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Introduction

In this paper, we construct an admissible pairing of divisors on a curve defined over
a non-archimedean field, as an analogue of Arakelov’s pairing on a Riemann
surface.

For an algebraic curve C with a given symmetric metric || ,on O(4) on C x C,
one can define a pairing (,) on Div(C) such that (x, y) = — log|1]4(x, ). In [A],
for a Riemann surface of positive genus, Arakelov constructed a norm |- 4 such
that the induced pairing extends the Néron local pairing on Div®(C), and satisfies
certain adjunction formula and certain normalization condition by integration.
For a curve defined over a discrete valuation field K, we will construct a similar
metric |-| 4 on O(4). From semistable models, one has a canonical norm ||, on
0(4) such that i(x, y) = — log |1] 4(x, y) is the normalized intersection number of
sections extending x, y on some semistable model of C. If C has potentially good
reduction, then |- | , will satisfies all requirements. In general we need to multiply
a term exp( — g,(x, y)), where p is certain metric on the reduction graph R(C) of
C and g, is the associated green’s function. In §1 we define i(x, ). In §2 we study
intersection theory via R(C). In §3 we find the admissible metrics on a metrized
graph. In §4 we define admissible pairings and prove all required properties.

In §5 we give some applications to curves defined over global fields. For a curve
C defined over a global field K, the local admissible pairings gives a global
admissible pairing for divisors on C. We have a relative dualizing sheaf w,,
a Riemann-Roch formula, an adjunction formula, and an index theorem. Let
w4, denote the Arakelov dualizing sheaf, then we have the estimate:

(wAr’ CL)Ar) g (wm wa) g 0

The first equality holds if and only if C is an elliptic curve, or a curve which has
Potentially good reduction at all non-archimedean places. The second equality

——
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holds if and only if there is a sequence {x,} of distinct algebraic points such that the
Neron-Tate heights of (29 — 2)x, — w converges to 0. We also prove the
Bogomolov conjecture for the embeddings j,: C — J(C) which takes x to x — D,
where D is a divisor of C of degree 1 such that (2g — 2)D — w is not a torsion
divisor. When C has potentially good reduction, partial results are obtained by
Szpiro in [S], and by author in [Z].

1 Projective systems of semistable models

(1.1) We start from a complete discrete valuation field K with an algebraically
closed residue field k. Let R be the valuation ring of K, let 7 be a uniformizer of R,
and let K be an algebraic closure of K. Then there is a unique norm |- | on K such
that || = 1/e. For any extension E of K in K, let Ry denote the valuation ring of E.

For any projective variety X on spec K, let MPic(X) denote the category of
metrized line bundles on X. An object L consists of a line bundle Lg on X, and
a K norm |-|, on Lg. A morphism between two metrized line bundles is an

isomorphism between line bundles which is isometric. We usually write Pic(K) for
MPic(spec K). We have the following two constructions:

(1.1.1) For an extension E of K in K, and any free R module V of dimension 1, we
define a metric on Vi as follows: for any ve Vg

|v] = infecgk-(0) {|X| " :xvE€ V@R Ri}.

This defines a functor from Pic(Ry) to Pic(K). Let P(K) denote the full subcategory
generated by all images of Pic(Rg)’s.

(1.1.2) For each relR, the object O(r) is defined to be (K,|-|,), where
|1|, = exp( — r). Conversely, for any L and any nonzero section / in L, we have
a unique morphism from L to O( — log |I|,) which takes section [ to section 1. For

this reason, we sometimes write Div (K)for R,and div/ = — log |!|. One can easily
show that O(r) is in P(K) if and only if re Q. So we sometimes write D(K) for @.

(1.2) Let K be a local field defined as in (1.1). Let C be a proper, regular curve of
positive genus defined over K. We write C for Cgy,. ¢ By the semi-stable reduction
theorem, the set I' of finite extensions of K in K over which C has semistable
reductions is not empty. For E in I', C has a unique projective model X on spec Rg
which has the following properties: Xy is regular and the special fiber X, is
a semistable curve. If E in I and F is a finite extension of E in K, then F e I'. There is
a unique Rz morphism from X to Xy which induces the identity morphism on the
generic fibers. So we have a projective system {Xg: E € I'} of schemes. For each X,
let Dg denote a subgroup of Div(Xg) ®, Q expand by integral horizontal divisors
and rational vertical divisors. Then {Dg: E € I'} form a direct limit system. Let D(C)
denote its limit. There is an intersection pairing on D(C): for D,, D, € Dg such that
[Dygl N |Dyg| = @ then the geometric intersection number ig(D,, D,) on Xg is
defined. If we modify pairing as follows

i(Dy, D;) = ig(Dy, D,)/[E:K],
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then one can prove that these pairings compatible with the direct limit system. So
we obtain a pairing i(,) on D(C). There is a canonical map from D(C) to Div(C).
We want to define a section of this map. Let pe C(K) be any point. There is a E in
I such that pe C(E). So there is a section s of X g over spec Ry extending p. It is easy
to see that the image of s in D{C) does not depend on the choice of E. This gives
a map from C(K) to D(C). By linear combination, we obtain a homomorphism
from Div(C) to D(C). It is easy to see that this is a section of the canonical
morphism from D(C) to Div(C). We have the following decomposition

D(C) = Div(C)® ¥ (C),

where V(C) is the direct limit of {Ver(X;)®;Q:Eel}, the groups of rational
vertical divisors of X g’s. The pull back morphism give an injective morphism from
D(R) to D(C).

(1.3) We have a similar description for metrized line bundles. For each Ein I', and
each line bundle L on X, we can define a metric | -| on Lg as follows: for any point
peC(K) we may find a finite extension F of E such that pe C(F). Then p can be
extended to_a unique section s of X. Combining s with the morphism from X to
X we obtain a morphism s, from spec Rr to Xg. By (1.1.1) we obtain an induced
metric on L, by line bundle s¥(L). It is easy to see that this metric does not depend
on the choice of F. So we have a metric on the line bundle Lg induced by L. It is
also easy to see that if F is a finite extension of E in K, then the pull back of L on X
induces same metric as L does. Let Py denote a full subcategory of MPic(C)
described as follows: a metrized line bundle L is in Py if there is positive integer
n such that L®" is isometric to a metrized line bundle induced by a line bundle on
Xg. Let P(C) denote the full subcategory of MPic(C) generated by all Pg’s.

As usual for each D in D(C), we can define an object O(D) as follows: there is
aEin T sothat D = D + (v/n), De Div(Cg), ve Ver(X), and n is a positive integer.
Then O(nD) is a line bundle on X which induces a metric |- |, 5 on the line bundle
O(nD). Let O(D) be the metrized line bundle which consists of the line bundle O(D)

and metric |+ |75 . One can show that O(D) does not depend on the choice of E, .
Conversely, for each object L in P(C) and each nonzero rational section [ of Lg,
one can define a divisor div/ in D(C), and a morphism in P(C) from L to O(divl)
which takes section [ to section 1 in O(divi). The pull back morphism gives an
embedding from P(K) to P(C).

(1.4) We recall the following formulas from [D]. Let f:C — S be a family of
semistable curves. For any line bundle L, M of C, let (L, M) denote the Deligne’s
pairing of L, M. Let det R* f, (L) denote the determinant of the derived direct
image of L. It is simply denoted by det H*(L) if S is the spectrum of a field. Let
W¢s denote the relative dualizing sheaf of C/S. One has the following canonical
1somorphisms.

(11_-:}.1) Adjunction formula: for any section e of C/S, there is a canonical isomor-
phism

<wC/S(e)9 Oc(e)) ~Os.
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(1.4.2) For any section e of C/S and any line bundle L of C, there is a canonical
isomorphism

detR* f, (L(e))~det R* f, (L) ® e* L(e).
(1.4.3) Serre duality: for any line bundle L of C, there is a canonical isomorphism
detR* f,(L® ™' ® ws)~det R* fo(L).

(1.4.4) Riemann—Roch formula: for any line bundle L of C, there is a canonical
isomorphism
detR*f, (L)®?~det R* £, (0c)®°*> ® (L, L ® ods ')

(1.5) For any objects L, M in P(C), we can find a E in I' and a positive integer n,
such that L®" and M®" are in Pic(Xg). Let {(L®", M®"); denote the Deligne
pairing on Pic(Xg) which is a line bundle on spec Rg, so induces a metric on
(L?", M?") by (1.1.1). Its n?-th root gives a metric on {Lg, Mg). One can prove
that this metric does not depend on E, n. So we have a well defined Deligne pairing
from P(C) to P(K). This pairing is compatible with the pairing of divisors. For any
Dy, D, in D(C) such that |D,g| n|D,g| = § then we have a canonical isometry

<0(D1), 0(D2)) = O(i(Dy, D3)).

For any objects L, M in P(C) and any rational sections I, m of them respectively
such that |divig| N |divmg| = 0, then

[<l,m)| = exp(— i(divl], divm)).

There is a canonical object @ which is induced by relative dualizing sheaves wg on
Xgfor any EeTI'. The canonical K-isomorphism in (1.4.1) is isometric: for any point
pin C,

<a(p), 0(p)> ~O0.

2 Intersection pairing via reduction graphs

(2.1) A metrized graph G is by definition a finite connected graph with a uniform
metric dx on each of its sides. For x in G, let v(x) denote the valence of x in G, that is
the number of directions go away from x. Let ¥, be the set of all points of G with
valences bigger than 2. Then V), is a finite subset of G and G — V}, is a disjoint
union of line segments. Let Div(G) denote the group of divisors, thatis @,.cZ. We
may define the degree of a divisor by summing its coefficients. Let F(G) be the set of
piecewise smooth functions on G, a continuous function fon G is piecewise smooth,
if there is a finite subset V" containing ¥V, such that f is smooth outside ¥ with
respect to the metric dx. We denote by Div(G) the group Div(G) @ F(G) of
compactified divisors on G. An intersection pairing on Div(G) is defined as follows:

(D1 + g1, D3 + g2) = 92(Dy) + 9:(D;) — [ 9149, dx,

where D;eDiv(G), g:€ F(G), and 4 is the laplacian operator on F(G) as in the

appendix. For D + geDiv(G), we call hp,, = 6p — 4g the curvature of D + g. We
call K = Zx (v(x) — 2)x the canonical divisor on G.
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Now we try to define the reduction graph for a curve C asin (1.2). Let E€ I". Then
R(C) is just the dual graph of the special fiber X, with length 1/[E: K] on each of
its sides. More precisely, R(C) has a finite subset Vg containing ¥, indexed by the
set of irreducible components in Xg, the set Sg of sides in R(C) — Vg indexed by
the set of double points in X, they satisfy the following rule of connection. Two
points in ¥y is connected by a side in Sg, if and only if both corresponding
components in X, contain the corresponding double point. The length of each
side in Sgis 1/[E: K. One can prove that R(C) does not depend on the choice of E,
by the theory of semistable curve. If F is a finite extension of E in K, then Vg is
contained in V. We also have a divisor K¢ on R(C) induced from C:

Kce=Y (29(x) — 2 + v(x))x =29 + K,

X

where g(x) is the genus function on G which vanishes out of ¥y and coincides with
the genus function from Xpg,.

(2.2) Let f)E(C_) denote the group Div(C)@® F(R(C)). Then there are two
homomorphisms:

y:D(C) - Div(C),
R:Div(C) - Div(R(C)).

Here, y(D + v) = D + y(v), and y(v) is defined as follows. Let E be in I such that v is
in Ver(Xg)q, v can be considered as a function ¢, g on V. Then y(v) is a continu-
ous function on R(C) such that y(v) is linear on G — Vg and its restriction on Vg is
¢g,/[E:K]. One can prove that y(v) is independent of E. Similarly,
R(D + g) = R(D) + g and R(D) is defined as follows. By linearity we may assume
D is a point on C(K). Choose E in I' such that D e C(E), then D can be extended to
a section s of Xi. Then R(D) is a point in Vg whose corresponding irreducible
components in X g, meets s.

There is an intersection pairing on Div(C) defined as follows:
(22.1) (Dy + 91, D2 + g2) = i(Dy, D3) + (R(Dy) + g1, R(D3) + g2)-

Theorem 2.3 The map y preserves pairings, this means for any D,, D, in D(C), (y(D,),
7(D3)) = i(Dy, Dy).

Proof. By linearity we need only prove the proposition in the following cases:

(1) Both Dy, D, are points of C. The assertion follows from definition (2.2.1),
since the second term of the right hand side of (2.2.1) vanishes.

(2) D, is point of C(E), and D, is an irreducible vertical component of X for
some E in I'. Then (y(D;), 7(D;)) = 9(D;)(R(Dy)). It is 1/[E: K] if the section
extending D; meets D,, otherwise it is zero. The assertion follows from the
definition of i(,).

(3) D, and D, are different irreducible vertical components of Xz. Then

GD1),y(D2)) = — ¥ y(D1).y(D2)./[E:K],
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where e runs over sides in Sg, and derivatives are defined for a given orientation of
¢’s. By definition, on each e, if e corresponds to intersection point of D, and D,, one
of y(D;) takes values 1 and the other one takes — 1, otherwise one of y(D;)’ takes
value 0. The assertion follows.

(4) D, is an irreducible vertical component of X, and D, is the special fiber of
Xg. Then i(Dy,D,) = 0. But also (y(D,), y(D,)) = 0, since y(D,) is a constant.

Theorem 2.4 The image y(D(C)) of y is dense in Div(C) in the following sense. For
any D + g in Div(C), there is a sequence D + g, in y(D(C)) such that g, converges to
g with supremum norm on F(R(C)), and hp ., converges to hp.., as distributions on
F(R(C)). Moreover if hp ., is non-negative, then we can choose g, such that hy ., are
all non-negative.

Proof. Since u = Ag is a measure on R(G) with volume 0, and g Vg is dense in
R(C), we may find E, and a sequence of pointed measures u, = erv a,0, with
a.eQand) _a, = 0,such that u, converges to s Let gobe a function or R(C) such
that 4g2 = u,. Notice that

gn —gn =[4g7(»9g(x, y)dy,

where g(x, y) is the Green’s function for dx, constructed in the appendix. So
gs — [ gn converges to

f4g9(»g(x,y)dy =9 —{g.
It follows that

g=90—[90+[g

converges to g. Notice that g, is linear on R(C) — Vg, and the equation 4g, = p, is
equivalent to a system of linear equations of g,| Vg, with coefficients in Q. Modify-
ing g, by adding a small number we may assume g,| Vg, has values in @. Then
D + g,’s are in the image of y. This proves the first assertion of the proposition. If
hp+, = dp — Ag is non-negative then we may choose p, such that é, — p, are all
non-negative. The second assertion follows.

(2.5) Now we turn to do the theory of metrized line bundles. Let D + g be
a compactified divisor on C. Then we have a line bundle O(D + g) = O(D) ® O(g),
where O(D) is defined in (1.3) and is an object in P(C), and O(g) is a metrized line
bundle whose generic fiber is Oc;, the metric |-|, is defined so that
[1], = exp( — R*(g)) with R defined in (2.2). Let Pic(C) denote the full subcategory
of MPic(C) consisting of objects which are isometric to some O(D + g) defined as
above. P(C) can be considered as a full subcategory of Pic(C). For any object L in
Pic(C) and any non-zero rational section [ of L, we can define a divisor divl in
Div(C), such that L is isometric to O(divl) which takes section [ to section 1. One
can verify that these correspondences between divisors and metrized line bundles
give known ones when we restrict them on D(C) and P(C).

For each L in Pic(C), we define the curvature ¢, (L) of L to be hy;,;. We need to
prove that this definition does not depend on the choice of I. Equivalently, we need
to prove that for any nonzero rational function f on X for some E in I', hg;, ;= 0
as distribution on F (R(C)). Let g be an element in F(R(C)), we have to prove that
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{ ghaivs = 0. By (2.4) we may assume that g = y(v) for some v in D(C). By (2.3) we
have

[Y@hais = (r(v), div f) = i(v, divf) = 0.

Our claim follows. It is obvious that {c;(L) = deg(Lg). Conversely, for any
measure g on R(G) with volume degLg, we can find a unique metric on L up to
a constant multiple with curvature u. To prove this, let [ be any non-zero rational
section on L, then 0 4y, — 1 is a measure with volume 0, so there is a function g on
R(C) such that Ag = d45y;, — #. Now O(divig + g) is isomorphic to L and has
curvature p. If L has two metrics with curvature u, then the quotient of these
metrics gives a metric on O with curvature 0, or 4 log|1| = 0. The function | 1| must
be constant.

We are ready to define Deligne’s pairing for objects in Pic(C). Let L, M be two
objects in Pic(C). Let I, m be two rational sections of L, M respectively such that
{divig| n|divmg| = @, then we define {I, m)> = exp( — (divl, divm)). We claim this
gives a metric on {Lg,Mg). In other word we need to show that
| {fl, my| = | f(divm)|| {I, m}>|. This follows from the following fact

(divl, D + g) = — log|l|(D) + | gc1(L).

One can prove that the restriction of this pairing on P(C) gives the known one.

We have the following interpretation for (2.4). For any L = (Lg, |+|) in Pic(C),
we can find a sequence of metrics |- |, such that L, = (Lg, |+|,) are in P(C), |+],
converges to |-| and ¢, (L,) converges to ¢;(L). Moreover If ¢, (L) is non-negative
we may choose L, such that each ¢;(L,) is nonnegative. Notice that for a line
bundle M in P(C) whose n-th power (n > 0) is induced by a line bundle M’ on Xy
for Ein I', the non-negativity of ¢; (M) is equivalent to the fact that the restriction of
M’ on any irreducible vertical component has non-negative degree.

Theorem 2.6 For a given metric on det H*(0), there is a unique functor det H* from
Pic(C) to Pic(K) which is compatible with the functor detH* from Pic(C) to
Pic(spec K) such that the following conditions are verified:

(1) det H*(0) induces the given metric on det H*(0).
(2) For any p in C(K). the following canonical K-isomorphism is isometric:

det H* L(p)~det H*(L) ® p* L(p).

(3) For any function g in F(R(C)), the following canonical K-isomorphism is
isometric:

det H* L(g)~det H* L ® {0(g/2), L®?2 ® @®~(g)).
Moreover we have the following properties for det H*:
(4) The Serre duality, the following K-isomorphism is isometric:
detH*(L® ! ® @)~det H*(L).

(5) The Riemann-Roch formula, the following canonical K-isomorphism is
isometric:

det H* (L)®2~det H*(0)®2 (L, L ® ®® 1.
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Proof. Tfhe uniqueness of det H* is obvious. For each L in Pic(C), we define

det H* (L) to be the unique element such that (1) and (5) hold. Then all other
isomorphisms are isometric, since they are isometric when we square them.

(2.7) We have a similar theory for a regular complete curve C defined over K = IR
or K = C. Let |- | 4 be a fixed symmetric smooth metric on O(4) on C x C, where as
before C denotes C¢ and 4 is the diagonal of C x C. Let i(x, y) be — log |1] ,, where
1 is the canonical section of O(4). For any D,, D, in Div(C) such that
|Dy| N |D,| = @, the number i(D,, D,) can be defined by linear combination. We

denote by Div(C) the group Div(C) @ C*(C), where C*(C) is the set of real
smooth functions on C. We define a intersection pairing (,) on Div(C) as follows:
for any D, + g1, D, + g, in Div(C) such that D, and D, have disjoint supports,

ran

(Dy + g1, D2 + g3) = i(Dy, D) + g¥(D3) + g5(D1) — [ 94 92,

i

where d’, d” are distributions associated to 9, 0, and

ran

dd
g’f(Dz) = g1(D,) — ng(x)—m.‘ i(Dy, x).

Let Pic(C) be the category of smoothly metrized line bundles on C. For each D + g
we define a metrized line bundle O(D + g) = (O(D),|-|,) such that the canonical
section 1 of O(D) has metric exp( — i(D, x) — g). Any nonzero rational section I of
a metrized line bundle L defines a divisor divl = divig + ( — log|!| + i(D, *)). The
pairing {, > on Pic(C) is defined such that | {I, m) | = exp( — (divl, divm)). One can
prove that this pairing coincides with the pairing defined by Deligne in [D]. Let
@ = (w, 4%(|-|3')) via the canonical isomorphism w=~A4*0( — A4). Then we have
an adjunction formula:

<O(p), &(p)> =0,
and Theorem 2.6 holds by the same proof.

3 Admissible metrics on a graph

(3.1) This section is devoted to construct admissible metrics on a metrized graph.
Let G be a metrized graph with a uniform metric dx. Let u be a measure on G of
volume 1. Then there is a Green’s function g,(x, y) of G x G with respect to p. g, is
continuous and symmetry, and satisfies the following conditions:

Aygu(x’ y) = 6}: 2
J gu(x, yu(y) =0.

Actually, let g(x, y) be the Green’s function associated to dx constructed in the
appendix then

9u(x, y) = g(x, y) — [ g(x, Yu(y) — [ 9(x, ux) + [[ g(x, y)ux)u(y).
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For any divisor D on G, let us denote by g,(D,x) or g,p(x) the function

9.0, 1)3p(). .
The main result in this section is the following theorem:

Theorem 3.2 Let D be a divisor on G with deg(D) = — 2. Then there is a unique
metric p on G of volume 1, and a unique constant ¢ such that the following equality
holds for any point x in G:

¢+ gu(D, x) + gu(x, x) = 0.

Moreover p is positive if D — K is effective, where K is the canonical divisor defined in
(2.1).

We call u the admissible metric on G with respect to D. When D =0, this is
a theorem of Rumely and Chinberg [C-R]. Our proof is based on their method.
For a point pin G, let g,(x, y) or g,(G; p, q) denote g, (x, ). For points p, g in G, let
r(p, q) or r(G; p, q) denote g,(q, ). This is the resistance between p and g if we
consider G as an electric circuit. One can prove the following well known properties
from physics.

Proposition 3.3 (1) r(p, q) is a symmetric, nonnegative function. r(p, q) = 0 if and only
ifp=gq.

(2) Let e be a line segment of G with length 1, and with endpoints p, q. Let H, I be
two metrized subgraph of G. Assume that G=H ulue, {p} =Hne, {qg} =1ne,
and HAI = 0. Then r(p, q) = L.

(3) Let p, q, s are three points of G, and let H, I are two metrized subgraph of G.
Assume that G=H U1, {s} =Hn I, peH, and gel. Then

r(G;p,q) =r(H;p,s) + r(l;s, q).

(4) Let p, q are two points of G, and let H, I are metrized subgraph of G such that
G=Huland {p,q} = HI. Then

r"G;p,g) ' =rH;p,9)" ' +r;p, 9"

Proof. Since 4,g,( x, q) = 8, — 6,, 30 g,(x, q) obtains its maximal value r(p, q) at
X = ¢, and its minimal value O at x = p, this proves the nonnegativity of r(p, g). If
r(p, g) = 0, then g,(x, g) = O for all x, so we must have p = q. By definition, one has
ALg,(x, q) + g4(x, p)) = 0, s0 g,(x, g) + go(x, p) is a constant function of x. This
shows r(p, q) is symmetric by setting x = p and x = g. This proves (1).

For (2), let x be the coordinate on e such that x(p) = 0, then assertion follows
from the following easily verified equality

0, seH
gx(5, q) = x(s), see
I, sel.

Assertion (3) follows from the following easily verified equality

g,(H; x, 5), xeH

gp(x9 q)= {T(H; D, s)+gs(1, X, q)a xel
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Assertion (4) follows from the following easily verified equality

r(l, p, )
r(H;p,q) +r;p,q)
r(H,p, q)
r(H;p,q) +r;p, q)

gp,(H;x,q), xeH
gp(xa q) =

g(I;x,q), xel.

Corollary 3.4 Let e be a closed line segment of G with length 1, and with endpoints p,
p. Definer, to be r(G — €% p,p') if G — €° is connected, and to be oo if G — €° is not
connected, where ¢® = e — {p,p'}. Let x be a coordinate on e such that x(p) = 0.
Then for qee

r(p, q) = x(q) — (le + ro) ' x(q)*.

Proof. Fixagine. Let ey, ¢, be two closed subsegments of e which connect p, g and
p’, q respectively. If G — e° is not connected the assertion follows from (2) of the
proposition. So we may assume G — e° is connected.

r(p,q) ={rles;p,9)™ " +r(e;u(G—e;p,q)~ 1} ! by (4)
={rle;p,q) " + [rlez; P’ q) + (G — % p,p')]7*}7" by (3)
={x(@ '+ [—x(@+r.]"'}! by (2)

= x(‘]) - (le + re)_lx(q)2~

(3.5) Now we are ready to prove Theorem 3.2. We will use (3.4) and the following
equation

(3.5.1) r(p, @) = 9.(q, 9) — 29.(q, P) + 9u(P, D)

where p is any measure on G with volume 1. Notice that (3.5.1) follows from the
following easily verified equality

9%, ¥) = gu(x, ¥) — g.(x, P) — 9u(P, ¥) + 9,(P, D).
Let Vp = Vo Usupp(D), and let Sy, denote sides in G — V),
Lemma 3.6 Let M, denote the vector space of all measures on G with form

Y a,6,+ Y ab.,

veVp eeSp

where for each v and e, a, and a, are real numbers, and §, is the uniform measure on
e induced by dx. Then there is a measure in M, such that the equality in (3.2) holds.

Proof. Let Q) denote the vector space of all continuous functions on G which are
quadratic on G — V). Then it is easy to see that both M, and Qp have dimension
#Vp+ #Sp. For any measure p, let g0 denote the function

g(x, Y)u(G) — [ g(x, y)u(y) — [ g(x, y)p(x).

We claim that for any ue Mp, the function

a(u)(g) = g2(q, ) + g2(D, q)
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is in Qp. Since M}, is generated by measures of volume 1, we may assume u has
volume 1. Now g, — go is a constant function. Let e be a side of Sp, we need to
prove that oc(,u)(x) is quadratic on e. Let p be an endpoint of e, then we still have
(3 5.1) for gy, and therefore a(u) is a linear combination of r(p, ), g3(p, q), and
g2(D, q). Since r(p,q) is quadratic in g by (3. 4), and since for any veV,,
qg,,(v q) = a.dx(q), it follows that g2(p, q) and g2(D, q) are quadratic on e, our
claim follows.

Now a: M, — @y is well defined. Since M, and Q) have the same dimension,
o~ 1(IR) has positive dimension, where R is considered as constant functions. The
lemma follows if one can prove there is an element g in a~*(R) with volume 1. If
not, then every element in o~ !(IR) has volume 0. Fix an element y with volume 0.
Let f(x) denote [—g(x,y)u(y), then gP(x,y)=f(x)+f(y) and a(u)(x)=
(deg D + 2)f(x) + f(D). Since degD & — 2, a(u) is constant only if u = 0. This
proves our lemma.

The remain parts of theorem 3.2 follow from the following lemma

Lemma 3.7 If u is a measure such that the equality in (3.2) holds, then

= (degD + 2)-1<5D—5K+2 D (le+re)“5e>.

ecEp

Proof. We apply 4, to both sides of (3.5.1). Notice that g,(g, q) + g.(D, g) is
constant, so the 4, of the right hand side of (3.5.1) is (deg D + 2)u — 26, — dp. By
(3.4), the 4, of the left hand side has value — v(p)d,at g = p,and has 2(I, + r,)"*4,
on e. The lemma follows.

4 Admissible pairing

(4.1) Let C be a complete and regular curve of positive genus defind over a local
field K as in (1.2). Let u be the metric on R(C) defined in (3.2) with respect to the
divisor K defined in (2.1). We call u the admissible metric on R(C), and call g,,(x, y)
the admissible Green’s function on R(C). Let Div,(C) denote the group
]E(C ) ® R of admissible divisors. We have an injective map — , from Div,(C) to
Div(C) which takes D +r to D + g,p + r. The image of this map consists of all
divisors whose curvatures are multiples of u. The pairing (,) on Div(C) gives a
pairing (,), on Div,(C). Let Pic,(C) denote the full subcategory of Pic(C) consist-
ing of objects whose curvatures are multiples of u. We call such objects are
admissible line bundles. There are some correspondences between admissible
divisors and admissible line bundles via —,: for admissible divisor D + r,
O(D, + r)is admissible, conversely for any nonzero rational section ! of an admiss-
ible line bundle L, there is a unique admissible divisor div,/ such that
(div,1), = divl. Let ¢ be the constant defined as in (3.2). Let w, denote the admiss-
ible line bundle d(c + Juk ¢ )» Where ¢ is defined in (3.2) for divisor Kc.

Theorem 4.2 For any p in C(K), the following canonical K-isomorphism on C is
isometric:

<O(pa)’wa(pa)>20.
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Proof. The left hand side of the above equation is
<0(p)(gup)» a-)(p)(gup +c+ guK c )>,

which is canonically isometric to
<O(p),d(p)>® O((R(P) + gup, R(P) + Kc + gup + ¢ + Gux c))-

The first factor is canonically trivial by adjunction formula in (1.5). The second
factor is canonically isometric to O(c + g,(D, x) + g,(x, x)) by definition, which is
canonically trivial by (3.2).

Theorem 4.3 Choose a metric on det H*(0). Then there is a unique functor det Hf
from Pic,(C) to Pic(K) which is compatible with the functor det H* from Pic(C) to
Pic(spec K), such that the following two conditions are verified:

(1) det Hx(O) induces the given metric on det H*(0). B
(2) For any p in C(K) and any admissible line bundle L on C, the following
canonical K-isomorphism is isometric

det HZ (L(pa)) ~det Hi*(L) ® p* L(pa)-

We have the following properties for det H}:

(3) Let det H* denote the functor defined in (2.6) with given metric on det H*(0),
and c is the constant defined in (3.2) then

det H¥(L)~det H*(L) ® o< - % degL,z>.

(4) The Serre duality, the following canonical K-isomorphism is isometric:
detH¥*(L® ! ® w,)~det H*(L).

(5) The Riemann—Roch formula, the following canonical K-isomorphism is iso-
metric:

det H¥*(L)®2~det H*(0)®°2 @ (L, LR 0@~ 1).

Proof. The uniqueness of det H} is obvious. For each admissible line bundle L, we
define det H}(L) to be the unique element such that (1) and (5) holds. Then
isomorphisms in (1), (2), and (4) are isometric as their square are isometric by

Riemann-Roch. It remains to prove (3). By (5), and the Riemann-Roch for det H*,
det HX(L)®? ~det H*(L)®2 ® (L,0( — ¢ — gx.))
~det H*(L)®* ® O(J( ~ ¢ — gux )1 (L))
~det H*(L)®? ® O(J(~ ¢ ~ gux,) deg Lu)
~detH*(L)®? @ O( — cdeg L).
Theorem 4.4 The identity over specK induces the following isometry:
{4, W) = (@, @) ® O(r),

where

r=—[g.(x,x)((29 — 2u + o).
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Moreover r is nonpositive, and r =0 if and only if g=1 or R(C) is a point,
equivalently C is an elliptic curve or has a potentially good reduction.

Proof. By definitions, we have the following computation
<was wa> = <6) +c+ gch7(D +c+ gch>
=L@, @) @ O(K¢c + ¢ + gux., Kc + ¢ + gux.).

So we obtain that
r=(Kc¢+c+ guk,Kc+ ¢+ gux.)

= 2(C + gch)(KC) - j.(C + gch)A(C + gch)'

From ¢ + g (x) + g(x, x) = 0, we obtain ¢ = — [g(x, ), ¢ + gk, = — g(x, ).
Combining these equalities, and 4g,x = 0k — (29 — 2) p, we obtain the required
formula for r. Since g,(x,x) is the maximal value of g,.(y), and since
[ 9u(x, ) u(y) = 0, it follows that r < 0. If g = 1, or R(C) is a point then r = 0. If
g >1andr =0, then all g,(x, y) are 0, so R(C) must be a point.

(4.5) Now let C be a complete curve defined over R or C. Let us recall the
following Arakelov calculus. See [A, F] for details. Let u be the Arakelov metric on
C with volume 1. Let g4, (x, y) be the Arakelov-Green’s function on C. That is
a smooth symmetric function on C x C — 4 such that for all x, y,

rgn

YUy
riAs =5x_ )
= gar(x, y) U

J 94, Yu(y) =0,

where d’, d" are distributions associated to @ and 0. Let Div,(C) denote the group
Div(C) @ R of admissible divisors as before. Let (, ), be a pairing on Div,(C): for all
Dy + ry, D, + r, such that |D,| n |D;| = §, the number

(D1 +r1, Dy +13)a=(Dy, D), + 7y deg Dy + 17, degD,

is defined and bilinear, such that (p, q), = g, (p, q) if p # q are points. Similarly we
let Pic,(C) denote the full subcategory of smooth metrized line bundles consists of
all objects whose curvature are multiples of . We also call such objects admissible
line bundles. There are some correspondences between admissible divisors and
admissible line bundles: Let D + r be an admissible divisor then O(D,) = (O(D),
[-|:) is an admissible line bundle such that flog|1|, = — r. Conversely, let I be any
nonzero rational section of an admissible line bundle L, there is a unique admiss-
ible divisor div,/, such that the isomorphism from O((div,/),) to L which takes 1 to
l'is isometric. We define a pairing ¢, > on Pic(C) as follows. Let L, M be two
admissible line bundles, and let I, m be rational sections of them respectively such
that |divl| A |divm| = §. Then

|{l, m)| = exp( — (div,], div,m),).

In [A], Arakelov proved that there is a unique admissible line bundle
@, = (w, | +|,,) such that (4.2) holds, where w is the canonical line bundle on C. The
Theorem 4.3 in this case is known as Faltings theorem. We want to give another
description for (,),.
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Theorem 4.6 Let C be a regular curver defined over a local field as in (1.2) or (4.5).
Then the restriction of (,), on Div(C) satisfies the following conditions:

(1) The (,), is symmetric, bilinear, and defined for all D,, D, such that
D[ A [Ds] = 9. i

(2) For any divisor D of C, (D, x), is a Weil function associated to D. This means
that if locally on a Zariski open subset U of C over which D is defined by a rational
function f, then (D, x), + log | f(x)| is a bounded continuous function on U.

(3) For any nonzero rational function f of C, there is a constant c; such that for
any x

divf x)s = —log|f(x)| + ¢s.

(4) Let a be any nonzero rational 1-form on C, there is a constant c, such that for
any point x on C which is not in the support of div a, and for any rational function f of
C which has a simple pole at x, the following equality holds:

¢o + lim (K + x, y)a + log| fa/df |(y)) = O.

Moreover if [,] is any pairing on Div(C) which satisfies the above conditions,
then [,] =(,), + a constant.

Proof. The assertion (1) is obvious. For assertion (2) we may assume D = p is
a point by (1). If C defined over an archimedean field this follows from the
definition of Arakelov-Green’s function. If C is defined over a non-archimedean
field, then

(ps X)a = i(p, x) + g,(Rp, Rx).

Since g, is continuous and bounded we need only prove that i(p, x) is a Weil
function associated to p. Choose some E in I" such that p is in C(E). (see notations
in (1.2).) There is a section s on X extending x. Assume E as a Cartier divisor is
defined by {U,,f;}. Then {Uig,f;} defines p. One can prove that on each Uj,
i(p,x) = —log|f;(x)]. This proves (2). For assertion (3), we notice that
(divf, x), = — log|1]|(x), where 1 is the canonical section of the admissible line
bundle O((div f),). Since O(div f) is isomorphic to the trivial bundle O on C, the
metric on O((div f),) must have curvature 0, and must be the pull-back of a con-
stant metric. The assertion (3) follows. The assertion (4) should follow from (2.5) as
follows. Let s be the canonical section of O(p). Then as/f gives a local section of
w,(p) at p. By (2.5) we have

(4.6.1) - las/f1(p) = [Res,(a/f)].
Write
(4.6.2) div,(a) = div(xg) + ¢,

where ¢, is a constant. Since s/ f is an invertible regular section of O(p) near p, it
follows that

(4.6.3) —logls/f1(p) = }1112 ((P, 9)a + log | f1(q)).

The assertion (4) follows from (4.6.1)+4.6.3), and the fact that Res,(w/f)=
(w/df)(p). This proves the first part of the theorem.
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Let [, ] be another pairing on Div(C) which satisfies the conditions in theorem.
Let h(,) = [,]-(,), then we have the following properties for h:

(4.6.4) h is bilinear, symmetric, and defined over all Div(C) x Div(C).

(4.6.5) For each D in Div(C), h(D, x) is a bounded continuous function of x.
(4.6.6) For any nonzero rational function f of C, h(div f, x) is a constant function
of x.

{4.6.7) For any canonical divisor K there is a constant cg such that for all x,
cx = h(x, x) + h(K, x).

We need to prove that k is a constant function from these properties. Let x, y, z
be any three points of C, and let m be any positive integer. Then by Riemann-Roch
theorem, the bundle O(gz + m(y — z)) has a nontrivial section, where g is the genus
of C. There are g points yy, ..., y, and a nonzero function f'such that

g
mly=2)= Y. (i) +div,

1t follows that

h(x—z,y—z):i(i hix —z, y;) — i h(x—z,z))
i=1 i=1

by (4.6.4), (4.6.6). This must be 0 as m tends to oo, by (4.6.5). Let j(x)=
h(x, z) — % h(z, z) then h(x, y) = j(x) + j(y) for any x, y in C. With function j, (4.6.7)
can be read as

— 29j(x) = cx +j(K).

Since g > 0, it follows that j is a constant function. This proves the second part of
the theorem.

(4.7) We have the following applications for (4.6):

By (4.6), the restriction on the group Div®(C) of degree 0 gives a pairing satisfies
{1)+(3). This is just the axioms for the minus Neron local pairing. This can be used
to prove the positivities of certain line bundles in the next section. We refer [L] for
Neron pairing.

We can give another construction of admissible metrics using 6 divisor. Let a be
any point of C, then we have an embedding j,: C — J, = J by sending x to the class
of x — a. Let 6 be the canonical line bundle on J,_; and let 6 denote T¢_, .6 on J.
Then for any line bundle L on C, we can find a positive integer n and a line bundle
M in J such that the class of M in NS(J) is a multiple of % and such that
JaM = L®" Notice that there is a K metric on M such that — log|m| is the Neron
function associated to divm for any non zero rational section of M, we cail such
a metric on M an admissible metric. The puliback of this admissible metric on
M gives a metric on L. One can prove that this metric on L modulo a positive
constant factor does not depend on the choice of a, M, and the chosen metric on M.
We temporarily call L with such a metric a 6-admissible mertrized line bundle. Let
¢:C x C — J be a morphism by sending (x, y) to the class of x — y. Then one can
prove that there are two line bundles L,, L, on C such that

0(4) = ¢*0°® pt L1 ® p3 L.
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One obtains a metric |+|4 on O(4) by choosing an admissible metric on 6* and
f-admissible metric on L;’s. The pairing (x, y) = — log|1|4(x, y) can be extended
to a pairing on Div(C). One can prove that all conditions in (4.6) are verified. So
this pairing is (,), up to a constant, and f-admissible line bundles are just
admissible line bundles on C.

One can use this construction to compute the determinant of cohomology of
a family of line bundles. Actually, let % be the universal line bundle on C x J, with
a trivialization on a x J,,, then there is a unique metric on %, compatible with the
trivialization, such that for any j in J,, its restriction to C x {j} is admissible. Then
one can prove that detH} (%) is admissible.

We refer [M-B] for all details. When C is defined over R or C, Faltings [F]
proved this by comparing curvatures. Moret-Baily [M-B] algebraized Faltings’
proof.

5 Curves over global fields

(5.1) Now we turn to global fields. Let K be a global field. This means that K is
a function field of an algebraic curve, or a number field. Let S denote the set of
places of K. For each ¢ in S, if it is non-archimedean, let K, be a strictly henselian
closure of K with respect to g, that is an algebraic extension of K which is
unramified over ¢ and whose residue field is algebraically closed. If it is ar-
chimedean, K, denotes the completion of K with respect to o, so which is
isomorphic to R or €. We fix the norms in S as follows. For each ¢ in S, the number
N, is defined to be the cardinality of the residue field of ¢ if K is a number field and
o is a finite place, to be e? if K is a number field and K, is €, otherwise N, is e. The
norms in S are defined such that |n,| = N, !, where =, is a uniformizer of K, if ¢ is
non-archimedean, and is e ™! if it is archimedean. We have the product formula for
K with norms defined as above.

For any projective variety X on spec K let MPic(X) denote the category of
metrized line bundles on X which is defined as follows.

An object L consists of a line bundle Ly on X, and aset ||, = {|-|L,:0€S} of
metrics, where ||, is the K, norm on Lg,, ||, is assumed to verify the following
property. There is a finite subset S, of S containing all archimedean places, so

s =8 — S, can be considered as the set of closed points of an integral scheme
which we still denote by S, and there is a line bundle L, on a projective model X,
of X on S, extending Ly, such that for any o €S, the norm |-|, is induced by line
bundle L; ® s, spec R, as.in (1.1.1). Here R, is the ring of integers of K, .

A morphism from L, to L, is an isomorphism from base line bundle of L to
that of L, which induces isometrics over all K, norms.

Let Pic(K) denote MPic(spec K ), and let Div(K) denote the group ) o IR of
compactified divisors. For each compactified divisor D = ) r,0, we denote by
deg(D) the number ) r,logN,. For each D we can define an object
O(D) = (0,{]*|ps}), where |1|p , = N, ™. If S, is a finite subset of S containing all
archimedean places and all ¢ such that r, = 0, then |- |, is induced by the trivial line
bundle O, on S; =S — §,. Conversely, let L = (L, |-|) be an object of Pic(K),
and let | be nonzero section of Ly, then divl = ) logy |l|,0 is a finite sum. This is
because on an open subset S, of S, {|-|,} are induced by a line bundle L, on Sy.
One can prove that the morphism from O(divl) to L by [ is an isometric map.
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Moreover one can verify that deg(div/) does not depend on the choice of I, we call it
the degree of L. If E is an extension of K, then the pull back of L gives an object in

Pic(E) which has degree [E: K ]deg(L).

(5.2) Let K be a global field as in (5.1). Let C be a regular, proper curve of positive
genus defined over K. We need the following notation and assumptions. For each
o in S, let C, denote C X .k K,. For each archimedean place o, let us fix
a symmetric smooth metric on 0(4,) on C, x C,, where 4, is the diagonal. For
each nonarchimedean o, F,(C) will denote F(R(C,)), and for archimedean o, F,(C)
will denote C*(C,). Let F(C) denote @ s F,(C), and let Div(C) denote the group
Div(C) @ F(C) of compactified divisors. There is a pairing {, ) on Div(C) with
values in Div(K ) defined to be the sum of local pairings. Let D; + Y, g,0,i = 1,2, be
two compactified divisors on C, such that |D,| n [D,| = 0.

<D1 + Zglao-s DZ + 29260> = Z(Dl + glasDZ + 920)6,

[

where (,) on the right hand side is the local pairing defined in (2.2.1) for non-
archimdean place, and in (2.7) for archimedean place. The global intersection
number (,) is defined by

(Dy + g5, D2 + g2) = deg<Dy + g5, D2 + g2

The corresponding theory for metrized line bundles goes as follows. Let i’_iE(C)
denote the full subcategory of MPic(C) consisting of objects L = (L, {|*1,}) such

that for each g, the metrized line bundle (Lg , |+|,) is an object of Pic(C,). The
following stuffs are straight forward from local stuffs: the correspondences between
Div(C) and Pic(C); the pairing on Pic(C) with values in Pic(K). The intersection
number (L, M) of two objects L, M is defined to be deg (L, M). We have a
canonical object @ in Div(C), and an adjunction formula

<&(p), O(p)> ~O0.

We have a functor det H* on Pic(C) which satisfies the standard corresponding
properties as in (1.8). We leave all details to reader. Here we will generalize
a statement for positive line bundles in [Z].

Theorem 5.3 Let L = (L, {|+|,}) be an object in Pic(C). Assume deg Ly is positive
and L is relative semipositive, that is for each o the curvature ci(Lg, |+|,) is
honnegative point-wisely. We have the following inequality about heights:

(L. L)

lim inf,cck) ho(x) 2 2deg Lg

) .
2 E(hm infyeci)yho(x) + infyecek) hr(x)).

Proof. Let S, be a finite subset of § containing all archimedean places of K, such
@hat X has a smooth projective model X, over S, and that for each €S, |+, is
induced by a line bundle L; on X,. If L, = (L, {|-|.,}) is a sequence of relative
semi-positive objects in Pic(C) such that |-|,, = ||, for all ¢ in S;, that ||,
converges to |+ |, for o in S, and that the theorem are true for L,, then the theorem
18 true for L. By (2.4), (2.5) we may assume for each o € S, some positive power of
L, is induced by some line bundle on a semistable model over a finite extension of
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K,. But this can be realized globally after a finite extension with sufficiently large
ramification on S,. There is a finite Galois extension E of K such that C has
a semistable model X on S — {archimedean places}, and that a hermitian line
bundle M which induces the object n*L®™ in Pic(E), where = is the morphism
specE — specK, n is a positive integer. Now the theorem for algebraic line bundle
M has been proved in [Z]. The theorem for L follows since the assertion is
invariant under base change or after a positive power.

(5.4) Now we are going to do the global admissible intersection theory. We may
define the group Div,(C) as Div(C) ® ®,.s R, the group of admissible divisors; an
intersection pairing on this group with values in Div(K) as the sum of local pairing;
the intersection number of two divisors; the category Pic,(C) of admissible line
bundles; some correspondences between Div,(C) and Pic,(C); an intersection
pairing on Pic,(C) with values in Div(K) or in R; a canonical line bundle w, which
we call the admissible canonical line bundle for which there is an adjunction
formula; a determine det H¥ on Pic,(C) which satisfies the standard properties, etc.
They are all straight forward from the local theory. We leave them to reader to
check details.

Notice that Div,(C) is f* Div(K) @ Div(C), where f denotes the structure mor-
phism f: C — spec K, the pairing (,), factors through R @ Div(C) by the degree
morphism on Div(K). If E is a finite extension of K, then (,),/[E: K] on Div,(Cg)is
compatible with the pull-back map of compactified divisors. So we have a pairing
on R @ (Div(C) ® @), where C denotes Cz. As a consequence of (4.6), (4.7), it
follows that the restriction of pairing (,), to Div®(C) is just — hy(,), the minus
canonical Neron-Tate height pairing.

We are interested in the number (w,, ®,). First of all we want to compare it with
Arakelov relative dualizing sheaf w,, = (o, {|+|,}), where norms |-|, are chosen
such that (w,, |*|,) = @, if ¢ is non-archimedean, and (w,, |*|,) = W,, if o is
archimedean. So if C has a semistable model X then w4, is induced by the ordinary
Arakelov dualizing sheaf on X. The local theorem (4.4) tells us

Theorem 5.5 The following identity holds:

<wu9 wa> = <wAn wAr> ® o <Z roa>9

wherer, < 0andr, = Oif and only if C is an elliptic curve, or o is archimedean, or o is
nonarchimedean and C has a potentially good reduction on . In particular,

(wAr’ a)Ar) ; (a)as wa)’

the equality holds if and only C is of genus 1, or C has potentially good reduction on
all nonarchimedean places.

Theorem 5.6 Let D be a divisor of degree 1 in a curve C which is regular, proper and
of genus g > 1. Let jp: C — J be an embedding of C to its jacobian J by sending x to
the class of x — D. Write

(D) = liminf,ec &) hnr (jp(x)),

a(D) = inf.cck)hyr(jp(x)).
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Then we have the following estimate

T4g-1) 29 -2

Proof. By ( 5.4) and adjunction formula it follows that

a0z Lo | <1 - é) hNT(D N ) > %(a(D) + d'(D)).

hNT(jD(x)) = —(x~D,x— D), = (O(xa), wa(ZDa)) - (Da D), = hL(x),

where L = w,(2D, — (D, D),). Now by Theorem 5.3, the above theorem follows if
we can prove the middle term (1) of the above inequality is equal to the middle term

am = (L, ) in (5.3). Computing (II) directly, and (I) by replacing hyr term by
2deg Lk

— ()2, both (I) and (II) are equal to

rlg(waa wa) + é(O(Da)’ wa) - <1 - 3) (Dy D)a'

This completes the proof of the theorem.

Corollary 5.7 (1) The self-intersection (w,, ®,) is always nonnegative, and is 0 if and
only if there is a sequence of distinct points X, X5, ..., such that hy;((2g — 2)x, — )
converges to 0.

(2) If o( — (2g — 2)D) is not a torsion line bundle then a’'(D) > 0.

(3) The self-intersection (w 4,, @4, ) is positive, if there is a non-archimedean place
of K over which C does not have potentially good reduction.

@ in (5.6). The assertion (2)
29 —2

follows from (1) and (5.6). The assertion (3) follows from (5.5) and (1).

Proof. The assertion (1) follows by setting D =

(5.8) Remarks. (1) When C has a potentially good reduction on all non-ar-
chimedean places of K, the ‘if” parts of (1) and (2) are due to Szpiro [S]. It is his
assignments to author to generalize his result. Part (3) is proved first time in [Z] by
a computation of Green’s function. In the case that C has a reducible stable
reduction at a place of K, Burnol recently gave a different proof using Weierstrass
points.

(2) We actually proved the Bogomolov conjecture for a big class of situations.
This conjecture claims that for any embedding of a non-elliptic and nonisotrivial
curve C to an abelian variety 4 over a global field, there are only finitely many
small points. Notice for a general curve, its jacobian has Neron-Severi group of
rank 1, so any such embedding can be factored to jj, for some D.

(3) As a consequence of Bogomolov’s conjecture, (w,, ®,) should always be
positive if C is nonisotrivial.

Appendix: The Green’s function on a metrized graph

(a.l) By a metrized graph, we mean a locally metrized and compact topological
Space G which has the following properties: For any pe G, there is an ¢ > 0, an
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integer d = v(p) > 0, and an open neighborhood U, for which we have an isometric
map
2nik

p:U,> Sy, ={re 7 eC:0sr<e0=k<d}

Let E; be the connected components of U — {p}. We denote by x; the restrictions of
the function x =r-¢ on E;.

(a.2) We want to do some harmonic analysis on a metrized graph G. For
simplicity we restrict our discussion to the space F (G) of continuous and piecewise
smooth real functions on G. Let f be a continuous function on G. We say f is
piecewise smooth if for any point p, the restriction of f on a neighborhood U, of p is
smooth in x; and all derivatives have limits as x; — 0.

Let fe F(G). We may define a functional f” on G in the following way. If p is
a point in G satisfies v(p) = 2 and lim,, o f” (x;) = lim,, o b”(x;), then we denote
this limit by " (p). Notice that f” is defined at all but finitely many points on G, and
is piecewise smooth on G, so it defines a linear function on L(G). For any g € F(G),

[ gy =(sf"gdn,

where du is defined locally as |dx|.
We also define a Dirac-function associated to f: Let p be a point on G. The
linear functional éf(p) on F(G) is defined so that for any ge F(G), we have

3£ (p)g> = g(p) X lim f'(x;).
i xi—»0

It is easy to see that 6f(p) is zero at all but finitely many points of G so
of = Zp df(p) is a well defined linear function on F (G).

Definition a.3 The Laplacian A4 is defined to be the following linear map from the
space F(G) to the space of linear functions of F(G):

Adf= —f"=9f,
for all fin F(G).

Lemma a4 (1) If G is a union of two subspaces G, and G, so that G, N G, is a finite
subset, then

Af=A4fl, + Afle,
(2) The Laplacian A is self-adjoint. For any two functions f, g in F(G), we have
4f, 9> =<{f, 49>

(3) The Laplacian A4 is a semi-positive. For any fin F(G), we have {f, Af> =0
and {f, Af> = 0 if and only if f is locally constant.

Proof. Part (1) follows from definition. By (1) we may reduce (2) and (3) to the case
that G a closed line segment [0, /] and f and g are smooth functions on (0, /). By
definition we have that

AL gy =[of" 9 dp.
Parts (2) and (3) follow immediately.
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(a.5) As one example, let us compute the Laplacian of a continuous and piecewise
linear function on a connected G. We say a subset ¥ of finite points of G is a vertex
set if G-V is a disjoint union of open line segments. We say a function fis piecewise
linear if there is a vertex set J such that fis linear on G — V. It is easy to see that the
morphism f— f|,, gives an isomorphism from the space of piecewise linear func-
tions with vertex ¥ to the space R'Y' of functions on V. We also have an
isomorphism ¥, from R'"! to the space of Dirac-functions with support in V:
yle) gy =Y c,g(v). Now we can define an endomorphism Ly of R'"! such that
for any piecewise linear function f with vertex J” we have that

Af= l//V'LV(fIV)-

Precisely, L is defined as follows:

Low=Y ¥ &%

v'eV ecE,, l(e)

Lemma a.6 Let G be a connected metrized graph. If we denote by Hy the subspace of
R™! consisting of all elements ¢ withy, c, = 0, then Ly has image Hy . The kernel of
Ly consists of all constant functions on V. Especially Ly is invertible over Hy .

Proof. Let ¢ bein IR'V!such that L, (c) = 0. Then we can find a continuous function
f.on Gsuch thatf, |, = cand f, is linear on G — V. Then by the argument in (a.5) we
have that 4 f = 0. By (a.4) we have that f'is locally constant. Since G is connected,
this implies that f'is constant. This implies that ¢ is constant and the kernel of Ly is
one dimensional. The other assertions follow immediately.

The main result of this section is the following result about the Green’s
function:

Theorem a.7 Let G be a connected metrized graph. There is a unique function g(p, q)
on G X G which satisfies the following conditions:

(1) g is continuous and piecewise smooth in both p and q.

(2) For each fixed p, as a function of q, we have that

44(p, q) = 6, — 1/volume(G).
(3) For each fixed p, we have | g(p, q)du(q) = 0.

Proof. The uniqueness follows from (a.4). We need to prove the existence of
a g(p, q) which satisfies (2), (3), and the continuity (1) of g(p, gq). Without loss of
generality, we assume that volume(G) = 1. Fix a vertex set ¥, of G such that no
element is connected to itself by a line segment of G — ¥,

Fix a point py in G. We need only find a function in F(G) which satisfies the
condition (2), since f — [ fsatisfies both (2) and (3). Let ¥ = ¥, U {p,}. Since /" = 1
on G — V, it follows that fis determined completely by its values on V. We want to
use fy to compute §f. Let v + v’ be two elements in ¥ connected by a line segment
ein G — V. We have a unique isometric map from é& to [0, /(e)] such that the image
of v is 0. The condition that f” = 1 on e gives that

f=%t2+at+»
So

_f) -1 1,

f©) I 3

(e).
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This implies that

!

of(©) = Ly (fIv)() — 5

Y. 1)

ecE,

where E, is the set of all line segments in G which connect v with points v’ % v. The
existence of fis equivalent the existence of the solution ¢ of the following equation:

@.7.1) L) =1

where [ is in R'"! and [ is given by

|3 Xees, o), v+ p.
Y, l@—1, v=p

Since the ) 1, = 0, it follows from (a.6) that (a.7.1) has at least one solution cin Hy, .

Now we need to prove that g(p, q) is continuous and piecewise smooth in p.
Notice that if p is not in V), the coefficients in equation (a.7.1) are all smooth in p.
This implies that the solution ¢ is smooth in p. This gives us a function f'(p, g) which
is piecewise smooth in p and satisfies condition (2). Now g(p, q) = f(p, q) —
[f(p, q)du(q) is smooth in p and satisfies (2) and (3).

It remains to prove that g(p, q) is continuous in p. For a fixed p, we want to
show that

v

lim g(p, ) = g(po, p)
PPy

holds uniformly in g. Let h,(q) = g(po, 9) — 9(p, ¢). Then we want to use the fact
that

(a.7.2) Ahy(q) =06, — 6, and [h,=0
to prove our assertion. As p — p, we may assume that p and p, are in the same line
segment ein G — Vand p ¢ V. The point p cuts e in two parts: one part e, connects

to po and another part e, connects voeV,. Notice that h, is a piecewise linear
function with the vertex set V' U {p}, we have

hvo) — h(p) . h(po) — h(p)
) o Iy o

@.7.3) N (h(p) — h(vo) | h(p) - h(Po)> 5,

Ahy = Yy (Ly(hly)) +

l(ez) I(ey)

where Yy, and Ly are defined with respect to the subgraph G’ = G — {e}. By (a.7.2)
it follows that the coefficient of §,is — 1. This implies that

— Kfﬁ ﬁe_z_) _ l(ey)l(e;)
h(p) = B) h(vo) + 1@ h(po) __-—l(e) )
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and in turn Ly (h|y) = l(e,)d, where

1 .
W) R if v=u,
d= 1 if v=
- l(e) > = Po
0, otherwise.

By (a.6), we have a unique 4° in Hy such that L, (h°|,) = d. Let h' be the unique
piecewise linear function with vertex set V' {p} such that

h'ly = l(el)h0|Va

and

ley) l(ez) I(e;)

Ly — 140 e2) 40 _

h(p) l(en(,(e) Ho(o) + 75 h(po) = 5 ).

Then h! satisfies the same differential equation (a.7.3) as h. This implies that
h=h"—[h'. As p— p,, we have I(e;) >0, so h' >0 and therefore h — 0 uni-
formly in g. This completes the proof of the theorem.

(a.8) To conclude this section let us give explicitly the Green’s function on a circle.
Let G be a circle of length ] and choose a coordinate t on G with 0 < ¢ < L. Let p and
g be two points on G. Then we have

1 1 I
9(p, @) = 5, (t(p) = t(q))* - 5 1tp) = ta)l + 5

12°
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