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1 Introduction

The aim of this paper is to show some equidistribution statements of Galois orbits of

CM-points for quaternion Shimura varieties. These equidistribution statements will im-

ply the Zariski densities of CM-points as predicted by André-Oort conjecture (see Section

2). Our main result (Corollary 3.7) says that the Galois orbits of CM-points with the max-

imal Mumford-Tate groups are equidistributed provided that some subconvexity bounds

on Rankin-Selberg L-series and on torsions of the class groups. A proof of the subconvex-

ity bound for L-series has been announced by Michel and Venkatesh.

Combining with some work of Cogdell, Michel, Piatetski-Shapiro, Sarnak, and

Venkatesh, we obtain the following unconditional results about the equidistribution of

CM-points in the following cases.

(1) Full CM-orbits on quaternion Shimura varieties (Theorem 3.1). This is a

generalization of the work of Duke [11] for modular curves, Michel [20],

and Harcos and Michel [16] for Shimura curves over Q.

(2) Galois orbits of CM-points with a fixed maximal Hodge-Tate group

(Corollary 3.8). Under our setting, this strengthens a result of Edixhoven

and Yafaev [15] about the finiteness of CM-points on a curve with fixed

Q-Hodge structure.
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The maximality condition of the Hodge-Tate group automatically holds in dimen-

sion-one case (Proposition 7.2), and can be classified in dimension-2 case (Proposition

7.3). In higher-dimension case, we will give many examples of Shimura varieties where

maximality condition holds (Propositions 7.4, 7.5, and 7.7).

The proofs of these results have two parts. In the first part (Sections 4-5), we will

give an estimate on probability measures on CM-suborbits (Theorem 3.2) which follows

from the central value formulas proved in our previous paper and Waldspurger’s paper,

the study of Hecke orbits of CM-points, and analysis of the spectral decomposition. In

the second part (Sections 6-7), we will study the Mumford-Tate group of CM-points and

estimate the size of Galois orbits in terms of discriminants of the torsion in class groups.

2 Conjectures

In this section, we will introduce the André-Oort conjecture and the equidistribution

conjecture. For background on Shimura varieties, we refer to Deligne [9, 10]. For the

André-Oort conjecture, we refer to Moonen [23] and Edixhoven [12]. Notice that ques-

tions about the equidistribution of CM-points have previously been addressed by Clozel

and Ullmo in [5]. See also Noot [24] for a detailed survey of recent progress.

Let M be a connected Shimura variety defined over a number field E in C. Then

for any Shimura subvariety Z, the set of CM-points on Z is Zariski dense. The André-Oort

conjecture says that the converse is true.

Conjecture 2.1 (André-Oort conjecture, see [1, 12, 23, 25]). Let Z be a connected subvari-

ety of M which contains a Zariski dense subset of CM-points. Then Z is a Shimura sub-

variety. �

Let us recall the description of Shimura subvarieties. Assume that M is a con-

nected component of a Shimura varietyMU of the form

MU(C) = G(Q)\X×G(Q̂)/U, M = Γ\X, (2.1)

where

(i) G is an algebraic group over Q of adjoint type,

(ii) X is a G(R)-conjugacy class of embeddings

h : S := ResC/R Gm −→ GR (2.2)

of algebraic groups over R,

(iii) U is an open and compact subgroup of G(Q̂), Γ = G(Q) ∩U.
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For each point x ∈MU(C), the minimal (connected) Shimura subvariety containing x can

be defined as follows. Let (h, g) ∈ X × G(Q̂) represent x. Let H denote the Zariski closure

of h(U(C)) inG as an algebraic subgroup over Q which is called the Mumford-Tate group

of x. The Hodge closureMU,x of x inMU is defined to be the subvariety ofM represented

byH(R)x̃×H(Q̂)g. The minimal Shimura subvariety is the connected component ofMU,x

containing xwhich has the form

Mx := Γ ′\X ′, Γ ′ := H(Q) ∩ gUg−1, X ′ := H(R)h. (2.3)

A point x ∈MU(C) is a CM-point if and only ifMx is 0-dimensional or, equivalently, H is

a torus.

Remarks. (1) This conjecture remains open, although many special cases have been

treated by Moonen [21, 22, 23], Edixhoven [12, 13, 14], Edixhoven and Yafaev [15], and

Yafaev [31, 32]. In particular, the conjecture is true when Z is a curve under one of the

following assumptions:

(i) M is a product of two modular curves (see André [2]);

(ii) CM-points on Z are in a single Hecke orbit (see Edixhoven and Yafaev [15]);

(iii) GRH for CM-fields (see Yafaev [32]).

(2) This conjecture is analogous to the Manin-Mumford conjecture proved by

Raynaud [26] about torsion points in abelian variety. The Manin-Mumford conjecture is

also a consequence of the equidistribution conjecture proved using Arakelov theory (see

Szpiro et al. [27], Ullmo [28], Zhang [33]).

In this paper, we want to study the distribution property of CM-points. We want

to propose the following conjecture about distributions of CM-points.

Conjecture 2.2 (equidistribution conjecture). Let xn be a sequence of CM-points on M.

Assume that for any proper Shimura subvariety Z, there are only finitely many points in

xn contained in Z. Then the Galois orbit O(xn) of xn is equidistributed with respect to

the canonical measure onM. �

Here, the canonical measure dµmeans the probability measure induced from the

invariant measure on the Hermitian symmetric domain X in the definition of Shimura va-

riety. Equidistribution means that for any continuous function f on M(C) with compact

support, we have the limit

1

#O
(
xn

) ∑
y∈O(xn)

f(y) −→
∫
M(C)

f(x)dµ(x). (2.4)
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Remarks. (1) To see how the equidistribution conjecture implies the André-Oort conjec-

ture, we first assume that M does not have a proper Shimura subvariety containing Z.

Then we may list all Shimura subvarieties of M in a sequence M1,M2, . . . ,Mn, . . . . Now

by induction, for each n, we may find a CM-point xn on Zwhich is not in the union of the

first nMi’s. In this way, {xn} becomes a strict sequence of CM-points inM. The equidis-

tribution conjecture implies that the Galois orbits of the xn are equidistributed. Since all

these Galois orbits are included in Z(C), we must have Z = M.

(2) In the simplest case where M is the modular curve X0(1), the conjecture is a

theorem of Duke [11]. In the case whereM is defined by an algebraic group with positive

Q-rank, the equidistribution of Hecke orbits has been proved by Clozel and Ullmo [5] and

by Clozel et al. [4].

(3) The equidistribution conjecture also implies (and is implied by) the equidis-

tribution of Shimura subvarieties inM. When these subvarieties are defined by semisim-

ple subgroups not included in any proper parabolic subgroup, the equidistribution has

been proved by Clozel and Ullmo [7] by ergodic method. In [18], Jiang et al. proved an ex-

plicit period integral formula for cycles in the middle dimension, and were able to deduce

the equidistribution with precise rate of convergence of probability measures.

3 Statements

In this section, we state our main results on the equidistribution of Galois orbits of CM-

points on quaternion Shimura varieties. Let us start with some definitions and notations.

Quaternion Shimura varieties. Let F be a totally real number field of degree g, and let

B be a quaternion algebra over F. Then for each real embedding σ of F, B ⊗σ R is either

isomorphic to the matrix algebra M2(R) or to the Hamilton quaternion algebra H. Let G

denote the algebraic group B×/F× over Q. Then

G(R) =
∏
σ

(
B⊗σ R

)×
/R× � PGL2(R)d × SOg−d

3 , (3.1)

where σ runs through the set of real embeddings of F. Via such an isomorphism, G(R)

acts on

X := (C \ R)d =
(
H±)d. (3.2)
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In terms of Shimura datum, X can be considered as the G(R)-conjugacy class of the em-

bedding

h0 : S −→ GR, (3.3)

which sends a + bi ∈ S(R) = C× to an element whose components are represented by(
a b

−b a

)
in PGL2(R) and by 1 in SO3(R).

For any abelian group A, let Â denote A ⊗ lim←−−Z/nZ. Then for any open and com-

pact subgroup U of G(Q̂), we have an analytic variety

MU(C) := G(Q)\X×G(Q̂)/U. (3.4)

If d > 0, by Shimura’s theory, the variety MU is defined over the following totally real

subfield:

F̃ = Q

(∑
σ∈S

σ(x), ∀x ∈ F
)
, (3.5)

where S denotes the real embeddings σ such thatB⊗σR �M2(R). The action of the Galois

group Gal(Q̄/F̃) on the connected components is given by a reciprocity homomorphism:

Gal
(
Q̄/F̃

) −→ F×+\F̂/ν(U). (3.6)

In the following, we will fix a maximal order OB of B and will take U to be the subgroup

Ô×
B/Ô

×
F of G(Q̂). Let N denote the level of M, which is by definition the product of prime

ideals ℘ over which B does not split. Up to isomorphisms, both B andMU are determined

by the pair (S,N).

CM-points. A point x in MU(C) is a CM-point if and only if it is represented by a pair

(h, g) ∈ X × G(Q̂) such that the stabilizer of x in G(Q) is a torus T := K×/F×, where K is a

quadratic CM-extension of F embedded into B. Here are some invariants of CM-points:

(1) the order

Ox := K ∩ gOBg
−1 = OF + c(x)OK, (3.7)

where c(x) is an ideal of OF called the conductor of x;

(2) the type (K, SK), where SK is the set of the complex embeddings of K so that

the action of a t ∈ K× on the tangent space of X at h has eigenvalues given

by

σ

(
t

t̄

)
, σ ∈ SK. (3.8)
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When d > 0, x is defined over an abelian extension of a CM-subfield of C which is given

by

K̃ = Q

( ∑
σ∈SK

σ(t), ∀t ∈ K
)
. (3.9)

More precisely, there is a homomorphism

rx : Gal
(
Q̄/K̃

) −→ T(Q)\T
(
Q̂
)
/Ôx (3.10)

such that for γ ∈ Gal(Q̄/K̃), the conjugate γx is a CM-point represented by (h, r(γ)g). Let

Ocm(x) denote the CM-orbit of x consisting of points represented by (h, tg) with t ∈ T(Q̂),

and let Ogl(x) denote the Galois orbit of x under Gal(Q̄/K̃). Then, Ogl(x) ⊂ Ocm(x). When

d = 1, we have Ogl(x) = Ocm(x). In general, they are different. In fact, the Galois orbit is

included in the Hodge orbit Ohg(x) defined to be the set of points represented by (h, tg)

with t ∈ H(Q̂), whereH ⊂ T is the Mumford-Tate subgroup of x.

By a CM-suborbit O(x) of a CM-point we mean an orbit O(x) ⊂ Ocm(x) under an

open subgroup of T(Q)\T(Q̂). Its conductor c(O(x)) is defined to be the largest ideal c so

that (1 + ĉOK)× stabilizesO(x).

The equidistribution conjecture implies the equidistribution ofOcm(x).

Theorem 3.1. Let xi be a sequence of CM-points onMU. Then the CM-pointsOcm(xi) are

equidistributed. �

This is a direct generalization of Duke’s result [11]. The proof of this theorem uses

some bounds on Hecke eigenvalues by Kim and Shahidi for GL2-forms and on the central

value of the L-series L(1/2, f⊗εK/F) by Cogdell et al. for holomorphic f, and by Venkatesh

[29] for general f, where εK/F is the quadratic character of F̂× associated to the extension

K/F. In the following, we want to extend this result to certain suborbits of Ocm(x) under

the following assumption.

δ-bound. Let δ be a positive number. There are constantsC andA such that for any eigen-

form f ∈ C∞ (X(C)), the following two conditions are verified.

(1) The local parameters αv of L-series L(s, f) are bounded as follows:

∣∣αv

∣∣ ≤ Cλ(f)Aqδ
v, (3.11)

where λ(f) is the eigenvalue of f under the Laplacian operator onMU, and

qv is the cardinality of the residue field of OF.
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(2) For any imaginary quadratic extension K of F with absolute discriminant

disc(K), and any finite character χ of the group K×\K̂×/F̂×,

∣∣∣∣L(12 ,χ, f
)∣∣∣∣ ≤ Cλ(f)A disc(χ)δ, (3.12)

where L(s, f, χ) is the Rankin-Selberg convolution of LF(s, f) and LK(s, χ),

and disc(χ) denotes NF/Q(c(χ)2 discF(K)).

Remarks. (1) The δ-bounds assumption always holds for δ = 1/2 + ε, which is called a

convexity bound; any bound with δ < 1/2 is called a subconvexity bound.

(2) For the first inequality, the Peterson-Ramanujan conjecture says that the ab-

solute value of αv is always 1. So δ could be any positive number. The recent work of Kim

and Shahidi [19] implies that the inequality holds for δ = 1/9 + ε.

(3) By GRH, we should have second inequality for any δ > 0. When F = Q, the

subconvexity has been proven by Michel [20] for holomorphic forms f with δ = 1/2 −

1/1145, and by Harcos and Michel [16] for mass forms fwith δ = 1/2− 1/2491. For general

F and quadratic χ, the subconvexity has been proven by Cogdell et al. [8] for holomorphic

forms with δ = 1/2 − 7/130 and for nonholomorphic forms by Venkatesh [29].

(4) The work of Venkatesh actually holds for any family of L-series of a fixed GL2-

form twisted by central characters over any number field. In particular, when f and K are

fixed, the subconvexity bound for L-series holds. Indeed, let g be the base change of f

over GL2(K). Then,

LF(s, χ, f) = LK(s, g⊗ χ). (3.13)

Theorem 3.2. Let δ be a positive number such that the δ-bounds hold. Let f be a func-

tion onMU(C) which has integral 0 on each connected component and which is constant

outside of a compact subset. Then for any ε > 0, there is a constant C(f, ε) such that

∣∣∣∣∣ ∑
y∈O(x)

f(x)

∣∣∣∣∣ ≤ C(f, ε) disc(x)1/4+δ/2+ε (3.14)

for any CM-suborbitsO(x). �

Remarks. (1) The equality is nontrivial only ifO(x) has size biger than disc(x)δ/2+1/4.

(2) For the proof, we only need δ to satisfy the δ-assumption for χ trivial onO(x).
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Corollary 3.3. Let δ be a positive number such that the δ-bounds hold. Let O(xn) be a

sequence of CM-suborbits in a connected componentM ofMU satisfying the equality

#O
(
xn

) ≥ disc
(
xn

)δ/2+1/4+ε
(3.15)

for some fixed ε > 0. Then theO(xn) are equidistributed onM(C). �

Remarks. (1) Theorem 3.1 follows from Corollary 3.3, since we have the Brauer-Siegel

theorem:

lim
n→∞

log #Ocmxn

log disc xn

=
1

2
. (3.16)

(2) If we assume the Riemann hypothesis, then we take δ = 0 in the second as-

sumption to get the exponent 1/4 + ε. This is essentially optimal. To give an example, we

assume that F is a real quadratic field, B = M2(F), xn are in a single modular curve C, and

that O(xn) is the full CM-orbits on C. Since the discriminant of xn onM is the square of

that on C, then the Brauer-Siegel theorem gives

lim
n→∞

log #Ocmxn

log #O
(
xn

) =
1

4
. (3.17)

Equidistribution of Galois orbits. In the following, we want to give some examples of

CM-points whose Galois orbits are equidistributed by Corollary 3.3.

Recall that S is the set of all real embeddings of F over which B is split. Let F0 be

the subfield of F on which the restrictions of all embeddings in S give the same embed-

dings. Let F̃ be a Galois closure of F over F0.

Theorem 3.4. Assume that d = 2 and that [F̃ : F0] is a power of 2. Then the subconvex-

ity bound implies the equidistribution of Galois orbits of CM-points x with the equality

K0(x) = F0. Here, when x has CM-type (K, {σ1, σ2}), K0(x) denotes the subfield of K of ele-

ments satisfying σ1(x) = σ2(x̄). �

Remarks. (1) If we only consider CM-points with fixed CM-field K, then the condition on

[F̃ : F0] can be dropped.

(2) For Hilbert modular surfaces, the subconvexity bound implies the equidistri-

bution of Galois orbits of CM-points which are not included in any Shimura curves.

The idea of the proof of this proposition is to show that for a CM-point x with

CM-field K, the reciprocity map

rx : Gal
(
Q̄/K̃

) −→ T(Q)\T(Q̄)/Ô×
x =

Pic
(
Ox

)
Pic

(
OF

) (3.18)
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has cokernel annihilated by some positive integer n depending on the Mumford-Tate

group. We may drop the assumption that [F̃ : F0] is a power of 2 under the following as-

sumption.

Conjecture 3.5 (ε-conjecture). Fix a totally real number field F, a positive integer n, and

a positive number ε. Then, for any quadratic CM-extension K, and any order O of K con-

taining OF, the n-torsion of the class group of Oc has the following bound:

# Pic
(
Oc

)
[n] ≤ C(ε) disc

(
Oc

)ε
, (3.19)

where C(ε) is a positive constant depending only on ε. �

Remarks. (1) We will reduce to the case where Oc = OK is maximal and n is odd

(Corollary 6.4).

(2) By the Brauer-Siegel theorem, 1/2 + εwill be the trivial bound.

(3) When n = 2, K = Q
√
D, with D ∈ Z a fundamental discriminant, and the

conjecture is true by Gauss’ genus theory. Actually, the 2-torsion of a class group equals

2δ, where δ is the number of prime factors ofD. We will prove the conjecture for 2-torsion

for an arbitrary CM-extension (Corollary 6.4).

(4) When n = 3, Helfgott and Venkatesh obtain the bound ε = 0.44187.

(5) By Brumer and Silverman [3], the following stronger bound has been formu-

lated:

log # Cl(L)[n] ≤ C log disc(L)
log log disc(L)

. (3.20)

Theorem 3.6. Assume the ε-conjecture (for a positive integer n as specified in Corollary

6.2). Then the following estimate holds for the size of Galois orbits for a CM-point x on

MU with maximal Mumford-Tate groupH = T :

#Ogl(x) 
 disc(x)1/2−ε. (3.21)
�

Applying Corollary 3.3, we obtain the following corollary.

Corollary 3.7. The ε-conjecture and subconvexity bound imply the equidistribution of

CM-points with maximal Mumford-Tate groupH = T . �

Corollary 3.8. The equidistribution holds for Galois CM-points with a fixed maximal

Mumford-Tate group H = T . In particular, any infinite set of such CM-points are Zariski

dense. �
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Remarks. (1) In our current setting, the Zariski density in Corollary 3.8 strengthens a

theorem of Edixhoven and Yafaev [15] about the finiteness of CM-points with fixed Hodge

Q-structure on a non-Hodge curve. Our finiteness holds for any proper subvariety. Of

course, their theorem applies to general Shimura varieties.

(2) Theorem 3.4 follows from this corollary and Proposition 7.3, which says that

H is the kernel of the norm

NK/K0
: K×/F× −→ K×

0 /F
×
0 . (3.22)

(3) When d > 2, we do not have a general description of CM-points having max-

imal Mumford-Tate orbits, except for some partial results given in Section 7. In particu-

lar, we can show thatH = T for all CM-points if d is odd and if F/F0 is abelian with Galois

group verifying that one of the following two conditions is verified:

(i) [F : F0] is a power of 2 (Corollary 7.6), or

(ii) Gal(F/F0) has cyclic 2-Sylow subgroup and d < p for any odd prime factor of

[F : F0] (Corollary 7.8).

Thus, we have equidistribution of Galois orbits of all CM-points on these Shimura vari-

eties.

4 Hecke orbits

In this section and the next, we want to prove Theorem 3.2. More precisely, we want to

estimate the sum

�
(
f;O(x)

)
:=
∑

y∈O(x)

f(x) (4.1)

for a CM-suborbit O(x) and for a function f on MU(C) which has integral 0 on each con-

nected component and is constant outside of a compact set. In this section, we want to

reduce the computation of this integral to the case where x and O(x) have the same con-

ductor (see Proposition 4.4).

Let Γ be the stabilizer ofO(x) in T(Q)\T(Q̂) with index i(Γ). Then, we have

�
(
f,O(x)

)
= i(Γ)−1

∑
χ

�χ(f; x), (4.2)

where χ runs through characters of T(Q)\T(Q̂)/Γ , and

�χ(f; x) :=
∑

t∈T (Q)\T (Q̂)/Ô×
x

χ−1(t)f(tx). (4.3)
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Let K be the CM-field defining x. Then the set of CM-points with field K is given by

T(Q)\G
(
Q̂
)
/U = K×\B̂×/F̂×Ô×

B . (4.4)

For each ideal c, the CM-points of conductor c are represented by g ∈ B̂× such that

gOBg
−1 ∩ K = Oc. (4.5)

The set of CM-points with conductor c is a single orbit under left multiplication by K̂×.

Thus, the value �χ(f, x) depends only on the conductor of x up to multiple by a root of

unity.

Let us define a distinguished CM-point xc which is represented by gc with com-

ponents gv ∈ B×
v given as follows. If v does not divide c, we take gv = 1. For v dividing c,

we have an isomorphism Bv � M2(Fv) so that OK,v is embedded intoM2(Ov). The action

of Kv on F2
v identifies F2

v with Kv as Kv-modules. The map α → α(OKv) defines a bijection

between the set of B×
v /O

×
B,v

and the set of Ov-lattices of Kv. The conductor of α is exactly

the conductor of the Ov-endomorphism algebra of the lattices. Thus, we may take gv such

that gv(OK,v) = Oc,v.

Now fix an anticyclotomic character χ of conductor c = c(χ). For each ideal n, we

define a function γn on CM-points with field K supported on set of CM-points of conduc-

tor nc and such that

γn

(
txnc

)
= χ(t), ∀t ∈ T(Q̂). (4.6)

Let rχ(m) be a function on nonzero ideals of OF defined by the formula

rχ(m) =




∑
N(n)=m

χ(n) if (m, c) = 1,

0 if (m, c) �= 1.
(4.7)

Proposition 4.1. Form an ideal prime toN,

Tmγ1 =
∑
n

rχ

(
m

n

)
γn. (4.8)

�

Proof. It is clear that Tmγ1 still has character χ under left multiplication by T(Q̂). Thus,

we have a decomposition

Tmγ1 =
∑

am,nγn. (4.9)
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The number am,n can be expressed as follows:

am,n = Tmγ1

(
Onc

)
=
∑
Λ

γ1(Λ). (4.10)

Here, the sum is over sublattices of Õnc :=
∏

v|mnc Onc,v of indexm. Notice that γ1(Λ) �= 0
if and only if Λ has the form tÕc for some t ∈ K̃. In this case γ1(Λ) = χ(t). The condition

that Λ ⊂ Õnc with index m is equivalent to mÕnc ⊂ Λ = tÕc with index m, which is

equivalent tomt−1Õnc ⊂ Õc with indexm. This last condition is equivalent to

mt−1 ∈ Õc, NF

(
mt−1

)
n = m. (4.11)

The second condition is NF(t) = mn. Thus, t−1 = t̄(mn)−1 and the first equation becomes

t ∈ nÕc. Write t = ns, then N(s) = m/n, and χ(t) = χ(s). Thus, we obtain

am,n =
∑

s

χ(s), (4.12)

where s runs through elements in Õc/Õ
×
c with normm/n.

Ifm/n is not prime to c, there is a prime π dividing both c and s. For each s in the

sum above, we may write s = πtu, where t runs through representatives of Õc/π/Õ
×
c/π

and

u runs through Õ×
c/π
/Õ×

c . Thus, we have

am,n = χ(π)
∑

χ(t)
∑

χ(u). (4.13)

As χ has conductor c, the sum of χ(u) is certainly 0. �

Write

L(s, χ) =
∑
n

χ(n)
N(n)s

. (4.14)

By the proposition, we have formally

∑
m

Tmγ1

Nms
= L(s, χ) ·

∑ γn

Nns
. (4.15)

It follows that

∑ γn

Nns
= L(s, χ)−1

∑
m

Tmγ1

Nms
. (4.16)

In other words, we have the following corollary.
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Corollary 4.2.

γn =
∑
m|n

sχ

(
n

m

)
Tmγ1, (4.17)

where sχ(n) are coefficients of LK(s, χ)−1:

sχ(n) =
∑

NK/F(a)=n

χ(a) · µ(a), (4.18)

where µ(a) is the Möbius function on the ideals of OK. �

We may express �χ(f; xnc) as an inner product of two functions f and γn on CM-

points:

�χ
(
f; xnc

)
= #Ocm

(
xnc

)−1〈
f, γn

〉
. (4.19)

The Hecke operator is certainly selfadjoint for this inner product. Thus, we have the fol-

lowing corollary.

Corollary 4.3. Let f be an eigenform with eigenvalue λm under the action by Tm. Then for

n prime to c,

�χ
(
f; xnc

)
=

(∑
m|n

sχ

(
n

m

)
λm

)
· �χ
(
f; xc

)
. (4.20)

�

Proposition 4.4. Assume the δ-bound in Section 3. For any ε > 0, there is an C(ε) > 0

depending only on [F : Q] such that

∣∣�χ(f; xnc

)∣∣ ≤ C(ε)Nn1/2+δ+ε
∣∣�χ(f; xc

)∣∣. (4.21)
�

Proof. The period sum is given by

�χ
(
f; xnc

)
=
∏

℘e‖n

κ
(
℘e
) · �χ(f; xc

)
, (4.22)

where

κ
(
℘n
)

=

e∑
i=0

sχ
(
πe−i

)
λπi . (4.23)

Let us compute this number in separate cases.
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First, assume that ℘ is inert in K. Then,

sχ
(
πe−i

)
=



1 if e = i,

−χ(π) if e = i + 2,

0 otherwise.

(4.24)

Here, it is understood that χ(π) = 1 if χ is unramified, and that χ(π) = 0 if χ is ramified. It

follows that

κ
(
πe
)

= λπe − χ(π)λπe−2 . (4.25)

Here, it is understood that λπn = 0 if n < 0.

Now let us treat the case where ℘ is ramified in K. Then,

sχ
(
πe−i

)
=



1 if e = i,

−χ
(
πK

)
if e = i + 1,

0 otherwise.

(4.26)

It follows that

κ
(
πe
)

= λπe − χ
(
πK

)
λπe−1 . (4.27)

Finally let us treat the case where ℘ is split in K℘. Then

sχ
(
πe−i

)
=




1 if e = i,

−
(
χ1(π) + χ1(π)−1

)
if e = i + 1,

1 if e = i + 2,

0 otherwise.

(4.28)

It follows that

κ
(
πe
)

= λπe − 2Re
(
χ1(π)

)
λπe−1 + λπe−2 . (4.29)

Assume that the L-function of φ has parameter α℘. Then, q−n/2λπn is the coeffi-

cient of the L-series at q−ns:

(
1 − α℘q

−s
)−1(

1 − α−1
℘ q−s

)−1
. (4.30)



Equidistribution of CM-Points on Quaternion Shimura Varieties 3671

It follows that

λπn = qn/2α
n+1 − α−1−n

α − α−1
. (4.31)

From the δ-bound, |α±1| ≤ qδ. Thus we have that

∣∣λπn

∣∣ ≤ q(1/2+δ+ε)n. (4.32)

It follows that in all cases, κ(πe) has bound

∣∣κ(πe
)∣∣ ≤ qe(δ+1/2+ε). (4.33)

In summary, we have

∣∣�χ(f; xnc

)∣∣ ≤ C(ε)Nn1/2+δ+ε
∣∣�χ(f; xc

)∣∣. (4.34)
�

5 Period sums

In this section, we want to finish the proof of Theorem 3.2. By the equality

�
(
f,O(x)

)
= i(Γ)−1

∑
χ

�χ(f; x), (5.1)

the question is reduced to estimating the sum �χ(f; x).

Consider the spectral decomposition

f =
∑

cnfn +

∫
Ω

cµEµdµ, (5.2)

where the fn are discrete (cuspidal or residual) eigenforms under Hecke operators with

norm 1, and the Eµ are Eisenstein series indexed by characters µ of F×\A×
F modulo equiv-

alence µ ∼ µ−1, which exist only whenB = M2(F). The measure dµ is induced from a Haar

measure on the topological group of idele class characters of F. In this case, for discrete

spectrum, we may take fn to be

fn =
∥∥fnew

n

∥∥−1
fnew
n (5.3)

with fnew
n a newform. For the continuous spectrum, we may take Eµ to be

Eµ =
∣∣L(1, µ2

)∣∣−1
Enew

µ , (5.4)
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where Enew
µ is the newform in π(µ, µ−1). Here a newform ϕnew means a Hecke eigenform

with minimal level and normalized so that

L(s, Π) = disc(F)1/2−s

∫
F×\A

×
F

(
ϕnew − Cϕnew

)(a 0

0 1

)
|a|1−1/2d×a, (5.5)

whereΠ is the automorphic representation of GL2(AF) generated byϕnew, andCϕnew is the

constant part in the Fourier expansion with respect characters of the unipotent group of

matrixes
(

1 x
0 1

)
.

Since f is compactly support, we have

‖f‖2 =
∑ ∣∣cn

∣∣2 +

∫
Ω

∣∣cµ

∣∣2dµ <∞. (5.6)

Moreover, for ∆ the Laplacien operator on MU(C), ∆mf is still compactly supported for

any positive integerm,

∥∥∆mf
∥∥2

=
∑ ∣∣cnλ

m
n

∣∣2 +

∫
Ω

∣∣cµλ
m
µ

∣∣2dµ <∞, (5.7)

where λi (resp., λµ) are eigenvalues of fi (resp., Eµ) under D. Thus cn (resp., cµ) decays

faster than any negative power of λn (resp., λµ).

It can be shown that ‖φn‖sup is bounded by a polynomial function of λn. Thus,

the sum of the right-hand side of (5.2) is absolutely convergent pointwisely. Similarly,

for a fixed compact domain E ofM(C), it can be shown that supx∈E |Eµ(x)| is bounded by a

polynomial function of λµ. Thus, the integral of the right-hand side of (5.2) is absolutely

and uniformly convergent on E. See Clozel and Ullmo [6, Lemmas 7.2–7.4] for a complete

proof. It follows that

�(f; x) =
∑

cn�
(
fn; x

)
+

∫
Ω

cµ�
(
Eµ; x

)
dµ. (5.8)

Thus, for the proof of Theorem 3.2, it suffices to show the following proposition.

Proposition 5.1. For any ε > 0, there are positive numbers C, A such that for any Hecke

eigen form f of norm 1 (which is either cuspidal or Eisenstein),

∣∣�χ(f; x)
∣∣ ≤ C · λ(f)A · disc(x)1/4+δ/2+ε, (5.9)

where ‖f‖ = |L(1, µ2)| if f ∈ π(µ, µ−1). �
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Let c be the conductor of χ and let nc be the conductor of x. Then by Proposition

4.4,

∣∣�χ(f; x)
∣∣
 N(n)δ+1/2+ε

∣∣�χ(f; x0

)∣∣, (5.10)

where x0 is a CM-point of conductor c with the same CM-group. Now the question is re-

duced to estimating �χ(f; x0). In the following, we will show that this special case follows

from the central value formula proved in [30, 35] and the subconvexity bound.

By Jacquet-Langlands theory, there is a unique newform ϕ on GL2(AF) of weight

0 and level N which has the same Hecke eigenvalues as f. Notice that when N = OF, B =

M2(F) and ϕ is a multiple of f.

Theorem 5.2 (see [30, 35]). Let χ be a character of T(Q)\T(Q̂) with the same conductor

as x,

L

(
1

2
,Π⊗ χ

)
=

2[F:Q]+d√
disc

(
x0

) · ‖ϕ‖2 · ∣∣�χ(f; x0

)∣∣2. (5.11)

Here, L(s, Π⊗ χ) is the Rankin-Selberg convolution of L(s, Π) and L(s, χ). �

Proof. When the conductor c of χ is prime to the relative discriminant d of K, this is

proved in [35]. For Eisenstein series Π without coprime condition (c,D) = 1, this can

be proved easily by the same method in [35]. For cusp form Πwithout coprime condition

(c, d) = 1, the formula can be deduced from Waldspurger’s formula in [30, Proposition 7,

page 222]. �

Now Proposition 5.1 for x = x0 follows from Theorem 5.2 and following well-

known estimate

λ(f)ε 
 ‖ϕ‖ 
 λ(f)−ε (5.12)

for λ big and any ε > 0.

6 Galois orbits

In this section, we are going to prove Theorem 3.6 about an estimate of the sizes of Galois

orbits CM-points with maximal Mumford-Tate group.

Let x be a CM-point with CM-group T = K×/F× and Mumford-Tate group H ⊂
T . By the Shimura theory, the CM-orbit Ocm(x) as a reduced subscheme is defined over
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the reflex field K̃ ⊂ C generated over Q by
∑

σ∈SK
σ(x) for all x ∈ F. Moreover, the Galois

action is given by a homomorphism

rx : Gal
(
Q̄/K̃

) −→ K×\K̂×/F̂×Ô×
x =

Pic
(
Ox

)
Pic

(
OF

) , (6.1)

where Ox is the order of x defined in Section 3.

The Galois action factors through the maximal abelian quotient, thus it is deter-

mined by the homomorphism

K̃×\
̂̃
K
×
−→ K×\K̂×/F̂×Ô×

x . (6.2)

By Shimura’s theory, this is induced by a homomorphism of algebraic groups

N : K̃× −→ K×, τN(x) =
∏

τ∈σ◦SK

σ(x), (6.3)

where τ is a any fixed embeddingK→C, and σ runs through the coset Gal(C/Q)/Gal(C/K̃).

Notice that the definition does not depend on the choice of τ. The restriction of N to the

totally real subgroup F̃× takes values in F×. Thus, N induces a homomorphism on the

quotient which is also denoted by N:

N : T̃ := K̃×/F̃× −→ T = K×/F×. (6.4)

Let F0 be the subfield of F over which all embeddings of S have the same restric-

tion. Then K×/F× and K̃×/F̃× can be viewed as algebraic groups T0 and T̃0 over F0, and the

morphismN is induced by a morphism over F0:

N0 : T̃0 −→ T0. (6.5)

The assumption thatH = T means thatN0 is surjective. Taking L to be a Galois closure of

K over F0, these groups are split over L. First, we want to show that N0 has a section up

to isogeny.

Lemma 6.1. Let α : T1 → T2 be a surjective homomorphism of tori over F0 which are

split over L. Let n be a positive integer which is a product of [L : F0] and an integer m

annihilating the components group of kerα. Then there is a homomorphism β : T2 → T1

such that α ◦ β = n on T2. �
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Proof. Let α∗ : X(T2) → X(T1) be the corresponding injection of Gal (Q̄/F0)-modules of

characters. It suffices to show that there is a homomorphism of Gal(Q̄/F0)-modules φ :

X(T1) → X(T2) such that α∗ ◦ φ = n. Since both Ti are split over L, the Gal(Q̄/F0)-module

structures on X(Ti) descend to ∆-module structures, where ∆ = Gal(L/F0).

Let X(T1) = Y1 + Y2 be a direct sum decomposition of Z-modules such that Y2 is

the subgroup of elements x such that some positive multiple mx ∈ X(T2). Then, Y2 is a

∆-submodule and Y2/X(T2) is annihilated by n. Let π ′ ∈ End(X(T1)) denote the projection

of X(T1) onto Y1 with respect to this decomposition and let

π := m ·
∑
δ∈∆

δ−1 ◦ π ′ ◦ δ. (6.6)

Then π is ∆-homomorphism with values in X(T2), and for x ∈ X(T2), π(x) = nx. �

Corollary 6.2. Let n be the product of [L : F0] and the smallest positive integer annihilat-

ing the components group of kerN0. The cokernel of rx is annihilated by n. �

Proof. By Lemma 6.1, N0 will have a section up to multiplication by n. Thus for any F0-

algebra A, the morphism on any A-points of Ti will have cokernel annihilated by n. �

Proof of Theorem 3.6. The corollary implies that the image of the homomorphism rx in

(6.1) has order bounded below by

#
(

Pic Ox

Pic OF

)
#
(

Pic Ox

Pic OF

)
[n]
. (6.7)

Now Theorem 3.6 follows from the Brauer-Siegel estimate

# Pic
(
Ox

)
 disc(x)1/2−ε. (6.8)

In the rest of section, we want to estimate �-torsion in the anticyclotomic exten-

sion in two special cases. For an abelian groupM and prime �, let rank
 denote the �-rank

ofM:

rank
M := rankZ/
ZM⊗ Z/�Z = rankZ/
ZM[�]. (6.9)

It is easy to see that rank
M is the minimal number of generators for the �-Sylow sub-

group ofM.
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Proposition 6.3. Let Oc = OF + cOK be an order of a CM-field K, where F is its totally real

subfield.

(1) Let µ be the number of prime factors of c. Consider the map

α : Pic
(
Oc

) −→ Pic
(
OK

)
. (6.10)

Then

rank
 Ker(α) ≤ gµ. (6.11)

(2) Let δ be the number of primes of OK ramified over F, then

rank2

(
Pic

(
OK

)) ≤ 2 rank2

(
Pic OF

)
+ g + δ. (6.12)

�

Proof. It is easy to see that kerα has an expression

kerα = Ô×
K/O

×
K · Ô×

K =
(
Ok/c

)×
/O×

K

(
OF/c

)×
. (6.13)

Thus, rank
 kerα is additive over prime decomposition of c. So we need only to estimate

the rank
 kerα for c = πn a positive power of prime π of OF. Consider the exact sequence

1 −→ 1 + πOK

1 + πOF + πnOK

−→
(
OK/π

n
)×(

OF/πn
)× −→

(
OK/π

)×(
OF/π

)× −→ 1. (6.14)

This induces an exact sequence

1 −→ 1 + πOK

1 + πOF + πnOK

[�] −→
(
OK/π

n
)×(

OF/πn
)× [�] −→

(
OK/π

)×(
OF/π

)× [�]. (6.15)

If the characteristic of OF/π is not � (resp., �), the �-rank of the first group is 0

(resp., bounded by g) while the last group is bounded by 1 (resp., 0). Thus

rank


((
OK/π

n
)×
/
(
OF/π

n
)×) ≤ g. (6.16)

This proves the first part.
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Now we assume that Oc = OK and let ξ ∈ Pic(OK)[2] be a class. Then, we have the

homomorphism

β : Pic
(
OK

) −→ Pic
(
OF

)
, β(ξ) = ξ · ξ̄. (6.17)

Thus

rank2

(
Pic OK

) ≤ rank2

(
Pic OF

)
+ rank2 kerβ. (6.18)

Now assume that ξ ∈ kerβ. Then both ξ2, ξξ̄ are trivial, and so is ξ/ξ̄. Let ξ be represented

by an x ∈ K̂×:

Pic
(
OK

)
= K̂×/K×Ô×

K . (6.19)

Then, we have an expression

x/x̄ = tu, t ∈ K×, u ∈ Ô×
K . (6.20)

Taking norm NK/F on both sides, we find that N(t) ∈ O×
F . As t is uniquely determined

modulo O×
K , the norm NK/F(t) ∈ O×

F is uniquely determined modulo N(O×
K). Thus, we have

homomorphism

γ : kerβ −→ O×
F /NK/F

(
O×

K

)
. (6.21)

As (O×
F )2 ⊂ N(OK), the second group has 2-rank bounded by g. Thus, we have

rank2 kerβ ≤ g + rank2 kerγ. (6.22)

Now we assume that ξ ∈ kerγ. Then we may take t ∈ K× so that NK/F(t) = 1. By

Hilbert 90, there is an s ∈ K× such that t = s̄/s. Now replacing x by sx which does not

change the class of ξ, we may assume that t = 1 in the expression in (6.20). Let I denote

the elements in K̂× which are invariant under conjugation modulo Ô×
K . Then, we have

kerγ = I/
(
I ∩ K×)Ô×

K [2]. (6.23)

Now we consider the homomorphism

θ : kerγ −→ I/F̂×(I ∩ K)×Ô×
K . (6.24)
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As the second group is a quotient of the genus group of K and generated by ramified

primes of OK, we have

rank2 kerγ = rank2 ker θ + δ, (6.25)

where δ is number of ramified primes of OK over OF.

It remains to estimate ker θ, which is certainly a quotient of Pic(OF). It follows

that

rank2 ker θ ≤ rank2

(
Pic

(
OF

))
. (6.26)

�

Corollary 6.4. Let n be a fixed positive integer with decomposition n = 2tmwithm odd.

Then for any ε > 0,

# Pic Oc[n] 
 disc
(
Oc

)ε · # Pic
(
OK

)
[m]. (6.27)

�

Proof. Consider the morphism α : Pic(Oc)→ Pic(OK). Then, we have

# Pic Oc[n] ≤ # Pic
(
OK

)
[n] · # Kerα[n]

= # Pic
(
OK

)
[m] · # Pic

(
OK

)[
2t
] · # Kerα[n].

(6.28)

It remains to estimate the last two terms. Write n =
∏
pni

i ,

#
(

Pic OK

)[
2t
] ≤ 2t rank2 Pic OK ≤ 2t(2 rank2 OF+g+δ) 
 disc

(
OK

)ε
,

# Kerα[n] ≤
∏

i

p
ni·rankpi

· Ker α

i ≤ ngµ 
 N
(
c2
)ε
.

(6.29)

�

7 Mumford-Tate groups

In this section, we will compute the Mumford-Tate group for CM-points on MU. When

d = 1 or 2, our result is complete. When d > 2, we will give some examples where every

CM-point has maximal Mumford-Tate group.

Let us fix a CM-type (K, SK). Let ΣK denote the set of all complex σ0-embeddings

of K which admit an action by Gal(Q̄/F0) by composition. The character group of the al-

gebraic torus K× over F0 is the group Z[ΣK] of divisors on ΣK with left action. We may also

view Z[ΣK] as the space of functions φ on ΣK under the correspondence

φ −→ ∑
σ∈ΣK

φ(σ)[σ]. (7.1)
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With this convention, the group of characters of the CM-group T0 = K×/F× is the Galois

submodule Z[Σ]− of functions annihilated by 1+[c],where c is complex conjugation acting

on ΣK. Let Σ
K̃

denote the set of all complex σ0-embeddings of K̃ equipped with action by

Gal(Q̄/F0). Then Σ
K̃

can be identified with the set

{
gSK, g ∈ Gal

(
Q̄/F0

)}
(7.2)

of subsets of ΣK. Again, the groups of characters of the torus T̃ := K̃×/F̃× can be identified

with Z[Σ
K̃
]−. Recall that we have a norm morphism

N0 : T̃0 −→ T0, τN0(x) =
∏

τ∈σ◦SK

σ(x) (7.3)

for any τ ∈ ΣK. The Mumford-Tate groupH is the restriction of scalars of the imageH0 of

N0. Let N∗
0 denote the induced homomorphism of Galois modules of characters:

N∗
0 : Z

[
ΣK

]− −→ Z
[
Σ

K̃

]−
. (7.4)

Proposition 7.1. With notation as above, the following assertions hold.

(1) For any φ ∈ Z[ΣK]−,

N∗
0(φ)(gS) =

∑
σ∈SK

φ(gs). (7.5)

(2) LetΦ = ker N∗
0. The group of characters of the Mumford-Tate groupH0 is

X
(
H0

)
= Z

[
ΣK

]−
/Φ. (7.6)

(3) The order of the component group of kerN0 is bounded by a constant inde-

pendent of K and SK.

(4) Let p be a prime. Then p does not divide the component group of ker N0 if

and only if

ker
(
N∗

0 ⊗ Fp

)
=
(

ker N∗
0

)⊗ Fp. (7.7)
�

Proof. The first assertion follows from a direct computation:

N∗
0φ = φ ◦ N0 =

∑
g∈Σ

K̃

φ(σ)
∑

σ∈g◦SK

[
gSK

]
=
∑

g∈Σ
K̃

(∑
s∈SK

φ(gs)

)[
gSK

]
. (7.8)
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The second assertion follows from the decomposition of N0:

T̃0 � H � T0, (7.9)

which induces a decomposition of the character groups

X
(
T0

)
� X

(
H0

)
� X

(
T0

)
. (7.10)

The third assertion follows from the fact that the group of components of kerN0

is dual to the maximal torsion subgroup of cokerN∗
0 and the fact that there are only finitely

many isomorphic classes of homomorphism N∗
0 of Z-modules.

For the last assertion, we notice that p does not divide the order of the component

group if and only if the induced homomorphism

X
(
H0

)⊗ Fp −→ X
(
T̃0

)⊗ Fp (7.11)

remains injective. This is equivalent to the following identity:

X
(
H0

)⊗ Fp = Fp

[
ΣK

]−
/Ker

(
N∗

0 ⊗ Fp

)
, (7.12)

which is equivalent to

(
Ker N∗

0

)⊗ Fp = Ker
(
N∗

0 ⊗ Fp

)
. (7.13)

�
In the following, we want to compute H0 in some special cases. The case where

MU has dimension 1 is easy.

Proposition 7.2. If SK consists of a single element, then K̃ = K, H = T and the reciprocity

map N∗
0 : T̃0 → T0 is the identity map. �

Now we consider the case where SK has two elements.

Proposition 7.3. Assume that the set SK consists of two elements σ1, σ2. Let K0 (resp., F0)

be the subfield of K (resp., F) consisting of elements x such that σ1(x) = σ̄2(x). Then the

torusH0 is isomorphic to the kernel of the norm map

NK/K0
: K×/F× −→ K×

0 /F
×
0 . (7.14)

Moreover, the kernel of the morphism

N0 : T̃0 −→ T0 (7.15)

is connected. �
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Proof. Let us fix an embedding of K into C by the element σ1 in SK and let L be a Galois

closure of K over F0 in C. Write ∆ = Gal(L/F0) and ∆M = Gal(L/M) for an extensionM of

F0 in L. Then, we have inclusions

∆ ⊃ ∆F =
(
∆K, c

) ⊃ ∆K, (7.16)

where c ∈ ∆ is complex conjugation. The set ΣK is naturally identified with the cosets

∆/∆K. We lift σ1, σ2 ∈ SK to e, s ∈ ∆, respectively. Then, ∆ is generated by ∆F and the set s.

With above notations,Z[ΣK]− can be identified with the set of functions on∆ right

invariant by ΓK and with eigenvalue −1 under c. The space Φ in Proposition 7.1 becomes

the space of functions with the above property and such that

φ(g) + φ(gs) = 0, ∀g ∈ ∆, (7.17)

or equivalently

φ(g) = φ(gcs). (7.18)

This is equivalent to saying that φ is invariant under the subgroup (∆K, sc) = ∆K0
. Then

Φ is the subspace of functions on ∆ invariant by ∆K0
, and having eigenvalue −1 under c.

ThusΦ is the character group of K×
0 /F

×
0 .

On the other hand the exact sequence

1 −→ kerNK/K0
−→ K×/F× −→ K×

0 /F
×
0 −→ 1 (7.19)

induces a morphism of groups of characters

1 −→ X
(
K×

0 /F
×
0

) −→ X
(
K×/F×

) −→ X
(

kerNK/K0

) −→ 1. (7.20)

If we identified the first two groups of characters as functions on ∆ invariant under right

translation by ∆K0
and ∆K, respectively, then the map is the natural inclusion. Thus, we

have shown that X(H) = X(kerNK/K0
). It follows thatH = kerNK/K0

.

To show that N0 has connected kernel, we want to verify part 3 of Proposition 7.1.

Notice that ker(N∗
0 ⊗ Fp) is the set of Fp-valued functions ψ satisfying

ψ(g) +ψ(gs) = 0. (7.21)

The same proof as above shows that this is equivalent to that ψ is invariant under ∆K0

and has eigenvalue −1 under c. Thus ψ is a reduction of a Z-valued function invariant

under ∆K0
. Thus the equality of part 4 of Proposition 7.1 holds. �
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Remarks. (1) If K0 = F0, thenH = T .

(2) If K0 �= F0, then K = K0 · F.
(3) Conversely, let K0 be an imaginary quadratic extension of F0 and take K =

K0 · F. There always exists a lifting of S to SK such that K0 is not fixed by the elements σ1,

σ2 in SK. Then K0 must be fixed by σ1, cσ2. By Proposition 7.3,H is the kernel of K×/F× →
K×

0 /F
×
0 .

It seems hard to write a general description of the Mumford-Tate groups for any

quaternion Shimura variety of dimension 3 or higher. In the following, we give a state-

ment for cases where

(i) every CM-point has maximal Mumford-Tate group;

(ii) the subconvexity bound and ε conjecture imply the equidistribution of Ga-

lois orbits of CM-points.

Proposition 7.4. Let Σ be the set of σ0-embeddings of F equipped with a natural action

by Gal(Q̄/F0). Assume that there is no nonzero function

ψ : Σ −→ F2 := Z/2Z (7.22)

such that

∑
s∈S

ψ(gs) = 0, ∀g ∈ Gal
(
Q̄/F0

)
. (7.23)

Then for any CM-point onMU,H = T . �

Proof. The reduction (mod 2) of any φ ∈ Φ will be invariant under complex conjuga-

tion, and thus define an F2-valued function on Σ. The assumption then implies that φ ≡
0mod 2. ThusΦ/2Φ = 0 and thenΦ = 0. �

We may apply the proposition when F/F0 is abelian.

Proposition 7.5. Assume that F/F0 is abelian with Galois group Γ satisfying that there is

no character χ : Γ → F̄×
2 such that

∑
s∈S

χ(s) = 0. (7.24)

Then for any CM-point onMU,H = T . �

Proof. We want to show that the condition of Proposition 7.4 is satisfied. The proof is

divided into two steps. In the first step, we reduce the proof to the case where #Γ is odd.

Then we prove the lemma when #Γ is odd.
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Without loss of generality, we assume that e ∈ S. Then the equation in the propo-

sition gives

ψ(g) =
∑
s�=e

ψ(gs), ∀g ∈ Γ. (7.25)

Taking this equation with g replaced by gs, we then obtain

ψ(g) =
∑

s�=1,t�=1

ψ(gst) =
∑
s�=1

ψ
(
gs2
)
. (7.26)

We may repeat this step to obtain

ψ(g) =
∑
s�=1

ψ
(
gs2

n)
(7.27)

for any n ∈ N. Let Γ = Z/2m×Γ ′ be the decomposition of Γ with Γ ′ a commutative group of

odd order. Take an n so that g→ g2n

is the projection Γ → Γ ′. Let S ′ be the set of elements

in Γ ′ whose preimage has odd cardinality in the projection S → Γ ′. For any h ∈ Γ , the

function ψh(g ′) := ψ(gh) (g ′ ∈ Γ) will satisfy the equation

∑
s∈S ′

ψh(g ′s ′) = 0, ∀g ′ ∈ Γ ′. (7.28)

Thus, we are reduced to proving that ψh = 0 on Γ ′ for all h. Since S ′ also has odd cardi-

nality, we are in the case where Γ is odd.

Assume that Γ is odd. Let Ψ be the space of functions ψ on Γ satisfying the equa-

tion in the lemma. Then Ψ⊗ F̄2 will be a direct sum of characters. Thus we need to show

that there is no character χ : Γ → F̄×
2 such that

∑
s∈S

χ(s) = 0. (7.29)

�

Corollary 7.6. Assume that #S is odd, and assume that F is abelian over F0 such that the

order of Gal(F/F0) is a power of 2. Then,H = T for every CM-point onMU. �
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We have some further statements for abelian case.

Proposition 7.7. Assume that F is abelian over F0 with Galois group Γ such that the fol-

lowing conditions are verified:

(1) Γ has cyclic 2-primary part Γ [2∞ ];

(2) for all characters α : Γ → µpn of order a positive power of an odd prime p,

α(S) does not contain any coset of µp.

ThenH = T for any CM-point onMU. �

Corollary 7.8. Assume the following conditions are verified:

(1) #S is odd and smaller than p for all odd prime factor p of [F : F0];

(2) the Galois group Gal(F/F0) is commutative with cyclic 2-primary 2.

ThenH = T for every CM-point onMU. �

Proof of Proposition 7.7. Let us fix an embedding of K into C by an element in SK, and

let L be a Galois closure of K over F0 in C. Write ∆ = Gal(L/F0) and Λ = Gal(L/F), ΛK =

Gal(L/K), then we have inclusions

∆ ⊃ Λ =
(
ΛK, c

) ⊃ ΛK, (7.30)

where c ∈ ∆ is complex conjugation. The following lemma gives an almost-commutative-

lifting of Γ .

Lemma 7.9. Consider an exact sequence of finite groups:

1 −→ Λ −→ ∆ −→ Γ −→ 1. (7.31)

Assume the following properties are satisfied.

(1) Γ is commutative and fits in an exact sequence

1 −→ Γ2 −→ Γ −→ Γ1 −→ 1 (7.32)

so that one of Γi is odd and one is 2-primary and cyclic.

(2) Λ is commutative and has order a power of 2.

Then ∆ contains a commutative subgroup Γ̃ mapping surjectively onto Γ . �

Proof. Indeed, the extension

0 −→ Λ −→ ∆ −→ Γ −→ 0 (7.33)
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is given by an element ξ ∈ H2(Γ,Λ) which can be computed using the spectral sequence

Hi(Γ1, Hj(Γ2, Λ)). As Λ has order a power of 2, the cohomology of odd groups vanishes.

Thus, we have

H2(Γ,Λ) =



H2
(
Γ1, H

0
(
Γ2, Λ

))
if Γ2 is odd,

H0
(
Γ1, H

2
(
Γ1, Λ

))
if Γ1 is odd.

(7.34)

Notice that the H2 cohomology of a cyclic group is equal to Tate’s cohomology group Ĥ0.

Thus, we have

H2(Γ,Λ) =



Ĥ0
(
Γ1, H

0
(
Γ2, Λ

))
if Γ2 is odd,

H0
(
Γ1, Ĥ

0
(
Γ2, Λ

))
if Γ1 is odd,

=



H0(Γ,Λ)/NΓ1

H0
(
Γ2, Λ

)
if Γ2 is odd,

H0(Γ,Λ)/NΓ2
H0
(
Γ1, Λ

)
if Γ1 is odd,

(7.35)

whereNΓi
is the norm defined by Γi. Let x be the element in H0(Γ,Λ) representing ξ. Then

there is commutative subgroup Γ̃ of ∆which maps surjectively onto Γ with kernel X gen-

erated by x. �

The set ΣK is naturally identified with the cosets ∆/ΛK. We pick up liftings of

SK ⊂ ΣK to SL ⊂ Γ̃ containing the unit element

e ∈ SL � SK � S. (7.36)

Then ∆ is generated by Λ and the set SL.

With above notations, Z[ΣK]− can be identified with the set of functions on ∆ in-

variant under the right byΛK and with eigenvalue −1 under c. The spaceΦ in Proposition

7.1 becomes the space of functions with the above property and such that

∑
σ∈SL

φ(gσ) = 0, ∀g ∈ ∆. (7.37)

Since ∆ is generated by SL and Λ and Λ is normal in ∆, we have an expression

∆ = Γ̃ ·ΛK. (7.38)

Thus the restriction on Γ̃ defines injections,

Z
[
∆/ΛK

]− −→ Z[Γ̃ ], Φ −→ Φ̃, (7.39)



3686 Shou-Wu Zhang

where Φ̃ is the set of elements in Z[Γ̃ ] satisfying the same (7.37). Since Γ̃ is abelian, Φ̃⊗C

is generated by characters. Now we apply the following lemma to complete the proof of

Proposition 7.7.

Lemma 7.10. Let Γ be a finite commutative group and letW be a subset of Γ of odd order.

Assume that for each nontrivial character α : Γ → µpn whose order is a power of an odd

prime, the image ofW does not contain any coset of µp. Then there is no character χ of Γ

satisfying the equation

∑
w∈Γ

χ(w) = 0. (7.40)
�

Proof. First we want to reduce the proof to the case where Γ has no prime bigger than

#W.

Let p be an odd prime dividing #Γ . Let χ be a character on Γ which has decompo-

sition χ = χ1 · χ2 into characters with orders prime to p and a power of p, respectively.

Let Γi = kerχi, then Γ/kerχ = Γ1 · Γ2. The equation in the proposition becomes

0 =
∑

w∈W

χ(w) =
∑

ζ∈χ2(W)

φ
(
ζ, χ1

)
ζ, (7.41)

where

φ
(
ζ, χ1

)
=
∑

w∈Wζ

nζ(w)χ1(w), (7.42)

and whereWζ is the projection of χ−1
2 (ζ) ∩W onto Γ1, and nζ(w) ∈ N such that

∑
ζ

∑
w∈Wζ

nζ(w) = #W. (7.43)

Let K be the cyclotomic field generated by values of φ(δ, χ1). Then K is disjoint with the

field generated by χ2. If χ2 is nontrivial, then the above equation implies that

φ
(
ζ, χ1

)
= φ

(
ζη, χ1

)
, ∀η ∈ µp. (7.44)

If one of the φ(ζ, χ1) �= 0, then χ2(W) contains a coset of µp which contradicts the as-

sumption of the lemma.

By induction on the number of odd prime factors of #Γ , we reduce to the case

where #Γ = 2n is a power of 2, and the equation is

∑
w∈W

n(w)χ(w) = 0, (7.45)
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where n(w) ∈ N such that
∑
n(w) is odd. This is impossible as the only nontrivial rela-

tion among 2nth root (like χ(w)) of unity is ζ + (−ζ) = 0. �
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plane non modulaire [Finiteness of pairs of singular modular invariants over a nonmodular

plane curve], J. reine angew. Math. 505 (1998), 203–208.

[3] A. Brumer and J. H. Silverman, The number of elliptic curves over Q with conductor N,

Manuscripta Math. 91 (1996), no. 1, 95–102.

[4] L. Clozel, H. Oh, and E. Ullmo, Hecke operators and equidistribution of Hecke points, Invent.

Math. 144 (2001), no. 2, 327–351.
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Les XXIIèmes Journées Arithmetiques (Lille, 2001).
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