SMALL POINTS AND ADELIC METRICS

Shouwu Zhang

Department of Mathematics Princeton University Princeton, NJ 08540 szhang@math.princeton.edu

April 1993, Revised April 1994

INTRODUCTION

Consider following generalized Bogomolov conjecture: Let A be an abelian variety over $\overline{\mathbb{Q}}, h: A(\overline{\mathbb{Q}}) \to \mathbb{R}$ a Néron - Tate height function with respect to an ample and symmetric line bundle on A, Y a subvariety of A which is not a translate of an abelian subvariety by a torsion point; then there is a positive number ϵ such that the set

$$Y_{\epsilon} = \{ x \in Y(\overline{\mathbb{Q}}) : h(x) \le \epsilon \}$$

is not Zariski dense in Y. Replacing A by an abelian subvariety, we may assume that $Y - Y = \{y_1 - y_2 : y_1, y_2 \in Y(\overline{\mathbb{Q}})\}$ generates A: A is the only abelian subvariety of A which contains Y - Y.

In this paper, we will prove that Y_{ϵ} is not Zariski dense if the map $NS(A)_{\mathbb{R}} \to NS(Y)_{\mathbb{R}}$ is not injective.

In spirit of Szpiro's paper [Sz], we will reduce the problem to the positivity of the height of Y with respect to certain metrized line bundle. To do this, we will first extend Gillet-Soulé's intersection theory of hermitian line bundles to certain limits of line bundles which are called integrable metrized line bundles, then for a dynamic system, construct certain special integrable metrized line bundles which are called admissible metrized line bundles, and finally prove the positivity of heights.

Integrable metrized line bundles. Consider a projective variety X over Spec \mathbb{Q} . For a line bundle \mathcal{L} on X and an arithmetic model $(\widetilde{X}, \widetilde{\mathcal{L}})$ of (X, \mathcal{L}^e) over Spec \mathbb{Z} , one can define an adelic metric $\|\cdot\|_{\widetilde{\mathcal{L}}} = \{\|\cdot\|_p, p \in \mathcal{S}\}$ on \mathcal{L} , where e is a positive integer, \mathcal{S} is the set of places of \mathbb{Q} , and $\|\cdot\|_p$ is a metric on $\mathcal{L} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_p$ on $X(\overline{\mathbb{Q}}_p)$.

Let $\mathcal{L}_1, \dots, \mathcal{L}_d$ $(d = \dim X + 1)$ be line bundles on X. For each positive integer n, let $(\widetilde{X}_n, \widetilde{\mathcal{L}}_{1,n}, \dots, \widetilde{\mathcal{L}}_{d,n})$ be an arithmetic model of $(X, \mathcal{L}_1^{e_{1,n}}, \dots, \mathcal{L}_d^{e_{d,n}})$ on Spec \mathbb{Z} . Assume for each i that $(\mathcal{L}, \|\cdot\|_{\widetilde{\mathcal{L}}_{i,n}})$ converges to an adelic metrized line bundle $\overline{\mathcal{L}}_i$. One might ask whether the number

$$c_n = \frac{c_1(\widetilde{\mathcal{L}}_{1,n})\cdots c_1(\widetilde{\mathcal{L}}_{d,n})}{e_{1,n}\cdots e_{d,n}}$$

in Gillet-Soulé's intersection theory converges or not.

We will show that c_n converges if all $\widetilde{\mathcal{L}}_{i,n}$ are relatively semipositive, and that $\lim_{n\to\infty} c_n$ depends only on $\overline{\mathcal{L}}_i$. Notice that some special case has been studied by Chinberg, Rumely, and Lau [CRL]. We say that an adelic line bundle $\overline{\mathcal{L}}$ is integrable if $\overline{\mathcal{L}} \cong \overline{\mathcal{L}}_1 \otimes \overline{\mathcal{L}}_2^{-1}$ with $\overline{\mathcal{L}}_i$ semipositive. It follows that Gillet-Soulé's theory can be extended to integrable metrized line bundles. Some theorems such as Hilbert-Samuel formula, Nakai-Moishezon theorem, and comparison inequality remain valid on integrable metrized line bundles.

Admissible metrized line bundles. Let $f : X \to X$ be a surjective endomorphism over Spec \mathbb{Q} , \mathcal{L} a line bundle on X, and $\phi : \mathcal{L}^d \simeq f^*\mathcal{L}$ an isomorphism with d > 1. Using Tate's argument, we will construct a unique integrable metric $\|\cdot\|$ on \mathcal{L} such that

$$\|\cdot\|^d = \phi^* f^* \|\cdot\|.$$

If X = A is an abelian variety, and s is a section of $\mathcal{L} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_p$, then $\log \|s\|_p$ is the Néron function for divisor div (s).

In case that \mathcal{L} is ample, any effective cycle Y of X of pure dimension has an (absolute) height

$$h_{\mathcal{L}}(Y) = \frac{c_1(\overline{\mathcal{L}}|_Y)^{\dim Y+1}}{(\dim Y+1) \deg_{\mathcal{L}}(Y)}$$

which has property that

$$h_{\mathcal{L}}(f(Y)) = dh_{\mathcal{L}}(Y).$$

As Tate did, $h_{\mathcal{L}}$ can be defined without admissible metric. Some situations are studied by Philippon [P], Kramer [K], Call and Silverman [CS], and Gubler [G].

Assume \mathcal{L} is ample as above. If Y is preperiodic: the orbit $\{Y, f(Y), f^2(Y), \dots\}$ is finite, then $h_{\mathcal{L}}(Y) = 0$. We propose a generalized Bogomolov conjecture which claims that the converse is true: if h(Y) = 0 then Y is preperiodic. This is a theorem [Z2] for case of multiplicative group. A consequence is the generalized Lang's conjecture which claims that if Y is not preperiodic then the set of preperiodic points in Y is not Zariski dense. Lang's conjecture is proved by Laurent [L] and Sarnak [Sa] for multiplicative groups, and by Raynaud [R] for abelian varieties.

Positivity of heights of certain subvarieties. Let Y be a subvariety of an abelian variety A with a polarization \mathcal{L} . We prove the following special case of the generalized Bogomolov conjecture: if Y - Y generates A, and the map $NS(A)_{\mathbb{Q}} \to NS(Y)_{\mathbb{Q}}$ is not injective, then $h_{\mathcal{L}}(Y) > 0$. The crucial facts used in the proof are comparison theorem of heights, Faltings index theorem, and nonvanishing of invariant (1, 1) forms on Y.

For a curve C of genus $g \ge 2$, let ω denote the admissible dualizing sheaf defined in [Z1]. The above positivity implies that $\omega^2 > 0$ if End $(\operatorname{Jac}(C))_{\mathbb{R}}$ is not isomorphic to \mathbb{R}, \mathbb{C} , and the quaternion divison algebra \mathbb{D} . This is the case when $\operatorname{Jac}(C)$ has a complex multiplication, or C has a finite morphism of deg > 1 to a nonrational curve. Notice that if C has good reduction everywhere, and $\operatorname{Jac}(C)$ has complex multiplication, the positivity of ω_{Ar}^2 is proved by Burnol [B] using Weierstrass points.

(1.1). For a line bundle \mathcal{L} on a projective scheme X over an algebraically closed valuation field K, we define a K-metric $\|\cdot\|$ on \mathcal{L} to be a collection of K-norms on each fiber $\mathcal{L}(x), x \in X(K)$.

For example when K is non-archimedean, if there is a projective scheme \widetilde{X} on Spec R with generic fiber X, and a line bundle $\widetilde{\mathcal{L}}$ on \widetilde{X} whose restriction on X is $\mathcal{L}^{\otimes n}$, where R is the valuation ring of K and n > 0 is an integer, we can define a metric $\|\cdot\|_{\widetilde{\mathcal{L}}}$ as follows:

For an algebraic point $x \in X(K)$, denote by

$$\widetilde{x} : \operatorname{Spec} R \longrightarrow \widetilde{X}$$

the section extending x: $x = \widetilde{x}|_{\text{Spec } K}$, then $\widetilde{x}^*\mathcal{L} \otimes_R K = x^*\mathcal{L}^n$. For any $\ell \in x^*(\mathcal{L})$, we define

$$\|\ell\|_{\tilde{\mathcal{L}}} = \inf_{a \in K} \left\{ |a|^{\frac{1}{n}} : \quad \ell \in a \widetilde{x}^*(\mathcal{L}) \right\}.$$

We say that $\|\cdot\|_{\tilde{\mathcal{L}}}$ is induced by the model $(\tilde{X}, \tilde{\mathcal{L}})$.

A metric $\|\cdot\|$ on \mathcal{L} is called continuous and bounded if there is a model $(\widetilde{X}, \widetilde{\mathcal{L}})$ such that $\log \frac{\|\cdot\|}{\|\cdot\|_{\widetilde{c}}}$ is bounded and continuous on X(K) with respect to the K-topology.

(1.2). Denote by $S = \{\infty, 2, 3, \dots\}$ the set of all places of \mathbb{Q} . For each $p \in S$, denote by $|\cdot|_p$ the valuation on \mathbb{Q} such that $|p|_p = p^{-1}$ if $p \neq \infty$, by $|\cdot|_\infty$ the ordinary absolute value if $p = \infty$, by \mathbb{Q}_p the completion of \mathbb{Q} under $|\cdot|_p$, and by $\overline{\mathbb{Q}}_p$ a fixed algebraic closure of \mathbb{Q}_p . For an irreducible projective variety X over \mathbb{Q} , we define an adelic metrized line bundle $\widetilde{\mathcal{L}}$ to be a line bundle \mathcal{L} on X and a collection of metrics $\|\cdot\| = \{\|\cdot\|_p, p \in S\}$ such that the following conditions are verified.

(a) Each $\|\cdot\|_p$ is bounded, continuous, and Gal $(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$ invariant.

(b) There is a Zariski open subset $U = \operatorname{Spec} \mathbb{Z}[\frac{1}{n}]$ of $\operatorname{Spec} \mathbb{Z}$, a projective variety \widetilde{X} on U with generic fiber X, and a line bundle $\widetilde{\mathcal{L}}$ on \widetilde{X} extending \mathcal{L} on X, such that for each $p \in U$, the metric $\|\cdot\|_p$ is induced by the model

$$\left(\widetilde{X}_p, \widetilde{\mathcal{L}}_p\right) = \left(\widetilde{X} \times_U \operatorname{Spec} \bar{\mathbb{Z}}_p, \widetilde{\mathcal{L}} \otimes_{\mathbb{Z}\left[\frac{1}{n}\right]} \bar{\mathbb{Z}}_p\right),$$

where $\overline{\mathbb{Z}}_p$ denotes the valuation ring of $\overline{\mathbb{Q}}_p$.

For example, if there is a projective variety \widetilde{X} on Spec \mathbb{Z} with generic fiber X, and a hermitian line bundle $\widetilde{\mathcal{L}}$ on \widetilde{X} whose restriction on X is $\mathcal{L}^{\otimes n}$ $(n \neq 0)$, then $(\widetilde{X}, \widetilde{\mathcal{L}})$ induces a metric $\|\cdot\|_{\widetilde{\mathcal{L}}} = \{\|\cdot\|_p, p \in S\}$, where for $p \neq \infty, \|\cdot\|_p$ is induced by models $(\widetilde{X}_p, \widetilde{\mathcal{L}}_p)$, and $\|\cdot\|_{\infty}$ is the hermitian metric on $\mathcal{L}_{\mathbb{C}}$. The condition (a) is obviously verified. Since \mathcal{L} is defined over the generic fiber of \widetilde{X} , there is an open subset U' of Spec \mathbb{Z} such that \mathcal{L} has an extention $\widetilde{\mathcal{L}}_1$ on $\widetilde{\mathcal{X}}_{U'}$. Since $\widetilde{\mathcal{L}}_1^n|_X = \widetilde{\mathcal{L}}|_X$, there is an open subset U of U' such that $\widetilde{\mathcal{L}}_1^n|_U \simeq \widetilde{\mathcal{L}}|_U$. It follows that for $p \in U$, $\|\cdot\|_p$ is induced by $\widetilde{\mathcal{L}}_1$. The condition (b) is therefore verified.

A sequnce $\{ \| \cdot \|_n \colon n = 1, 2, \dots \}$ of adelic metrics is convergent to an adelic metric $\| \cdot \|$ if there is an open subset U of Spec Z such that for each $p \in U$, $\| \cdot \|_{n,p} = \| \cdot \|_p$ for all n, and that $\log \frac{\| \cdot \|_{n,p}}{\| \cdot \|}$ converges to 0 uniformly on X(K). (1.3). For a hermitian line bundle $\widetilde{\mathcal{L}}$ on an arithmetic variety X with a smooth metric at ∞ , this means that for any holomorphic map

$$f: \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \to X(\mathbb{C})$$

the pullback metric on $f^*\mathcal{L}$ is smooth, we say that $\widetilde{\mathcal{L}}$ is relatively semipositive if $\widetilde{\mathcal{L}}$ has nonnegative degree on any curve in special fibers, and the curvature of $f^*\mathcal{L}_{\mathbb{C}}$ is semipositive for any holomorphic map $f : \mathbb{D} \to X(\mathbb{C})$; we say that $\widetilde{\mathcal{L}}$ is relatively ample if the associated algebraic bundle is relatively ample, and there is an embedding $\widetilde{X}(\mathbb{C}) \to Y$ into a projective complex manifold Y such that the hermitian line bundle $\widetilde{\mathcal{L}}(\mathbb{C})$ can be extended to a hermitian line bundle on Y with positive curvature.

For a projective variety X over Spec \mathbb{Q} , and a line bundle \mathcal{L} on X, we say that an adelic metric $\|\cdot\|$ on \mathcal{L} is ample (resp. semipositive) if it is the limit of a sequence $\|\cdot\|_n$ of adelic metrics induced by models $(\widetilde{X}_n, \widetilde{\mathcal{L}}_n)$ as in (1.2) such that $\widetilde{\mathcal{L}}_n$ are relatively ample (resp. relatively semipositive.)

Let $\overline{\mathcal{L}}_1, \dots, \overline{\mathcal{L}}_d$ be metrized line bundles on X with semipositive metrics, $d = \dim X + 1$. Assume that $\|\cdot\|_i$ are approximated by metrics induced by models $(\widetilde{X}_{i,n}, \widetilde{\mathcal{L}}_{i,n})$, where $\widetilde{\mathcal{L}}_{i,n}$ are semipositive such that $\widetilde{\mathcal{L}}_{i,n}|_X = \mathcal{L}^{e_{i,n}}$, with $e_{i,n} > 0$. For any d-tuple of positive integers (n_1, \dots, n_d) , denote by $\widetilde{X}_{n_1, \dots, n_d}$ the Zariski closure of $\Delta(X)$ in $\widetilde{X}_{n_1} \times_{\mathbb{Z}} \widetilde{X}_{n_2} \times_{\mathbb{Z}} \dots \times_{\mathbb{Z}} \widetilde{X}_{n_d}$, where Δ is the diagonal map of X into the generic fiber $X \times_{\mathbb{Q}} X \times \dots \times_{\mathbb{Q}} X$ of $\widetilde{X}_{n_1} \times_{\mathbb{Z}} \widetilde{X}_{n_2} \times_{\mathbb{Z}} \dots \times_{\mathbb{Z}} \widetilde{X}_{n_d}$. We still denote the pullback of $\widetilde{\mathcal{L}}_{i,n_i}$ on $\widetilde{X}_{n_1,\dots,n_d}$ by $\widetilde{\mathcal{L}}_{i,n_i}$.

Theorem (1.4). (a) The intersection number

$$c_{n_1,\cdots,n_d} = c_1(\widetilde{\mathcal{L}}_{n_1})\cdots c_1(\widetilde{\mathcal{L}}_{n_d})/e_{1,n_1}\cdots e_{d,n_d}$$

converges as $n_i \to \infty$. The limit does not depend on the choice of $(\widetilde{X}_{i,n}, \widetilde{\mathcal{L}}_{i,n})$. (b) Denoted by $c_1(\overline{\mathcal{L}}_1) \cdots c_1(\overline{\mathcal{L}}_d)$ the limit, then $c_1(\overline{\mathcal{L}}_1) \cdots (\overline{\mathcal{L}}_d)$ is multi-linear in $\overline{\mathcal{L}}_1, \cdots, \overline{\mathcal{L}}_d$.

Proof. (a) Fix two *d*-tuples (n_1, \dots, n_d) and (n'_1, \dots, n'_d) of positive integers. Denote by \widetilde{X} the Zariski closure of $\Delta(X)$ in $\widetilde{X}_{n_1,\dots,n_d} \times \widetilde{X}_{n'_1,\dots,n'_d}$. As before we use same notations for pullbacks of $\widetilde{\mathcal{L}}_{i,n_i}$ as themselves. Write $\widetilde{\mathcal{L}}_i = \widetilde{\mathcal{L}}_{i,n_i}^{e_{i,n'_i}}, \widetilde{\mathcal{L}}'_i = \widetilde{\mathcal{L}}_{i,n_i}^{e_{i,n_i}}$, and $e_i = e_{i,n_i} \cdot e_{i,n'_i}$. Then both $\widetilde{\mathcal{L}}_i$ and $\widetilde{\mathcal{L}}'_i$ have same restriction \mathcal{L}^{e_i} on X. We need to show that

$$\frac{1}{e_1\cdots e_d} \left(c_1(\widetilde{\mathcal{L}}_1)\cdots c_1(\widetilde{\mathcal{L}}_d) - c_1(\widetilde{\mathcal{L}}_1')\cdots c_1(\widetilde{\mathcal{L}}_d') \right)$$

approaches to 0 as $(n_1, \dots, n_2, n'_1, \dots, n'_d)$ approaches to ∞ .

Fix a positive number ϵ and an open subset U of Spec \mathbb{Z} such that for any $p \in U$ and any k, $\|\cdot\|_{p,\widetilde{\mathcal{L}}_k} = \|\cdot\|_{p,\widetilde{\mathcal{L}}'_k}$. Then for any sufficiently large n_k, n'_k and any p,

$$\left|\log\frac{\|\cdot\|_{p,\widetilde{\mathcal{L}}_{k}'}}{\|\cdot\|_{p,\widetilde{\mathcal{L}}_{k}}}\right| \leq \epsilon \log p,$$

where $\log \infty$ is defined to be 1. Denote by s_k the rational section of $\widetilde{\mathcal{L}}_k \otimes \widetilde{\mathcal{L}'}_k^{(-1)}$ which gives 1 on X.

If $p \neq \infty$, then one has

$$p^{-\epsilon e_1 \cdots e_d} \le \|s_k\|_p(x) \le p^{\epsilon e_1 \cdots e_d}$$

for any x. Assume $[\operatorname{div}(s_k)]_p = \sum n_{i,p} V_{i,p}$, where $[\operatorname{div}(s_k)]_p$ is the cycle associated to $\operatorname{div}(s_k)$ supported in the special fiber \widetilde{X}_p of \widetilde{X} over p, and $V_{i,p}$'s are irreducible components of \widetilde{X}_p . It follows that $|n_p| \leq \epsilon e_1 \cdots e_d$, or in other words, that divisors

$$D_{1p} = [\operatorname{div} (s_k)]_p + [\epsilon e_i \cdots e_n] [X_p]$$

and

$$D_{2p} = -[\operatorname{div}(s_k)]_p + [\epsilon e_i \cdots e_d][\widetilde{X}_p]$$

are both effective, where $[\epsilon e_1 \cdots e_d]$ is the integral part of $\epsilon e_i \cdots e_d$. Therefore for i = 1, 2, d

$$c_1(\widetilde{\mathcal{L}}'|_{D_{i,p}})\cdots c_1(\widetilde{\mathcal{L}}'_{k-1}|_{D_{i,p}})c_1(\widetilde{\mathcal{L}}_{k+1}|_{D_{i,p}})\cdots c_1(\widetilde{\mathcal{L}}_d|_{D_{i,p}})>0,$$

or in other words, the contribution at p of

$$I_{k} = c_{1}(\widetilde{\mathcal{L}}') \cdots c_{1}(\widetilde{\mathcal{L}}'_{k-1}) c_{1}(\widetilde{\mathcal{L}}_{k+1}) \cdots c_{1}(\widetilde{\mathcal{L}}_{d}) \operatorname{div}(s)$$

has absolute value bounded by

$$\epsilon e_1 \cdots e_d (\log p) c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_{k-1}) c_1(\mathcal{L}_{k+1}) \cdots c_1(\mathcal{L}_d).$$

If $p = \infty$, the contribution at p of I_k is given by

$$\int \log \|s_k\|_{\infty} c_1'(\widetilde{\mathcal{L}}_1') \cdots c_1'(\widetilde{\mathcal{L}}_{k-1}') c_1'(\widetilde{\mathcal{L}}_{k+1}) \cdots c_1'(\widetilde{\mathcal{L}}_d)$$

where $c'_1(\widetilde{\mathcal{L}}_i)$ and $c'_1(\widetilde{\mathcal{L}}'_i)$ denote the curvatures of $\widetilde{\mathcal{L}}_i$ and $\widetilde{\mathcal{L}}'_i$. Since $|\log \|s_k\|_{\infty}| < \epsilon$ and $c'_1(\widetilde{\mathcal{L}}_i), c'_i(\widetilde{\mathcal{L}}'_i)$ are nonnegative, the above integral has absolute value bounded by

$$\epsilon e_1 \cdots e_d c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_{k-1}) c_1(\mathcal{L}_{k+1}) \cdots c_1(\mathcal{L}_d)$$

It follows that for any $1 \le k \le d$,

$$|I_k| \leq \epsilon e_1 \cdots e_d c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_{k-1}) c_1(\mathcal{L}_{k+1}) \cdots c_1(\mathcal{L}_d) \sum_{p \notin U} \log p.$$

Finally, for $(n_i, \cdots, n_d, n'_i, \cdots, n'_d)$ sufficiently large,

$$\frac{1}{e_1 \cdots e_d} \left| c_1(\widetilde{\mathcal{L}}_1) \cdots c_1(\widetilde{\mathcal{L}}_d) - c_1(\widetilde{\mathcal{L}}'_1) \cdots c_1(\widetilde{\mathcal{L}}'_d) \right|$$

$$\leq \frac{1}{e_1 \cdots e_d} \sum_{k=1}^d \left| c_1(\widetilde{\mathcal{L}}'_1) \cdots c_1(\widetilde{\mathcal{L}}_{k-1}) c_1(\widetilde{\mathcal{L}}_k \otimes \widetilde{\mathcal{L}}'^{-1}_k) c_1(\mathcal{L}_{k+1}) \cdots c_1(\mathcal{L}_d) \right|$$

$$\leq \epsilon \cdot \sum_{k=1}^d c_1(L_1) \cdots c_1(\mathcal{L}_d) \sum_{p \notin U} \log p.$$

This prove the first statement of (a).

If $\{(\widetilde{X}'_{i,n}, \widetilde{\mathcal{L}}'_{i,n})\}$ is another sequence of models which induces metrics $\|\cdot\|_{\widetilde{\mathcal{L}}_{i,n'}}$ convergent to $\|\cdot\|$, then the alternating sequence

$$\{(\widetilde{X}_{i,n}'',\widetilde{\mathcal{L}}_{i,n}'')\} = \{(\widetilde{X}_{i,1},\widetilde{\mathcal{L}}_{i,1}), (\widetilde{X}_{i,1}',\widetilde{\mathcal{L}}_{i,1}'), (\widetilde{X}_{i,2},\widetilde{\mathcal{L}}_{i,2}), (\widetilde{X}_{i,2}',\widetilde{\mathcal{L}}_{i,2}'), \cdots\}$$

also induces metrics on \mathcal{L} convergent to $\|\cdot\|$. By the first statement of (a), the intersection numbers induced by $\{(\widetilde{X}''_{i,n}, \widetilde{\mathcal{L}}''_{i,n})\}$ are convergent. So limits defined by $\{(\widetilde{x}_{i,n}, \widetilde{\mathcal{L}}_{i,n})\}$ and $\{\widetilde{x}'_{i,n}, \widetilde{\mathcal{L}}'_{i,n})\}$ are the same. This prove the second statement of (a).

The additivity of $c_1(\bar{\mathcal{L}}_1)\cdots c_1(\bar{\mathcal{L}}_d)$ in (b) is obvious from definition.

This completes the proof of the theorem.

(1.5). A metrized line bundle $\overline{\mathcal{L}} = (\mathcal{L}, \|\cdot\|)$ is called integrable if there are two semipositive metrized line bundles $\overline{\mathcal{L}}_1, \overline{\mathcal{L}}_2$ such that $\overline{\mathcal{L}}$ is isometric to $\overline{\mathcal{L}}_1 \otimes \overline{\mathcal{L}}_2^{-1}$.

By theorem (1.4), for any integrable metrized line bundles $\mathcal{L}_1, \dots, \mathcal{L}_d$, there is a uniquely defined intersection number $c_1(\bar{\mathcal{L}}_1) \cdots c_1(\bar{\mathcal{L}}_d)$ such that the following conditions are verified: (a) $c_1(\bar{\mathcal{L}}_1) \cdots c_1(\bar{\mathcal{L}}_d)$ is multilinear

(b) $c_1(\bar{\mathcal{L}}_1)\cdots c_1(\bar{\mathcal{L}}_d)$ is the limit defined in (b) of (1.4) if the metrics on $\bar{\mathcal{L}}_1,\cdots,\bar{\mathcal{L}}_d$ are semipositive.

(1.6). Now we want to generalize results in [Z2] to integrable metrized line bundles. First of all, we need to define Hilbert function of a line bundle.

By a norm $\|\cdot\|$ on a vector space V of finite dimension over \mathbb{Q} , we mean a collection $\{\|\cdot\|_p, p \in S\}$ of norms such that the following conditions are verified.

(a) For each $p, \|\cdot\|_p$ is a \mathbb{Q}_p -norm on $V_p = V \otimes_{\mathbb{Q}} \mathbb{Q}_p$, which is nonarchimedean if $p \neq \infty$, i.e. $\|x + y\|_p \leq \max(\|x\|_p, \|y\|_p)$ if $p \neq \infty$,

(b) There is a non zero integer n, a free module \widetilde{V} over $\mathbb{Z}\begin{bmatrix}\frac{1}{n}\end{bmatrix}$, and an isomorphism $V \simeq \widetilde{V} \otimes_{\mathbb{Z}\begin{bmatrix}\frac{1}{n}\end{bmatrix}} \mathbb{Q}$ such that $\|\cdot\|_p$ is induced by \widetilde{V} for all $p \not| n$. Denote by \mathbb{A} the ring of adeles of \mathbb{Q} , and by $V_{\mathbb{A}}$ the module $V \otimes_{\mathbb{Q}} \mathbb{A}$. There is unique

Denote by \mathbb{A} the ring of adeles of \mathbb{Q} , and by $V_{\mathbb{A}}$ the module $V \otimes_{\mathbb{Q}} \mathbb{A}$. There is unique invariant measure μ on $V_{\mathbb{A}}$ such that $\mu(\prod_{p} B_p) = 1$ where for each p, B_p is the unit ball in $V_{\mathbb{A}} = 0$.

 $V_p: B_p = \{x \in V_p, \|x\|_p \le 1\}$. We define the Euler characteristic of $(V, \|\cdot\|)$ as follows:

$$\chi_{\|\cdot\|}(V) = -\log \operatorname{volume}(V_{\mathbb{A}}/V).$$

For a projective variety X over \mathbb{Q} , an ample line bundle \mathcal{L} on X with a semipositive metric $\|\cdot\|$, and a place p of \mathbb{Q} , let $\|\cdot\|_p$ denote a norm on $\Gamma(\mathcal{L}) \otimes_{\mathbb{Q}} \mathbb{Q}_p = \Gamma(\mathcal{L}_p)$ defined as follows: for each $\ell \in \Gamma(X_p, \mathcal{L}_p)$,

$$\|\ell\|_p = \sup_{x \in X(\overline{\mathbb{Q}}_p)} \|\ell\|(x).$$

In this way, $\|\cdot\| = \{\|\cdot\|_p, p \in S\}$ defines an adelic norm on $\Gamma(\mathcal{L})$. Write $\chi(\Gamma(\bar{\mathcal{L}}))$ simply for $\chi_{\|\cdot\|}(\Gamma(\bar{\mathcal{L}}))$.

Theorem (1.7). As n approaches ∞ ,

$$\chi(\Gamma(\mathcal{L}^{\otimes n})) = \frac{n^d}{d!} c_1(\bar{\mathcal{L}})^d + o(n^d).$$

Proof. Assume that there is a sequence of models $(\widetilde{X}_m, \widetilde{\mathcal{L}}_m)$ of (X, \mathcal{L}) such that $\widetilde{\mathcal{L}}_m$'s are semipositive on \widetilde{X}_m and that the induced adelic metrized line bundles $\overline{\mathcal{L}}_m$ converge to $\overline{\mathcal{L}}$, then the theorem is true for $\overline{\mathcal{L}}_m$ by (1.4) of [Z2]. Write

$$\chi_{m,n} = \frac{\chi(\Gamma(\bar{\mathcal{L}}_m^{\otimes n}))}{n \dim \Gamma(\mathcal{L}^{\otimes n})},$$
$$\chi_n = \frac{\chi(\Gamma(\bar{\mathcal{L}}^{\otimes n}))}{n \dim \Gamma(\mathcal{L}^{\otimes n})},$$

then $\chi_{n,m} \longrightarrow \chi_n$ uniformly in n as $m \to \infty$. Now the theorem for $\overline{\mathcal{L}}_m$ implies that $\lim_{n\to\infty} \chi_{m,n} = \frac{c_1(\overline{\mathcal{L}}_m)^d}{dc_1(\mathcal{L})^{d-1}}$. It follows that

$$\lim_{n \to \infty} \chi_n = \lim_{m \to \infty} \lim_{n \to \infty} \chi_{m,n} = \frac{c_1(\mathcal{L})^d}{dc_1(\mathcal{L})^{d-1}}.$$

The theorem follows immediately.

Theorem (1.8). Let $\overline{\mathcal{L}}$ be an ample metrized line bundle with an ample metric. Assume for each irreducible subvariety Y of X that $c_1(\overline{\mathcal{L}}|_Y)^{\dim Y+1} > 0$. Then for $n \gg 0$, the \mathbb{Q} -vector space $\Gamma(\mathcal{L}^{\otimes n})$ has a basis $\{\ell_1, \dots, \ell_N\}$ consisting of strictly effective elements: $\|\ell_i\|_p \leq 1$ for $p \neq \infty$ and $\|\ell_i\|_{\infty} < 1$.

Proof. By (1.7) and the Minkowski theorem, for each Y of X there is a n > 0, such that $\Gamma(\mathcal{L}|_Y^{\otimes n})$ has a section ℓ such that $\|\ell\|_p \leq 1$ for all $p \neq \infty$ and $\|\ell\|_{\infty} < 1$. The theorem follows from (4.2) of [Z2].

(1.9). For a projective variety X over Spec \mathbb{Q} of dimension d-1, and an integrable metrized ample line bundle $\overline{\mathcal{L}}$ on X, we define the height of X with respect to $\overline{\mathcal{L}}$ as follows:

$$h_{\bar{\mathcal{L}}} = \frac{c_1(\mathcal{L})^d}{dc_1(\mathcal{L}_{\mathbb{Q}})^{d-1}}.$$

For $i = 1, 2, \dots d$, define numbers

$$e_i(\bar{\mathcal{L}}) = \sup_{\operatorname{cod} Y=i} \inf_{x \in X-Y} h_{\bar{\mathcal{L}}}(x)$$

where Y runs through the set of reduced subvarieties of X.

Theorem (1.10). If $\overline{\mathcal{L}}$ is an ample metrized line bundle then

$$e_1(\bar{\mathcal{L}}) \ge h_{\bar{\mathcal{L}}}(X) \ge \frac{e_1(\bar{\mathcal{L}}) + \dots + e_d(\bar{\mathcal{L}})}{d}$$

Proof. Assume $\overline{\mathcal{L}}$ is approximated by metrized line bundles $\overline{\mathcal{L}}_n$ which are induced by models $(\widetilde{X}_n, \widetilde{\mathcal{L}}_n)$. Then the theorem is true for $\overline{\mathcal{L}}_n$ by (5.2) of [Z2]. Since $c_1(\overline{\mathcal{L}}_n)^d \to c_1(\overline{\mathcal{L}})^d$ and $e_i(\overline{\mathcal{L}}_n) \to e_i(\overline{\mathcal{L}})$, the theorem (1.10) is true for $\overline{\mathcal{L}}$.

Theorem (1.11). If $\overline{\mathcal{L}}_1 \cdots \overline{\mathcal{L}}_d$ are ample metrized line bundles, then

$$c_1(\bar{\mathcal{L}}_1)\cdots c_1(\bar{\mathcal{L}}_d) \ge \sum_{k=1}^d e_d(\bar{\mathcal{L}}_k)c_1(\mathcal{L}_1)\cdots c_1(\mathcal{L}_{k-1})c_1(\mathcal{L}_{k+1})\cdots c_1(\mathcal{L}_d)$$

Proof. By a limit argument, we may assume that $\overline{\mathcal{L}}_1, \cdots, \overline{\mathcal{L}}_d$ are exactly metrized line bundles associated to relatively ample hermitian line bundles $\widetilde{\mathcal{L}}_1, \cdots, \widetilde{\mathcal{L}}_d$ on a model \widetilde{X} of X. By scaling metric at ∞ , we may assume that $e_d(\widetilde{\mathcal{L}}_i) = 0$. We want to prove that $c_1(\widetilde{\mathcal{L}}_1) \cdots c_1(\widetilde{\mathcal{L}}_d) \ge 0$ by induction on d. It is obviously true for d = 1. Fix a $\epsilon > 0$ and denote by $\widetilde{\mathcal{L}}_d(\epsilon)$ the metrized line bundle which has $e^{-\epsilon} \cdot \|\cdot\|_{\widetilde{\mathcal{L}}_d}$ as metric at ∞ . Now $\widetilde{\mathcal{L}}_d(\epsilon)$ has height $\ge \epsilon$ on $X(\overline{\mathbb{Q}})$. By (1.8), $\widetilde{\mathcal{L}}_d(\epsilon)$ is ample. In particular, some power $\widetilde{\mathcal{L}}_d(\epsilon)^m$ has an effective section ℓ . Write $Y = \operatorname{div}(\ell)$, then

$$c_{1}(\widetilde{\mathcal{L}}_{1})\cdots c_{1}(\widetilde{\mathcal{L}}_{d})$$

$$=c_{1}(\widetilde{\mathcal{L}}_{1})\cdots c_{1}(\widetilde{\mathcal{L}}_{d}(\epsilon)) - \epsilon c_{1}(\overline{\mathcal{L}}_{1})\cdots c_{1}(\overline{\mathcal{L}}_{d-1})$$

$$=\frac{1}{m}c_{1}(\widetilde{\mathcal{L}}_{1})\cdots c_{1}(\widetilde{\mathcal{L}}_{d-1})(Y, -\log \|\ell\|_{\infty}) - \epsilon c_{1}(\overline{\mathcal{L}}_{1})\cdots c_{1}(\overline{\mathcal{L}}_{d-1})$$

$$=\frac{1}{m}c_{1}(\widetilde{\mathcal{L}}_{1}|_{Y})\cdots c_{1}(\widetilde{\mathcal{L}}_{d-1}|_{Y}) + \frac{1}{m}\int_{X(\mathbb{C})} -\log \|\ell\|_{\infty}c_{1}'(\widetilde{\mathcal{L}}_{1})\cdots c_{1}'(\widetilde{\mathcal{L}}_{d-1}) - \epsilon c_{1}(\overline{\mathcal{L}}_{1})\cdots c_{1}(\overline{\mathcal{L}}_{d-1}).$$

The first two terms in the last line are positive, since the first term is positive by induction, and the second term is positive by fact that $\|\ell\|_{\infty} < 1$ and $c'_1(\widetilde{\mathcal{L}}_i) \ge 0$. Letting $\epsilon \to 0$, the theorem follows.

2. Admissible metrized line bundles

(2.1). Let K be an algebraically closed valuation field, X a projective variety over Spec K, $\overline{\mathcal{L}} = (\mathcal{L}, \|\cdot\|)$ a line bundle on X with a continuous and bounded metric, $f: X \to X$ a surjective morphism, and $\phi: \mathcal{L}^d \simeq f^*\mathcal{L}$ an isomorphism where d > 1 is an integer. We define $\|\cdot\|_n$ on \mathcal{L} inductively as follows:

$$\|\cdot\|_1 = \|\cdot\|, \|\cdot\|_n = \phi^* f^* \|\cdot\|_{n-1}^{\frac{1}{d}}$$

Theorem (2.2). (a) The metrics $\|\cdot\|_n$ on \mathcal{L} converge uniformly to a metric $\|\cdot\|_0$ on \mathcal{L} , this means that the function $\log \frac{\|\cdot\|_n}{\|\cdot\|_1}$ converges uniformly on X(K) to $\log \frac{\|\cdot\|_0}{\|\cdot\|_1}$.

(b) $\|\cdot\|_0$ is the unique (continuous and bounded) metric on \mathcal{L} satisfying the equation

$$\|\cdot\|_0 = \left(\phi^* f^*\|\cdot\|_0\right)^{\frac{1}{d}}.$$

(c) If ϕ changes to $\lambda \phi$ with $\lambda \in K^*$, then $\|\cdot\|_0$ changes to $|\lambda|^{\frac{1}{d-1}} \|\cdot\|_0$.

Proof. (a) Denote by h the continuous function $\frac{1}{d}\phi^* f^* \log \frac{\|\cdot\|_2}{\|\cdot\|_1}$ on X. Then

$$\log \|\cdot\|_{n} = \left(\frac{1}{d}\phi^{*}f^{*}\right)^{n-2}\log \|\cdot\|_{2}$$
$$= \left(\frac{1}{d}\phi^{*}f^{*}\right)^{n-2}(h+\log \|\cdot\|_{1})$$
$$= \left(\frac{1}{d}\phi^{*}f^{*}\right)^{n-2}h + \log \|\cdot\|_{n-1}$$

Using induction on n, one has

$$\log \|\cdot\|_n = \log \|\cdot\|_1 + \sum_{k=0}^{n-2} \left(\frac{1}{d}\phi^* f^*\right)^k \cdot h.$$

Since $\left\| \left(\frac{1}{d}\phi^*f^*\right)^k \cdot h \right\|_{\sup} \leq \frac{1}{d^k} \|h\|_{\sup}$, it follows that $\sum_{k=1}^{\infty} \left(\frac{1}{d}\phi^*f^*\right)^k \cdot h$ is absolutely and uniformly convergent to a bounded and continuous function h_0 . Let $\|\cdot\|_0 = \|\cdot\|_1 e^{h_0}$, then $\|\cdot\|_n$ converges uniformly to $\|\cdot\|_0$.

(b) It is easy to see that $\|\cdot\|_0$ is continuous, bounded, and satisfies the equation

$$\|\cdot\|_0 = \left(\phi^* f^* \|\cdot\|_0\right)^{\frac{1}{d}}.$$

If $\|\cdot\|'_0$ be another continuous, bounded metric on \mathcal{L} which satisfies the same equation, writing $g = \log \frac{\|\cdot\|_0}{\|\cdot\|'_0}$, then we have $g = \frac{\phi^* f^*}{d}g$, so $\|g\|_{\sup} = \|g\|_{\sup}/d$, or g = 0. This shows that $\|\cdot\|_0 = \|\cdot\|'_0$.

(c) If $\alpha \| \cdot \|_0$ is the metric corresponding to $\lambda \phi$ with α a function on X(K), then for any $\ell \in \mathcal{L}(x), x \in X$,

$$\alpha \|\ell\|_0(x) = \left(\alpha \|\lambda \phi(\ell)\|_0(f(x))\right)^{\frac{1}{d}},$$

so $\alpha = (\alpha |\lambda|)^{\frac{1}{d}}$ or $\alpha = |\lambda|^{\frac{1}{d-1}}$.

The proof of the theorem is complete.

(2.3). Now let everything be defined over \mathbb{Q} : X is a projective variety over Spec \mathbb{Q} , \mathcal{L} an ample line bundle on $X, f: X \to X$ a surjective morphism over \mathbb{Q} , and $\phi: \mathcal{L}^d \simeq f^*\mathcal{L}$ an isomorphism of line bundles. This implies that f is finite of degree $d^{\dim X}$. We fix a model $(\widetilde{X}, \widetilde{\mathcal{L}})$ of (X, \mathcal{L}^e) on Spec \mathbb{Z} with e > 0, such that $\widetilde{\mathcal{L}}$ is relatively ample. This induces an adelic metric $\|\cdot\|$ on \mathcal{L} .

There is an open subset U of Spec \mathbb{Z} such that f and ϕ extend to an U-morphism $f_U: X_U \longrightarrow X_U$ and an isomorphism $\phi_U: \widetilde{\mathcal{L}}_U^{\otimes d} \longrightarrow f_U^* \widetilde{\mathcal{L}}_U$.

It follows for each $p \in U$ that

$$\|\cdot\|_p = (\phi^* f^* \|\cdot\|_p)^{\frac{1}{d}}.$$

We define the morphism $\widetilde{f}_n: \widetilde{X}_n \longrightarrow \widetilde{X}$ as the normalization of the composition of morphism

$$X_U \xrightarrow{f_U^n} X_U \hookrightarrow \widetilde{X}.$$

Denote by $\overline{\mathcal{L}}_n$ the metrized line bundles $(\mathcal{L}, \|\cdot\|_n)$ induced by model $(\widetilde{X}_n, \widetilde{f}_n^* \widetilde{\mathcal{L}})$. Then for any $p \in U$ and any n, one has $\|\cdot\|_{n,p} = \|\cdot\|_p$. In general for any $p \in \mathcal{S}, \|\cdot\|_{n,p}$ is defined as in (2.1) from $\|\cdot\|_p$. By theorem (2.2.), $\|\cdot\|_{n,p}$ converges uniformly to a metric $\|\cdot\|_{0,p}$. So the adelic metric $\|\cdot\|_n$ of $\overline{\mathcal{L}}_n$ converges to an adelic metric $\|\cdot\|_0$ on \mathcal{L} . By (2.2), $\|\cdot\|_0$ doesn't depend on the choice of $(\widetilde{X}, \widetilde{\mathcal{L}})$. If ϕ changes to $\lambda\phi$ for $\lambda \in \Gamma(X, \mathcal{O}_X^*)$, then $\|\cdot\|_0$ changes to $\|\cdot\|_{0\lambda} = \{\|\cdot\|_p |\lambda|_p^{\frac{1}{d-1}}\}$. Therefore, if we write $\overline{\mathcal{L}}_0 = (\mathcal{L}, \|\cdot\|_0)$ then $\overline{\mathcal{L}}_0^{d-1}$ does not depend on the choice of ϕ . Since $\overline{\mathcal{L}}_n$ are all ample, $\overline{\mathcal{L}}_0$ is an ample metrized line bundle on X.

For any effective cycle Y of X of pure dimension, write $h_{f,\mathcal{L}}(Y)$ for $h_{\bar{\mathcal{L}}_0}(Y)$.

Theorem (2.4). (a) Denote by f(Y) the push-forward of Y under f, then $h_{f,\mathcal{L}}(fY) = dh_{f,\mathcal{L}}(Y)$.

(b) $h_{f,\mathcal{L}}(Y) \ge 0.$

(c) If the orbit $\{Y, f(Y), \dots, f^n(Y), \dots\}$ is finite then $h_{f,\mathcal{L}}(Y) = 0$.

(d) If $y \in X(\overline{\mathbb{Q}})$ is a point and $h_{f,\mathcal{L}}(y) = 0$ then the orbit $\{y, f(y), \dots, f^n(y), \dots\}$ is finite.

Proof. (a)

$$h_{f,\mathcal{L}}(f(Y)) = c_1 \left(\bar{\mathcal{L}}_0 \big|_{f(Y)} \right)^{\dim Y + 1} / (\dim Y + 1) c_1 \left(\mathcal{L} \big|_{f(Y)} \right)^{\dim Y}$$

$$= c_1 \left(f^* \bar{\mathcal{L}}_0 \big|_Y \right)^{\dim Y + 1} / (\dim Y + 1) c_1 (f^* \mathcal{L})^{\dim Y}$$

$$= c_1 \left(\bar{\mathcal{L}}_0^d \big|_Y \right)^{\dim Y + 1} / (\dim Y + 1) c_1 \left(\mathcal{L}^d \big|_Y \right)^{\dim Y}$$

$$= dc_1 \left(\bar{\mathcal{L}}_0 \big|_Y \right)^{\dim Y + 1} / (\dim Y + 1) c_1 \left(\mathcal{L} \big|_Y \right)^{\dim Y}$$

$$= dh_{f,\mathcal{L}}(f(Y)).$$

(b) Applying (1.10) to Y, we have that

$$h_{f,l}(Y) \ge e_d(\mathcal{L}|_Y) \cdot (\dim Y + 1) \ge e_d(\mathcal{L}) (\dim Y + 1).$$

But

$$e_d(\mathcal{L}) = \inf_x h_{\mathcal{L}}(x) = \inf_x h_{\mathcal{L}}(f(x)) = d\inf_x h_{\mathcal{L}}(x) = de_d(\mathcal{L}).$$

Therefore $e_d(\mathcal{L}) = 0$

(c) The finiteness of the orbit $\{Y, f(Y), \dots, f^n(Y), \dots\}$ implies the finiteness of the orbit

$$\{h_{f,\mathcal{L}}(Y), dh_{f,\mathcal{L}}(Y), \cdots, d^n h_{f,\mathcal{L}}(Y) \cdots \}.$$

So we must have $h_{f,\mathcal{L}}(Y) = 0$.

(d) If $h_{f,\mathcal{L}}(y) = 0$ then the orbit $\{y, f(y), \dots\}$ has bounded degree $[\mathbb{Q}(y) : \mathbb{Q}]$ and bounded height (= 0), so must be a finite set.

The proof of the theorem is complete.

Conjecture (2.5). If Y is an effective cycle of X of positive dimension and $h_{f,\mathcal{L}}(Y) = 0$ then the orbit of Y under f is finite.

This conjecture is a converse of (c) in (2.4). A subvariety Z of X is called a preperiodic subvariety if the orbit of Z under f is finite. A preperiodic subvariety Z contained in Y is called maximal preperiodic if no other preperiodic subvariety of Y contains Z.

If $h_{f,\mathcal{L}}(Y) = 0$, by conjecture (2.5), Y is a preperiodic variety, of course a maximal preperiodic subvariety of Y. If $h_{f,\mathcal{L}}(Y) \neq 0$, by theorem (1.10), there is a Zariski open set U of Y such that $h_{f,\mathcal{L}}$ on $U(\overline{\mathbb{Q}})$ has a positive lower bound, and any preperiodic subvariety Z of Y will be contained in X - U. This shows that (2.5) implies the following conjecture:

Conjecture (2.6). Any subvariety Y of X contains at most finitely many maximal preperiodic subvarieties.

(2.7). Let f_0, \dots, f_n be n+1-homogeneous polynomial of degree of d > 1 in n+1 variables z_0, \dots, z_n such that the only common zero of f_0, \dots, f_n is 0. Then

$$f:(z_0,\cdots,z_n)\longrightarrow (f_0(z_0,\cdots,z_n),\cdots,f_n(z_0,\cdots,z_n))$$

defines a morphism $\mathbb{P}^n \longrightarrow \mathbb{P}^n$. One has a unique homomorphism $\phi : \mathcal{O}(d) \simeq f^* \mathcal{O}(1)$ such that $\phi(f_i) = f^*(z_i)$, where we consider z_i as sections of $\mathcal{O}(1)$.

When $f_i = z_i^d$, the preperiodic subvarieties of \mathbb{P}^n are Zariski closure of translates of subgroups by torsion points of $\mathbb{G}_m^n = \{(z_0 \cdots z_n) = z_0 \cdots z_n \neq 0\}$. In this case, (2.6) is a theorem of Laurent [L], Sarnak [Sa], while (2.5) is a theorem in [Z2].

(2.8). As in (2.1), let $f: X \longrightarrow X$ be a surjective morphism, d a positive integer, and $\operatorname{Pic}(X)_{f,d}$ the subgroup of $\operatorname{Pic}(X)$ consisting of line bundles \mathcal{L} such that $\mathcal{L}^{\otimes d} \simeq f^*\mathcal{L}$. Assume that $\operatorname{Pic}(X)_{f,d}$ contains an ample line bundle of X. Then any line bundle \mathcal{L} in $\operatorname{Pic}(X)_{f,d}$ can be written as $\mathcal{L}_1 \otimes \mathcal{L}_2^{-1}$ for two ample line bundles $\mathcal{L}_1, \mathcal{L}_2$ in $\operatorname{Pic}(X)_{f,d}$. By (2.3), there are ample metrized line bundles $\bar{\mathcal{L}}_1, \bar{\mathcal{L}}_2$ whose generic fibers are $\mathcal{L}_1, \mathcal{L}_2$ and $\bar{\mathcal{L}}_i^{\otimes d} \simeq f^* \bar{\mathcal{L}}_i$. Now $\bar{\mathcal{L}} = \bar{\mathcal{L}}_1 \otimes \bar{\mathcal{L}}_2^{-1}$ is an integrable metrized line bundle on X, and $\bar{\mathcal{L}}^{\otimes d} \simeq f^* \bar{\mathcal{L}}$. By theorem (2.2), $\bar{\mathcal{L}}^{(d-1)}$ does not depend on the choice of $\bar{\mathcal{L}}_1, \bar{\mathcal{L}}_2$. Let $\overline{\operatorname{Pic}(x)}_{f,d}$ denote the group of integrable metrized line bundles $\bar{\mathcal{L}}$ such that $\bar{\mathcal{L}}^{\otimes d} \simeq f^* \bar{\mathcal{L}}$. Then we have shown that $\overline{\operatorname{Pic}(X)}_{f,d}$ is generated by ample metrized elements. We call elements in $\overline{\operatorname{Pic}(X)}_{f,d}$ admissible metrized line bundles. The following theorem is useful in the next section.

Theorem (2.9). Let $Y \hookrightarrow X$ be a subvariety of dimension n, and $\overline{\mathcal{L}} \in Pic(X)_{f,d}$ an ample metrized line bundle such that $h_{f,\mathcal{L}}(Y) = 0$, then

$$c_1(\bar{\mathcal{L}}_1\big|_Y)\cdots c_1(\bar{\mathcal{L}}_{n+1}\big|_Y)=0$$

for any $\overline{\mathcal{L}}_1, \cdots, \overline{\mathcal{L}}_{n+1}$ in $\overline{Pic(X)}_{f,d}$, where $n = \dim Y$.

Proof. Since $\overline{\operatorname{Pic}(X)}_{f,d}$ is generated by ample metrized line bundles, we may assume $\overline{\mathcal{L}}_1, \cdots, \overline{\mathcal{L}}_{n+1}$ are ample metrized. Since \mathcal{L} is ample, there is a positive integer m, and an ample line bundle \mathcal{L}_0 such that $\mathcal{L}^m \simeq \mathcal{L}_0 \otimes \mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_{n+1}$. Put a metric on \mathcal{L}_0 such that $\overline{\mathcal{L}}^m \simeq \overline{\mathcal{L}}_0 \otimes \overline{\mathcal{L}}_1 \otimes \cdots \otimes \overline{\mathcal{L}}_{n+1}$ then $\overline{\mathcal{L}}_0^{\otimes d} \simeq f^* \overline{\mathcal{L}}_0$. By theorem (2.4)(b), $\overline{\mathcal{L}}, \overline{\mathcal{L}}_0, \cdots, \overline{\mathcal{L}}_{n+1}$ are all semipositive. For any n+1 integers i_1, \cdots, i_{n+1} between 0 and n+1, the number $c_1(\overline{\mathcal{L}}_{i_1}) \cdots c_1(\overline{\mathcal{L}}_{i_{n+1}})$ is nonnegative by (1.11). Since

$$0 = m^{n+1} (c_1(\bar{\mathcal{L}}|_Y)^{n+1}) = c_1(\bar{\mathcal{L}}^m|_Y)^{n+1}$$

=
$$\sum_{0 \le i_1 \le i_2 \le \dots \le i_{n+1} \le n+1} c_1(\bar{\mathcal{L}}_{i_1}) \cdots c_1(\bar{\mathcal{L}}_{i_{n+1}}),$$

we must have $c_1(\bar{\mathcal{L}}_1)\cdots c_1(\bar{\mathcal{L}}_{n+1})=0.$

3. Positivity of heights of certain subvarieties of an abelian variety

(3.1). Consider an abelian variety A over a number field K. For any integer n, let [n] denote the endomorphism of A defined as the multiplication of n. Then for any symmetric line bundle \mathcal{L} of $A, \mathcal{L}^{\otimes n^2} \simeq [n]^* \mathcal{L}$. If X = A, f = [n] for a n > 1, then $h_{\mathcal{L}} = h_{f,\mathcal{L}}$ is the usual Néron - Tate height function studied by Philippon [P], Kramer [K], and Gubler [G]. In this case, conjecture (2.5) is a theorem of Raynaud [R], and (2.6) is a conjecture of Bogomolov [B] if dim Y = 1.

Theorem (3.2). Let \mathcal{L} be a symmetric ample line bundle on A, and $Y \hookrightarrow A$ a subvariety of positive dimension such that Y - Y generates A. This means that A is the only abelian subvariety of A which contains Y - Y. Assume that the induced map

$$NS(A)_{\mathbb{Q}} \longrightarrow NS(Y)_{\mathbb{Q}}$$

is not injective, where $NS(A) = Pic(A)/Pic^{0}(A)$ and $NS(Y) = Pic(Y)/Pic^{0}(Y)$. Then $h_{\mathcal{L}}(Y) > 0$.

(3.3). The crucial facts used in the proof of the theorem are theorem (2.9), a variant form (3.4) of Faltings' index theorem [F1], and a nonvanishing theorem (3.5) for restriction on Y of an invariant 1 - 1 form of $A(\mathbb{C})$.

Lemma (3.4). Let X be a variety over \mathbb{Q} , and $\overline{\mathcal{L}}$ and $\overline{\mathcal{M}}$ two integrable line bundles on X with smooth metrics at ∞ . Assume that $\overline{\mathcal{L}}$ is semipositive and $\omega = c'(\overline{\mathcal{L}})$ is positive on a dense subset of the regular part $X_r(\mathbb{C})$ of $X(\mathbb{C})$, and that \mathcal{M} is in $\operatorname{Pic}^0(X)$. Then $c_1(\overline{\mathcal{M}})^2 c_1(\overline{\mathcal{L}})^{d-1} \leq 0$, and the equality $c_1(\overline{\mathcal{M}})^2 c_1(\overline{\mathcal{L}})^{d-1} = 0$ implies that the metric on $\overline{\mathcal{M}}$ has curvature 0 on $X_r(\mathbb{C})$.

Proof. Let $f: X' \to X$ be a resolution of singularities. Replacing X by $X', \bar{\mathcal{L}}$ by $f^*\bar{\mathcal{L}}$, and $\bar{\mathcal{M}}$ by $f^*\bar{\mathcal{M}}$ we may assume that X is regular. Choose a metric $\|\cdot\|'_{\mathcal{M}}$ on \mathcal{M} such that its curvature is 0, let $\varphi = \log \frac{\|\cdot\|'_{\mathcal{M}}}{\|\cdot\|_{\bar{\mathcal{M}}}}$.

Fix a positive number ϵ . By approximation, there is a model $(\widetilde{X}, \widetilde{\mathcal{L}}, \widetilde{\mathcal{M}})$ such that

(a) \mathcal{L} is a relatively semipositive line bundle on X whose restriction on X is $\mathcal{L}^{e_1}, e_1 > 0$, and whose metric at ∞ is the e_1 -th power of the metric of \mathcal{L} ;

(b) $\widetilde{\mathcal{M}}$ is a line bundle on \widetilde{X} , whose restriction on X is \mathcal{M}^{e_2} , $e_2 > 0$, and whose metric at ∞ is e_2 -th power of the metric of $\overline{\mathcal{M}}$;

(c)
$$c_1(\overline{\mathcal{M}})^2 c_1(\overline{\mathcal{L}})^{d-1} \le \frac{1}{e_1^{d-1} e_2^2} c_1(\widetilde{\mathcal{M}}) c_1(\widetilde{\mathcal{L}})^{d-1} + \epsilon.$$

Denote by $\widetilde{\mathcal{M}}'$ the metrized line bundle on \widetilde{X} which has same finite part as $\widetilde{\mathcal{M}}$ on \widetilde{X} , and which has metric $\|\cdot\|'_{\mathcal{M}}$. Then

(d) $c_1(\widetilde{\mathcal{M}})^2 = c_1(\widetilde{\mathcal{M}}')^2 + (0, -\varphi \frac{\partial \bar{\partial}}{\pi i} \varphi)$ as cycles on \widetilde{X} . We claim that (e) $c_1(\widetilde{\mathcal{M}}')^2 c_1(\widetilde{\mathcal{L}})^{d-1} \leq 0$.

Fix a relatively ample line bundle $\widetilde{\mathcal{L}}'$ on \widetilde{X} , then

$$\lim_{n \to \infty} n^{1-d} c_1(\widetilde{\mathcal{M}}')^2 c_1(\widetilde{\mathcal{L}}^n \otimes \widetilde{\mathcal{L}}')^{d-1} = c_1(\widetilde{\mathcal{M}}')^2 c_1(\widetilde{\mathcal{L}})^{d-1}.$$

Replacing $\widetilde{\mathcal{L}}$ by $\widetilde{\mathcal{L}}^n \otimes \widetilde{\mathcal{L}}'$ for $n = 1, 2, \cdots$, we may assume that $\widetilde{\mathcal{L}}$ is relatively ample. Now, $c_1(\widetilde{\mathcal{L}})^{d-1}$ is represented by $\frac{1}{m}(Z, g_Z)$, where Z is an integral subvariety of X with a regular generic fiber, m > 0 an integer. Since $\widetilde{\mathcal{M}}'$ has curvature 0, one has

$$c_1(\widetilde{\mathcal{M}}')^2 c_1(\widetilde{\mathcal{L}})^{d-1} = \frac{1}{m} c_1(\widetilde{\mathcal{M}}'\big|_Z)^2.$$

Now $c_1(\widetilde{\mathcal{M}}'|_Z)^2 \leq 0$ by the Faltings-Hodge index theorem. The claim is proved.

Combining (a)-(e) we have that

$$c_1(\bar{\mathcal{M}})^2 c_1(\bar{\mathcal{L}})^{d-1} \leq -\int\limits_{X(\mathbb{C})} \varphi \frac{\partial \partial}{\pi i} \varphi \omega^{d-1} + \epsilon.$$

Since $\omega^{d-1} \ge 0$ and $\omega^{d-1} > 0$ on a dense subset of $X(\mathbb{C})$, by letting $\epsilon \to 0$ it follows that

$$c_1(\bar{\mathcal{M}})^2 c_1(\bar{\mathcal{L}})^{d-1} \le -\int \varphi \frac{\partial \bar{\partial}}{\pi i} \varphi \omega^{d-1} \le 0,$$

and that $\int \varphi \frac{\partial \bar{\partial}}{\pi i} \varphi \omega^{d-1} = 0$ if and only if φ is locally constant.

Lemma (3.5). Let A be a complex abelian variety, and $Y \hookrightarrow A$ a subvariety such that $\{y_1 - y_2 | y_1, y_2 \in Y(\mathbb{C})\}$ generates A. This means that A is the only abelian subvariety of A which contains Y - Y. If ω is a 1-1 form on A which is invariant under translation and $\omega|_{Y} = 0$, then $\omega = 0$.

Proof. We write $A = \mathbb{C}^n / \Lambda$ and $\omega = \sum a_{ij} dz_i \Lambda d\bar{z}_j$. After a translation, we may assume that 0 is a smooth point of Y. Fix points y_1, \dots, y_m on Y such that $\{y_1, \dots, y_m\}$ generates A. One can find a complex curve $C \hookrightarrow Y$, such that $y_i \in C$ and 0 is a regular point of C. Fix any holomorphic map $\varphi : \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \hookrightarrow \mathbb{C}^n / \Lambda$ such that $\varphi(\mathbb{D}) \hookrightarrow C$. Write $\varphi(z) = (f_1(z), \dots, f_n(z))$, then $f'_1(z), \dots, f'_n(z)$ are linearly independent over \mathbb{C} .

If $\omega|_Y = 0$ then $\varphi^* \omega = 0$, it follows that

$$\sum a_{ij} \frac{\partial f_i}{\partial z} \frac{\partial \bar{f}_j}{\partial \bar{z}} = 0$$

for all $z \in \mathbb{D}$. Comparing coefficients of power series in z and \overline{z} , since $\frac{\partial f_i}{\partial z}$ are linearly independent in \mathbb{C} , for any i we must have

$$\sum_{j} a_{ij} \frac{\partial \bar{f}_j}{\partial \bar{z}} = 0,$$

or

$$\sum_{j} \bar{a}_{ij} \frac{\partial f_j}{\partial z} = 0$$

It follows that $a_{ij} = 0$ for all i, j. So $\omega = 0$. The proof of the lemma is complete.

(3.6) Proof of (3.2). Assume $h_{\mathcal{L}}(Y) = 0$, then by theorem (2.9) for any admissible line bundles $\bar{\mathcal{L}}_1, \dots, \bar{\mathcal{L}}_n, n = \dim Y + 1$, one has

$$c_1\left(\bar{\mathcal{L}}_1\Big|_Y\right)\cdots c_1\left(\bar{\mathcal{L}}_n\Big|_Y\right)=0.$$

By assumption there is a line bundle $\mathcal{M} \in \operatorname{Pic}(A) \setminus \operatorname{Pic}^{0}(A)$ whose restriction on Y is in $\operatorname{Pic}^{0}(Y)$. Replacing \mathcal{M} by $\mathcal{M} \otimes [-1] * \mathcal{M}$, we may assume \mathcal{M} is symmetric. Put an admissible metric on \mathcal{M} , then we have

$$c_1(\bar{\mathcal{M}}\big|_Y)^2 c_1(\bar{\mathcal{L}})^{n-1} = 0.$$

By lemma (3.4), $c'_1(\bar{\mathcal{M}}|_Y) \equiv 0$. Let $\omega = c'_1(\bar{\mathcal{M}})$, then ω is an invariant 1 - 1 form on A, and $\omega \neq 0$. Since Y - Y generates A, this contradicts lemma (3.5).

Theorem (3.7). Let \mathcal{L} be a symmetric ample line bundle on A, and $C \hookrightarrow A$ a curve such that C - C generates A. Assume that the ring End $(A) \otimes_{\mathbb{Z}} \mathbb{R}$ is not isomorphic to \mathbb{R}, \mathbb{C} , and \mathbb{D} , where \mathbb{D} is the division quaternion algebra. Then $h_{\mathcal{L}}(C) > 0$.

Proof. By theorem (3.2), since $\mathrm{NS}(C)_{\mathbb{Q}} \simeq \mathbb{Q}$, we need only show that $\mathrm{NS}(A)_{\mathbb{Q}}$ or $\mathrm{NS}(A)_{\mathbb{R}}$ has rank ≥ 2 . Fix a polarization on A. Decompose End $(A) \otimes_{\mathbb{Z}} \mathbb{R}$ into a product of copies of matrix algebras of \mathbb{R} , \mathbb{C} , and \mathbb{D} , such that the involution of End (A) induced by the given polarization is identified with the involution on matrix algebras. Then $\mathrm{NS}(A) \otimes_{\mathbb{Z}} \mathbb{R}$ is isomorphic to the set of fixed endomorphisms under the involution. So $\mathrm{NS}(A) \otimes_{\mathbb{Z}} \mathbb{R} \simeq \mathbb{R}$ implies that End $(A)_{\mathbb{R}} \simeq \mathbb{R}, \mathbb{C}$, or \mathbb{D} .

(3.8). Let C be a curve of genus ≥ 2 , and c a divisor of degree 1. Define the morphism $\phi_c: C \hookrightarrow \operatorname{Jac}(C)$ such that $\phi(x) =$ the class of x - c. Denote by Θ be the divisor on $\operatorname{Jac}(C)$ which is the translate of the theta divisor on $\operatorname{Jac}^{g-1}(C)$ by -(g-1)c, and by $\operatorname{Pic}_{\Theta}(\operatorname{Jac}(C))$ the admissible metrized line bundles on $\operatorname{Jac}(C)$ with respect to the endomorphism [2], whose classes in NS(Jac(C)) are multiples of the class of Θ . Then $\phi^*(\operatorname{Pic}_{\Theta}(\operatorname{Jac}(C))$ is the group of admissible metrized line bundles defined in [Z1]. Denote by ω the admissible metrized relative dualizing sheaf on C, and by O(D) the admissible line bundle associated to a divisor D. We want to show the following theorem:

Theorem (3.9). If c_0 is a divisor of degree 1 on C such that $(2g-2)c_0$ is in the canonical divisor class on C, then

$$h_{\mathcal{L}}(\phi_c(C)) = \frac{1}{8(g-1)}\omega^2 + (1 - \frac{1}{g})h_{\bar{\mathcal{L}}}(c - c_0).$$

Proof. For any divisor D of degree 0 on C, the Faltings-Hodge index theorem shows that

$$(D,D) = -2h_{\mathcal{L}}(D)$$

where (D, D) denotes the admissible pairing on divisions of C. In particular, for any $x \in C(\overline{\mathbb{Q}})$,

$$(x-c, x-c) = -2h_{\phi^*\bar{\mathcal{L}}}(x).$$

Applying the adjunction formula: $(x, x) = -(x, \omega)$, one has

$$(x - c, x - c) = (x, x) - 2(x, c) + (c, c)$$

= -(x, \omega) - 2(x, c) + (c, c)
= (- (\omega + 2c) + (c, c), x).

It follows that

$$-2\phi^*\bar{\mathcal{L}} + (\omega + 2c) - (c,c)$$

has height 0 at every point. Consider this as a line bundle. Then one may prove that this bundle has curvatures 0 at all places of K, see 4.7 of [Z1]. Therefore it is numerically equivalent to 0.

Now

$$4c_1(\phi^*\bar{\mathcal{L}})^2 = \left[c_1(\omega) + 2c_1(\mathcal{O}(c))\right]^2 - 2 \cdot 2g(c,c)$$

= $\omega^2 + 4(1-g)c^2 + 4\omega c$
= $\omega^2 + 4(1-g)\left(c - \frac{\omega}{2g-2}\right)^2 + \frac{\omega^2}{g-1}$
= $\frac{g}{g-1}\omega^2 + 8(g-1)h_{\bar{\mathcal{L}}}(c-c_0).$

Since $\deg \phi^* \mathcal{L} = g$, one has

$$h_{\bar{\mathcal{L}}}(\phi(C)) = \frac{c_1(\bar{\mathcal{L}}\big|_{\phi(C)})^2}{2\deg(\mathcal{L}\big|_{\phi(C)})} = \frac{c_1(\phi_C^*(\bar{\mathcal{L}}))^2}{2g}$$
$$= \frac{\omega^2}{8(g-1)} + (1 - \frac{1}{g})h_{\bar{\mathcal{L}}}(c - c_0).$$

Corollary (3.10). (a) If $(2g-2)c-\omega$ is not a torsion point of Jac(C) then $h_{\bar{\mathcal{L}}}(\phi(C)) > 0$. (b) If End $(Jac(C))_{\mathbb{R}}$ is not isomorphic to \mathbb{R}, \mathbb{C} , and \mathbb{D} then $(\omega, \omega) > 0$.

Proof. Combine (3.7), (3.8), and the fact that $(\omega, \omega) \ge 0$ in [Z1].

Remarks (3.11). (a) The first part of (3.10) implies that the Bogomolov's conjecture is true if $c - c_0$ is not torsion. This fact has been proven in [Z1]. The second part shows Bogomolov's conjecture if Jac(C) has a nondivision endomorphism ring End $(\text{Jac}(C))_{\mathbb{P}}$.

(b) If C has good reductions at all finite places of a number field, one can prove that $(\omega, \omega) = (\omega_{Ar}, \omega_{Ar})$, where ω_{Ar} is the Arakelov dualizing sheaf. In this case, Bost told me he has proved (3.9).

(c) If C has good reduction at all finite places of a number field and $\operatorname{Jac}(C)$ has a complex multiplication, then End $(\operatorname{Jac}(C)_{\mathbb{R}} \text{ contains a subring isomorphic to } \mathbb{C}^{g}$. It follows from (3.10)(b) that $(\omega_{Ar}, \omega_{Ar}) > 0$. This has been already proved by Burnol [Bu] using Weierstrass points.

References

- [Bo] Bogomolov, F. A., Points of finite order on an abelian variety, Math. U.S.S.R. Izvestija Vol. 17 (1981, No. 1).
- [Bu] Burnol, J-F., Weierstrass points on arithmetic surfaces, Invent. Math. 107 (1992), 421-432.
- [CS] Call, G. and Silverman, J., *Canonical heights on varieties with morphisms*, Compositio Math. (to appear).
- [CRL] Chinberg, T., Rumely, R., and Lau, C., Capacity theory and limits of metrized line bundles, manuscript (1992).
- [F1] Faltings, G., Calculus on arithmetic surfaces, Ann. of Math. 119 (1984), 387-425.
- [F2] _____, Lectures on the arithmetic Riemann-Roch theorem, Annals of Mathematics Studies 127 (1992).
- [GS1] Gillet, H. and Soulé, C., Arithmetic intersection theory, Publ. Math. I.H.E.S. 72 (1990), 94-174.
- [GS2] _____, Characteristic classes for algebraic vector bundles with hermitian metric I, II, Annals of Math. 131 (1990), 163-203.
- [GS3] _____, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473-543.
- [Gu] Gubler, W., Höhen theorie, ETH Dissertation (June 1992).
- [K] Kramer, J., Néron-Tate height for cycles on abelian varieties (d'aprés Faltings), preprint.
- [L] Laurent, M., Equations diophantiennes exponentielles, Invent. Math. 78 (1984), 299-327.
- [N] Néron, A., Quasi-fonctions et hauteiers sur les varietés abéliennes, Ann. of Math. **32** (1965), 249-331.
- [P] Philippon, P., Sur des hauteurs alternatives I., Math. Ann. 289 (1991), 255-283.
- [Sa] Sarnak, P., Betti numbers of congruence groups, preprint.
- [Sz] Szpiro, L., Sur les proprietes numeriques du dualisant-relatif d'une surface arithmetique, The Grothendieck Festschrift, **3** (1990).
- [Z1] Zhang, S., Admissible pairing on a curve, Invent. Math. 112 (1993), 171-193.
- [Z2] _____, Positive line bundles on arithmetic varieties, J. of the A.M.S (1994) (to appear).