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Summary.The purpose of this paper is to propose methodologies for statistical inference of low
dimensional parameters with high dimensional data.We focus on constructing confidence inter-
vals for individual coefficients and linear combinations of several of them in a linear regression
model, although our ideas are applicable in a much broader context.The theoretical results that
are presented provide sufficient conditions for the asymptotic normality of the proposed estima-
tors along with a consistent estimator for their finite dimensional covariance matrices. These
sufficient conditions allow the number of variables to exceed the sample size and the presence
of many small non-zero coefficients. Our methods and theory apply to interval estimation of a
preconceived regression coefficient or contrast as well as simultaneous interval estimation of
many regression coefficients. Moreover, the method proposed turns the regression data into
an approximate Gaussian sequence of point estimators of individual regression coefficients,
which can be used to select variables after proper thresholding. The simulation results that are
presented demonstrate the accuracy of the coverage probability of the confidence intervals
proposed as well as other desirable properties, strongly supporting the theoretical results.

Keywords: Confidence interval; High dimension; Linear regression model; p-value; Statistical
inference

1. Introduction

The area of high dimensional data is an area of intense research in statistics and machine
learning, owing to the rapid development of information technologies and their applications in
scientific experiments and everyday life. Numerous large, complex data sets have been collected
and are waiting to be analysed; meanwhile, an enormous effort has been mounted to meet this
challenge by researchers and practitioners in statistics, computer science and other disciplines.
A great number of statistical methods, algorithms and theories have been developed for the
prediction and classification of future outcomes, the estimation of high dimensional objects and
the selection of important variables or features for further scientific experiments and engineering
applications. However, statistical inference with high dimensional data is still largely untouched,
owing to the complexity of the sampling distributions of existing estimators. This is particularly
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so in the context of the so-called large p smaller n problem, where the dimension of the data p

is greater than the sample size n.
Regularized linear regression is one of the best understood statistical problems in high

dimensional data. Important work has been done in problem formulation, methodology and
algorithm development, and theoretical analysis under sparsity assumptions on the regres-
sion coefficients. This includes l1 regularized methods (Tibshirani, 1996; Chen et al., 2001;
Greenshtein and Ritov, 2004; Greenshtein, 2006; Meinshausen and Bühlmann, 2006; Tropp,
2006; Zhao and Yu, 2006; Candès and Tao, 2007; Zhang and Huang, 2008; Bickel et al., 2009;
Koltchinskii, 2009; Meinshausen and Yu, 2009; van de Geer and Bühlmann, 2009; Wainwright,
2009a; Zhang, 2009; Ye and Zhang, 2010; Koltchinskii et al., 2011; Sun and Zhang, 2010),
non-convex penalized methods (Frank and Friedman, 1993; Fan and Li, 2001; Fan and Peng,
2004; Kim et al., 2008; Zhang, 2010; Zhang and Zhang, 2012), greedy methods (Zhang, 2011a),
adaptive methods (Zou, 2006; Huang et al., 2008; Zhang, 2011b; Zhang and Zhang, 2012),
screening methods (Fan and Lv, 2008), and more. For further discussion, we refer to related
sections in Bühlmann and van de Geer (2011) and recent reviews in Fan and Lv (2010) and
Zhang and Zhang (2012).

Among existing results, variable selection consistency is most relevant to statistical inference.
In an l0 sparse setting, an estimator is variable selection consistent if it selects the oracle model
composed of exactly the set of variables with non-zero regression coefficients. In the large p
smaller n setting, variable selection consistency has been established under incoherence and
other l∞-type conditions on the design matrix for the lasso (Meinshausen and Bühlmann,
2006; Tropp, 2006; Zhao and Yu, 2006; Wainwright, 2009a), and under sparse eigenvalue or
l2-type conditions for non-convex methods (Zhang, C. H., 2010; Zhang, T., 2011a,b; Zhang
and Zhang, 2012). Another approach in variable selection with high dimensional data involves
subsampling or randomization, including notably the stability selection method (Meinshausen
and Bühlmann, 2010). Since the oracle model is typically assumed to be of smaller order in
dimension than the sample size n in selection consistency theory, consistent variable selection
allows a great reduction of the complexity of the analysis from a large p smaller n problem
to a problem involving the oracle set of variables only. Consequently, taking the least squares
estimator on the selected set of variables if necessary, statistical inference can be justified in the
smaller oracle model.

However, statistical inference based on selection consistency theory typically requires a uni-
form signal strength condition that all non-zero regression coefficients be greater in magnitude
than an inflated level of noise to take model uncertainty into account. This inflated level of noise
can be written as Cσ

√{.2=n/ log.p/}, where σ is the level of noise. It follows from Fano’s lemma
(Fano, 1961) that C � 1

2 is required for variable selection consistency with a general standard-
ized design matrix (Wainwright, 2009b; Zhang, 2010). This uniform signal strength condition is,
unfortunately, seldom supported by either the data or the underlying science in applications when
the presence of weak signals cannot be ruled out. In such cases, consistent estimation of the
distribution of the least squares estimator after model selection is impossible (Leeb and Potscher,
2006). Conservative statistical inference after model selection or classification has been consid-
ered in Berk et al. (2010) and Laber and Murphy (2011). However, such conservative methods
may not yield sufficiently accurate confidence regions or p-values for common applications with
a large number of variables.

We propose a low dimensional projection (LDP) approach to constructing confidence
intervals for regression coefficients without assuming the uniform signal strength condition. We
provide theoretical justifications for the use of the proposed confidence interval for a precon-
ceived regression coefficient or a contrast depending on a small number of regression coefficients.
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We believe that, in the presence of potentially many non-zero coefficients of small or moderate
magnitude, construction of a confidence interval for such a preconceived parameter is an
important problem in and of itself and was open before our paper (Leeb and Potscher, 2006),
but the method proposed is not limited to this application.

Our theoretical work also justifies the use of LDP confidence intervals simultaneously after
a multiplicity adjustment, in the absence of a preconceived parameter of interest. Moreover, a
thresholded LDP estimator can be used to select variables and to estimate the entire vector of
regression coefficients.

The most important difference between the LDP and existing variable selection approaches
concerns the requirement of the uniform signal strength condition, as we have mentioned earlier.
This is a necessity for the simultaneous correct selection of all zero and non-zero coefficients.
If this criterion is the goal, we cannot do better than technical improvements over existing
methods. However, a main complaint about the variable selection approach is the practicality
of the uniform signal strength condition, and the crucial difference between the two approaches is
precisely in the case where the condition fails to hold. Without the condition, the LDP approach
is still able to select correctly all coefficients above a threshold of order C

√{.2=n/ log.p/} and all
zero coefficients. The power of the LDP method is small for testing small non-zero coefficients,
but this is unavoidable and does not affect the correct selection of other variables. In this sense, the
confidence intervals proposed decompose the variable selection problem into multiple marginal
testing problems for individual coefficients as Gaussian means.

Most results presented here are available through Zhang and Zhang (2011). Proofs for the
current paper are provided in the on-line supplement.

2. Methodology

We develop methodologies and algorithms for the construction of confidence intervals for the
individual regression coefficients and their linear combinations in the linear model

y=Xβ+ε, ε∼N .0, σ2I/, .1/

where y∈Rn is a response vector, X= .x1, : : : , xp/∈Rn×p is a design matrix with columns xj and
β= .β1, : : : , βp/T is a vector of unknown regression coefficients. When rank.X/<p, β is unique
under proper conditions on the sparsity of β, but not in general. To simplify the discussion,
we standardize the design to ‖xj‖22= n. The design matrix X is assumed to be deterministic
throughout the paper, except in Section 3.5.

The following notation will be used. For real numbers x and y, x∧ y=min.x, y/, x∨ y=
max.x, y/, x+=x∨0 and x−= .−x/+. For vectors v= .v1, : : : , vm/ of any dimension, supp.v/=
{j : vj 	= 0}, ‖v‖0= |supp.v/| =#{j : vj 	= 0} and ‖v‖q= {Σj |vj|q/1=q, with the usual extension
to q=∞. For A⊂{1, : : : , p}, vA= .vj, j∈A/T and XA= .xk, k∈A/, including A=−j={1, : : : ,
p}\{j}.

2.1. Bias-corrected linear estimators
In the classical theory of linear models, the least squares estimator of an estimable regression
coefficient βj can be written as

β̂
.lse/

j := .x⊥j /Ty=.x⊥j /Txj, .2/

where x⊥j is the projection of xj to the orthogonal complement of the column space of X−j=
.xk, k 	= j/. Since this is equivalent to solving the equations .x⊥j /T.y−βjxj/ in the score system
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v→ .x⊥j /Tv, x⊥j can be viewed as the score vector for the least squares estimation of βj. The
score vector x⊥j can be defined by .x⊥j /Txk= 0 ∀k 	= j and .x⊥j /Txj =‖x⊥j ‖22. For estimable βj

and βk,

cov.β̂
.lse/

j , β̂
.lse/

k /=σ2.x⊥j /Tx⊥k =.‖x⊥j ‖22‖x⊥k ‖22/: .3/

In the high dimensional setting p>n, rank.X−j/=n for all j when X is in general position. In
this case x⊥j =0 and estimator (2) is undefined. However, it may still be interesting to preserve
certain properties of the least squares estimator. This can be done by retaining the main equation
zT

j .y− βjxj/= 0 in a score system zj : v→ zT
j v and relaxing the constraint zT

j xk = 0 for k 	=
j, resulting in a linear estimator. For any score vector zj that is not orthogonal to xj, the
corresponding univariate linear regression estimator satisfies

β̂
.lin/

j = zT
j y

zT
j xj

=βj+
zT

j ε

zT
j xj

+∑
k 	=j

zT
j xkβk

zT
j xj

:

The estimator consequently has a covariance structure of form (3). A problem with the new
system is its bias. For every k 	= j with zT

j xk 	=0, the contribution of βk to the bias is linear in βk.
Thus, under the assumption ‖β‖0 �2, which is very strong, the bias of β̂

.lin/
j is still unbounded

when zT
j xk 	= 0 for at least one k 	= j. We note that, for rank.X−j/=n, it is impossible to have

zj 	=0 and zT
j xk=0 for all k 	= j, so bias is unavoidable. Nevertheless, this simple analysis of the

linear estimator suggests a bias correction with a non-linear initial estimator β̂.init/:

β̂j= β̂
.lin/

j −∑
k 	=j

zT
j xkβ̂

.init/
k

zT
j xj

= zT
j y

zT
j xj

−∑
k 	=j

zT
j xkβ̂

.init/
k

zT
j xj

: .4/

We may also interpret equation (4) as a one-step self-bias correction from the initial estimator
and write

β̂j := β̂
.init/
j + zT

j .y−Xβ̂
.init/

/=zT
j xj:

The estimation error of equation (4) can be decomposed as a sum of the noise and the
approximation errors:

β̂j−βj=
zT

j ε

zT
j xj

+

∑
k 	=j

zT
j xk.βk− β̂

.init/
k /

zT
j xj

: .5/

We require that zj be a vector depending on X only, so that zT
j ε=‖zj‖2∼N.0, σ2/. A full descrip-

tion of equation (4) still requires the specification of the score vector zj and the initial estimator
β̂

.init/
. These choices will be discussed in the following two subsections.

2.2. Low dimensional projections
We propose to use as zj a relaxed orthogonalization of xj against other design vectors. Recall
that zj aims to play the role of x⊥j , the projection of xj to the orthogonal complement of the
column space of X−j= .xk, k 	=j/. In the trivial case where ‖x⊥j ‖2 is not too small, we may simply
take zj=x⊥j . In addition to the case of rank.X−j/=n, in which x⊥j =0, a relaxed projection may
be useful when ‖x⊥j ‖2 is positive but small. Since a relaxed projection zj is used and estimator
(4) is a bias-corrected projection of y in the direction of zj, hereafter we call estimator (4) the
low dimensional projection estimator (LDPE) for easy reference.

A proper relaxed projection zj should control both the noise and the approximation error
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terms in equation (5), given suitable conditions on {X, β} and an initial estimator β̂.init/. The
approximation error of the LDPE (4) can be controlled by bounding the numerator of the bias
term in equation (5) as follows:∣∣∣∣ ∑

k 	=j

zT
j xk.βk− β̂

.init/
k /

∣∣∣∣�
(

max
k 	=j
|zT

j xk|
)
‖β̂.init/−β‖1: .6/

This conservative bound is conveniently expressed as the product of a known function of zj and
the initial estimation error independent of j. For score vectors zj, define

ηj=max
k 	=j
|zT

j xk|=‖zj‖2,

τj=‖zj‖2=|zT
j xj|:

.7/

We refer to ηj as the bias factor since ηj‖β̂.init/ −β‖1 controls the approximation error in
constraint (6) relative to the length of the score vector. We refer to τj as the noise factor, since
τjσ is the standard deviation of the noise component in equation (5). Since zT

j ε∼N.0, σ2‖zj‖22/,
equation (5) yields

ηj‖β̂.init/−β‖1=σ=o.1/⇒ τ−1
j .β̂j−βj/≈N.0, σ2/: .8/

Thus, we would like to pick a zj with a small ηj for the asymptotic normality and a small τj

for efficiency of estimation. Confidence intervals for βj and linear functionals of them can be
constructed subject to condition (8) and a consistent estimator of σ.

We still need a suitable zj, a relaxed orthogonalization of xj against other design vectors.
When the unrelaxed x⊥j is non-zero, it can be viewed as the residual of the least squares fit of xj

on X−j. A familiar relaxation of the least squares method is the addition of an l1-penalty. This
leads to the choice of zj as the residual of the lasso. Let γ̂j be the vector of coefficients from the
lasso regression of xj on X−j. The lasso-generated score is

zj=xj−X−jγ̂j, γ̂j=arg min
b

{
‖xj−X−jb‖22

2n
+λj‖b‖1

}
: .9/

It follows from the Karush–Kuhn–Tucker conditions for equation (9) that |xT
k zj=n|�λj for all

k 	= j, so expression (7) holds with ηj �nλj=‖zj‖2. This gives many choices of zj with different
{ηj, τj}. Explicit choices of such a zj, or equivalently a λj, are described in the next subsection.
A rationale for the use of a common penalty level λj for all components of b in equation (9) is
the standardization of all design vectors. In an alternative in Section 2.4, called the restricted
LDPE (RLDPE), the penalty is set to 0 for certain components of b in equation (9).

2.3. Implementation of the low dimensional projection estimator
We must pick β̂.init/, σ̂, and the λj in equation (9). Since consistent estimation of σ and fully
automatic choices of λj are needed, we use methods based on the scaled lasso and the least
squares estimator after model selection by the scaled lasso (called the scaled lasso–LSE method).
We outline the basic ideas and specific implementations in Table 1.

The scaled lasso (Antoniadis, 2010; Sun and Zhang, 2010, 2012) is a joint convex minimization
method given by

{β̂
.init/

, σ̂}=arg min
b,σ

{
‖y−Xb‖22

2σn
+ σ

2
+λ0‖b‖1

}
, .10/
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Table 1. LDPE .1�α/% confidence intervals for a preconceived βj

Step Idea Specific implementation

1 Find an initial estimate β̂
.init/

of the Scaled lasso (10) or least squares estimator
entire β and a consistent estimate σ̂ after scaled lasso selection (11)

2 Find zj as an approximate projection Residuals, with small bias and noise
of xj to X−j in the sense of near factors (7), in lasso regression of xj
orthogonality to each xk , k 	= j against X−j (Table 2)

3 Calculate the LDPE β̂j bias correction β̂j= β̂
.init/
j + zT

j .y−Xβ̂.init//=zT
j xj

by projecting the residual of β̂.init/ to zj

4 Calculate the noise factor τj τj=‖zj‖2=|zT
j xj |

5 Calculate the LDPE confidence interval β̂j±Φ−1.1−α=2/σ̂τj

with a preassigned penalty level λ0. It automatically provides an estimate of the noise level in
addition to the initial estimator of β. We use λ0=λuniv=

√{.2=n/ log.p/} in our simulation
study. Existing error bounds for the estimation of both β and σ require λ0=A

√{.2=n/ log.p=ε/}
with certain A> 1 and 0 < ε�1 (Sun and Zhang, 2012).

Estimator (10) has appeared in the literature in different forms. The joint minimization for-
mulation was given in Antoniadis (2010), and an equivalent algorithm in Sun and Zhang (2010).
If the minimum over b is taken first in equation (10), the resulting σ̂ appeared earlier in Zhang
(2010). The square-root lasso (Belloni et al., 2011) gives the same β̂.init/ with a different formu-
lation, but not joint estimation of σ. In addition, the formulations in Zhang (2010) and Sun and
Zhang (2010) allow concave penalties and a degrees-of-freedom adjustment.

Like the lasso, the scaled lasso is biased. An alternative initial estimator of {β, σ} can be
produced by applying least squares after scaled lasso selection. Let Ŝ

.scl/
be the set of non-zero

estimated coefficients produced by the scaled lasso. When Ŝ
.scl/

catches most large |βj|, the bias
of estimator (10) can be reduced by the least squares estimator in the selected model Ŝ

.scl/
and

the corresponding degrees of freedom adjusted estimate of σ:

{β̂
.init/

, σ̂}=arg min
b,σ

{
‖y−Xb‖22

2σ max.n−|Ŝ.scl/|, 1/
+ σ

2
: bj=0 ∀j 	∈ Ŝ

.scl/
}

: .11/

This defines the scaled lasso–LSE estimator. We use the same notation in equations (10) and (11)
since they both give initial estimates for the LDPE (4) and a noise level estimator for statistical
inference based on the LDPE. The specific estimators will henceforth be referred to by their
names or as estimators (10) and (11). The scaled lasso–LSE estimator enjoys similar analytical
error bounds to those of the scaled lasso and outperformed the scaled lasso in a simulation
study (Sun and Zhang, 2012).

The scaled lasso can be also used to determine λj for the zj in equation (9). However, the
penalty level for the scaled lasso, set to guarantee performance bounds for the estimation of
regression coefficients and noise level, may not be the best for controlling the bias and the
standard error of the LDPE. By equations (7) and (8), it suffices to find a zj with a small bias
factor ηj and small noise factor τj. These quantities always can be easily computed. This is
quite different from the estimation of {β, σ} in equation (10) in which the effect of overfitting
is unobservable.

We chooseλj by trackingηj and τj in the lasso path. One of our ideas is to reduceηj by allowing
some overfitting of xj as long as τj is reasonably small. Ideally, this slightly more conservative
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Table 2. Computation of zj from lasso (12)†

Objective: find a point in the path of lasso regression of xj against X−j such that the residual
vector has small bias and noise factors

Input ηÅ
j =
√{2 log.p/} {target bound for bias factor}

κ0= 1
4 {small tuning parameter}

Step 1 Compute zj.λ/ for λ�λÅ {residual of the lasso in equation (12)}
Compute ηj.λ/ and τj.λ/ for λ�λÅ {bias and noise factors in equation (12)}

Step 2 If ηj.λÅ/�ηÅ
j , return zj← zj.λÅ/;

otherwise {controlled bias minimization}
τÅ
j ← .1+κ0/min{τj.λ/ :ηj.λ/�ηÅ

j } {bound for noise factor}
λ←arg min{ηj.λ/ : τj.λ/� τÅ

j } {bias factor minimization}
return zj← zj.λ/

†Comments are given in braces; ‘=’ denotes the default value; ‘←’ denotes the assignment oper-
ation; λÅ is the smallest non-zero penalty level in the computed lasso path.

approach will lead to confidence intervals with more accurate coverage probabilities. Along the
lasso path for regressing xj against X−j, let

γ̂j.λ/=argmin
b

{‖xj−X−jb‖22=.2n/+λ‖b‖1} .12/

zj.λ/=xj−X−jγ̂j.λ/,

ηj.λ/=max
k 	=j
|xT

k zj.λ/|=‖zj.λ/‖2,

τj.λ/=‖zj.λ/‖2=|xT
j zj.λ/|

be the coefficient estimator γ̂j, residual zj, the bias factor ηj and the noise factor τj, as functions
of λ. We compute zj according to the algorithm in Table 2.

In Table 2, step 2 finds a feasible upper bound ηÅ
j for the bias factor and the corresponding

noise factor τÅ
j . It then seeks zj= zj.λj/ in equation (12) at a certain level λ=λj with a smaller

ηj = ηj.λj/, subject to the constraint τ .λj/ � .1+ κ0/τÅ
j on the noise factor. It follows from

proposition 1, part (a), below that ηj.λ/ is non-decreasing in λ, so searching for the smallest
ηj.λ/ is equivalent to searching for the smallest λ in step 2, subject to the constraint.

In the search for zj with smaller ηj in step 2, the relative increment in the noise factor τj

is no greater than κ0. This corresponds to a loss of relative efficiency that is no greater than
1−1=.1+κ0/2 for the estimation of βj. In our simulation experiments, κ0= 1

4 provides a suitable
choice, compared with κ0=0 and κ0= 1

2 . We would like to emphasize here that the score vectors
zj that are computed by the algorithm in Table 2 are completely determined by the design X.

A main objective of the algorithm in Table 2 is to find a zj with a bias factor ηj �C
√

log.p/

to allow a uniform bias bound via expressions (6)–(8). It is ideal if C=√2 is attainable, but a
bounded C also works with the argument. When ηÅ

j =
√{2log.p/} is not feasible, step 1 finds

a larger upper bound ηÅ
j for the bias factor. When supληj.λ/ <

√{2log.p/}, ηÅ
j <
√{2log.p/}

after the adjustment in step 1, resulting in an even smaller ηj in step 2. This does happen in our
simulation experiments. The choice of the target upper bound

√{2log.p/} for ηj is based on its
feasibility as well as the sufficiency of ηj �√{2log.p/} for the verification of the condition in
expression (8) based on the existing l1-error bounds for the estimation of β. Proposition 1 below
asserts that maxj�p ηÅ

j �C
√

log.p/ is feasible when X allows an optimal rate of sparse recovery.
In our simulation experiments, we can use ηÅ

j �√{2log.p/} in all replications and settings
for all variables, a total of more than 1 million instances. Moreover, the theoretical results
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in Section 3.5 prove that, for the ηÅ
j in Table 2, maxj�p ηÅ

j � 3
√

log.p/ with high probability
under proper conditions on random X. It is worthwhile to note that both ηj and τj are readily
computed, and control of maxk ηk is not required for the LDPE to apply to variables with small
ηj.

We use the rest of this subsection to present some useful properties of the lasso path (12) for
the implementation of the algorithm in Table 2 and some sufficient conditions for the uniform
bound maxj ηÅ

j �C
√

log.p/ of the bias factors in the output. Let

σ̂j.λ/=arg min
σ

min
b

{
‖xj−X−jb‖22

2nσ
+ σ

2
+λ‖b‖1

}
.13/

be the solution of σ̂ in equation (10) with {X, y, λ0} replaced by {X−j, xj, λ}.

Proposition 1.

(a) In the lasso path (12), ‖zj.λ/‖2, ηj.λ/ and σ̂j.λ/ are non-decreasing functions of λ,
and τj.λ/�1=‖zj.λ/‖2. Moreover, γ̂j.λ/ 	=0 implies that ηj.λ/=λn=‖zj.λ/‖2.

(b) Let λuniv=
√{.2=n/ log.p/}. Then,

σ̂j.Cλuniv/> 0 iff {λ> 0 :ηj.λ/�C
√{2 log.p/} 	=∅, .14/

and, in this case, the algorithm in Table 2 provides

ηj �ηÅ
j � .1∨C/

√{2 log.p/},

τj �n−1=2.1+κ0/=σ̂j.Cλuniv/:
.15/

Moreover, when zj.0/=x⊥j =0, ηj.0+/ inf{‖γj‖1 : X−jγj=xj}=√n.
(c) Let 0 <a0 < 1�C0 <∞. Suppose that for s=a0n= log.p/

inf
δ

sup
β

{
‖δ.X, y/−β‖22 : y=Xβ,

p∑
j=1

min.|βj|=λuniv, 1/� s+1

}
�2C0s log.p/=n:

Then, maxj�p ηÅ
j �√{.4C0=a0/ log.p/} for the algorithm in Table 2.

The monotonicity of ‖zj.λ/‖2 and ηj.λ/ in proposition 1, part (a), provides directions of
search in both steps of the algorithm in Table 2.

Proposition 1, part (b), provides mild conditions for controlling the bias factor at ηj �ηÅ
j �

C
√{2 log.p/} and the standard error to the order τj=O.n−1=2/. It asserts that ηÅ

j �√{2 log.p/}
when the scaled lasso (13) with λ=λuniv yields a positive σ̂j. In the completely collinear case
where xk=xj for some k 	=j, inf{‖γj‖1 :xj=X−jγj}=1 gives the largest ηj=√n. This suggests
a connection between the minimum feasible ηj and ‘near estimability’ of βj, with small ηj for
nearly estimable βj. It also provides a connection between the smallest ηj.λ/ and an l1-recovery
problem, leading to proposition 1, part (c).

Proposition 1, part (c), asserts that the validity of the upper bound maxj ηÅ
j �C

√
log.p/ for

the bias factor is a consequence of the existence of an estimator δ with the stated l2-recovery
bound in the noiseless case of ε=0. In the more difficult case of ε∼N.0, σ2I/, l2-error bounds
of the same type have been proven under sparse eigenvalue conditions on X, and by proposition
1, part (c), maxj ηÅ

j �C
√

log.p/ is also a consequence of such conditions.

2.4. Restricted low dimensional projection estimator
We have also experimented with an LDPE using a restricted lasso relaxation for zj. This RLDPE



Confidence Intervals for Low Dimensional Parameters 225

can be viewed as a special case of a more general weighted low dimensional projection with dif-
ferent levels of relaxation for different variables xk according to their correlation to xj. Although
we have used equation (6) to bound the bias, the summands with larger absolute correlation
|xT

j xk=n| are likely to have a greater contribution to the bias due to the initial estimation error
|β̂.init/

k −βk|. A remedy for this phenomenon is to force smaller |zT
j xk=n| for large |xT

j xk=n| with
a weighted relaxation. For the lasso (9), this weighted relaxation can be written as

zj=xj−X−jγ̂j, γ̂j=arg min
b

{
‖xj−X−jb‖22

2n
+λj

∑
k 	=j

wk|bk|
}

,

with wk being a decreasing function of the absolute correlation |xT
j xk=n|. In the RLDPE, we

simply set wk=0 for large |xT
j xk=n| and wk=1 for other k.

Here is an implementation of the RLDPE. Let Kj,m be the index set of the m largest |xT
j xk|

with k 	= j, and let Pj,m be the orthogonal projection to the linear span of {xk, k∈Kj,m}. Let
zj = f.xj, X−j/ denote the algorithm in Table 2 as a mapping .xj, X−j/→ zj. We compute
the RLDPE by taking the projection of all design vectors to the orthogonal complement of
{xk, k∈Kj,m} before the application of the procedure in equation (12) and Table 2. The resulting
score vector can be written as

zj=f.P⊥j,mxj, P⊥j,mX−j/: .16/

2.5. Confidence intervals
In Section 3, we provide sufficient conditions on X and β under which the approximation error
in equation (5) is of smaller order than the standard deviation of the noise component. We
construct approximate confidence intervals for such configurations of {X, β} as follows.

The covariance of the noise component in equation (5) is proportional to

V= .Vjk/p×p, Vjk=
zT

j zk

|zT
j xj||zT

k xk|
=σ−2cov

(
zT

j ε

zT
j xj

,
zT

k ε

zT
k xk

)
: .17/

Let β̂= .β̂1, : : : , β̂p/T be the vector of LDPEs β̂j in equation (4). For sparse vectors a with
bounded ‖a‖0, e.g. ‖a‖0=2 for a contrast between two regression coefficients, an approximate
100.1−α/% confidence interval is

|aTβ̂−aTβ|� σ̂Φ−1.1−α=2/.aTVa/1=2, .18/

where Φ is the standard normal distribution function. We may choose {β̂.init/, σ̂} in equation
(10) or (11) and zj in Table 2 or equation (16) in the construction of β̂ and the confidence inter-
vals. An alternative, larger estimate of σ, producing more conservative approximate confidence
intervals, is the penalized maximum likelihood estimator of Städler et al. (2010).

3. Theoretical results

In this section, we prove that, when the l1-loss of the initial estimator β̂.init/ is of an expected
magnitude and the noise level estimator σ̂ is consistent, the LDPE-based confidence interval
has approximately the preassigned coverage probability for statistical inference of linear com-
binations of βj with sufficiently small ηj. Under proper conditions on X such as those given in
proposition 1, the width of such confidence intervals is of the order τj �n−1=2. The accuracy
of the approximation for the coverage probability is sufficiently sharp to allow simultaneous
interval estimation of all βj.
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The LDPE provides a sequence of approximately normal estimates β̂j with errors of order
n−1=2. This sequence is not sparse but can be thresholded just as in the Gaussian sequence
model. Although variable selection and the estimation of the entire vector β are not the focus
of the paper, the thresholded LDPE has important implications for these closely related topics.
They are discussed in Section 3.3.

In Section 3.4, we use existing error bounds to verify the conditions on β̂.init/ and σ̂ under
regularity conditions on deterministic designs and a capped l1 relaxation of the sparsity con-
dition ‖β‖0 � s, provided that s log.p/�√n. Random-matrix theory is used in Section 3.5 to
check regularity conditions on both deterministic and random designs.

3.1. Confidence intervals for preconceived parameters, deterministic design
Here we establish the asymptotic normality of the LDPE (4) and the validity of the resulting
confidence interval (18) for a preconceived parameter. This result is new and useful in and
of itself since high dimensional data often present a few effects that are known to be of high
interest in advance. Examples include treatment effects in clinical trials, or the effect of education
on income in socio-economic studies. Simultaneous confidence intervals for all individual βj

and the thresholded LDPE for the entire vector β will be considered in the next subsection as
consequences of this result.

Let λuniv =
√{.2=n/ log.p/}. Suppose that model (1) holds with a vector β satisfying the

capped l1 sparsity condition:
p∑

j=1
min{|βj|=.σλuniv/, 1}� s: .19/

This condition holds if β is l0 sparse with ‖β‖0 � s or lq sparse with ‖β‖qq=.σλuniv/q � s, 0<q�1.
Let σÅ=‖ε‖2=

√
n. A generic condition that we impose on the initial estimator is

P [‖β̂.init/−β‖1 �C1sσÅ√{.2=n/ log.p=ε/}]� ε .20/

for a certain fixed constant C1 and all α0=p2 � ε�1, where α0∈ .0, 1/ is a preassigned constant.
We also impose a similar generic condition on an estimator σ̂ for the noise level:

P{|σ̂=σÅ−1|�C2s.2=n/ log.p=ε/}� ε, ∀α0=p2 � ε�1, .21/

with a fixed C2. We use the same ε in condition (20) and (21) without much loss of generality.
By requiring fixed {C1, C2}, we implicitly impose regularity conditions on the design X and the

sparsity index s in condition (19). Existing oracle inequalities can be used to verify condition (20)
for various regularized estimators of β under different sets of conditions on X and β (Candès and
Tao, 2007; Zhang and Huang, 2008; Bickel et al., 2009; van de Geer and Bühlmann, 2009; Zhang,
2009, 2010; Ye and Zhang, 2010; Sun and Zhang, 2012; Zhang and Zhang, 2012). Although
most existing results are derived for penalty or threshold levels depending on a known noise level
σ and under the l0-sparsity condition on β, their proofs can be combined or extended to obtain
condition (20) once condition (21) becomes available. For the joint estimation of {β, σ} with
estimators (10) or (11), specific sets of sufficient conditions for both condition (20) and condition
(21), based on Sun and Zhang (2012), are stated in Section 3.4. In fact, the probability of the
union of the two events is smaller than ε in the specific case where λ0=A

√{.2=n/ log.p=ε/} in
equation (10) for a certain A> 1.

Theorem 1. Let β̂j be the LDPE in equation (4) with an initial estimator β̂.init/. Let ηj and
τj be the bias and noise factors in equation (7), σÅ=‖ε‖2=

√
n, max.ε′n, ε′′n/→0 and ηÅ > 0.

Suppose that condition (20) holds with ηÅC1s
√{.2=n/ log.p=ε/}� ε′n. If ηj �ηÅ, then
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P{|τ−1
j .β̂j−βj/− zT

j ε=‖zj‖2|>σÅε′n}� ε: .22/

If in addition condition (21) holds with C2s.2=n/ log.p=ε/ � ε′′n, then, for all t � .1 +
ε′n/=.1− ε′′n/,

P.|β̂j−βj|� τjσ̂t/�2Φn−1{−.1− ε′′n/t+ ε′n}+2ε, .23/

where Φn.t/ is the Student t-distribution function with n degrees of freedom. Moreover, for
the covariance matrix V in expression (17) and all fixed m,

lim
n→∞ inf

a∈�n,p,m
P{|aTβ̂−aTβ|� σ̂Φ−1.1−α=2/.aTVa/1=2}=1−α, .24/

where Φ.t/=P{N.0, 1/� t} and �n,p,m={a :‖a‖0 �m, maxj�p |aj|ηj �ηÅ}.

Since .zT
j ε=‖zj‖2, j �p/ has a multivariate normal distribution with identical marginal dis-

tributions N.0, σ2/, condition (22) establishes the joint asymptotic normality of the LDPE for
finitely many β̂j under condition (20). This allows us to write the LDPE as an approximate
Gaussian sequence

β̂j=βj+N.0, τ2
j σ2/+oP.τjσ/: .25/

Under the additional condition (21), conditions (23) and (24) justify the approximate coverage
probability of the resulting confidence intervals.

Remark 1. In theorem 1, all conditions on X and β are imposed through conditions (20)
and (21), and the requirement of relatively small ηj to work with these conditions. The uniform
signal strength condition can be written as

minβj 	=0|βj|�Cσ
√{.2=n/ log.p/}: .26/

Here C � 1
2 , which is required for variable selection consistency (Wainwright, 2009a; Zhang,

2010), is not required for conditions (20) and (21). This is the most important feature of the
LDPE in setting it apart from variable selection approaches. More explicit sufficient conditions
for conditions (20) and (21) are given in Section 3.4 for the initial estimators (10) and (11).

Remark 2. Although theorem 1 does not require τj to be small, the noise factor is proportional
to the width of the confidence interval and thus its square is reciprocal to the efficiency of the
LDPE. The bias factor ηj is required to be relatively small for equations (1) and (4), but no
condition is imposed on {ηk, k 	= j} for the inference of βj. Since ηj and τj are computed in
Table 2, we may apply theorem 1 to a set of the easy-to-estimate βj with small {ηj, τj} and leave
out some difficult-to-estimate regression coefficients if necessary.

In our implementation in Table 2, zj is the residual of the lasso estimator in the regression
model for xj against X−j=.xk, k 	=j/. It follows from proposition 1 that, under proper conditions
on the design matrix, ηj�√log.p/ and τj �1=‖zj‖2�n−1=2 for the algorithm in Table 2. Such
rates are realized in the simulation experiments that are described in Section 4 and further
verified for Gaussian designs in Section 3.5. Thus, the dimension constraint for the asymptotic
normality and proper coverage probability in theorem 1 is s log.p/=

√
n→0.

3.2. Simultaneous confidence intervals
Here we provide theoretical justifications for simultaneous applications of the proposed LDPE
confidence interval, after multiplicity adjustments, in the absence of a preconceived parameter
of interest. In theorem 1, condition (22) is uniform in ε∈ [α0=p2, 1] and condition (23) is uniform
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in the corresponding t. This uniformity allows Bonferroni adjustments to control the familywise
error rate in simultaneous interval estimation.

Theorem 2. Suppose that condition (20) holds with ηÅC1s
√{.2=n/ log.p=ε/}� ε′n. Then,

P{ max
ηj�ηÅ

|τ−1
j .β̂j−βj/− zT

j ε=‖zj‖2|>σÅε′n}� ε: .27/

If condition (21) also holds with C2s.2=n/ log.p=ε/ � ε′′n, then, for all j � p and t � .1+
ε′n/=.1− ε′′n/,

P{ max
ηj�ηÅ

|β̂j−βj|=.τjσ̂/> t}�2Φn{−.1− ε′′n/t+ ε′n}#{j :ηj �ηÅ}+2ε: .28/

If, in addition to condition (20) and condition (21), maxj�p ηj � ηÅ =O{√log.p/} and
max{s log.p/=n1=2, ε}→0 as min.n, p/→∞, then, for fixed α∈ .0, 1/ and c0 > 0,

liminf
n→∞ P

[
max
j�p

∣∣∣∣ β̂j−βj

τj.σ̂∧σ/

∣∣∣∣� c0+
√{

2log
(

p

α

)}
�1−α: .29/

The error bound (27) asserts that the oP.1/ in equation (25) is uniform in j. This uniform
central limit theorem and the simultaneous confidence intervals (28) and (29) are valid as long
as conditions (20) and (21) hold with s log.p/= o.n1=2/. Since conditions (20) and (21) are
consequences of condition (19) and proper regularity conditions on X, these results do not
require the uniform signal strength condition (26), as discussed in remark 1.

It follows from condition (25) and proposition 1, part (b), that, for a fixed j, the estimation
error of β̂j is of the order τjσ and τj�n−1=2 under proper conditions. In contrast, with penalty
level λ=σ

√{.2=n/ log.p/}, the lasso may have a high probability of estimating βj by 0 when
βj = λ=2. Thus, in the worst case scenario, the lasso inflates the error by a factor of order√

log.p/. Of course, the lasso is superefficient when it estimates the actual zero βj by 0.

3.3. Thresholded low dimensional projection estimator
The raw LDPE (4) is not designed for variable selection or the estimation of the entire vector
β, although these topics are closely related to statistical inference of individual coefficients.
Instead, the thrust of the LDPE approach is to turn regression problem (1) into a Gaussian
sequence model (25) with uniformly small approximation error and a consistent estimator of
the covariance structure. If the LDPE is used directly to estimate the entire vector β, it has an
l2-error of order σ2p=n, compared with σ2s log.p/=n for the lasso. Thus, although the raw LDPE
is sufficient for statistical inference of a preconceived βj, it is not optimal for estimation of the
entire β or for variable selection. Our recommendation is instead to use a thresholded LDPE.
An interesting question is whether this thresholded LDPE has any advantages over existing
regularized estimators, such as the lasso, for the estimation of high dimensional objects. This
question is addressed here.

Thresholding may be performed by using either the hard or the soft thresholding method,
respectively

β̂
.thr/
j =

{
β̂j I.|β̂j|> t̂j/,
sgn.β̂j/.|β̂j|− t̂j/+,

.30/

with

Ŝ
.thr/={j : |β̂j|> t̂j},



Confidence Intervals for Low Dimensional Parameters 229

where β̂j is as in theorem 1 and t̂j≈ σ̂τj Φ−1{1−α=.2p/} for some α> 0. Although the theory
is similar between the two (Donoho and Johnstone, 1994), our explicit analysis focuses on soft
thresholding. As was the case for simultaneous confidence intervals, the thresholded LDPE can
be justified by the uniformity of condition (22) in ε∈ [α0=p2, 1] and of condition (23) in the
corresponding t in theorem 1. This uniformity applies to the approximation for the Gaussian
sequence (25), leading to sharp l2- and selection error bounds of the thresholded LDPE for the
estimation of the entire vector β.

Theorem 3. Let L0=Φ−1{1−α=.2p/}, t̃j= τjσL0, and t̂j= .1+ cn/σ̂τjL0 with positive con-
stants α and cn. Suppose that condition (20) holds with ηÅC1s=

√
n � ε′n, maxj�p ηj � ηÅ,

and

P

{
.σ̂=σ/∨ .σ=σ̂/−1+ ε′nσÅ=.σ̂∧σ/

1− .σ̂=σ−1/+
>cn

}
�2ε: .31/

Let β̂
.thr/= .β̂

.thr/
1 , : : : , β̂

.thr/
p /T be the soft thresholded LDPE (30) with these t̂j. Then, there

is an event Ωn with P.Ωc
n/�3ε such that

E‖β̂.thr/−β‖22IΩn �
p∑

j=1
min[β2

j , τ2
j σ2{L2

0.1+2cn/2+1}]+ εLn

p
σ2

p∑
j=1

τ2
j , .32/

where Ln=4=L3
0+4cn=L0+12c2

nL0. Moreover, with at least probability 1−α−3ε,

{j : |βj|>.2+2cn/t̃j}⊆ Ŝ
.thr/⊆{j :βj 	=0}: .33/

Remark 3.

(a) Since maxj�p ηj �C
√

log.p/ can be achieved under mild conditions, the sample size
requirement of theorem 3 is s

√{log.p/=n}→0 for the estimation and selection error
bounds in expressions (32) and (33). This is a weaker requirement than s log.p/=

√
n→0

for the asymptotic normality in equation (24).
(b) The proof of theorem 3 shows that, for proper small constants cn > 0, inequality (31)

is a consequence of condition (21). We assume this for the rest of the paper.

As implied by theorem 3, the major difference between expression (33) and existing variable
selection consistency theory is again in the signal requirement. Variable selection consistency
requires the uniform signal strength condition (26) as discussed in remark 1. Moreover, existing
variable selection methods are not guaranteed to select correctly variables with large |βj| or
βj = 0 in the presence of small |βj| 	= 0. In comparison, theorem 3 makes no assumption of
condition (26). Under the regularity conditions for expression (33), large |βj| are selected by the
thresholded LDPE and βj=0 are not selected, in the presence of possibly many small non-zero
|βj|.

There is also an analytical difference between the thresholded LDPE and existing regularized
estimators that lies in the quantities that are thresholded. For the LDPE, the effect of threshold-
ing on the approximate Gaussian sequence (25) is explicit and requires only univariate analysis
to understand. In comparison, for the lasso and some other regularized estimators, thresholding
is applied to the gradient XT.y−Xβ̂/=n via Karush–Kuhn–Tucker-type conditions, leading to
more complicated non-linear multivariate analysis.

For the estimation of β, the order of the l2-error bound in inequality (32), Σp
j=1 min.β2

j ,
σ2λ2

univ/, is slightly sharper than the typical order of‖β‖0σ2λ2
univ orσλunivΣ

p
j=1 min{|βj|, σλuniv}

in the literature, where λuniv=
√{.2=n/ log.p/}. However, since the lasso and other regularized
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estimators are proven to be rate optimal in the maximum l2-estimation loss for many classes of
sparse β, the main advantage of the thresholded LDPE seems to be the clarity of the effect of
thresholding on the individual β̂j in the approximate Gaussian sequence (25).

3.4. Checking conditions by oracle inequalities
Our main theoretical results, which are stated in theorems 1–3 in the above two subsections,
justify the LDPE-based confidence interval of a single preconceived linear parameter of β,
simultaneous confidence intervals for all βj and the estimation and selection error bounds for
the thresholded LDPE for the vector β. These results are based on conditions (20) and (21). We
have mentioned that, for proper β̂.init/ and σ̂, these two generic conditions can be verified in
many ways under condition (19) on the basis of existing results. The purpose of this subsection is
to describe a specific way of verifying these two conditions and thus to provide a more definitive
and complete version of the theory.

In regularized linear regression, oracle inequalities have been established for different estima-
tors and loss functions. We confine our discussion here to the scaled lasso (10) and the scaled
lasso–LSE estimator (11) as specific choices of the initial estimator, since the confidence interval
in theorem 1 is based on the joint estimation of regression coefficients and the noise level. We
further confine our discussion to bounds for the l1-error of β̂.init/ and the relative error of σ̂
involved in conditions (20) and (21).

We use the results in Sun and Zhang (2012), where properties of estimators (10) and (11)
were established on the basis of a compatibility factor (van de Geer and Bühlmann, 2009) and
sparse eigenvalues. Let ξ � 1, S= {j : |βj|> σλuniv}, and C.ξ, S/= {u : ‖uSc‖1 � ξ‖uS‖1}. The
compatibility factor is defined as

κ.ξ, S/= inf{‖Xu‖2|S|1=2=.n1=2‖uS‖1/ : 0 	=u∈C.ξ, S/}: .34/

Let φmin and φmax denote the smallest and largest eigenvalues of matrices respectively. For
positive integers m, define sparse eigenvalues as

φ−.m, S/= min
B⊃S, |B\S|�m

φmin.XT
BXB=n/,

φ+.m, S/= min
B∩S=∅, |B|�m

φmax.XT
BXB=n/:

.35/

The following theorem is a consequence of checking the conditions of theorem 1 by theorems
2 and 3 in Sun and Zhang (2012).

Theorem 4. Let {A, ξ, c0} be fixed positive constants with ξ > 1 and A > .ξ+ 1/=.ξ− 1/. Let
λ0=A

√{.2=n/ log.p=ε/}. Suppose that β is sparse in the sense of condition (19), κ2.ξ, S/�c0,
and .s∨1/.2=n/ log.p=ε/�μÅ for a certain μÅ > 0.

(a) Let β̂.init/ and σ̂ be the scaled lasso estimator in equation (10). Then, conditions (20) and
(21) hold for certain constants {μÅ, C1, C2} depending on {A, ξ, c0} only. Consequently,
all conclusions of theorems 1–3 hold with C1 ηÅ.sλ0=A/� ε′n and C2s.λ0=A/2 � ε′′n for
certain {ε′, ε′′} satisfying max.ε′, ε′′/→0:

(b) Let β̂.init/ and σ̂ be the scaled lasso–LSE estimator (11). Suppose that ξ2=κ2.ξ, S/ �
K=φ+.m, S/ and φ−.m, S/ � c1 > 0 for certain K > 0 and integer m− 1 < K|S|� m.
Then, conditions (20) and (21) hold for certain constants {μÅ, C1, C2} depending
on {A, ξ, c0, c1, K} only. Consequently, all conclusions of theorems 1–3 hold with
C1 ηÅ.sλ0=A/� ε′n and C2s.λ0=A/2 � ε′′n for certain {ε′, ε′′} satisfying max.ε′, ε′′/→0.

Remark 4. Let A= .ξ+ 1/=.ξ− 1/. Then, there are constants {τ0, ν0}⊂ .0, 1/ satisfying the
condition .1− τ2

0 /A= .ξ+ 1/={ξ− .1+ ν0/=.1− ν0/}. For these {τ0, ν0}, n � 3, and p � 7, we
may take the constants in theorem 4, part (a), as
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μÅ=min
{

2c0τ
2
0

A2.ξ+1/
,
τ2

0 =.1=ν0−1/

2A.ξ+1/
, log

(
4
e

)}
, C2=

τ2
0

μÅ
, C1= C2

A.1− τ2
0 /

: .36/

The main conditions of theorem 4 are

κ2.ξ, S/� c0,

ξ2=κ2.ξ, S/�K=φ+.m, S/,

φ−.m, S/� c1,

⎫⎪⎬
⎪⎭ .37/

where m is the smallest integer upper bound of K|S|. Whereas theorem 4, part (a), requires only
the first inequality in expression (37), theorem 4, part (b), requires all three. Let

RE2.ξ, S/= inf{‖Xu‖2=.n1=2‖u‖2/ : u∈C.ξ, S/},

F1.ξ, S/= inf{‖XTXu‖∞|S|=.n‖uS‖1/ : u∈C.ξ, S/, ujxT
j Xu �0, j =∈S}

be respectively the restricted eigenvalue and sign-restricted cone invertibility factor for the design
matrix. It is worthwhile to note that

F1.ξ, S/�κ2.ξ, S/�RE2
2.ξ, S/ .38/

always holds and lower bounds of these quantities can be expressed in terms of sparse eigenvalues
(Ye and Zhang, 2010). By Sun and Zhang (2012), we may replace κ2.ξ, S/ throughout theorem 4
with F1.ξ, S/. In view of inequality (38), this will actually weaken the condition. However, since
more explicit proofs are given in terms of κ.ξ, S/ in Sun and Zhang (2012), the compatibility
factor is used in theorem 4 to facilitate a direct matching of proofs between this paper and
Sun and Zhang (2012). By Zhang (2010), condition (37) can be replaced by the sparse Riesz
condition,

s� dÅ

φ+.dÅ,∅/=φ−.dÅ,∅/+ 1
2

: .39/

Proposition 2 below provides a way of checking condition (37) for a given design in equation
(1).

Proposition 2. Let {ξ, M0, cÅ, cÅ} be fixed positive constants, λ1=M0
√{log.p/=n} and

Σ̂= ..xT
j xk=n/I{|xT

j xk=n|�λ1}/p×p

be the thresholded Gram matrix. Suppose that φmin.Σ̂/� cÅ and sλ1.1+ ξ/2 � cÅ=2. Then, for
all |S|� s, κ2.ξ, S/ � cÅ=2. Let K= 2ξ2.cÅ=cÅ+ 1

2 /. If, in addition, φmax.Σ̂/ � cÅ and sλ1.1+
K/+λ1 � cÅ=2, then φ−.m, S/� cÅ=2 and condition (37) holds with c0= cÅ=2.

The main condition of proposition 2 is a small s
√{log.p/=n}. This is not restrictive since

theorem 1 requires the stronger condition of a small s log.p/=
√

n. It follows from Bickel and
Levina (2008) that, after hard thresholding at a level of order λ1, sample covariance matrices
converge to a population covariance matrix in the spectrum norm under mild sparsity condi-
tions on the population covariance matrix. Since convergence in the spectrum norm implies
convergence of the minimum and maximum eigenvalues, φmin.Σ̂/ � cÅ and φmax.Σ̂/ � cÅ are
reasonable conditions. This and other applications of random-matrix theory are discussed in
the next subsection.

3.5. Checking conditions by random-matrix theory
The most basic requirements for our main theoretical results in Sections 3.1 and 3.2 are con-
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ditions (20) and (21), and the existence of zj with small ηj and τj. For deterministic design
matrices, sufficient conditions for error bounds (20) and (21) are given in theorem 4 in the form
of condition (37), and sufficient conditions for the existence of ηj � C

√
log.p/ and τj �n−1=2

are given in proposition 1. These sufficient conditions are all analytical conditions on the design
matrix. In this subsection, we use random-matrix theory to check these conditions with more
explicit constant factors.

The conditions of theorems 1 and 4 hold for the following classes of design matrices:

Xs,n,p=Xs,n,p.cÅ, δ, ξ, K/

={X : max
j�p

ηj �3
√

log.p/, max
j�p

τ2
j σ2

j �2=n, min
|S|�s

κ2.ξ, S/� cÅ.1− δ/=4,

max
|S|�s

φ+.m, S/ξ2=κ2.ξ, S/�K, min
|S|�s

φ−.m, S/� cÅ.1− δ/}, .40/

for certain positive {s, cÅ, δ, ξ, K}, where {ηj, τj} are computed from X by the algorithm in
Table 2 with κ0 � 1

4 , and κ.ξ, S/ and φ±.m, S/ are the compatibility factor and sparse eigenvalues
of X given in expressions (34) and (35), with m−1 <Ks�m.

Let PΣ be probability measures under which X̃= .x̃1, : : : , x̃p/∈Rn×p has independent rows
with the multivariate normal distribution

x̃j∼N.0,Σ/: .41/

The column standardized version of X̃= .x̃1, : : : , x̃p/ is

X= .x1, : : : , xp/, xj= x̃j
√

n=‖x̃j‖2: .42/

Since our discussion is confined to column standardized design matrices for simplicity, we
assume without loss of generality that the diagonal elements of Σ all equal 1. Under PΣ, X does
not have independent rows but xj is still related to X−j through

xj=X−jγj+εj
√

n=‖x̃j‖2, εj∼N.0, σ2
j In×n/, .43/

where εj is independent of X−j. Let Θjk be the elements of Σ−1. Since the linear regression of
x̃j against .x̃k, k 	= j/ has coefficients −Θjk=Θjj and noise level 1=Θjj, we have

γj= .−σ2
j Θjk‖x̃k‖2=‖x̃j‖2, k 	= j/T, σ2

j =1=Θjj: .44/

It follows that, when φmin.Σ/� cÅ, maxj�pτ2
j �2=.ncÅ/ in Xs,n,p.cÅ, δ, ξ, K/.

The aim of this subsection is to prove that PΣ.Xs,n,p/ is uniformly large for a general col-
lection of PΣ. This result has two interpretations. The first interpretation is that, when X is
indeed generated in accordance with equations (41) and (42), the regularity conditions have a
high probability of holding. The second interpretation is that Xs,n,p, which is a deterministic
subset of Rn×p, is sufficiently large as measured by PΣ in the collection. Since Xs,n,p does not
depend on Σ and the probability measures PΣ are nearly orthogonal for different Σ, the use of
PΣ does not add the random-design assumption to our results.

The following theorem specifies {cÅ, cÅ, δ, ξ, K} in expression (40) for which PΣ{Xs,n,p.cÅ,
δ, ξ, K/} is large when s log.p/=n is small. This works with the LDPE theory since s log.p/=

√
n

→0 is required anyway in theorem 1. Define a class of coefficient vectors with small lq-tail as

Bq.s, λ/={b∈Rp :
p∑

j=1
min.|bj|q=λq, 1/� s}:

We note that B1.s, σ, λuniv/ is the collection of all β satisfying the capped l1-sparsity condition
(19).
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Theorem 5. Suppose that diag.Σ/= Ip×p, eigenvalues .Σ/⊂ [cÅ, cÅ], and all rows of Σ−1 are
in B1.s, λuniv/. Then, there are positive numerical constants {δ0, δ1, δ2} and K depending
only on {δ1, ξ, cÅ, cÅ} such that

inf
.K+1/.s+1/�δ0n= log.p/

PΣ{X∈Xs,n,p.cÅ, δ1, ξ, K/}�1− exp.−δ2n/:

Consequently, when X is indeed generated from expressions (41) and (42), all conclusions of
theorems 1–3 hold for both estimators (10) and (11) with a probability adjustment of a proba-
bility smaller than 2 exp.−δ2n/, provided that β∈B1.s, σλuniv/ and λ0=A

√{.2=n/ log.p=ε/}
in equation (10) with a fixed A>.ξ+1/=.ξ−1/.

Remark 5. It follows from theorem II.13 of Davidson and Szarek (2001) that, for certain
positive {δ0, δ1, δ2},

X ′
n,p={X : min

|S|+m�δ0n=log.p/
φ−.m, S/� cÅ.1− δ1/, max

|S|+m�δ0n= log.p/
φ+.m, S/� cÅ.1+ δ1/}

satisfies PΣ{X ′
n,p} � 1− exp.−δ2n/ for all Σ in theorem 5 (Candès and Tao, 2005; Zhang

and Huang, 2008). Let K=4ξ2.cÅ=cÅ/.1+δ1/=.1−δ1/ and {k, l} be positive integers satisfying
4l=k �K and max{k+ l, 4l}� δ0n= log.p/. For X∈X ′

n,p, the conditions

κ.ξ, S/�{cÅ.1− δ1/}1=2=2,

ξ2φ+.m, S/=κ2.ξ, S/�K

hold for all |S|�k, where m is the smallest integer upper bound of K|S|.
The PΣ-induced regression model (43) provides a motivation for the use of the lasso in

expression (12) and Table 2 to generate score vectors zj. However, the goal of the procedure is to
find zj with small ηj and τj for controlling the variance and bias of the LDPE (4) as in theorem 1.
This is quite different from the usual applications of the lasso for prediction, estimation of
regression coefficients or model selection.

4. Simulation results

We set n= 200 and p= 3000, and run several simulation experiments with 100 replications in
each setting. In each replication, we generate an independent copy of .X̃, X, y/, where, given
a particular ρ∈ .−1, 1/, X̃= .x̃ij/n×p has independent and identically distributed N.0,Σ/ rows
with Σ= .ρ|j−k|/p×p, xj = x̃j

√
n=|x̃j|2, and .X, y/ is as in equation (1) with σ= 1. Given a

particular α�1, βj=3λuniv for j=1500, 1800, 2100, : : : , 3000, and βj=3λuniv=jα for all other
j, where λuniv=

√{.2=n/ log.p/}. This simulation example includes four cases, labelled A, B,
C and D, respectively .α, ρ/= .2, 1

5 /, .1, 1
5 /, .2, 4

5 /, .1, 4
5 /.

The simulation experiment is designed in the framework of the theory in Section 3. The theory
states an asymptotic sample size requirement of s log.p/=n1=2→0. However, this condition is a
reflection of a conservative bias bound (6) and the compatibility factor (34) of the design. In fact,
it is only necessary to have a small Cs log.p/=n1=2, where the factor C refers to a combination
of quantities that are treated as constant in the theory. In particular, a smaller C is expected for
more orthogonal designs, allowing larger values of s log.p/=n1=2. The simulation experiments
explore the behaviour of the LDPE over .s, s log.p/=n1=2/ equal to .8:93, 5:05/ and .29:24, 16:55/

respectively for α=2 and α=1, where s=Σj min.|βj|=λuniv, 1/. Thus, case A is expected to be
the easiest, with the smallest {s, s log.p/=n1=2} and the least correlated design vectors, whereas
case D is expected to be the most difficult.
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In addition to the lasso with penalty level λuniv, the scaled lasso (10) with penalty level
λ0=λuniv and the scaled lasso–LSE estimator (11), we consider an oracle estimator along with
the LDPE (4) and its restricted version derived from equation (16), the RLDPE. The oracle
estimator is the least squares estimator of βj when the βk are given for all k 	= j except for the
three k with the smallest |k− j|. It can be written as

β̂
.o/

j =
.z.o/

j /T

‖z.o/
j ‖22

(
y− ∑

k 	∈Kj

xkβk

)
,

σ̂.o/=‖P⊥Kj
ε‖2=
√

n,

.45/

where Kj = {j − 1, j, j + 1} for 1 < j < p, K1 = {1, 2, 3}, Kp = {p− 2, p− 1, p} and z.o/
j =

P⊥
Kj\{j}xj. Here, P⊥K is the orthogonal projection to the space of n-vectors orthogonal to

{xk, k ∈K}. Note that the oracular knowledge reduces the complexity of the problem from
.n, p/= .200, 3000/ to .n, p/= .200, 3/, and that the variables {xk, k∈Kj} also have the highest
correlation to xj. For both the LDPE and the RLDPE, the scaled lasso–LSE (11) is used to
generate β̂.init/ and σ̂, whereas the algorithm in Table 2, with κ0= 1

4 , is used to generate zj.
The default ηÅ

j =
√{2 log.p/} passed the test in step 2 of Table 2 without adjustment in all

instances during the simulation study. This guarantees ηj �√{2log.p/} for the bias factor. For
the RLDPE, m=4 is used in equation (16).

The asymptotic normality of the LDPE holds well in our simulation experiments. Table 3 and
Fig. 1 demonstrate the behaviour of the LDPE and RLDPE for the largest βj, compared with
that of the other estimation methods. The scaled lasso has more bias and a larger variance than
the lasso but is entirely data driven. The bias can be significantly reduced through the scaled
lasso–LSE method; however, error resulting from failure to select some maximal βj remains.
This is clearest in the histograms corresponding to the distribution of errors for the scaled lasso–
LSE method in settings B and D, where α= 1 and the βj decay at a slower rate. For a small
increase in variance, the LDPE and RLDPE further reduce the bias of the scaled lasso–LSE
method. This is also the case when β̂.init/ is a heavily biased estimator such as the lasso or

Table 3. Summary statistics for various estimates of the maximal βj Djβj1: the lasso, the scaled lasso, the
scaled lasso–LSE method, the oracle estimator, the LDPE and the RLDPE

Setting Statistic Results for the following estimators:

Lasso Scaled Scaled Oracle LDPE RLDPE
lasso lasso–LSE

A Bias −0.2965 −0.4605 −0.0064 −0.0045 −0.0038 −0.0028
Standard deviation 0.0936 0.1360 0.1004 0.0730 0.0860 0.0960
Median absolute error 0.2948 0.4519 0.0549 0.0507 0.0531 0.0627

B Bias −0.2998 −0.5341 −0.0476 0.0049 −0.0160 −0.0167
Standard deviation 0.1082 0.1590 0.2032 0.0722 0.1111 0.1213
Median absolute error 0.2994 0.5150 0.0693 0.0500 0.0705 0.0799

C Bias −0.3007 −0.4423 −0.0266 −0.0049 −0.0194 −0.0181
Standard deviation 0.1207 0.1520 0.1338 0.1485 0.1358 0.1750
Median absolute error 0.3000 0.4356 0.0657 0.0994 0.0902 0.1150

D Bias −0.3258 −0.5548 −0.1074 −0.0007 −0.0510 −0.0405
Standard deviation 0.1367 0.1844 0.2442 0.1455 0.1768 0.2198
Median absolute error 0.3319 0.5620 0.0857 0.0955 0.1112 0.1411
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 1. Histogram of errors when estimating maximal βj by using (a)–(d) the scaled lasso, (e)–(h) the scaled
lasso–LSE method, (i)–(l) the LDP and (m)–(p) the RLDPE: (a), (e), (i), (m) simulation setting A; (b), (f), (j),
(n) simulation setting B; (c), (g), (k), (o) simulation setting C; (d), (h), (l), (p) simulation setting D

scaled lasso, and the improvement is most dramatic when estimating large βj. Although the
asymptotic normality of the LDPE holds even better for small βj in the simulation study, a
parallel comparison for small βj is not meaningful; the lasso typically estimates small βj by 0,
whereas the raw LDPE is not designed to be sparse.

The overall coverage probability of the LDPE-based confidence interval matches relatively
well the preassigned level, as expected from our theoretical results. The LDPE and RLDPE
create confidence intervals β̂j±1:96σ̂τj with approximately 95% coverage in settings A and C
and somewhat higher coverage probability in B and D. Refer to Table 4 for precise values. Since
the coverage probabilities for each individual βj are calculated on the basis of a sample of 100
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (a)–(d) Coverage frequencies of the LDPE confidence intervals versus the index of βj (�, maximal
βj ) and (e)–(h) the number of variables for given values of the relative coverage frequency, superimposed on
the binomial(100, p̃) probability mass function, where p̃ is the simulated mean coverage for the LDPE: (a),
(e) simulation setting A; (b), (f) simulation setting B; (c), (g) simulation setting C; (d), (h) simulation setting D

Table 4. Mean coverage probability of the LDPE and RLDPE

Coverage probabilities for the
following settings:

A B C D

All βj LDPE 0.9597 0.9845 0.9556 0.9855
RLDPE 0.9595 0.9848 0.9557 0.9885

Maximal βj LDPE 0.9571 0.9814 0.9029 0.9443
RLDPE 0.9614 0.9786 0.9414 0.9786

replications, the empirical distribution of the simulated relative coverage frequencies exhibits
some randomness, which matches that of the binomial .n, p̃/ distribution, with n= 100 and p̃

equal to the simulated mean coverage, as shown in Figs 2 and 3.
Two separate issues may lead to some variability in the coverage. As with settings B and D, the

overall coverage may exceed the stated confidence level when the presence of many small signals
in β is interpreted as noise, increasing σ̂ and hence the width of the confidence intervals, along
with the coverage; however, this phenomenon will not result in undercoverage. In addition,
compared with the overall coverage probability, the coverage probability is somewhat smaller
when large values of βj are associated with highly correlated columns of X. This is most apparent
when plotting coverage versus index in settings C and D, which are the two settings with higher
correlation between adjacent columns of X. For additional clarity, the points corresponding to
maximal values of βj in Figs 2 and 3 are emphasized by larger circles, and the coverage of the
LDPE and RLDPE for maximal βj are listed separately from the overall coverage in the last
two rows of Table 4. It can be seen from these details that the RLDPE (16) further eliminates
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a)–(d) Coverage frequencies of the RLDPE confidence intervals versus the index of βj (�, maximal
βj / and (e)–(h) the number of variables for given values of the relative coverage frequency, superimposed on
the binomial(100, p̃) probability mass function, where p̃ is the simulated mean coverage for the RLDPE: (a),
(e) simulation setting A; (b), (f) simulation setting B; (c), (g) simulation setting C; (d), (h) simulation setting D

(a)

(b)

Fig. 4. Median ratio of width of (a) the LDPE and (b) RLDPE confidence intervals versus the oracle confi-
dence interval for each βj

the bias that is caused by the association of relatively large values of βj with highly correlated
columns of X and improves coverage probabilities. The bias correction effect is also visible in
the histograms in Fig. 1 in setting D, but not in C.

The LDPE and RLDPE confidence intervals are of reasonable width, comparable with that
of the confidence intervals that are derived from the oracle estimator. Consider the median



238 C.-H. Zhang and S. S. Zhang

ratio between the width of the LDPE (and RLDPE) confidence intervals and that of the oracle
confidence intervals, which are shown in Fig. 4. The distribution of the median ratio that is
associated with each βj is uniform over the different j= 1, : : : , 3000 in settings A and B. The
anomalies at j=1 and j=3000 in settings C and D are a result of the structure of X. When the
correlation between nearby columns of X is high, the fact that the first and last columns of X
have fewer highly correlated neighbours gives the oracle a relatively greater advantage. Since the
medians of the ratios are uniformly distributed over j, it is reasonable to summarize the ratios
in each simulation setting with the median value over every replication of every βj, as listed in
Table 5. Note that the LDPE is more efficient than the oracle estimator in the high correlation
settings C and D. This is probably due to the benefit of relaxing the orthogonality constraint of
x⊥j when the correlation of the design is high and the error of the initial estimator is relatively
small. The median ratio between the widths of the LDPE and oracle confidence intervals reaches
its highest value of 1.6400 in setting B, where the coverage of the LDPE intervals is high and
the benefit of relaxing the orthogonality constraint is small, if any, relative to the oracle.

Recall that the RLDPE improves the coverage probability for large βj at the cost of an increase
in the variance of the estimator; thus, the RLDPE confidence intervals are somewhat wider than
the LDPE confidence intervals. Although the improvement in coverage probability is focused
on the larger values of βj, all βj are affected by the increase in variance and confidence interval
width.

We may also consider the performance of the LDPE as a point estimator. Table 6 and Fig. 5
compare the mean-squared errors of the LDPE and RLDPE estimators of βj with that of the
oracle estimator of βj. This comparison is consistent with the comparison of the median widths
of the confidence intervals in Table 5 and Fig. 4 that was discussed earlier.

The lasso and scaled lasso estimators have larger biases for larger values of βj but perform
very well for smaller values. In contrast, the LDPE and the oracle estimators are not designed
to be sparse and have very stable errors over all βj. For the estimation of the entire vector β or
its support, it is appropriate to compare a thresholded LDPE with the lasso, the scaled lasso,
the scaled lasso–LSE method and a matching thresholded oracle estimator. Hard thresholding

Table 5. Medians of the width
ratio medians in Fig. 4

Setting LDPE RLDPE

A 1.2020 1.3359
B 1.6400 1.8238
C 0.8209 1.2678
D 1.1758 1.8150

Table 6. Medians of the mean-
squared error ratios in Fig. 5

Setting LDPE RLDPE

A 0.7551 0.6086
B 0.5232 0.4232
C 1.5950 0.6656
D 1.1169 0.5049
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(a)

(b)

Fig. 5. Efficiency (the ratio of the MSEs) of (a) the LDPE and (b) RLDPE estimators versus the oracle
estimator for each βj

Table 7. Summary statistics for the l2-loss of five estimators of β: the lasso, the scaled lasso, the scaled
lasso–LSE, the thresholded oracle estimator and the thresholded LDPE

Setting Statistic Results for the following estimators:

Lasso Scaled Scaled Thresholded Thresholded
lasso lasso–LSE oracle LDPE

A Mean 0.8470 1.2706 0.3288 0.3624 0.3621
Standard deviation 0.1076 0.2393 0.1465 0.0908 0.1884
Median 0.8252 1.2131 0.3042 0.3577 0.3312

B Mean 0.9937 1.5837 0.7586 0.5658 0.7969
Standard deviation 0.1214 0.2624 0.2976 0.0615 0.3873
Median 0.9820 1.5560 0.6219 0.5675 0.6983

C Mean 0.8836 1.2411 0.4817 0.6803 0.5337
Standard deviation 0.1402 0.2208 0.2083 0.2843 0.2164
Median 0.8702 1.2295 0.4343 0.6338 0.4642

D Mean 1.0775 1.6303 1.0102 0.9274 1.2627
Standard deviation 0.1437 0.2381 0.3572 0.2342 0.5576
Median 1.0570 1.6389 0.9216 0.8716 1.1011

was implemented: β̂j I.|β̂j|� t̂j/ for the thresholded LDPE with t̂j= σ̂τj Φ−1{1−1=.2p/} and
β̂

.o/

j I.|β̂.o/

j |� t̂
.o/
j / for the thresholded oracle with t̂

.o/
j = σ̂.o/‖z.o/

j ‖−1
2 Φ−1{1− 1=.2p/}, where

{β̂
.o/

j , σ̂.o/, z.o/
j } are as in expression (45). Since βj 	= 0 for all j, the comparison is confined to

the l2-estimation error. Table 7 lists the mean, standard deviation and median of the l2-loss of
these five estimators over 100 replications. Of the five estimators, only the scaled lasso, the scaled
lasso–LSE estimator and the thresholded LDPE are purely data driven. The performance of the
scaled lasso–LSE, the thresholded LDPE and the thresholded oracle methods are comparable
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and they always outperform the scaled lasso. They also outperform the lasso in cases A, B and
C. In the hardest case, D, which has both a high correlation between adjacent columns of X and
a slower decay in βj, the thresholded oracle slightly outperforms the lasso and the lasso slightly
outperforms the scaled lasso–LSE and thresholded LDPE methods. Generally, the l2-loss of the
thresholded LDPE remains slightly above that of the scaled lasso–LSE method, which improves
on the scaled lasso by reducing its bias. Note that our goal is not to find a better estimator for the
entire vector β since quite a few versions of the estimation optimality of regularized estimators
have already been established. What we demonstrate here is that the cost of removing bias with
the LDPE, and thus giving up shrinkage, is small.

5. Discussion

We have developed the LDPE method of constructing β̂1, : : : , β̂p for the individual regres-
sion coefficients and estimators for their finite dimensional covariance structure. Under proper
conditions on X and β, we have proved the asymptotic unbiasedness and normality of finite
dimensional distribution functions of these estimators and the consistency of their estimated
covariances. Thus, the LDPE yields an approximate Gaussian sequence as the raw LDPE in
expression (25), which allows us to assess the level of significance of each unknown coefficient βj

without the uniform signal strength assumption (26). The method proposed applies to making
inference about a preconceived low dimensional parameter, which is an interesting practical
problem and a primary goal of this paper. It also applies to making inference about all regres-
sion coefficients via simultaneous interval estimation and the correct selection of large and zero
coefficients in the presence of many small coefficients.

The raw LDPE is not sparse, but it can be thresholded to take advantage of the sparsity of
β, and the sampling distribution of the thresholded LDPE can still be bounded on the basis of
the approximate distribution of the raw LDPE. A thresholded LDPE is proven to attain l2-rate
optimality for the estimation of an entire sparse β.

The focus of this paper is interval estimation and hypothesis testing without the uniform signal
strength condition. Another important problem is prediction. Since prediction at a design point
a is equivalent to the estimation of the ‘contrast’ aTβ, with possibly large ‖a‖0, the implication
of the LDPE for prediction is an interesting future research direction.

The proposed LDP approach is closely related to semiparametric inference. This connection
was discussed in Zhang (2011) along with a definition of the minimum Fisher information and
a rationale for the asymptotic efficiency of an LDPE in a general setting.

We use the lasso to provide a relaxation of the projection of xj to x⊥j . This choice is primarily
due to our familiarity with the computation of the lasso and the readily available scaled lasso
method of choosing a penalty level. We have also considered some other methods of relaxing
the projection. A particularly interesting method is the following constrained minimization of
the variance of the noise term in equation (5):

zj=argmin
z

{‖z‖22 : |zT
j xj|=n, max

k 	=j
|zT

j xk=n|�λ′j}: .46/

Similarly to the lasso in equation (9), equation (46) can be solved via quadratic programming;
specifically, one may take the minimizer between the solutions involving the two linear con-
straints zT

j xj=±n. The lasso solution (9) is feasible in equation (46) with λjn=|zT
j xj|=λ′j.
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