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Geometric Reductivity at Archimedean Places
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Introduction

Let G → GL(n,C) be a representation of a complex reductive group. A theorem of Hilbert

says that the algebra C[x1, . . . , xn]G of invariant polynomials is finitely generated. Let Y

be the projective variety defined by this graded algebra, and then we have a rational

morphism π : Cn · · · → Y(C). A theorem on geometric reductivity of Mumford says that

a point x ∈ Cn is regular for the map π if and only if the closure of the orbit Gx does

not contain the origin 0. Such results have been generalized to more general bases by

Haboush and Seshadri, et al., and have been used in constructing moduli spaces of various

geometric objects.

We would like to have some analogous results in the Arakelov theory, and apply

them to the arithmetic problem. In other words, we want to consider a representation for

a reductive group over Z, and invariants with length induced from the standard hermitian

structure of Cn. The first paper to appear on this aspect was Burnol’s [B], in which he

proved a p-adic analogue of a result of Kempf and Ness on stability and length function.

In this paper, we want to prove some analogues of Hilbert’s theorem and Mum-

ford’s theorem in Arakelov theory. More precisely, we will formulate and prove the ge-

ometric reductivity of a reductive group over archimedean places, and give a Hilbert-

Samuel formula for the volumes of integral invariants. More details are explained in

what follows.

In §1, following a paper of Burnol [B], we will analyze the geometric reductivity

of Mumford-Seshadri over a discrete valuation ring in terms of valuations. This will lead

to a notion of geometric reductivity at archimedean places. Then we will explain that
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the geometric reductivity in some sense is the ampleness of the quotient metrized line

bundle on the quotient variety.

In §2, we will prove the ampleness of the quotient metric for a linear action of

a complex reductive group on an arithmetic polarized variety. The proof will use the

Mumford theorem [MF] on the geometric reductivity, a theorem in [Z1] about the lifting

of sections with small norms, and integration over the maximal compact subgroup. This

proof is luckily much simpler than the Seshadri proof [S] for nonarchimedean places.

In §3, we will give a Hilbert-Samuel formula for integral invariants as a direct

application of the archimedean geometric reductivity.

I hope that the results in this paper can be used to study the Arakelov theory of

moduli spaces.

1 Geometric reductivity at archimedean places

In the first half of this section, following Burnol [B] with some modifications, we will

express the geometric reductivity of Seshadri [S] in terms of p-adic norms. Let K be a

finite extension of p-adic numbers Qp, R the valuation ring of K, and GR a reductive group

scheme over SpecR with a linear action on an n-dimensional affine space An
R . A section

E of An
R over SpecR is called semistable if the Zariski closure o(E) of the orbit of E is

disjoint with the O-section. The geometric reductivity conjectured by Mumford, proved

by Haboush [H], and generalized by Seshadri [S], is the following statement.

Statement 1.1. For any semistable section E, there is an invariant homogeneous poly-

nomial f of positive degree with coefficients in R such that f(E) ∈ R∗.

We say that a K point x of An is residually semistable if there is an element a ∈ K∗

such that ax can be extended to a semistable section of An
R over SpecR. By base change

we may define the residual semistability for each Qp point of An.

Let ‖ · ‖ be the norm on Q
n

p defined as follows:

‖(x1, . . . , xn)‖ = max(|x1|, . . . , |xn|).

Then it is clear that (i) the set of residually semistable Qp points is the set of minimal Qp

points x:

‖gx‖ ≥ ‖x‖

for all g ∈ GR(Qp); and (ii) each residually semistable point is semistable under the action

of G
Qp

.
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For a homogeneous polynomial

f(x1, . . . , xn) =
∑

i1+···+in=d

ai1,...,inx
i1
1 · · · xinn ,

define ‖f‖(x) = |f(x)|/‖x‖d. Then one can prove that

max(|ai1,...,in | : i1 + · · · + in = d) = sup
xQ

n

p

‖f‖(x),

and that Statement 1.1 follows from the next statement.

Statement 1.2. If x ∈ Q
n

p is a semistable point, then there is a nonzero homogeneous

invariant polynomial f of positive degree such that

sup
y∈o(x)

‖f‖(y) = sup
y∈Q

n

p

‖f‖(y),

where o(x) denotes the orbit G(Q̄)x.

Let us prove that Statement 1.2 implies Statement 1.1 as follows. Assume State-

ment 1.2, and fix a semistable section E of An
R over SpecR. Denote by x the corresponding

geometric point at the generic fiber, and let f be as in Statement 1.2 for x. Replacing f by

a multiple, we may assume that sup
y∈Q

n

p
‖f‖(y) = 1. It follows that f has integral coeffi-

cients. Since x is minimal and ‖x‖ = 1, the left-hand side of the equation in Statement 1.2

is |f(x)| while the right-hand side is 1. It follows that f(E) ∈ R∗.

Conversely, let us prove as follows that Statement 1.2 is implied by Statement 1.1

and the following semistable reduction theorem: if x is a semistable point of An with

respect to action of G
Qp

, then the Zariski closure o(x) has a residually semistable point.

Assume Statement 1.1 and the semistable reduction theorem, and fix a semistable point x

of An. Let x0 be a residually semistable point (i.e., a minimal point) in the Zariski closure

of o(x), and let f be an integral polynomial as in Statement 1.1 for the section E extending

x0/‖x0‖. Now the right-hand side of the equation in Statement 1.2 is 1, while the left-hand

side is |f(x0)|/‖x0‖deg f. Since f(E) ∈ Zp

∗
, |f(y)|/‖y‖deg f = 1. Statement 1.2 follows.

It is obvious that Statement 1.2 implies the following.

Statement 1.3. If x ∈ An(Qp) is a semistable point and ε is a positive number, then there

is a nonzero homogeneous invariant polynomial f of positive degree such that

sup
y∈o(x)

‖f‖(y) ≥ e− deg fε sup
y∈Q

n

p

‖f‖(y).

Conversely, let us prove as follows that Statement 1.2 is implied by Statement 1.3

and the finiteness of invariants: The algebra R[x1, x2, . . . , xn]G of invariants is of finite type

over R. Assume Statement 1.3 and the finiteness of invariants, and fix a semistable point
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x of An and an ε > 0. Let f1, . . . , fm be generators of the ring of invariants, and let f be as

in Statement 1.3. Replacing f by a multiple, we may assume that f has supremum norm

1. It follows that f has integral coefficients and therefore f is a polynomial of f1, . . . , fm

with integral coefficients. Now, for any y, one has

|f(y)|1/deg f ≤ max{|f1(y)|1/deg f1 , . . . , |fm(y)|1/deg fm}.

The inequality in Statement 1.3 implies that

max

{
sup
y∈o(x)

‖f1‖(y)1/deg f1 , . . . , sup
y∈o(x)

‖fm‖(y)1/deg fm

}
≥ e−ε.

Letting ε → 0, the equality in Statement 1.2 holds for one of these fi’s.

It is well known that the semistable reduction theorem and the finiteness of

invariants are both true; see papers of Burnol [B] and Seshadri [S]. The three Statements

1.1, 1.2, and 1.3 are therefore equivalent.

In the second half of this section we want to formulate the notion of geometric

reductivity at archimedean places. LetGbe a complex reductive group with a linear action

on Cn such that a maximal compact subgroup U of G fixes the standard hermitian norm

‖(z1, . . . , zn)‖2 = ∑ |zi|2 on Cn. We define ‖f‖(x) = |f(x)|/‖x‖deg f as before for homogeneous

polynomial f. The corresponding Statements 1.1, 1.2, and 1.3 at archimedean places are

the following.

Statement 1.4. If x is a nonzero element in Cn such that ‖x‖ = 1 ≤ ‖gx‖ for any g ∈ G(C),

then there is an invariant nonzero homogeneous polynomial f of positive degree such that

f has supremum norm ≤ 1 and |f(x)| = 1.

Statement 1.5. If x ∈ Cn is a semistable point, then there is a nonzero homogeneous

invariant polynomial f of positive degree such that

sup
y∈o(x)

‖f‖(y) = sup
y∈Cn

‖f‖(y).

Statement 1.6. If x ∈ Cn is a semistable point and ε is a positive number, then there is

a nonzero homogeneous invariant polynomial f of positive degree such that

sup
y∈o(x)

‖f‖(y) ≥ e− deg fε sup
y∈Cn

‖f‖(y).

As in the first half of this section, Statements 1.4 and 1.5 are equivalent and imply

Statement 1.6 since the semistable reduction theorem is trivial at archimedean places.

However, I do not know if Statement 1.6 implies 1.5.

In §2 we will prove Statement 1.6, which is sufficient for proving a Hilbert-Samuel

formula for integral invariants in §3.
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2 Ampleness of quotient-metrized line bundles

For an ample line bundle L on a projective complex variety X with a continuous metric

‖ · ‖, we call L̄ = (L, ‖ · ‖) an ample metrized line bundle if, for any x ∈ X and any ε > 0,

there is a nonzero section l ∈ Γ (Ln) for some n > 0 such that

‖l‖sup ≤ ‖l‖(x)eεn,

where ‖l‖sup = supx∈X(C) ‖l‖(x).

If X is regular and the metric on L is smooth, this condition is equivalent to that

of the curvature c′(L̄) being semipositive everywhere. In general, ‖ · ‖ is ample if and only

if there is a sequence of embeddings

in : X↪→Pn
C

such that

(a) i∗O(1) = Len with en > 0, and

(b) if ‖·‖n denotes (i∗n‖·‖O(1))1/en on L, then log ‖·‖n converges uniformly to log ‖·‖,

where ‖ · ‖O(1) denotes the Fubini-Study metric on O(1).

One important property of ample metric is the following lemma.

Lemma 2.1. Let X be a complex variety, L̄ an ample metrized line bundle on X, Z a

closed subvariety of X, and l ∈ Γ (Z,L|Z) a section. Then, for any ε > 0, there is a section

l′ ∈ Γ (X,Ln) with n > 0 such that l′|Z = ln and

sup
x∈X

‖l‖(x) ≤ sup
x∈Z

‖l′‖(x)enε.

Proof. See §3 in [Z1].

Consider a projective complex varietyX, an ample metrized line bundle L̄ = (L, ‖·‖)

on X, a complex reductive group G, a maximal compact subgroup U of G, and a linear

action

σ : G × X → X, φ : σ∗L � p∗
2L

of G on (X,L). We assume that this action is hermitian with respect to U. This means that

φ|U×X is an isometry of hermitian line bundles. Let gx denote σ(g, x), and let l(gx) denote

φ(σ∗l(g, x)).

Denote by π : Xss → Y = Xss//G the uniform categorical quotient of the set Xss

of semistable points of X by G. As schemes, X is Proj(⊕n≥0Γ (X,Ln)) and Y is

Proj(⊕n≥0Γ (X,Ln)G). Denote by M the line bundle on Y induced by the graded algebra

⊕n≥0Γ (X,Ln)G, and then π∗M is naturally identified with LXss . We define a metric on M as

follows: for any y ∈ Y and any m ∈ M(y),

‖m‖(y) = sup
x∈π−1(y)

‖π∗m‖(x).
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It is clear that ‖m‖sup = ‖π∗m‖sup for any section m ∈ Γ (Y,Mn) whenever π∗m can

be extended to a global section of L on X.

Theorem 2.2. The metric defined as above on M is ample.

Proof. Fix a positive number ε and a point y of Y. Denote by Z the Zariski closure of

π−1(y) in X. Since M is ample, there is a section m1 of a positive power Mn1 on Y such

that m1(y) �= 0. Replacing n1 by a multiple, we may assume that π∗m1 can be extended to

an invariant section l1 of Ln1 on X. By Lemma 2.1, there is a section l2 ∈ Γ (X,Ln1n2 ) with

n2 > 0 such that l2|Z = l1|n2
Z and

‖l2‖sup ≤ ‖l1|n2
Z ‖supe

εn1n2 .

Consider the section

l(x) =
∫
U

l2(ux)du

of Γ (X,Ln1n2 ), where du is the invariant measure of U with volume 1. Since G is the

complexification of the real Lie group U and l is invariant under U, it follows that U is

Zariski dense in G and l is G invariant. From l|Z = l1|n2
Z one has

‖l‖sup ≤
∫
U

sup
x∈X(C)

‖l2(ux)‖du = ‖l2‖sup

≤ ‖l1|n2
Z ‖supe

εn2 = ‖l|Z‖supe
εn2 .

There is a section m ∈ Γ (Y,Mn) with n = n1n2 such that l = π∗m. One sees that m �= 0,

and

‖m‖sup ≤ ‖m‖(y)eεn.

This completes the proof of the theorem.

Proof of Statement 1.6. Denote by p : Cn − {0} → Pn−1(C) the canonical map. Then

C[x1, . . . , xn] = ⊕d≥0Γ (Pn−1,O(d)),

and ‖f‖(x) is the induced metric on O(deg f) by the standard Fubini-Study metric on O(1).

Denote by

π : (Pn−1)ss → Y = (Pn−1)ss//G

the uniform categorical quotient, and by M the quotient line bundle; then

C[x1, . . . , xn]Gd = Γ (Y,Md)

 at Princeton U
niversity on Septem

ber 16, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


         

Geometric Reductivity at Archimedean Places 431

for d � 0, where C[x1, . . . , xn]Gd is the set of invariant homogeneous polynomials of degree

d. Since supy∈Y ‖m‖(y) = supx∈Pn−1(C) ‖π∗m‖(x), the reductivity Statement 1.6 is reduced

to the ampleness of the metric on M: for any ε > 0 and any y ∈ Y, there is a nonzero

section m ∈ Γ (Y,Md) for some d > 0 such that ‖m‖(y) ≥ e−εd supz∈Y ‖m‖(z). The reductivity

Statement 1.6 therefore follows from Theorem 2.2.

3 Hilbert-Samuel formula for integral invariants

Consider a number field K, a projective variety X over Spec OK, an ample line bundle L on

X with an ample metric ‖ · ‖ on LC that is invariant under the complex conjugation, and

a reductive group scheme G over Spec OK with a linear action on (X,L). Assume that, for

each embedding σ : K↪→C, this linear action induces a hermitian action of Gσ = G×OK,σ
C

on (Xσ,Lσ) = (X ×σ C,L ⊗σ C) with respect to a maximal compact subgroup Uσ of Gσ.

For each n ≥ 0, let ‖ · ‖sup denote the norm on Γ (X,Ln) ⊗Z R as usual:

‖l‖sup = sup
x∈X(C)

‖l‖(x).

There is a unique invariant measure µ of Γ (X,Ln)GR such that µ(BG
n ) = 1, where BG

n = {l ∈
Γ (X,Ln)GR : ‖l‖sup ≤ 1}. Define the Euler characteristic of Γ (X,Ln) as follows:

χ
(
Γ (X, L̄n)G

) = − log vol
(
Γ (X, L̄n)GR

/
Γ (X,Ln)G

)
.

Theorem 3.1. The following limit exists:

lim
n→∞

χ
(
Γ (X, L̄n)G

)
ndim Γ (XQ,L

n
Q)G

.

Proof. Denote by Y the uniform categorical quotient of X by G, and by M the quotient

line bundle with the quotient metric defined as in §2. Then, by Theorem 2.2, M is an

ample metrized line bundle on X. One has a Hilbert-Samuel formula for M as in [Z2]:

χ

(
Γ (Y,M

n
)
)

= (nh
M

(Y) + o(n)) dimQ Γ (YQ,M
n
Q),

where h
M

(Y) is the height of Y with respect to M. The theorem follows from the fact that

Γ (Y,M
n
) = Γ (X, L̄n)G.

We want to give an application to the case that a reductive group acts on an affine

space. Let K be a number field, and G a reductive group over Spec OK with a linear action

on Ar
OK

. Assume that for each embedding σ : K↪→C, there is a maximal compact subgroup

Uσ of Gσ = G×Spec Ok,σ
C that fixes the standard hermitian inner product of Cr. One defines

a norm ‖f‖ of a homogeneous polynomial f as follows: if

f(x1, . . . , xr) =
∑

i1+···+ir=d

ai1,...,irx
i1
1 · · · xirr ∈ C[x1, . . . , xn]d,
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then

‖f‖2 =
∑

i1+···+ir=d

|ai1,...,ir |2
i1! · · · ir!

d!
;

if f ∈ K[x1, . . . , xr]d ⊗Q R, then

‖f‖2 =
∑

σK↪→C

‖σf‖2.

Theorem 3.2. There is a constant h such that

− log vol
(
K[x1, . . . , xr]

G
d ⊗Q R

/
OK[x1, . . . , xr]

) = (dh + o(d)) dim(R[x1, . . . , xr]
G
d ),

where the volume is computed for hermitian norm ‖ · ‖ defined as above.

Proof. We claim for any ε > 0 that

‖ · ‖supe
−dε ≤ ‖ · ‖ ≤ ‖ · ‖supe

dε

for d � 0, where ‖ · ‖sup is the norm defined as in §1. For a homogeneous polynomial f of

degree d, as a section of bundle O(d) on Pr−1, define the L2-norm of f as follows:

‖f‖2
L2 =

∑
σ:K→C

∫
Pr−1(C)

|σ(f)(x)|2
(
∑r

i=1 |xi|2)d
dx,

where dx is the unique measure on Pr−1(C) which is invariant under the action of U and

has volume 1. Then

‖ · ‖ = d!(r − 1)!

(d + r − 1)!
‖ · ‖L2 .

Our claim follows from this equality and an inequality of Gromov: there is a constant C

independent of d such that

‖ · ‖L2 ≤ ‖ · ‖sup ≤ Cdr−1‖ · ‖L2 .

This proves our claim. Now, to prove the theorem, it suffices to prove the statement for

norm ‖ · ‖sup; this is a special case of Theorem 3.1.

Remark 3.3. Theorems 3.1 and 3.2 give only the existence ofh. It should be an interesting

problem to find h for some concrete examples, such as representations of SL(2).
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