometry and z, §(x) are extremal.

Theorem 6.12. Let (A, B,§,d, ) be a fusion bialgebra. Then the following statements are
equivalent:

(1) H(|z*) + H(I§(2)[*) = —4]3 4 log |
(2) S(x)8(F(x)) = 1;

(3) = is an extremal bi-partial isometry.

|2,.A7.

Proof. The arguments are similar to the one of Theorem 6.4 in [14], since only the
Hausdorff-Young inequality is involved. 0O

Proposition 6.13. Let (A, B,F,d,7) be a fusion bialgebra and w an extremal bi-partial
isometry. Suppose that w is a projection. Then W is a Tight shift of a biprojection.
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Proof. Let w=3._,d(x;)F *(z;). Then

jeJ

1/2

lolooa =1 llwloa=F@)les= | D d)* |  lwllha=) dz)

jeJ jed
By the assumption, we have

IF@)ls = lwlooa =1, [§w)lss = lwla=)_d)*

JjeJ
Let P = §(w)F(w)*. Then P is a multiple of a projection in B and

2

1Pllocs = [ D_d(@)* |+ IPlus = lwl3a=)_d@)? [Plas= | d;)

jeJ jeJ jeJ

3/2

(13)

We will show that F~!(P) is a multiple of partial isometry. By Corollary 4.2, we have

to check ||F~1(P)

5.4 =87 (P)lloo.all T (P)ll1,4- In fact,
3

dod@)? | =3P

jeJ

<|IFHP)loo.allFH(P)|l1.4 Equation (13) and Proposition 4.1

<[P

1,8||w* J(w)||1,4 Proposition 4.4

= | Y d(x;)? | |w|? 4 Proposition 5.6
JEJ

3

= Z d(xj)2 ’

JjeJ

ie. |‘371(P)||§,,4 = I3 (P)|lco,allFH(P)[l1,4 and F~1(P) is a multiple of a partial
isometry. By Schur product property, we have that §~1(P) > 0 and F~1(P) is a multiple

of a projection. Hence

I (P)llo,a = Y d(x;)?,

RE(P) =D d=)*| FUP),
JjeJ

AREFH(P) = d(x;)?

jeJ

(14)
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-1
and (ZjeJ d(xj)Q) §(P) is a biprojection
By Equation (14), we have

RE P rw= [ da;)?| F'P)xw= > d;)*] F(PFw))
jeJ jeJ
=lwlZs | D d@)* | w=|Y d;)’|w
jeJ jeJ

= dRF(P)w = [[w]1,aw.
Hence w is a right shift of R(F~1(P)). O

Corollary 6.14. Let (A, B,§,d, ) be a fusion bialgebra. Then a left shift of a biprojection
s a right shift of a biprojection.

Proof. It follows from Lemma 6.7 and Proposition 6.13. O

Question 6.15. Are the minimizers of the Donoho-Stark uncertainty principle bishifts of
biprojections?

Theorem 6.16. Let (A, B, T, d, ) be a fusion bialgebra. Suppose that the dual has Young’s
property. Then the minimizers of the Donoho-Stark uncertainty principle are bishifts of
biprojections.

Proof. The proof is similar to the proof of Proposition 6.13. We leave the details to the
reader. O

Theorem 6.17 (Exact inverse sum set theorem). Let (A, B,§,d,T) be a fusion bialgebra
and P,Q projections in A. Then the following are equivalent:

(1) S(P Q) = S(P);

(2) ﬁp * (Q is a projection;

(3) there is a biprojection B such that Q < Bj, and P = R(x * B) for some x # 0 in A,
where By, is a right shift of B.

Proof. (1) = (2) By Theorem 5.19, we have that S(P * Q) > S(P). By the assumption
and the proof of Theorem 5.19, we have

1P+ Q)

1.4 = [R(P*Q)

2.4[ P+ Q|

2.4, [[P*Q)

2.4 = [|Pll2,4[Q

1A (15)

By Proposition 4.1, we have that
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PxQ=AR(Px*Q)
and
AS(P* Q)2 = | P+ Q|l2,a = S(P)'/2S(Q).

Therefore A = §(Q) and ﬁP * () is a projection.
(2) = (1) By the assumption and Proposition 5.6, we have

co s L pio) = L apso) = SBISQ)
s Q)‘S(S@)P Q) 5@ 9= "5

(2) = (3) Let P, = R(P * Q). Then by Proposition 2.21, we have

= S(P).

d((Pr + J(Q) o P) = d((J(P) + P) 0 Q) = d((J(Q) * J(P)) o J(P}))
(P*Q)oP)=d(P+Q)
(P)d(Q) = d(Py  J(Q)).

(
=d((

d
d

Hence R(P; * J(Q)) < P. But by Theorem 5.19, we have
d(R(PL+ J(Q))) = S(PL+J(Q)) = S(P1) = S(P).
Then

Sy h Q) =R IQ) = P

Expanding the expression, we have

Lt
S(Q)?

Note that [|§(Q)]lec,8 < [|Q|l1,4 = S(Q). Let

PxQxJ(Q)=P.

3(B) = nh_{TolO W(S(Q)S(Q) )" (16)

||3(Q)H§Q,B.

Then F(B) is the spectral projection of S(Q)~2F(Q)F(Q)* corresponding to 5Q)°

Moreover B >0, Px B=P, P=R(P=x B), B+# 0 and

ISB)lloc,s =1 = Bll,a,  1Blooa < I8B)l1s = 8B)3s=Bl54  (7)

Hence

1Blloc.allBllr.a < IBI3 4 < [Blloc.allBll1.a-
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By Corollary 4.2, we have that B is a multiple of a partial isometry and then B is a
multiple of a projection. Therefore |\B||;?4B is a biprojection.
Let Q1 = R(B * Q). Then

R(Qu* J(Q1)) = R(R(B * Q)J(R(B x Q)))
= R(R(B* QR(J(Q) * B))
=R(B*Q=x*J(Q)* B) Proposition 5.16
= R(B).

Hence S(Q1 * J(Q1)) = S(B). On the other hand, by Theorem 5.19, we have

S(Q1+J(Q1)) = S(Q1) = S(B*Q) = S(B).

Now we obtain that S(B * Q) = S(B). By “(1) = (2)”, we have Q1 = gy R(B) * Q.
Note that

d(Q1) = 8(Q1) = S(B) = d(R(B))
and
R(B) * Q1 = Bl 3B * Q1 = d(R(B))Q1.
We see (1 is a right shift of R(B).
Now we have to check @ < Q;. Note that §7!(15) < ||Bl/oc.cB. Then by Proposi-

tion 5.16, we have Q < Q1.
(3) = (1) By the assumption and Proposition 5.16, we have

P«B=R(x+xBxB)=P.
By Proposition 6.13, we have
Q+ J(Q) < By J(By) = S(B)B.
Then by Proposition 5.16 and Theorem 5.19, we have

S(P)

IN

S(P+Q)=S(R(PxQ))

SSR(P+Q)xJ(Q)) =S(P+Q=J(Q))
< S(PxB) = 8(P).

Hence S(P* Q) =S(P). O
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Remark 6.18. Let (A, B,§,d,7) be a fusion bialgebra. If the Schur product property
holds on the dual, the results in Theorem 6.17 are true for projections in B.

Following the proofs in [13], one can obtain the following theorems:

Theorem 6.19 (Extremizers of Young’s inequality). Let (A, B,§,d, ) be a fusion bialge-
bra. Suppose the dual has Young’s property. Then the following are equivalent:

(1) 1z *yllra = |zlleallylls.a for some 1l <rt,s < oo suchthat 1/r+1=1/t+1/s;
(2) 1z *yllra = |zlle.allylls.a for any 1 <rt,s < oo such that 1/r+1=1/t+1/s;
(3) =, y are bishifts of biprojection such that R(F(z)) = R(F(y)).

Theorem 6.20 (Exztremizers of the Hausdorff-Young inequality). Let (A, B,§,d, ) be a
fusion bialgebra. Suppose the dual has Young’s property, then the following are equivalent:

(1) llzll . g = [[z[lt,a for some 1 <t <2;
(2) llzll «; 5 = ll@lle.a for any 1 <t <2;
(3) x is a bishift of a biprojection.

7. Quantum Schur product theorem on unitary fusion categories

In this section, we reformulate the quantum Schur product theorem (Theorem 4.1 in
[21]) in categorical language. Planar algebras can be regarded as a topological axiomati-
zation of pivotal categories (or 2-category in general). Subfactor planar algebras satisfy
particular conditions designed for subfactor theory, see Page 9-13 of [16] for Jones’ orig-
inal motivation. A subfactor planar algebra is equivalent to a rigid C*-tensor category
with a Frobenius *-algebra. The correspondence between subfactor planar algebras and
unitary fusion categories was discussed by Miiger, particularly for Frobenius algebras in
[27] and for the quantum double in [28].

Let 2 be a unitary fusion category, (or a rigid C*-tensor category in general). Let
(v,m,n) be a Frobenius *-algebra of 2, v is an object of 2, m € homg(y ® v,7),
7 € homg(1,7), where 1 is the unit object of 2, such that (v, m,n) is a monoid object
and (y, m*,n*) is a comonoid object. Let Uy = n*m be the evaluation map and Ny, = m*n
be the co-evaluation map. Then U} = N,.

We construct a quintuple (A, %, J,d, 7) from the Frobenius algebra: Take the C* alge-
bra

A =homgy(v,7),

with the ordinary multiplication and adjoint operation. For z,y € A, their convolution
is

rxy=m(zy)m".
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The modular conjugation J is the restriction of the dual map of Z on A. The Haar
measure is

d(z) = Uy(z ® 15)N,,

where 1. is the identity map on the object -. The Dirac measure is

() = n*on.

We reformulate the quantum Schur product theorem on subfactor planar algebras and
its proof as follows:

Theorem 7.1 (Theorem 4.1 in [21]). Given a Frobenius algebra (y,m,n) of a rigid C*-
tensor category, for any x,y € A :=homgy(y,7), z,y > 0, we have that

zxy :=m(x®y)m* > 0.

Proof. Let \/z and ,/y be the positive square roots of the positive operators x and y
respectively. Then

rxy = (Voo y)m) (Ve ®y)m’) = 0.

Note that d is a faithful state, so d(x), d(y) > 0. Moreover, d(x *y) is a positive multiple
of d(z)d(y), so d(x xy) >0and x*y >0. O

By the associativity of m and J(m) = m, the vector space homg/(7,~) forms another
C*-algebra B, with a multiplication * and involution J. The identity map induces a
unitary transformation § : A — B, due to the Plancherel’s formula,

T(@* J(2)) = Uy(z @ J(2))Ny = Uy (272 ® 15)Ny = d(z"x).

Proposition 7.2. When A is commutative, the quintuple (A, B,§,d,T) is a canonical fu-
ston bialgebra.

Proof. The Schur product property follows from Theorem 7.1. The modulo conjugation
property holds, as the duality map is an anti-linear *-isomorphism. The Jones projection
property holds, as F(11) is the identity of B. Moreover, 1; is a minimal central projection
and d(1;) =1, so (A, B,§,d,7) is a canonical fusion bialgebra. O

Following the well-known correspondence between subfactor planar algebras and a
rigid C* tensor category with a Frobenius *-algebra, we reformulate the subfactorization
of a fusion bialgebra as follows:
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Definition 7.3. A fusion bialgebra is subfactorizable if and only if it is the quintuple
(A, B,F,d, ) arisen from a Frobenius *-algebra in a rigid C* tensor category constructed
above.

There is another way to construct the dual B using the dual of 2 w.r.t. the Frobenius
algebra -, which is compatible with the Fourier duality of subfactor planar algebras.
The dual & of 2 w.r.t. the Frobenius algebra (v, m,n) is defined as the v — v bimodule
category over 2, with the unit object . The dual Frobenius *-algebra of (v, m,n) is
A, m,0),y =78y, m=1,0U,®1,, 7 =m*. Then the quintuple from the Frobenius
algebra 4 of 2 is dual to the quintuple from the Frobenius algebra v of &. In particular,
the C*-algebra B can be implemented by hom (¥,%) with ordinary multiplication and
adjoint operation.

Let € be a unitary fusion category. Take 2 = € X%, then 2 has a canonical Frobenius

m

algebra (v, m,n). Here v = @ X;®X;, where {X1, Xo,..., X,,} is the set of irreducible
j=1

(or simple) objects of ¢, X7 is the unit and X; = Xj;

m =FPdim(¥)"* @ (FPdim(X;)FPdim(X;)FPdim(X,))"/? > aXa,
Jrk,s=1 a€EONB(X;,Xr;Xs)

where FPdim(X;) is the Frobenius-Perron dimension of Xj,
FPdim(¢) = Y FPdim(X;)?

is the Frobenius-Perron dimension of ¢’ and ONB(X, Xj; X;) is an orthonormal basis
of home (X; ® Xj, Xy); and FPdim(‘ﬁ)l/‘ln € homg(1,7) is the canonical inclusion (in
particular, 4 is the image of the unit of ¥ under the action of the adjoint functor of
the forgetful functor from Z(%) to €). Its dual & is isomorphic to the Drinfeld center
Z(%) of € as a fusion category. This construction is well-known as the quantum double
construction. Consequently,

Proposition 7.4. Let R be the Grothendieck ring of a unitary fusion category €. Then
the canonical fusion bialgebra associated to the fusion ring R is isomorphic to the one
(A, B,3,d, ) associated to the canonical Frobenius algebra v of € @ € in the quantum
double construction. So it is subfactorizable.

Proof. Following the notations above, we take z; := FPdim(X) '1x, lx;- Then

d(z;) = PF(X;)

wjoxp = 0pd(x;) " 7
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()% =25 ;

T(x5) = 61,5 ;

J(xj) = 2+ ;
Tj* Xy = Z dim|Z) ,
kelrr

where ¢ and # are the ordinary multiplication and adjoint operator on the commuta-
tive C*-algebra A = home(7y,~y) respectively, d; 5 is the Kronecker delta and Ny =
home (X; ® Xi, X). Therefore, the fusion bialgebra associated to the Grothendieck ring
is isomorphic to the fusion bialgebra arisen from the canonical Frobenius algebra (v, m, n)
of € ®€ in the quantum double construction. So it is subfactorizable. O

Remark 7.5. To encode the fusion rule of 4" as the convolution on A exactly, our normal-
ization of the Frobenius algebra (v, m, n) is slightly different from the usual one identical
to planar tangles in planar algebras, see e.g. Equation (18), Propositions 4.1 and 4.2
in [22].

Proposition 7.6. Let (A, B,§,d, ) be the canonical fusion bialgebra associated with the
Grothendieck ring R of the unitary fusion category €. Then the Schur product property
holds on B, the dual of the fusion ring R.

Proof. Applying the quantum Schur product theorem, Theorem 7.1, to the Frobenius
algebra (4,7,1) of the Drinfeld center Z(%), we obtain the Schur product property
on B. O

We obtain an equivalent statement on A as follows (see another equivalent statement
in Proposition 8.3):

Proposition 7.7. Let (A, B,§,d, ) (or (A, *,J,d,T) as in Remark 2.1/) be the canonical
fusion bialgebra associated with the Grothendieck ring R of the unitary fusion category € .
Then

d((J(x)xz)o (J(y)*xy)o (J(2)*2)) >0, Va,y,z € A.

Proof. It follows from Propositions 3.6 and 7.6.
We give a second proof without passing through the Drinfeld center Z(%).

d((J(x) x ) o (J(y) xy) o (J(2) * 2))
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Y

53

NN
(5: 2
8

The last inequality follows from reflection positivity of the horizontal reflection, namely
the dual functor on 4. O

Remark 7.8. Let us mention [11] which contains a reformulation of our first proof together
with a discussion on some integrality properties of the numbers appearing in the Schur
product criterion.

In particular, if Grothendieck ring R is commutative, then B is commutative. There
is a one-to-one correspondence between minimal projections P; in B and characters x;
of R, j=1,2,....m

pP; = Zd xTE)” Xg (Tg)Tp.
k=1
Take

Pjxp Py = ZN;kPS,
s=1

then N ik =0, due to the Schur product property on B.

The dual of the fusion ring R is independent of its categorification. The Schur product
property may not hold on the dual of a fusion ring in general. Therefore, the Schur
product property is an analytic obstruction of unitary categorification of fusion rings.
We discuss its applications in §8. Similarly, Young’s inequality and sumset estimates are
also analytic obstructions of unitary categorification of fusion rings.

8. Applications and conclusions

In this section, we show that the Schur product property on the dual is an analytic
obstruction for the unitary categorification of fusion rings. Furthermore, this obstruction
is very efficient to rule out the fusion rings of high ranks (we apply it on simple integral
fusion rings). The inequalities for the fusion coefficients (Proposition 8.1) in the next
subsection are essential for finding new fusion rings more efficiently.
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8.1. Upper bounds on the fusion coefficients

In this subsection, we obtain inequalities for fusion rings from the inequalities proved
in previous sections.

Proposition 8.1. Let 2 be a fusion ring. Then

2
(1) S0y (N2 < minfd(a;)?, d(e)?)s
(2) Nfy, < d(ze)d(z;) "7 d(zx) T for anyt > 1;
(3) N, < min{d(z;), d(x), d(x0)};
(4) 20L N;, NGy S milysgie g gs.gay d(z5)d(20).

Proof. Let (A,B,J,d,7) be the fusion bialgebra arising from the fusion ring 2. By
Theorem 5.11, we have for any 1/r+1=1/p+ 1/q,

=37 () *  (@i)llra < 187 (@) lp.allF (zx)llg.a-

r,A

Zkas_l(W)
=1

If » < 0o, then we obtain that

m 1/r
(Z d(ze)*>" (N]{k)’> < d(z;) 7" d(zp) " (18)
=1

If » = oo, then we have

N, A
2k < gz =
I, Tl S d(z;) 7 d(zg) @ . (19)

2
In Inequality (18), let r =2, p =1, ¢ = 2, we have -, (ka) < d(xj)? let r = 2,

2
p=2,q=1, we have Zznzl (Nf)k) < d(zy)?. Hence

3 (V)? < min{d(z))?, d(zr)?)

m
{=1

This proves (1).
In Inequality (19), let p =t and g = ﬁ for any ¢ > 1. Then

t—2

Ny < d(wo)d(xy) T d(ay) 7

This shows (2) is true.
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Take p = ¢ = 2 in Inequality (19), we have N]{k < d(xy). By Equation (1), we have
Nf,k < min{d(‘rj)’ d(zr), d(.’l?g)}

This indicates that (4) is true.
By Theorem 5.11 again, we have

=57 (@) * § (@) * 7 (o) lloo.a

00, A

<IF @) Al @r) 2.4l ()

Then

m s t
Zs:l Nj,st,l

We have 337", N2 NI, < d(x;)d(z;). By Equation (1), we have
m

Z FelNey < d(ze)d(z;).

Note that j, k, £,t can be interchanged, we see (5) is true. O

Proposition 8.2. Let A be a fusion ring. Suppose that the fusion bialgebra arising from A is
self-dual. Let S be the S-matriz associated to A. Then we have the following inequalities:

(1) S d(w)) 1S 7T < d(ay) T d(A)FE, 1<t <2
(2) d(x;)'=2d(A)' 2 < S0 [Sjld(e)? T 1<t < 2;
(3) |S;x] < d(x;)d(wy)d(2) /2,

where d(21) is the Frobenius-Perron dimension of .

Proof. It follows from the Hausdorff-Young inequalities. 0O
8.2. Schur product property reformulated

In this subsection we reformulate Schur product property (on the dual) using the
irreducible complex representation of the fusion algebra, which in the commutative case,
becomes a purely combinatorial property of the character table.

Note that Proposition 3.3 states that if the fusion ring 2 is the Grothendieck ring of
unitary fusion category, then Schur product property holds on the dual of 2, so it can
be seen as a criterion for unitary categorification.



Z. Liu et al. / Advances in Mathematics 390 (2021) 107905 47

Proposition 8.3 (Non-commutative Schur product criterion). The Schur product property
holds on the dual of a fusion ring/algebra A with basis {x1 = 1,...,xz,.} if and only if for
all triple of irreducible unital *-representations (ms, Vs)s=1,2,3 of the fusion ring/algebra
A over C, and for all vs € Vi, we have

3
e H vims(xi)vs) > 0. (20)

Proof. Let 2 be a fusion ring/algebra with basis {1 = 1,..., 2.} and (A, B,§,d, ) the
fusion bialgebra arising from 2(. By Proposition 3.6 and the fact that d is multiplicative,
the Schur product property holds on B if and only if

3
d(HXS *AX:> >0
s=1

for all X; € A. Now, X, = 21 Qs 5T, SO it is equivalent to

3

S g I (S omiment ) 20

for all as; € C. Now let M; be the matrix (N,i’j*) which is also (Nf]) by Frobenius
reciprocity, so that M; is the fusion matrix of z;. Let us be the vector (as;). Then

_ i %
E Qs s+ Ny, o = ugMius.
J.k

Then the criterion is equivalent to have

3
Z @ [T Miu,) > 0. (21)

for all us, € C". Recall that the map 7 : x; — M, is a unital *-representation of 2. So
Equation (20) implies Equation (21). On the other hand, 7 is faithful, so Equation (21)
implies Equation (20). O

Assume that the fusion ring/algebra 2( is commutative, then for all i, z;x;» = @2,
so that the fusion matrices M; are normal (so diagonalizable) and commuting, so
they are simultaneously diagonalizable, i.e. there is an invertible matrix P such that
P7IM;P = diag(X\i1,..., i), so that the maps m; + M; — X; ; completely characterize
the irreducible complex representations m; of 2. We can assume that m; = d, so that
Aig = d(z;) = || M;]].
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Definition 8.4. The matrix A(2() := (\; ;) is called the character table of the commutative
fusion ring 2.

Note that for a finite group G, if 2g is the Grothendieck ring of the unitary fusion
category Rep(G), then A(2(g) is the usual character table of G.

Corollary 8.5 (Commutative Schur product criterion). The Schur product property holds
on the dual of a commutative fusion ring/algebra A with character table A = (\; ;) if
and only if for all triple (j1,j2,Js)

3 Aigi MigaAigs S
- Ai1

Proof. Immediate from Proposition 8.3, because here the irreducible representations are

one-dimensional, so that there we have vims(M;)vs = |lvs||?ms(M;). O

Remark 8.6. The formula in [38, Theorem 7.2.1] looks similar to the one in Corollary 8.5
(applied to the group case), because the underlying planar diagrams are the same. How-
ever, the results are different as the underlying planar algebras are so: the subfactor
planar algebra of a finite group G for the first formula, and for the second one, the dual
of the quantum double of Vec(G), namely the Drinfeld center of Vec(G).

In order to test the efficiency of Schur product criterion, we wrote a code computing
the character table of a commutative fusion ring/algebra and checking whether Schur
product property holds (on the dual) using Corollary 8.5. The next two subsections
present the first results.

8.8. Fusion algebras of small rank

Ostrik [32] already classified the pivotal fusion category of rank 3. In this section we
would like to show how efficient is Schur product criterion in this case. We will next
consider two families of rank 4 fusion rings/algebras found by David Penneys and his
collaborators'[35], and finally look to a family of rank 5 fusion rings/algebras.

Recall [32, Proposition 3.1] that a fusion ring 2 of rank 3 and basis {x1 = 1, x2, 23}
satisfies either x5 = 3 and then is CCjs, or 7 = x; and then is of the following form
(extended to fusion algebras):

ToTo = X1 + pr2 + Mxs3,

o3y = MTo + NT3,
X3x3 = 1 + Nx2 + qT3,

L At the 2014 AMS MRC on Mathematics of Quantum Phases of Matter and Quantum Information.
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with m,n,p,q € R>o and m? + n? = 1 + mq + np (given by associativity). Note that
x3x9 = xox3 by Frobenius reciprocity, so that the fusion algebra is commutative. We
can assume (up to equivalence) that m < n, and then n > 0 (because if n = 0 then
m = 0 and the above associativity relation becomes 0 = 1, contradiction), so that p =
(m?+n?—1—mq)/n; and it is a fusion ring if and only if in addition m, n,p, q € Z>o and
n divides (m? — 1 —mq). Recall [32, Section 4.5] that it admits a pivotal categorification
if and only if (m,n,q) = (0,1,0),(0,1,1),(0,1,2),(1,1,1), and there is a unitary model
for all of them.
Let M; be the fusion matrix of z;, written below (with p = (m? 4+ n? — 1 —mr)/n):

100 0 1 0 0 0 1
01 0)J,{1 p m], [0 m n
0 0 1 0 m n 1 n ¢

Let x; be the characteristic polynomial of M;:

Xa(@) =a2° — (p+n)a® + (pn — 1 —m*)z +n
x3(z) =23 — (g +m)z® + (gm — 1 —n?)xz +m

The matrix M; is self-adjoint thus its eigenvalues (and so the roots of x;) are real. By
using [12, Theorem A.4], we can deduce the following character table:

1 1 1
Bt 2racs 2 —ro(co —V3s2) 2 —ra(ca +V/3s2)
%4 2rgcs % —rs(ca+V3ss) % —ra(cs —V/3s3)

. o p . ) B q:i/2 N - 2

with ¢; = cos(%), s; = sin(%), ¢; = arccos (W), i = 5, 0= - o,
_ 20} biai _ g — 1 2 by = do = _ 1 2 po =

4 = 57 — —3 — G Q2 =pn—1—m", 2 =p+n,dp=mn,a3=qgmn—1-n% b3 =qg+m

and d3 = m.

We observe that about 30% of over 10000 samples can be ruled out by Schur’s cri-
terion.” Note that Ostrik used the inequality in [32, Theorem 2.21] to rule out some
fusion rings. See Fig. 2 to visualize the efficienty of Schur product criterion and Ostrik’s
criterion for this family. Note that Ostrik’s criterion works for the fusion rings only (not
algebras®) and is no more efficient for higher ranks, whereas Schur product criterion does
(see Subsection 8.4).

2 1t is nontrivial to characterize the set of all the triples (m, n, q) for which Schur product property (on the
dual) does not hold. Using the above character table together with Theorem 8.5 and computer assistance,
forg,n,m € Z,0 < ¢ <30,1 <n <30and 0 < m < n, there are exactly 14509 fusion bialgebras (resp. 542
fusion rings), and among them, 4757 (resp. 198) ones can be ruled out from subfactorization (resp. unitary
categorification) by Schur product criterion.

3 Consider the (61, d2)-Bisch-Jones subfactor, its 2-box space provides a fusion algebra in this family with

(m,n,q) = (0, (65 — 1)§’52(5f —2)(6% - 1)_§)’
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Fig. 2. Rank 3: for ¢ = 5, the set of (m,n) such that Schur product property on the dual (resp. Ostrik’s
inequality) does not hold is (numerically) given by the right (resp. left) figure (where, for clarity, neither
m<mnnorm?+n?—1—mq>0is assumed). About the right one, there are two areas, one (at the bottom)
is finite, the other infinite; moreover, the projection of these two areas on the m-axis overlap around m = q.
Each area corresponds to the application of Theorem 8.5 on one column. The form appears for all the
samples of g we tried, so it is not hard to believe that it is the generic form, and in particular that Schur
product property (on the dual) does not hold if ¢ +1 < m < n and n > 2¢ + 2, with m,n,q € R>¢ (so
that the corresponding fusion bialgebras admit no subfactorization); it should be provable using the given
character table (we did not make the computation).

Fig. 3. Rank 4, family of fusion algebras K3(b, d):
1 0 0 O 0 1 0 0 0 0 1 0 0 0 0 1
01 0 O 1 d-=b b O 0 b d 1 00 1 0
00 1 0’0 b d 1]°{1 d d+b 1]°10 1 1 0
0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1

Schur product property on the dual (resp. Ostrik’s inequality) does not hold for (b,d) in the right (resp.
left) figure. The area b > d is not considered because d — b > 0.

Then, let us mention two families (denoted K3 and Ky) of fusion algebras of rank 4
with self-adjoint objects provided by David Penneys and his collaborators [35]. Visualize
the obstructions on Figs. 3 and 4.

which is often in the colored area of the figure for Ostrik’s criterion, for example if (61,d82) = (v/2,10/3)
then (m,n,q) = (0,4/91/3,5). Let us also mention here that for a fusion ring, subfactorizable is strictly
weaker than unitarily categorifiable, because if (62,62) = (6 + 2v/6,2) then (m,n,q) = (0,1,4), which is
ruled out from pivotal categorification by Ostrik’s paper [32].
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5 10 15 20 25 30 35 40

Fig. 4. Rank 4, family K4(a,b,d, g) with bd > 0 and a = (b - /d:
1 0 0 O 01 0 0 0 0 1 0 0 0 0 1
01 00 1 a b 1 0 b d O 01 00
001 0fJ’{0 b d O0f°{1 d g 170 0 1 0
0 0 01 01 0 O 0 01 0 10 0 O

Same convention as above (to simplify, a is not assumed non-negative) with g = 10. It should be the generic
shape for fixed g. Ostrik’s inequality always holds, so the left figure is empty. About the figure for Schur
product criterion on the right, the structure is similar to Fig. 2, one finite area on the bottom, one infinite
area, and the projection of both on the b-axis should overlap around b = g.

Finally, let us consider the family of fusion rings of rank 5 with exactly three self-
adjoint simple objects. By Frobenius reciprocity, the fusion rules must be as follows (with
16 parameters):

1 0 0 0 O 01 0 0 O 0 0 1 0 O 0O 0 0 1 0 0 0 0 0 1
01 0 0 O 0 a k f j 1 a a d e 0O b f g i 0 ¢ 7 h I
00 1 0 O R 1 a a b ¢ R 0 k a f g s 0O f d g h R 0 j e i I
00 0 1 0 0 d f g h 0O f b g 1 1 g g m o 0 h 24 o p
0 0 0 0 1 0 e j @ 1 0 j ¢ h 1 0 « h o p 1 1 1l p n

such that nfj € Z>o, and Y nf nl, = Y nfnt  (associativity). We found (up to
equivalence) exactly 47 ones at multiplicity < 4 (by brute-force computation), 4 of which
are simple. The Schur product property on the dual (resp. Ostrik’s inequality) does not
hold on exactly 6 (resp. 1) among the 47 ones, and on exactly 2 (resp. 1) among the 4
simple ones. Schur product criterion may be more efficient at higher multiplicity. Here
are the two simple ones on which the Schur product property on the dual (and Ostrik’s
inequality) holds (note that they are also of Frobenius type).

1 0 0 0 O 01 0 0 O 0O 0 1 0 O 0 0 0 1 0 0O 0 0 0 1
01 0 0 O 0 0 1 1 0 1 0 0 0 1 00 1 0 1 01 0 1 1
6o61ro0o0¢,fr00¢011},f01010},f0o 100 1,001 11
0O 0 0 1 0 00 1 0 1 01 0 0 1 1 0 0 1 1 o1 1 1 1
0O 0 0 0 1 01 0 1 1 0O 0 1 1 1 01 1 1 1 11 1 1 2

Note that (d(b1),d(ba),d(bs),d(bs),d(bs)) = (1, ¢, B,7y) with o = 1 + 2cos(27/7) =~
2.2469, f =1 —2cos(67/7) ~2.8019, v = a + 8 — 1 ~ 4.0489, so that FPdim ~ 36.650.
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10000 0100 0 00100 00010 000 01
01000 002 0 1 100 20 020 1 2 001 2 2
oo1oof|],|]too0oz2o0],]Jo2o001],]0oo0oz212|,]0102:2
00010 0201 2 002 1 2 111 43 022 3 4
00001 00 1 2 2 010 2 2 02 2 3 4 12 2 4 4

Note that (d(by),d(bg),d(bs),d(bs),d(bs)) = (1,a,a,3,7) with a = 3 + /6 ~ 5.4494,
B=14+2V6~88989, v=>5+ 26 ~ 9.8989, so that FPdim = 120 + 48+/6 ~ 237.57.

8.4. Simple integral fusion rings (high rank)
A fusion category (resp. ring) is called simple if it has no nontrivial proper fusion
subcategories (resp. subrings). Here is a result of Etingof, Nikshych and Ostrik [10,

Proposition 9.11]:

Proposition 8.7. A weakly group-theoretical simple fusion category has the Grothendieck
ring of Rep(G), with G a finite simple group.

A fusion category (resp. ring) is called integral if the Frobenius-Perron dimension of
every (simple) object is an integer. Here is the strong version of [10, Question 2]:

Question 8.8. Is there an integral fusion category which is not weakly group-theoretical?
Then it seems relevant to look for integral simple fusion rings which are not
Grothendieck rings of any Rep(G) with G finite (simple) group, because according to

Proposition 8.7, the categorification of one of them would provide a positive answer to
Question 8.8.

Definition 8.9. Let 20 be a fusion ring of basis {x; = 1,...,2,} with d(z;) <

d(zy) < --- < d(z,). Let us call 7 its rank, >, d(z;)? its Frobenius-Perron dimen-
sion (or FPdim(2)), and [d(x1),d(z2),...,d(x,)] its type, which will also be written by
[[n1, ma], [na, mal, ..., [ns, ms]] where m; is the number of z; with d(z;) =n;, >, m; =r

and 1 =ny; <ng < --- < ng.

Recall that the Grothendieck ring of Rep(G) is simple if and only if G is simple
because every fusion subring is given by Rep(G/N) with N a normal subgroup. Now a
non-abelian simple group is perfect (i.e. [G, G| generates G), and there is also a way to
characterize the perfect groups at the fusion ring level:

Proposition 8.10. A finite group G is perfect if and only if the type of the Grothendieck
ring of Rep(G) satisfies m; = 1 (i.e. every one-dimensional representation must be
trivial).
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Proof. Let G be a perfect group and let m be a one-dimensional representation of G. By
assumption, every g € G is a product of commutators, but 7(G) is abelian (because 7 is
one-dimensional), so that 7(g) = 7(1). It follows that 7 is trivial.

Now assume that every one-dimensional representation is trivial, and consider the
quotient map p : G — Z with Z = G/{[G,G]) which is abelian. Then p induces a
representation m of G with 7(G) abelian, so that 7 is a direct sum of one-dimensional
representations. It follows by assumption that Z = 7(G) is trivial, which means that G
is perfect. O

This proposition leads us to call perfect a fusion ring with m; = 1. Note that a
non-perfect simple fusion ring is given by a prime order cyclic group. The fusion ring
2 is called of Frobenius type if %“:(Q[) is an algebraic integer for all 4, and if 2 is
integral, this means that d(z;) divides FPdim(2). Kaplansky’s 6th conjecture [19] states
that for every finite dimensional semisimple Hopf algebra H over C, the integral fusion
category Rep(H) is of Frobenius type. If in addition H has a #-structure (i.e. is a Kac
algebra), then Rep(H) is unitary. For a first step in the proof of this conjecture, see
[18, Theorem 2]|. Note that there exist simple integral fusion rings which are not of
Frobenius type (see Subsection A.2). The integral simple (and perfect) fusion rings of
Frobenius type are classified in the following cases (with FPdim # p%q®, pgr, by [10]),
with computer assistance, significantly boosted by Proposition 8.1.%

rank <5 6 7 8 9 10 all
FPdim < 1000000 150000 15000 4080 504 240 132

We found exactly 34 ones, and each of them is commutative; which leads to:

Question 8.11. Is there a non-commutative simple integral fusion ring (of Frobenius
type)?

Let us first summarize these results of the computer search: four of them are
Grothendieck rings of Rep(G) with G a non-abelian finite simple group, 28 (among the
remaining 30) are ruled out (from unitary categorification) by Schur product property
(on the dual), and none can be ruled out by already known obstructions (as Ostrik’s in-
equality); the existence of a unitary categorification is unknown for each of the remaining
two. Here are the results in details, where # counts the number of fusion rings, whereas
#Schur counts those checking the commutative Schur product criterion (all the fusion
matrices are available in Appendix):

4 In preparing this paper, we first had a classification up to some smaller dimensions, given by a previous
version of the computer program. Then the use of inequalities in Proposition 8.1 boosted the computation,
allowing us to extend the bounds significantly.
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# rank FPdim type #Schur  group

1 5 60 [[1,1],[3,2],[4,1],[5,1]] 1 PSL(2, 5)
16 168 [[1,1],[3,2],[6,1],[7,1],[8,1]] 1 PSL(2,7)
2 7 210 [[1,1],[5,3],[6,1],[7,2]] 1

2 7 360 [[1,1],[5,2],[8,2],[9,1],[10,1]] 1 PSL(2,9)
4 7 7980 [[1,1],[19,1],[20,1],[21,1],[42,2],[57,1]] O

15 8 660 [[1,1],[5,2],[10,2],[11,1],[12,2]] 2 PSL(2,11)
5 8 990 [[1,1],[9,1],[10,1],[11,4],[18,1]] 0

2 8 1260 ([1,1],[6,1],[7,2],[10,1],[15,1],[20,2]] 0

2 8 1320 [[1,1],[6,2],[10,1],[11,1],[15,2],[24,1]] O

Question 8.12. Are there only finitely many simple integral fusion rings of a given rank
(assuming Frobenius type and perfect)? Is the above list the full classification at rank
< 67 If the Schur product property (on the dual) is assumed to hold, is it full at rank
<87

Let us write here the fusion matrices and character tables for the first fusion ring
ruled out written above, and for the two which were not.

First the simple integral fusion ring of rank 7, FPdim 210, type [[1, 1], [5, 3], [6, 1], 7, 2]]
and fusion matrices:

1000000 0100000 0010000 0001000 0000100 0000010 0000001
0100000 1101011 0010111 0100111 0011111 0111111 0111111
0010000 0010111 1110011 0001111 0101111 0111111 0111111
0001000, 0100111, 0001111, 1011011, 0110111, 0111111, 0111111
0000100 0011111’ 0101111 0110111” 11111117 0111121” 0111112
0000010 0111111 0111111 0111111 0111121 1111203 0111131
0000001 0111111 0111111 0111111 0111112 0111131 1111212
Its character table is the following:

(1 1 1 1 1 1 1]

6 5 2 4 _ 3

5 —1 _<§_C72 _CZ_CE _<7_<E 0 0

5ol —G-@ GG G- 00

51 (-G ~G-¢ —@-¢ 0 0

6 0 -1 -1 -1 1 1

7 1 0 0 0 0 -3

7 1 0 0 0 -1 2

It is possible to see why it was ruled out by Schur product criterion by observing this
character table (in particular its last column) together with Corollary 8.5:

1303 03 0% 13 (=33 22 65
b+ 4 +2 =

it tststet 7 t7 <t

Remark 8.13. Here we applied Corollary 8.5 by using three times the same block (i.e.
irreducible representation, or column here), but it is not always possible. For example, the
simple fusion ring of type [[1, 1], [5, 2], [8, 2], [9, 1], [10, 1]] (the one not given by PSL(2,9))
required two blocks to be ruled out.

Next, the fusion matrices of the simple integral fusion ring of same type as above, for
which Schur product property (on the dual) holds:
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1000000 0100000 0010000 0001000 0OOOO0O100 0000010 00O00O0OOO1
0ro00000 1101011 0010111 0100111 0011111 0111111 0111111
ooi1ro0000 0010111 1110011 0001111 0101111 0111111 0111111
ooo01000, 0100111, 0001111, 1011011, 0110111, 0111111, 0111111
ooo0100" 0011111 0101111° 0110111" 1111111° 0111121 0111112
oooo0010 0111111 0111111 0111111 0111121 1111212 0111122
oooo001 0111111 0111111 0111111 0111112 0111122 1111221

Let us call 219 the corresponding fusion ring (mentioned after [33, Problem 4.12]). Tts
character table is:

11 1 1 1 1 1
5 -1 —G—-¢ -¢-¢ —¢-¢ 0 0
5 -1 —¢@-¢ -G-8 -G-¢ 0 0
5 -1 @G- -G-¢ -¢-¢ o0 0
6 0 -1 -1 -1 1 1
701 0 0 0 G+ G+
|71 0 0 0 G+ G+

Finally, the fusion matrices of the only simple integral fusion ring (not given by a
group) of rank 8, FPdim 660, type [[1, 1], [5, 2], [10, 2], [11, 1], [12, 2]] on which Schur prod-
uct property (on the dual) holds:

10000000 01000000 00100000 00010000 00001000 00000100 00000010 00000001
01000000 00111000 10000011 00101111 00110111 00011111 01011111 01011111
00100000 10000011 01011000 01001111 01010111 00011111 00111111 00111111
00010000 00101111 01001111 10031122 01111222 01112222 01122222 01122222
000010009 00110111 01010111 011112229 10013122 01121222 01122222 01122222
00000100 00011111 00011111 01112222 01121222 11122222 01122232 01122223
00000010 01011111 00111111 01122222 01122222 01122232 11122323 01122233
00000001 01011111 00111111 01122222 01122222 01122223 01122233 11122332
Let us call Fg60 the corresponding fusion ring. Its character table is:
-1 1 1 1 1 1 1 1 -
3 4 5 9 2 6 7 8 10
0 —1 1 —1 0 C11 +<11+<11+<11+<11 <11+<11+C11+411+<11
2 6 7 8 10 3 4 5 9
5 0 -1 1 -1 0 <11+Cll+<11+<11 +<11 <11+<11+C11+C11 +<11
10 0 1+v3 0 1-V3 0 -1 -1
10 0 1-v3 0 1++V3 0 -1 -1
11 1 -1 -1 -1 1 0 0
12 a 0 0 0 243 1 1
<5+C5 <5+C5
2 3 4
L12 ¢2 +¢8 0 0 0 ¢+ ¢ 1 1 i

Question 8.14. Do F219 or Fgeo admit a unitary categorification?

Subsection A.3 of Appendix mentions 2561 extra perfect integral fusion rings of rank
< 10. Among them, 7 ones are simple and 9 ones are noncommutative (none both).
In the commutative case, 2072 ones can be ruled out from unitary categorification by
Corollary 8.5 (more than 80%).
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The one given by the finite simple group PSL(2,9):
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The one given by the finite simple group PSL(2,11)
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The one (non group-like) satisfying Schur product property (on the dual)
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e Rank 8 and FPdim 990, five of type [[1,1],[9, 1], [10,1],[11, 4], [18, 1]]
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o Rank 8 and FPdim 1260, two of type [[1, 1], [6, 1], 7, 2], [10, 1], [15, 1], [20, 2]}:
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o Rank 8 and FPdim 1320, two of type [[1, 1], [6, 2], [10, 1], [11, 1], [15, 2], [24, 1]]:
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A.2. Examples of simple integral fusion rings not of Frobenius type

There is a simple integral fusion ring of rank 6, FPdim 143 and type [[1, 1], [4, 2], [5, 1],

[6,1],[7,1]] which is not of Frobenius type. Here are its fusion matrices:
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Note that 143 = 11-13, so it admits no categorification because by [7], any fusion category

of Frobenius-Perron dimension pq (with p, ¢ different odd primes) is group-theoretical,

whereas by [10], a (weakly) group-theoretical fusion category is of Frobenius type (or

alternatively, cannot be both simple and non group-like).

of rank < 7 and

(with FPdim # p%q®, pqr, by [10]), and exactly 4 ones (below) pass the

There are 21 simple integral fusion rings not of Frobenius type,

FPdim < 1500

Schur product criterion:

e rank 6, FPdim 924 = 22 .37 11, type [[1,1],[7,1],[8,1], [12, 1], [15, 1], [21,1]] and

fusion matrices:
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« rank 6, FPdim 1320 = 233511, type [[1,1],[9, 1], [10, 1], [11, 1], [21, 1], [24, 1]] and

fusion matrices:
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100000 010000 001000 000100 000010 00000 1
010000 100112 001112 011112 011134 02224 3
001000 001112 110022 010122 012234 02224 4
000100 011112» 010122» 111122° 012244> 022245
000010 011134 012234 012244 133478 044489
000001 022243 022244 022245 044489 1345911

o rank 7, FPdim 560 = 2% -5 -7, type [[1,1],[6,1],[7,2],[10,2], [15,1]] and fusion ma-

trices:
1000000 0100000 0010000 0001000 0000100 0000010 0000001
0100000 1000111 0010111 0001111 0111012 0111102 0111222
0010000 0010111 1101111 0011111 0111112 0111112 0111223
0001000,00011117001111171110111,0111112,011111270111223
0000100 0111012 0111112 0111112 0111232 1011223 0222324
0000010 0111102 0111112 0111112 1011223 0111322 0222234
0000001 0111222 0111223 0111223 0222324 0222234 1233446
e rank 7, FPdim 798 = 2-3 -7 .19, type [[1,1],[7,1],[8,1],[9, 3], [21, 1]] and fusion
matrices:
1000000 0100000 0010000 0001000 0000100 0000010 0000001
0100000 1001111 0011111 0111111 0111111 0111111 0111115
0010000 0011111 1111111 0112111 0111211 0111121 0111116
0001000, 0111111, 0112111, 1121121, 0111221, 0112211, 0111117
0000100 0111111 0111211 0111221 1122111 0112121 0111117
0000010 0111111 0111121 0112211 0112121 1121211 0111117
0000001 0111115 0111116 0111117 0111117 0111117 1567778

A.3. Ezxtra perfect fusion rings

The computer program uses several necessary conditions for a fusion ring 2 to be
simple, perfect, of Frobenius type, and categorifiable, mainly collected in [10,29]:

o FPdim(2) not of the form p2q® or pgr, with p, ¢, r prime,

o d(z2) > 3 (in particular, m; = 1, i.e. A is perfect).

e s> 3 (in particular rank r > 3),

o nyp1 < n? for all r > 1 (otherwise it trivially cannot be simple (and perfect)),
« (Frobenius type) n; divides FPdim(2l) for all i (idem for the fusion subrings®),
e ged(ng,...,ns) =1 (consequence of Frobenius type).

Now, all these necessary conditions together are not sufficient for having a simple fusion
ring, so that the computer search provided also 319 new perfect non-simple fusion rings
(4 of which being noncommutative), see Table 1. Each of them contains the Grothendieck
ring of Rep(G) as a proper subring (with G = PSL(2,q), ¢ = 5,7,9). None of them comes
from a perfect group. Ostrik’s inequality holds on all of them. In the commutative case,
the Schur product property (on the dual) holds on exactly 114 ones.

Let us mention finally that we also found extra 2242 perfect integral fusion rings out
the bounds of the above table (among them, 7 are simple, 5 are noncommutative, none
both), see Table 2. In the commutative case, the Schur product property (on the dual)
holds on exactly 480 of them (none of which is simple), and Ostrik’s inequality holds on
all of them.

5 There are fusion rings of rank 9, FPdim 4620 and type [[1,1],[4,2],[5,1],[6,1],[7,1], [11, 1], [66, 1]]
(Frobenius type) with a simple fusion subring of rank 8, FPdim 264 and type [[1,1],[4,2],[5,1],[6,1],
[7,1],[11,1]] (not Frobenius type).
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# rank FPdim  type #Schur  note
1 7 7224 ([1,1],[3,2],[6,1],[7,1],[8,1],[84,1]] 1 84 > 82
16 8 360 ([1,1],[3,2],[4,1],[5,1],[10,3]] 6
26 8 660 [[1,1],[3,2],[4,1],[5,1],[10,2],[20,1]] 5
24 8 960 [[1,1],[3,2],[4,1],[5,1],[10,1],[20,2]] 14
47 8 1260 ([1,1],[3,2],[4,1],[5,1],[20,3]] 7
1 8 1440 ([1,1],[3,2],[4,1],5,1],[10,1],[16,1],[32,1]] 1
1 8 1680 [[1,1],[3,2],[4,1],5,1],[12,1],[24,1],[30,1]] 1
2 8 2160 [[1,1],[3,2],[4,1],[5,1],[10,1],[20,1],[40,1]] 2
1 8 3120 [[1,1],[3,2],[4,1],[5,1],[10,1],[16,1],[52,1]]] 1
60 8 3360 [11,1],[3,2],4,1],[5,1],[10,1],[40,2]] 32
120 8 3696 ([1,1],[3,21,[6,1],[7,1],[8,1],[42,2]] 40
2 8 3960 [11,1],5,2],18,2],[9,1],[10,1],[60,1]] 1
7 9 360 [11,1],[3,2],[4,1],[5,4],[15,1]] 2
1 9 420 [[1,1],[3,2],[4,1],[5,1],[6,2],[12,2]] 1 +4NC
Table 1
Perfect extra ones.
# rank  FPdim  type #Schur  note
1 7 28392  [[1,1],[3,2],[6,1],[7,1],[8,1],[168,1]] 1 168 > 82
4 8 4620 ([1,11,[4,2],[5,11,[6,1],[7,1],[11,1],[66,1]] 0
1 8 5460 ([1,11,[3,2],[4,1],[5,1],[10,1],[20,1],[70,1]] 1
8 8 5460 [[1,11,[6,1],[7,2],[10,2],[15,1],[70,1]] 1
1 8 6960 [[1,11,[3,2],[4,1],[5,1],[10,1],[20,1],[80,1]] 1
5 8 8160 [[1,11,[3,2],[4,1],[5,1],[10,1],[40,1],[80,1]] 5
250 8 14280 [[1,1],[8,2],[6,1],[7,1],[8,1],[84,2]] 78 84 > 82
2 8 44310 [[1,1],[5,3],[6,1],[7,2],[210,1]] 1 210 > 72
1 9 1080 [[1,1],[5,2],[8,2],]9,1],{10,1],[12,1],[24,1]] 0
22 9 1260 [[1,1],[3,2],[4,1],[5,1],[10,3],[30,1]] 10
1 9 1320 [[1,1],[5,2],[6,2],[10,1],[11,1],[20,1],[24,1]] 0 simple
1119 1344 [[1,1],[3,2],[6,1],[7,1],[8,1],[14,2],[28,1]] 26
4 9 1512 [[1,1],[6,1],[7,1],[8,4],[21,1],[27,1]] 0 simple
52 9 1560 [[1,1],[3,2],[4,1],[5,1],[10,2],[20,1],[30,1]] 9
56 9 2160 [[1,1],[3,2],[4,1],[5,1],[20,3],[30,1]] 17
69 9 2160 [[1,1],[5,2],[8,2],[9,1],[10,1],[30,2]] 10
1086 9 2520 [[1,1],[3,2],[6,1],[7,1],[8,1],[28,3]] 221
5 9 2760 [[1,1],[3,2],[4,1],[5,1],[10,2],[30,1],[40,1]] 2
13 9 3696 [[1,1],[3,2],]6,1],]7,1],[8,1],[14,2],[56,1]] 5
16 9 3960 [[1,1],[3,2],[4,1],[5,1],[10,3],[60,1]] 6
52 9 4200 ([1,11,[3,2],[4,1],[5,1],[24,1],[30,2],[42,1]] 4
29 9 4260 ([1,11,[3,2],[4,1],[5,1],[10,2],[20,1],[60,1]] 6
24 9 4560 ([1,11,[3,2],[4,1],[5,1],[10,1],[20,2],[60,1]] 14
404 9 4872 [[1,1],[3,2],16,1],[7,1],[8,1],[28,2],[56,1]] 56
2 10 720 [[1,1],[4,2],[5,2],[9,1],[10,3],[16,1]] 0 simple
1 10 1200 [[1,11,[3,2],[4,3],[5,11,[8,1],[12,1],[30,1]] 0
7 10 1260 [[1,1],[3,2],[4,1],[5,4],[15,1],[30,1]] 2
12 10 1320 [[1,1],[3,2],[4,11,[5,1],[6,2],[12,2],[30,1]] 3 +3NC
3 10 1920 [[1,1],[8,2],[4,1],[5,1],[8,2],[16,1],[24,1],[30,1]] 1 +2NC

Table 2
Out of the bounds.

The fusion matrices of all the (2595) perfect integral fusion rings mentioned in this
paper, together with the computer programs (written in SageMath [37]) and checks, are
available in the second author’s webpage [34].
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