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Abstract Thepaper addresses parametric inequality systemsdescribed bypolynomial
functions in finite dimensions, where state-dependent infinite parameter sets are given
by finitely many polynomial inequalities and equalities. Such systems can be viewed,
in particular, as solution sets to problems of generalized semi-infinite programming
with polynomial data. Exploiting the imposed polynomial structure together with
powerful tools of variational analysis and semialgebraic geometry, we establish a
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far-going extension of the Łojasiewicz gradient inequality to the general nonsmooth
class of supremummarginal functions as well as higher-order (Hölder type) local error
bounds results with explicitly calculated exponents. The obtained results are applied to
higher-order quantitative stability analysis for various classes of optimizationproblems
including generalized semi-infinite programming with polynomial data, optimization
of real polynomials under polynomial matrix inequality constraints, and polynomial
second-order cone programming. Other applications provide explicit convergence rate
estimates for the cyclic projection algorithm to find common points of convex sets
described by matrix polynomial inequalities and for the asymptotic convergence of
trajectories of subgradient dynamical systems in semialgebraic settings.

Keywords Polynomial optimization · Error bounds · Variational analysis ·
Semialgebraic functions · Higher-order stability analysis · Convergence rate of
algorithms

Mathematics Subject Classification 90C26 · 90C31 · 90C34 · 49J52 · 49J53 ·
26C05

1 Introduction

This paper is largely devoted to polynomial semi-infinite optimization and related
topics being revolved around deriving explicit error bounds for infinite parametric
inequality systems with (real) polynomial data as well as their various applications
to stability analysis in optimization and convergence of algorithms. The imposed
polynomial structure allows us to widely use powerful tools of semialgebraic geom-
etry, while error bounds for parametric inequality systems are usually studied by
employing constructions and results of variational analysis and generalized differ-
entiation due to their intrinsic nonsmoothness. Variational analysis together with
the tools of semialgebraic geometry indeed plays an important role in the whole
paper. It is our honor to dedicate this paper to Terry Rockafellar whose semi-
nal contributions to variational analysis and optimization over years are difficult to
overstate.

The primary attention of this paper is paid to the parametric inequality systems

S := {x ∈ R
n
∣
∣ fl(x, y) ≤ 0 for all y ∈ Y (x), l = 1, . . . , L

}
, (1.1)

where each function fl : Rn × R
m → R as l ∈ L for the given natural num-

ber L ∈ N is a polynomial, and where Y : R
n ⇒ R

m is a set-valued mapping
that is also described by finitely many polynomials via inequality and equality con-
straints. Systems of type (1.1) naturally arise as feasible solution sets in problems of
generalized semi-infinite programming, second-order cone programming, robust opti-
mization, andmatrix inequalities with polynomial data; see below for more details and
applications.

One of the most important issues associated with the inequality systems (1.1) is
establishing the so-called error bounds. Given x̄ ∈ R

n , recall that a (local) error bound

123



Error bounds for parametric polynomial systems with... 315

of S with a Hölder exponent τ ∈ (0, 1] holds for F at x̄ if there exist constants c > 0
and ε > 0 such that

dist(x, S) ≤ c

([
sup

y∈Y (x),
1≤l≤L

fl(x, y)
]

+

)τ

for all x with ‖x − x‖ ≤ ε, (1.2)

where dist(x, S) signifies the Euclidean distance between x and S, and where [α]+ :=
max{α, 0}. The supremum in (1.2) is obviously achieved and it can be replaced by
‘max’ if Y (x) is closed and bounded.

The study of error bounds has attracted a lot of attention of many researchers over
the years and has found numerous applications to, in particular, sensitivity analysis
for various problems ofmathematical programming, termination criteria for numerical
algorithms, etc. We refer the reader to [35] for an excellent survey in these directions
and to the more recent papers [11,13,20,21,24,26,34,39]1 with the bibliographies
therein. It is worth noting that the major attention in the aforementioned and many
other publications on error bounds has drawn to the case of linear rate (τ = 1),
where this issue is related to metric regularity and subregularity notions in basic
variational analysis. Our main interest in this paper concerns fractional/root error
bounds 0 < τ < 1 in (1.2). For the case of finite and fixed sets Y (x) ≡ � in (1.2),
some results in this direction have been obtained in, e.g., [8,10,22–24,28,29,33] with
various applications therein.

It is proved [28] in this finite case of Y (x) ≡ �, by using the cerebrated Łojasiewicz
gradient inequality [27], that (1.2) holds with some unknown exponent τ ∈ (0, 1) for
polynomial systems (1.1). Employing advanced techniques of variational analysis, we
have recently derived in this case [25] several error bounds with exponents explic-
itly determined by the dimension of the underlying space and the number/degree of
the involved polynomials. The techniques and results developed in [25] allowed us
to resolve several open questions raised in the literature, which include establish-
ing explicit Hölder error bounds for nonconvex quadratic systems and higher-order
semismoothness of the maximum eigenvalue for symmetric tensors.

The primary goal of this paper is to obtain explicit error bounds of type (1.2) for
polynomial inequality systems with infinite and variable sets Y (x) ⊂ R

m . Besides
undoubted importance of these issues for their own sake, we have been motivated by
applications of infinite polynomial systems and error bounds for them to higher-order
stability and convergence rates of algorithms in optimization-related areas as well as in
asymptotic analysis of dynamical systems, where estimates of type (1.2) with infinite
sets Y (x) are crucial.

As the reader can see below, deriving error bounds for the case of infinite and
variable sets Y (x) in (1.1) is significantly more involved in comparison with our devel-
opments for finite systems in [25]. First we present the following three-dimensional
example showing that the error bound (1.2) may fail for any τ > 0 for infinite poly-
nomial inequality systems even in the case of constant sets Y (x) ≡ �.

1 After submitting the paper we have become familiar with the manuscript [11], where some ideas of
applying Hölder error bound to study complexity of some known first-order algorithms in the convex
setting are of similar flavors with ours.
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Example 1.1 (failure ofHölder error bounds for infinite polynomial systems)Consider
the polynomial system of type (1.1) containing only one inequality given by f :
R × R

2 → R in the form

f (x, y) ≤ 0 with y ∈ �, where f (x, y) := xy1 + y2, y = (y1, y2),

where the infinite set � is constructed as follows. Take the C∞-smooth function of
one variable

φ(x) :=
{

e
− 1

x2 if x 	= 0,
0 if x = 0

and define the set � ⊂ R
2 by the conditions

� := {(y1, y2)
∣
∣ ∃ t ∈ [−0.5, 0.5] such that y1 = φ′(t) and y2 = φ(t) − tφ′(t)

}
,

(1.3)
where φ′ stands for the derivative of φ. Since φ is C∞-smooth, the set � in (1.3) is
nonempty and compact as the image of a compact interval under a continuousmapping.
We claim that

max
y∈�

f (x, y) = φ(x) whenever x ∈ [−0.5, 0.5]. (1.4)

Indeed, for any x ∈ [−0.5, 0.5] and y ∈ � there is t ∈ [−0.5, 0.5] with y1 = φ′(t)
and y2 = φ(t) − tφ′(t). Thus

f (x, y) = xφ′(t) + φ(t) − tφ′(t) = φ(t) + (x − t)φ′(t).

Applying the second-order Taylor expansion to the function φ tells us that

φ(x) = φ(t) + φ′(t)(x − t) + φ′′(a)

2
(x − t)2, for some a ∈ [x, t] ⊂ [−0.5, 0.5].

Note that φ′′(a) = (4a−6 − 6a−4)e
− 1

a2 = 2a−6e
− 1

a2
(
2 − 3a2

) ≥ 0, where the last
inequality holds due to the choice of a ∈ [−0.5, 0.5]. Hence we get the relationships

f (x, y) = φ(t) + (x − t)φ′(t) ≤ φ(x) for all x ∈ [−0.5, 0.5], y ∈ �,

which imply the inequality maxy∈� f (x, y) ≤ φ(x) whenever x ∈ [−0.5, 0.5]. On
the other hand, it follows from the above constructions of f and � that

max
y∈�

f (x, y) ≥ xφ′(x) + (φ(x) − xφ′(x)
) = φ(x) for each x ∈ [−0.5, 0.5],

which therefore justifies the claim in (1.4). Having this in mind, consider the set

S := {x ∈ R
∣
∣ f (x, y) ≤ 0 for all y ∈ �

}
(1.5)
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and observe that S ∩ [−0.5, 0.5] = {x | φ(x) ≤ 0} = {0}. Let us now check that the
local Hölder error bound (1.2) fails for (1.5) at x̄ = 0 for any exponent τ > 0. To
see it, take xk := 1√

ln(k+1)
→ 0 as k ∈ N and get for all large k that d (xk, S) =

d (xk, S ∩ [−0.5, 0.5]) = |xk |. This allows us to conclude that

d(xk, S)

[maxy∈� f (xk, y)]
1
τ+

= |xk |
[φ(xk)]

1
τ+

= (k + 1)
1
τ√

ln(k + 1)
→ ∞ as k → ∞

whenever τ > 0 is chosen, and thus the error bound (1.2) fails for the system S in
(1.5).

In what follows we prove that such a situation does not emerge if the sets Y (x) in
(1.1) are described by

Y (x) = {y ∈ R
m
∣
∣ gi (x, y) ≤ 0, i = 1, . . . , r, and h j (x, y) = 0, j = 1, . . . , s

}
,

(1.6)
where gi and h j are polynomials. It is shown in Sect. 4 that τ in (1.2) is explicitly
calculated in terms of degrees of the polynomials and dimensions of the spaces in
question. The key of our analysis is a new nonsmooth extension of the Łojasiewicz
inequality to the class of supremum marginal functions

φ(x) := sup
y∈Y (x)

f (x, y)

described by polynomials f and gi , h j in (1.6). This is done in Sect. 3 by using
powerful tools of variational analysis and semialgebraic geometry reviewed in Sect. 2.

Sections 5 and 6 are devoted to applications. In Sect. 5 we develop quantitative
higher-order stability analysis for remarkable classes of polynomial optimization
problems: generalized semi-infinite programming, optimization of matrix inequali-
ties, and second-order cone programming. Finally, Sect. 6 contains explicit estimates
of convergence rates for the cyclic projection algorithm to solve feasibility problems
for convex sets described by matrix polynomial inequalities and also for asymptotic
analysis of subgradient dynamical systems governed by maximum functions with
polynomial data.

2 Tools of variational analysis and semialgebraic geometry

This section briefly discusses some tools of generalized differentiation in variational
analysis and of semialgebraic geometry widely used in the paper. Throughout this
work we deal with finite-dimensional Euclidean spaces labeled asRn and endowed by
the inner product 〈x, y〉 = xT y. The symbol Bε(x) (resp. Bε(x)) stands for the open
(resp. closed) ball with center x and radius ε > 0 while B (resp. B) stands for the open
(resp closed) unit ball centered at the origin in R

n . Given a set A ⊂ R
n , its interior

(resp. boundary, convex hull, and conic convex hull) is denoted by int A (resp. bd A,
co A, and cone A).
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Starting with variational analysis, recall first two subdifferential notions needed
in what follows. The reader can find more information and references in the books
[30,37].

Given a function f : Rn → R continuous around x , the proximal subdifferential
of f at x is

∂P f (x) :=
{
v ∈ R

n
∣
∣
∣ lim inf‖h‖→0, h 	=0

f (x + h) − f (x) − 〈v, h〉
‖h‖2 > −∞

}
. (2.1)

The limiting subdifferential of f at x (known also as the general, basic or Mor-
dukhovich subdifferential) is

∂ f (x) := {v ∈ R
n
∣
∣ ∃ xk → x, vk → v with vk ∈ ∂P f (xk), k ∈ N

}
. (2.2)

We clearly have ∂P f (x) ⊂ ∂ f (x), where the first set may often be empty (while not so
in a dense sense), but the second one is nonempty for any locally Lipschitzian function.
Furthermore, the set ∂P f (x) is always convex but may not be closed, while ∂ f (x) is
closed but may often be nonconvex. Both subdifferentials (2.1) and (2.2) reduce to the
gradient {∇ f (x)} for smooth functions and to the subdifferential of convex analysis
for convex ones. A significant advantage of the limiting subdifferential (2.2) is full
calculus in the general nonconvex setting that is based on variational and extremal
principles; see [30,37] for more details.

The major variational notion used below is the limiting subdifferential slope of f
at x defined via (2.2) by

m f (x) := inf
{‖v‖∣∣ v ∈ ∂ f (x)

}
, (2.3)

where inf{∅} := ∞. It reduces to the classical gradient slope m f (x) = ‖∇ f (x)‖ for
smooth functions.

Let us next formulate some continuity notions for set-valued mappings F : Rn ⇒
R

m ; see, e.g., [37]. It is said that F is outer semicontinuous (o.s.c.) at x̄ if for any
sequence (xk, yk) converging to (x̄, ȳ) with yk ∈ F(xk) we have ȳ ∈ F(x̄). Further,
F is inner semicontinuous (i.s.c.) at x̄ if for any sequence xk → x̄ and any ȳ ∈ F(x̄)

there are yk ∈ F(xk) as k ∈ N satisfying yk → ȳ. We say that F is o.s.c. or i.s.c.
around x̄ if it has this property at every x in a neighborhood of x̄ .

Finally, we present some notions and facts from (real) semialgebraic geometry
following [5]. It is said that:

• A ⊂ R
n is a semialgebraic set if it is a finite union of subsets given by

{
x ∈ R

n
∣
∣ fi (x) = 0, i = 1, . . . , q, and fi (x) > 0, i = q + 1, . . . , p

}
,

where all the functions fi , i = 1, . . . , p, are polynomials of some degrees.
• f : A → B is a semialgebraic mapping if it maps one semialgebraic set A ⊂ R

n to
another one B ⊂ R

m and its graph {(x, y) ∈ A × B| y = f (x)} is a semialgebraic
subset of Rn × R

m . We say that f : A → B is locally semialgebraic around x̄ if
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there exists a neighborhood V of the point (x̄, f (x̄)) such that the set V ∩{(x, y) ∈
A × B| y = f (x)} is semialgebraic in R

n × R
m .

The class of semialgebraic sets is closed under taking finite intersections, finite
unions, and complements; furthermore, a Cartesian product of semialgebraic sets is
semialgebraic. A major fact concerning the class of semialgebraic sets is given by the
following seminal result of semialgebraic geometry.
Tarski–Seidenberg Theorem. Images of semialgebraic sets under semialgebraic
maps are semialgebraic.

We also need another fundamental result taken from [12, Theorem 4.2], which
provides an exponent estimate in the classical Łojasiewicz gradient inequality for
polynomials. For brevity we label it as:
Łojasiewicz Gradient Inequality. Let f be a polynomial on R

n with degree d ∈ N.
Suppose that f (0) = 0 and ∇ f (0) = 0. Then there exist constants c, ε > 0 such that
for all x ∈ R

n with ‖x‖ ≤ ε we have

‖∇ f (x)‖ ≥ c| f (x)|1−τ , where τ

= R(n, d)−1 and R(n, d) :=
{
1 if d = 1,

d(3d − 3)n−1 if d ≥ 2.
(2.4)

3 Łojasiewicz inequality for supremum marginal functions

The main aim of this section is extending the Łojasiewicz gradient inequality (2.4) to
the following class of (polynomial) supremum marginal functions given by

φ(x) := sup
y∈Y (x)

f (x, y), (3.1)

where f : Rn ×R
m → R is a polynomial of degree at most d, andwhere the set-valued

mapping Y : Rn ⇒ R
m is defined in (1.6) by polynomials gi : Rn × R

m → R for
i = 1, . . . , r and h j : Rn ×R

m → R for j = 1, . . . , s of degree at most d. Functions
of type (3.1) are intrinsically nonsmooth, and thus deriving a nonsmooth counterpart
of (2.4) for them requires the usage of an appropriate subdifferential of φ. The reader
will see below that a nonsmooth version of the Łojasiewicz inequality for φ in terms
of the limiting subdifferential slope mφ(x) from (2.3), which replaces the gradient
norm in (2.4), plays a key role in establishing our Hölder-type local error bounds and
their subsequent applications in this paper.

To proceed in this direction, we have to calculate the limiting subdifferential of φ

from (3.1) in terms of its initial data, which is not an easy task by taking into account
that the sets Y (x) are infinite and variable. When Y (x) ≡ �, (3.1) reduces to the
supremum function for which the most recent subdifferential results can be found in
[31]; see also the references therein. When the supremum in (3.1) is replaced by the
infimum, we arrive at the class of (infimum) marginal functions well investigated in
variational analysis [30]. Needless to say that the supremum and infimum operations
are essentially different in unilateral analysis and that (lower) subdifferential properties
under supremum are significantly more involved and challenging.
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We first show that the functions of type (3.1) enjoy the following important prop-
erties.

Proposition 3.1 (supremum marginal functions are locally semialgebraic and upper
semicontinuous) Let the sets Y (x) in (1.6) be nonempty and uniformly bounded around
some point x̄ ∈ R

n. Then the function φ in (3.1) is locally semialgebraic and locally
upper semicontinuous (u.s.c.) around x̄.

Proof It follows from the Tarski–Seidenberg Theorem and the assumptions made that
φ is well defined and semialgebraic around x̄ . Let us verify that φ is u.s.c. around
x̄ . Select a number ε > 0 and a compact set C ⊂ R

m so that ∅ 	= Y (x) ⊂ C for
all x ∈ Bε(x̄). We claim that φ is locally u.s.c. on Bε(x̄). Indeed, assume on the
contrary that φ is not u.s.c. at some x ∈ Bε(x̄) and then get a sequence xk → x and a
number δ > 0 such that φ(xk) > φ(x) + δ. Using the continuity of f , the closedness
of Y (x) for all x , and the inclusion Y (xk) ⊂ C allows us to find yk ∈ Y (xk) with
φ(xk) = f (xk, yk). By passing to a subsequence we may suppose without loss of
generality that yk → y. It is easy to check that y ∈ Y (x) due to the continuity
of gi as i = 1, . . . , r and h j as j = 1, . . . , s in (1.6). Since f is continuous, we
have φ(xk) = f (xk, yk) → f (x, y) ≤ φ(x), which contradicts the assumption that
φ(xk) > φ(x) + δ. Thus φ is locally u.s.c. around x̄ . ��

Nextwe study the lower semicontinuity (l.s.c.) andHölder continuity of the function
φ (3.1) under rather mild assumptions. Define the argmaximum set important for our
further analysis by

M(x) := {y ∈ Y (x)
∣
∣ φ(x) = f (x, y)

}
(3.2)

and recall that dist(A; B) := inf{‖a − b‖∣∣ a ∈ A, b ∈ B} for A, B ⊂ R
m .

Proposition 3.2 (continuity of supremum marginal functions) Given x̄ ∈ R
n, sup-

pose that the sets Y (x) are nonempty and uniformly bounded around x̄. The following
assertions hold:

(i) If dist(M(x̄); Y (x)) → 0 as x → x̄ , then φ is l.s.c. (and hence continuous) at x̄ .
Thus the i.s.c. property of Y at x̄ ensures that φ is continuous at this point.

(ii) If there are numbers ε, L > 0 and α ∈ (0, 1] such that

dist
(
M(x1); Y (x2)

) ≤ L‖x1 − x2‖α for all x1, x2 ∈ Bε(x̄), (3.3)

then φ is Hölder continuous on Bε(x̄) with order α.

Proof Since the sets Y (x) are nonempty and uniformly bounded around x̄ , there exist
a compact set C and a number ε > 0 such that Y (x) ⊂ C for all x ∈ Bε(x̄). Let us
first verify (i) while arguing by contradiction. Suppose that dist(M(x̄); Y (x)) → 0 as
x → x̄ and that φ is not l.s.c. at x̄ . Then there exist a constant ν > 0 and a sequence
xk → x̄ such that φ(xk) < φ(x̄)− ν. Since d(M(x̄); Y (xk)) → 0 as k → ∞, we find
yk ∈ Y (xk) and ȳk ∈ M(x̄)with‖yk− ȳk‖ → 0.Using the boundedness of {ȳk}k∈N and
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passing to a subsequence if necessary allow us to find ȳ ∈ R
m with ȳk → ȳ and thus

yk → ȳ. It is easy to see that ȳ ∈ Y (x̄) and that φ(x̄) = f (x̄, ȳk) → f (x̄, ȳ), which
yield in turn that ȳ ∈ M(x̄). Hence we have φ(xk) ≥ f (xk, yk) → f (x̄, ȳ) = φ(x̄) as
k → ∞ while contradicting the assumption on φ(xk) < φ(x̄) − ν. This verifies that
φ is l.s.c. at x̄ and hence its continuity there by Proposition 3.1. The second statement
in (i) follows from the first one and the definitions.

To justify now assertion (ii), suppose that (3.3) holds and pick any x1, x2 ∈ Bε(x̄).
Since the sets M(x) and Y (x) are compact for all x ∈ Bε(x̄), we deduce from (3.3)
that there are y1 ∈ M(x1) and y2 ∈ Y (x2) satisfying ‖y1 − y2‖ ≤ L‖x1 − x2‖α .
Taking into account the Lipschitz continuity of the polynomial f on Bε(x̄) × C with
some constant 
 > 0, it follows that

φ(x1) − φ(x2) ≤ f (x1, y1) − f (x2, y2) ≤ 
(‖x1 − x2‖ + ‖y1 − y2‖)
≤ 

(‖x1 − x2‖ + L‖x1 − x2‖α

) = 

(
(2ε)1−α + L

)‖x1 − x2‖α.

Similarlywe conclude thatφ(x2)−φ(x1) ≤ 

(
(2ε)1−α+L

)‖x1−x2‖α , which verifies
the Hölder continuity of φ on Bε(x̄) with order α and thus completes the proof of the
proposition. ��

Remark 3.3 (effective conditions for continuity of marginal functions) Proposi-
tion 3.2(i) tells us that φ in (3.1) is continuous at x̄ provided that Y is i.s.c. at this
point,which surely holds ifY is locally Lipschitzian around x̄ in the standard/Hausdorff
sense with taking into account that the sets Y (x) from (1.6) are closed, nonempty, and
uniformly bounded. Necessary and sufficient conditions for the local Lipschitz prop-
erty of Y around x̄ are given in [30, Corollary 4.39] in terms of the gradients of the
constraint functions gi , h j at (x̄, ȳ) for any ȳ ∈ Y (x̄). In this way we get effective
conditions ensuring the continuity of φ at (in fact around) x̄ via the initial data of
(1.6). On the other hand, [30, Theorem 3.38(iv)] justifies the Lipschitz continuity of
φ around x̄ under the i.s.c. property of the argmaximum mapping (3.2) around (x̄, ȳ)

with some fixed ȳ ∈ M(x̄) and the Lipschitz-like (Aubin, pseudo-Lipschitz) property
of Y around this pair (x̄, ȳ), which is effectively characterized in [30, Corollary 4.39]
via the initial data.

To proceed further, we need the following qualification condition imposed at a
reference point relative to some (in fact optimal) subset of the constraint set Y (x) in
(3.1).

Definition 3.4 (marginal constrained qualification) Given x̄ ∈ R
n and Y (x̄) from

(1.6), we say that the marginal Mangasarian- Fromovitz constraint quali-
fication (MMFCQ) holds at x̄ relative to some subset � ⊂ Y (x̄) if there is a vector
ξ ∈ R

n such that

⎡

⎣
r∑

i=1

λi∇x gi (x̄, y) +
s∑

j=1

κ j∇x h j (x̄, y)

⎤

⎦

T

ξ > 0 for any y ∈ � (3.4)
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whenever Lagrange multipliers (λ, κ) ∈ R
r+ × R

s \ {0} satisfy the conditions
r∑

i=1

λi∇y gi (x̄, y) +
s∑

j=1

κ j∇yh j (x̄, y) = 0 and λi gi (x̄, y) = 0, i = 1, . . . , r.

(3.5)

Remark 3.5 (relationships of MMFCQ with EMFCQ and MFCQ) The defined
MMFCQ for the marginal supremum functions (3.1) is motivated by the extended
Mangasarian-Fromovitz constraint qualification (EMFCQ) introduced in [19] for gen-
eralized semi-infinite programs (GSIPs) discussed below in Sect. 5. Reformulating
EMFCQ for (3.1), we see that it involves the cost function f and also requires the
validity of (3.4) for a larger set of Lagrange multipliers in comparison with MMFCQ;
so MMFCQ is weaker than EMFCQ in general. Observe also that when the functions
gi and h j do not depend on x , the formulated MMFCQ condition means that there is
no (λ, κ) ∈ R

r+ × R
s \ {0} satisfying (3.5), which is equivalent to the conventional

Mangasarian-Fromovitz constraint qualification (MFCQ) on � in the sense that

r∑

i=1

λi ∇gi (y) +
s∑

j=1

κ j ∇h j (y) = 0,

λi ≥ 0, λi gi (y) = 0, i = 1, . . . , r, and κ j ∈ R, j = 1, . . . , s

⎫
⎪⎬

⎪⎭
�⇒ λi = 0, κ j = 0

(3.6)

for any y ∈ �. As we see in the subsequent sections, the imposed MMFCQ holds
automatically for important classes of polynomial optimization and related problems
arising in applications.

It is worth emphasizing that the majority of our applications below requires the
validity ofMMFCQ for the casewhen� inDefinition 3.4 is chosen as the argmaximum
set (3.2) at the reference point. Consider further the standard Lagrangian function for
(3.1) with the negative sign of γ taken due to the maximization

L (x, y, γ, λ, κ) := −γ f (x, y) +
r∑

i=1

λi gi (x, y) +
s∑

j=1

κ j h j (x, y). (3.7)

Observe that any y ∈ M(x) is a minimizer of the following nonlinear program:

min− f (x, ·) subject to gi (x, ·) ≤ 0, i = 1, . . . , r, and h j (x, ·) = 0, j = 1, . . . , s.
(3.8)

Applying the classical Lagrange multiplier rule in the Fritz John form to (3.8) tells
us that the set F J (x, y) of multipliers (γ, λ, κ) ∈ R+ × R

r+ × R
s satisfying the

conditions

γ +
r∑

i=1

λi +
s∑

j=1

|κ j | = 1, ∇yL (x, y, γ, λ, κ) = 0, and λi gi (x, y) = 0, i = 1, . . . , r,

(3.9)
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is always nonempty. Given α ∈ [0,∞], consider also the set F Jα(x, y) of (γ, λ, κ) ∈
R+ × R

r+ × R
s satisfying

γ +
r∑

i=1

λi +
s∑

j=1

|κ j | ≤ α, ∇yL (x, y, γ, λ, κ) = 0, and λi gi (x, y) = 0, i = 1, . . . , r.

(3.10)
Using the Lagrangian description, we now show that theMMFCQ property relative

to � = M(x̄) from (3.2) is robust in the general setting of Proposition 3.2(i).

Proposition 3.6 (robustness of MMFCQ) Given x̄ ∈ R
n, assume that the sets Y (x)

are nonempty and uniformly bounded around x̄. If MMFCQ holds at x̄ relative to
M(x̄) and if φ is l.s.c. at x̄ , then there exists δ > 0 such that MMFCQ is satisfied at
any point x ∈ Bδ(x̄) relative to M(x).

Proof Proposition 3.1 tells us that φ is continuous at x̄ . Supposing on the contrary
that MMFCQ is not robust, i.e., there are xk → x̄ as k → ∞ such that MMFCQ
fails at xk relative to M(xk). Take any ξ ∈ R

n and find yk ∈ M(xk) and (λk, κk) ∈
R

r+ × R
s \ {0} satisfying ∇yL (xk, yk, 0, λk, κk) = 0, (λk)i gi (xk, yk) = 0 for i =

1, . . . , r , and ∇xL (xk, yk, 0, λk, κk)
T ξ ≤ 0. Normalization gives us ‖(λk, κk)‖ = 1

for all k ∈ N. Using now the uniform boundedness of Y (x) around x̄ , we select
subsequences yk → ȳ ∈ Y (x̄) and (λk, κk) → (λ̄, κ̄) with ‖(λ̄, κ̄)‖ = 1. It follows
from the continuity of φ at x̄ and from φ(xk) = f (xk, yk) that φ(x̄) = f (x̄, ȳ),
i.e., ȳ ∈ M(x̄). Furthermore, passing to limit as k → ∞ yields λ̄i gi (x̄, ȳ) = 0 for
i = 1, . . . , r , ∇yL (x̄, ȳ, 0, λ̄, κ̄) = 0, and ∇xL (x̄, ȳ, 0, λ̄, κ̄)T ξ ≤ 0. Since ξ ∈ R

n

was chosen arbitrarily, this contradicts the assumed MMFCQ at x̄ relative to M(x̄)

and thus completes the proof. ��
The next result important for its own sake plays a crucial role in deriving the

extended Łojasiewicz inequality for supremum marginal functions. It explicitly eval-
uates the limiting subdifferential of for such functions via the initial data and the
corresponding Lagrange multiplies being significantly different from the preceding
results and techniques of [31] even for the constant mapping Y in (3.1) considered
therein.

Theorem 3.7 (limiting subgradients of supremummarginal functions)Given x̄ ∈ R
n,

suppose that the sets Y (x) in (1.6) are nonempty and uniformly bounded around x̄,
that MMFCQ holds at x̄ relative to M(x̄), and that φ is l.s.c. around x̄. The following
assertions hold:

(i) There exists ε > 0 such that for any x ∈ Bε(x̄) and v ∈ ∂φ(x) we can find
y(q) ∈ M(x) and (γ (q), λ(q), κ(q)) ∈ F J∞(x, y(q)), q = 1, . . . , n + 1, satisfying
the conditions

v =
n+1∑

q=1

∇xL (x, y(q), γ (q), λ(q), κ(q)) and
n+1∑

q=1

γ (q) = 1, (3.11)
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where L and F J∞ are defined in (3.7) and (3.10), respectively.

(ii) Given L0 > 0, there are positive numbers ε, α such that for any x ∈ Bε(x̄) and
v ∈ ∂φ(x)∩(L0B) we can find y(q) ∈ M(x) and (γ (q), λ(q), κ(q)) ∈ F Jα(x, y(q)),
q = 1, . . . , n + 1, satisfying (3.11).

Proof It follows from Proposition 3.6 that there is ε > 0 such that MMFCQ holds
at any point x ∈ Bε(x̄) relative to M(x). Moreover, Proposition 3.1 and the l.s.c.
assumption on φ ensure that this function is continuous on Bε(x̄). Let us first evaluate
the proximal subdifferential (2.1) and then the limiting subdifferential (2.2) of the
supremum marginal function (3.1) at each fixed x ∈ Bε(x̄).

Claim 1 For any proximal subgradient v ∈ ∂Pφ(x) we have

(v,−1) ∈ cone
{(∇xL (x, y, γ, λ, κ), −γ

)∣∣ y ∈ M(x), (γ, λ, κ) ∈ F J (x, y)
} ⊂ R

n+1.

(3.12)
To verify (3.12), deduce from (2.1) that there are constants η > 0 and δ ∈ (0, ε −
‖x − x̄‖) satisfying

φ(u) − φ(x) ≥ 〈v, u − x〉 − η‖u − x‖2 whenever u ∈ Bδ(x). (3.13)

The assumptions imposed on the mapping Y ensure that φ(u) = max{ f (u, y)| y ∈
Y (u)} for all u ∈ R

n , which tells us by (3.13) that the pair (x, φ(x)) is a localminimizer
of the following GSIP:

min
(u,z)

[
z − 〈v, u − x〉 + η‖u − x‖2] subject to f (u, y) − z ≤ 0 for all y ∈ Y (u).

(3.14)
Applying to (3.14) the necessary optimality condition from [19, Theorem 1.1], we
find p ∈ N, y(q) ∈ M(x), (γ (q), λ(q), κ(q)) ∈ F J (x, y(q)), α ≥ 0, and μ(q) ≥ 0 for
q = 1, . . . , p so that

α +
p∑

q=1

μ(q) = 1 and α(−v, 1) +
p∑

q=1

μ(q)(∇xL (x, y(q), γ (q), λ(q), κ(q)),−γ (q))

= (0, 0). (3.15)

To justify (3.12), it remains to show thatα > 0 in (3.15). Indeed, assuming the contrary
tells us that

p∑

q=1

μ(q) = 1 and
p∑

q=1

μ(q)
(∇xL (x, y(q), γ (q), λ(q), κ(q)),−γ (q)

) = (0, 0)

(3.16)
with (γ (q), λ(q), κ(q)) ∈ F J (x, y(q)) for q = 1, . . . , p. Consider the set I := {

q ∈
{1, . . . , p}| μ(q) 	= 0

}
, which is nonempty by

∑p
q=1 μ(q) = 1. It follows from (3.16)
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thatμ(q)γ (q) = 0 for q = 1, . . . , p. Hence γ (q) = 0 and (0, λ(q), κ(q)) ∈ F J (x, y(q))

for all q ∈ I . Combining this with (3.16) yields

∑

q∈I

μ(q)∇xL (x, y(q), 0, λ(q), κ(q)) = 0,

which contradicts the assumed MMFCQ at x relative to M(x) and thus verifies (3.12)
for v ∈ ∂Pφ(x).

Claim 2 Any limiting subgradient v ∈ ∂φ(x) satisfies (3.12) and thus (3.11).

Fixv ∈ ∂φ(x). Sinceφ is continuous onBε(x̄),wefindbydefinition (2.2) sequences
xk → x and vk ∈ ∂Pφ(xk) with vk → v. Using (3.12) for vk and applying the
Carathéodory theorem to the conic convex hull in (3.12) give us y(q)

k ∈ M(xk),μ
(q)
k ∈

R+, and (γ
(q)
k , λ

(q)
k , κ

(q)
k ) ∈ F J (xk, y(q)

k ) for q = 1, . . . , n + 1 such that

vk =
n+1∑

q=1

μ
(q)
k ∇xL

(
xk, y(q)

k , γ
(q)
k , λ

(q)
k , κ

(q)
k

)
and

n+1∑

q=1

μ
(q)
k γ

(q)
k = 1. (3.17)

Let us show that the sequence of μk := (μ
(1)
k , . . . , μ

(n+1)
k ) is bounded. Arguing by

contradiction, suppose that
∑n+1

q=1 μ
(q)
k → ∞ and define μ̂

(q)
k := μ

(q)
k

[∑n+1
p=1 μ

(p)
k

]−1

for q = 1, . . . , n + 1. Since the convergent sequence of vk is bounded as vk → v, we
deduce from (3.17) that

n+1∑

q=1

μ̂
(q)
k ∇xL

(
xk, y(q)

k , γ
(q)
k , λ

(q)
k , κ

(q)
k

)
→ 0 and

n+1∑

q=1

μ̂
(q)
k γ

(q)
k → 0 as k → ∞.

(3.18)
It follows from the boundedness of y(q)

k , μ̂(q)
k , and (γ

(q)
k , λ

(q)
k , κ

(q)
k ) for q = 1, . . . , n+

1 that some subsequences of them converge to y(q), μ̂(q), and (γ (q), λ(q), κ(q)), respec-
tively. Letting k → ∞ in (3.18) yields

n+1∑

q=1

μ̂(q)∇xL
(

x, y(q), γ (q), λ(q), κ(q)
)

= 0 and
n+1∑

q=1

μ̂(q)γ (q) = 0 (3.19)

with (γ (q), λ(q), κ(q)) ∈ F J (x, y(q)), y(q) ∈ M(x), and
∑n+1

q=1 μ̂(q) = 1. Similarly
to Claim 1 we arrive at a contradiction with the validity of MMFCQ at x relative to
M(x), which therefore shows that the sequence of μk = (μ

(1)
k , . . . , μ

(n+1)
k ) ∈ R

n+1+
is bounded.

By passing to subsequences again, we get that μk → μ ∈ R
n+1+ , y(q)

k → y(q) ∈
M(x), and (γ

(q)
k , λ

(q)
k , κ

(q)
k ) → (γ (q), λ(q), κ(q)) ∈ F J (x, y(q)) as k → ∞ for

q = 1, . . . , n + 1. It follows from (3.17) that
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v =
n+1∑

q=1

μ(q)∇xL (x, y(q), γ (q), λ(q), κ(q)) and
n+1∑

q=1

μ(q)γ (q) = 1, (3.20)

which gives us (3.12) for each v ∈ ∂φ(x) as stated in Claim 2.
To complete the proof of (i), define γ̄ (q) := μ(q)γ (q), λ̄(q) := μ(q)λ(q), and κ̄ (q) :=

μ(q)κ(q) and then observe that the inclusion (γ (q), λ(q), κ(q)) ∈ F J (x, y(q)) yields
(γ̄ (q), λ̄(q), κ̄(q)) ∈ F J∞(x, y(q)) and

v =
n+1∑

q=1

∇xL
(

x, y(q), γ̄ (q), λ̄(q), κ̄(q)
)

,

n+1∑

q=1

γ̄ (q) = 1. (3.21)

To justify finally (ii), pick any v ∈ ∂φ(x) ∩ (L0B) with x ∈ Bε(x̄) and find
by Claim 2 and the Carathéodory theorem such y(q) ∈ M(x), μ(q) ∈ R+ and
(γ (q), λ(q), κ(q)) ∈ F J (x, y(q)) for q = 1, . . . , n + 1 that (3.20) holds. Taking
into account that all the elements above depend on ε and proceeding as in the
proof of Claim 2, we deduce that μ(q), q = 1, . . . , n + 1, are uniformly bounded
when ε is sufficiently small. This means that there are numbers α, ε > 0 such
that 0 ≤ μ(q) ≤ α for any μ(q) satisfying (3.20) whenever x ∈ Bε(x̄). Defining
γ̄ (q) := μ(q)γ (q), λ̄(q) := μ(q)λ(q), and κ̄ (q) := μ(q)κ(q) as above and then using
(γ (q), λ(q), κ(q)) ∈ F J (x, y(q)), we conclude that (γ̄ (q), λ̄(q), κ̄(q)) ∈ F Jα(x, y(q))

and that v satisfies (3.21). This clearly ensures the validity of (3.11) and thus finishes
the proof of the theorem. ��

Now we are ready to establish a subdifferential extension of the Łojasiewicz Gra-
dient Inequality to supremummarginal functions with polynomial data in terms of the
limiting subdifferential slope (2.3).

Theorem 3.8 (Łojasiewicz subgradient inequality for polynomial systems)Given x̄ ∈
R

n, suppose that all the assumptions of Theorem 3.7 are satisfied for the marginal
supremum function φ in (3.1). Then there exist positive constants c and ε such that we
have the estimate

mφ(x) ≥ c|φ(x) − φ(x̄)|1−τ for all x ∈ Bε(x̄) with τ

= R
(
2n + (m + r + s)(n + 1), d + 2

)−1
, (3.22)

where the constant R is taken from (2.4).

Proof It follows from Proposition 3.1 that φ is continuous around x̄ . Hence there are
ν, ε1 > 0 such that |φ(x) − φ(x̄)| ≤ ν for all x ∈ Bε1(x̄). Define L0 := ν1−τ and
F : Rn × R

m × R × R
r × R

s → R by

F(x, y, γ, μ, κ) := −γ f (x, y) +
r∑

i=1

μ2
i gi (x, y) +

s∑

j=1

κ j h j (x, y) (3.23)

and observe that F is a polynomial of degree not greater than d + 2. Define further
another polynomial P : Rn ×R

m(n+1) ×R
n ×R

r(n+1) ×R
s(n+1) → R of degree not

greater than d + 2 by
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P(x, y, γ, μ, κ) :=
n∑

q=1

F
(

x, y(q), γ (q), μ(q), κ(q)
)

+ F

⎛

⎝x, y(n+1), 1

−
n∑

q=1

γ (q), μ(n+1), κ(n+1)

⎞

⎠+ φ(x̄), (3.24)

where x ∈ R
n , y = (y(1), . . . , y(n+1)) ∈ R

m(n+1) with y(q) ∈ R
m , γ =

(γ (1), . . . , γ (n)) ∈ R
n with γ (q) ∈ R, μ = (μ(1), . . . , μ(n+1)) ∈ R

r(n+1) with
μ(q) ∈ R

r , and κ = (κ(1), . . . , κ(n+1)) ∈ R
s(n+1) with κ(q) ∈ R

s . For each
μ = (μ1, . . . , μr ) ∈ R

r denote μ[2] := (μ2
1, . . . , μ

2
r ) ∈ R

r+ and consider the set

K (ε) :=
⎧
⎨

⎩
(x, y, γ, μ, κ) ∈ R

n × R
m(n+1) × R

n × R
r(n+1) × R

s(n+1)
∣
∣
∣

x ∈ Bε(x̄), γ ∈ R
n,

n∑

q=1

γ (q) ≤ 1, γ (1), . . . , γ (n) ≥ 0,

y = (y(1), . . . , y(n+1)), μ = (μ(1), . . . , μ(n+1)), κ = (κ(1), . . . , κ(n+1)),

y(q) ∈ M(x), q = 1, . . . , n + 1,(
γ (q), (μ(q))[2], κ(q)

)
∈ F Jα(x, y(q)), q = 1, . . . , n,

⎛

⎝1 −
n∑

q=1

γ (q), (μ(n+1))[2], κ(n+1)

⎞

⎠ ∈ F Jα(x, y(n+1))

⎫
⎬

⎭
, ε ∈ (0, ε2),

(3.25)

where the positive numbers α and ε2 ≤ ε1 depend on L0 and are taken from The-
orem 3.7(ii). It can be verified that the set-valued mapping K (·) is o.s.c. at ε = 0.
Furthermore, for any (x, y, γ, μ, κ) ∈ K (0) we get from (3.10) and (3.25) the equal-
ities

P(x, y, γ, μ, κ) = −
n∑

q=1

γ (q) f (x, y(q)) −
⎛

⎝

⎛

⎝1 −
n∑

q=1

γ (q)

⎞

⎠ f (x, y(n+1))

⎞

⎠+ φ(x̄)

= −
n∑

q=1

γ (q)φ(x̄) −
(
1 −

n∑

q=1

γ (q)
)
φ(x̄) + φ(x̄) = −φ(x̄) + φ(x̄) = 0,

where the second one follows from y(q) ∈ M(x) = M(x̄) as q = 1, . . . , n + 1.
Applying the Łojasiewicz Gradient Inequality (2.4) to the polynomial P in (3.24)
gives us positive constants η and cη such that

‖∇ P(x ′, y′, γ ′, μ′, κ ′)‖ ≥ cη |P(x ′, y′, γ ′, μ′, κ ′)|1−τ if ‖(x ′, y′, γ ′, μ′, κ ′)
−(x, y, γ, μ, κ)‖ < η (3.26)

with τ := R(2n + (m + r + s)(n + 1), d + 2). It is easy to see that K (0) is a compact
set, and hence we can find p ∈ N, (x (ν), y(ν), γ (ν), μ(ν), κ(ν)) ∈ K (0), and ην > 0
for ν = 1, . . . , p so that
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K (0) ⊂
p⋃

ν=1

Bην (x (ν), y(ν), γ (ν), μ(ν), κ(ν)).

This allows us to find a positive number δ ensuring the inclusion

K (0) + δB ⊂
p⋃

ν=1

Bην

(
x (ν), y(ν), γ (ν), μ(ν), κ(ν)

)
.

Employing the o.s.c. property of K (·) at ε = 0, we find ε3 ∈ (0, ε2) so that

K (ε) ⊂ K (0) + δB ⊂
p⋃

k=1

Bηk

(
x (ν), y(ν), γ (ν), μ(ν), κ(ν)

)

for all ε ∈ [0, ε3). Denoting c := min{1, cη1 , . . . , cηp }, deduce from (3.26) that

‖∇ P(x, y, γ, μ, κ)‖ ≥ c |P(x, y, γ, μ, κ)|1−τ if (x, y, γ, μ, κ) ∈ K (ε).(3.27)

Pick now ε ∈ (0, ε3) and x ∈ Bε(x̄). If mφ(x) ≥ L0, then (3.22) holds by the choices
of L0 and c. If mφ(x) < L0, then we take any v ∈ ∂φ(x) ∩ (L0B) 	= ∅ and deduce
fromTheorem3.7(ii) that there are y(q) ∈ M(x) and (γ (q), λ(q), κ(q)) ∈ F Jα(x, y(q)),
q = 1, . . . , n + 1, satisfying

v =
n+1∑

q=1

∇xL
(

x, y(q), γ (q), λ(q), κ(q)
)

and
n+1∑

q=1

γ (q) = 1. (3.28)

Define next μ(q)
i :=

√
λ

(q)
i , i = 1, . . . , r , and observe the inclusions

(γ (q), [μ(q)]2, κ(q)) ∈ F Jα(x, y(q)), q = 1, . . . , n + 1.

It follows from (3.28) and the definition of K (ε) in (3.25) that (x, y, γ, μ, κ) ∈ K (ε),
and thus (3.27) holds for this quintuple. Differentiating (3.24) with taking (3.28) into
account implies the equalities

∇x P(x, y, γ, μ, κ) =
n+1∑

q=1

∇xL
(

x, y(q), γ (q), λ(q), κ(q)
)

= v,

∇y P(x, y, γ, μ, κ) =
(
∇y(1)L

(
x, y(1), γ (1), λ(1), κ(1)

)
, . . . ,

∇y(n+1)L (x, y(n+1), γ (n+1), λ(n+1), κ(n+1))
)

= 0,

∇γ P(x, y, γ, μ, κ) =
(

f (x, y(1)) − f (x, y(n+1)), . . . , f (x, y(n)) − f (x, y(n+1))
)

= 0,
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∇μ P(x, y, γ, μ, κ) =
(
2μ(q)

i gi (x, y(q))
)

i,q
= 0, and ∇κ P(x, y, γ, μ, κ)

=
(

h j (x, y(q))
)

j,q
= 0,

which ensure by (3.27), (3.28), and (3.24) the relationships

‖v‖ = ‖∇ P(x, y, γ, μ, κ)‖ ≥ c |P(x, y, γ, μ, κ)|1−τ

= c |φ(x) − φ(x̄)|1−τ for any v ∈ ∂φ(x) ∩ (LB).

Since mφ(x) < L0, this clearly verifies (3.22) and completes the proof of the theorem.
��

Remark 3.9 (sharper estimate for equality polynomial systems) A close look at the
proof of Theorem 3.8 reveals that the exponent τ in (3.22) can sharpen to τ = R(2n +
(m + s)(n + 1), d + 1)−1 in the case when the polynomial system in (1.6) is given
by only the equalities Y (x) = {y ∈ R

m | h j (x, y) = 0, j = 1, . . . , s}. This is due to
the fact that the polynomials F in (3.23) and P in (3.24) are of degrees at most d + 1
instead of d + 2 as in the general case.

4 Error bounds for parametric polynomial systems

In this section we derive Hölder error bounds with explicit exponents for general poly-
nomial systems of type (1.1), where the underlying state-dependent sets of parameters
Y (x) admit the polynomial description (1.6). We also present important specifications
of these estimates in some particular cases. The results obtained are far-going exten-
sions of those established in [25] in the case of finite and constant sets Y (x) ≡ �. To
proceed, we need the following lemma on error bounds for locally Lipschitz functions
taken from [34, Corollary 2].

Lemma 4.1 (sufficient condition for error bounds of Lipschitzian functions) Let
f : Rn → R be continuous around x ∈ bd S f , where S f := {x | f (x) ≤ 0}. Assume
that there are numbers c, ε > 0 such that m f (x) ≥ c | f (x)|1−τ for all x ∈ R

n with
‖x − x‖ ≤ ε and x /∈ S f . Then we have

dist(x, S f ) ≤ 1

τc

[
f (x)

]τ
+ whenever ‖x − x‖ ≤ ε

2
.

Weare now ready to establish themain result of this section. To avoid some technical
complexity on dealing with the l.s.c. property of supremum marginal functions as
discussed in Sect. 3, we assume in what follows that the mapping Y in (1.6) is inner
semicontinuous around the point in question, which is always the case when Y (x) ≡ �

for some fixed set � ⊂ R
m ; see, e.g., (4.5) below.

Theorem 4.2 (Hölder error bounds for parametric polynomial systems) Let fl , gi ,

h j : Rn ×R
m → R with l = 1, . . . , L, i = 1, . . . , r , and j = 1, . . . , s be polynomial

functions of degrees at most d. Suppose that the mapping Y from (1.6) is i.s.c. with
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nonempty and uniformly bounded values Y (x) around a given point x̄ ∈ R
n and that

MMFCQ from Definition 3.4 holds at this point relative to the argmaximum set

M(x̄) := {y ∈ Y (x̄)
∣
∣ max

y∈Y (x)
1≤l≤L

fl(x̄, y) = fl(x̄, y) for some l = 1, . . . , L
}
. (4.1)

Then there are numbers c, ε > 0 such that we have the local error bound

dist(x, S) ≤ c

([
max

y∈Y (x)
1≤l≤L

fl(x, y)
]

+

)τ

for all x ∈ R
n with ‖x − x̄‖ ≤ ε, (4.2)

where S is taken from (1.1), and where the Hölder exponent τ in (4.2) is explicitly
calculated by

τ =
{
R(2n + (m + r + s)(n + 1), d + 2)−1, L = 1,
R(2n + (m + r + s + 2)(n + 1), d + L + 1)−1, L ≥ 2,

(4.3)

with the constant R defined in (2.4). If we suppose in addition that MMFCQ holds
at every x ∈ R

n relative to the whole set of parameters Y (x) and that Y are i.s.c on
R

n, then for any compact set K ⊂ R
n there is a number c̄ > 0 such that we have the

following global error bound with the same exponent τ :

dist(x, S) ≤ c̄

([
max

y∈Y (x)
1≤l≤L

fl(x, y)
]

+

)τ

whenever x ∈ K . (4.4)

Proof Consider first the case of L = 1, where φ(x) = supy∈Y (x) f1(x, y) is contin-
uous around x̄ by Propositions 3.1 and 3.2(i). Theorem 3.8 gives us numbers c0, ε0
such that for all x ∈ Bε0(x̄) we have the estimate

mφ(x) ≥ c0 |φ(x) − φ(x̄)|1−τ with τ = R
(
2n + (m + r + s)(n + 1, d + 2

)−1
.

Let us justify the existence of c, ε > 0 for which (4.2) holds with τ from (4.3) as
L = 1. If x̄ ∈ bd S, i.e., φ(x̄) = 0, we get by Lemma 4.1 that (4.3) is fulfilled with
c = 1

τc0
and ε = ε0/2. Since this inequality is automatic for x̄ ∈ int S, it remains to

examine the case of x̄ /∈ S. It follows from x̄ /∈ S = {x | φ(x) ≤ 0} that φ(x̄) > 0
and so (φ(x̄))τ > 0. By the continuity of φ and d(·, S) we find M1, M2, ε > 0 such
that

(φ(x))τ ≥ M1 and dist(x, S) ≤ M2 for all x ∈ Bε(x̄),

and hence dist(x, S) ≤ M2 ≤ M2
Mτ

1
φ(x)τ for all x from this ball. This verifies (4.2) for

L = 1.
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Next we consider the case of L ≥ 2 and define the Lagrange interpolation polyno-
mials γl : R → R by

γl(t) :=
∏

j 	=l, j∈{1,...,L}

t − j

l − j
, l = 1, . . . , L ,

for which γl(l) = 1 as l = 1, . . . , L and γl( j) = 0 as j ∈ {1, . . . , L} with j 	= l.
Define the functions

f̃ (x, y, t) :=
L∑

l=1

γl(t) fl(x, y), g̃i (x, y, t) := gi (x, y), i = 1, . . . , r,

h̃ j (x, y, t) := h j (x, y), j = 1, . . . , s, and h̃s+1(x, y, t) :=
L∏

l=1

(t − l)

and observe that f̃ is a polynomial onRn×R
m+1 with degree not greater than d+L−1.

Form now the modified constraint and argmaximum sets by, respectively,

Ỹ (x) := {(y, t) ∈ R
m × R

∣
∣ g̃i (x, y, t) ≤ 0, i = 1, . . . , r; h̃ j (x, y, t) = 0, j

= 1, . . . , s + 1
}
,

M̃(x) := {(y, t) ∈ Ỹ (x)
∣
∣ f̃ (x, y, t) = max

(y,t)∈Ỹ (x)
f̃ (x, y, t)

}

while noting that Ỹ (x) = Y (x) × {1, . . . , L} for Y (x) from (1.6) and that

max
y∈Y (x)
1≤l≤L

fl(x, y) = max
(y,t)∈Ỹ (x)

f̃ (x, y, t), S

= {x ∈ R
n
∣
∣ f̃ (x, y, t) ≤ 0 for all (y, t) ∈ Ỹ (x)

}
.

It can be directly checked that the mapping Ỹ is i.s.c. around x̄ with the nonempty
and uniformly bounded values and that the MMFCQ property for the modified system
holds at x̄ relative to M̃(x̄). Applying the result for the case of L = 1 obtained above to
the system f̃ , g̃i , h̃ j with (n, m, r, s, d) replaced by (n, m +1, r, s +1, d + L −1), we
arrive at (4.2) with τ calculated in (4.3) for L ≥ 2. The last statement of the theorem
(4.4) follows from (4.2) by employing the standard compactness arguments. ��
Remark 4.3 (sharper error bounds for equality polynomial systems) Based on the
observation in Remark 3.9 and following the proof of Theorem 4.2, we see that the the
exponent estimate τ in (4.2) can be sharpen to τ = R(2n + (m + r + s + 2min{L −
1, 1})(n +1), d + L) if the polynomial system Y (x) in (1.6) contains only the equality
constraints.

In the rest of this section we derive specifications of Theorem 4.2 in some particular
classes of parametric polynomial systems and discuss the possibility of sharpening
Hölder exponents in certain situations.
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Error bounds for infinite polynomial inequality systems

Let us examine the case of (1.1) where the sets Y (x) are independent of x being
reduced to the constant set

� := {y ∈ R
m
∣
∣ gi (y) ≤ 0, i = 1, . . . , r; h j (y) = 0, j = 1, . . . , s

}
(4.5)

described by polynomials with degrees at most d. In particular, such a case covers
important models known as polynomial matrix inequalities; see below. Observe also
that � from (4.5) can be treated as an infinite index set in problems of semi-infinite
programming (SIP); see, e.g., [15]. However, semialgebraic structures of index sets
have not been specifically investigated in the usual framework of SIP.

Following the traditional terminology, we say that � is regular if MFCQ for (4.5)
holds on�. Let us present examples of two important classes of regular sets described
by polynomials.

• Regularity of discrete sets. Considering the discrete set � := {1, . . . , p}, p ∈ N,
we can write it as

� = {y ∈ R
∣
∣ h(y) = 0

}
with h(y) := (y − 1)(y − 2) · · · (y − p).

Since we obviously have ∇h(y) 	= 0 for all y ∈ �, this set is regular.
• Regularity of algebraic manifolds. It follows directly from the definition that the
algebraic manifold

� := {y ∈ R
m
∣
∣ h1(y) = 0, . . . , hs(y) = 0

}
, s ≤ m,

is regular provided that rank
(∇h1(y), . . . ,∇hs(y)

) = s for all y ∈ �.

As an immediate consequence of Theorem 4.2, we arrive at the following extension
of the results in [25] from finite to to infinite polynomial inequality systems.

Corollary 4.4 (Hölder error bounds for infinite polynomial systems) Let fl : Rn ×
R

m → R, l = 1, . . . , L, be polynomials of degrees at most d, let � 	= ∅ given in (4.5)
be bounded and regular, and let S be defined in (1.1) with Y (x) ≡ �. Then for any
x̄ ∈ R

n there exist constants c, ε > 0 such that

dist(x, S) ≤ c

([
max
y∈�
1≤l≤L

fl(x, y)
]

+

)τ

whenever ‖x − x̄‖ ≤ ε, (4.6)

where τ = R(2n + (m + r + s + 2min{L − 1, 1})(n + 1), d + L + 1)−1 with the
constant R taken from (2.4). Furthermore, the error bound (4.6) holds globally with
some c > 0 on any compact set K ⊂ R

n.

Remark 4.5 (semialgebracity of index sets is essential for Hölder error bounds) As
follows from Example 1.1, the error bound (4.6) can fail if � is not semialgebraic.
Indeed, this example shows that the Hölder error bound does not hold whenever
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τ ∈ (0, 1) for f and � therein. It remains to check that the set � from (1.3) is not
semialgebraic. Supposing the contrary implies by the Tarski–Seidenberg Theorem that
the function x �→ maxy∈� f (x, y) is semialgebraic on [−0.5, 0.5], which is not the
case.

Next we present a consequence of Corollary 4.4 to polynomial matrix inequalities.
Recall that an (m × m) polynomial matrix inequality of n variables with degree d is
represented in the form P(x) � 0, where the notation M � 0 means that −M is a
positive semidefinite matrix, and where P : Rn → Sm is a mapping such that each
(i, j)th element of its image

(
P(x)

)
i j , 1 ≤ i, j ≤ m, is a real polynomial of degree at

most d. We refer the reader to, e.g., [17,18] for various applications of such systems.

Corollary 4.6 (error bounds for polynomial matrix inequalities without regularity
assumptions) Fix d ∈ N and consider the solution set

SP M I := {x∣∣ P(x) � 0
}

described by the above polynomial matrix inequality. Then for a compact set K ⊂ R
n

there is c > 0 such that

dist(x, SP M I ) ≤ c

([
λmax

(
P(x)

)]

+

)τ

whenever x ∈ K ,

where τ = R(2n+(m+1)(n+1), d+3)−1 and λmax denotes the maximum eigenvalue
of a symmetric matrix.

Proof Define f (x, y) := ∑m
i, j=1 yi (P(x)) y j , which is a real polynomial of degree

d + 2 on R
n+m . We have

P(x) � 0 ⇐⇒
[

f (x, y) ≤ 0 for all y ∈ � := {y ∈ R
m
∣
∣ ‖y‖2 = 1

}]
. (4.7)

Note that the set � 	= ∅ in (4.7) is bounded and regular. Applying now Corollary 4.4
to the inequality system on the right-hand side of (4.7) and replacing d by d + 2 with
taking into account Remark 3.9 ensure that for any compact set K we arrive at the
relationships

dist(x, SP M I ) ≤ c

(
[

sup
‖y‖2=1

f (x, y)
]

+

)τ

= c

([
λmax

(
P(x)

)]

+

)τ

with some constant c > 0. This completes the proof of the corollary. ��

Discussion on sharpness of exponent estimations

Finally in this section, we discuss the possibility to sharpen Hölder exponents in the
established error bounds for general infinite polynomial systems in some particular
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settings. Let us first present an example of a polynomial matrix inequality, where the
exponent obtained in Corollary 4.6 is not the sharpest one.

Example 4.7 (sharper error bound for matrix inequalities) Let d be an even number.
For any x = (x1, . . . , xn) define A1(x) := xd

1 and then, for any i = 2, . . . , n,

Ai (x) :=
(−1 xd

i
xd

i −xi−1

)
=
(−1 0

0 0

)
+ xi−1

(
0 0
0 −1

)
+ xd

i

(
0 1
1 0

)
.

Consider the following (2n − 1) × (2n − 1) polynomial matrix inequality system:

P(x) :=

⎛

⎜
⎜
⎜
⎝

A1(x) 0 0 0
0 A2(x) 0 0
... 0

. . . 0
0 0 . . . An(x)

⎞

⎟
⎟
⎟
⎠

� 0

and get by direct calculations that SP M I := {x ∈ R
n| P(x) � 0} = {0} and

λmax
(
P(x)

) = max
{
λmax

(
Ai (x)

)∣∣ 1 ≤ i ≤ n − 1
}

= max
{
max

{−(1 + xi−1)

2
+
√

(1 − xi−1)2

4
+ x2d

i , xd
1

}∣∣
∣ 2 ≤ i ≤ n

}

= max

⎧
⎨

⎩
max

⎧
⎨

⎩
x2d

i − xi−1

(1+xi−1)
2 +

√
(1−xi−1)

2

4 + x2d
i

, xd
1

⎫
⎬

⎭

∣
∣
∣ 2 ≤ i ≤ n

⎫
⎬

⎭
.

Observe further that for the parametric family x(t) := (t (2d)n−1
, . . . , t2d , t), t ∈ (0, 1),

we have d(x(t), SP M I ) = O(t) and λmax
(
P(x(t))

) = td(2d)n−1
. Thus the exponent

of the error bound for {x ∈ R
n| P(x) � 0} at the origin is at most τ = 1

d(2d)n−1 .
Moreover, there is a constant c0 > 0 such that for all x around x̄ = 0 we have the
relationships

λmax
(
P(x)

) = max

⎧
⎨

⎩
max

⎧
⎨

⎩
x2d

i − xi−1

(1+xi−1)
2 +

√
(1−xi−1)

2

4 + x2d
i

, xd
1

⎫
⎬

⎭

∣
∣
∣ 2 ≤ i ≤ n

⎫
⎬

⎭

= max

⎧
⎪⎨

⎪⎩
max

⎧
⎪⎨

⎪⎩

⎡

⎣ x2d
i − xi−1

(1+xi−1)
2 +

√
(1−xi−1)

2

4 + x2d
i

⎤

⎦

+

, xd
1

⎫
⎪⎬

⎪⎭

∣
∣
∣ 2 ≤ i ≤ n

⎫
⎪⎬

⎪⎭

≥ max
{
max

{
c0
[
x2d

i − xi−1
]
+, xd

1

}∣∣
∣ 2 ≤ i ≤ n

}
,

where the second equality is due to xd
1 ≥ 0 while the last inequality follows as the

denominator in the third equality approaches one as x → 0. Considering next the
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finite convex polynomial system

xd
1 ≤ 0 and c0 (x2d

i − xi−1) ≤ 0 for i = 2, . . . , n,

note that its solution set is the same as SP M I = {0}. It is known [8] that for any finite
convex polynomial system, where all the involved polynomials have degree at most
d0 onRn , a local Hölder error bound holds with the exponent 2

(2d0−1)n+1 . Hence there
are numbers c, δ > 0 such that

d(x, SP M I ) ≤ cmax
{
max

{
c0 [x2d

i − xi−1]+, xd
1

}∣∣ 2 ≤ i ≤ n
} 2

(4d−1)n+1

≤ c λmax
(
P(x)

) 2
(4d−1)n+1 , ‖x‖ ≤ δ.

Thus the true exponentof theHölder error bound at the origin in this example lieswithin

the interval
[

2
(4d−1)n+1 ,

1
d(2d)n−1

]
. On the other hand, the exponent value calculated

in Corollary 4.6 is

τ = 1

R(2n2 + 4n, d + 3)
= 1

(d + 3)(3d + 6)2n2+4n−1
,

which therefore gives us only a lower estimate of the true Hölder exponent in the local
error bound.

We now list two specific structures of polynomial systems, where error bounds can
be sharpened:

• Let (x, y) �→ fl(x, y) be a concave polynomial for all l = 1, . . . , L , � be a com-
pact convex set, and there exist x0 ∈ R

n with max
y∈�,
1≤l≤L

fl(x0, y) < 0. It can be directly

verified in this case that x �→ max
y∈�,
1≤l≤L

fl(x, y) is a continuous concave function. Note

that a Lipschitz local error bound (i.e., with the best possible exponent τ = 1)
holds for a concave function satisfying the imposed strict feasibility condition; see
[38, Theorem 3].

• Let x �→ fl(x, y) be a convex polynomial for each y ∈ R
m and l = 1, . . . , L , and

let� be a convex polytope inRm . Since in this case the number of extreme points of
� is finite and is atmostm+1,weget the representation� = co{y(1), . . . , y(m+1)}.
Noting that a convex function attains its maximum over a convex polytope at
its extreme points, it follows that max

y∈�,
1≤l≤L

f (x, y) = max
1≤i≤m+1

fl(x, y(i)). Thus the

corresponding explicit error bounds can be simplified and sharpened in this case
by using the results from our preceding paper [25] for finite index sets �.

5 Higher-order stability analysis for optimization problems

In this section we develop some applications of the error bound results from Sect. 4
to higher-order stability analysis for three important classes in parametric polynomial
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optimization dealing with infinite sets of parameters Y (x) from (1.6). In contrast to the
majority of publications in parametric optimization, our main emphasis is on higher-
order stability of set-valued solution maps with explicit calculating the corresponding
exponents. Let us start with problems of generalized semi-infinite programming.

5.1 Generalized semi-infinite programs with polynomial data

Consider the following polynomial generalized semi-infinite program:

(GSI P) minimizex∈Rn p0(x),

subject to fl(x, y) ≤ 0 for all y ∈ Y (x), l = 1, . . . , L ,

where the sets Y (x) ⊂ R
m are taken from (1.6), and where all the functions p0, fl ,

gi , and h j are real polynomials with degrees at most d. Along with problem (GSI P)

we consider also its perturbation

(GSI Pu) minimizex∈Rn p0(x, u),

subject to fl(x, y) ≤ 0 for all y ∈ Y (x), l = 1, . . . , L ,

where the cost function p(x, u) with p(x, 0) = p0(x) depends on the perturbation
parameter u ∈ R

q being polynomial of degree at most d in x and locally Lipschitzian
in u. Note that the case of p(x, u) = p0(x) − 〈u, x〉 and Y (x) ≡ {0} in (GSI Pu)

corresponds to the so-called tilt perturbation introduced byPoliquin andRockafellar in
[36], where the focus is on single-valuedness and Lipschitz continuity of the optimal
solution map around the point in question, which is known as tilt stability. In [14,
32] the reader can find recent second-order characterizations of tilt stability in the
aforementioned setting of nonlinear programming with C2-smooth data and related
issues. The quantitative higher-order stability for polynomial GSIPs established in the
next theorem is significantly different: we justify a certain Hölder continuity of the
set-valued solution map at the reference point and calculate the corresponding Hölder
exponent.2

Theorem 5.1 (quantitative higher-order stability for polynomial GSIPs) Let the fea-
sible set

G := {x ∈ R
n
∣
∣ fl(x, y) ≤ 0 for all y ∈ Y (x), l = 1, . . . , L

}
(5.1)

be nonempty and compact. Assume that the mapping Y in (5.1) is i.s.c. on R
n with

nonempty and uniformly bounded values and that MMFCQ holds on R
n relative to

Y (x). Denote by S(u) the set of optimal solutions to the perturbed problem (GSI Pu).
Then for any fixed ū ∈ R

q there are constants c, ε > 0 such that

S(u) ⊂ S(ū)+c ‖u−ū‖τ if ‖u−ū‖ ≤ ε with τ = R(2n+(m+r+s+2)(n+1), d+L+2)−1.

(5.2)

2 The presented simplified proof of this result follows from the suggestions of both referees while incor-
porating some ideas of [7].
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Proof Consider the optimal value function in (GSI Pu) given by

p∗(u) := inf
{

p(x, u)
∣
∣ fl(x, y) ≤ 0 whenever y ∈ Y (x), l = 1, . . . , L

}
, u ∈ R

q ,

which is Lipschitz continuous around ū due to the compactness of G, and observe that
the solution map S(u) to (GSI Pu) is represented as

S(u) = {x ∈ R
n
∣
∣ fl(x, y) ≤ 0 for all y ∈ Y (x), l = 1, . . . , L , and p(x, u)

−p∗(u) ≤ 0
}
. (5.3)

Denote fl+1(x, y) := p(x, ū) − p∗(ū) and define

φ(x, u) := max
{

p(x, u) − p∗(u), max
y∈Y (x),
1≤l≤L

fl(x, y)
}
.

Applying the error bound from the second part of Theorem 4.2 to the system in (5.3)
and (5.1) with L replaced by L + 1 ≥ 2, we find c0 > 0 such that

dist
(
x, S(ū)

) ≤ c0
[
φ(x, ū)

]τ
+ for all x ∈ G with τ = R

(
2n+(m+r+s+2)(n+1), d+L+2

)−1
.

(5.4)
Since G is compact, φ(x, ·) is locally Lipschitzian around ū over x ∈ G with the same
constant. Hence we find 
, ε > 0 such that

|φ(x, u1) − φ(x, u2)| ≤ 
‖u1 − u2‖ for all x ∈ G and u1, u2 ∈ Bε(ū).

For any z ∈ S(ū) ⊂ G, we get from the above error bound (5.4) that

dist
(
z, S(ū)

) ≤ c0
[
φ(z, ū)

]τ
+ ≤ c0

[
φ(z, ū) − φ(z, u)

]τ
+ ≤ c0


τ‖u − ū‖τ ,

which justifies (5.2) and thus completes the proof of the theorem. ��
Remark 5.2 (sharper exponents in higher-order stability for equality descriptions.)
Based on Remark 4.3, observe from the proof of Theorem 5.1 that the Hölder stability
exponent in (5.2) can be sharpened to τ = R(2n + (m +r + s +2)(n +1), d + L +1)
if the sets Y (x) in (GSI P) are described by the polynomial equalities only: Y (x) =
{y| h j (x, y) = 0, j = 1, . . . , s}.

5.2 Optimization of polynomial matrix inequalities

Next we address stability issues in optimization of polynomial matrix inequalities:

(P M I ) minimize p0(x) subject to P(x) � 0,

where p0 : Rn → R is a real polynomial of degree not exceeded d, and where the
mapping P : Rn → Sm is such that each (i, j)th element of its image

(
P(x)

)
i j ,
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1 ≤ i, j ≤ m, is a real polynomial under the same degree assumption. As in Sect. 5.1,
consider the perturbed version of (P M I ):

(P M Iu) minimize p(x, u) subject to P(x) � 0,

where u ∈ R
q , p(x, 0) = p0(x), the degree of p(·, u) is at most d, and p(x, ·) is

locally Lipschitzian.

Theorem 5.3 (higher-order stability of optimal solution sets to polynomial matrix
inequalities) Assuming that the feasible set G := {x | P(x) � 0} in (P M Iu) is
nonempty and compact and then denoting by S(u) the set of optimal solutions to this
problem, for each ū ∈ R

q we find constants c, ε > 0 such that

S(u) ⊂ S(ū) + c ‖u − ū‖τ if ‖u − ū‖ ≤ ε with τ

= R
(
2n + (m + 3)(n + 1), d + 4

)−1
.

Proof Consider the function f (x, y) := ∑m
i, j=1 yi (P(x)) y j , which is a polynomial

of degrees at most d + 2. We clearly have the equivalence

P(x) � 0 ⇐⇒ f (x, y) ≤ 0 for all ‖y‖2 = 1.

Defining now the constant sets Y (x) by

Y (x) ≡ � := {y ∈ R
m
∣
∣ ‖y‖2 = 1

}
,

observe that the set � is regular. Then applying Theorem 5.1 with L = 1, r = 0, and
s = 1, replacing d with d + 2, and taking into account Remark 5.2 justify the claimed
Hölder stability. ��

5.3 Second-order cone programs with polynomial data

The class of polynomial optimization problems considers below belongs to second-
order cone programming

(SOC P) minimize p0(x) subject to
∥
∥( f (l)

1 (x), . . . , f (l)
m (x)

)∥∥ ≤ f (l)
m+1(x), l

= 1, . . . , L ,

where p0, f (l)
j : Rn → R for j = 1, . . . , m +1 and l = 1, . . . , L are real polynomials

with degrees at most d. Besides other areas of applications, problems of this type
arise in optimization under uncertainty via the robust optimization approach. As a
simple illustration, let us consider the following quadratic optimization problem under
uncertainty in constraint data:

minimize xT Ax + aT x subject to xT Bl x + bT
l x + βl ≤ 0, l = 1, . . . , L , (5.5)
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where the triples (Bl , bl , βl) ∈ Sn ×R
n ×R, l = 1, . . . , L are not known in advance.

As commonly accepted, suppose that the constraint data belong to the ellipsoidal
uncertainty set

Ul :=
⎧
⎨

⎩

(
B(0)

l , b(0)
l , β

(0)
l

)
+

s∑

j=1

v
j
l

(
B( j)

l , b( j)
l , β

( j)
l

) ∣∣
∣ ‖(v1l , . . . , vs

l )‖ ≤ 1

⎫
⎬

⎭
.

The robust optimization approach deals with an associated problem of minimizing an
adverse effect of uncertainty. In our case it reads as follows:

minimize xT Ax + aT x subject to xT Bl x + bT
l x + βl ≤ 0 for all (Bl , bl , βl ) ∈ Ul , l

= 1, . . . , L .

By direct calculations we have for each l = 1, . . . , L that

sup
(Bl ,bl ,βl )∈Ul

{xT Bl x + bT
l x + βl

}

= xT B(0)
l x + (b(0)

l )T x + β
(0)
l + sup

‖(v1l ,...,vs
l )‖≤1

s∑

j=1

v
j
l

(
xT B( j)

l x + (b( j)
l )T x + β

( j)
l

)

= xT B(0)
l x + (b(0)

l )T x + β
(0)
l + ∥∥(xT B(1)

l x + (b(1)
l )T x + β

(1)
l , . . . , xT B(s)

l x

+(b(s)
l )T x + β

(s)
l

)∥∥.

This therefore reduces the uncertainly model to the above framework of (SOCP).
Now we consider the following perturbations of (SOC P) given for all u ∈ R

q by

(SOC Pu) minimize p(x, u)) subject to
∥
∥( f (l)

1 (x), . . . , f (l)
m (x)

)∥∥ ≤ f (l)
m+1(x), l

= 1, . . . , L ,

where p(x, 0) = p0(x), p(·, u) is a polynomial of degree at most d, and p(x, ·) is
locally Lipschitzian on R

q .

Theorem 5.4 (higher-order stability of optimal solution sets to polynomial second-
order cone programs) Assuming that the feasible set G = {x | ‖( f (l)

1 (x), . . . , f (l)
m (x))‖

≤ f (l)
m+1(x)} to (SOC Pu) is nonempty and compact, for any u ∈ R

q denote by S(u)

the set of optimal solutions to this problem. Then given ū ∈ R
q , there exist constants

c, ε > 0 such that

S(u) ⊂ S(ū) + c ‖u − ū‖τ if ‖u − ū‖ ≤ ε with τ

= R
(
2n + (mL + L + 2)(n + 1), d + L + 1

)−1
. (5.6)

Proof For each l = 1, . . . , L we define the function

fl(x, y) :=
m∑

j=1

y(l)
j f (l)

j (x) − f (l)
m+1(x),
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which is a polynomial with real coefficients on R
n+m of degree at most d + 1. Note

that

∥
∥( f (l)

1 (x), . . . , f (l)
m (x)

)∣∣ ≤ f (l)
m+1(x)

⇐⇒ sup

⎧
⎨

⎩

m∑

j=1

y(l)
j f (l)

j (x) − f l
m+1(x)

∣
∣
∣
∥
∥
(

y(l)
1 , . . . , y(l)

m

) ∥
∥ = 1

⎫
⎬

⎭
≤ 0

whenever l = 1, . . . , L . Consider the sets Y (x) ⊂ R
mL given by

Y (x) = � := {y = (y(1), . . . , y(L))
∣
∣ y(l)

= (y(l)
1 , . . . , y(l)

m ), ‖y(l)‖2 = 1, l = 1, . . . , L
}
, x ∈ R

n .

Observe that these sets are nonempty and uniformly bounded around any x ∈ R
n and

that the set � is regular. Applying now Theorem 5.1 and Remark 5.2 with r = 0 and
s = L and with replacing m by mL , we arrive at the claimed Hölder stability in (5.6).

��

6 Convergence rates in feasibility and asymptotic analysis

The concluding section of the paper presents applications of the obtained error bounds
to deriving explicit convergence rate estimates in two important frameworks involving
polynomial functions. The first issue concerns the cyclic projection algorithm to solve
thewell-knownconvex feasibility problem,while the secondonedealswith asymptotic
analysis of subgradient dynamical systems.

6.1 Cyclic projection method for convex feasibility problems

A common problem arising in diverse areas of mathematics and applications is to find
a point in the intersection of closed convex sets Cl , l = 1, . . . , L . This problem is
often referred to as the convex feasibility problem. One of the most powerful methods
for solving the convex feasibility problem is the so-called cyclic projection algorithm,
which is formulated as follows. Given finitely many closed convex sets C1, . . . CL in
R

n with
⋂L

l=1 Cl 	= ∅, pick x0 ∈ R
n and denote πl := πCl for l = 1, . . . , L , where

πCl stands for the (unique) Euclidean projection to the set Cl . The sequence of cyclic
projections (xk)k∈N is defined by

x1 := π1x0, . . . , xL := πL xL−1, xL+1 := π1xL , . . . . (6.1)

In the case of L = 2 the cyclic projection method reduces to the well-known von
Neumann alternating projection method; see, e.g., [2,3] and the references therein,
where the reader can find various practical applications of the cyclic projectionmethod
and related algorithms.
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Convergence properties of the cyclic projection algorithm have been examined
by many researchers. In particular, the seminal paper by Bregman [9] shows that
the sequence (xk)k∈N generated by cyclic projections always converges to a point
in C . Furthermore, it is proved in [16] that the cyclic projection algorithm converges
linearly for regular intersections of convex sets. On the other hand, for convex sets with
irregular intersections (e.g., when the intersection is a singleton), the cyclic projection
algorithm may not exhibit linear convergence even in simple two-dimensional cases
as observed by [1, Example 5.3]. This raises the following basic question: Can we
estimate the convergence rate of the cyclic projection algorithm for convex sets with
possibly irregular intersections of certain particular structures? Quite recently [8] this
issue has been investigated in the setting where the convex sets Cl are the so-called
basic semialgebraic given by

Cl := {x ∈ R
n
∣
∣ gl

i (x) ≤ 0, i = 1, . . . , rl
}
, l = 1, . . . , L , (6.2)

with convex polynomials gl
i of degrees at most d. It is shown in [8] that for d > 1 the

sequence of cyclic projections (xk)k∈N from (6.1) converges at the rate of

1

kρ
with ρ := 1

min
{
(2d − 1)n − 1, 2

( n−1
[(n−1)/2]

)
dn − 2

} ,

where the symbol [a] stands for the integer part of the number a.
In what follows we establish an explicit convergence rate estimate for the more

general case of convex sets described by polynomial matrix inequalities. It is said that
a set C is polynomial matrix inequality representable if there are numbers m, d ∈ N

and a mapping P : Rn → Sm such that each (i, j)th element of its image
(
P(x)

)
i j ,

1 ≤ i, j ≤ m is a real polynomial with degree at most d andwe have the representation
C = {x ∈ R

n| P(x) � 0}. It is obvious that any basic semialgebraic set (6.2) belongs
to this class. The following example shows that the converse is not true.

Example 6.1 (polynomial matrix inequality representable sets may not be basic semi-
algebraic) Given an odd number d, consider the set

C :=
{
(x1, x2) ∈ R

2
∣
∣
∣
(−xd

1 1
1 −xd

2

)
� 0

}
= {(x1, x2)

∣
∣ x1x2 ≥ 1, x1 ≥ 0, x2 ≥ 0

}
,

which is clearly convex and polynomial matrix inequality representable. Let us show
that C cannot be written in the basic semialgebraic form (6.2). Assuming the contrary,
take the function f (x1, x2) := x1 for which infx=(x1,x2)∈C f (x) = 0. It follows from
the polynomial extension of the celebrated (quadratic) Frank-Wolfe theorem that any
convex polynomial f bounded from below over a basic semialgebraic convex set
attains its minimum; see [4]. This gives us x̄ ∈ C such that f (x̄) = infx∈C f (x) = 0
for the function f and the set C defined above. It surely contradicts the structures of
f and C , and thus verifies the claim.
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To derive an explicit convergence rate estimate for the cyclic projection algorithm
applied to polynomial matrix inequality representable convex sets, we use the error
bound result from Theorem 4.2 and the following abstract result on cyclic projections
established in [8] under a certain Hölder condition on convex sets.

Lemma 6.2 (conditional cyclic convergence rate) Let Cl ⊂ R
n, l = 1, . . . , L, be

closed convex sets with C :=⋂L
l=1 Cl 	= ∅, and let (xk)k∈N be the sequence of cyclic

projections (6.1) with a starting point x0. Impose the following Hölder condition of
rank τ ∈ (0, 1]: for any compact set K ⊂ R

n there is a positive number c0 providing
the estimate

dist(x, C) ≤ c0

( L∑

l=1

dist(x, Cl)

)τ

whenever x ∈ K . (6.3)

Then there exists x∞ ∈ C such that the sequence (xk)k∈N converges to x∞, and for
some M > 0 we have

‖xk − x∞‖ ≤ M k
− 1

2τ−1 − 2 .

Now we are now ready to obtain an explicit convergence rate estimate of the cyclic
projection algorithm for polynomial matrix inequality representable convex sets.

Theorem 6.3 (explicit convergence rate of the cyclic projection algorithm) Let Cl be
polynomial matrix inequality representable convex sets given in the form

Cl := {x ∈ R
n
∣
∣ A(l)(x) � 0

}
, l = 1, . . . , L ,

where every A(l) : Rn → Sm is a matrix mapping such that each
(

A(l)(x)
)

i j , 1 ≤
i, j ≤ m, is a real polynomial with degree at most d ≥ 1. Given x0 ∈ R

n, consider
the sequence (xk)k∈N of cyclic projections (6.1). Then xk converges to some x∞ ∈ C
and there is M > 0 ensuring the estimate

‖xk − x∞‖ ≤ M
1

kρ
, k ∈ N,

where ρ := [2R(2n + (m + 3)(n + 1), d + L) − 2]−1 with the constant R defined
in (2.4).

Proof Let us first show that for any compact set K ⊂ R
n there is c0 > 0 such that

condition (6.3) holds with some explicitly calculated τ ∈ (0, 1). To proceed, fix a
compact set K and define

� := {y ∈ R
m
∣
∣ ‖y‖2 = 1

}
and fl(x, y) :=

m∑

i, j=1

yi

(
A(l)(x)

)
y j , l = 1, . . . , L .
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Then we readily have the polynomial set representations

Cl = {x ∈ R
n
∣
∣ fl(x, y) ≤ 0 for all y ∈ �

}
and C =

{
x ∈ R

n
∣
∣
∣ max

y∈�
1≤l≤L

fl(x, y) ≤ 0
}
.

(6.4)
Applying now the error bound result of Theorem 4.2 to the set C from (6.4) with
Y (x) ≡ �, r = 0, and s = 1 while taking into account Remark 4.3 and the regularity
of the set � above, we find c0 such that

dist(x, C) ≤ c0

(
[
max
y∈�
1≤l≤L

fl(x, y)
]
+

)τ

≤ c0

( L∑

l=1

[
max
y∈�

fl(x, y)
]
+

)τ

for all x ∈ K ,

where τ = R(2n + (m + 3)(n + 1), d + L)−1. For each l = 1, . . . , L define
the function hl(x) := [maxy∈� fl(x, y)]+, x ∈ R

n , and observe that it is locally
Lipschitzian by Proposition 3.1. Due to the compactness of K we have M0 :=
maxx∈K

∑L
l=1 d(x, Cl) < ∞. Since the set K̂ := K + M0B is also compact, we

get cl > 0 ensuring the global Lipschitz condition on this set:

|hl(x1) − hl(x2)| ≤ cl‖x1 − x2‖ for all x1, x2 ∈ K̂ , l = 1, . . . , L .

Now pick an arbitrary vector x ∈ K ⊂ K̂ and select x̂l ∈ Cl such that dist(x, Cl) =
‖x − x̂l‖. Denoting c := max{c1, . . . , cL} > 0 and observing that x̂l ∈ K̂ and
hl (̂xl) = 0 give us the relationships

L∑

l=1

dist(x, Cl ) =
L∑

l=1

‖x − x̂l‖ ≥
L∑

l=1

1

cl
|hl (x) − hl (̂xl )| ≥ 1

c

L∑

l=1

|hl (x)| = 1

c

L∑

l=1

hl (x),

which ensure therefore the estimates

dist(x, C) ≤ c0

( L∑

l=1

h(x)

)τ

≤ c0

(
c

L∑

l=1

dist(x, Cl)

)τ

.

Thus we arrive at (6.3) and complete the proof of the theorem by using Lemma 6.2. ��

6.2 Subgradient dynamical systems

The final piece of this paper is devoted to applications of the obtained error bounds to
conducting a quantitative asymptotic analysis of the subgradient dynamical systems
given by

(DS)
0 ∈ ẋ(t) + ∂φ

(
x(t)

)
a.e. on (0, T ),

∂φ
(
x(t)

) 	= ∅ for all t ∈ [0, T ),
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where φ is a semialgebraic function on Rn in the form φ(x) := sup{ f (x, y)| y ∈ �}.
We suppose in what follows that� is a regular, compact, and semialgebraic set defined
by

� := {y ∈ R
m
∣
∣ gi (y) ≤ 0 for i = 1, . . . , r for h j (y) = 0, j = 1, . . . , s} (6.5)

and that all the functions f , gi , and h j are real polynomials with degrees at most d. By
a solution of (DS) we understand any absolutely continuous curve x : [0, T ) → R

n

satisfying the relationships therein. A trajectory x(t) is called maximal if there is no
possible extensions of its domain compatible with (DS). Our asymptotic analysis of
trajectories for (DS) as t → ∞ is based on Theorem 3.8 extending the Łojasiewicz
inequality to maximum functions and on the following result taken from [6].

Lemma 6.4 (convergence to critical points) Let x(t) be a bounded maximal trajectory
of (DS), where the function φ is assumed to be bounded from below on R

n. Then x(t)
is defined on [0,∞) and converges to a critical point x̄ ∈ R

n of φ, i.e., such that

0 ∈ ∂φ(x̄). Take any θ ∈ [0, 1) for which the quantity |φ(x)−φ(x̄)|θ
m f (x)

is bounded for any

x around x̄ under the convention that 0
0 = 1. Then there are numbers c, t0 > 0 such

that

‖x(t) − x̄‖ ≤ c (t + 1)−( 1−θ
2θ−1 ) for all t ≥ t0.

We finally arrive at the constructive rate evaluation of asymptotic convergence for
maximal trajectories.

Theorem 6.5 (explicit rate estimate of asymptotic convergence) Let φ be a semi-
algebraic function on R

n given by φ(x) := max{ f (x, y)| y ∈ �}, where � is a
semialgebraic set in form (6.5) under the assumptions formulated above. Suppose in
addition that φ is bounded from below on R

n. Then any bounded maximal trajectory
x(t) for (DS) converges as t → ∞ to a critical point x̄ ∈ R

n of φ. Furthermore,
there are numbers c, t0 > 0, which ensure the estimates

‖x(t)−x̄‖ ≤ c (t+1)−( 1−θ
2θ−1 ) and |φ(x(t))−φ(x̄)| ≤ c t−

1
2θ−1 for all t ≥ t0, (6.6)

where θ = 1−R(2n + (m + r + s)(n + 1), d + 2)−1 with the constant R defined in
(2.4).

Proof Let x̄ be a critical point of φ the existence of which follows from Lemma 6.4.
Denote τ := R(2n + (m +r + s)(n +1), d +2)−1 and θ := 1−τ . Then Theorem 3.8
tells us that there are numbers c0, ε > 0 such that mφ(x) ≥ c|φ(x) − φ(x̄)|θ for all
x ∈ Bε(x̄), and therefore

|φ(x) − φ(x̄)|θ
mφ(x)

≤ c−1
0 whenever x ∈ Bε(x̄). (6.7)
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Thus the first estimate in (6.6) follows directly from Lemma 6.4. Define now
γ : [0,∞) → R by

γ (t) := φ
(
x(t)

)− φ(x̄), t ∈ [0,∞),

and observe that both functions φ and γ are Lipschitz continuous and so a.e. differen-
tiable on (0,∞). This yields ∂φ(x(t)) = {∇φ(t)} for a.e. t ∈ (0,∞); see, e.g., [30,
Corollary 1.82]. Then we see that

γ̇ (t) = 〈∇φ(x(t)), ẋ(t)
〉 = −∥∥∇φ(x(t))

∥
∥2 = −mφ(x(t))2 ≤ −c20

∣
∣φ(x(t)) − φ(x̄)

∣
∣2θ

= −c20 γ (t)2θ ≤ 0, (6.8)

where the second equality follows from 0 ∈ ẋ(t)+ ∂φ(x(t)) while the first inequality
follows from (6.7). This shows, in particular, that the function γ (t) is nonincreasing.
Since x(t) → x̄ and γ (t) → 0 as t → ∞, we get that either γ (t) ≡ 0, or γ (t) > 0
for all large t > 0. Integrating (6.8) allows us to find c, t0 > 0 such that the second
estimate in (6.6) holds for all t ≥ t0, and thus we complete the proof of the theorem.

��
Acknowledgements The authors are indebted to both anonymous referees for their careful reading the
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