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1. Introduction

The objective of this paper is to prove an explicit identity between period
integrals of automorphic forms and special values of automorphic L-series. As an
application, we will show that certain Shimura subvarieties on Hilbert modular
varieties are equidistributed. In the following we describe the main results.

1.1. Hilbert modular varieties. Let F be a totally real field with degree d.
Let G = ResF/QPGL2. Then the group G(R) = PGL2(R)d acts on the product
X := (H±)d of Poincaré double-half planes. Let A be the ring of adeles of Q and
write A = R × Q̂, where Q̂ = Af is the finite adeles of Q. For each open and
compact subgroup U of G(Q̂) we have a Hilbert modular variety MU,C over C
whose complex points are given by

MU,C(C) := G(Q)\X ×G(Q̂)/U.

As U varies the family {MU,C} forms a projective system of quasi-projective
varieties over C. This system has a natural action by G(Q̂). Let F+ denote
the group of totally positive elements in F . The set of geometric connected
components over C is given by

π0(MU,C) ' F×\{±1}d × F̂×/ det(U) = F×
+ \F̂×/ det(U)

with the map MU,C(C) −→ π0(MU,C(C)) given by taking determinants.

The homomorphism from C× to GL2(R)d which sends x + yi to((
x y
−y x

)
, · · · ,

(
x y
−y x

))

defines a morphism h0 from S = ResC/R(GL1) to GR. The space X can be
identified with the G(R)-conjugacy class of h0. With respect to h0, the system
of varieties MU,C have canonical models MU over Q which is compatible with
the action of G(Q̂). Thus the variety MU,C has a (left) action of Aut(C) which
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commutes with the right action of G(Q̂). Every geometric component of MU,C
is defined over Qab. The induced action of Gal(Q̄/Q) on π0(MU ) is given by the
composition of the class field theory map

Gal(Qab/Q) ' Q×+\Q̂×

and the multiplication of Q̂× on F̂×. Here the class field theory map is normalized
such that the geometric Frobenius corresponds to the uniformizers. We refer to
Deligne’s paper [5] for the definition of canonical models but notice that our
Galois action is inverse to (the right) Galois action used in Deligne’s paper.

Let us recall the description of Shimura subvarieties of MU . For each point
x ∈ MU (C), the minimal Shimura subvariety of Hodge type containing x can
be defined as follows. Let (h, τf ) ∈ X × GL2(Q̂) represent x. Let H denote the
Zariski closure of h(S) in G as an algebraic subgroup over Q which is called the
Mumford-Tate group of x. The Hodge closure MU,x of x in MU is defined to
be the subvariety of M represented by H(R)h×H(Q̂)τf . The minimal Shimura
subvariety MU,x of Hodge type containing x has the form

MU,x := H(Q)\X ′ × (H(Q̂)/U ′)τf , U ′ := H(Q̂) ∩ τfUτ−1
f , X ′ := H(R)h.

There are basically two different types of Shimura subvarieties for MU up to
conjugations:

• Let k be a subfield of F and D be a quaternion algebra over k with a fixed
embedding into M2(F ). Take H to be the group Resk/Q(D×/k×). The
variety so obtained is called a quaternion subvariety. All these varieties
are defined over Q with Galois action given by the reciprocity law and
the homomorphism

GL1 −→ Resk/QGL1.

• Let K be a totally imaginary quadratic extension of F embedded in
M2(F ). Take H to be the group K×. The variety so obtained is a set
of points, which are called CM-points on MU . All CM-points are defined
over abelian extensions of a certain reflex field K̃.

1.2. Main Theorems. Let k be a fixed subfield of F such that [F : k] = 2.
Let M := MU be the Hilbert modular variety with U the standard maximal
compact subgroup PGL2(ÔF ). Let M0 be the unit connected component of
MU corresponding to the unit element in π0(M) = F×

+ \F̂×/ det U . Let x ∈
M0 be a point such that the Mumford-Tate group H of x has the form H =
Resk/Q(D×/k×) for some quaternion algebra over k embedded into M2(F ).

Let π be an irreducible automorphic representation of PGL2(AF ) which is
spherical with weight 0. Let ϕ ∈ π be its newform. By definition, ϕ is the unique
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spherical function in π such that

(1.2.1) L(s, π) = d
1/2−s
F

∫

F×\A×F
(ϕ− Cϕ)

(
a 0
0 1

)
|a|s−1/2d×a

where dF is the absolute discriminant of F , Cϕ is the constant term of ϕ, and
the measure d×a =

∏
v d×av is the product of local measures d×av such that

vol(O×v ) = 1 if v is finite and d×av = dav/av if v is infinite. We will try to get a
formula for the integration of ϕ on Mx with respect to an invariant measure dh
on Mx:

(1.2.2) `x(ϕ) = vol(Mx(C))−1

∫

Mx(C)
ϕ(h)dh.

Theorem 1.2.1. Assume that either Mx is compact or ϕ is cuspidal, that the
Hodge closure Mx has minimal level, and that the integral `x(ϕ) 6= 0. Then π
is a base change of an automorphic representation σ of GL2(Ak) with central
character η associated to the extension F/k. Moreover the value of the integral
is given by the following formula:

`x(ϕ) =
1√

dkζk(2)
·
∏

v|δD

χv($v)− χv($v)−1

q
1/2
v − q

−1/2
v

· L(1,Sym2σ).

Here

• dk is the absolute discriminant of k;
• δD is the discriminant ideal of Ok for D;
• qv is the cardinality of the residue field of Ok,v at v;
• where χv is an unramified character of k×v such that σv ' π(χv, χ

−1
v ηv), ηv

is the v-component of the central character η, and $v is a local parameter
of kv.

Remark 1.2.2. 1. The proof of Theorem can be extended to more general cases:
where M may have some level N , φ may be a form for the representation Π with
central character of the form χ ◦NF/k with conductor c(ω) prime to N , and Mx

is the quaternion algebra with discriminant prime to c(ω)N . We will have the
periods

`H(ϕ) :=
∫

H(Q)\H(A)
ϕ(h)χ−1(det h)dh.

The nonvanishing of this period will imply that π is the base change of a repre-
sentation σ of GL2(Ak) with central character χ · η. The period `H(ϕ) is equal to
a constant times the value at s = 1 of a certain twisted adjoint L-function of σ.

2. The equivalence between the nonvanishing of period integral and the base
change is well known, which was first proved by Harder, Langlands, and Rapoport
in their work [8] on the Tate’s conjecture at least when D is split and π is holo-
morphic of parallel weight 2. Our explicit formula has two applications: one is the
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equidistribution theorem described as below, and another is about the refinement
of the Tate’s conjecture given by Bloch and Kato [2] which will be considered in
our future work.

In the following we want to describe an application to the distribution of
Shimura subvarieties with arbitrary level. With notations as above, let M0

x de-
note the intersection between M0 and Mx. Now let ϕ be a function on M0(C)
which is smooth with compact support. We want to compute the integral

(1.2.3) `0
x(ϕ) := vol(M0

x(C))−1

∫

M0
x(C)

ϕ(h)dh

with respect to an invariant measure on M0
x(C). To state our result, we define

the order Ox ⊂ D(k) by the formula

Ox = D(k) ∩ τfM2(ÔF )τ−1
f

where τf is determined by x by definition. Let δx denote the (reduced) discrimi-
nant ideal of this order Ok with respect to canonical pairing D(k)×D(k) −→ k
given by

(x, y) 7→ trD/k(xy).

We will show that there are only finitely many quaternion Shimura subvarieties
Mx with bounded discriminants Nk/Qδx.

We also need a bound α for the Fourier coefficients of Maass forms f . Write
the local L-factor of the standard L-function L(s, f) as

Lv(s, f) =
1

(1− av(f)|ωv|sv)(1− a−1
v (f)|ωv|sv)

.

Then α is a positive number such that there are constant C and A depending
only on field k such that

max(|av(f)|, |av(f)|−1) ≤ Cλ(f)Aqα
v

for every Maass eigen form f for PGL2(Ak), where λ(f) is the eigenvalues of
f under the Laplace operator, and qv is the cardinality of the residue field of
Ok. The Peterson-Ramanujan conjecture says that the absolute value of av(f) is
always 1. So α could be any positive number. The recent work of Kim-Shahidi
[13] implies that the inequality hold for α = 1/9 + ε.

Theorem 1.2.3. For any ε > 0 there is a positive number C such that

|`0
x(ϕ)| ≤ C ·Nk/Q(δx)ε+α−1/2.

Thus we have the following equidistribution statement with precise rate of
convergence for quaternion Shimura varieties (with same or different quaternion
algebras):
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Corollary 1.2.4. Let Mi be an infinite sequence of distinct compact quaternion
Shimura subvarieties ofM defined by some x as above. Let ϕ be a smooth function
on M0(C) with compact support. Then `M0

i
(ϕ) converges to

∫
M0(C) ϕ as i −→∞.

The above corollary is a very special case of the following conjecture:

Conjecture 1.2.5. Let Mi be a sequence Shimura subvarieties of MU defined
over a fixed number field E. Assume that no subsequence of Mi is included in a
proper Shimura subvariety of MU . Then Mi is equidistributed.

Remark 1.2.6. 1. A general statement for the so called strongly special subva-
rieties Mi defined by semi-simple group H has been proved by Clozel-Ullmo [3]
using ergodic theory. This includes the case of our Corollary 1.2.4 without precise
rate of convergence.

2. It is not difficult to see that Conjecture 1.2.5 for zero-dimensional subvari-
eties Mi implies the André-Oort conjecture, which is stated below.

Conjecture 1.2.7 (André-Oort, [1], [16], [15]). Let S be a set of CM-points on
MU . Then the Zariski closure S̄ of S is a finite union of Shimura subvarieties
of MU .

Under certain assumption on subconvexity bound for L-series, Conjecture 1.2.5
has been established for CM-points with the maximal Mumford-Tate group by
one of the authors, see [21] for details.

Acknowledgement. The second named author was partially supported by RGC-
CERG grants HKUST6115/02P and HKUST601805. Jiang and Zhang would like
to thank the Hong Kong University of Science and Technology for its hospitality
during the course of this collaboration. Finally we wish to thank the Chinese
Academy of Science and the US National Science Foundation for their continued
generous support.

2. Equidistributions

In this section we will show that the estimate of our periods (Theorem 1.2.3) is a
consequence of the explicit formula of the periods (Theorem 1.2.1). We start with
a classification of quaternion subvarieties in terms of conductors. Then we show
that the cycles generated by these subvarieties are generated by minimal ones.
Finally we show that the equidistribution property follows from the estimates of
the Fourier coefficients of the forms, and special values of the L-series. Note that
we re-introduce notations for the rest of this paper, which are close to, but may
be different from those in §1.



Periods and Distribution of Cycles on Hilbert Modular Varieties 225

2.1. Geometric setting. Let k be a fixed subfield of F such that [F : k] = 2
and D be a fixed quaternion algebra over k. Let ι : D(k) −→ M2(F ) be an
embedding of k-algebras. Note that the existence of such ι is equivalent to D
being split over F . Let G = ResF/Q(PGL2) be the restriction by scalar of PGL2,
which defines an algebraic group defined over Q. Let H = Resk/Q(D×/ZD×)
be the restriction by scalar of D×/ZD× (ZD× is the center of D×), which is an
algebraic group defined over Q and is viewed as an algebraic subgroup of G via
ι.

Let H = D×/ZD× , so that

H(Q) = H(k), and G(Q) = PGL2(F ).

We denote by A the ring of adeles of Q. Let τ ∈ G(A) = PGL2(AF ) be an
element with the Mumford-Tate group H. Then the right multiplication by τ
gives rise to a morphism

ιτ : MD,τ := H(Q)\H(A)/UD,τ −→M = G(Q)\G(A)/U

where U is the standard maximal compact subgroup of G(A) and UD,τ = τUτ−1∩
H(A). Note that τ has Mumford-Tate group H if and only if for every infinite
place v of k,

• (UD,τ )v is a maximal connected compact subgroup of H(kv),
• the manifold H(kv)/(UD,τ )v has a complex structure via the embedding

ιτv .

Our first task is to classify the subvarieties

Mι,τ := ιτ (MD,τ )

of M. For each τ with the Mumford-Tate group H as above, we define the order
Oι,τ ⊂ D(k) by the formula

ι(Oι,τ ) = ι(D(k)) ∩ τM2(ÔF )τ−1.

Let δι,τ denote the (reduced) discriminant ideal in Ok of this order with respect
to the canonical pairing D(k)×D(k) −→ k given by

(x, y) 7→ trD/k(xy).

Proposition 2.1.1. Fix a quaternion algebra D over k which is split over F .
The map

Mι,τ −→ δι,τ

is well defined and bijective between the set of Shimura subvarieties of M defined
by some data (ι, τ) and the set of nonzero ideals of Ok of the type δD · NF/kN
where δD is the discriminant of D and N is an ideal in OF .
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We call c = NF/kN the conductor of Mc := Mι,τ .

The proof of Proposition 2.1.1 reduces to those of Lemma 2.1.2 and Lemma
2.1.3. First, we show the map given in Proposition 2.1.1 is well-defined.

Since D is split over F , via the embedding ι, we may write D = F + Fλ with
λx = x̄λ for all x ∈ F . Then the embedding ι can be expressed as

(2.1.1) x + yλ 7→ γ

(
x yε
ȳ x̄

)
γ−1.

where γ ∈ GL2(F ) and ε = λ2 ∈ k×. We write Hε,γ for the image of H. Then

Mι,τ = G(Q)\G(Q)Hε,γ(A)τU/U = G(Q)\G(Q)Hε,1γ
−1τU/U.

With τ replaced by γ−1τ , we may assume γ = 1 for all Mι,τ . The subvariety
Mι,τ is completely determined by the double coset of τ in H(A)\G(A)/U .

It follows that for different choices of representatives in the double coset of
τ the completion Ôι,τ of Oι,τ in D(Ak,f ) is conjugate to each other. Thus δι,τ

depends only on the double coset of τ . Moreover the order Oι,τ containing OF

will have the form
OF +NOD

where OD is a fixed maximal order of D containing OF and N is an ideal of
OF . The discriminant of this order is given by δD ·NF/kN . Since the conjugacy
class of Ôι,τ in D(Ak,f ) depends only on δι,τ , the map in Proposition 2.1.1 is
well-defined.

Now let us analyze the nature of τ∞. By choosing different λ in the decompo-
sition, we may assume that

• ε is totally negative.

Lemma 2.1.2. The element τ has Mumford-Tate group H if and only if for
every pair (v1, v2) of conjugate real places of F over a real place v of k,

τv2 ∈ λvτv1 · SO2(kv) · k×v
where λv =

(
0 ε
1 0

)
.

Proof. Fix a real place v of k. The subgroup H(kv) of

PGL2(Fv) = PGL2(kv)× PGL2(kv)

consists of pairs (g1, g2) of the form

g1 =
(

a bε
c d

)
, g2 =

(
d cε
b a

)
.

In other words, H(kv) consists of pairs of type (g, λgλ−1). Now, τ is of Hodge
type if and only if the following two conditions are satisfied:
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• the subgroup Uv of elements g ∈ PGL2(kv) such that

(τ−1
v1

gτv1 , τ
−1
v2

λvgλ−1
v τv2) ∈ SO2(kv)2

is conjugate to SO2(kv).
• two maps

Ad(τv1),Ad(τv2λ
−1
v ) : GL2(Fv)/Uv −→ H±

induces the same complex structure on GL2(Fv)/Uv.

The first condition is equivalent to that

λvτv1SO2(kv)τ−1
v1

λ−1
v = τv2SO2(kv)τ−1

v2
.

In other words,
τv2 ∈ λvτv1 ·O2(kv) · k×v .

The second condition is equivalent to that det(τv1) has the same sign as det(τv2λ
−1
v ).

Thus we may replace O2 by SO2. The lemma follows. ¤

This lemma shows that the class of τ∞ in H(R)\G(R)/U∞ is really fixed. We
may simply fix such an element as

(2.1.2) τv = (1, λv). (v | ∞)

It remains to analyze the nature of τf . Let OD be any fixed maximal order of
D(k) containing OF . Let N be any ideal of OF and consider the order

ON = OF +NOD.

Let τN be a fixed element in G(Af ) such that

(2.1.3) O2
F = (0, 1)ON τN .

The existence of such τN is obvious as (0, 1)ON is an OF -lattice in F 2.

Lemma 2.1.3. The variety Mι,τ has discriminant δι,τ = δD · NF/k(N ) if and
only if

τf ∈ H(Af ) · τN · U.

Proof. Let Λ be the lattice in D defined by the equation

O2
F = (0, 1) · Λ · τf .

Then Λ is a bi-OF module. It is thus a left invertible module over some order R
of D containing OF . In other words we have the equality

O2
F = (0, 1)Rhτf

where h ∈ H(Af ). Replacing τ by hτ we may assume that h = 1. We claim that

τfM2(OF )τ−1
f ∩D(Ak,f ) = R.
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Indeed for g ∈ D(Ak,f ), g ∈ τfM2(OF )τ−1
f if and only if

O2
F τ−1

f gτf ⊂ O2
F

This is equivalent to saying that (0, 1)gτf ⊂ (0, 1)Rτf or equivalently, that g ∈ R.

Now the discriminant δι,τ equals δD ·NF/k(N ). Thus R is conjugate to ON by
elements in H(Af ). With τ replaced by a certain element in the coset H(Af )τf

we may simply assume that R = ON . Now we have the equality

O2
F τ−1

f = (0, 1)ON = O2
F τ−1
N .

Hence we must have τf ∈ τNU . ¤

2.2. On Hecke orbits. For the fixed quaternion algebra D over k, which is
embedded into M2(F ) via ι, we have just shown that all Shimura varieties Mι,τ

defined by certain elements τ of the Mumford-Tate group D×/k× are indexed
by ideals c of Ok which are norms from ideals N of OF . We may normalize
N as follows: write c = c′′(c′)2 with c′′ square free, then N = c′N ′′ with c′′ =
NF/k(N ′′).

The main result of this subsection is to show that the Shimura subvariety
Mc := Mι,τ of conductor c is in the Hecke orbit of the Shimura subvariety Mmin

of minimal level. For an ideal n of OF , let Tn be the Hecke operator defined by
integral matrices in M2(F ) of determinant n. Now we define a Hecke operator
T∗n by the formula

T∗n =
∏
v

T∗nv

where T∗nv
is a Hecke operator at the place v of k given by

T∗nv
=µ(nv)−1

{
Tnv if v | δD

Tnv − (1 + |$v|−1)Tnv/$v
+ |$v|−1Tnv/$2

v
otherwise.

where µ(nv) is a number to make the degree of T∗nv
to be 1. In other words,

µ(nv) =

{
σ1(nv) if v | δD

σ1(nv)− (1 + |$v|−1
k )σ1(nv/$v) + |$v|−1

k σ1(nv/$2
v) otherwise.

where σ1(n) =
∑

m|n NF/Q(m).

Proposition 2.2.1. The following identity of cycles in M with rational coeffi-
cients holds:

Mc = T∗cMmin
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Our plan to prove this Proposition is to express TnMmin as a sum of Mc and
try to convert the formula for any ideal n of OF . Let Hn denote the set of integral
matrices in M2(OF ) of determinant n then we have an expression

TnMmin =
∑

i

Mτgi

where τ is an element in G(A) with the Mumdord-Tate group D×/k× such that
Mmin = Mτ and gi are representatives of Hn/H1. Thus the multiplicity m(n, c)
ofMc in TnMmin is the number of τgi with conductor c. Let Λi be the submodule
of D such that

(0, 1)Λiτgi = O2
F

then Λi is an invertible module over an order

Ri = {x ∈ D : xΛi ∈ Λi}.
The conductor of τgi is the conductor of Ri. Recall that we may normalize τ by
the following expression:

(0, 1)ODτ = O2
F ,

and thus we have
(0, 1)ODτgi = O2

F gi.

Since O2
F gi runs through the submodules of O2

F of index n, the modules Λi will
run through submodules of OD of index n. Thus the multiplicity m(n, c) of Mc

in TnMmin runs through the set of sublattices of OD of index n with conductor
c.

For each ideal N of OF , let RN denote the order

RN = OF +NOD

and let m(n,N ) denote the number of RN -invertible module inOD of determinant
n. Then

m(n, c) =
∑

NF/k(N )=c

m(n,N ).

Note that for a fixed N , an invertible R-submodule Λ in OD has the form
RNx := OD ∩ R̂Nx with x a nonzero element in ÔD. The element x is uniquely
determined up to multiplication by elements in R̂×

N . The index of RNx is given
by

N · det x = n.

Thus m(n,N ) is the number of elements in R̂×
N \ÔD of determinant nN−1. This

is the same as the product of [Ô×D : R̂×
N ] and the set of elements in Ô×D\OD with

determinant nN−1.

For each n, we may write n = n′n′′ where n′ is the maximal factor of n in
Ok. Since det x ∈ Ok, the N must have the form n′′N ′ with N ′ dividing n′.
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Also since N is normalized with norm c = c′′(c′)2, one must have c′ = N ′ and
c′′ = NF/k(n′′).

In summary, we have obtained that TnMmin is the sum of Mc’s for c having
the form c = NF/k(n′′)(c′)2 with c′ dividing n′. Moreover, the multiplicity of Mc

in TnMmin is given by

m(n, c) = µ(c) ·#{x ∈ Ô×D\ÔD,det x = n′/c′}
where µ(c) is the index of R̂× in ÔD and R is an order of conductor c.

Now for an integer d ≥ 0 and a finite place v of k, let us compute the number
of elements x ∈ O×Dv

\ODv with order d. If Dv is not split, there is only one such
element. If Dv is split, then the number we want is

σ1($d
v) =

d∑

i=0

|$v|−i.

Thus we obtain

TnMmin =
∑

c′|n′
µ(NF/k(n

′′)c′2)σD
1 (n′/c′)MNF/k(n′′)c′2

where σD
1 (n) is computed only at places over which Dv is split.

Now we try to convert this formula. The question is purely local. We fix a
place v of k and consider ideals n = n′n′′ of OF,v with n′′ fixed and n′ = $i

v

running through all ideals of Ok,v. Now consider formal power series of t:
∑

i

Tn′′$i
v
Mmin · ti =

∑
m

σD
1 ($m

v )tm
∑

j

µ(NF/k(n
′′)$2j

v ) · MNF/k(n′′)($v)2j · tj .

Notice that
∑
m

σD
1 ($m

v )tm =

{
(1− |$i|−1t)−1(1− t)−1 if v | δD

1 otherwise
.

We thus obtain∑

j

µ(NF/k(n
′′)$2j) · MNF/k(n′′)$2j · tj =

∑

i

Tn′′$iMmin · ti

·
{

(1− |$i|−1t)(1− t) if v | δD

1 otherwise
.

It follows that

µ(NF/k(n
′′)$2j) · MNF/k(n′′)$2j

=

{
Tn′′$jMmin if v | δD

Tn′′$jMmin − (1 + |$v|−1)Tn′′$j−1Mmin + |$v|−1Tn′′$j−2Mmin, otherwise.
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This completes the proof of Proposition 2.2.1.

2.3. From Theorem 1.2.1 to Theorem 1.2.3. In this section we show that
Theorem 1.2.3 follows from Theorem 1.2.1. Let ϕ be a smooth function on M0

with compact support. Let Mx be a sequence of Shimura subvarieties in M
defined by datum (D, c) where D is a quaternion algebra over k and c is the
conductor ofMx. Assume that the intersectionM0

x ofMx withM0 is nonempty.
We need to estimate the integral `M0

x
(ϕ). We may extend ϕ to all ofM by setting

ϕ = 0 at other components and write

`M0
x
(ϕ) = (#π0(M))−1

∑
α

`Mx(ϕα)

where the summation runs through the characters α of the group of the connected
components π0(M) which are also considered as functions on M, and

(2.3.1) `Mx(ϕ) = vol(Mx)−1

∫

Mx

ϕ(h)dh.

Thus the question is reduced to estimate `Mx(ϕ). Here ϕ is identified with the
spherical function (also denoted by ϕ) on G(Q)\G(A).

Consider the spectral decomposition:

(2.3.2) ϕ =
∑

cnϕn +
∫

Ω
cµEµdµ

where ϕn’s are discrete (cuspidal or residual) eigenform under Hecke operators
with norm 1, and µ runs through the set Ω of characters of F×\A×F modulo
equivalence µ ∼ µ−1, and Eµ is certain form of norm 1.

For the discrete spectrum, we may take ϕn to be characters of G(Q)\G(A), or

ϕn = ‖ϕnew
n ‖−1ϕnew

n

with ϕnew
n newforms. For the continuous spectrum, we may take Eµ to be

Eµ = |L(1, µ2)|−1Enew
µ

where Enew
µ is the newform in π(µ, µ−1). The measure dµ is induced from a

Haar measure on the topological group of idele class character of F . Since ϕ is
compactly supported we have

‖ϕ‖2 =
∑

|cn|2 +
∫

Ω
|cµ|2dµ < ∞.

Moreover, ∆Nϕ is still compactly supported,

‖∆Nϕ‖2 =
∑

|cnλN
n |2 +

∫

Ω
|cµλN

µ |2dµ < ∞

where λi (resp. λµ) are eigenvalues of ϕi (resp. Eµ ) under ∆. Thus cn (resp.
cµ) decays faster than any negative power of λn (resp. λµ). It can be shown that
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‖φn‖sup is bounded by a polynomial function of λn. Thus, the sum of the right
hand side of (2.3.2) is absolutely convergent point-wisely. Similarly, for a fixed
compact domain E of M(C), it can be shown that supx∈E |Eµ(x)| is bounded by
a polynomial function of λµ. Thus, the integral of the right hand side of (2.3.2)
are absolutely and uniformly convergent on E. See Clozel-Ullmo [4], Lemma
7.2-7.4 for a complete proof. It follows for each compact Mx that

`Mx(ϕ) =
∑

cn`Mx(ϕn) +
∫

Ω
cµ`Mx(Eµ)dµ.

Thus it suffices to show the following:

Proposition 2.3.1. For any ε > 0, there are positive numbers C and N such
that for any new form ϕ (which is either cuspidal or Eisenstein):

|`MD,c
(ϕ)| ≤ C · ‖ϕ‖ · λ(ϕ)N ·Nk/Q(δD,c)ε+α−1/2

where

• ‖ϕ‖ = |L(1, µ2)| if ϕ ∈ π(µ, µ−1),
• α is a positive number such that

|χv($v)| << |$v|−α

for every finite place v where χv is an unramified character of k×v such
that πk,v = (χv, χ

−1
v ηv).

It remains to prove this Proposition. By Proposition 2.2.1 we have

`MD,c
(ϕ) = λϕ(T∗c)`MD,1

(ϕ)

where λϕ(T∗c) is the eigenvalue of ϕ under the Hecke operator T∗c . Now the
question is reduced to the estimate of λϕ(T∗c) and `MD,1

(ϕ).

By Theorem 1.2.1 and property of α in the Proposition, we have

|`MD,1
(ϕ)| << Nk/Q(δD,1)ε+α−1/2λ(ϕ)ε.

It remains to estimate λϕ(T∗c). Notice that the eigenvalues of ϕ under Tn is
given by an|n|−1/2, where an is the n-Fourier coefficient of f which is bounded
by NF/Q(n)α+1/2. It follows that

|λϕ(T∗c)| << Nk/Q(c)ε+α−1/2.

This proves the proposition.

Notice that we can forget ‖ϕ‖ in Proposition 2.3.1, because the following esti-
mate is well known:

λ(ϕ)ε >> ‖ϕ‖ >> λ(ϕ)−ε

for λ large and any ε > 0.



Periods and Distribution of Cycles on Hilbert Modular Varieties 233

3. Periods of Eisenstein series

This section is devoted to the proof of Theorem 1.2.1 for Eisenstein series.
After a direct computation, the period with respect to a standard measure is
expressed as a product of local integrals of Godement-Jacquet type. From this
expression we obtain the volumes of the cycles and deduce Theorem 1.2.1 for
Eisenstein series.

3.1. First computations. We are going to study the nonvanishing condition
and its explicit formula for the following period integral

(3.1.1)
∫

H(k)\H(Ak)
ϕ(hτ)dh

with ϕ being an Eisenstein series on G(A) = PGL2(AF ). Here recall that H =
D×/k× with D = F + Fλ a quaternion algebra over k embedded into M2(F ) by
ι defined in (2.1.1) with γ = 1:

ι(x + yλ) =
(

x yε
ȳ x̄

)
.

Before we begin our explicit computation, let us fix the standard measures on
various groups as follows.

(1) For GL1(AF ) (or GL1(Ak)), we choose a measure d×t = ⊗d×tv such
that vol(O×F,v) = 1 for all finite places and such that d×x = dx/x at
archimedean places.

(2) For GL2(AF ) (or D×(Ak)) we choose measures with local decomposition
dg = ⊗dgv such that at a finite place, the maximal compact subgroup has
volume 1. At an infinite place v with coordinates given by the Iwasawa
decomposition

g =
(

z 0
0 z

)(
y x
0 1

)
k, k ∈ SO2(R)

we take
dg = d×z · d×y · |y−1dx| · dk

where d×x is the Harr measure dx/x on R×, dk is a Haar measure on
SO2(R) of volume 1.

In this section we write G(Q) = PGL2(F ) and B(F ) = T (F )N(F ) the stan-
dard Borel subgroup of PGL2(F ) with T the diagonal matrices, and N the unipo-
tent subgroup. Let µ be a character of AF

×/F×, which is also a character of

T (AF )/T (F ): if m =
(

a 0
0 b

)
, then we have

µ(m) := µ
(a

b

)
.
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We write |m| for the character |a/b|. We consider the induced representation

(3.1.2) I(µ) = IndPGL2(AF )
B(AF ) (µ),

which consists of smooth complex functions f on PGL2(AF ) satisfying the fol-
lowing property:

f(bg) = µ(m)|m|1/2 · f(g).

We define an Eisenstein series for each f ∈ I(µ) by

(3.1.3) E(g;µ, f) =
∑

γ∈B(F )\PGL2(F )

f(γg).

It is known that the Eisenstein series converges absolutely for the real part of µ
large and has a meromorphic continuation to the whole domain of µ. Now we take
ϕ to be E(g;µ, f) in the integral (3.1.1). We need the following decomposition:

Lemma 3.1.1. Let B be the standard Borel subgroup of GL2, then

GL2(F ) = B(F ) ·D×.

if D is non-split; and

GL2(F ) = B(F ) ·D×∐
B(F )αD×

if D is split. Here α is an element such that

αDα−1 = M2(k).

Proof. Let g =
(

a b
c d

)
be an element in GL2(F ). We try to find an h =

(
x yε
ȳ x̄

)

in D× such that gh is triangular. We may assume that c = 1. In this case, we
may take h with x = d and y = −1. This element has determinant dd̄− ε which
is non split if ε is not a norm from F . For split group GL2(k), one has

GL2(F ) = B(F ) ·GL2(k)
∐

B(F ) · h ·GL2(k)

where h is any element not in

B(F ) ·GL2(k) = B(F ) · αD×α−1.

In other words,

GL2(F ) = B(F ) · hD×∐
B(F ) · h · αD×.

The lemma follows by taking h = α−1. ¤

By this lemma, we have that the natural embedding H −→ G induces a bijec-
tion

B(F )\PGL2(F ) ' (B(F ) ∩H(k))\H(k) ' F×\D×
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if D is non split; and

B(F )\PGL2(F ) ' F×\D×∐
α ·BH(k)\H(k)

if D is split, where BH is a Borel subgroup of H. Thus when the real part of µ
is large and D is nonsplit, we have∫

H(k)\H(Ak)
E(hτ ;µ, f)dh =

∫

H(k)\H(Ak)

∑

γ∈B(F )\PGL2(F )

f(γhτ)dh

=
∫

F×A×k \D×(Ak)
f(hτ)dh.(3.1.4)

We assume that µ = µ0 · | · |sAF
. For any a ∈ F×, we have

f(ι(a)g) = µ0

(a

ā

)
f(g).

It follows that the last integral in (3.1.4) can be written as follows:
∫

F×A×k \D×(Ak)
f(hτ)dh =

∫

A×F \D×(Ak)

∫

F×A×k \A×F
f(thτ)dtdh

=
∫

A×F \D×(A)
f(hτ)dh

∫

A×k ·F×\A×F
µ(

a

ā
)d×a.(3.1.5)

It is clear that

C(µ) =
∫

A×k ·F×\A×F
µ(

a

ā
)d×a

is a well defined constant depending on the character µ. Note that C(µ) vanishes
if and only if µ(α) 6= µ(ᾱ), i.e. the character µ is not stable under the Galois
twist of Gal(F/k).

When D is split, then we have G(Q) = PGL2(F ) and H(Q) = GL2(k). The
period of the Eisenstein series∫

H(Q)\H(A)
E(hτ ;µ, f)dh

can be regularized as in [12]. It was calculated explicitly in Example 6 on Page
238 of [12] that the regularized period of E(hτ ;µ, f) is equal to

∫

F×A×k \D×(Ak)
f(hτ)dh.

Thus we reach the following:

Lemma 3.1.2. The period∫

H(k)\H(Ak)
E(hτ ;µ, f)dh
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does not vanish, i.e. E(hτ ;µ, f) is H(Ak)-distinguished for embedding defined by
(ι, τ) only if µ is Gal(F/k)-stable; in this case it equals to

vol(A×k F×\A×F )
∫

A×F \D×(Ak)
f(hτ)dh.

This is in fact expected from the general theory of quadratic base change from k
to F for GL2. More precisely, π(µ, µ−1) is the base change of the representation
π(χ, χ−1η) on GL2(Ak) when χ is the character on k×\A×k such that µ(x) =
χ ·NF/k(x).

3.2. Godement-Jacquet integrals. In the following we assume that the char-
acter µ is Gal(F/k)-stable. Since E(g, µ, f) is spherical, one must have that µ is
unramified at all finite places, and up to a constant multiple, f = µ−1(δF )fφ for
a standard Bruhat-Schwartz function φ in S(A2

F ):

(3.2.1) fφ(g) = µ(det(g)) · |det(g)|
1
2
AF
·
∫

A×F
φ((0, t)g)µ2(t)|t|AF

d×t.

Here φ = ⊗φv is decomposable with φv given as follows:

• for v a finite place of k, φv is the characteristic function of O2
v .

• for v an archimedean place of F , φv(x, y) = e−π(x2+y2).

It is easy to check that fφ is left A×F -invariant since µ is Gal(F/k)-stable. Now
we compute for the section fφ the local period integral in Lemma 3.1.2.

∫

A×F \D×(Ak)
fφ(hτ)dh =

∫

A×F \D×(Ak)
µ(det(hτ)) · |det(hτ)|

1
2
AF
·

·
∫

A×F
φ((0, t)hτ)µ2(t)|t|AF

d×tdh.

By changing the variables, the last integral is equal to
∫

D×(Ak)
φ((0, 1)hτ)µ(det(hτ))|det(hτ)|

1
2
AF

dh.

Therefore, we obtain

Lemma 3.2.1. Let ϕ be a Bruhat-Schwartz function on D(A) defined by

ϕ(h) = φ((0, 1)hτ).

Let χ be a character of k×\A×k such that µ = χ ◦NF/k. Then
∫

A×F \D×(Ak)
fφ(h)dh = χ(NF/k det τ)|det τ |1/2

F Z(χ2, ϕ)
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where Z(χ2, ϕ) is the Godement-Jacquet integral:

Z(χ2, ϕ) :=
∫

D×(Ak)
ϕ(h)χ2(det(h))|det(h)|kdh.

Note that this last integral is a special case (n = d = 2) studied in Godement-
Jacquet’s book [7], Proposition 4.4. This integral is a product of the corre-
sponding local integrals Z(µv, ϕv) with respect to a decomposition of measures
dh = ⊗dhv. In the following we want to evaluate this integral for the case where
τ satisfies conditions (2.1.2) and (2.1.3) for trivial ideal N = OF . We normalize
the measure dxv which is standard at achimedean place and that vol(OD,v) = 1
at finite places v where OD is a maximal order of D.

Lemma 3.2.2. Let v be a finite place of k. Then

Z(χ2
v, ϕv) =

{
L(1, χ2

v)L(0, χ2
v), if Dv is split;

L(1, χ2
v), otherwise.

Proof. By our assumption (2.1.3), ϕv is the characteristic function of OD,v, a
maximal order of Ov. It follows that

Z(χ2
v, ϕv) =

∑

n≥0

vol(Ov(n))χ2
v($)n|$|n

where Ov(n) is the set of integral matrices in OD,v whose determinant have order
n.

If Dv is not split, then OD,v(n) = $n
Dv
O×D,v. It follows that

Z(χv, ϕv) =
∑

n≥0

χ2
v($)n|$|n = L(1, χ2

v).

Now assume that Dv is split. Then there is an isomorphism Dv ' M2(kv)
such that Ov ' M2(Okv). It is well-know that Ov(n) has decomposition into
O×D,v-coset:

Ov(n) =
∐

i+j=n
x mod $i

(
$i x
0 $j

)
O×D,v.

It follows that
vol(Ov(n)) =

∑

i+j=n

|$|−i

Z(χ2
v, ϕv) =

∑

n≥0

∑

i+j=n

χ2
v($)i+j |$|j = L(0, χ2

v)L(1, χ2
v).

¤

It remains to compute the integral at an archimedean place v.
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Lemma 3.2.3. Let v be an archimedean place, then

Z(χ2
v, ϕv) = L(0, χ2

v)L(1, χ2
v).

Proof. In this case, Fv = R2, and the subalgebra Dv is split and consists of
matrices

h =
(

a bε
b̄ ā

)
=

((
α β
γ δ

)
,

(
δ γε

βε−1 α

))
.

Take

τv =
(

1,

(
0 ε
1 0

))
.

The function ϕ is given by

ϕ(h) = φ((0, 1)hτv)) = e−πQ(h)

where for h =
(

α β
γ δ

)
,

Q(x) = α2 + β2 + γ2 + δ2.

Thus

Z(χ2, ϕ) =
∫

GL2(R)
e−πQ(h)χ2(det(h))|det h|dh.

Notice that Q(h) does not change under the translation of Uv := SO2(R). Thus
we have

Z(χ, ϕ) =
∫

B(R)
e−πQ(b)χ2(det(b)) · |det(b)|db

=
∫

e−πt2(1+x2+y2)χ2
v(t

2y)|t2y||y|−1dxd×yd×t

=L(0, χ2
v)L(1, χ2

v)

¤

To compute the integral in Lemma 3.2.1, it remains to compute NF/k(det τ).

Lemma 3.2.4. Assume that conditions (2.1.2) and (2.1.3) hold for trivial ideal
N = OF . Let δF , δD ∈ A×k be ideles with trivial infinite components such that
their finite components generate the relative discriminants of F and D over k.
Then we have

NF/k(det(τ)) ≡ −εδF δ−1
D mod Ô×k .

Proof. Obviously, by (2.1.2), there is nothing to prove for archimedean places.
So we need only treat the nonarchimedean places. We identify D with F 2 by the
isomorphism

x ∈ D −→ (0, 1)x ∈ F 2.
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Thus the trivial lattice O2
F in F 2 corresponds to the lattice OF + OF · λ. By

(2.1.3),
OD = (OF +OF λ)τ−1.

Recall that the discriminant disc(OD) is a fractional ideal of k such that

det(OD) = disc(OD)2 det(O∨D)

in det(D) = ∧4(D), where O∨D is the dual of OD with respect to the following
pairing on D:

(x, y) = trD/k(xȳ).

We want to compute the discriminant for OD by the above explicit description.
Thus we need to compare detOD and detO∨D. Since OD is a module over OF ,
we may identify

(3.2.2) detOD = NF/k(detFOD)

where detF means the determinant of OD as OF -module, and NF/k(detF OD) is
an OF -module generated by symbols NF/k(t) for t ∈ detF Λ with relation

NF/k(at) = NF/k(a)NF/k(t), a ∈ OF .

It is easy to see that in this identification:

(3.2.3) detOD = OF NF/k(det τ)−1NF/k(1 ∧ λ).

It remains to compute O∨D and detO∨D. We will use the following identity:

(x, y) = trF/k(x, y)F

with
(x, y)F = ρF (xȳ)

where ρF is the projection of D onto F with respect to the decomposition:

D = F + Fλ.

Then, for x ∈ D, x ∈ O∨D if and only if tr(xOD) is integral, and the later is
equivalent to that

ρF (x̄Λ)F ⊂ O∨F
where O∨F is the dual of OF with respect to trF/k. Thus we have

O∨D = O∨F · O∗D
where O∗D is the dual of OD with respect to (·, ·)F .

Let τ∗ denote the adjoint of τ with respect to (·, ·)F :

(xτ, y)F = (x, yτ∗)F .

Then
O∗D = (OF +OF ε−1λ)τ∗.
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Thus we obtain
O∨D = O∨F · (OF + ε−1OF λ) · τ∗.

It follows that

detO∨D =NF/k(detO∨D) = NF/k((O∨F )2 · ε−1 det(τ∗)(1 ∧ λ))

=Ok,vε
−1δ−2

F/kN(det τ)N(1 ∧ λ).(3.2.4)

Now (3.2.3) and (3.2.4) imply that

disc(OD) = εδF N(det τ)−1

The identity in the lemma follows. ¤

By the above lemmas, our global formula can be stated as follows:
∫

H(k)\H(Ak)
E(hτ, µ, f)dh =χ−1(NF/kδF )vol(A×k F×\A×F ))L(0, χ2)L(1, χ2)·

· χ(δF/k/δD)d−1/2
F/k d

1/2
D

∏

v|δD

(1− χ2
v($v)).

We may write every thing in terms of the representation σ = π(χ, χ−1η), using
the following identities:

vol(A×k F×\A×F ) = 2d
1/2
F d

−1/2
k L(1, η),

L(0, χ2) = χ2(δk)d
1/2
k L(1, χ−2),

NF/kδF = δF/kδ
2
k,

χ(δD)−1
∏

v|δD

(1− χv($v)) =
∏

v|δD

λ∗v.

Proposition 3.2.5. Let dk and dD denote the absolute norms of the discrimi-
nants of k and D respectively. Then

∫

H(k)\H(Ak)
E(hτ, µ, f)dh = 2dkd

1/2
D L(1,Sym2σ)

∏

v|δD

(χv($)− χ−1
v ($))

3.3. Volumes of Shimura subvarieties. In this section we compute vol(H(k)\H(Ak))
and deduce a formula from Proposition 3.2.5 for `H(ϕ) as in Theorem 1.2.1 when
ϕ is our standard Eisenstein series

ϕ = E(g;µ, f).

We will actually use Proposition 3.2.5 and analyze poles of the Eisenstein series.
First of all we need to compute the constant term of the Eisenstein series.



Periods and Distribution of Cycles on Hilbert Modular Varieties 241

Let dx be the Haar measure on AF such that together with the counting
measure on F it gives rise to the normalized measure on F\AF with volume 1.
Then the constant term of the Eisentsetin series is given by

C(g;µ, f) :=
∫

F\AF

E(n(x)g;µ, f)dx =
∫

F\AF

∑

γ∈B(F )\GL2(F )

f(γn(x)g)dx

where n(x) =
(

1 x
0 1

)
. Using decomposition

GL2(F ) = B(F )
∐

B(F )wN(F ), w =
(

0 1
−1 0

)

one obtains

C(g;µ, f) = f(g) + f̃(g), f̃(g) =
∫

AF

f(wn(x)g)dx.

To compute f we observe that f is invariant under the right translation by U
and has character

µB := (µ| · |1/2, µ−1| · |−1/2)

under the left translation of B. Thus, we need only to compute f(e):

f(e) = µ−1(δF )
∫

A×F
φ((0, t))µ2(t)|t|AF

d×t = µ−1(δF )L(1, µ2).

Similarly, f̃φ is invariant from right by U and has character

µ̃B = (µ−1| · |−1/2, µ| · |1/2).

Thus, we also need only to compute f̃φ(e):

f̃(e) =
∫

AF

f(wn(x))dx = µ−1(δF )
∫

AF

∫

A×F
φ((0, t)wn(x))µ2(t)|t|AF

d×tdx

=µ−1(δF )
∫

AF

∫

A×F
φ(−t,−tx)µ2(t)|t|AF

d×tdx

Using the change of variables x −→ −xt−1, t −→ −t, we obtain

f̃(e) =µ−1(δF )
∫

A×F

∫

A
φ(t, x)µ2(t)dxd×t

=µ(δF )−1L(0, µ2)|δF |1/2.

Note that the first pole of f̃ from the right hand side is at µ = ‖ · ‖1/2 and has
a constant residue. Thus we obtain the following:
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Lemma 3.3.1. The Eisensetin series E(g;µ, f) for µ(x) = |x|s has a pole at
s = 1/2 with residue given by

lim
s→1/2

(s− 1/2)ζF (2s).

Now we take the residue at s = 1
2 from both sides of the identity in Proposition

3.2.5 for µ(x) = |x|sF , χ(x) = |x|sk. By Lemma 3.3.1, we then obtain

vol(H(k)\H(Ak)) = d
1/2
D dk lim

s−→1/2

L(1,Symσ)
ζF (2s)

∏

v|δD

(|$v|s − |$v|−s).

Recall

L(1,Sym2σ) =L(1, χ2)L(1, χ−2)L(1, η)

=ζk(1 + 2s)ζk(1− 2s)L(1, η)

=ζk(1 + 2s)d1/2
k d2s−1

k ζk(2s)L(1, η)

It follows that

Proposition 3.3.2. We have the explicit formula:

vol(H(k)\H(Ak)) = 2d
1/2
D d

3/2
k ζk(2)

∏

v|δD

(|$v|1/2 − |$v|−1/2).

Combined with Proposition 3.2.5, this proves the Theorem 1.2.1 in the case of
Eisenstein series.

4. Theta lifting

In this section, we will study periods of cusp forms using theta lifting. More
precisely, we will identify ResF/k(PGL2) (resp. D×/k× ) as the adjoint group
of GSO(V ) (resp. the group SO(V1)) with V the space of hermitian matrices
(resp. with V1 a subspace of V of codimension 1). Then the theta lifting gives
a correspondence between forms on GSO(VAk

) and GL(2,Ak)+, the subgroup of
GL2(2,A) with determinants in NF/k(A×F ). We will show that for a form ϕ on
GSO(V ), the nonvanishing of the periods over H implies that ϕ is a theta lifting
from f on GL(2,A)+. Then we can use the Siegel-Weil formula to evaluate the
periods and show that Theorem 1.2.1 is true up to certain universal constant at
a finite number of bad places. All these results can be extended to Eisenstein
series which will be used in the final determination of these universal constants.
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4.1. The Isogeny. We first describe a homomorphism from ResF/k(GL2) to an
orthogonal group attached to a quadratic form over k in 4 variables.

Recall that F/k is a quadratic extension of totally real fields. Denote by
x −→ x̄ the Galois involution of F over k, and let V be the space of 2 × 2
hermitian matrices with entries in F . This is a vector space over k of dimension
4. We define a quadratic form q on V via q(x) = det(A). Note that

det(A) = det
(

a b
b̄ d

)
= ad− bb̄.

Thus q has signature (2, 2) over any real place of k, but its Witt index over k is
1. The associated symmetric bilinear form is

(A,B) = tr(AB∗)

where
B∗ = tr(B)I −B.

We write O(V ) for the orthogonal group of V , GO(V ) for the group of orthogonal
similitudes, and GSO(V ) and SO(V ) the connected components of identity for
GO(V ) and O(V ) respectively.

Description of GO(V ).

Proposition 4.1.1. Let a ∈ k× act on V via scalar multiplication by a, and let
c act on V by conjugation on F/k. Let γ ∈ GL2(F ) act on V by

(4.1.1) γ(A) = γAγ̄t.

Then:

(1) GO(V ) is generated by γ ∈ GL2(F ), a ∈ GL1(k), and c with similitudes
given by

NF/k(det γ), a2, 1
respectively.

(2) GSO(V ) is generated by GL1(k) and GL2(F ), and is equal to the quotient
of k××GL2(F ) modulo the subgroup of elements (N(z)−1, zI2) for z ∈ F×.

(3) SO(V ) is the subgroup of GSO(V ) of elements (α, γ) such that

α2NF/k(det γ) = 1.

Proof. We need only prove (1). It follows from the definition that the described
actions by GL2(F ), k×, and c are indeed in GO(V ). We want to show that every
element g ∈ GO(V ) is a composition of these three kinds of operators.

The space V has a decomposition V = ke1 + ke2 + Fe3 with

e1 =
(

1 0
0 0

)
, e2 =

(
0 0
0 1

)
, e3 =

(
0 1
1 0

)
.
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We are done by performing the following steps:

(1) For any v ∈ V such that q(v) = 0, v 6= 0, there are γ ∈ GL2(F ), λ ∈ k×
such that

γe1 = λv.

Applying this to v = g−1e1 and replacing g by gγ, we may assume that g
fixes the line ke1. Moreover the stabilizer of ke1 in GL2(F ) is the group
B(F ) of upper triangular matrices.

(2) For any v ∈ V such that q(v) = 0, v 6= 0, e1, there are γ ∈ B(F ), λ ∈ k×
such that

γe2 = λe2.

Applying this to v = g−1e2, and replacing g by gγ, we may assume g fixes
the lines ke1, k2e2. Moreover the stabilizer of double lines ke1 and ke2 in
GL2(F ) are the group M(F ) of diagonal matrices.

(3) For any v ∈ F×e3, there is a γ ∈ M(F ) such that γv = e3. Applying this
to v = g−1e3 we may assume that

ge1 = λe1, ge2 = µe3, ge3 = e3.

In this case λµ = 1, and g is product of a scalar multiplication of µ, and
a matrix action by (

λ 0
0 1

)
,

and a possible action by c.

¤

Lemma 4.1.2. The group SO(V ) is isomorphic to the group of elements g ∈
GL2(F ) with determinant in k modulo the scalars. Here g acts on V by

(4.1.2) g(v) = det(g)−1 · g · v · ḡt.

Proof. First, the action given in the lemma defines a injective map

{g ∈ GL2(F ) : det g ∈ k} /k× −→ SO(V ).

We need only show that this map is surjective. Let h be an element in SO(V )
represented by (α, g) with α ∈ k×, g ∈ GL2(F ) such that

α2NF/k(det g) = 1.

Then NF/k(α · det g) = 1. Thus there is a z ∈ F× such that

α · det g = z/z̄.

Now we may replace (α, g) by (αzz̄, g · z−1) to assume that det g ∈ k×. ¤
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Image of H = D×/k×. Recall that we have fixed an embedding ι of D into M2(F )
by

ι(x + yλ) =
(

x yε
ȳ x̄

)
.

One has the obvious formula

det ι(h) = ND(h)

where ND(h) denote the norm map on D.

What is the action of D× on V ? A simple calculation shows that D× fixes the
line through

eε =
(

ε 0
0−1

)
.

Moreover, one can show that the stabilizer of eε is simply F× · D×. Thus with
our modified action given in Lemma 4.1.2, we have that the stabilizer of eε in
SO(V ) is given by D×/k×. Conversely, any line in V with norm −ε(k×)2 modulo
k× is fixed by a conjugate of D×/k×.

Let V1 be the orthogonal complement of eε:

V1 =
{(

aε b
b̄ a

)
: a ∈ k, b ∈ F

}

Let D0 be the pure quaternions, namely the set of trace free elements in D. One
checks that the restriction of q to V1 corresponds to the restriction of ε · ξ2 · ND

on D0 via the following isomorphism of k-vector spaces:

V1 −→ D0 :
(

aε b
b̄ a

)
7→ ξ ·

(
a −b

b̄ε−1−a

)

where ξ is a nonzero trace free element in F . This map identifies the action of
D× on V1 with its action by Ad on D0. In other words, as a representation of
D× one has

V ' trivial⊕Ad.

Note that the image of D× under Ad is exactly SO(D0).

4.2. Theta lifting. For the moment we consider algebraic groups over k. Set

GL(2)/F = ResF/kGL(2)

In Proposition 4.1.1, Part (2) of the last section, we have defined an algebraic
homomorphism

ν : GL(1)×GL(2)/F −→ GSO(V ),
which is surjective and defined over k. Let π be an irreducible automorphic
representation of GL(2)/F , and let χ be an automorphic character of GL(1).
Suppose that the representation χ⊗π of GL(1)×GL(2)/F is trivial on the kernel
of the map ν. Then the central character of π must be χ ◦ NF/k. In such a
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case it defines a representation of GSO(V ) with central character χ. Conversely
any irreducible automorphic representation of GSO(V ) with a central character
χ defines an automorphic representation χ ⊗ π as above, where π has central
character χ ◦ NF/k. We note that once π is given, the character χ is determined
up to a twist by the ηF/k, the quadratic character associated to the extension
F/k. The obvious local analogue of this discussion also applies.

Suppose we are in the global situation, with π and χ as above. Let Vπ be the
space of π. For any ϕ ∈ Vπ let ϕχ be the function on GL(1,Ak) × GL(2,AF )
defined by

ϕχ(t, x) = χ(t)ϕ(x).
Define a function ϕ̃χ on GSO(V ) by the formula

ϕ̃χ(ν(t, x)) = ϕχ(t, x).

It is easy to see that ϕ̃χ is an automorphic form on GSO(V ). Similarly, we can
push the representation χ ⊗ π forward to GSO(V ); call it πχ. By this kind of
correspondence, we see in particular that automorphic forms on GSO(V ) have
the strong multiplicity one property.

For the rest of this section we assume that π has trivial central character and
actually that χ = 1. We write

G = GSO(V ), G1 = SO(V ), H = SO(V1)

where V1 is the orthogonal complement of a line fixed by H with nonzero norms.
If ϕ is an automorphic function on G we define its period relative to H by the
formula

(4.2.1) `H(ϕ) =
∫

H(k)\H(Ak)
ϕ(x)dx =

∫

SO(V1)k\SO(V1)Ak

ϕ(x)dx.

Of course this period integral also makes sense if ϕ is just an automorphic function
on G1.

We shall relate the non-vanishing of period integrals to the existence of a certain
theta lift. Fix an additive character ψ for Ak/k. Then the Weil representation ω
of G1 × SL2 can be realized on S(VAk

), the space of Bruhat-Schwartz functions
on VAk

, with (part of the) actions given by

(4.2.2)





ω(g1)φ(v) = φ(g−1
1 v), (g1 ∈ G1(Ak))

ω

((
1 x

0 1

))
φ(v) = ψ(xq(v))φ(v).

We would like to extend this to similitude groups, following Jacquet-Langlands
[11] and Harris-Kudla [9]. In what follows all facts stated about theta correspon-
dence for similitude groups can be found in [9], unless otherwise specified. (Note
however that our G is denoted H in [9], and they use GO(V ) instead of GSO(V )).
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First we define an action of GO(V ) on S(VAk
). For g ∈ GO(V ) let λ(g) be the

similitude factor of g. We let L(g) be the unitary operator defined by

L(g)φ(v) = |λ(g)|−1φ(g−1v).

We may view GL(2) over k as the similitude group of a two dimensional symplectic
form. The similitude factor of h ∈ GL(2) is then just deth. Let R be the closed
subgroup of G×GL(2) defined by

R = {(g, h) ∈ G×GL(2) |λ(g) = det h}.
If A is an algebra over k, then

R(A) = {(g, h) ∈ G(A)×GL(2, A) |λ(g) = det h}.
Now we define

(4.2.3) ω(g, h)φ(v) = L(g)ω(h1)φ(v),

where

h =
(

1 0
0 det h

)
h1.

One checks that this defines a representation of R(Ak) on S(VAk
), extending that

of G1(Ak) × SL(2,Ak) already defined above. As usual, one has ω = ⊗ωv, with
ωv defined by formulas analogous to the ones given above. For each φ ∈ S(VAk

),
we define a theta function on R(Ak) by the usual formula

θ(g, h;φ) =
∑

ξ∈V (k)

ω(g, h)φ(ξ).

From [9] we know that θ(g, h;φ) is left R(k)-invariant as a function on R(Ak).

Let GL(2)+ be the subgroup of GL(2) defined by

GL(2)+ = {h ∈ GL(2) | det h ∈ λ(G) = NF/k(F
×)}.

Let v be a place of k. If v splits in F then GL(2, kv)+ = GL(2, kv). Otherwise,
GL(2, kv)+ is a subgroup of index 2 in GL(2, kv). We also note that GL(2,Ov) ⊂
GL(2, kv)+ whenever v is a finite place unramified in F . Let πv, σv be irreducible
admissible representations of G(kv) and GL(2, kv)+, respectively. We say that πv

and σv are in theta correspondence with each other if

HomR(kv)(ωv, πv ⊗ σv) 6= 0

Based on work of Waldspurger [20], Brooks Roberts [18] has shown that whenever
v is finite with odd residue characteristic, theta correspondence defines a bijection
of certain subsets of the admissible duals of G(kv) and GL(2, kv)+. (Of course,
Roberts’ result is more general, covering arbitrary symplectic-orthogonal dual
pairs). In other words, Howe’s local duality conjecture is valid in the present
setting.
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But the theta correspondence of [18] is phrased in terms of the pair GO(V ) and
GL(2)+. So we need to explain why it suffices to consider GSO(V ) and GL(2)+
here. Recall from the last section that V is the orthogonal direct sum of −F and
a hyperbolic plane. Let c be the non-trivial Galois involution of F/k, which is
extended to a reflection on V by making it trivial on the hyperbolic plane. Then
GO(V ) is the semi-direct product of GSO(V ) and the two-element group {1, c}.
(See Proposition 4.1.1)

Fix a place v and let πv be an irreducible representation of GSO(V )v = G(kv).
Then we may twist πv by c and get a new representation πc

v. (This is the com-
position of πv with conjugation by c). There are two possibilities:

(1). πc
v ' πv. In this case there are two possible extensions of πv to GO(V )v.

Let π̃v be one such extension. Let sgn be the unique non-trivial character of
GO(V )v which is trivial on GSO(V )v. Then the other extension of πv is just
the tensor product of π̃v with sgn. A well known argument (see below) shows
that at most one of these two representations of GO(V )v could occur in theta
correspondence with GL(2, kv)+.

(2). πc
v 6' πv. In this case πv induces to an irreducible representation of

GO(V )v.

It is well known (Mackey theory) that all irreducible representations of GO(V )v

are obtained in the manner described in (1) and (2) above.

We claim that, in the context of theta correspondence with GL(2)+, only
possibility (1) could arise. Suppose we are in the situation of (2). Let π̃v be
the representation of GO(V )v induced from πv, and suppose that it occurs in
the theta correspondence. Clearly we have π̃v ' sgn ⊗ π̃v, and so the later also
occurs in the theta correspondence. This implies that sgn⊗ π̃v ⊗ π̃∗v occurs as a
quotient of a Weil representation associated GSp4. That is, sgn ⊗ π̃v ⊗ π̃∗v is a
quotient of ωv ⊗ ω∗v which can be viewed as the restriction to GO(V )v of a Weil
representation associated to the pair GO(V ) and GSp4. Since sgn is obviously a
quotient of sgn ⊗ π̃v ⊗ π̃∗v , we see that sgn occurs in theta correspondence with
GSp4. By restriction, we see that the determinant character of O(V ) occurs
in the “classical” theta correspondence associated with the reductive dual pair
(O(V ),Sp4). This contradicts the known fact that det(·) of an orthogonal group
O(V ) does not occur in the theta correspondence with Sp2n unless dim V ≤ n.
This proves our claim.

For any cuspidal automorphic function ϕ on G(Ak) and any φ ∈ S(VAk
) we

now define a function on GL(2,Ak)+ by the formula

(4.2.4) θϕ
φ (h) = θ(ϕ;φ)(h) =

∫

G1(k)\G1(Ak)
θ(g1g, h;φ)ϕ(g1g)dg1
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where g is any element in G(Ak) with λ(g) = det h (the result being independent
of this choice). Then θϕ

φ is left invariant under GL(2, k)+. The definition of θϕ
φ (h)

is compatible with theta correspondence in the sense that

(4.2.5) θ(ϕ;ω(g, h)φ)(x) = θ(r(g−1)ϕ;φ)(xh)

for any (g, h) ∈ R(Ak) and x ∈ GL(2,Ak)+. Here r denotes the usual action
by right translations. This was given in Harris-Kudla [9] for the case (g, h) ∈
SO(V )Ak

× SL(2,Ak) but its extension to all of R(A) is obvious.

The unipotent subgroups of GL(2)+ are the same as those of GL(2). Thus the
notion of cuspidality for functions on GL(2, k)+\GL(2,Ak)+ can be defined in
the obvious way. Any function f on GL(2, k)+\GL(2,Ak)+ extends to a unique
function f̃ on GL(2, k)\GL(2,Ak) which is supported on GL(2, k) · GL(2,Ak)+.
It is easy to see that f̃ is cuspidal if and only if f is cuspidal.

Proposition 4.2.1. Let ϕ be a cuspidal automorphic function on G(Ak). If
`H(ϕ) 6= 0, then ϕ has a nonzero cuspidal theta lift to GL(2,Ak)+. In other
words, there is a φ ∈ S(VAk

) such that f := θϕ
φ 6= 0. Furthermore, the function f

is cuspidal.

Proof. Let n(x) =
(

1 x
0 1

)
. For t ∈ k, define the t-th Fourier coefficient ft by

ft(h) =
∫

k\Ak

f(n(x)h)ψ(−tx)dx.

From (4.2.2), we get

f(n(x)) =
∫

G1(k)\G1(Ak)

∑

ξ∈V (k)

ψ(xq(ξ))φ(g−1ξ)ϕ(g)dg.

Hence
ft(1) =

∫

G1(k)\G1(Ak)

∑

q(ξ)=t

φ(g−1ξ)ϕ(g)dg.

First suppose t 6= 0. By Witt’s theorem the set {ξ | q(ξ) = t} is a single orbit
under G1(k) (or empty). Take a ξ ∈ V (k) such that q(ξ) = t (if no such ξ exists
then ft(1) = 0). Let Gξ be the stabilizer of ξ in G1. Then

ft(1) =
∫

G1(k)\G1(Ak)

∑

γ∈Gξ(k)\G1(k)

φ(g−1γ−1ξ)ϕ(g)dg

=
∫

Gξ(k)\G1(Ak)
φ(g−1ξ)ϕ(g)dg

=
∫

Gξ(Ak)\G1(Ak)

(∫

Gξ(k)\Gξ(Ak)
ϕ(hg)dh

)
φ(g−1ξ)dg.



250 Di-Hua Jiang, Jian-Shu Li and Shou-Wu Zhang

Apply this to a nonzero vector ξ0 in V ⊥
1 . Then t0 = q(ξ0) 6= 0, H = Gξ0 . If

`H(ϕ) 6= 0, we see from the above formula that ft0(1) 6= 0 for some choice of φ.

Now consider f0. The set {ξ : q(ξ) = 0} breaks up into two orbits, namely
{0} and {ξ 6= 0 : q(ξ) = 0}. We get

f0(1) =
∫

φ(0)ϕ(g)dg +
∫ ∑

q(ξ)=0,ξ 6=0

φ(g−1ξ)ϕ(g)dg.

The first term is always zero since ϕ is cuspidal. Fix ξ0 6= 0 with q(ξ0) = 0. Let
P be the parabolic subgroup of G1 stabilizing the line through ξ0. Let ξ1 ∈ V (k)
be another isotropic vector with (ξ0, ξ1) = 1. Let V0 ⊂ V be the orthogonal
complement of the hyperbolic plane spanned by ξ0, ξ1. Then P = GL(1)SO(V0)N .
The unipotent radical N is nontrivial. One has Gξ0 = SO(V0)N . Thus

f0(1) =
∫

Gξ0
(Ak)\G1(Ak)

(∫

Gξ0
(k)\Gξ0

(Ak)
ϕ(hg)dh

)
φ(g−1ξ)dg

and the inner integral is
∫

Gξ0
(k)\Gξ0

(Ak)
ϕ(hg)dh =

∫

SO(V0)(k)\SO(V0(A))

∫

N(k)\N(A)
ϕ(nag)dnda = 0,

since ϕ is cuspidal. Thus we see that the theta lift of ϕ is always cuspidal. ¤

Let π = ⊗πv be an irreducible cuspidal automorphic representation of G(Ak).
We denote by Θ(π) the space of functions on GL(2,Ak)+ generated by

θϕ
φ , (φ ∈ S(V (Ak)), ϕ ∈ Vπ)

This is a space of cusp forms on GL(2, k)+\GL(2,Ak)+. Suppose it is non-zero.
Let Vσ be an irreducible summand of this space, corresponding to an irreducible
cuspidal automorphic representation σ = ⊗σv of GL(2)+. Then each σv is a local
theta lift of π∗v , or equivalently, σ∗v is a local theta lift of πv. Here π∗v denotes the
contragredient of πv, and similarly for σ∗v . By the validity of the Howe duality
conjecture over local fields with odd residue characteristic [18], we see that for
almost all place v, the isomorphism class of σv is uniquely determined by πv. Thus
the space Θ(π) is a finite sum of irreducible cuspidal automorphic representations
of GL(2)+.

We now try to lift σ back to G(Ak). Define

(4.2.6) θf
φ(g) = θV (f ;φ)(g) =

∫

SL(2,k)\SL(2,Ak)
θ(g, h1h;φ)f(h1h)dh1

for φ ∈ S(V (Ak)), f ∈ Vσ, g ∈ G(Ak), where h is any element of GL(2,Ak)+ such
that det h = λ(g). Let ΘV (σ) be the linear span of all such θf

φ. For any ϕ ∈ Vπ
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we have

< θf
φ, ϕ̄ >G1 =

∫ ∫
θφ(g, h)f(h) · ϕ(g)dhdg(4.2.7)

=
∫

(
∫

θφ(g, h)ϕ(g)dg)f(h)dh

= < θϕ
φ , f̄ >SL(2)

It follows from this formula and the definitions that the space ΘV (σ) is non-zero.
By Lemma 5.1.9 of [9] (and the analogous result for theta lifting in the “other”
direction), ΘV (σ) has the same central character as π, say χ.

Lemma 4.2.2. The space Θ(σ) consists of cusp forms.

Proof. Suppose not. A well known principle says that σ is generated by binary
theta series. In other words, σ is a theta lift from GSO(F,Ak), where F is viewed
as a two dimensional space over k with quadratic form given by the norm form.

Since GSO(F,Ak) = A×F , this means that σ is a cusp form attached to a
grossencharacter χ of A×F by Jacquet and Langlands [11]. The restriction of χ to
A×k must be equal to ηF/k, the quadratic character associated to the extension
F/k. Note that in this case σ induces to an irreducible cuspidal automorphic
representation of GL(2) (see [11], Theorem 4.6). Now another familiar principle
in the theory of theta correspondence (the induction principle) says that the local
theta lift θv(σ∗v) is a subquotient of an induced representation. More precisely,
this induced representation is the local component of the representation of G(Ak)
induced from the character


aN(u) 0 0

0 r(u) 0
0 0 a−1


 7→ η(u), (u ∈ A×F , a ∈ A×k ).

Since this is a unitary character and G is a quotient of GL(1)×GL(2)/F , we see
that this induced representation is actually irreducible at each v, and is isomor-
phic to θv(σ∗v) ' πv.

As already indicated, our representation π corresponds to the automorphic
cuspidal representation χ⊗ π̃ of GL(2)/F . Making the map GL(1)×GL(2)/F −→
G explicit, we see that the representation π̃ is (fully) induced from the character(

a1 0
0 a2

)
7→ η(a1ā2), (a1, a2 ∈ A×F ).

Let LS(s, π̃) be the partial standard L-function attached to π̃. One has

LS(s, π̃) = LS(s, η)LS(s, η̄)

where η̄(a) = η(ā). Thus LS(s, η−1 ⊗ π̃) has a pole at s = 1, which contradicts
the fact that π, and therefore π̃, is cuspidal. ¤
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Now let π′ = ⊗π′v be any irreducible summand of ΘV (σ). Then each π′v is in
theta correspondence with σ∗v . By the results of Roberts [18] quoted earlier, we
know that π′v ' πv for almost all v. By the strong multiplicity one property, we
see that ΘV (σ) is irreducible and coincides with (the space of) π.

The analogue of (4.2.5) is

(4.2.8) θV (f ;ω(g, h)φ) = θV (r(h−1)f ;φ)(xg), ((g, h) ∈ R(Ak))

Now for any fixed φ, the map

f 7→ θV (f, φ)

is a homomorphism from Vσ to Vπ. On the space Hom(Vσ, Vπ) we have the action
of R(Ak) given by

(g, h) · T = π(g)Tσ(h−1)
Then the relation (4.2.8) just says that

φ 7→ θV (· ;φ)

is an R(Ak)-intertwinning map from S(VAk
) to Hom(Vσ, Vπ).

Let KAk
and K ′

Ak
be maximal compact subgroups of G(Ak) and GL(2,Ak)+

respectively. (Keep in mind that GL(2,Ov) ⊆ GL(2, kv)+ for almost all v). Set

KR = R(Ak) ∩ (KAk
×K ′

Ak
),

and let Hom(Vσ, Vπ)KR
be the space of KR-finite vectors in Hom(Vσ, Vπ). Then

(4.2.9) Hom(Vσ, Vπ)KR
' (Vπ)KAk

⊗ (V ∗
σ )K′

Ak

The right hand side is algebraically irreducible. As usual, for an archimedean
place v we replace the action of the group by the joint action of the universal
enveloping algebra and the maximal compact subgroup, i.e. the Harish-Chandra
module structure.

Thus the map

S(V (Ak))KR
−→ Hom(Vσ, Vπ)KR

, φ 7→ θV (· ;φ)

must be surjective. In particular, if ϕ ∈ (Vπ)KAk
and f̄ ∈ (V ∗

σ )K′
Ak

then there is
Bruhat-Schwartz function φ which is KR-finite and such that

θV (· ;φ) = ϕ⊗ f̄

Here we use f̄ to denote an element of V ∗
σ because when Vσ is realized as a space

of cusp forms, V ∗
σ is identified with the space of functions which are complex

conjugates of functions in Vσ. This means

θV (f1;φ) =< f1, f > ·ϕ, (f1 ∈ Vσ)

In particular, we have

(4.2.10) ϕ =
1
|f |2 θV (f ;φ).
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If both ϕ and f are factorizable then φ can be chosen to be factorizable.

4.3. The Siegel-Weil formula. Let π = ⊗πv be a cuspidal automorphic repre-
sentation of G(Ak), realized on the space Vπ ⊂ C∞(G(k)\G(Ak). Suppose π is a
theta lift of a cusp form on GL(2,Ak)+. For φ ∈ S(V (Ak)), we may define θ(g, x)
as before, where (g, x) ∈ R(Ak). Our assumption says there is a cuspidal au-
tomorphic representation σ of GL(2,Ak)+ on Vσ ⊂ C∞(GL(2, k)+\GL(2,Ak)+),
such that Vπ is generated by the integrals

(4.3.1) ϕ(g) =
∫

SL(2,k)\SL(2,Ak)
θ(g, xx0)f(xx0)dx, (φ ∈ V (Ak), f ∈ Vσ)

where x0 is any element in GL2(Ak) with determinant equal to λ(g). For these
forms, the periods becomes

(4.3.2)
∫

H(k)\H(Ak)
ϕ(h)dh =

∫

SL(2,k)\SL(2,Ak)
f(x)

∫

H(k)\H(Ak)
θ(h, x)dhdx.

Note that the inner integral is absolutely convergent if H is non-split. Otherwise,
we need to regularize the integral.

Let S̃L2(A) be the metaplectic two fold cover SL2(A). We denote the covering
map by x̃ −→ x. For any subset X ⊂ SL2(A), let X̃ denote its preimage in
S̃L2(A).

We write V = V0 ⊕ V1. Then

SO(V0)× SO(V1) = SO(V0)×H ⊂ SO(V ) = G1.

Consider the see-saw pairs

(4.3.3)
O(V ) SL2 × SL2

×
O(V0)×O(V1) SL2

We let ωj denote the Weil representation associated to the pair (O(Vj), S̃L2)
realized on S(Vj(Ak)) (j = 0, 1). For the sake of clarity, we assume that φ =
φ0 ⊗ φ1 with φj ∈ S(Vj(A)) and let θj be the corresponding theta functions.
Then θ = θ0 · θ1 and we have

(4.3.4)
∫

H(k)\H(Ak)
θ(h, x)dh = θ0(1, x̃)

∫

H(k)\H(Ak)
θ1(h, x̃)dh.

This integral can be evaluated via the Siegel-Weil formula:

(4.3.5)
∫

H(k)\H(Ak)
θ1(h, x)dh = E(x, φ1, 1/2)
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where E(x, φ1, 1/2) is the Eisenstein series defined as follows. Let P = MN be
the upper triangular parabolic subgroup of SL(2)k. As usual, for W an orthogonal
space of dimension n, M = GL1 and M̃ acts on S(W (Ak)) by

(4.3.6) ωV (m̃)φ(w) = γ(m̃)n|m|n/2φ(wm).

Here γ is a character on M̃ satisfying

γ(m̃)2 = (−1,m)k

where (·, ·)k is the product of local Hilbert symbols (·, ·)v. When n is even, ωV

can be viewed as a representation of SL2 with (4.3.6) replaced by

ωV (m)φ(w) = ηV (m)|m|n/2φ(wm)

where

ηV (m) = (disc(V ),m)k.

Let U be the standard maximal compact subgroup of SL2(Ak). Write any
x ∈ SL2(Ak) as x = nmu with n ∈ N(Ak), m ∈ M(Ak), u ∈ U , and define

|x| :=: |m| = |a|.

for m =
(

a 0
0 a−1

)
. Set

F (x̃, φ1, s) = ω1(x̃)φ1(0)|x|s−1/2.

Finally define

E(x̃, φ1, s) =
∑

γ∈P (k)\SL2(k)

F (γx̃, φ1, s).

Suppose that V1 is anisotropic. Then the Eisenstein series is holomorphic at
s = 1/2.

Now by the Siegel-Weil formula, we obtain the main formula

(4.3.7) `H(ϕ) =
∫

SL2(k)\SL2(A)
f(x)θ0(x̃)E(x̃, φ1, 1/2)dx

The right hand side is exactly the kind of integral considered by Gelbart and
Jacquet ([6]), which generalizes the classical Shimura integral. Unfolding this
integral we get an Euler product which represents nothing but the symmteric
square L-function of f . In a little more detail one has the following. Change 1/2
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to s and call the right hand side J(s) so that `H(ϕ) = J(1/2). We have

J(s) =
∫

P (k)\SL2(Ak)
f(x)θ0(x̃)F (x̃, φ1, s)dx

=
∫

N(k)\SL2(Ak)
f(x)ω0(x̃)φ0(e)F (x̃, φ1, s)dx

=
∫

N(k)\SL2(Ak)
f(x)ω(x)φ(e)|x|s−1/2dx

=
∫

N(Ak)\SL2(Ak)

∫

N(k)\N(Ak)
f(nx)ω(nx)φ(e)|x|s−1/2dndx

=
∫

N(Ak)\SL2(Ak)
W−q(e)(x)ω(x)φ(e)|x|s−1/2dx.

Here

W−q(e)(x) =
∫

k\Ak

f

((
1 t
0 1

)
x

)
ψ(q(e)t)dt

is the −q(e)-Fourier coefficient of f .

Lemma 4.3.1. Let e be a nonzero element in V and let H be the stabilizer of e
in G. Let ϕ be a cusp form on G given by (4.3.1). Then

∫

H(k)\H(Ak)
ϕdh = J(1/2, ϕ)

where

J(s, ϕ) =
∫

N(Ak)\SL2(Ak)
|x|s−1/2W−q(e)(x)(ω(x)φ)(e)dx.

Here W−q(e)(x) is the −q(e)-th Fourier coefficient of f as defined above.

Proof. We have proved the case where φ = φ0 ⊗ φ1. But the general case follows
by the density of the factorizable Schwartz-Bruhat functions and the continuity
of the integrals of Gelbart-Jacquet type ([6]). ¤

4.4. Theta Lifts for Eisenstein Series. We use the notations in Sections 4.2
and 4.3. Consider the see-saw diagram (4.3.2)

(4.4.1)
O(V ) SL2 × SL2

×
O(V0)×O(V1) SL2

We shall show that formula (4.3.1) holds when ϕ is an Eisenstein series of O(V ).
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Since the space V with norm is isomorphic to the direct sum of F with norm
−NF/k and a hyperbolic space, O(V ) is the orthogonal group with respect to




1
∗ ∗
∗ ∗

1


 ,

where
(∗ ∗
∗ ∗

)
defines the norm −NF/k on F , we have only one non-trivial parabolic

subgroup P0 of O(V ) defined over the number field k. We write P0 = M0N0,
where

M0 = {m(a, b) ∈ GL1 ×O(F ) ∈ O(V )}(4.4.2)

N0 = {n(x) =




1 x ∗
I2 x∗

1


 ∈ O(V )}.(4.4.3)

The characters of M0(k)\M0(Ak) are

χ(m(a, b)) = χs(a)δ(b),

where χs(a) = χ0(a)|a|s and δ is a character of O(F,Ak). The Eisenstein series
attached to the normalized induced representation

I(χ) = IndO(V )(Ak)
P0(Ak) (χ)

is defined by
E(g, αχ) =

∑

γ∈P0(k)\O(V )(k)

αχ(γg)

for αχ ∈ I(χ).

Proposition 4.4.1. The Eisenstein series E(g, αχ) has a non-zero theta lift to
SL2 if and only if the character δ is trivial. Moreover, the Eisenstein series
E(g, αχs) is lifted to the Eisenstein series E(h, βs), where

βs ∈ IndSL2(Ak)
B(Ak) (χs).

Proof. This follows the calculation in Section 5.4, in Kudla-Rallis [14]. ¤

From this we can write, for χ = χs,

(4.4.4) E(g, αχ) =
∫

SL2(k)\SL2(Ak)
E(x, βs)θ(g, x;ω(z)φ)dx

where θ(g, h;ω(z)φ) is the regularized theta function, which is rapidly decreasing
in the variable x. Note that the integral in (4.4.4) converges absolutely as long as
the theta function θ(g, x;φ) is rapidly decreasing in the variable x for some choice
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of φ. For generic value s, the induced representation IndSL2(Ak)
B(Ak) (χs) is irreducible.

Hence if the integral in (4.4.4) does not vanish, it must be the Eisenstein series
as given in (4.4.4).

In order to calculate the period over O(V1)(k)\O(V1)(Ak) of the Eisenstein
series E(g, αχ), we consider the following choice of the test function φ. We first
consider the dual reductive pair (O(V0), S̃L2). By the regularization method in
[14] and [10], there is an operator z0 (in the center of the universal enveloping
algebra or of the Hecke algebra for the dual reductive pair) such that for any test
function φ0 ∈ S(V0(A)), the theta function θ(h, x̃;ω(z0)φ0) is rapidly decreasing
in the variable x̃ or more precisely on S̃L2(k)\S̃L2(A). Then we consider the
dual reductive pair (O(V1), S̃L2). There is an operator z1 such that for any test
function φ1 ∈ S(V1(A), the theta function θ(h, x̃;ω(z1)φ1) is rapidly decreasing
in the variable h or more precisely on O(V1)(k)\O(V1)(A). Note that if V1 is
k-anisotropic, then there is no need of regularization.

Now take φ = ω(z0)φ0 ⊗ ω(z1)φ1 ∈ S(V (A)). Then we have

θ((h0, h1), x;φ) = θ(h0, x̃;ω(z0)φ0) · θ(h1, x̃;ω(z1)φ1).

Note that the product of two genuine functions on S̃L2(A) factors through the lin-
ear group SL2(A). Since θ(h0, x̃;ω(z0) is rapidly decreasing in x̃ and θ(h1, x̃;ω(z1)φ1)
has moderate growth in x̃, we know that the integral in (4.4.4) is equal to
(4.4.5)

F((h0, h1), s) =
∫

SL2(k)\SL2(Ak)
E(x, βs)θ(h0, x̃;ω(z0)φ0)θ(h1, x̃;ω(z1)φ1)dx

which converges absolutely. As remarked before, if integral (4.4.5) is non-zero, it
gives the Eisenstein series E(g, αχ) for generic value s.

Next we compute the period of F((h0, h1), s) over the variable h1. By the
see-saw duality, we have

∫

[O(V1)]
F((1, h1))dh1

=
∫

[O(V1)]

∫

[SL2]
E(x, βs)θ(1, x;ω(z0)φ0)θ(h1, x̃;ω(z1)φ1)dxdh1

=
∫

[SL2]
E(x, βs)θ(1, x;ω(z0)φ0)

∫

[O(V1)]
θ(h1, x̃;ω(z1)φ1)dh1dx

where [G] denotes the quotient G(k)\G(A). By the regularized Siegel-Weil for-
mula (4.3.5) we have

(4.4.6)
∫

[O(V1)]
θ(h1, x̃;ω(z1)φ1)dh1 = E(x̃, ω(z1)φ1,

1
2
).
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Hence we obtain
(4.4.7)∫

[O(V1)]
F((1, h1), s)dh1 =

∫

[SL2]
E(x, βs)θ(1, x̃;ω(z0)φ0)E(x̃, ω(z1)φ1,

1
2
)dx.

Note that since θ(1, x̃;ω(z0)φ0) is rapidly decreasing in x̃, the integral in (4.4.7)
converges absolutely. This is the analogue of (4.3.7) with the cusp form f replaced
by the Eisenstein series E(x, βs). We want to show this integral is also eulerian.
We can consider the following more general integral∫

SL2(k)\SL2(Ak)
E(x, βs)θ(1, x̃;ω(z0)φ0)E(x̃, β̃λ)dx.

By unfolding the Eisenstein series E(x̃, φ̃λ), we have
∫

B(k)\SL2(Ak)
E(x, βs)θ(1, x̃;ω(z)φ1) · β̃λ(x̃)dx.

In general we have

θ(1, x̃;φ0) = ω(x̃)φ0(0) +
∑

ξ∈k×
ω(x̃)φ0(x̃).

Because of the regularization, we have

ω(x̃)ω(z0)φ0(0) = 0

identically. Hence we have

θ(1, x̃;ω(z0)φ0) =
∑

ξ∈k×
ω(x̃)ω(z0)φ0(ξ).

Now by the same calculation as we did for Lemma 4.3.1, we obtain that for
χ = χs, we have

(4.4.8)
∫

O(V1)(k)\O(V1)(Ak)
F((1, h1), s)dh1 = J(

1
2
, E((1, ·), βχs))

where

J(λ,E((1, ·), αχs)) =
∫

N(Ak)\SL2(Ak)
|x|λ− 1

2 W−q(e),s(x)ω(x)ω(z)φ(e)dx.

Here we define W−q(e),s(x) by

Wβ,s(x) =
∫

k\Ak

E
((

1 t
0 1

)
x, φs

)
ψ(q(e)t)dt.

As a consequence, we know that

F(g, s) =
∫

SL2(k)\SL2(Ak)
E(x, βs)θ(g, x;ω(z0)φ0 ⊗ ω(z1)φ1)dx
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is not identically zero as indicated in Lemma 4.3.1. Therefore we obtain the
analogue of Lemma 4.3.1 for the period of Eisenstein series

Lemma 4.4.2. For χ = χs, we have∫

O(V1)(k)\O(V1)(Ak)
E((1, h1), αχs)dh1 =

∫

O(V1)(k)\O(V1)(Ak)
F((1, h1), s)dh1

= J(
1
2
, E((1, ·), βχs)).

5. Periods of cusp forms

In this section we shall prove Theorem 1.2.1 for cusp forms using theta lifting
method. Following section 4.3, it remains to compute the Gelbart-Jacquet inte-
grals. However, we will start with a direct evaluation in the case where H is the
split subgroup PGL2(k) of PGL2(F ).

5.1. Split case. Let us first compute the period for the case where H is the
subgroup PGL2(k) of PGL2(F ). Let ϕ be the newform in a spherical cuspidal
representation π on PGL2(AF ) so that its Mellin transformation defines the right
L-series as in (1.2.1). We want to study the following period:

(5.1.1) `H(ϕ) =
∫

H(k)\H(Ak)
ϕ(h)dh.

We have shown in section 4.3 that the non-vanishing of the periods implies that π
is a base change of a representation σ of GL2(Ak). In other words if locally at each
place v of k, σv is given by a principal series π(χv, χ

−1
v ηv) with χv unramified,

then at a place w of F over v, πw is given by

π(χv ◦Nw/v, χ
−1
v ◦Nw/v).

Let E(g, s) be a spherical Eisenstein series on H(Ak) attached to the induced
representation π(| · |s, | · |−s):

E(g, s) =
∑

γ∈B(k)\H(k)

f(γg, s)

where for g =
(

a x
0 b

)
u with u ∈ UH ,

f(g, s) = |a/b|s+1/2.

Now we have

(5.1.2) `H(ϕ) = c1 · Ress=1/2

∫

H(k)\H(Ak)
ϕ(h)E(g, s)dh,
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where c1 is the constant so that c1E(g, s) has residue equal to 1 at s = 1/2.
Unfold the above integral to obtain:

`(ϕ) =c1 · Ress=1/2

∫

B(k)\H(Ak)
ϕ(h)f(g, s)dh

=c1 · Ress=1/2

∫

N(Ak)B(k)\H(Ak)

∫

N(k)\N(Ak)
ϕ(nh)dnf(h, s)dh,

where dh is the quotient measure on N(Ak)B(k)\H(Ak).

Let ψ be any nontrivial character of N(k)\N(Ak). Let W be the Whittacker
coefficient of ϕ for the character x 7→ ψ(trF/kx):

W (g) =
∫

N(F )\N(AF )
ϕ

((
1 x
0 1

)
g

)
ψ(−trF/kx)dx.

Then ϕ has a Fourier expansion

ϕ

((
1 x
0 1

)
g

)
=

∑

ξ∈F×
ψ(tr(xξ)) ·W

((
ξ

1

)
g

)
.

Bring this to the inner integral to obtain
∫

N(k)\N(Ak)
ϕ(nh)dn =

∑

ξ∈k×
W

((
ξ0ξ

1

)
h

)

where ξ0 is any trace free element in F×. Now via the surjective maps

M(Ak)UH −→ N(Ak)\H(Ak),

the quotient measure dh on N(Ak)\H(Ak) is lifted to the product measure
c2δ(m)−1dm · du where c2 is a positive constant and du is a measure on UH

with volume 1. Thus we obtain the following expression:

`(ϕ) = c1 · c2 · Ress=1/2

∫

A×k
W

((
ξ0a 0
0 1

))
|a|s−1/2da.

The last integral is a product of local integrals:

`v(s) =
∫

k×v
Wv

((
ξ0δ

−1
v a 0
0 1

))
|a|s−1/2da

where Wv is the Whittaker function for πv with respect to an unramified additive
character of Fv. We want to evaluate this integral case by case.
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First assume that v is a finite place which is unramified and nonsplit in F . Let
w be the place of F over v. Then

`v(s) =
∑

Wv

((
ξ0δ

−1
v πn

v 0
0 1

))
|πn

v |s−1/2
v

=
∑

Wv

((
ξ0δ

−1
v πn

v 0
0 1

))
|πn

v |s/2−1/4
w

=
∫

F×w
Wv

((
ξ0δ

−1
v a 0
0 1

))
|a|s/2−1/4da

=|ξ0δ
−1
v |1/4−s/2

∫

F×w
Wv

((
a 0
0 1

))
|a|s/2−1/4da

=|ξ0δ
−1
v |1/4−s/2L(s/2 + 1/4, πv).

If we write σv = π(χv, χ
−1
v · ηv) then πw = π(χv ◦Nw/v, χ

−1
v ◦Nw/v). Thus

L(s, πv) =(1− χv(π2
v)|πv|2s

v )−1(1− χ−1
v (π2

v)|πv|2s
v )−1

=L(2s, sym2σv)(1 + |πv|2s
v )

=L(2s, sym2σv)ζv(2s)ζv(4s)−1.

It follows that

`v(s) = |ξ0δ
−1
v |1/4−s/2L(s + 1/2, sym2σv)ζv(s + 1/2)ζv(2s + 1)−1.

The case where v is ramified in F is similar:

`v(s) =
∑

Wv

((
ξ0δ

−1
v π2n

w 0
0 1

))
|πn

w|s−1/2
w

=|ξ0δ
−1
v |1/4−s/2

∑
Wv

((
π2n

w 0
0 1

))
|π2n

w |s−1/2
w

=|ξ0δ
−1
v |1/4−s/2

∫

F×w
Wv

((
a 0
0 1

))
|a|s/2−1/4

w

1 + ν(a)
2

da

=
1
2
|ξ0δ

−1
v |1/4−s/2(L(s/2 + 1/4, πv) + L(s/2 + 1/4, ν, πv))

where ν is the character on F×
w given by

ν(x) = (−1)ordx.

If we write σv = π(χv, χ
−1
v · ηv) with χv unramified, then

πw = π(χv ◦Nw/v, χ
−1
v ◦Nw/v).
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Thus

L(s, πv) + L(s, ν, πv)

=
1

(1− χv(πv)|πv|sv)(1− χ−1
v (πv)|πv|sv)

+
1

(1 + χv(πv)|πv|sv)(1 + χ−1
v (πv)|πv|sv)

=
2(1 + |πv|2s)

(1− χv(πv)2|πv|2s)(1− χv(πv)−2|πv|2s)
=2ζv(2s)ζv(4s)−1 · |πv|sL(2s,Sym2σv).

It follows that

`v(s) = |ξ0δ
−1
v |1/4−s/2ζv(s + 1/2)ζ(2s + 1)−1L(s + 1/2,Sym2σv).

Now we consider the case where v is split in F . Let w1 and w2 be two places
of F over v. Then

`v(s) =
∫

k×v
Ww1

((
ξ01δ

−1
v a 0
0 1

))
Ww2

((−ξ01δ
−1
v a 0

0 1

))
|a|s−1/2da

=|ξ0δ
−1
v |1/4−s/2

∫

k×v
Ww1

((
a 0
0 1

))
Ww2

((−a 0
0 1

))
|a|s−1/2da

=|ξ0δ
−1
v |1/4−s/2

v ζv(2s + 1)−1L(s + 1/2, πw1 × πw2).

Here L(s, πw1×πw2) is the convolution of two L-functions L(s, πw1) and L(s, πw2).
If σv = π(χv, χ

−1
v ) then

L(s, πw1) = L(s, πw2) = L(s, σv) =
1

(1− χv(πv)|πv|s)(1− χv(πv)−1|πv|s)
and

L(s, πw1 × πw2) =
1

(1− χ2
v(πv)|πv|s)(1− χ−2

v (πv)|πv|s)(1− |πv|s)2
=ζv(s)L(s,Sym2σv).

It follows that

`v(s) = |ξ0δ
−1
v |1/4−s/2

v L(s + 1/2,Sym2σv)ζv(s + 1/2)ζv(2s + 1)−1.

In summary, we have shown that

`H(ϕ) =c1 · c2 · Ress=1/2|ξ0δ
−1|1/4−s/2L(s + 1/2,Sym2σ)

ζk(s + 1/2)
ζk(2s + 1)

=c1 · c2 · c3 · ·L(1,Sym2σ)

where c3 is the constant Ress=1ζk(s)
ζk(2) .

All constants c1, c2 and c3 can be computed as in §3.2 and §3.3. Then we
obtain Theorem 1.2.1 for split H. Alternatively, we may use the above method
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to compute continuous spectrum ϕ =
∫
Ω cµEµ where Eµ are newforms for rep-

resentation π(µ, µ−1) with unitary character µ of A×F . Then we get the same
expression except an additional form

Ress=1/2

∫

A×k
cφ

(
a 0
0 1

)
|a|s−1/2d×a

where cφ is the constant term of φ. One may show that the above Mellin transform
of cφ is holomorphic in s. Thus it has no residue at s = 1/2. Since we already
prove the main formula in Theorem 1.2.1, the constant c1 · c2 · c3 must agree with
the constant given in Theorem 1.2.1.

5.2. Gelbart-Jacquet integrals. Let us first recall what have been done so far
for periods of cusp forms toward the proof of Theorem 1.2.1. We start with the
setting in §1. Recall that we fix a quadratic extension of totally real fields F/k
and a quaternion algebra D over k embedded into M2(F ).

Now let τ ∈ GL2(AF ) with the Mumford-Tate group D×/k×, such that the
right multiplication of τ defines a map of complex manifolds:

ιτ : MUH
:= H(k)\Y ×H(k̂)/UH −→ MU := PGL2(F )\X × PGL2(F̂ )/U

where U is the standard maximal compact subgroup of PGL2(F̂ ) and UH is
some maximal compact subgroup of H(k̂), respectively. Let ϕ be the newform
in a spherical cuspidal representation π on PGL2(AF ) so that its Mellin trans-
formation defines the right L-series as in (1.2.1). We want to study the following
period:

(5.2.1) `H,τ (ϕ) =
∫

H(k)\H(Ak)
ϕ(hτ)dh.

In the last section we have shown that the non-vanishing of this integral im-
plies that ϕ is the theta lifting of a form f on GL2(Ak)+. More precisely, let
G = GSO(V ) be the connected component of the group GO(V ) of orthogonal
similitudes of the space V of 2×2 hermitian matrices over F with norm given by
determinant. We have shown in §4.1 that G is generated by scalars and GL2(F ).
Here the action of GL2(F ) on Hermitian matrices is given as usual:

γ(A) = γ ·A · γ̄t, ∀γ ∈ GL2(F ), ∀A ∈ V.

Thus G has the center generated by scalars and has the adjoint group ResF/kPGL2.
We can view ϕ as a form on G(Ak). The embedding

H = D×/k× −→ ResF/kPGL(2)

can be lifted to an embedding to G with action of H on V as follows:

h(A) = det h−1 · h ·A · h̄t, ∀h ∈ D×.
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In this way, H becomes the stabilizer of a vector e ∈ V in the special group
SO(V ) with nontrivial norm. Moreover, let V1 be the orthogonal complement of
V0 := ke. Then H = SO(V1). Now view τ as an element in G(A) and g 7→ ϕ(gτ)
as a function ϕτ on G(Ak).

Assume that the period `H,τ (ϕ) 6= 0. The main result of §4.2 shows that π is
the theta lifting of a representation σ on GL2(Ak)+. Thus we have φ ∈ S(V (A))
and f ∈ Vσ such that (4.3.1) holds:

(5.2.2) ϕ(g) =
∫

SL(2,k)\SL(2,Ak)
θφ(g, xx0)f(xx0)dx,

for any g ∈ G(Ak) where x0 ∈ GL(2,Ak) is any element with the norm equal to
the similitude of g. It is easy to see from (4.2.8) that the function g 7→ ϕ(gτ) is
given by the pair (ω(τ, h0)φ, r(h0)f) where h0 ∈ GL(2,Ak)+ with the same norm
as τ . Now applying Lemma (4.3.1) we obtain

`H,τ (ϕ) = J(1/2)

where J(s) is a Gelbart-Jacquet integral:

(5.2.3) J(s) =
∫

N(Ak)\SL2(Ak)
|x|s−1/2W−q(e)(xh0)(ω(τ, xh0)φ)(e)dx.

Recall that the measure dx on N(Ak)\SL2(Ak) is taken to be the quotient measure
of the measure dh on SL2(Ak) and a measure dn on N(Ak) so that the volumes
of SL2(k)\SL2(Ak) and N(k)\N(Ak) are both equal to 1.

Now we further assume that f is the restriction of a cuspidal eigenform on
GL2(Ak) with central character η, has weight 0 at infinite places, and is invariant
under matrices Uv($cv

v ) of the form
(

a b
0 1

)
∈ GL2(Ov).

The Whittaker function of W with respect to a fixed character ψ of k\Ak has a
decomposition W = ⊗vWv. These local Whittaker function Wv are normalized
such that

Wv

(
δ−1
v 0
0 1

)
= 1.

Here δv are conductors of ψv.

The function φ can be chosen to be invariant under the standard maximal
compact subgroups of G(Ak) and SL2(Ak) and to be decomposable: φ = ⊗φv. In
this way, the function J(s) has decomposition J(s) =

∏
Jv(s) with

(5.2.4) Jv(s) =
∫

N(kv)\SL2(kv)
|x|s−1/2W−q(e),v(xh0,v)(ω(τv, xh0,v)φv)(ev)dx.



Periods and Distribution of Cycles on Hilbert Modular Varieties 265

Here W−q(e),v is the normalized spherical Whittaker function for the representa-
tion σv with respect to the character x −→ ψv(εx). Of course the definition of
function Jv depends on the choice of ψv, τv, ev, φv, and the decomposition of
measures on N(kv)\SL2(kv).

In the following we assume that τ is normalized by formula (2.1.2) and (2.1.3).
We want to show that Jv(s) depends only on ψv, φv, and the ramification of H

at v. Take h0,v =
(

1 0
0 λ(τ)

)
with λ(τ) = NF/k det τ . Assume that |λ(τ)| = 1 and

make the substitution x −→ h0xh−1
0 . Then we have

(5.2.5) Jv(s) =
∫

N(kv)\SL2(kv)
|x|s−1/2W−q(e)

λ(τ)
,v
(x)(ω(x)φv)(τ−1

v ev)dx.

Suppose H ′ is another group defined by ε′ with the same ramification as H at
v. Then ε′ = N(t)ε for some t ∈ Fv. It follows that

H ′ = αHα−1, e′v = αev

with α =
(

t
1

)
. Since Ad(τ ′v)(Uv) ∩ H ′(kv) is maximal compact in H ′(kv),

Ad(α−1τ ′v)(Uv) ∩H(kv) is maximal in H(kv). It follows that

α−1τ ′v ∈ H(kv) · τvUv.

As φv is invariant under Uv,

φv((τ ′)−1e′v) = φv(τvev).

This is enough to conclude that Jv(s) is same for H ′ as

−q(e)
λ(τ)

=
−δD

δF
(mod O×v )

by Lemma 3.2.4.

Now define local periods by the formula

(5.2.6) j(Hv, σv, φv, ψv) = Jv(1/2).

where Hv is the localization of H at v. Thus we have the decomposition:

(5.2.7) `H,τ (θ
φ
f ) = c

∏
v

j(Hv, σv, φv, ψv).

Here c is a constant related to the decomposition of measures on SL2(Ak).

By definition, the dependence on ψv of j(Hv, σv, φv, ψv) is through the norm
|δv| of the conductor of ψv. In the following we want to show that it depends
essentially on the parity class in k×v /O×v · (k×v )2. Here O×v = ±1 for archimedean
place v. Let ψ′v(x) = ψv(t2x) be a different character and φ′v be another function
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invariant under the maximal compact subgroups of Gv and SLv(2) with respect
to the Weil representation ω′ defined by the character ψ′v. Since

ω′(x) = ω(m(t)xm(t)−1)

we have

j(Hv, σv, φ
′
v, ψ

′
v)

=
∫

N(kv)\SL2(kv)
|x|s−1/2W ′

−q(e)
λ(τ)

,v
(x)(ω′(x)φ′v)(τ

−1
v ev)dx

=
∫

N(kv)\SL2(kv)
|x|s−1/2W−q(e)

λ(τ)
,v

((
t2 0
0 1

)
x

)
(ω(m(t)xm(t)−1)φ′v)(τ

−1
v ev)dx

=η(t)
∫

N(kv)\SL2(kv)
|x|s−1/2W−q(e)

λ(τ)
,v
(m(t)x)(ω(m(t)xm(t)1)φ′v)(τ

−1
v ev)dx

=η(t)|t|5/2−s

∫

N(kv)\SL2(kv)
|x|s−1/2W−q(e)

λ(τ)
,v
(x)(ω(xm(t)−1)φ′v)(τ

−1
v ev)dx.

Thus we have the following expression

(5.2.8) j(Hv, σv, φ
′
v, ψ

′
v) = η(t)|t|2j(Hv, σv, ω(m(t)−1)φ′v, ψv).

Now we want to evaluate Jv(s) in the unramified case defined by the following
conditions:

• ηv is unramified; here η is the quadratic character corresponding to the
extension of F/k.

• φv is the characteristic function of δ−1
v V (Ov);

• H is split at v.

In the unramified case, we may assume ε = 1 and τ = 1. Consider the Iwasawa
decomposition

SL2(kv) = N(kv)M(kv)U ′
v

and the integration formula

(5.2.9) dx = |x|−2dndmdu, n ∈ N(kv),m ∈ M(kv), u ∈ U ′
v.

Here dn is the invariant measure on N(kv) with respect to the additive character
on N(kv) such that N(Ov) has volume 1, and dm is the invariant measure on
M(kv) such that the volume of M(Ov) has volume 1, and du is the measure on
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the maximal compact subgroup U ′
v of SL2(kv) with volume 1. Then we obtain

Jv(s) =
∫

k×v
η(a)|a|s−1/2Wv

((
a 0
0 a−1

)
u

)
φ(ae)d×a

=
∫

k×v
|a|s−1/2Wv

((
a2 0
0 1

))
φv(ae)d×a.

=
∫

k×v
|a|s−1/2

v Wv

(
a2 0
0 1

)
d×a.

Let α and β be the parameters of the local L-factors of f on GL2 below, with
αβ = ηv($). Let χ be the character on k×v given by χ(x) = (−1)ord(x). Then we
have

Lv(s, f) =
1

(1− α|$|s)(1− β|$|s) , Lv(s, f, χ) =
1

(1 + α|$|s)(1 + β|$|s) .

On the other hand, these local L-factors are expressed as the local Mellin trans-
forms of the local Whittaker functions by

Lv(s, f) =
∫

k×v
Wv

((
aδ−1

v 0
0 1

))
|a|s−1/2d×a

Lv(s, f, χ) =
∫

k×v
Wv

((
aδ−1

v 0
0 1

))
|a|s−1/2χ(a)d×a.

It follows that

Jv(2s− 1/2) =
1
2
(L(s, f) + Lv(s, f, χ))

=
1 + η($)|$|2s

(1− α2|$|2s)(1− β2|$|2s)

=
Lv(2s, sym2f)

ζkv(4s)
.

Take s = 1/2. We obtain

j(Hv, σv, φv, ψv) =
L(1, sym2σv)

ζv(2)

This is exactly the factor predicted by Theorem 1.2.1. More precisely, we have
shown the following:

Lemma 5.2.1. Assume that φ is invariant under the standard maximal compact
subgroups of G(Ak) and SL2(Ak), respectively, and is decomposable:

φ = ⊗φv.
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Then the periods of θf
φ(g) is also decomposable:

`H,τ (θ
f
φ) = c ·

∏
v

j(Hv, σv, φv, ψv)

where

• c is a constant depending only on k and F ;
• j(Hv, σv, φv, ψv) depends only on the field extension Fv/kv, the represen-

tation σv, the order of conductor of ψv, the function φv, and the ramifi-
cation of H at v.

Moreover j(Hv, σv, φv, ψv) has the following properties

(1) j(Hv, σv, φv, ψv) is continuous in φv, analytic in complex number s, if
σv = π(| · |s, ηv| · |−s);

(2) j(Hv, σv, φv, ψv) is a rational function of q
1/2
v over C when v is a finite

place;
(3) for a finite place v, one has the following expression

j(Hv, σv, φv, ψv) =
L(1, sym2σv)

ζv(2)

in the unramified case as defined below:
– Fv/kv is unramified;
– ψv is unramified;
– φv is the characteristic function of standard lattice V (Ov);
– H is split at v;

(4) if ψ′v(x) = ψv(t2x) is another character with t ∈ k×v , then

j(Hv, σv, φ
′
v, ψ

′
v) = η(t)|t|2j(Hv, σv, ωψv(m(t)−1)φ′v, ψv).

5.3. On normalization of theta lifting. Let π be a cuspidal representation
of G(Ak) = GSO(V (Ak)) which is a lifting of a representation σ of G′(Ak) =
GL2(Ak)+. Let ϕ and f be the new forms in π and σ respectively.

To say that ϕ is a new form for π means ϕ will transform according to a
character of a suitable compact subgroup U of G(Ak). Any two vectors in the
space of π satisfying the same transformation rules under U will be multiples of
each other. For the case needed in this paper (see section 5.4 below), U will be
a maximal compact subgroup of G(Ak) and the new forms are spherical vectors
in the space of π.

Thus if φ ∈ S(V (Ak)) is a Schwartz function satisfying this same transforma-
tion rule under U then there is a constant c(σ, φ) such that

θf
φ = c(σ, φ)ϕ.
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We will show that when φ is decomposable. say φ = ⊗vφv, then c(σ, φ) is
decomposable

c(σ, φ) =
∏
v

c(σv, φv)

with the following properties:

• for all good place v, c(σv, φv) = 1;

• for bad places c(σv, φv) is continuous in the variable φv and analytic in
coefficients of L(s, σv).

One natural approach to the study c(σ, φ) is to compute the Whittaker coeffi-
cient W f

φ (g) of θf
φ and compare it with Wϕ(g). At this stage, it seems hard to see

such decomposability. Dually we may try to compute the Fourier coefficients of
θϕ
φ which will involve the computation of periods `H(ϕ). When H is split, such a

period has been computed in §5.1.

Let us start with the expression

c(σ, φ) =
(θf

φ, ϕ)G

(ϕ,ϕ)G
.

Here the inner product is taken on G(k)\G(Ak). Recall that

θf
φ(g) =

∫

G′1(k)\G′
λ(g)

(A)
θφ(g, h)f(h)dh

where G′
λ is the set of elements in G′ with determinant λ, viewed as a homoge-

neous space of G′
1 = SL2. It follows that

(θf
φ, ϕ)G =

∫

(G×G′)∆(k)\(G×G′)∆(A)
θφ(g, h)f(h)ϕ̄(g)d(g, h)

= (f, θ̃ϕ
φ )G′

where subscript ∆ means elements with the same determinants or similitudes,
and θ̃ϕ

φ is the lifting of ϕ using kernel θ̄φ. Thus we have the expression:

c(σ, φ) =
(f, θ̃ϕ

φ )

(f, f)
· (f, f)
(ϕ,ϕ)

.

The first term is the ratio of θ̃ϕ
φ over f which be computed by comparing the

Fourier coefficients. More precisely, let W̃ϕ
φ be the Whittaker function of θ̃ϕ

φ then

(f, θ̃ϕ
φ )

(f, f)
=

W̃ϕ
φ

Wf
.
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The other term is essentially equal to L(1,Sym2f)/L(1,Sym2ϕ).

The computation of W̃ϕ
φ is similar to the proof of Proposition 4.2.1. By the

definition of the Weil representation, we have

W̃ϕ
φ (x) =

∫

k\Ak

θ̃ϕ
φ (n(t)h)ψ(−t)dt

=
∫

G1(k)\Gdet h(Ak)
ϕ(g)

∑

ξ∈V−1(k)

ω(g, x)φ(ξ)dg

=|det x|−1

∫

G1(k)\Gdet x(Ak)
ϕ(g)

∑

ξ∈V−1(k)

ω(x0)φ(g−1ξ)dg.

Here V−1 denotes the set of elements of norm −1 which is a single orbit under

G1(k), and x0 =
(

1
det x−1

)
x. Let H be the stabilizer of e :=

(
1
−1

)
∈ V−1 in

G1. Then H is the subgroup corresponding to ε = 1.

W̃ϕ
φ (x) =|det x|−1

∫

H(k)\Gdet x(Ak)
ϕ(g)ω(x0)φ(g−1e)dg

=|det x|−1

∫

H(Ak)\Gdet x(Ak)
`(g, ϕ)ω(x0)φ(g−1e)dg.

Here `(g, ϕ) is the period of r(g)ϕ:

`(g, ϕ) =
∫

H(k)\H(Ak)
ϕ(hg)dh.

This period can be computed using method in §5.1. To use notation in §5.1,
we let α ∈ GL2(F ) such that αHα−1 = H0 := GL2(k) and transform everything
in terms of H0. Now we copy some computations from §5.1:
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`(g, ϕ) =
∫

H0(k)\H0(Ak)
ϕ(hαg)dh

=c1Ress=1/2

∫

H0(k)\H0(Ak)
ϕ(hαg)E(h, s)dh

=c1Ress=1/2

∫

B(k)\H0(Ak)
ϕ(hαg)f(h, s)dh

=c1Ress=1/2

∫

N(Ak)B(k)\H0(Ak)

∫

N(k)\N(Ak)
ϕ(nhαg)dnf(h, s)dh

=c1Ress=1/2

∫

N(Ak)B(k)\H0(Ak)

∑

ξ∈k×
Wϕ

((
ξξ0

1

)
hαg

)
f(h, s)dh

=c1Ress=1/2

∫

N(Ak)\H0(Ak)
Wϕ

((
ξ0

1

)
hαg

)
f(h, s)dh

Take ϕ = ⊗vϕv and f = ⊗vfv to be factorizable. Then by the uniqueness of local
Whittaker models, we have

Wϕ(g) =
∏
v

Wv(gv)

where Wv(g) is the local Whittaker function attached to ϕv. It follows that the
last integral is a product of the following local integrals over places of k for the
real part of s large:

∫

N(kv)\H0(kv)
Wϕv

((
ξ0

1

)
hαg

)
fv(h, s)dh.

For places v of k where αvgv ∈ Uv, these local integrals equal to

|ξ0δv|1/4−s/2Lv(s + 1/2,Sym2σv)ζv(s + 1/2)ζv(2s + 1)−1.

If αvgv 6∈ Uv, it can be expressed as a product of

Lv(s + 1/2,Sym2σv) · ζv(s + 1/2)

times a polynomial function in q−s, since ϕv is still spherical. Hence the local
integrals have a meromorphic continuation to the complex plane C with the
denominator given above. Therefore, if we define local function at each local
place v by

(5.3.1) `v(gv) =
ζv(2)
ζv(1)

∫

N(kv)\H0(kv)
Wv

((
ξ0

1

)
hg

)
f(1/2, h)dh,

then we have a factorization formula:

`(g, ϕ) = c4

∏
`v(αgv)



272 Di-Hua Jiang, Jian-Shu Li and Shou-Wu Zhang

where c4 is a nonzero constant. Note that the definition of `v(gv) does not depend
on the choice of ξ0, ψv, and is invariant under the center of G(kv).

Now we assume that φ is decomposable φ = ⊗φv. Then we have

W̃ϕ
φ (x) =

∏
v

W̃v(xv)

with

W̃v(xv) = |det xv|−1

∫

H0(kv)\Gdet xλ(α)(kv)
`v(g)ω(x0,v)φv(g−1αe)dg.

It is easy to check that W̃v here is a Whittaker function with respect to the
character ψv. To understand the dependence on α, we notice that for any fixed
nonzero trace free element ξ we may choose α such that

αe = eξ :=
(

ξ
−ξ

)
.

Thus we have the expression

(5.3.2) W̃v(xv) = |det xv|−1

∫

H0(kv)\G− det x·ξ2 (kv)
`v(g)ω(x0,v)φv(g−1eξ)dg.

Since `v(g) is invariant if g is replaced by gt with t ∈ k× = Z(G), we see that
W̃v(xv) does not depend on ξ.

The dependence of W̃v on ψv is through the norm |δv| of its conductor. We
want to show that this dependence can be extended to the class of δv modulo
O×v · (k×v )2. Let ψ′v(x) = ψv(t2x) be another character with a t ∈ k×v . Let W̃ ′
be the Whittaker function of a different function φ′v and the Weil representation
ω′(x) = ω(m(t)xm(t)−1) with respect to the character ψ′v. Since `v(g) does not
depend on the choice of ψv, we have

W̃ ′
v(xv) =|det xv|−1

∫

H0(kv)\G− det x·ξ2 (kv)
`v(g)ω′(x0,v)φ′v(g−1eξ)dg

=|det xv|−1

∫

H0(kv)\G− det x·ξ2 (kv)
`v(g)ω(m(t)x0,vm(t)−1)φ′v(g−1eξ)dg.

In other words, we have

(5.3.3) W̃ ′
v(xv) = Wv(m(t)xv) = ηv(t)Wv

((
t2

1

)
xv

)

where W̃ is the Whittaker function with respect to ψv and the function φv =
ω(m(t)−1)φ′v.

Now we want to evaluate W̃v(1) at the following nice place

• φv is the characteristic function of V (Ov);
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• Fv/kv is unramified.
• ψv is unramified.

In this case, we may choose ξv so that |ξv| = 1. Thus have

W̃v(1) =
∫

H0(kv)\G−ξ2 (kv)
`v(g)φv(g−1eξ)dg.

where G−ξ2(kv)0 denotes the subset of elements g such that g−1e is integral. It
is not difficult to show that Gξ2(kv)0 has decomposition H(kv)U−ξ2 where U−ξ2

is the subgroup of G−ξ2(kv) fixing lattice V (Ov). Thus

W̃v(1) = `v(1) = L(1, sym2σv).

In summary, we have shown that θ̃ϕ
φ has the Whittaker function W̃ϕ

φ which is
decomposable:

W̃ϕ
φ =

∏
v

W̃v

with
W̃v(e) = L(1,Sym2σv)

for all good places v of k. Since θ̃ϕ
φ is a multiple of f , by comparing their Fourier

coefficients, we have that

θ̃ϕ
φ = W̃

(
δ−1 0
0 1

)
· f.

Let cv(σv, φv, ψv) be the constant defined by

cv(σv, φv, ψv) = L(1,Sym2σv)−1 · W̃v

(
δ−1
v 0
0 1

)
.

Then
θ̃ϕ
φ = c · L(1, sym2σ) ·

∏
c(σv, φv, ψv) · f

where c is a nonzero constant independent of σ. Plugging this to our earlier
expression, we obtain

c(σ, φ) = c · L(1, sym2σ) ·
∏

c(σv, φv, ψv) · (f, f)
(ϕ,ϕ)

.

On the other hand, ‖f‖2 and ‖ϕ‖2 are L(1,Adπ) and L(1,Adσ) respectively.
By the following identity:

L(1,Sym2σ)L(1,Adσ) = L(1, η ⊗Adσ)L(1,Adσ) = L(1,Adπ),

we have the following
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Lemma 5.3.1. The constant c(φ, σ) has a decomposition

c(σ, φ) = c0

∏
v

c(σv, φv, ψv),

where

• c0 is a nonzero constant depending only on extension F/k;
• c(σv, φv, ψv) depends only on φv and σv, and the order of ψv.

Moreover c(σv, φv, ψv) has the following properties:

(1) c(σv, φv, ψv) is continuous in φv and analytic in s ∈ C if

σv = π(| · |s, ηv| · |−s);

(2) for v a finite place, c(σv, φv, ψv) is a rational function of qs
v over C;

(3) for v a finite place, c(σv, φv, ψv) = 1 if the following unramified conditions
hold at v:
• ψv is unramified,
• φv is the characteristic function of V (Ov),
• Fv/kv is unramified;

(4) if ψ′v(x) = ψv(t2x) is another character of kv with t ∈ k×v , and φ′v is
another function on V (kv), then

c(σv, φ
′
v, ψ

′
v) = ηv(t)c(σv, ω(m(t)−1)φ′v, ψv).

5.4. On ratios. We complete here the proof of Theorem 1.2.1. We fix a Bruhat-
Schwartz function φ which is invariant under the maximal compact subgroups of
G(Ak) and SL2(Ak), such that c(φ, σ) 6= 0, and is decomposable:

φ = ⊗φv.

The period of the newform ϕ is given by Lemma 4.3.1:

`(ϕ) = c(σ, φ)−1J(1/2).

We also fix an additive character ψ of k\Ak. Our main results in the last section
show that the right hand side is decomposable and agrees with Theorem 1.2.1 for
good places. Let α(Hv, σv, ψv) be the function defined by

α(Hv, σv, ψv)β(Hv, σv) = c(σv, φv, ψv)−1j(Hv, σv, φv, ψv)

where β(Hv, σv) is the local term at v in the formula in Theorem 1.2.1:

β(Hv, σv) =
L(1,Sym2σv)√

dvζv(2)

{
1 if Hv is split
χv($v)−χv($v)−1

q
1/2
v −q

−1/2
v

. if Hv is not split.

The Lemmas proved in the last subsections imply the following:
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Lemma 5.4.1. Let α(H, σ) be the ratio of the two sides in the formula in The-
orem 1.2.1. Then we have decomposition:

α(H, σ) = α0

∏
v

α(Hv, σv, ψv)

where

• α0 is a constant depending only on F/k;
• α(Hv, σv, ψv) depends only on σv, ψv, and the ramification of H at v;

Moreover, α(Hv, σv, ψv) has the following properties:

(1) α(Hv, σv, ψv) is analytic in s ∈ C if σv = (| · |s, ηv| · |−s);
(2) α(Hv, σv, ψv) is a rational function of qs

v if v is a finite place;
(3) for v a finite place, α(Hv, σv, ψv) = 1 if the following unramification

conditions hold at v:
• ψv is unramified;
• H is split at v;
• Fv/kv is unramified.

(4) if ψ′v(x) = ψv(t2x) another character with t ∈ k×v , then

α(Hv, σv, ψ
′
v) = |t|−2α(Hv, σv, ψv).

We are going to show that α = 1. The idea is that Lemma 5.4.1 holds also for
Eisenstein series in the sense of continuous spectrum:

(5.4.1) α(H, σ) = α0

∏
v

α(Hv, σv, ψv) = 1

if σ is a global principal series representation π(| · |s, η| · |−s).

Lemma 5.4.2. If v is an infinite place then α(Hv, σv, ψv) is independent of σv.

Proof. In this case we may assume k = Q. In this case, ψv(x) = e±2πit2x for some
t ∈ R×. By property (4) and (1) in Lemma 5.4.1, we may assume that t = 1
and that s is imaginary. Now by property (2) of Lemma 5.4.1, for each prime p,
α(Hp, σp, ψp) is a rational function of ps which is 1 in the unramified case. The
formula (5.4.1) thus implies that α∞(H∞, σ∞, ψ∞) is a rational function of p−s

for a set S of primes p ramified in D or F . Certainly we may choose a different
pair (D′, F ′) with disjoint set S′ of ramified primes. So α∞(H∞, σ∞, ψ∞) have
two expressions as rational functions of ps with p’s in two disjoint sets of primes.
Since ps for different p’s are algebraically independent, all these expressions must
be constants. ¤
Lemma 5.4.3. Let p be a finite prime and let σ = π(| · |s, | · |−sη) be a principal
series then

αp(Hp, σp, ψp) :=
∏

v|p
α(Hv, σv, ψv)
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does not depend on σ.

Proof. We apply Lemma 5.4.1 to equation (5.4.1) to get

α0

∏
p

α(Hp, σp, ψp) = 1.

Now by property (2) of Lemma 5.4.1, α(Hp, σp, ψp) are rational functions of ps.
Since ps for different p are algebraically independent, all α(Hp, σp, ψp) must be
constant. ¤
Lemma 5.4.4. For a given finite place v of k with residue characteristic p, there
is a totally real quadratic extension F ′ of k, a quaternion algebra D′ over k split
in F ′, and a character ψ′ of k\Ak such that the following conditions are satisfied:

• F ′
v ' Fv over v but F ′ is unramified over other places of k over p;

• H ′
v ' Hv but H ′ is split at other places of k over p;

• ψ′v has the same order as ψv, but ψ′ is unramified at other places of k
over p.

Proof. This is obvious since each condition amounts to the existence of certain
elements in k× satisfying some congruent conditions at the places of k over p. ¤

Now by Lemma 5.4.3, and property (3) of Lemma 5.4.1 we conclude that
α(Hv, σv, ψv) is independent of σv. Thus α(H, σ) does not depend on σ. Finally,
by equation (5.4.1), we conclude that α(H, σ) = 1.
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