
SMALL POINTS AND ADELIC METRICS

Shouwu Zhang

Department of Mathematics
Princeton University
Princeton, NJ 08540

szhang@math.princeton.edu

April 1993, Revised April 1994

1



Introduction

Consider following generalized Bogomolov conjecture: Let A be an abelian variety over
Q̄, h : A(Q̄) → R a Néron - Tate height function with respect to an ample and symmetric
line bundle on A, Y a subvariety of A which is not a translate of an abelian subvariety by
a torsion point; then there is a positive number ε such that the set

Yε = {x ∈ Y (Q̄) : h(x) ≤ ε}
is not Zariski dense in Y . Replacing A by an abelian subvariety, we may assume that
Y − Y = {y1 − y2 : y1, y2 ∈ Y (Q̄)} generates A: A is the only abelian subvariety of A
which contains Y − Y .

In this paper, we will prove that Yε is not Zariski dense if the map NS(A)R → NS(Y )R
is not injective.

In spirit of Szpiro’s paper [Sz], we will reduce the problem to the positivity of the height
of Y with respect to certain metrized line bundle. To do this, we will first extend Gillet-
Soulé’s intersection theory of hermitian line bundles to certain limits of line bundles which
are called integrable metrized line bundles, then for a dynamic system, construct certain
special integrable metrized line bundles which are called admissible metrized line bundles,
and finally prove the positivity of heights.

Integrable metrized line bundles. Consider a projective variety X over Spec Q. For a
line bundle L on X and an arithmetic model (X̃, L̃) of (X,Le) over Spec Z, one can define
an adelic metric ‖ · ‖L̃ =

{‖ · ‖p, p ∈ S
}

on L, where e is a positive integer, S is the set of
places of Q, and ‖ · ‖p is a metric on L ⊗Q Qp on X(Qp).

Let L1, · · · ,Ld (d = dimX + 1) be line bundles on X. For each positive integer n, let
(X̃n, L̃1,n, · · · , L̃d,n) be an arithmetic model of (X,Le1,n

1 , · · · Led,n

d ) on Spec Z. Assume for
each i that (L, ‖ · ‖L̃i,n

) converges to an adelic metrized line bundle Li. One might ask
whether the number

cn =
c1(L̃1,n) · · · c1(L̃d,n)

e1,n · · · ed,n

in Gillet-Soulé’s intersection theory converges or not.
We will show that cn converges if all L̃i,n are relatively semipositive, and that limn→∞ cn

depends only on Li. Notice that some special case has been studied by Chinberg, Rumely,
and Lau [CRL]. We say that an adelic line bundle L is integrable if L ∼= L̄1⊗ L̄−1

2 with L̄i

semipositive. It follows that Gillet-Soulé’s theory can be extended to integrable metrized
line bundles. Some theorems such as Hilbert-Samuel formula, Nakai-Moishezon theorem,
and comparison inequality remain valid on integrable metrized line bundles.

Admissible metrized line bundles. Let f : X → X be a surjective endomorphism over
Spec Q, L a line bundle on X, and φ : Ld ' f∗L an isomorphism with d > 1. Using Tate’s
argument, we will construct a unique integrable metric ‖ · ‖ on L such that

‖ · ‖d = φ∗f∗‖ · ‖.
If X = A is an abelian variety, and s is a section of L ⊗Q Qp, then log ‖s‖p is the Néron
function for divisor div (s).
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In case that L is ample, any effective cycle Y of X of pure dimension has an (absolute)
height

hL(Y ) =
c1(L

∣∣
Y

)dim Y +1

(dimY + 1) degL(Y )

which has property that
hL

(
f(Y )

)
= dhL(Y ).

As Tate did, hL can be defined without admissible metric. Some situations are studied by
Philippon [P], Kramer [K], Call and Silverman [CS], and Gubler [G].

Assume L is ample as above. If Y is preperiodic: the orbit {Y, f(Y ), f2(Y ), · · · } is
finite, then hL(Y ) = 0. We propose a generalized Bogomolov conjecture which claims that
the converse is true: if h(Y ) = 0 then Y is preperiodic. This is a theorem [Z2] for case
of multiplicative group. A consequence is the generalized Lang’s conjecture which claims
that if Y is not preperiodic then the set of preperiodic points in Y is not Zariski dense.
Lang’s conjecture is proved by Laurent [L] and Sarnak [Sa] for multiplicative groups, and
by Raynaud [R] for abelian varieties.

Positivity of heights of certain subvarieties. Let Y be a subvariety of an abelian
variety A with a polarization L. We prove the following special case of the generalized
Bogomolov conjecture: if Y − Y generates A, and the map NS(A)Q → NS(Y )Q is not
injective, then hL(Y ) > 0. The crucial facts used in the proof are comparison theorem of
heights, Faltings index theorem, and nonvanishing of invariant (1, 1) forms on Y .

For a curve C of genus g ≥ 2, let ω denote the admissible dualizing sheaf defined in
[Z1]. The above positivity implies that ω2 > 0 if End

(
Jac(C)

)
R is not isomorphic to

R,C, and the quaternion divison algebra D. This is the case when Jac(C) has a complex
multiplication, or C has a finite morphism of deg > 1 to a nonrational curve. Notice that
if C has good reduction everywhere, and Jac(C) has complex multiplication, the positivity
of ω2

Ar is proved by Burnol [B] using Weierstrass points.
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1. Integrable meterized line bundles

(1.1). For a line bundle L on a projective scheme X over an algebraically closed valuation
field K, we define a K-metric ‖ · ‖ on L to be a collection of K-norms on each fiber
L(x), x ∈ X(K).

For example when K is non-archimedean, if there is a projective scheme X̃ on Spec R

with generic fiber X, and a line bundle L̃ on X̃ whose restriction on X is L⊗n, where R is
the valuation ring of K and n > 0 is an integer, we can define a metric ‖ · ‖L̃ as follows:

For an algebraic point x ∈ X(K), denote by

x̃ : Spec R −→ X̃

the section extending x: x = x̃
∣∣
Spec K

, then x̃∗L ⊗R K = x∗Ln. For any ` ∈ x∗(L), we
define

‖`‖L̃ = inf
a∈K

{|a| 1n : ` ∈ ax̃∗(L)
}
.

We say that ‖ · ‖L̃ is induced by the model (X̃, L̃).
A metric ‖ · ‖ on L is called continuous and bounded if there is a model (X̃, L̃) such

that log ‖·‖
‖·‖L̃ is bounded and continuous on X(K) with respect to the K-topology.

(1.2). Denote by S = {∞, 2, 3, · · · } the set of all places of Q. For each p ∈ S, denote by
| · |p the valuation on Q such that |p|p = p−1 if p 6= ∞, by | · |∞ the ordinary absolute value
if p = ∞, by Qp the completion of Q under | · |p, and by Q̄p a fixed algebraic closure of Qp.
For an irreducible projective variety X over Q, we define an adelic metrized line bundle L̃
to be a line bundle L on X and a collection of metrics ‖ · ‖ = {‖ · ‖p, p ∈ S} such that the
following conditions are verified.

(a) Each ‖ · ‖p is bounded, continuous, and Gal
(
Q̄p/Qp

)
invariant.

(b) There is a Zariski open subset U = Spec Z
[
1
n

]
of Spec Z, a projective variety X̃ on

U with generic fiber X, and a line bundle L̃ on X̃ extending L on X, such that for each
p ∈ U , the metric ‖ · ‖p is induced by the model

(
X̃p, L̃p

)
=

(
X̃ ×U Spec Z̄p, L̃ ⊗Z[1n] Z̄p

)
,

where Z̄p denotes the valuation ring of Q̄p.
For example, if there is a projective variety X̃ on Spec Z with generic fiber X, and a

hermitian line bundle L̃ on X̃ whose restriction on X is L⊗n (n 6= 0), then (X̃, L̃) induces
a metric ‖ · ‖L̃ =

{‖ · ‖p, p ∈ S
}
, where for p 6= ∞, ‖ · ‖p is induced by models

(
X̃p, L̃p

)
,

and ‖ · ‖∞ is the hermitian metric on LC. The condition (a) is obviously verified. Since
L is defined over the generic fiber of X̃, there is an open subset U ′ of Spec Z such that
L has an extention L̃1 on X̃U ′ . Since L̃n

1

∣∣
X

= L̃
∣∣
X

, there is an open subset U of U ′ such
that L̃n

1

∣∣
U
' L̃

∣∣
U

. It follows that for p ∈ U , ‖ · ‖p is induced by L̃1. The condition (b) is
therefore verified.

A sequnce {‖ · ‖n : n = 1, 2, · · · } of adelic metrics is convergent to an adelic metric ‖ · ‖
if there is an open subset U of Spec Z such that for each p ∈ U , ‖ · ‖n,p = ‖ · ‖p for all n,
and that log ‖·‖n,p

‖·‖ converges to 0 uniformly on X(K).
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(1.3). For a hermitian line bundle L̃ on an arithmetic variety X with a smooth metric at
∞, this means that for any holomorphic map

f : D = {z ∈ C : |z| < 1} → X(C)

the pullback metric on f∗L is smooth, we say that L̃ is relatively semipositive if L̃ has
nonnegative degree on any curve in special fibers, and the curvature of f∗LC is semipos-
itive for any holomorphic map f : D → X(C); we say that L̃ is relatively ample if the
associated algebraic bundle is relatively ample, and there is an embedding X̃(C) → Y into
a projective complex manifold Y such that the hermitian line bundle L̃(C) can be extended
to a hermitian line bundle on Y with positive curvature.

For a projective variety X over Spec Q, and a line bundle L on X, we say that an adelic
metric ‖ · ‖ on L is ample (resp. semipositive) if it is the limit of a sequence ‖ · ‖n of adelic
metrics induced by models

(
X̃n, L̃n

)
as in (1.2) such that L̃n are relatively ample (resp.

relatively semipositive.)
Let L̄1, · · · , L̄d be metrized line bundles on X with semipositive metrics, d = dim X +1.

Assume that ‖ ·‖i are approximated by metrics induced by models
(
X̃i,n, L̃i,n

)
, where L̃i,n

are semipositive such that L̃i,n

∣∣
X

= Lei,n , with ei,n > 0. For any d-tuple of positive
integers (n1, · · · , nd), denote by X̃n1,··· ,nd

the Zariski closure of ∆(X) in X̃n1 ×Z X̃n2 ×Z
· · · ×Z X̃nd

, where ∆ is the diagonal map of X into the generic fiber X ×Q X × · · · ×Q X

of X̃n1 ×Z X̃n2 ×Z · · · ×Z X̃nd
. We still denote the pullback of L̃i,ni

on X̃n1,··· ,nd
by L̃i,ni

.

Theorem (1.4). (a) The intersection number

cn1,··· ,nd
= c1(L̃n1) · · · c1(L̃nd

)
/
e1,n1 · · · ed,nd

converges as ni →∞. The limit does not depend on the choice of (X̃i,n, L̃i,n).
(b) Denoted by c1(L̄1) · · · c1(L̄d) the limit, then c1(L̄1) · · · (L̄d) is multi-linear in L̄1, · · · , L̄d.

Proof. (a) Fix two d-tuples (n1, · · · , nd) and (n′1, · · · , n′d) of positive integers. Denote by
X̃ the Zariski closure of ∆(X) in X̃n1,··· ,nd

× X̃n′1,··· ,n′d . As before we use same notations

for pullbacks of L̃i,ni
as themselves. Write L̃i = L̃

ei,n′
i

i,ni
, L̃′i = L̃ei,ni

i,ni
, and ei = ei,ni

· ei,n′i .
Then both L̃i and L̃′i have same restriction Lei on X. We need to show that

1
e1 · · · ed

(
c1(L̃1) · · · c1(L̃d)− c1(L̃′1) · · · c1(L̃′d)

)

approaches to 0 as (n1, · · · , n2, n
′
1, · · · , n′d) approaches to ∞.

Fix a positive number ε and an open subset U of Spec Z such that for any p ∈ U and
any k, ‖ · ‖p,L̃k

= ‖ · ‖p,L̃′k . Then for any sufficiently large nk, n′k and any p,

∣∣∣∣ log
‖ · ‖p,L̃′k
‖ · ‖p,L̃k

∣∣∣∣ ≤ ε log p,
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where log∞ is defined to be 1. Denote by sk the rational section of L̃k ⊗ L̃′
(−1)

k which
gives 1 on X.

If p 6= ∞, then one has

p−εe1···ed ≤ ‖sk‖p(x) ≤ pεe1···ed

for any x. Assume [div (sk)]p =
∑

ni,pVi,p, where [div (sk)]p is the cycle associated to
div (sk) supported in the special fiber X̃p of X̃ over p, and Vi,p’s are irreducible components
of X̃p. It follows that |np| ≤ εe1 · · · ed, or in other words, that divisors

D1p = [div (sk)]p + [εei · · · en][X̃p]

and

D2p = −[div (sk)]p + [εei · · · ed][X̃p]

are both effective, where [εe1 · · · ed] is the integral part of εei · · · ed. Therefore for i = 1, 2,

c1

(L̃′
∣∣
Di,p

) · · · c1

(L̃′k−1

∣∣
Di,p

)
c1

(L̃k+1

∣∣
Di,p

) · · · c1

(L̃d

∣∣
Di,p

)
> 0,

or in other words, the contribution at p of

Ik = c1(L̃′) · · · c1(L̃′k−1)c1(L̃k+1) · · · c1(L̃d)div (s)

has absolute value bounded by

εe1 · · · ed(log p)c1(L1) · · · c1(Lk−1)c1(Lk+1) · · · c1(Ld).

If p = ∞, the contribution at p of Ik is given by

∫
log ‖sk‖∞c′1(L̃′1) · · · c′1(L̃′k−1)c

′
1(L̃k+1) · · · c′1(L̃d)

where c′1(L̃i) and c′1(L̃′i) denote the curvatures of L̃i and L̃′i. Since | log ‖sk‖∞
∣∣ < ε and

c′1(L̃i), c′i(L̃′i) are nonnegative, the above integral has absolute value bounded by

εe1 · · · edc1(L1) · · · c1(Lk−1)c1(Lk+1) · · · c1(Ld)

It follows that for any 1 ≤ k ≤ d,

|Ik| ≤ εe1 · · · edc1(L1) · · · c1(Lk−1)c1(Lk+1) · · · c1(Ld)
∑

p/∈U

log p.
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Finally, for (ni, · · · , nd, n
′
i, · · · , n′d) sufficiently large,

1
e1 · · · ed

∣∣∣∣c1(L̃1) · · · c1(L̃d)− c1(L̃′1) · · · c1(L̃′d)
∣∣

≤ 1
e1 · · · ed

d∑

k=1

∣∣∣∣c1(L̃′1) · · · c1(L̃k−1)c1(L̃k ⊗ L̃
′−1
k )c1(Lk+1) · · · c1(Ld)

∣∣

≤ε ·
d∑

k=1

c1(L1) · · · c1(Ld)
∑

p/∈U

log p.

This prove the first statement of (a).
If

{
(X̃ ′

i,n, L̃′i,n)
}

is another sequence of models which induces metrics ‖·‖L̃i,n′
convergent

to ‖ · ‖, then the alternating sequence

{(X̃ ′′
i,n, L̃′′i,n)} = {(X̃i,1, L̃i,1

)
,
(
X̃ ′

i,1, L̃′i,1
)
,
(
X̃i,2, L̃i,2),

(
X̃ ′

i,2, L̃′i,2), · · · }

also induces metrics on L convergent to ‖ · ‖. By the first statement of (a), the intersection
numbers induced by {(X̃ ′′

i,n, L̃′′i,n)} are convergent. So limits defined by {(x̃i,n, L̃i,n)} and
{x̃′i,n, L̃′i,n)} are the same. This prove the second statement of (a).

The additivity of c1(L̄1) · · · c1(L̄d) in (b) is obvious from definition.
This completes the proof of the theorem.

(1.5). A metrized line bundle L̄ = (L, ‖·‖) is called integrable if there are two semipositive
metrized line bundles L̄1, L̄2 such that L̄ is isometric to L̄1 ⊗ L̄−1

2 .
By theorem (1.4), for any integrable metrized line bundles L̄1, · · · , L̄d, there is a uniquely

defined intersection number c1(L̄1) · · · c1(L̄d) such that the following conditions are verified:
(a) c1(L̄1) · · · c1(L̄d) is multilinear
(b) c1(L̄1) · · · c1(L̄d) is the limit defined in (b) of (1.4) if the metrics on L̄1, · · · , L̄d are

semipositive.

(1.6). Now we want to generalize results in [Z2] to integrable metrized line bundles. First
of all, we need to define Hilbert function of a line bundle.

By a norm ‖ · ‖ on a vector space V of finite dimension over Q, we mean a collection
{‖ · ‖p, p ∈ S} of norms such that the following conditions are verified.

(a) For each p, ‖ · ‖p is a Qp-norm on Vp = V ⊗QQp, which is nonarchimedean if p 6= ∞,
i.e. ‖x + y‖p ≤ max(‖x‖p, ‖y‖p) if p 6= ∞,

(b) There is a non zero integer n, a free module Ṽ over Z
[
1
n

]
, and an isomorphism

V ' Ṽ ⊗Z[ 1
n ] Q such that ‖ · ‖p is induced by Ṽ for all p 6 |n.

Denote by A the ring of adeles of Q, and by VA the module V ⊗Q A. There is unique
invariant measure µ on VA such that µ

(∏
p

Bp

)
= 1 where for each p, Bp is the unit ball in

Vp : Bp =
{
x ∈ Vp, ‖x‖p ≤ 1

}
. We define the Euler characteristic of (V, ‖ · ‖) as follows:

χ‖·‖(V ) = − log volume(VA
/
V ).
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For a projective variety X over Q, an ample line bundle L on X with a semipositive metric
‖ · ‖, and a place p of Q, let ‖ · ‖p denote a norm on Γ(L)⊗QQp = Γ(Lp) defined as follows:
for each ` ∈ Γ(Xp,Lp),

‖`‖p = sup
x∈X(Qp)

‖`‖(x).

In this way, ‖ · ‖ =
{‖ · ‖p, p ∈ S

}
defines an adelic norm on Γ(L). Write χ

(
Γ(L̄)

)
simply

for χ‖·‖
(
Γ(L̄)

)
.

Theorem (1.7). As n approaches ∞,

χ
(
Γ(L⊗n)

)
=

nd

d!
c1(L̄)d + o(nd).

Proof. Assume that there is a sequence of models (X̃m, L̃m) of (X,L) such that L̃m’s are
semipositive on X̃m and that the induced adelic metrized line bundles L̄m converge to L̄,
then the theorem is true for L̄m by (1.4) of [Z2]. Write

χm,n =
χ
(
Γ(L̄⊗n

m )
)

n dimΓ(L⊗n)
,

χn =
χ
(
Γ(L̄⊗n)

)

n dimΓ(L⊗n)
,

then χn,m −→ χn uniformly in n as m → ∞. Now the theorem for L̄m implies that
lim

n→∞
χm,n = c1(L̄m)d

dc1(L)d−1 . It follows that

lim
n→∞

χn = lim
m→∞

lim
n→∞

χm,n =
c1(L̄)d

dc1(L)d−1
.

The theorem follows immediately.

Theorem (1.8). Let L̄ be an ample metrized line bundle with an ample metric. Assume
for each irreducible subvariety Y of X that c1(L̄|Y )dim Y +1 > 0. Then for n À 0, the
Q-vector space Γ(L⊗n) has a basis {`1, · · · , `N} consisting of strictly effective elements:
‖`i‖p ≤ 1 for p 6= ∞ and ‖`i‖∞ < 1.

Proof. By (1.7) and the Minkowski theorem, for each Y of X there is a n > 0, such that
Γ(L

∣∣⊗n

Y
) has a section ` such that ‖`‖p ≤ 1 for all p 6= ∞ and ‖`‖∞ < 1. The theorem

follows from (4.2) of [Z2].

(1.9). For a projective variety X over Spec Q of dimension d − 1, and an integrable
metrized ample line bundle L̄ on X, we define the height of X with respect to L̄ as follows:

hL̄ =
c1(L̄)d

dc1(LQ)d−1
.

For i = 1, 2, · · · d, define numbers

ei(L̄) = sup
codY =i

inf
x∈X−Y

hL̄(x)

where Y runs through the set of reduced subvarieties of X.
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Theorem (1.10). If L̄ is an ample metrized line bundle then

e1(L̄) ≥ hL̄(X) ≥ e1(L̄) + · · ·+ ed(L̄)
d

Proof. Assume L̄ is approximated by metrized line bundles L̄n which are induced by models
(X̃n, L̃n). Then the theorem is true for L̄n by (5.2) of [Z2]. Since c1(L̄n)d → c1(L̄)d and
ei(L̄n) → ei(L̄), the theorem (1.10) is true for L̄.

Theorem (1.11). If L̄1 · · · L̄d are ample metrized line bundles, then

c1(L̄1) · · · c1(L̄d) ≥
d∑

k=1

ed(L̄k)c1(L1) · · · c1(Lk−1)c1(Lk+1) · · · c1(Ld)

Proof. By a limit argument, we may assume that L̄1, · · · , L̄d are exactly metrized line
bundles associated to relatively ample hermitian line bundles L̃1, · · · , L̃d on a model X̃

of X. By scaling metric at ∞, we may assume that ed(L̃i) = 0. We want to prove that
c1(L̃1) · · · c1(L̃d) ≥ 0 by induction on d. It is obviously true for d = 1. Fix a ε > 0 and
denote by L̃d(ε) the metrized line bundle which has e−ε · ‖ · ‖L̃d

as metric at ∞. Now L̃d(ε)
has height ≥ ε on X(Q). By (1.8), L̃d(ε) is ample. In particular, some power L̃d(ε)m has
an effective section `. Write Y = div (`), then

c1(L̃1) · · · c1(L̃d)

=c1(L̃1) · · · c1(L̃d(ε))− εc1(L̄1) · · · c1(L̄d−1)

=
1
m

c1(L̃1) · · · c1(L̃d−1)(Y,− log ‖`‖∞)− εc1(L̄1) · · · c1(L̄d−1)

=
1
m

c1(L̃1|Y ) · · · c1(L̃d−1|Y ) +
1
m

∫

X(C)

− log ‖`‖∞c′1(L̃1) · · · c′1(L̃d−1)− εc1(L̄1) · · · c1(L̄d−1).

The first two terms in the last line are positive, since the first term is positive by induction,
and the second term is positive by fact that ‖`‖∞ < 1 and c′1(L̃i) ≥ 0. Letting ε → 0, the
theorem follows.
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2. Admissible metrized line bundles

(2.1). Let K be an algebraically closed valuation field, X a projective variety over Spec K,
L = (L, ‖ · ‖) a line bundle on X with a continuous and bounded metric, f : X → X a
surjective morphism, and φ : Ld ' f∗L an isomorphism where d > 1 is an integer. We
define ‖ · ‖n on L inductively as follows:

‖ · ‖1 = ‖ · ‖, ‖ · ‖n = φ∗f∗‖ · ‖
1
d
n−1.

Theorem (2.2). (a) The metrics ‖ · ‖n on L converge uniformly to a metric ‖ · ‖0 on L,

this means that the function log ‖·‖n

‖·‖1 converges uniformly on X(K) to log ‖·‖0
‖·‖1 .

(b) ‖ · ‖0 is the unique (continuous and bounded) metric on L satisfying the equation

‖ · ‖0 =
(
φ∗f∗‖ · ‖0

) 1
d .

(c) If φ changes to λφ with λ ∈ K∗, then ‖ · ‖0 changes to |λ| 1
d−1 ‖ · ‖0.

Proof. (a) Denote by h the continuous function 1
dφ∗f∗ log ‖·‖2

‖·‖1 on X. Then

log ‖ · ‖n =
(1
d
φ∗f∗

)n−2 log ‖ · ‖2

=
(1
d
φ∗f∗

)n−2(h + log ‖ · ‖1)

=
(1
d
φ∗f∗

)n−2
h + log ‖ · ‖n−1.

Using induction on n, one has

log ‖ · ‖n = log ‖ · ‖1 +
n−2∑

k=0

(1
d
φ∗f∗

)k · h.

Since
∥∥(

1
dφ∗f∗

)k · h∥∥
sup

≤ 1
dk ‖h‖sup, it follows that

∞∑
k=1

(
1
dφ∗f∗

)k · h is absolutely and

uniformly convergent to a bounded and continuous function h0. Let ‖ · ‖0 = ‖ · ‖1eh0 , then
‖ · ‖n converges uniformly to ‖ · ‖0.

(b) It is easy to see that ‖ · ‖0 is continuous, bounded, and satisfies the equation

‖ · ‖0 =
(
φ∗f∗‖ · ‖0

) 1
d .

If ‖ · ‖′0 be another continuous, bounded metric on L which satisfies the same equation,
writing g = log ‖·‖0

‖·‖′0 , then we have g = φ∗f∗

d g, so ‖g‖sup = ‖g‖sup

/
d, or g = 0. This shows

that ‖ · ‖0 = ‖ · ‖′0.
(c) If α‖ · ‖0 is the metric corresponding to λφ with α a function on X(K), then for any

` ∈ L(x), x ∈ X,

α‖`‖0(x) =
(

α‖λφ(`)‖0
(
f(x)

)) 1
d

,

so α = (α|λ|) 1
d or α = |λ| 1

d−1 .

The proof of the theorem is complete.
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(2.3). Now let everything be defined over Q: X is a projective variety over Spec Q, L an
ample line bundle on X, f : X → X a surjective morphism over Q, and φ : Ld ' f∗L an
isomorphism of line bundles. This implies that f is finite of degree ddim X . We fix a model
(X̃, L̃) of (X,Le) on Spec Z with e > 0, such that L̃ is relatively ample. This induces an
adelic metric ‖ · ‖ on L.

There is an open subset U of Spec Z such that f and φ extend to an U -morphism
fU : XU −→ XU and an isomorphism φU : L̃⊗d

U −→ f∗U L̃U .
It follows for each p ∈ U that

‖ · ‖p = (φ∗f∗‖ · ‖p)
1
d .

We define the morphism f̃n : X̃n −→ X̃ as the normalization of the composition of
morphism

XU
fn

U−→ XU ↪→ X̃.

Denote by L̄n the metrized line bundles (L, ‖ · ‖n) induced by model
(
X̃n, f̃∗nL̃

)
. Then

for any p ∈ U and any n, one has ‖ · ‖n,p = ‖ · ‖p. In general for any p ∈ S, ‖ · ‖n,p is
defined as in (2.1) from ‖ · ‖p. By theorem (2.2.), ‖ · ‖n,p converges uniformly to a metric
‖ · ‖0,p. So the adelic metric ‖ · ‖n of L̄n converges to an adelic metric ‖ · ‖0 on L. By (2.2),
‖ · ‖0 doesn’t depend on the choice of (X̃, L̃). If φ changes to λφ for λ ∈ Γ(X,O∗X), then

‖ · ‖0 changes to ‖ · ‖0λ = {‖ · ‖p|λ|
1

d−1
p }. Therefore, if we write L̄0 = (L, ‖ · ‖0) then L̄d−1

0

does not depend on the choice of φ. Since L̄n are all ample, L̄0 is an ample metrized line
bundle on X.

For any effective cycle Y of X of pure dimension, write hf,L(Y ) for hL̄0
(Y ).

Theorem (2.4). (a) Denote by f(Y ) the push-forward of Y under f , then hf,L(fY ) =
dhf,L(Y ).

(b) hf,L(Y ) ≥ 0.
(c) If the orbit {Y, f(Y ), · · · , fn(Y ), · · · } is finite then hf,L(Y ) = 0.

(d) If y ∈ X(Q) is a point and hf,L(y) = 0 then the orbit {y, f(y), · · · , fn(y), · · · } is
finite.

Proof. (a)

hf,L(f(Y )) = c1

(L̄0

∣∣
f(Y )

)dim Y +1
/

(dimY + 1)c1

(L∣∣
f(Y )

)dim Y

= c1

(
f∗L̄0

∣∣
Y

)dim Y +1
/

(dimY + 1)c1(f∗L)dim Y

= c1

(L̄d
0

∣∣
Y

)dim Y +1
/

(dimY + 1)c1

(Ld
∣∣
Y

)dim Y

= dc1

(L̄0

∣∣
Y

)dim Y +1
/

(dimY + 1)c1

(L∣∣
Y

)dim Y

= dhf,L(f(Y )).

11



(b) Applying (1.10) to Y , we have that

hf,l(Y ) ≥ ed(L
∣∣
Y

) · ( dimY + 1
) ≥ ed

(L)(
dimY + 1

)
.

But
ed(L) = inf

x
hL(x) = inf

x
hL

(
f(x)

)
= d inf

x
hL(x) = ded(L).

Therefore ed(L) = 0
(c) The finiteness of the orbit {Y, f(Y ), · · · , fn(Y ), · · · } implies the finiteness of the

orbit
{hf,L(Y ), dhf,L(Y ), · · · , dnhf,L(Y ) · · · }.

So we must have hf,L(Y ) = 0.
(d) If hf,L(y) = 0 then the orbit {y, f(y), · · · } has bounded degree [Q(y) : Q] and

bounded height (= 0), so must be a finite set.
The proof of the theorem is complete.

Conjecture (2.5). If Y is an effective cycle of X of positive dimension and hf,L(Y ) = 0
then the orbit of Y under f is finite.

This conjecture is a converse of (c) in (2.4). A subvariety Z of X is called a preperiodic
subvariety if the orbit of Z under f is finite. A preperiodic subvariety Z contained in Y is
called maximal preperiodic if no other preperiodic subvariety of Y contains Z.

If hf,L(Y ) = 0, by conjecture (2.5), Y is a preperiodic variety, of course a maximal
preperiodic subvariety of Y . If hf,L(Y ) 6= 0, by theorem (1.10), there is a Zariski open set
U of Y such that hf,L on U(Q) has a positive lower bound, and any preperiodic subvariety
Z of Y will be contained in X −U . This shows that (2.5) implies the following conjecture:

Conjecture (2.6). Any subvariety Y of X contains at most finitely many maximal prepe-
riodic subvarieties.

(2.7). Let f0, · · · , fn be n+1-homogeneous polynomial of degree of d > 1 in n+1 variables
z0, · · · , zn such that the only common zero of f0, · · · , fn is 0. Then

f : (z0, · · · , zn) −→ (
f0(z0, · · · , zn), · · · , fn(z0, · · · , zn)

)

defines a morphism Pn −→ Pn. One has a unique homomorphism φ : O(d) ' f∗O(1) such
that φ(fi) = f∗(zi), where we consider zi as sections of O(1).

When fi = zd
i , the preperiodic subvarieties of Pn are Zariski closure of translates of

subgroups by torsion points of Gn
m =

{
(z0 · · · zn) = z0 · · · zn 6= 0

}
. In this case, (2.6) is a

theorem of Laurent [L], Sarnak [Sa], while (2.5) is a theorem in [Z2].

(2.8). As in (2.1), let f : X −→ X be a surjective morphism, d a positive integer, and
Pic(X)f,d the subgroup of Pic(X) consisting of line bundles L such that L⊗d ' f∗L.
Assume that Pic(X)f,d contains an ample line bundle of X. Then any line bundle L in
Pic(X)f,d can be written as L1 ⊗ L−1

2 for two ample line bundles L1,L2 in Pic(X)f,d.
By (2.3), there are ample metrized line bundles L̄1, L̄2 whose generic fibers are L1,L2

and L̄⊗d
i ' f∗L̄i. Now L̄ = L̄1 ⊗ L̄−1

2 is an integrable metrized line bundle on X, and

12



L̄⊗d ' f∗L̄. By theorem (2.2), L̄(d−1) does not depend on the choice of L̄1, L̄2. Let
Pic(x)f,d denote the group of integrable metrized line bundles L̄ such that L̄⊗d ' f∗L̄.
Then we have shown that Pic(X)f,d is generated by ample metrized elements. We call
elements in Pic(X)f,d admissible metrized line bundles. The following theorem is useful in
the next section.

Theorem (2.9). Let Y ↪→ X be a subvariety of dimension n, and L̄ ∈ Pic(X)f,d an
ample metrized line bundle such that hf,L(Y ) = 0, then

c1(L̄1

∣∣
Y

) · · · c1(L̄n+1

∣∣
Y

) = 0

for any L̄1, · · · , L̄n+1 in Pic(X)f,d, where n = dim Y .

Proof. Since Pic(X)f,d is generated by ample metrized line bundles, we may assume
L̄1, · · · , L̄n+1 are ample metrized. Since L is ample, there is a positive integer m, and
an ample line bundle L0 such that Lm ' L0 ⊗ L1 ⊗ · · · ⊗ Ln+1. Put a metric on L0 such
that L̄m ' L̄0 ⊗ L̄1 ⊗ · · · ⊗ L̄n+1 then L̄⊗d

0 ' f∗L̄0. By theorem (2.4)(b), L̄, L̄0, · · · , L̄n+1

are all semipositive. For any n + 1 integers i1, · · · , in+1 between 0 and n + 1, the number
c1(L̄i1) · · · c1(L̄in+1) is nonnegative by (1.11). Since

0 = mn+1
(
c1(L̄

∣∣
Y

)n+1
)

= c1(L̄m
∣∣
Y

)n+1

=
∑

0≤i1≤i2≤···≤in+1≤n+1

c1(L̄i1) · · · c1(L̄in+1),

we must have c1(L̄1) · · · c1(L̄n+1) = 0.
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3. Positivity of heights of certain subvarieties of an abelian variety

(3.1). Consider an abelian variety A over a number field K. For any integer n, let [n]
denote the endomorphism of A defined as the multiplication of n. Then for any symmetric
line bundle L of A,L⊗n2 ' [n]∗L. If X = A, f = [n] for a n > 1, then hL = hf,L is the
usual Néron - Tate height function studied by Philippon [P], Kramer [K], and Gubler [G].
In this case, conjecture (2.5) is a theorem of Raynaud [R], and (2.6) is a conjecture of
Bogomolov [B] if dimY = 1.

Theorem (3.2). Let L be a symmetric ample line bundle on A, and Y ↪→ A a subvariety
of positive dimension such that Y −Y generates A. This means that A is the only abelian
subvariety of A which contains Y − Y . Assume that the induced map

NS(A)Q −→ NS(Y )Q

is not injective, where NS(A) = Pic(A)
/
Pic0(A) and NS(Y ) = Pic(Y )

/
Pic0(Y ). Then

hL(Y ) > 0.

(3.3). The crucial facts used in the proof of the theorem are theorem (2.9), a variant form
(3.4) of Faltings’ index theorem [F1], and a nonvanishing theorem (3.5) for restriction on
Y of an invariant 1 - 1 form of A(C).

Lemma (3.4). Let X be a variety over Q, and L̄ and M̄ two integrable line bundles on
X with smooth metrics at ∞. Assume that L̄ is semipositive and ω = c′(L̄) is positive
on a dense subset of the regular part Xr(C) of X(C), and that M is in Pic0(X). Then
c1(M̄)2c1(L̄)d−1 ≤ 0, and the equality c1(M̄)2c1(L̄)d−1 = 0 implies that the metric on M̄
has curvature 0 on Xr(C).

Proof. Let f : X ′ → X be a resolution of singularities. Replacing X by X ′, L̄ by f∗L̄, and
M̄ by f∗M̄ we may assume that X is regular. Choose a metric ‖ · ‖′M on M such that its
curvature is 0, let ϕ = log ‖·‖′M

‖·‖M̄ .

Fix a positive number ε. By approximation, there is a model (X̃, L̃,M̃) such that
(a) L̃ is a relatively semipositive line bundle on X̃ whose restriction on X is Le1 , e1 > 0,

and whose metric at ∞ is the e1-th power of the metric of L̄;
(b) M̃ is a line bundle on X̃, whose restriction on X is Me2 , e2 > 0, and whose metric

at ∞ is e2-th power of the metric of M̄;
(c) c1(M̄)2c1(L̄)d−1 ≤ 1

ed−1
1 e2

2
c1(M̃)c1(L̃)d−1 + ε.

Denote by M̃′ the metrized line bundle on X̃ which has same finite part as M̃ on X̃,
and which has metric ‖ · ‖′M. Then

(d) c1(M̃)2 = c1(M̃′)2 +
(
0,−ϕ∂∂̄

πi ϕ
)

as cycles on X̃.
We claim that
(e) c1(M̃′)2c1(L̃)d−1 ≤ 0.

Fix a relatively ample line bundle L̃′ on X̃, then

lim
n→∞

n1−dc1(M̃′)2c1(L̃n ⊗ L̃′)d−1 = c1(M̃′)2c1(L̃)d−1.
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Replacing L̃ by L̃n ⊗ L̃′ for n = 1, 2, · · · , we may assume that L̃ is relatively ample. Now,
c1(L̃)d−1 is represented by 1

m (Z, gZ), where Z is an integral subvariety of X with a regular
generic fiber, m > 0 an integer. Since M̃′ has curvature 0, one has

c1(M̃′)2c1(L̃)d−1 =
1
m

c1(M̃′∣∣
Z
)2.

Now c1(M̃′∣∣
Z
)2 ≤ 0 by the Faltings-Hodge index theorem. The claim is proved.

Combining (a)-(e) we have that

c1(M̄)2c1(L̄)d−1 ≤ −
∫

X(C)

ϕ
∂∂̄

πi
ϕωd−1 + ε.

Since ωd−1 ≥ 0 and ωd−1 > 0 on a dense subset of X(C), by letting ε → 0 it follows that

c1(M̄)2c1(L̄)d−1 ≤ −
∫

ϕ
∂∂̄

πi
ϕωd−1 ≤ 0,

and that
∫

ϕ∂∂̄
πi ϕωd−1 = 0 if and only if ϕ is locally constant.

Lemma (3.5). Let A be a complex abelian variety, and Y ↪→ A a subvariety such that
{y1 − y2

∣∣y1, y2 ∈ Y (C)} generates A. This means that A is the only abelian subvariety of
A which contains Y − Y . If ω is a 1-1 form on A which is invariant under translation and
ω
∣∣
Y

= 0, then ω = 0.

Proof. We write A = Cn
/
Λ and ω =

∑
aijdziΛdz̄j . After a translation, we may assume

that 0 is a smooth point of Y . Fix points y1, · · · , ym on Y such that {y1, · · · , ym} generates
A. One can find a complex curve C ↪→ Y , such that yi ∈ C and 0 is a regular point of C.
Fix any holomorphic map ϕ : D = {z ∈ C : |z| < 1} ↪→ Cn

/
Λ such that ϕ(D) ↪→ C. Write

ϕ(z) =
(
f1(z), · · · , fn(z)

)
, then f ′1(z), · · · , f ′n(z) are linearly independent over C.

If ω
∣∣
Y

= 0 then ϕ∗ω = 0, it follows that

∑
aij

∂fi

∂z

∂f̄j

∂z̄
= 0

for all z ∈ D. Comparing coefficients of power series in z and z̄, since ∂fi

∂z are linearly
independent in C, for any i we must have

∑

j

aij
∂f̄j

∂z̄
= 0,

or

∑

j

āij
∂fj

∂z
= 0.

It follows that aij = 0 for all i, j. So ω = 0. The proof of the lemma is complete.
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(3.6) Proof of (3.2). Assume hL(Y ) = 0, then by theorem (2.9) for any admissible line
bundles L̄1, · · · , L̄n, n = dim Y + 1, one has

c1

(L̄1

∣∣
Y

) · · · c1

(L̄n

∣∣
Y

)
= 0.

By assumption there is a line bundle M ∈ Pic(A) \ Pic0(A) whose restriction on Y is
in Pic0(Y ). Replacing M by M⊗ [−1] ∗ M, we may assume M is symmetric. Put an
admissible metric on M, then we have

c1(M̄
∣∣
Y

)2c1(L̄)n−1 = 0.

By lemma (3.4), c′1(M̄
∣∣
Y

) ≡ 0. Let ω = c′1(M̄), then ω is an invariant 1 - 1 form on A,
and ω 6= 0. Since Y − Y generates A, this contradicts lemma (3.5).

Theorem (3.7). Let L be a symmetric ample line bundle on A, and C ↪→ A a curve such
that C − C generates A. Assume that the ring End (A) ⊗Z R is not isomorphic to R,C,
and D, where D is the division quaternion algebra. Then hL(C) > 0.

Proof. By theorem (3.2), since NS(C)Q ' Q, we need only show that NS(A)Q or NS(A)R
has rank ≥ 2. Fix a polarization on A. Decompose End (A)⊗Z R into a product of copies
of matrix algebras of R, C, and D, such that the involution of End (A) induced by the
given polarization is identified with the involution on matrix algebras. Then NS(A)⊗Z R
is isomorphic to the set of fixed endomorphisms under the involution. So NS(A)⊗ZR ' R
implies that End (A)R ' R,C, or D.

(3.8). Let C be a curve of genus ≥ 2, and c a divisor of degree 1. Define the morphism
φc : C ↪→ Jac(C) such that φ(x) = the class of x−c. Denote by Θ be the divisor on Jac(C)
which is the translate of the theta divisor on Jacg−1(C) by −(g−1)c, and by PicΘ(Jac(C))
the admissible metrized line bundles on Jac(C) with respect to the endomorphism [2],
whose classes in NS(Jac(C)) are multiples of the class of Θ. Then φ∗(PicΘ(Jac(C)) is the
group of admissible metrized line bundles defined in [Z1]. Denote by ω the admissible
metrized relative dualizing sheaf on C, and by O(D) the admissible line bundle associated
to a divisor D. We want to show the following theorem:

Theorem (3.9). If c0 is a divisor of degree 1 on C such that (2g−2)c0 is in the canonical
divisor class on C, then

hL
(
φc(C)

)
=

1
8(g − 1)

ω2 + (1− 1
g
)hL̄(c− c0).

Proof. For any divisor D of degree 0 on C, the Faltings-Hodge index theorem shows that

(D, D) = −2hL(D)

where (D, D) denotes the admissible pairing on divisions of C. In particular, for any
x ∈ C(Q̄),

(x− c, x− c) = −2hφ∗L̄(x).

16



Applying the adjunction formula: (x, x) = −(x, ω), one has

(x− c, x− c) = (x, x)− 2(x, c) + (c, , c)

= −(x, ω)− 2(x, c) + (c, c)

=
(− (ω + 2c) + (c, c), x).

It follows that
−2φ∗L̄+ (ω + 2c)− (c, c)

has height 0 at every point. Consider this as a line bundle. Then one may prove that
this bundle has curvatures 0 at all places of K, see 4.7 of [Z1]. Therefore it is numerically
equivalent to 0.

Now

4c1(φ∗L̄)2 =
[
c1(ω) + 2c1

(O(c)
)]2 − 2 · 2g(c, c)

= ω2 + 4(1− g)c2 + 4ωc

= ω2 + 4(1− g)
(
c− ω

2g − 2
)2 +

ω2

g − 1

=
g

g − 1
ω2 + 8(g − 1)hL̄(c− c0).

Since deg φ∗L = g, one has

hL̄
(
φ(C)

)
=

c1(L̄
∣∣
φ(C)

)2

2 deg
(L∣∣

φ(C)
)

=
c1

(
φ∗C(L̄)

)2

2g

=
ω2

8(g − 1)
+ (1− 1

g
)hL̄(c− c0).

Corollary (3.10). (a) If (2g−2)c−ω is not a torsion point of Jac(C) then hL̄
(
φ(C)

)
> 0.

(b) If End
(
Jac(C)

)
R is not isomorphic to R,C, and D then (ω, ω) > 0.

Proof. Combine (3.7), (3.8), and the fact that (ω, ω) ≥ 0 in [Z1].

Remarks (3.11). (a) The first part of (3.10) implies that the Bogomolov’s conjecture is
true if c − c0 is not torsion. This fact has been proven in [Z1]. The second part shows
Bogomolov’s conjecture if Jac(C) has a nondivision endomorphism ring End

(
Jac(C)

)
R.

(b) If C has good reductions at all finite places of a number field, one can prove that(
ω, ω

)
=

(
ωAr, ωAr

)
, where ωAr is the Arakelov dualizing sheaf. In this case, Bost told me

he has proved (3.9).
(c) If C has good reduction at all finite places of a number field and Jac(C) has a

complex multiplication, then End (Jac(C)R contains a subring isomorphic to Cg. It follows
from (3.10)(b) that (ωAr, ωAr) > 0. This has been already proved by Burnol [Bu] using
Weierstrass points.
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