
THE GROTHENDIECK RING OF A FAMILY OF SPHERICAL CATEGORIES

ZHENGWEI LIU AND CHRISTOPHER RYBA

Abstract. The first author constructed a q-parameterized spherical category C over C(q) in

[3], whose simple objects are labelled by all Young diagrams. In this paper, we compute closed-
form expressions for the fusion rule of C , using Littlewood-Richardson coefficients, as well as the
characters (including a generating function), using symmetric functions with infinite variables.

1. Introduction

Jones introduced planar algebras in [2] inspired by subfactor theory and knot theory. The
topological notion of (spherical) planar algebra is parallel to the algebraic notion of (spherical)
pivotal, monoidal category. The first author investigated the skein-theoretical classification of
planar algebras and discovered a continuous family of unshaded planar algebras over C from the
classification of Yang-Baxter relation planar algebras in [3]. This family was constructed in terms of
q-parameterized generators and relations in linear skein theory. This family could be regarded as a
planar algebra C over C(q) with a generic parameter q. The canonical idempotent category of this
unshaded planar algebra C is a Z2-graded spherical monoidal category. It was shown in [3] that the
Grothendick ring G of C has simple objects Xλ labelled by all Young diagrams λ with an explicit
construction of a minimal idempotent ỹλ in C which represents Xλ.

The main purpose of this paper is computing the fusion rule of G,

XµXν =
∑
λ

Rλµ,νXλ,(1)

where Rλµ,ν ∈ N is called the fusion coefficient for Young diagrams µ, ν, λ. We compute the fusion

coefficient Rλµ,ν in a closed-form expression in Theorem 4.23,

Rλµ,ν =
∑
α,β,γ

cµα,βc
ν
β′,γc

λ
α,γ ,(2)

where γ′ is the Young diagram dual to γ and c··,· is the Littlewood-Richardson coefficient.
The paper is organized as follows. In §2, we recall some basic properties of C and its type A Hecke

subalgebra H. We prove in Theorem 2.8 that the Grothendieck ring G of C is the polynomial ring
freely generated by the fundamental representations {X1n : n ∈ N}, where 1n is the Young diagram
with one column and n cells. In particular, G is commutative.

In §3, we compute the fusion rule of G with respect to the fundamental representations in Theorem
3.11:

X(1r)Xµ =

r∑
i=0

∑
ν∈µ−i

∑
λ∈ν+1r−i

Xλ.(3)

The multiplicity of Xλ is the number of ways of constructing λ from µ by removing i cells, no two in
the same column, and then adding r − i cells, no two in the same row. The proof follows from an
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explicit construction of the basis of hom(X(1r)Xµ, Xλ) in C through the linear skein theory of the
Yang-Baxter relation planar algebra.

In §4, we compute fusion rules of G. In principle, one can compute the fusion rule of G recursively
using the fusion rule of fundamental representations. However, the complexity grows exponentially
w.r.t. the size of the Young diagrams. We observe that G is isomorphic to the ring Λ of symmetric
polynomial with infinite variables. We establish a ring isomorphism Φ : G → Λ in Definition 4.19 and
consider Φ(Xλ) as the character of the simple object Xλ of G. We prove in Theorem 4.20 that

Φ(Xλ) =
∑
µ

(−1)|µ|sλ/2µ .(4)

where sλ/2µ is a skew-Schur polynomial. Moreover, we compute the generating function of the
characters in closed form in Theorem 4.22,∑

λ

sλ(x)Φ(Xλ)(y) =
∏
i1≤i2

1

1 + xixj

∏
i,j

1

1− xiyj
.(5)

Using the generating function, we compute the fusion coefficient in a closed form, namely Equation
(1), in Theorem 4.23. Our computational tools on the characters and the generating function come
from the theory of symmetric functions [4], which we recall in §4.

In this paper, we compute the fusion rule of C over C(q). Unitary fusion categories CN,k,`,

N, k, ` ∈ N, were constructed in [3] as quotients of C over C at q = e
πi

2N+2 . In particular, CN,0,1 is
an exceptional quantum subgroup of SU(N)N+2, conjectured to be isomorphic to the exceptional
quantum subgroup constructed by Xu in [7] in 1998 through the α-induction of the conformal
inclusion SU(N)N+2 ⊆ SU(N(N + 1)/2)1. Xu asked the question to compute the fusion rules of
these exceptional quantum subgroups [6], which we will compute in the future. From this point
of view, C can be regarded as the parameterization of a family of exceptional quantum subgroups.
It was conjecture in [3] that there is a continuous family of monoidal categories parameterizing
the exceptional quantum subgroups from the α-induction of any family of conformal inclusions of
quantum groups. We believe that our methods in this paper also apply to the other continuous
families of monoidal categories, if they exist.

Acknowledgements. Zhengwei Liu was partially supported by Grant 100301004 from Tsinghua
University and by Templeton Religion Trust under the grant TRT 159. Zhengwei Liu would like to
thank Pavel Etingof and Feng Xu for helpful discussions and to thank Arthur Jaffe for the hospitality
at Harvard University. Christopher Ryba would like to thank Pavel Etingof for useful conversations.

2. Yang-Baxter relation planar algebras and spherical categories

The first author constructed the following continuous family of Yang-Baxter relation planar
algebras C in terms of generators and relations in linear skein theory in [3].

Definition 2.1. Let C• be the unshaded planar algebra over C(q) with circle parameter

= δ = q + q−1 ,

which is generated by R = R with the following relations:
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R = i
R

,(6)

R = 0,(7)

R

R
= − 1

δ
,(8)

R

R

R
=

i

δ2
( R +

R
+

R
)− 1

δ2
(

R
+

R
+ R ) + i R

R

R

.(9)

The vector space Cn consists of linear sums of R-labelled planar diagrams with 2n boundary points
modulo the above relations. Consider a disc with 2n boundary points numbered by {1, 2, . . . , 2n}
clockwise. A pairing p of {1, 2, . . . , 2n} is a bijection on {1, 2, . . . , 2n}, such that p2 is the identity
and p(i) 6= i, ∀1 ≤ i ≤ 2n. We call {i, p(i)} a pair of the paring p. Let Pn be the set of pairings of
2n boundary points.

We can construct a diagram in the disc which connects the n pairs of boundary points by n strings
with a minimal number of crossings. (The minimal condition is equivalent to that any two strings
either intersect at one point transversally or do not intersect.) Such diagrams have been used by
Brauer to construct the Brauer algebras. We label each crossing of the diagram by the generator R,
then we obtain an element in Cn, denoted by p̂. Note that there are four choices to label R at each
crossing, and the corresponding elements in Cn differ by a phase due to Relation (6). We fix a choice
at the beginning to define p̂.

Proposition 2.2. The set Bn = {p̂ : p ∈ Pn} is a basis of the vector space Cn over C(q).

Proof. Applying the Yang-Baxter relation, any element in Cn is a linear sum of such p̂’s. On the
other hand, dim Cn = (2n− 1)!! by Corollary 6.6 in [3], and #{p̂ : p ∈ Pn} = (2n− 1)!!. Therefore,
{p̂ : p ∈ Pn} is a basis of Cn. �

Remark 2.3. Note that R

R

R
and R

R

R

correspond to the same pairing. When we define the

element p̂, we fix a choice. Either R

R

R
or R

R

R

with the 14 lower terms

, , , , ,

R ,
R
,

R
,

R
,

R
, R ,

R

R
,

R

R

,
R

R
,

form a basis of C3.

A planar algebra canonically has a vertical multiplication, a horizontal tensor product and a
Markov trace, see [2]. For a diagram in Cn, we draw the first n boundary points on the top and the
last n boundary points at the bottom. Then Cn forms an algebra whose multiplication is gluing the
diagrams vertically. The tensor product ⊗ : Cn ⊗ Cm → Cn+m is a horizontal union of two diagrams.
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In particular, the algebra Cn can be embedded in Cn+1 by adding a through string on the right. So
C• is a filtered algebra.

The planar algebra C• has a has a type A Hecke subalgebra H• generated by

α =
q − q−1

2
+
q − q−1

2i
+
q + q−1

2
R .

The generic type A Hecke algebra has two parameters q and r. Here qr =
√
−1. The planar algebra

has a Markov trace by gluing the top and the bottom from the right. The Markov trace of C• extends
the Markov trace of the Hecke algebra in [1].

The idempotent e = 1
δ in C2 is called the Jones idempotent 1. The two-sided ideal of Cn

generated by e is denoted by In, called the basic construction ideal. The complement of the maximal
idempotent of In is denoted by sn. Then, sn is central in Cn and

xsn = 0, ∀ x ∈ In.(10)

sn(sm ⊗ sn−m) = sn, ∀ m ≤ n.(11)

The following proposition is a consequence of Theorem 6.5 in [3]:

Proposition 2.4. For any n ≥ 0,

Hn
∼= snHn = snCn ,(12)

Cn = In ⊕Hn = In ⊕ snHn .(13)

For each Young diagram λ, let |λ| = n be the number of cells of λ. A minimal idempotent yλ in
homC (Xn, Xn) was constructed in Section 2.5 in [3]. These yλ’s are representatives of the equivalent
minimal idempotents of Hn. Furthermore, ỹλ = snyλ are representatives of the equivalent minimal
idempotents of snHn. We refer the readers to [3] for the explicit construction of sn, yλ and ỹλ.
Following the construction in Theorem 6.5 in [3], we have that

(14) y(1n) = ỹ(1n),

where (1n) is the Young diagram with one column and n cells. The Young diagram with one row
and n cells is denoted by (n). We write them as 1n and n for short, if there is no risk of confusion.

We recall the above properties of C , which we will apply in this paper. We refer the readers to [3]
for the construction of sn, yλ and ỹλ, which we do not repeat here.

Proposition 2.5. Note that homH(yµ⊗ yν , yλ) ⊆ Hn ⊆ Cn, when |µ|+ |ν| = |λ| = n. We have that

sn homH(yµ ⊗ yν , yλ) = homC (ỹµ ⊗ ỹν , ỹλ).

Proof. Note that snyµ ⊗ yν = ỹµ ⊗ ỹν and snyλ = ỹλ, so

sn homH(yµ ⊗ yν , yλ) ⊆ homC (ỹµ ⊗ ỹν , ỹλ).

On the other hand, by Equation 13, for any element x in homC (ỹµ ⊗ ỹν , ỹλ) ⊆ Cn, we have a unique
decomposition x = y + z, such that y ∈ In and z ∈ Hn. Note that

yλx(yµ ⊗ yν) = x,

yλy(yµ ⊗ yν) ∈ In,

yλz(yµ ⊗ yν) ∈ Hn.

1It was called the Jones projection is the operator algebraic setting.
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So yλz(yµ ⊗ yν) = z, and z ∈ homH(yµ ⊗ yν , yλ). Moreover, snz = snx = x. So

sn homH(yµ ⊗ yν , yλ) = homC (ỹµ ⊗ ỹν , ỹλ).

�

From the semi-simple, spherical, unshaded planar algebra C , we obtain an N-graded monoidal
category C q,0 whose degree n objects are idempotents in Cn. In subfactor theory, we usually consider
the Jones idempotent to be equivalent to the unit in C0, namely the empty diagram ∅. The isometries
between the two idempotents are given by the the diagrams ∩ and ∪. Modulo this relation, we obtain
a Z2-graded spherical category C q,1, the canonical one associated with the spherical planar algebra
C .

Notation 2.6. Let G be the Grothendieck ring of C q,1. It has a basis Xλ corresponding to the
minimal idempotents ỹλ of snCn, n ∈ N, for all Young diagrams λ.

Let 1r be the Young diagram with one column and r cells. In particular, X = X1, corresponds to
the Young diagram with one cell. Then the identity map 1X is a through string, and

(∪ ⊗ 1X)(1X ⊗ ∩) = 1X ,

(1X ⊗ ∪)(∩ ⊗ 1X) = 1X .

The morphism space homC (Xn, Xm) consists of linear combinations of R-labelled planar diagrams
in C with n boundary points on the top and m boundary points at the bottom. For Young diagrams
µ, ν, λ, the morphisms of C q,1 are given by

homC (Xµ ⊗Xν , Xλ) = ỹλ(homC (X |µ|+|ν|, X |λ|)(ỹµ ⊗ ỹν) .

Notation 2.7. Let Yλ be the element of G corresponding to the idempotent yλ. Note that ỹλ = s|λ|yλ,
so yλ − ỹλ is an idempotent in I|λ|. Therefore,

Yλ = Xλ +
∑
|µ|<|λ|

nλ,µXµ, for some nλ,µ ∈ N.(15)

We call nλ,µ the extended constants. Then we can solve for the Xλ recursively in terms of the Yλ,
and

Xλ = Yλ +
∑
|µ|<|λ|

zλ,µYµ, for some zλ,µ ∈ Z.(16)

We call zλ,µ the inverse extended constants. By Equation (14), for any n ≥ 0,

X1n = Y1n .(17)

Theorem 2.8. The Grothendieck ring G of C is the polynomial ring in the generators {X1n : n > 0}.
In particular, G is commutative.

Proof. Note that {Xλ} forms a basis of the Grothendieck ring G. By Equations (15) and (16), {Yλ}
also forms a basis of G. It is known that the set {Yλ} is a basis of the polynomial ring in the generators
{Y1n : n > 0}. By Equation (17), G is the polynomial ring in the generators {X1n : n > 0}. �

Based on the algebraic structure on Cn ∼= homC (Xn, Xn), We decompose the partitions Pn into
two subset sets In and Tn. A pairing is in In if there is a pair among the first n points. On the other
hand, a pairing p in Tn pairs the first n points with the last n points. For any pairing p ∈ Tn, we
can identify p with an element p′ in the permutation group Sn, such that p′(i) = 2n+ 1− p(i), for
1 ≤ i ≤ n.
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Proposition 2.9. For a pairing p ∈ Pn, we have that p ∈ In iff p̂ ∈ In. Moreover, {snp̂ : p ∈ Tn}
is a basis of snHn.

Proof. Obviously if p ∈ Pn, then p̂ ∈ In and snp̂ = 0. By Equation (13), {snp̂ : p ∈ Tn} is a
spanning set of snHn. By Equation (12), dim snHn = dimHn = #Tn, so {snp̂ : p ∈ Tn} is a basis of
snHn, and for any p ∈ Tn, snp̂ 6= 0, namely p̂ /∈ In. �

We define Ti,n−i to be a subset of Pn as follows: T0,n = Tn,0 = Tn, and for any 1 ≤ i ≤ n− 1,

Ti,n−i = {p ∈ Pn : 2n+ 1− j ≤ p(j) ≤ 2n, ∀ 1 ≤ j ≤ i;n+ 1 ≤ p(j) ≤ 2n− i, ∀ i+ 1 ≤ j ≤ n}.

We can consider Ti,n−i as Ti × Tn−i. Note that Ti,n−i ⊆ Tn.

Notation 2.10. For any Young diagram λ, |λ| = n, we express ỹλ in terms of the basis Bn,

ỹλ =
∑
p∈Pn

cpp̂ , cp ∈ C(q).

We define

ỹλ,i =
∑

p∈Ti,n−i

cpp̂.(18)

Lemma 2.11. For any Young diagram λ, we have that ỹλ,0ỹλ = ỹλỹλ,0 = ỹλ.

Proof. Note that snp̂ = 0, ∀p ∈ In, and ỹλ = snỹλ. So

ỹλỹλ,0 = ỹλsn
∑
p∈Tn

cpp̂ = ỹλsn
∑
p∈Pn

cpp̂ = ỹλsnỹλ = ỹλ.

Similarly, ỹλ,0ỹλ = ỹλ. �

Lemma 2.12. For any 0 ≤ i ≤ n, we have that

ỹ1n,i(ỹ1i ⊗ ỹ1n−i) = cỹ1i ⊗ ỹ1n−i ,

for some c 6= 0 in C(q), and lim
q→1

c =

(
n

i

)−1
.

Proof. By Proposition 2.4, ỹ1k is a minimal central projection in Ck, so for any p ∈ Ti,n−i,
p̂(ỹ1i ⊗ ỹ1n−i) is a multiple of ỹ1i ⊗ ỹ1n−i . Therefore,

ỹ1n,i(ỹ1i ⊗ ỹ1n−i) = cỹ1i ⊗ ỹ1n−i ,
for some c ∈ C(q). Moreover, ỹ1n,iỹ1n = cỹ1n . We need to show that c 6= 0. For any p ∈ Tn, we
consider p as a permutation. Without loss of generality, we assume that the strings of p̂ move
vertically and the generator R’s of p̂ are all labelled on the left side of the crossings. Note that
Rỹ12 = −ỹ12 , so

p̂ỹ1n = (−1)|p|ỹ1n ,

where |p| is the number of the crossing R’s in p̂. We express ỹ1n , y1n and y1i ⊗ y1n−i in terms of the
basis Bn as

ỹ1n =
∑
p∈Pn

cpp̂ ,

y1n =
∑
p∈Pn

c′pp̂ .
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Then

c =
∑

p∈Ti,n−i

(−1)|p|

n!
cp .

Recall that ỹλ = snyλ, so by Proposition 2.9,

cp = c′p, ∀ p ∈ Tn.
When q → 1, the Hecke algebra H specializes to the symmetric group algebra; the generator α

becomes the symmetric braiding; α−R→ 0; and n!y1n becomes the alternating sum of permutations
of the symmetric groups Sn. So for any p ∈ Tn,

lim
q→1

c′p =
(−1)|p|

n!
.(19)

Then

lim
q→1

c = lim
q→1

∑
p∈Ti,n−1

(−1)|p|

n!
cp =

∑
p∈Ti,n−i

1

n!
=

(
n

i

)−1
.(20)

Therefore, C 6= 0 in C(q). �

3. Fusion Rules of Fundamental Representations for the Generic Case

In this section, we compute the fusion rule for X1n⊗ in the Grothendieck ring G, and construct a
basis for the hom space. We apply this to study the characters of the simple objects using symmetric
functions. Recall that {Xλ} indexed by Young diagrams are a basis of G. The structure constants
of the multiplication Rλµ,ν are defined by:

XµXν =
∑
λ

Rλµ,νXλ

Notation 3.1. We define the morphism ∪n in homC (X2n, ∅) as

∪n =
n

= · · ·
1 n n+1 2n

where the label n in the first picture indicates the number of parallel strings.

By Proposition 9.2 in [3], the dual object (or the 180◦ rotation) of ỹ1n is ỹn. In particular,
∪n(ỹ1n ⊗ ỹn) is a non-zero morphism in homC (ỹn ⊗ ỹ1n , ∅).

Proposition 3.2. The dual object of ỹλ is ỹλ′ , where λ′ is the reflection of λ in the diagonal, called
the Young diagram dual to λ.

Proof. This is a consequence of Proposition 9.6 in [3]. We give a quick proof here. The duality map
λ→ λ′ is a Z2 automorphism of the principal graph of the planar algebra C , which is Young’s lattice.
This Z2 fixes the the Young diagrams ∅ and 1, and switches 12 and 2. Therefore it has to be the
reflection in the diagonal. �

Notation 3.3. For any Young diagram λ, we define the following sets of Young diagrams:

(1) λ− 1n are Young diagrams that removes n cells from λ, and no two cells in the same row;
(2) λ+ 1n are Young diagrams that adds n cells to λ, and no two cells in the same row;
(3) λ− n are Young diagrams that removes n cells from λ, and no two cells in the same column;
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(4) λ+ n are Young diagrams that adds n cells to λ, and no two cells in the same column.

The following result is well-known for the type A Hecke algebra. It can be derived from the
fusion rule of fundamental representations of (quantum) SU(N), as N →∞. The fusion rule can be
characterized by Schur polynomials.

Lemma 3.4. Suppose λ and µ are Young diagrams. If n = |µ| − |λ| ≥ 0, then

dim homH(yλ ⊗ y1n , yµ) =

{
1, ∀ µ ∈ λ+ 1n;

0, ∀ µ /∈ λ+ 1n.

We give an explicit construction of a non-zero morphism ρ in homH(yλ ⊗ y1n , yµ).

Lemma 3.5. Suppose λ and µ are Young diagrams. If n = |µ| − |λ| ≥ 0, then

dim homC (ỹλ ⊗ ỹ1n , ỹµ) =

{
1, ∀ µ ∈ λ+ 1n;

0, ∀ µ /∈ λ+ 1n.

dim homC (ỹλ ⊗ ỹn, ỹµ) =

{
1, ∀ µ ∈ λ+ n;

0, ∀ µ /∈ λ+ n;

If n = |λ| − |µ| ≥ 0, then

dim homC (ỹλ ⊗ ỹ1n , ỹµ) =

{
1, ∀ µ ∈ λ− n;

0, ∀ µ /∈ λ− n;

dim homC (ỹλ ⊗ ỹn, ỹµ) =

{
1, ∀ µ ∈ λ− 1n;

0, ∀ µ /∈ λ− 1n.

Proof. If n = |µ| − |λ| ≥ 0, then by Equation (12), Proposition 2.5 and Lemma (3.4), we have

dim homC (ỹλ ⊗ ỹ1n , ỹµ) = dim homH(yλ ⊗ y1n , yµ) =

{
1, ∀ µ ∈ λ+ 1n;

0, ∀ µ /∈ λ+ 1n.

The planar algebra C has a Z2 automorphism Ω mapping the generator R to −R. By Proposition
9.5 in [3], the idempotent Ω(ỹλ) is equivalent to ỹλ′ . (The dual Young diagram λ′ is denoted by Ω(λ)
in [3].)

In particular, n′ = 1n. Note that µ ∈ λ+ n iff µ′ ∈ λ′ + 1n. So

dim homC (ỹλ ⊗ ỹn, ỹµ) = dim homC (ỹλ′ ⊗ ỹ1n , ỹµ′) =

{
1, ∀ µ ∈ λ+ n;

0, ∀ µ /∈ λ+ n.

By Proposition 9.2 in [3], the dual object (or 180◦ rotation) of ỹ1n is ỹn. If n = |λ| − |µ| ≥ 0, then
by Frobenius reciprocity,

dim homC (ỹλ ⊗ ỹ1n , ỹµ) = dim homC (ỹλ, ỹµ ⊗ ỹn) =

{
1, ∀ µ ∈ λ− n;

0, ∀ µ /∈ λ− n;

dim homC (ỹλ ⊗ ỹn, ỹµ) = dim homC (ỹλ, ỹµ ⊗ ỹ1n) =

{
1, ∀ µ ∈ λ− 1n;

0, ∀ µ /∈ λ− 1n.

�
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Notation 3.6. Suppose a, b, c ∈ N, and n = a+ b+ c. Let pa,b,c ∈ Pn be the pairing

pa,b,c(k) =


(2n+ 1− k), ∀ 1 ≤ k ≤ a or 2n− a < k ≤ 2n;

(2a+ 2b+ 1− k), ∀ a < k ≤ a+ 2b;

(2n+ 2b+ 1− k), ∀ n+ b < k ≤ 2n− a;

(21)

We can identify p̂a,b,c ∈ Cn as a morphism in homC (Xa+b ⊗Xb+c, Xa+c), illustrated as

p̂a,b,c = a

b

c = · · · · · ·

· · ·
1 a a+1 a+b a+b+1 a+2b a+2b+1 n+b

2n 2n+1-a 2n-a n+b+1

where a, b, c in the first picture indicate the number of parallel strings.

Notation 3.7. Suppose µ is a Young diagram, |µ| = a + b. Take Young diagrams ν ∈ µ − b
and λ ∈ ν + 1c. By Lemma 3.5, there are non-zero morphisms ρ1,ν ∈ homC (ỹµ, ỹν ⊗ ỹb) and
ρ2,ν ∈ homC (ỹν ⊗ ỹ1c , ỹλ). We construct a morphism ρ′µ,ν,λ ∈ homC (ỹµ ⊗ ỹ1b ⊗ ỹ1c , ỹλ) as

ρ′µ,ν,λ := ρ2,ν p̂a,b,c(ρ1,ν ⊗ ỹ1b ⊗ ỹ1c) .(22)

We identify ỹb+c with a morphism in homC (ỹ1b+c , ỹ1b ⊗ ỹ1c) and construct a morphism ρ′µ,ν,λ ∈
homC (ỹµ ⊗ ỹ1b+c , ỹλ):

ρµ,ν,λ := ρ′µ,ν,λ(ỹµ ⊗ ỹb+c) = ρ2,ν p̂a,b,c(ρ1,ν ⊗ ỹb+c) .(23)

Their pictorial representations are

ρ′µ,ν,λ = ỹν

ỹb

ỹ1b ỹ1cỹµ

ρ1,ν

ỹλ

ρ2,ν

and ρµ,ν,λ = ỹν

ỹb ỹ1b

ỹ1c

ỹ1b+c

ỹµ

ρ1,ν

ỹλ

ρ2,ν

Lemma 3.8. Suppose a, b, c ∈ N and r = b+ c. For any Young diagrams µ and λ, |µ| = a+ b, |λ| =
a+c, the elements {ρ′µ,ν,λ : ν ∈ µ−b, ν ∈ λ−1c} are linearly independent in homC (ỹµ⊗ ỹ1b⊗ ỹ1c , ỹλ).

Proof. By Frobenius reciprocity, for any ν, (ỹν ⊗ ∪b)(ρµ,ν ⊗ ỹ1b) 6= 0 in homC (ỹµ ⊗ ỹ1b , ỹν). As C
is semi-simple, there is a morphism ρ3,ν ∈ homC (ỹν , ỹµ ⊗ ỹ1b), such that

(ỹν ⊗ ∪b)(ρµ,ν ⊗ ỹ1b)ρ3,ν = ỹν .

If ∑
ν∈µ−b,ν∈λ−1c

cνρ
′
µ,ν,λ = 0, cν ∈ C(q),
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then for any ν′ ∈ µ− b, ν′ ∈ λ− 1c,

ρ3,ν′
∑

ν∈µ−b,ν∈λ−1c
ρ′µ,ν,λ = cν′ρ2,ν′ = 0.

So cν′ = 0. Therefore, {ρ′µ,ν,λ : ν ∈ µ− b, ν ∈ λ− 1c} are linearly independent.
�

Lemma 3.9. Suppose a, b, c ∈ N and r = b+ c. For any Young diagrams µ and λ with |µ| = a+ b,
|λ| = a+ c, the morphisms {ρµ,ν,λ : ν ∈ µ− b, ν ∈ λ− 1c} form a spanning set of homC (ỹµ⊗ ỹ1r , ỹλ).

Proof. For any p1 ∈ Pa+b, p2 ∈ Pb+c and p3 ∈ Pa+c. we define

(24) xp1,p2,p3 = p̂3p̂a,b,c(p̂1 ⊗ p̂2).

By Proposition 2.2, {xp1,p2,p3 : p1 ∈ Pa+b, p2 ∈ Pb+c, p3 ∈ Pa+c.} is a spanning set of Cn, because
any pairing in Pn can be implemented by some diagram xp1,p2,p3 with a minimal number of crossings.
Note that y1b+c is a central minimal idempotent in Cb+c. By Equation (12), ỹ1b+c is a central minimal
idempotent in Hb+c.

By Lemma 3.5, dim homC (ỹ1b+c , ỹ1b ⊗ ỹ1c) = 1, so ỹ1b+c ∈ homC (ỹ1b+c , ỹ1b ⊗ ỹ1c) and (ỹ1b ⊗
ỹ1c)ỹ1b+c = ỹ1b+c . We define

x̃p1,p2,p3 = ỹλxp1,p2,p3(ỹµ ⊗ ỹ1b+c).
Then {x̃p1,p2,p3 : p1 ∈ Pa+b, p2 ∈ Pb+c, p3 ∈ Pa+c.} is a spanning set of homC (ỹµ ⊗ ỹ1r , ỹλ). Recall
that the 180◦ rotation of ỹ1b is ỹb. So

x̃p1,p2,p3 = sa

ỹb ỹ1b

ỹ1c

ỹ1b+c

p̂2

ỹµ

p̂1

ỹλ

p̂3

=
∑
|µ|=a

∑
j

ỹν

ỹb ỹ1b

ỹ1c

ỹ1b+c

ỹp̂2

ỹµ

ρ1,j

ỹλ

ρ2,j

=
∑

ν∈µ−b,ν∈λ−1c

∑
j

cjρµ,ν,λ,

for some ρ1,j ∈ homỹµ,ỹν⊗ỹb , ρ2,j ∈ homỹν⊗ỹ1c ,ỹλ , and cj ∈ C(q). Precisely, the label a is replaced
by sa in the first equality by Equation (11). Then sa is replaced by ỹν in the second equality by
Equation (12). Then we obtain the third equality by Lemma 3.5. Therefore, {ρµ,ν,λ : ν ∈ µ− b, ν ∈
λ− 1c} is a spanning set of homC (ỹµ ⊗ ỹ1r , ỹλ). �

Lemma 3.10. Suppose a, b, c ∈ N and r = b+ c. For any Young diagrams µ and λ with |µ| = a+ b,
|λ| = a+ c, the morphisms {ρµ,ν,λ : ν ∈ µ− b, ν ∈ λ− 1c} are linearly independent over C(q).

Proof. Take n = a+ b+ c, and define

• S1 = {k ∈ N : 1 ≤ k ≤ a+ b},
• S2 = {k ∈ N : a+ b < k ≤ a+ 2b+ c},
• S3 = {k ∈ N : a+ 2b+ c < k ≤ 2n},
• S = {p ∈ Pn : p has no pair in Si, i = 1, 2, 3}.
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Note that for any pairing p ∈ S, p has a pairs between S1 and S3; b pairs between S1 and S2; and c
pairs between S2 and S3. So we obtain a bijection ι : Ta+b × Tb+c × Ta+c → S via

ι(p1, p2, p3) = pa,b,c ◦ (p1 ⊗ p2 ⊗ p3),

where pa,b,c is defined in Equation (21), and p1 ⊗ p2 ⊗ p3 is a permutation on 2n points,

(p1 ⊗ p2 ⊗ p3)(k) =


p1(k), ∀ 1 ≤ k ≤ a+ b,

p2(k − a− b) + a+ b, ∀ a+ b < k ≤ n+ b,

p3(k − n− b) + n+ b, ∀ n+ b < k ≤ 2n.

For any p ∈ S, we can choose p̂ ∈ Bn as

p̂ = xι−1(p),

where xp1,p2,p3 is defined in Equation (24).
Assume that ∑

ν

cµ,ν,λρµ,ν,λ = 0

for some cµ,ν,λ ∈ C(q).
Recall that ρ′ ∈ homC (ỹµ ⊗ ỹ1b ⊗ ỹ1c , ỹλ) and ρ ∈ homC (ỹµ ⊗ ỹ1b+c , ỹλ) are defined in Equations

(22) and (23). We identify the two hom spaces with subspaces of Cn. By Proposition 2.2,

ρµ,ν,λ =
∑
p∈Pn

bµ,ν,λ(p)p̂ ;

ρ′µ,ν,λ(ỹµ ⊗ ỹ1b+c,b) =
∑
p∈Pn

b′µ,ν,λ(p)p̂ ,

for some bµ,ν,λ(p), b′µ,ν,λ(p) ∈ C(q), and∑
ν

cµ,ν,λbµ,ν,λ(p) = 0, ∀p ∈ Pn .

Take S0 = ι(Ta+b × Tb,c × Ta+c). Note that

ρµ,ν,λ = ỹν

ỹb ỹ1b

ỹ1c

ỹ1b+c

ỹµ

ρ1,ν

ỹλ

ρ2,ν

= a

b

c

ỹ1b+c

b+ ca+ b

ρ1,ν

a+ c

ρ2,ν
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On the other hand, ỹ1b+c,b =
∑
k cj p̂1,j ⊗ p̂2,j for some cj ∈ C(q), p1,j ∈ Tb and p2,j ∈ Tc as defined

in Equation (18). So

ρ′µ,ν,λ(ỹµ ⊗ ỹ1b+c,b) =
∑
j

a

b

c

p̂1,j p̂2,j

b ca+ b

ρ1,ν

a+ c

ρ2,ν

Note that for any p ∈ S0, if we express ỹ1b+c in terms of the basis Bb+c, then only the components in
Tb × Tc contribute non-zero coefficients of p. Recall that ỹ1b+c,b is the sum of such components of
ỹ1b+c in Tb × Tc, so

b′µ,ν,λ(p) = bµ,ν,λ(p) , ∀ p ∈ S0 ,

b′µ,ν,λ(p) = 0 , ∀ p ∈ S \ S0 .

Then ∑
p∈S0

∑
ν

cµ,ν,λb
′
µ,ν,λ(p)p̂ =

∑
p∈S0

∑
ν

cµ,ν,λbµ,ν,λ(p)p̂ = 0.

Note that if b′µ,ν,λ(p) 6= 0, p has no pair in S1 or S2, then p has no pair between the first b points
and the last c points in S3. So

b′µ,ν,λ(p)ỹλp̂(ỹµ ⊗ ỹ1b ⊗ ỹ1c) 6= 0, only when p ∈ S0.

By Lemma 2.12, ỹ1b+c,b(ỹ1b ⊗ ỹ1c) = c0ỹ1b ⊗ ỹ1c for some c0 6= 0 in C(q). So

c0
∑
ν

cµ,ν,λρ
′( ˜µ, ν, λ)

=c0
∑
ν

cµ,ν,λỹλρ
′( ˜µ, ν, λ)(ỹµ ⊗ ỹ1b ⊗ ỹ1c)

=
∑
ν

cµ,ν,λỹλρ
′( ˜µ, ν, λ)(ỹµ ⊗ ỹ1b+c,b)(ỹµ ⊗ ỹ1b ⊗ ỹ1c)

=
∑
ν

cµ,ν,λỹλ

∑
p∈Pn

b′µ,ν,λ(p)p̂

 (ỹµ ⊗ ỹ1b ⊗ ỹ1c)

=
∑
ν

cµ,ν,λ
∑
p∈S0

b′µ,ν,λ(p)ỹλp̂(ỹµ ⊗ ỹ1b ⊗ ỹ1c)

=ỹλ

∑
p∈S0

∑
ν

cµ,ν,λb
′
µ,ν,λ(p)p̂

 (ỹµ ⊗ ỹ1b ⊗ ỹ1c)

=0 .
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By Lemma 3.8, we have that cµ,ν,λ = 0 for all ν, Therefore, the elements {ρ′µ,ν,λ : ν ∈ µ−b, ν ∈ λ−1c}
are linear independent in Cn. In particular, ρ′µ,ν,λ 6= 0, whenever ν ∈ µ− b, ν ∈ λ− 1c.

We consider p̂ as a morphism in homC (Xn+b, Xa+c). Then

ỹλ

∑
p∈S

∑
ν

cµ,ν,λbµ,ν,λ(p)p̂

 (ỹµ ⊗ ỹ1b ⊗ ỹ1c) = 0.

Note that the set S of pairings are the same as the pairings implemented by

=
∑
ν

cµ,ν,λcr,iρν,λ(ỹν ⊗mk ⊗ ỹ1n−k)(ρµ,ν ⊗ ỹ1i ⊗ ỹ1r−i) .

Note that ρν,λ(ỹν ⊗ mk ⊗ ỹ1n−k)(ρµ,ν ⊗ ỹ1i ⊗ ỹ1r−i) 6= 0 and they are linearly independent for
different τ . Therefore, cµ,ν,λcr,i = 0. Recall that cr,i 6= 0, so cµ,ν,λ = 0. Therefore, the morphisms
{ρµ,ν,λ : ν ∈ µ− b, ν ∈ λ− 1c} are linearly independent. �

Theorem 3.11. Suppose a, b, c ∈ N and r = b+ c. For any Young diagrams µ and λ, |µ| = a+ b,
|λ| = a + c, the elements {ρµ,ν,λ : ν ∈ µ − b, ν ∈ λ − 1c} form a basis of homC (ỹµ ⊗ ỹ1n , ỹλ). In
particular, we obtain the fusion for X1r in a closed form:

X(1r)Xµ =

r∑
i=0

∑
ν∈µ−i

∑
λ∈ν+1r−i

Xλ.

Proof. By Lemmas 3.9, 3.10, {ρµ,ν,λ : ν ∈ µ− b, ν ∈ λ− 1c} form a basis of homC (ỹµ⊗ ỹ1n , ỹλ). �

We remove i cells from µ (no two in the same column), and then we add r − i cells (no two in the
same row).

Corollary 3.12. Applying the automorphism Ω, we obtain the fusion with Xr in a closed form:

X(r)Xµ =

r∑
i=0

∑
ν∈µ−1i

∑
λ∈ν+(r−i)

Xλ.

We remove i cells from λ (no two in the same row), and then we add n− i cells (no two in the
same column).

Remark 3.13. The morphisms can be constructed explicitly following the construction in [3]. They
are essentially used in the proof of Theorem 3.11. We are going to compute the characters and the
generating functions in the next section using Theorem 3.11.

4. Characters, Generating Functions and Fusion Rules for the Generic Case

We begin by introducing the tools we will need from the theory of symmetric functions. All the
material we use can be found in the first chapter of [4].

4.1. Symmetric Functions. Recall that the ring of symmetric functions, Λ, is defined in the
following way.

Definition 4.1. Let n be a natural number, and Rn = Z[x1, x2, . . . , xn]Sn be the ring of symmetric
polynomial in n variables. We write Rkn for the degree k component of Rn. For each k, we have
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maps ρn : Rkn → Rkn−1 defined by setting xn = 0; these form an inverse system, so we may take the

inverse limit lim
←
Rkn. Then, as an abelian group, we define:

Λ =
⊕
k≥0

lim
←
Rkn.

The multiplication on Λ is inherited from the multiplication Rk1n ⊗Rk2n → Rk1+k2n . We may complete
Λ with respect to the grading. In this case we obtain

Λ̂ =
∏
k≥0

lim
←
Rkn.

We introduce some important elements of the ring of symmetric functions.

Proposition 4.2. We have the following facts about Λ:

(1) The polynomials
∑

i1<i2<···<ir

xi1xi2 · · ·xir ∈ Rrn define an element er ∈ lim
←
Rkn called the

r-th elementary symmetric function. These er freely generate Λ as a polynomial ring:

Λ = Z[e1, e2, . . .]. We have the generating function E(t) =
∑
r

ert
r =

∏
i

(1 + xit).

(2) Similarly, the polynomials
∑

i1≤i2≤···≤ir

xi1xi2 · · ·xir ∈ Rrn define an element hr ∈ lim
←
Rkn called

the r-th complete symmetric function. These hr also freely generate Λ as a polynomial ring:

Λ = Z[h1, h2, . . .]. We have the generating function H(t) =
∑
r

hrt
r =

∏
i

(1− xit)−1.

(3) The polynomials
∑
i

xri ∈ Rrn define an element pr ∈ lim
←
Rkn called the r-th power-sum

symmetric function. They freely generate Q⊗ Λ as a polynomial ring over Q (but they do

not generate Λ over Z). We have the generating function P (t) =
∑
r

pr+1t
r =

∑
i

xi
1− xit

.

(4) The generating functions E(t) and H(t) satisfy the relation H(t)E(−t) = 1, and this equation
encodes how to express the elementary symmetric functions in terms of the complete symmetric
functions and vice versa. Similarly, we have H ′(t)/H(t) = P (t), and E′(t)/E(t) = P (−t).
In particular, we have the equations

∑
r≥0

hrt
r = exp

∑
i≥1

pi
i
ti

 ,

∑
r≥0

ert
r = exp

∑
i≥1

(−1)i−1pi
i

ti

 .

(5) Elements of Λ ⊗ Λ may be viewed as polynomials in two sets of variables, say xi and
yj, symmetric in each separately. To indicate which variable set is being considered, we
write f(x) or f(y). Given f ∈ Λ, we write f(x, y) for the element of Λ⊗ Λ defined by the
symmetric function f in the variable set {xi}∪{yj}. (This operation defines a comultiplication
Λ→ Λ⊗ Λ.)

(6) Fix a Young diagram λ = (λ1, λ2, . . .), adding trailing zeros if needed, so that λ has n parts
(usually we do not distinguish between Young diagrams that differ by trailing zeros). The
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polynomials det(x
λj+n−j
i )/det(xn−ji ) ∈ R|λ|n define an element sλ ∈ lim

←
R|λ|n , called the Schur

function associated to λ.
(7) We have that s1r = er and sr = hr.

Example 4.3. We have:

p21 + p2
2

=
1

2

∑
i 6=j

xixj + 2
∑
i

x2i

 =
∑
i≤j

xixj = h2.

Remark 4.4. Schur functions may be viewed as the characters of irreducible representations of
GLn(C) in the following sense. If M ∈ GLn(C) has eigenvalues xi, then the trace of the action of
M on the irreducible representation of GLn(C) corresponding to the Young diagram λ is sλ(xi): the
Schur function corresponding to λ evaluated at the eigenvalues xi. Note that this quantity is zero
unless the Young diagram λ has at most n nonzero parts. This means we have a homomorphism
Λ→ Rn whose kernel has basis sµ for Young diagrams µ with more than n nonzero parts.

We now discuss a bilinear form on Λ.

Proposition 4.5. The ring Λ satisfies the following properties:

(1) The Schur functions form a Z-basis of Λ: Λ = Z{sλ | λ a Young diagram}. In particular,
there is a bilinear form 〈−,−〉 : Λ⊗ Λ→ Z for which the Schur functions are orthonormal.

(2) The adjoint to multiplication by pi is i
∂

∂pi
(where elements of Λ are viewed as polynomials

in the pi with possibly rational coefficients).
(3) The adjoint to multiplication by sµ (with respect to 〈−,−〉) is denoted s⊥µ . The symmetric

function s⊥µ (sλ) is called a skew-Schur function, and denoted sλ/µ. It is nonzero if and only
if µi ≤ λi for all i.

(4) Schur functions satisfy the following multiplication rule sµsν =
∑
µ,ν

cλµ,νsλ, where cλµ,ν are the

Littlewood-Richardson coefficients (which are zero unless |µ|+ |ν| = |λ|). They also satisfy

sλ(x, y) =
∑
µ,ν

cλµ,νsµ(x)sν(y).

(5) The identity er(x, y) =
∑r
i=0 ei(x)er−i(y) shows that c1

r

µ,ν is zero unless µ = 1i and ν = 1r−i

for some 0 ≤ i ≤ r, in which case it is equal to 1.
(6) The Littlewood-Richardson coefficient cλµ,r is zero unless the diagram of λ can be obtained by

adding r cells to the diagram of µ, with no two cells in the same column; this is the Pieri
rule. Similarly, cλµ,1r is zero unless the diagram of λ can be obtained by adding r cells to the
diagram of µ, with no two cells in the same row; this is the dual Pieri rule.

There are two identities that will be important to us, which we now state.

Proposition 4.6. We have the following equations:

(1) The following equality of series holds in a completion of Rn ⊗Rn for each n, and therefore
in a completion of Λ (note that the homogeneous components of the right-hand side define
elements of the inverse limits used to define the ring of symmetric functions):∑

λ

sλ(x)sλ(y) =
∏
i,j

1

1− xiyj
.

This is called the Cauchy Identity.
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(2) Similarly, we have the Dual Cauchy Identity:∑
λ

sλ(x)sλ′(y) =
∏
i,j

(1 + xiyj).

Here, λ′ is the Young diagram dual to λ.

There is another operation on symmetric functions called plethysm.

Definition 4.7. Given symmetric functions f and g which are sums of monomials in the variables
xi with coefficients in Z≥0, the plethysm of g with f is a symmetric function denoted g[f ]. It may be
calculated in the following way. Express f(x1, x2, . . .) as a sum of monomials (repeated according to

their multiplicity) f =
∑
i x

α
(i)
1

1 x
α

(i)
2

2 · · · . Then g[f ] is the symmetric function obtained by evaluating g

on the variable set given by the monomials x
α

(i)
1

1 x
α

(i)
2

2 · · · . It immediately follows that the map Λ→ Λ
defined by g 7→ g[f ] is an algebra homomorphism (but this is not true for f 7→ g[f ]).

Remark 4.8. There is a way of generalising the above definition to f and g for which are not
necessarily a positive (or even integral, if one is prepared to base change Λ) sum of monomials. The
most general definition is the one given in Chapter 1, Section 8 of [4].

Remark 4.9. Let f =
∑
µmµsµ be the character of a representation V of GLn(C) (where n is

taken to be sufficiently large), so mµ ∈ Z≥0, and all but finitely many mµ are zero. Thus, f encodes

a homomorphism ϕf : GLn(C)→ GL(V ). Similarly, fix g =
∑
ν

nνsν (with the same conditions on

nν as on mµ), which uniquely defines a representation W of GL(V ) = GLdim(V )(C), encoding a
homomorphism ϕg : GL(V )→ GL(W ). Then, W is a representation of GLn(C) via the composition
ϕg ◦ ϕf :

GLn(C)
ϕf−−→ GL(V )

ϕg−−→ GL(W ).

The character of this representation is the plethysm g[f ]. The value of n used in this construction
does not affect g[f ], provided it is large enough (e.g. n = deg(f) deg(g) will suffice).

Example 4.10. We show that e1 =
∑
i

xi is a two-sided identity for plethysm. Note that by

definition, e1[f ] recovers the sum of the monomials of f , namely f itself. On the other hand, f [e1]
is the evaluation of f on the variable set {xi} (the monomials of e1), which again is f itself. This
is consistent with the formulation in terms of representations of general linear groups, where ϕe1
represents the identity map GLn(C)→ GLn(C) (for any n).

Remark 4.11. For power-sum symmetric functions pr, plethysm has some useful properties. In
particular, pr[f ] = f [pr] for arbitrary f , because both sides are equal to the symmetric function
obtained by multiplying the exponents of all monomials of f by r. As a special case, we obtain
pr1 [pr2 ] = pr2 [pr1 ] = pr1r2 .

Ultimately, the result we need about plethysm is the following.

Theorem 4.12. We have the following equation:

hr[h2] =
∑
|λ|=r

s2λ,

where, if λ = (λ1, λ2, . . . , λk), then 2λ = (2λ1, 2λ2, . . . , 2λk).
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Proof. This can be found in Chapter 1, Section 8, Example 6 of [4]. Alternatively, see Example
A2.9 of [5]. �

We now introduce a linear operator which will play an important role in what follows, and prove
some properties that it satisfies.

Definition 4.13. Let L be the linear operator on the completion of Λ defined by multiplication by∏
i≤j

1

1 + xixj
.

Proposition 4.14. The adjoint of L with respect to 〈−,−〉 is:

L† =
∑
µ

(−1)|µ|s⊥2µ.

Proof. We recognise the product defining L as the generating function of complete symmetric
functions evaluated at −1, with variable set {xixj}i≤j (these are the monomials in h2); the degree
2r component of this sum is precisely what is computed in Theorem 4.12. Thus,

∏
i≤j

1

1 + xixj
= H(−1)[h2] =

∑
r≥0

(−1)rhr[h2] =
∑
r≥0

(−1)r
∑
|µ|=r

s2µ =
∑
µ

(−1)|µ|s2µ.

Noting that the adjoint of multiplication by s2µ is s⊥2µ, the proposition follows. �

Notation 4.15. Let φ2 : GLn → GLn(n+1)/2 be the symmetric square representation of GLn and
φ1r be the r-th antisymmetric power representation of GLn(n+1)/2. Then φ1rφ2 is a representation
of GLn. The multiplicity of the irreducible representation of GLn with highest weight λ in φ1rφ2 is
denoted by bn,r,λ. We define br,λ = lim

n→∞
bn,r,λ. Then

er[h2] =
∑
λ

br,λsλ;(25)

L−1 =
∏
i≤j

(1 + xixj) =
∑
r≥0

er[h2] =
∑
r≥0,λ

br,λsλ.(26)

Lemma 4.16. Let θi = 1+(−1)i
2 , so that θi is equal to 0 when i is odd, and equal to 1 when i is even.

When expressed in terms of power-sum symmetric functions, L has the following form:

L = exp

(∑
i

(−1)ip2i + 2(−1)i/2θipi
2i

)
.
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Proof. We write L = H(−1)[h2] (as in the proof of Proposition 4.14), where we express H(−1) and
h2 in terms of power-sum symmetric functions. We use Remark 4.11 to manipulate the plethysm:

L = exp

(∑
i

(−1)ipi
i

)
[
p21 + p2

2
]

= exp

(∑
i

(−1)ipi[
p21+p2

2 ]

i

)

= exp

(∑
i

(−1)i
p21+p2

2 [pi]

i

)

= exp

(∑
i

(−1)i
p2i+p2i

2

i

)

= exp

(∑
i

(−1)i(p2i + p2i)

2i

)
.

We rearrange the sum so that all instances of pi occur in the i-th summand. This means moving the
term (−1)ip2i/2i from the i-th summand to the 2i-th summand. Upon noting that only even index
summands obtain a contribution in this way, we obtain the stated formula. �

Proposition 4.17. Consider Λ⊗Λ as the set of symmetric functions in two sets of variables {x(1)i }
and {x(2)i }. Suppose that the symmetric function f satisfies f(x(1), x(2)) =

∑
i gi(x

(1))hi(x
(2)). Then,

we have the following equation:(∑
λ

sλ(x(1))sλ′(x
(2))

)
L(f)(x(1), x(2)) = L(gi)(x

(1))L(hi)(x
(2)).

Proof. In the definition of L (considered to have variable set {x(1)i } ∪ {x
(2)
i }), products of pairs of

variables take one of three forms: either both variables come from {x(1)i }, or both variables come from

{x(2)i }, or one variable comes from each. Giving L a subscript to show its variable set, we obtain:

L{x(1)
i }∪{x

(2)
i }

=
∏
i1≤i2

1

1 + x
(1)
i1
x
(1)
i2

∏
i1≤i2

1

1 + x
(2)
i1
x
(2)
i2

∏
i1,i2

1

1 + x
(1)
i1
x
(2)
i2

.

Moving the last factor to the left-hand side, and using the Dual Cauchy Identity,(∑
λ

sλ(x(1))sλ′(x
(2))

)
L{x(1)

i }∪{x
(2)
i }

= L{x(1)
i }

L{x(2)
i }

.

This is equivalent to the statement of the proposition. �

4.2. Characters, Generating Functions and Fusion Rules. In this section, we recall some
properties of the Grothendieck ring G, and then study its structure using symmetric functions. Recall
that G has basis {Yλ} indexed by Young diagrams.

Notation 4.18. By Schur-Weyl duality, we obtain a ring isomorphism Φ : G → Λ, such that
Φ(Yλ) = sλ. Moreover,

YµYν =
∑
λ

cλµ,νYλ,
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where cλµ,ν are the Littlewood-Richardson coefficients.

Recall that sλ/2µ is a skew-Schur function, and 2µ is the Young diagram obtained by doubling
each part of µ.

Definition 4.19. By Theorem 2.8, we define a ring isomorphism Φ : G → Λ, such that

Φ(Yλ) = sλ, ∀ λ.

In particular,

Φ(X1r ) = Φ(Y1r ) = s1r , ∀ r ≥ 0.

Theorem 4.20. For any Young diagram λ, we call Φ(Xλ) the character of Xλ in G. Then

Φ(Xλ) = L†sλ =
∑
µ

(−1)|µ|sλ/2µ ;(27)

Xλ =
∑
µ,ν

2|µ|+|ν|=|λ|

(−1)|µ|cλ2µ,νYν .(28)

Proof. To prove the first statement, it suffices (by induction on λ) to show that the claimed
expressions for the Φ(Xλ) multiply according to the rule defined by Theorem 3.11. When we encode
the operations of removing and adding cells via the Pieri rule and dual Pieri rule, what we must
prove becomes

erL
†(sλ) =

r∑
i=0

L†(er−ih
⊥
i sλ).

This is precisely the assertion of the following equality of operators: erL
† =

∑r
i=0 L

†er−ih
⊥
i . We

prove the adjoint of this equality, namely Le⊥r =
∑r
i=0 hie

⊥
r−iL. To prove this statement for all r

simultaneously, we multiply by tr and sum over r ≥ 0; it is equivalent to prove the following identity
of (operator-valued) generating functions:

LE(t)⊥ = H(t)E(t)⊥L.

We rewrite all quantities in terms of power-sum symmetric functions. We have:

E(t)⊥ = exp

(∑
i

(−1)i−1p⊥i
i

ti

)
= exp

(∑
i

(−1)i−1
∂

∂pi
ti

)
,

H(t) = exp

(∑
i

pi
i
ti

)
,

L = exp

(∑
i

(−1)ip2i + 2(−1)i/2θipi
2i

)
.

(Recall from Lemma 4.16 that θi is equal to 0 if i is odd, and equal to 1 if i is even.) We use an
operator-theoretic version of Taylor’s theorem, namely

exp

(
a
∂

∂x

)
f(x) = f(x+ a).
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Applying this termwise to the composition of operators E(t)⊥L, we obtain:

E(t)⊥L = exp

(∑
i

(−1)i−1
∂

∂pi
ti

)
exp

(∑
i

(−1)ip2i + 2(−1)i/2θipi
2i

)

= exp

(∑
i

(−1)i(pi + (−1)i−1ti)2 + 2(−1)i/2θi(pi + (−1)i−1ti)

2i

)
exp

(∑
i

(−1)i−1
∂

∂pi
ti

)

= exp

(∑
i

(−1)ip2i − 2tipi + (−1)it2i + 2(−1)i/2θipi + 2(−1)i/2θi(−1)i−1ti

2i

)
E(t)⊥

= exp

(
−
∑
i

pit
i

i

)
exp

(∑
i

(−1)ip2i + 2(−1)i/2θipi
2i

)

× exp

(∑
i

(−1)it2i + 2(−1)i/2θi(−1)i−1ti

2i

)
E(t)⊥.

We recognise the first term as H(t)−1, the second term as L, and the third term as 1 (noting that all
powers of t cancel out). Thus we have:

H(t)−1LE(t)⊥ = E(t)⊥L,

which is equivalent to the statement

Φ(Xλ) = L†sλ =
∑
µ

(−1)|µ|sλ/2µ.

Furthermore,

Φ(Xλ) =
∑
µ

(−1)|µ|sλ/2µ =
∑
µ,ν

2|µ|+|ν|=|λ|

(−1)|µ|cλ2µ,νsν =
∑
µ,ν

2|µ|+|ν|=|λ|

(−1)|µ|cλ2µ,νΦ(Yν).

Recall that Φ is an isomorphism, so

Xλ =
∑
µ,ν

2|µ|+|ν|=|λ|

(−1)|µ|cλ2µ,νYν ,

�

Theorem 4.21. For a Young diagram λ, let us define λ< to be set of proper sub Young diagrams µ,
such that |λ| − |µ| ∈ 2N+. Then

Yλ = Xλ +
∑
µ∈λ<

nλ,µXµ,(29)

∑
λ

nλ,µsλ = L−1sµ = sµ
∏
i≤j

(1 + xixj),(30)

nλ,µ =
∑
r≥0,ν

br,νc
λ
µ,ν .(31)

Proof. We assume that

Yλ =
∑
µ

nλ,µXµ, for some nλ,µ ∈ N.
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By Theorem 4.20,

sλ =
∑
µ

nλ,µL
†sµ.

Then

〈L−1sν , sλ〉 =
∑
µ

nλ,µ〈L−1sν , L†sµ〉 =
∑
µ

nλ,µ〈sν , sµ〉 = nλ,ν .

By Equation (26), ∑
λ

nλ,µsλ =
∑
λ

〈L−1sµ, sλ〉sλ = L−1sµ = sµ
∏
i≤j

(1 + xixj).

Moreover,

nλ,µ = 〈L−1sµ, sλ〉 = 〈
∑
r≥0,ν

br,νsνsµ, sλ〉 =
∑
r≥0,ν

br,νc
λ
µ,ν .

�

Theorem 4.22. We have the following generating function for Φ(Xλ),∑
λ

sλ(x)Φ(Xλ)(y) =
∏
i1≤i2

1

1 + xixj

∏
i,j

1

1− xiyj
.

(Here Φ(Xλ)(y) means that the symmetric function Φ(Xλ) has variable set {yj}.)

Proof. Now we apply Theorem 4.20 to prove this theorem. We consider the first equation of Theorem
4.20 as a having symmetric function variables {yj}, and multiply by sλ(x). Summing over λ, we are
required to show: ∑

λ

sλ(x)
∑
µ

(−1)|µ|sλ/2µ(y) =
∏
i1≤i2

1

1 + xixj

∏
i,j

1

1− xiyj

We now calculate:∑
λ

sλ(x)
∑
µ

(−1)|µ|sλ/2µ(y) =
∑
λ

sλ(x)L†(sλ)(y)

=
∑
λ

∑
ρ

〈sρ, L†(sλ)〉sλ(x)sρ(y)

=
∑
ρ

∑
λ

〈L(sρ), sλ〉sλ(x)sρ(y)

=
∑
ρ

L(sρ)(x)sρ(y)

=
∏
i1≤i2

1

1 + xixj

∑
ρ

sρ(x)sρ(y)

=
∏
i1≤i2

1

1 + xixj

∏
i,j

1

1− xiyj
.

�
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Theorem 4.23. We have the following fusion rules:

Rλµ,ν =
∑
α,β,γ

cµα,βc
ν
β′,γc

λ
α,γ .

(Here β′ is the Young diagram dual to β.)

Proof. Now we apply Theorem 4.22 to prove this theorem. To do this, we consider a suitable
generating function for the Rλµ,ν , and express it in terms of two instances of the generating function

in the second part of the theorem. We work with three variable sets: {x(1)i }, {x
(2)
i }, and {yj}, and

use Proposition 4.17.

∑
µ,ν,λ

Rλµ,νsµ(x(1))sν(x(2))Φ(Xλ)(y)

=
∑
µ,ν

sµ(x(1))sν(x(2))Φ(Xµ)(y)Φ(Xν)(y)

=
∑
µ

sµ(x(1))Φ(Xµ)(y)
∑
ν

sν(x(2))Φ(Xν)(y)

=
∑
µ

L(sµ)(x(1))sµ(y)
∑
ν

L(sν)(x(2))sν(y)

=
∑
µ,ν

L(sµ)(x(1))L(sν)(x(2))
∑
λ

cλµ,νsλ(y)

=
∑
µ,ν

L{x(1)}L{x(2)}sµ(x(1))sν(x(2))
∑
λ

cλµ,νsλ(y)

=
∑
µ,ν

∑
β

sβ(x(1))sβ′(x
(2))

L{x(1)}∪{x(2)}sµ(x(1))sν(x(2))
∑
λ

cλµ,νsλ(y)

=

∑
β

sβ(x(1))sβ′(x
(2))

L{x(1)}∪{x(2)}
∑
λ

sλ(y)
∑
µ,ν

cλµ,νsµ(x(1))sν(x(2))

=

∑
β

sβ(x(1))sβ′(x
(2))

L{x(1)}∪{x(2)}
∑
λ

sλ(y)sλ(x(1), x(2))

=

∑
β

sβ(x(1))sβ′(x
(2))

∑
λ

sλ(x(1), x(2))Φ(Xλ)(y).
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At this point, we may take the coefficient of Φ(Xλ)(y) (these form a basis of Λ) to deduce

∑
µ,ν

Rλµ,νsµ(x(1))sν(x(2)) =

∑
β

sβ(x(1))sβ′(x
(2))

 sλ(x(1), x(2))

=

∑
β

sβ(x(1))sβ′(x
(2))

∑
α,γ

cλα,γsα(x(1))sγ(x(2))

=
∑
µ,ν

∑
α,β,γ

cµα,βc
ν
β′,γc

λ
α,γsµ(x(1))sν(x(2)).

Taking coefficient of sµ(x(1))sν(x(2)), we recover the formula for Rλµ,ν . �

Note that if |α| = a, |β| = b, |γ| = c, and

cµα,βc
ν
β′,γc

λ
α,γ 6= 0,

then |µ| = a+ b, |ν| = b+ c, |λ| = a+ c. Conversely, a, b, c are determined by |µ|, |ν|, |λ|. Thus the
equation in Theorem 4.23 is a finite sum.

Definition 4.24. Recall that the simple objects ỹγ and ỹγ′ are dual to each other in C . We denote
∪β to be the evaluation map in the hom space homC (ỹβ ⊗ ỹβ′ , ∅). For Young diagrams µ, ν, λ, α,
β, γ, with |µ| = a+ b, |ν| = b+ c, |λ| = a+ c, |α| = a, |β| = b, |γ| = c, we define the triangle map
5 : homC (ỹµ, ỹα ⊗ ỹβ′)⊗ homC (ỹµ, ỹβ ⊗ ỹγ)⊗ homC (ỹα ⊗ ỹγ , ỹλ)→ homC (ỹµ ⊗ ỹν , ỹλ) as

5(ρ1 ⊗ ρ2 ⊗ ρ3) = ρ3(ỹµ ⊗ ∪β ⊗ ỹλ)(ρ1 ⊗ ρ2)

= ỹα

ỹβ ỹβ′

ỹγ

ỹν

ρ2

ỹµ

ρ1

ỹλ

ρ3

.

Theorem 4.25. For any Young diagrams µ, ν, λ, the triangle map 5 is an embedding map and

homC (ỹµ ⊗ ỹν , ỹλ) =
⊕
α,β,γ

5 (homC (ỹµ, ỹα ⊗ ỹβ′)⊗ homC (ỹµ, ỹβ ⊗ ỹγ)⊗ homC (ỹα ⊗ ỹγ , ỹλ)) .

Proof. Similarly to the proof of Lemma 3.9, we take

x̃p1,p2,p3 = ỹλxp1,p2,p3(ỹµ ⊗ ỹν).
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Then {x̃p1,p2,p3 : p1 ∈ Pa+b, p2 ∈ Pb+c, p3 ∈ Pa+c.} is a spanning set of homC (ỹµ⊗ ỹν , ỹλ). Note that
the 180◦ rotation of sb is sb. So

x̃p1,p2,p3 = sa

sb sb

sc

ỹν

p̂2

ỹµ

p̂1

ỹλ

p̂3

=
∑
α,β,γ

∑
ρ1,ρ2,ρ3

ỹα

ỹβ ỹβ′

ỹγ

ỹν

ρ2

ỹµ

ρ1

ỹλ

ρ3

=
∑
α,β,γ

∑
ρ1,ρ2,ρ3

5(ρ1, ρ2, ρ3).

for some Young diagrams α, β, γ, with |α| = a, |β| = b, |γ| = c, and some morphisms ρ1 ⊗ ρ2 ⊗ ρ3 ∈
homC (ỹµ, ỹα ⊗ ỹβ′)⊗ homC (ỹµ, ỹβ ⊗ ỹγ)⊗ homC (ỹα ⊗ ỹγ , ỹλ). Therefore⋃

α,β,γ

5 (homC (ỹµ, ỹα ⊗ ỹβ′)⊗ homC (ỹµ, ỹβ ⊗ ỹγ)⊗ homC (ỹα ⊗ ỹγ , ỹλ))

is a spanning set of homC (ỹµ ⊗ ỹν , ỹλ). By Proposition 2.5,

Rλµ,ν = dim homC (ỹµ ⊗ ỹν , ỹλ)

≤
∑
α,β,γ

dim homC (ỹµ, ỹα ⊗ ỹβ′)× dim homC (ỹµ, ỹβ ⊗ ỹγ)× dim homC (ỹα ⊗ ỹγ , ỹλ)

=
∑
α,β,γ

dim homH(yµ, yα ⊗ yβ′)× dim homH(yµ, yβ ⊗ yγ)× dim homH(yα ⊗ yγ , yλ)

=
∑
α,β,γ

cµα,βc
ν
β′,γc

λ
α,γ .

By Theorem 4.23, the equality holds. So the triangle map 5 is an embedding map and

homC (ỹµ ⊗ ỹν , ỹλ) =
⊕
α,β,γ

5 (homC (ỹµ, ỹα ⊗ ỹβ′)⊗ homC (ỹµ, ỹβ ⊗ ỹγ)⊗ homC (ỹα ⊗ ỹγ , ỹλ)) .

�

Remark 4.26. Combining Theorem 4.25 and Proposition 2.5, we can construct an explicit basis of
homC (ỹµ ⊗ ỹν , ỹλ) using sn and the basis of the hom spaces homH(ỹµ, yα ⊗ yβ′), homH(yµ, yβ, yγ),
homH(yα ⊗ yγ , yλ) in the Hecke algebra H. Applying the evaluation algorithm of the Yang-Baxter
relation, we obtain the 6j-symbols of C .

When the Young diagrams are small, the 6j-symbols can be computed by hand or by computer.
We do not expect to compute 6j-symbols for large Young diagrams in this way, the complexity of
this algorithm grows exponentially w. r. t. the size of the Young diagrams. Even computing the
6j-symbols for Rep(H(q)) remains challenging.
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