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0. Introduction

The complex dynamic system is a subject to study iterations on P1

or PN with respect to complex topology. It originated from the study of
Newton method and the three body problem in the end of 19th century and
was highly developed in 20th century. It is a unique visualized subject in
pure math because of the beautiful and intricate pictures of the Julia sets
generated by computer. The subject of this paper, algebraic dynamics, is a
subject to study iterations under Zariski topology and is still in its infancy.
If the iteration is defined over a number field, then we are in the situation of
arithmetical dynamics where the Galois group and heights will be involved.
Here we know very little besides very symmetric objects like abelian varieties
and multiplicative groups.

The development of arithmetical dynamics was initiated by Northcott
in his study of heights on projective space [47], 1950. He showed that the
set of rational preperiodic points of any endomorphism of PN of degree ≥ 2
is always finite. The modern theory of canonical heights was developed by
Call and Silverman in [11]. Their theory generalized earlier notions of Weil
heights on projective spaces and Néron-Tate heights on abelian varieties.
Thus many classical questions about abelian varieties and multiplicative
groups can be asked again for the dynamical system, such as the size of
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rational points, preperiodic points, and their distributions. See §4.1.5 and
§4.1.6 for some standard conjectures, such as Lehmer’s conjecture and Lang’s
conjecture. In [62], we developed a height theory for subvarieties and an
intersection theory for integrable adelic metrized line bundles, based on Gillet
and Soulé’s intersection theory [26]. Thus many questions about points can
be asked again for subvarieties. Two questions we considered in [62] are the
Manin-Mumford conjecture and the Bogomolov conjecture. See Conjecture
1.2.1 and 4.1.1.

This note in a large sense is an extension of our previous paper. Our
first goal is to provide a broad background in Kähler geometry, algebraic
geometry, and measure theory. Our second goal is to survey and explain the
new developments. The following is a detailed description of the contents of
the paper.

In §1, we will give some basic definitions and examples of dynamics in
Kähler geometry and algebraic geometry, and study the Zariski properties
of preperiodic points. Our dynamic Manin-Mumford conjecture says that a
subvariety is preperiodic if and only if it contains many preperiodic points.
One question we wish to know (but don’t yet) is about the positivity of a
canonical (1,1) class on the moduli of cycles on a Kähler variety.

In §2, we will study the classification problem about Kähler dynamics.
In surfaces, the problem can be completely solved. In the smooth projective
case, we will prove that the dynamics can only be either a quotient of a
complex torus or uniruled. In the general case, we will give a factorization
result with respect to rational connectedness.

In §3, we will study the measure theoretic properties of dynamics. We
will first construct invariant metrics and measures on bundles and subvari-
eties. We will conjecture several properties about these invariant measures:
they can be obtained by iterations of smooth measures, or by probability
measures of backward orbits of general points. We also conjecture that
the Kobayashi pseudo-metrics vanish. We will prove some special of these
properties using the works of Yau [59] and Briend-Duval [9].

In §4, we will study dynamics over number fields. We will first pro-
pose a dynamic Bogomolov conjecture and an equidistribution conjecture
for dynamically generic small points. Following Chambert-Loir [16], we can
make an equidistrubution conjecture on Berkovich’s p-adic analytic spaces.
Finally, we will prove that the equidistribution conjecture and Bogomolov
conjecture are essentially equivalent to each other using a recent work of
Yuan [60] on arithmetic bigness.

What should be, but is not, discussed in this article. Because of limita-
tions of our time and knowledge, many interesting and important topics will
not be treated in this article.

• First is the “real theory of dynamics”. We prove some properties
about the distribution of backward orbits but we say nothing about
the forward orbits. Also we have zero knowledge about support of
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the canonical measure (which is actually crucial in our arithmetic
theory). We have to learn from “real or p-adic experts of the dy-
namical system” about what we should do in the next step. We
refer to Katok and Hasselblatt’s book [32] for dynamics on mani-
folds, Milnor’s book [41] for P1, Sibony’s article [54] for PN , and
Dinh-Sibony [21] for general complex variety respectively.

• The second topic is about the dynamics of correspondences and
automorphisms of positive entropy. There are many beautiful ex-
amples that have been discovered and studied. For classification
and complex theory of automorphisms of surfaces, in particular
K3 surfaces, we refer to Cantat [15, 14] and McMullen [40, 39].
For arithmetic theory, we refer to the work of Autissier [2] for Hecke
correspondences, Silverman [55] and Mazur [38] for involutions on
K3 surfaces, and Kawaguchi [33] for some generalizations.

• The last topic is about the moduli of dynamical system. We will
discuss the classification problem for which variety to have a dy-
namical system, and construction of dynamical system for moduli
of subvarieties, but we will not study all polarized endomorphisms
on a fixed variety. As the moduli of abelian varieties play a funda-
mental role in modern number theory and arithmetic geometry, it
will be an interesting question to construct some interesting mod-
uli spaces for dynamics. We refer to Silverman’s paper [56] for the
moduli of dynamics on P1.
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of this paper. Finally, I would like to thank Xander Faber, Johan de Jong,
Kathy O’Neil, and Xinyi Yuan for their patience in listening to my lectures
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1. Kähler and algebraic dynamics

In this section, we will first give some basic definitions of polarized dy-
namics in Kähler geometry and algebraic geometry, and some basic categor-
ical constructions, such as the fiber product and quotients. Then we will
propose our first major conjecture: a dynamic Manin-Mumford conjecture.
Finally we will list some examples, including abelian varieties, projective
spaces, and the Chow variety of 0-cycles. The main tools in this section
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are Serre’s theorem on a Kähler analogue of the Weil conjecture, Deligne’s
theory on intersections of line bundles, and a conjectured Kähler analogue
of the positivity of Deligne’s pairing on the Chow variety.

1.1. Endomorphisms with polarizations.
Kählerian dynamical system. Let us first recall some definitions about

Kähler manifolds. See [27] for details. Recall that a Kähler manifold is a
complex manifold X with a differential form ω of type (1, 1) such that dω = 0
and that locally if we write

ω = i
∑

hi,jdzi ∧ dz̄j

then (hi,j) is a positive definite hermitian matrix. The form ω here is called
a Kähler form and its class

[ω] ∈ H1,1(X, R) := H1,1(X, C) ∩ H2(X, R)

is called a Kähler class.
By a Kähler variety X with a Kähler form ω we mean an analytic

variety which admits a finite map f : X → M to a Kähler manifold M with
a Kähler form η such that f∗η = ω.

Let φ : X −→ X be an endomorphism of a compact Kähler variety.
Then φ acts on H1,1(X, R) by the pull-back φ∗. We say that φ is polarizable
by a Kähler class ξ if

φ∗ξ = qξ

for some integer q > 1. A polarized Kähler dynamical system is by definition
a triple (X,φ, ξ) as above. The number dimX · log q is called the entropy of
the dynamical system, and log q is called the entropy slope. One immediate
fact about polarized endomorphisms is the following:

Lemma 1.1.1. Let φ : X −→ X be a polarized endomorphism. Then φ
is finite with degree deg φ = qdimX .

Proof. Indeed, for any subvariety Y in X, one has the formula

deg(φ|Y )
∫

φ(Y )
ωdimY =

∫
Y

φ∗ωdimY = qdimY

∫
Y

ωdim Y �= 0.

Here deg(φ|Y ) is defined to be 0 if dimφ(Y ) < dim Y . The above equation
implies that deg(φ|Y ) �= 0. Taking Y = φ−1(x), we get that Y is finite.
Thus φ is finite. Taking Y = X, we get that deg(φ) = qdimX . �

A deep property of it is the following Kähler analogue of Weil’s conjec-
ture about eigenvalues of φ∗ on cohomology:

Theorem 1.1.2 (Serre [53]). Let φ : X → X be a polarizable endo-
morphism of degree qn. Then the eigenvalues of φ∗ on each cohomology
H i(X, R) have absolute value qi/2.
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Proof. Consider the cup product

H i(X, C) × H2n−i(X, C) −→ H2n(X, C) � C.

Here the last map is given by integration. Let ξ be a Kähler class such that
φ∗ξ = qξ. Notice that ξn is a generator of H2n(X, C). So φ∗ on H2n(X, C)
is given by multiplication by qn. Now let g denote the endomorphism on
H∗(X, C) = ⊕iH

i(X, C) that has restriction q−i/2φ∗ on H i(X, C). Then the
above product is invariant under g, and so is the class ξ. Now we use the
Hard Lefshetz theorem ([27], page 122) to give a decomposition of H i(X, C).
For i ≤ n, let Pi(X) denote the kernel of the map

H i(X, C) −→ H2n−i+2(X, C), α −→ ξn−i+1 ∧ α.

Then H∗(X, C) is a direct sum of ξjPi with i ≤ n, i + 2j ≤ 2n. Obviously,
this decomposition is invariant under the action by g, and so it suffices to
show that the eigenvalues of g on Pi have absolute value 1. Moreover, by
the Hodge index theorem (or Hodge and Riemann bilinear relations, [27],
page 123) the pairing on Pi defined by

Pi × Pi −→ C, (α, β) =
∫

αC(β)κn−i

is positively definite. Here C is an operator on H∗(X, C) such that on the
Hodge component Hp,q with p + q = i, it is given by

α �→ (−1)(n−i)(n−i−1)/2
√−1

p−q
ᾱ.

It is easily checked that g is unitary with respect to this pairing. It follows
that g has eigenvalues with norm 1. Thus the eigenvalues of φ∗ have norm
qi/2 on H i(X, C). �

Endomorphisms with positive entropy. We say that a finite endomor-
phism φ of a compact Kähler variety has positive entropy if there is a semi-
positive class ξ ∈ H1,1(X, R) such that

φ∗ξ = qξ

with q > 1. The notion of “positive entropy” here is equivalent to the same
notion in the topological sense and to the statement that φ∗ on H1,1(X, R)
has an eigenvalue of absolute value greater than 1. See Dinh-Sibony’s paper
[22] for details. The proof of Corollary 2.2 of that paper also shows that
φ∗ on Hp(X, Z) has eigenvalues with absolute values bounded by the p-th
power of the absolute value of the eigenvalues on H1,1(X, R). Notice that
all eigenvalues on H i(X, Z) are algebraic integers with product a positive
integer. Thus if φ does not have positive entropy then all of its eigenvalues
on H∗(X, Z) are roots of unity. Thus (φ∗)N for some fixed N has eigenvalues
equal to 1. This implies in particular that φ is the identity on H2n(X, Z).
Thus φ is a biholomorphic map. We conclude that if φ has zero entropy then
φ is an automorphism. Notice that this statement is true for a dynamical
system on a compact manifold. See Theorem 8.3.1 in Katok-Hasselblatt’s
book [32].
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The category of dynamical system. We can define a morphism f : φ → ψ
of two endomorphisms φ : X −→ X and ψ : Y → Y as usual by a morphism
f : X → Y such that f ◦ φ = ψ ◦ f :

X

f
��

φ �� X

f
��

Y
ψ �� Y

If φ and ψ are polarized by classes ξ and η with the same entropy slope,
then φ is polarized by all positive classes ξ + cf∗η where c ∈ R. Especially,
if f is finite and ψ is polarized by η, then φ is polarized by f∗η.

If f is proper and flat with relative dimension d, and φ is polarized by
a class ξ with entropy slope log q, then we claim that ψ is polarized by the
form

η :=
∫

X/Y
ξd+1

with the same entropy slope log q as φ provided that η is a Kähler class on
Y . See Conjecture 1.2.3 and Remark 1.2.4. below. Indeed, for any point
y ∈ Y , in the diagram

Xy

��

φy �� Xψ(y)

��
y �� ψ(y)

the morphism φy has degree qd as
∫
Xy

ξd > 0, and

deg(φy)
∫

Xψ(y)

ξd =
∫

Xy

φ∗ξd = qd

∫
Xy

ξd.

It follows that

(ψ∗η)(y) =
∫

Xψ(y)

ξd+1 =
1

deg φy

∫
Xy

φ∗ξd+1 = q

∫
Xy

ξd+1 = qη.

Especially, if f is finite and flat, then φ is polarized if and only if ψ is
polarized. One application is the normalization f : X̃ −→ X: obviously φ

induces an endomorphism φ̃ of X̃ which is polarized by the class f∗ξ.
We say two endomorphisms φ,ψ : X −→ X are equivalent if there

are positive numbers m,n such that φm = ψn. We will mainly study the
properties of endomorphisms depending only on their equivalence classes.
Thus it makes sense to define the entropy class for the equivalence class of
an endomorphism φ to be

Q log(deg φ)
as a Q-line in R.

Notice that the product of two polarized endomorphisms may not be
polarizable. If we allow to replace them by equivalent ones, then a sufficient
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condition is that they have the same entropy class. More precisely, let
φ : X −→ X and ψ : Y −→ Y be two endomorphisms of compact Kähler
varieties polarized by ω ∈ H1,1(X) and η ∈ H1,1(Y ). The following two
statements are equivalent:

(1) the endomorphism

φ × ψ : X × Y −→ X × Y

is polarizable by π∗
1ω + π∗

2η where πi are projections from X × Y
to X and Y ;

(2) φ and ψ have the same entropy slope.

If f1 : φ1 → ψ and φ2 → ψ are two morphism from two dynamic systems
X1,X2 to a variety Y , then we can form the fiber product

φ1 ×Y φ2 : X1 ×Y X2 −→ X1 ×Y X2.

If they have the same entropy slope, then the product is again a polarized
dynamical system in an obvious way.

Algebraic dynamical system. We now consider an endomorphism φ :
X −→ X of projective varieties. We may define algebraic polarization by
replacing (1,1)-classes by line bundles. Let Pic (X) denote the group of line
bundles on X which is isomorphic to H1(X,OX ) and let Pic 0(X) denote
the subgroup of line bundles which are algebraically equivalent to 0, and
let NS(X) denote the quotient Pic (X)/Pic 0(X) which is called the Neron-
Severi group. Then the exact sequence

0 −→ Z −→ OX −→ O×
X −→ 0

induces the following natural isomorphisms:

NS (X) � H1,1(X, C) ∩ H2(X, Z), Pic 0(X) � H1(X,OX )/H1(X, Z).

Recall that a line bundle L is ample if some positive power Lm is isomor-
phic to the pull-back of the hyperplane section bundle for some embedding
i : X −→ PN . By Kodaira’s embedding theorem, L is ample if and only if
its class in NS(X) ⊂ H1,1(X, R) is a Kähler class.

Let φ : X −→ X be an endomorphism of a projective variety. Then
φ acts on Pic (X). We say that φ is polarizable by a line bundle L (resp.
R-line bundle L ∈ Pic (X) ⊗ R) if

φ∗L � Lq

for some q > 0.
An endomorphism φ : X −→ X of projective variety polarized by a line

bundle L will be polarized by an integral Kähler class: we just take

ξ = c1(L) ∈ H1,1(X, Z).

We want to show the converse is true:
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Proposition 1.1.3. Let φ : X −→ X be an endomorphism of smooth
projective variety with a polarization by a Kähler class ξ such that ξ is
integral, and that φ∗ξ = qξ with q integral and > 1. Then there are line
bundles L with class ξ such that

φ∗L � Lq.

Proof. Let Pic ξ(X) denote the variety of line bundles on X with class
ξ. Then we have a morphism

λ : Pic ξ(X) −→ Pic 0(X), λ(L) = φ∗L ⊗ L−q.

Notice that Pic ξ(X) is a principal homogenous space of Pic 0(X). The
induced homomorphism on H1’s is an endomorphism on H1(X, Z) given by
λ := φ∗ − q. By Proposition 1.1.2, all eigenvalues of φ∗ on H1(X, Z) have
eigenvalues with absolute values q1/2. It follows from the assumption that
λ is finite and thus surjective. In particular we have an L ∈ Pic ξ(X) such
that λ(L) = 0. In other words φ∗L = Lq. �

Category of algebraic dynamical system. In the same manner as in Kähler
case, we may define the morphism f : φ → ψ between two endomorphisms
of projective varieties X, Y . If φ and ψ are both polarized by line bundles L
and M with the same entropy slope, then φ is also polarized by any positive
class of the form L ⊗ f∗Mn. If f is flat of relative dimension d, and φ is
polarized by a line bundle L, then ψ is polarized by the following Deligne’s
pairing ([19], See also [63]):∫

X/Y
L〈d+1〉 := 〈L, . . . ,L〉.

For convenience to reader, let us recall the definition. Let π : Z −→ C
be a flat family of projective varieties of pure relative dimension d. Let
L0, . . .Ld be line bundles on Z. The Deligne pairing 〈L0, . . . ,Ld〉 is a line
bundle on C which is locally generated by a symbol 〈�0, . . . �d〉 modulo a
relation, where �i are sections of Li such that their divisors div (�i) have
empty intersection on fibers of f . The relation is given as follows. If α is a
function, and i is an index between 0 and d such that div (α) has disjoint
intersection Y :=

∏
j �=i div (�j), then Y is finite over C, and

〈�0, . . . , α�i, . . . , �d〉 = NY (α)〈�0, . . . , �d〉.
Here NY (α) is the usual norm map NY : π∗OY −→ OC .

We may also define the polarized product or fiber product for polarized
endomorphisms with the same entropy slope in the same manner as in Kähler
case.

1.2. Preperiodic subvarieties. Let φ : X −→ X be an endomor-
phism of Kähler variety with a polarization. Let Y be an analytic subvariety
of X. We say that Y is periodic if for some k > 0, φk(Y ) = Y , and preperi-
odic if for some m, φm(Y ) is periodic. Equivalently, Y is preperiodic if the
orbits of Y under φ are finite. When X is projective, it shown by Fakhruddin
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([23], Corollary 2.2) that for some �,m ≥ 1 such that the system (X,φ,Lm)
can be extended to a dynamic system of PN , where N = dim Γ(X,Lm).

If Y is periodic, say φk(Y ) = Y . Then the restriction of φk on Y is
still polarized with entropy slope k log q. The aim of our paper is to study
the distribution properties of the set Prep (X) of preperiodic points of X in
various topology. In this section we mainly focus on Zariski topology. Our
first basic conjecture is the following:

Conjecture 1.2.1 (Dynamic Manin-Mumford). A subvariety Y of X
is preperiodic if and only if Y ∩ Prep (X) is Zariski dense in Y .

Dynamic topology. For a better understanding of the nature of the dy-
namic Manin-Mumford conjecture, it is helpful to introduce the following so-
called dynamic topology on a dynamical system (φ,X, ξ) in which all closed
sets are preperiodic subvarieties. To see it is really a topology, we check
that the intersections of preperiodic subvarieties are still preperiodic. In this
topology, the set of minimal subvarieties are exactly the set of preperiodic
points. The conjecture 1.2.1 is equivalent to the following two statements:

(1) The preperiodic points on any preperiodic subvariety are Zariski
dense; when X is projective, this is actually a Fakhruddin [23],
Theorem 5.1.

(2) On Prep (X), dynamic topology = Zariski topology.
The Zariski closure of preperiodic points in a preperiodic subvariety is

again preperiodic. Thus for the first statement it suffices to consider periodic
points in the periodic subvariety.

Conjecture 1.2.2. Let Y be a periodic subvariety of dimension r:
φmY = Y for some m > 0. Then as k −→ ∞,

#{y ∈ Y, φkm(x) = x} = qrkm(1 + o(1)).

By Serre’s Theorem 1.1.2, the conjecture is true if Y is smooth, polar-
izable, and if most of the fixed points have multiplicity one. Indeed, in this
case without loss of generality we may simply assume that Y = X and that
a = 1. For any fixed point x of φk the multiplicity mk(x) is defined to be
the length of the dimension of the maximal quotient of the local OX,x where
the action of (φk)∗ is trivial:

mk(x) := dimC OX,x/((φk)∗ − 1)OX,x.

We define mk(x) = 0 if x is not a fixed point of φk. Then by Lefshetz fixed
point theorem ([27], page 421), the left hand side is

(1.2.1)
∑

x

mk(x) =
∑

i

(−1)itr ((φk)∗ : H i(X, C)).

By Theorem 1.1.2, the right hand has estimate qkn if φ is polarizable.
A consequence of Conjecture 1.2.2. is that the set of pre-periodic points

of X is countable. This is the true for general preperiodic subvarieties proved
Corollary 1.2.7.
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Dynamical systems of subvarieties. In the following, we will introduce
some dynamical system on the Chow variety. Notice that the Chow variety
is not of finite type; it is a union of a countably many subvarieties of finite
type. Later on, we will construct some dynamic systems on subvarieties of
Chow variety of finite type which are conjectured to be the Zariski closure
of periodic subvarieties.

Let us start with a compact Kähler variety X with a Kähler class ξ.
Let C(X) denote the variety of cycles on X with pure dimension [4]. Then
C(X) is a union of countably many Kähler varieties. We call C(X) the Chow
variety of X, as when X is projective, C(X) is simply the usual Chow variety
of X.

We may equip C(X) with the structure of a Kähler variety as follows.
Let

(i, π) : Z(X) −→ X × C(X)

be the universal family of cycles. For each d between 0 and n let πd :
Zd(X) → Cd(X) denote the moduli of cycles of pure dimension d. Then for
any Kähler class ξ of X, we define

ηd :=
∫
Zd(X)/Cd(X)

(i∗ξ)d+1 ∈ H1,1(Cd(X)).

Conjecture 1.2.3. The class ηd is a Kähler class on Cd(X).

Remarks 1.2.4.
(1) This conjecture implies that for any flat morphism of compact

Kähler manifold f : X → Y and any Kähler class ξ on X, the
class η =

∫
X/Y ξd+1 is a Kähler on Y . Indeed, in this case we have

an embedding Y −→ Cd(X) for d the relative dimension of f .
(2) The conjecture is true when both X and Y are projective varieties

and when ξ, the first Chern class of an ample line bundle on X.
Indeed, in this case replacing L by a power we may assume that
L = i∗O(1) for some embedding X −→ Pn(C); then η = j∗O(1) for
some embedding j : Y −→ PN (C). See [63].

If φ : X −→ X is an endomorphism polarized by a positive class ξ then
φ induces an endomorphism

φd : Cd(X) −→ Cd(X), φd(Z) = φ∗(Z) = deg(φ|Z) · φ(Z).

It clear that φd is polarized by ηd:

φ∗(ηd) = qd+1 · ηd.

In the following, we want to construct countably many subvarieties
C(d, γ, k) of Cd(X) of finite type and endomorphisms φd,γ,k with polarizations
such that every periodic subvariety is represented by points in C(d, γ, k).

First we may decompose Cd(X) further as a union of closed subvarieties
C(d, δ) representing cycles with degree δ.
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Recall that for an integral subvariety Z,

φ∗(Z) = deg φ|Z · φ(Z).

The class γ′ := [φ(Z)]. Compute the degree to obtain

deg(φ(Z)) = qd deg(Z)
deg φ|Z .

If furthermore Z is fixed by some positive power φk of φ, then the above
implies that

deg φk|Z = qkd.

For each positive integer k, let C(d, δ, k) denote the subvariety of C(d, δ)
of cycles Z of degree δ such that

q−kd�(φk�
∗ Z), � = 1, 2, . . .

are all integral. Then we can define an endomorphism

φd,δ,k : C(d, δ, k) −→ C(d, δ, k), Z −→ q−kd(φk
∗Z).

Proposition 1.2.5. The endomorphisms φd,γ,k are all polarized with
respect to the bundle ηd with entropy slope k log q:

φ∗
d,δ,kηd = qk · ηd.

Proof. By integration over fibers over Z for the form ξd+1, we have

(1.2.2) φ∗
d,δ,kηd =

q(d+1)k

qdk
· ηd = qkηd.

�

In view of Conjecture 1.2.1 for C(d, δ, k) we have the following:

Conjecture 1.2.6. The variety C(d, δ, k) is the Zariski closure of points
in C(X) representing periodic cycles Y of X such that the following identities
hold:

dim Y = d, deg Y = δ, φk(Y ) = Y.

When X is projective, this conjecture is a theorem of Fakhruddin [23].
Notice that each periodic subvariety represents a fixed point in some

φ∗
d,γ,k. Thus they are finite in each C(d, γ, k). In other words, the set of

preperiodic subvarieties of X is countable.

Corollary 1.2.7. Let φ : X −→ X be an endomorphism of a compact
Kähler manifold with a polarization. Then the set of preperiodic subvarieties
of X is countable.

From the known example, it seems that all irreducible preperiodic sub-
varieties of X have the bounded geometry, i.e., lie in a finite union of com-
ponents of the Chow variety C(X). The following is a reformulation of the
question:
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Question 1.2.8. Does there exist a number δ such that∫
Y

ξd ≤ δ,

for any irreducible preperiodic subvariety Y of dimension d?

If X is polarized by line bundles, then we may replace the above integrals
by Deligne’s pairing in §1.1. Thus we will naturally define line bundles on
Cd(X) denoted by

L〈d+1〉 := 〈i∗L, . . . , i∗L〉 = Deligne pairing of d + 1 L’s

whose Chern class is equal to∫
Zd(X)/Cd(X)

c1(L)d+1.

1.3. Examples. In this subsection we want to give some examples of
endomorphisms with polarizations.

Complex torus. Our first example is the complex torus X = Cn/Λ where
Λ is a lattice in Cn with Kähler class

ξ = i
∑

dzi ∧ dz̄i,

and φ is given by multiplication by an integer m > 1. Then we have

φ∗ξ = qξ, q = m2.

In this case the preperiodic points are exactly the torsion points:

Prep (X) = Λ ⊗ Q/Λ.

The conjecture 1.2.2 is trivial: the set of fixed points by φk is the set of
torsion points X[mk − 1] which has cardinality

(mk − 1)2n = qnk + O(q(n−1)k).

The preperiodic subvarieties are translations of abelian subvarieties by tor-
sion points. When X is an abelian variety, the dynamic Manin-Mumford
conjecture is the original Mumford-Manin conjecture proved firstly by Ray-
naud [52]: Let Y be a subvariety of X which is not a translate of an abelian
subvariety. Then all the torsion points on Y are included in a proper sub-
variety. There are other proofs ([64, 18]), but all of them uses heavily the
algebraic property (or even arithmetic property) of X. Thus they can’t be
generalized directly to the general complex torus.

Projective spaces. Let X = Pn, and φ : X −→ X be any map of de-
gree d > 1 defined by n + 1-homogenous polynomials of degree q with no
non-trivial common zeros. By Fakhruddin’s result ([23],Corollary 2.2), any
polarized dynamic system is a subsystem of a certain system on Pn. Con-
jecture 1.2.2 looks easy but I don’t know how to prove it. In the simplest
case φ(x0, . . . xn) = (xm

0 , . . . , xm
n ) where m �= ±1, the preperiodic points are

exactly the points where the coordinates xi are either 0 or roots of unity.
This is a multiplicative group analogous situation of abelian varieties: Pn
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is the union of multiplicative groups defined by the vanishing of some coor-
dinates. The Manin-Mumford conjecture is true! See Lang [36], page 207,
Ihara-Serre-Tate for n = 2, and Laurent [37] for the general case. On each
multiplicative group, the conclusions are the same as in the abelian varieties
case.

The next nontrivial work is when X = P1 × P1, φ = (φ1, φ2). The
conjecture is true when Julia sets of φi are very different ([42]). Any curve
C in P1×P1 which is neither horizontal nor vertical contains at most finitely
many preperiodic points.

Weighted projective spaces. Fix an n + 1-tuple of positive integers r =
(r0, . . . , rn). Then we have an action of C× on Cn+1 \ {0} by

(z0, . . . , zn) �→ (tr0z0, . . . , t
rnzn), (t ∈ C×).

The quotient is called a called a weighted projective space and denoted by
Pn

r . Notice that Pn
r is a projective space and can be defined by Proj C[z0, . . . ,

zn]r where Z[z0, . . . , zn]r is the graded algebra Z[z0, . . . , zn] with weighted
degree deg zi = ri. Any endomorphism of Pn

r is again given by homogenous
polynomials with nontrivial zeros and with the same degree, say q, and is
polarized by the the bundle O(1). Notice that Pn

r is in general a singular
variety and is a quotient of Pn by the diagonal action the product of roots
of ri-th roots of unity:

μr0 × · · · μrn .

Thanks to N. Sibony who showed this example to me!
Dynamical projective bundles. Let φ : X −→ X be an endomorphism

of compact Kähler variety polarized by a Kähler class ξ of entropy slope
log q. Let Li (i = 1, . . . , n) be line bundles on X such that

ψi : φ∗Li � Lq
i .

Define a vector bundle V as follows:

V = L0 ⊕L1 ⊕ · · · ⊕ Ln1

and define Y to be the corresponding projective bundle:

Y = P(V).

Then ψi induces embeddings of vector bundles

φ∗V −→ Sym qV.

Thus we have an endomorphism

f : P(V) −→ P(V)

such that
f∗OP(V)(1) = OPX(V)(q).

Then f is polarizable by bundles c1(OP(V)(1)) + mξ which is positive on
P(V) when m � 0. We don’t know if Conjecture 1.2.1 is true or not on
Y = PX(V) if it is already true on X. A typical example is when X = A is
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an abelian variety, φ = [n] for some n > 1, q = n2, and Li (i = 1, . . . , n) are
line bundles such that Li are ample and symmetric:

[−1]∗Li � Li.

Another case is when Li are torsion bundles. Then we will have [n]∗Li �
Ln2

i if Ln−1
i = OX for all i. This case corresponds to the almost split

semiabelian variety. The conjecture 1.2.1 is true by Chambert-Loir [17].
Chow variety of 0-cycles. Let φ : X −→ X be an endomorphism with

a polarization. Let δ be a positive number. Then the Chow variety C(0, δ)
of zero cycles of degree δ has an endomorphism φ0 which is polarized by
classes η0. Recall that η0 is defined as π∗i∗ξ, where (i, π) is the embedding
of universal δ-cycles Z(0, δ) −→ C(0, δ) × X.

Here is situation of curves: If X = P1, then Cδ = Pδ. If C is an elliptic
curve, then Cd is a Pδ−1 bundle over E.

2. Classifications

In the following we want to discuss some classification problems for the
dynamical system. We will first study the first Chern class for smooth dy-
namics and classify them when the first Chern class vanishes using a re-
sult of Beauville. Then we show that the smooth dynamics is uniruled in
the remaining case using results of Miyaoka-Mori on a criterion on unir-
uledness and Bouchson-Demailly-Paum-Peternell on a criterion on pseudo-
effectiveness. Using a result of Miyaoka-Mori and Campana, we will also
give a fiberation decomposition with respect to the rational connectedness
for general dynamics. Finally we give a full classification for which surface
admits a polarized endomorphism using work of Fujimoto and Nakayama.

2.1. Positivity of the first Chern class. First notice that for any
dynamical system X, the canonical class can’t be positive when X is smooth.

Proposition 2.1.1 (Fakhruddin [23], Theorem 4.2 for X projective).
Let φ : X −→ X be an endomorphism of a compact Kähler manifold with
a polarization by a class ξ. Let KX be the canonical class of X. Let Rφ be
the ramification divisor of φ. Then the following statements hold:

(1)
(1 − q)ξn−1 · KX = ξn−1 · Rφ.

(2) The Kodaira dimension of X is ≤ 0.
(3) If c(X) = −c1(KX) = 0 in H1,1(X, Z), then X has an etale cover

by complex torus:

X � T/G, T = Cn/Λ,

where Λ is a full rank Lattice in Cn, and G is a finite group acting
on T without fixed points. Moreover the endomorphism φ is induced
by a linear endomorphism φ̃ on Cn as a C-vector space.
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Proof. By definition of ramification divisor,

KX = φ∗KX + Rφ.

Thus

ξn−1 · Rφ = ξn−1 · KX − ξn−1 · φ∗KX

= ξn−1 · KX − q1−nφ∗(ξn−1 · KX)

= ξn−1 · KX − q · ξn−1 · KX = (1 − q)ξn−1 · KX .

This proves the first part of the proposition.
If the Kodaira dimension of X is positive, then some multiple of KX is

effective and nonzero; then ξn−1KX > 0. As Rφ is effective and q > 0, we
thus have a contradiction! So we have proved the second part.

If c1(X) = −c1(KX) = 0, then both sides are zero in the equation in
Part 1. Thus Rφ = 0 and φ is unramified. In this case φ is induced from
an unramified automorphism φ̃ of the universal covering X̃ . Now we apply
a theorem of Beauville ([5], Theorem 1, page 759) that X̃ is isomorphic to
Ck × M where M is a simply connected Kähler manifold and the pull-back
ξ̃ on X̃ of ξ is a sum ξ̃ = κ + η, where κ is a flat Kähler class on Ck,

κ =
√−1

k∑
j=1

ajdzjdz̄j ,

and η is a class on M . Since all morphisms from M to Ck are constant, the
morphism φ̃ has the form

φ̃(z,m) = (u(z), vz(m)).

Here u(z) is an automorphism of Ck and vz is an automorphism of M for
each given z ∈ Ck. Now we apply the equality φ̃∗ξ̃ = qξ̃ to conclude that
v∗zη = qη. As M is compact and q > 1 and η is positive, this is impossible
unless M is a point. Thus we have shown that X̃ = Ck. By the same theorem
in [5], X is then an unramified quotient of a complex torus T = Cn/Λ and
Λ is invariant under the action by φ̃.

To show the last statement, we need only to show that the induced
endomorphism ψ on T = Cn/Λ has a fixed point. We will use the Lefshetz
fixed point theorem. Notice that ψ is again polarized. Thus the eigenvalues
λi of ψ∗ on H1(T, Z) are greater than 1 by Theorem 1.1.2. Notice that
H i(X, Z) is the i-th exterior power of H1(X, Z), and thus the eigenvalues of
ψ∗ are given by λj1 · · ·λji of i distinct elements in λi’s. Thus the number of
fixed points with multiplicity is given by∑

i

(−1)itr (ψ∗,H i(X, Z)) =
∑

j1,...,jk

(−λj1) · · · (−λjk
) =

∏
(1 − λi).

As |λi| > 1, the above number is nonzero. Thus ψ has a fixed point. After
changing coordinates, we may assume that ψ and φ̃ fix the origin. �
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2.2. Uniruledness. By Proposition 2.1.2, the classification of smooth
dynamical systems is reduced to the case where X has Kodaira dimension
−∞. If n = dim X = 1, then X is simply P1. Later on we will discuss
the case of surfaces. In general, it is conjectured that a Kähler manifold
with Kodaira dimension −∞ is always uniruled, i.e., covered by rational
curves. The conjecture is true for projective varieties of dim ≤ 3 by Mori
[44], and non-algebraic Kähler manifolds of dimensions ≤ 3 with possibly
the exception of simple threefolds by Peternell [48]. In the following we
want to prove the uniruledness in the smooth and projective case using a
ruledness criterion of Miyaoka-Mori [43] and a pseudo-effectiveness criterion
of Bouchson, Demailly, Paum, and Peternell [51].

Proposition 2.2.1. Let φ : X −→ X be an endomorphism of a projec-
tive manifold with a polarization by line bundles L. Assume that c1(X) �= 0.
Then X is uniruled.

Proof. Let ξ be the corresponding Kähler class of L. By the first
part of Proposition 2.1.1, ξn−1KX ≤ 0. If KX · ξn−1 < 0, then since L
is ample, KX has negative intersection with strongly movable curves as in
[51]. By Theorem 0.2 in [51], KX is not pseudo-effective, i.e., c1(KX) is not
in the closure of the cone in H1,1(X, R) generated by effective divisors. By
Corollary 0.3 in [51], X is uniruled.

It remains to treat the case where ξn−1KX = 0. Since KX �= 0, this case
can’t happen by the following proposition. �

Proposition 2.2.2. Let X be a projective variety of dimension n, and
let ξi ∈ NS (X) be divisor classes such that

(1) ξ1 is pseudo-effective;
(2) ξi (i > 1) are ample;
(3)

∏
i ξi = 0.

Then ξ1 = 0.

Proof. There is nothing needed to prove if n ≤ 1. If n = 2, we will use
Hodge index theorem: since ξ1 · ξ2 = 0, one has ξ2

1 ≤ 0, and the equality
holds only when ξ1 = 0. On the other hand, we may take N a positive
integer such that Nξ2 + ξ1 is ample and thus has non-negative intersection
with ξ1 as ξ1 is pseudo-effective. Thus we have

ξ2
1 = (ξ1 + Nξ2)ξ1 ≥ 0.

Combining with Hodge index theorem, we have ξ1 = 0.
Now we assume that n ≥ 3 and we want to reduce to the case n = 2 and

to use the following Lefshetz Theorem in hyperplane section ([27], page 156):
Let Di be smooth divisors Di (i = 3, . . . n) representing positive multiples of
ξi such that the partial products Yk :=

∏n
i=k+1 Di are smooth subvarieties

of X of dimension k. Then for each k, the restriction map

H2(Yk, Q) −→ H2(Yk−1, Q)
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is an isomorphism when k ≥ 4, and injective when k = 3.
By induction we can show that the restriction of ξ1 on Yk is pseudo-

effective. It is sufficient to show that any effective divisor A of Yk+1 will
have the restriction [A] ·Yk represented by an effective divisor. Indeed, write
A = B + mDk with B properly intersecting Dk, and then [A] · Yk will be
represented by [B · Dk] + m[D′

k] where D′
k is some effective representative

of ξk on Yk, which always exists as ξk is ample.
Now on the surface Y2, ξ1 and ξ2 satisfy the conditions of the Proposition,

so we must have that ξ1 = 0 on Y2. Now we apply the Lefshetz Theorem on
the hyperplane section to conclude that ξ1 = 0 on X. �

Remark 2.2.3. The above proposition can be considered as a supple-
ment to Theorem 2.2 in [51] which says that a class α ∈ NS (X)R is pseudo-
effective if and only if it is in the dual of the cone SME(X) of strongly
movable curves. Our proposition just says that the pairing of α on SME(X)
is strictly positive if α �= 0.

Rationally connected factorization. Let us discuss some factorization re-
sults of Miyaoka and Mori [43] (see also Campana [12]). Let X be a pro-
jective variety. Then their result says that there is a rational morphism
f : X −→ Y classifying the rational connected components, i.e., the follow-
ing conditions hold:

(1) f is dominated with rationally connected fiber;
(2) there is a Zariski open subset X∗ over which f is regular and proper;
(3) for a general point x of X, the fiber of f over x is the set R(x) of

points y which can be connected to x by a finite chain of rational
curves. Here “general” means outside of a countably many proper
subvarieties.

We may pick up a canonical f : X −→ Y as follows: let Y be the
Zariski closure of points [R(x)] in the Chow variety C(X) corresponding to
the general points of X. Let

(ρ, π) : X̃ −→ X × Y

the universal family of cycles parameterized by Y . Then the morphism
ρ : X̃ −→ X is birational. We define f = π ◦ i−1 as a rational morphism

X̃
ρ ��

π

��

X

f����
��

��
��

Y

If X has an endomorphism φ : X −→ X with polarization by φ, then φ
takes rational curves to rational curves, and thus takes R(x) to R(φ(x)). In
other words, φ induces an endomorphism ψ on Y and an endomorphism φ̃



398 S.-W. ZHANG

on X̃ with commutative diagrams

X̃
φ ��

π

��

X̃

π

��
Y

ψ �� Y

X̃
φ ��

ρ

��

X̃

ρ

��
X

φ �� X

.

Proposition 2.2.4. Both endomorphisms φ̃ and ψ are polarizable.

Proof. Let M Deligne’s pairing on Y :

M :=
∫

X/Y
ρ∗L〈d+1〉

where d is the relative dimension of π. Then M is an ample line bundle and
ψ∗M = Mq. In other words ψ is polarized by M. For the polarization of
φ̃, we notice that ρ∗L is ample on each fiber of π with property

φ̃∗ρ∗L = ρ∗φ∗L = ρ∗Lq.

Thus for some positive number N ,

L̃ := ρ∗L ⊗ π∗MN

will be ample with the property

φ̃∗L̃ = L̃q.

Thus we obtain a polarization for φ̃. �

Remarks 2.2.5. Here are some obvious questions about the classifica-
tions of the general dynamical system:

(1) extend Proposition 2.1.1 and 2.2.1 to general Kähler variety. We
may replace them by a bi-rationally equivalent dynamic system if
they are helpful;

(2) classify the dynamical system into two extreme cases: the non-
uniruled case, and the rationally connected case. It is not true
that every rationally connected variety carries an endomorphism of
degree ≥ 2. For example, Beauville [6] showed that any smooth
hypersurface in projective space with dimension ≥ 2 and degree
≥ 3 does not admit any endomorphism of degree ≥ 2.

Remark 2.2.6. For algebraic endomorphism φ : X −→ X with a polar-
ization, we are in the opposite situation of general type: X and the finite
étale coverings do not admit a rational map to a positive dimensional variety
of general type. See Harris-Tschinkel [31] and Campana [13] for a detailed
discussion of the geometry and arithmetic of these varieties of special type
in contrast to varieties of general type.
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2.3. Dynamic surfaces. In the following we would like to classify the
dynamic systems on surfaces.

Proposition 2.3.1. Let φ : X −→ X be an endomorphism of a Kähler
surface. Then φ is polarizable if and only if X is one of the following types:

(1) complex torus;
(2) hyperelliptic surfaces, i.e., the unramified quotients of the product

of two genus 1 curves;
(3) toric surfaces, i.e., the completions of G2

m with extending action by
G2

m;
(4) a ruled surface PC(E) over an elliptic curve such that either

(a) E = OC ⊕M with M torsion or of positive degree;
(b) E is not decomposable and has odd degree.

Proof. By a result of Fujimoto and Nakayama ([25], Theorem 1.1), the
only non-algebraic Kähler surfaces admitting endomorphisms of degree ≥ 2
are complex tori. So we will only consider algebraic ones. By Proposition
2.1.1, we need only consider unramified quotients of abelian surfaces and
algebraic surfaces with negative Kodaira dimension. So we have the first
two cases listed above, plus rational surfaces and irrational ruled surfaces.

By a result of Noboru Nakayama ([46], Theorem 3), a rational surface
X has an endomorphism φ of degree ≥ 2 if and only if it is toric. We may
take φ to be the “square morphism” on X, i.e., the morphism on X satisfies
the equation φ(tx) = t2φ(x) for any t ∈ G2

m and x ∈ X. For polarization,
we may simply take L to be the divisor of the complement of G2

m in X:

φ∗L = L2.

It remains to work on P1-bundle π : X −→ C over a curve of genus �= 0.
We will use an idea of Nakayama ([46], proof of Proposition 5). We need to
check when such an X has a polarizable endomorphism φ. Notice that any
such φ will take rational curves to rational curves. Thus φ will dominate an
endomorphism g of C:

X
φ ��

π

��

X

π

��
C

g �� C

Let g∗X = X ×g C, then φ is the decomposition X
α−→ g∗X β−→ X, α is

a morphism over C, and β is the projection. Let L be an ample line bundle
on X such that

(2.3.1) φ∗L � Lq.

It follows that α has degree q. Since deg φ = q2, it follows also that deg β = q,
and that C must have genus 1.

Lemma 2.3.2. Let g : C −→ C be a morphism of curve of genus 1
of degree q > 1. Then any endomorphism φ : X −→ X of ruled surface
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over C is induced by a homomorphism g : C −→ C of degree q, and a
homomorphism of vector bundles

g∗E −→ Sym qE ⊗ N
with N a line bundle on C. Moreover, φ is polarized if and only if degN = 0.

Proof. The first statement is well known. It remains to study when
such φ is polarizable. Let L0 be the O(1)-bundle corresponding to E . Then
we can write

L = Lm
0 ⊗ π∗N0.

Here N0 is some line bundle on C. The equation φ∗L = Lq is equivalent to

(φ∗L0 ⊗L−q
0 )m = π∗(g∗N0 ⊗N−q

0 ).

This equality shows that φ∗L0 ⊗ L−q
0 has degree 0 on all fibers. It follows

that for some bundle N on C,

(2.3.2) φ∗L0 � Lq
0 ⊗ π∗N , g∗N0 � N q

0 ⊗Nm.

Since deg g = q, the second equation gives degN = 0.
Conversely, if φ is induced by a homomorphism as in the lemma with

degN = 0, then we may find a line bundle N0 on C of degree 1 such that
g∗N0 � N q

0 ⊗N . Then we can check that L := L0⊗π∗N0 will give the right
polarization for φ. �

After being twisted by a line bundle on C, any vector bundle of rank 2
on C is one of the following three types:

(1) there is a splitting, E � OC ⊕M with degM ≥ 0;
(2) there is a non-split exact sequence

0 −→ OC −→ E −→ OC −→ 0;

(3) there is a non-split exact sequence

0 −→ OC −→ E −→ M −→ 0

where degM = 1.
In case (1), since C has genus 1 there is a point O such that M =

OC(d ·O) if d = degM > 0. We give C an elliptic curve structure such that
O is the unit element. Let a ≥ 2 be a fixed integer. Then the multiplication
by a gives

[a]∗M � Mb, b =

{
a2, if degM �= 0,
a, if degM = 0.

If M is torsion of order t, then we may take a = t+1, and we can replace
b by a2. Thus in the case that either degM > 0 or M is torsion, we have a
morphism of bundles on C:

[a]∗E � OC ⊕Ma2 −→ Sym a2E .

This induces a morphism φ : X −→ X such that φ is compatible with
multiplication [a] on C. By the lemma, this homomorphism has polarization.
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We want to show that when M is a non-torsion degree 0 bundle, any
homomorphism φ : X −→ X is not polarizable. Otherwise, we will have
a morphism g : C −→ C of degree q > 1 and a homomorphism of vector
bundles:

g∗E −→ Sym qE ⊗ N
where N is of degree 0. Let x be the section of E corresponding to the
embedding 1 ∈ OC ⊂ E . Then the above equation gives

OC ⊕ g∗M −→
q∑

i=0

xq−iMi ⊗N .

Since M is not torsion, the bundles in the right hand side are not isomorphic
to each other. Since all of them have degree 0, we have i and j such that
the above homomorphism is given by two isomorphisms:

OC � Mi ⊗N , g∗M = Mj ⊗N .

Since this homomorphism defines morphism X −→ X, one must have that
{i, j} = {0, q}. Thus in any case, we have

g∗M = M±q.

Let O be a fixed point of g. Then we may consider C as an elliptic curve
with origin O. Write M = O(P − O). Then g∗M = O([g∨O] − [O]) and
Mq = O([qP ] − O), where g∨ is the conjugate of g: gg∨ = deg g = q. Thus
the above equation gives

g∨P = ±qP, (g∨ ∓ q)P = 0.

This implies again that P is torsion. Thus we have a contradiction.
In case (2), the bundle g∗E is still non-split so it is isomorphic to E . In

other words g∗X is isomorphic to X. Indeed, the extension

0 −→ OC −→ E −→ OC −→ 0

is given by a nonzero element t in H1(C,OC ). The g∗E will correspond to
g∗t in H1(C,OC ). As H1(C,OC ) � k, g∗t = at with a ∈ k×, there is a
homomorphism g∗E � E over C.

Thus, φ induces (and is induced by) a C-endomorphism of X of degree
q > 1. Now we want to apply a result of Silverman about the moduli space
of endomorphisms of P1 [56]. For a positive integer d, let Ratd denote the
space of endomorphisms of P1. We only take the base C here. Then Ratd
has a natural action by Aut (P1) as follows:

(h, f) �→ f ◦ h ◦ f−1, h ∈ Ratd, f ∈ Aut (P1).

Let SL 2 −→ Aut (P1) be the Mobius transformation. Then by Theorem 1.1
and Theorem 3.2 in [56], the quotient Md := Ratd/SL 2 exists as an affine
variety over C. In order to apply this to our situation, we give a slightly
different interpretation of Md: Md is a fine moduli space of triples (V, h, �)
where V is a vector space of dimension 2, φ is an endomorphism of the
projective line P(V ), and � is an isomorphism detV � C.



402 S.-W. ZHANG

In case (2), since we have an isomorphism � : det E � OX , the morphism
α induces an morphism C −→ Mq. As C is projective and Mq is projective,
we must have that this morphism is constant. Thus E must be a trivial
vector on C. We get a contradiction!

In case (3), we claim that X � Sym 2C; thus, X has an endomorphism
by multiplication by 2. First there is a section O so that M = OC(O). In
this way, C becomes an elliptic curve with origin O. Let us consider the
following maps

C × C
[2]×[2] ��

f
��

C × C

f
��

Sym 2C
φ ��

π

��

Sym 2C

π

��
C

[2] �� C

(x, y)

��
(x) + (y)

��
x + y

.

Let p1, p2 be two projections of C × C to C. Let N = π∗
1OC(O) + π∗

2O(O)
be a line bundle on C × C, and L the descent bundle of N on Sym 2C.
The bundle L is ample, with fiber on (P ) + (Q) canonically isomorphic to
O(O)|P ⊗ O(O)|Q up to the order of tensor product. The multiplication
on C × C by an integer a induces an endomorphism φ on Sym 2C. As
[a]∗N � N a2

, φ∗L � La2
.

We claim the following:
(1) L has degree 1 on the fiber of π, thus V := π∗L is a rank 2 bundle

on C;
(2) Γ(L) = Γ(M) is one dimensional, say generated by �, such that

div (�) = s∗C, where s(P ) = (P ) + (O);
(3) s∗L � O(O).

This claim implies that X � P(V) and that V is not decomposable and
fits in an exact sequence:

0 −→ OC −→ V −→ OC(O) −→ 0.

This of course implies that V � E and X � Sym 2C.
It remains to prove our claim. For item (1) we need to check the degree

of L on the fiber Sym 2(C ×C)O over O ∈ C. The pull-back of this fiber on
C × C is the image of the following map

δ : C −→ C × C, p �→ (p,−p).

It follows that

L · Sym 2(C)0 =
1
2
π∗L · π∗Sym 2(C)0 =

1
2
N · δ(C)

=
1
2

deg δ∗(N ) =
1
2

degO(O) ⊗ [−1]∗O(O) = 1.
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For item (2) we see that Γ(N ) is equal to the symmetric part of Γ(L). It is
easy see that

Γ(N ) = p∗1Γ(O(O)) ⊗ p∗2Γ(O(O)) = Cp∗1α ⊗ p∗2α

where α is the canonical section of O(O) with divisor O. It is clear that the
section p∗1α ⊗ π∗

2α is symmetric and thus descends to section � on L with
divisor div (�) = s∗C. For the last part, for any point P ∈ C, we see that

s∗L � O(O)|O ⊗O(O) � O(O).

This completes the proof of the claim. �

3. Canonical metrics and measures

We will fix an endomorphism φ : X −→ X of a Kähler variety with a
polarization by a Kähler class ξ. Our aim in this section is to study the
distributional properties of the set Prep (X) of all preperiodic points on X.
We will first construct a canonical current ω to represent ξ. The class ω
is integrable in the sense that the restriction of ωd on any subvariety Y of
dimension d defines a measure. By a result of Bedford-Taylor and Demailly
[20], the support of the measure is Zariski dense. Then we conjecture some
properties about this invariant measure. First of all, this measure can be
obtained from any smooth measure by iterations. Second, this measure
can be constructed from the probability measures of the backward images
of a general point. We will prove some of these properties in the special
cases using the work of Yau [59] and Briend-Duval [9]. Some of our results
follow from some very general results of Dinh-Sibony [21], Corollary 5.4.11
and Theorem 5.4.12. We present here a self-contained treatment for the
simplicity. Also our treatment is completely global and thus easily extended
to p-adic Berkovich spaces.

Finally, with hope to initiate a dynamic Nevanlinna theory of holomor-
phic curves, we construct a canonical order function on a Kähler dynamical
system. As an application we will show that the Fatou set is Kobayashi
hyperbolic.

One question remains unsolved: the positivity of a canonical current on
the Chow variety.

3.1. Canonical forms and currents. First we will try to find canon-
ical representatives for the classes in H1,1(X). Let Z1,1(X) denote the space
of ∂ and ∂̄ closed currents on X which have the form ω+ ∂∂̄

πi g with ω smooth
and g continuous. Then there is a class map

c : Z1,1(X) −→ H1,1(X).

Notice that φ∗ acts on both spaces and this class map is a homomorphism
of φ∗-modules. The kernel of c is the space of forms ∂∂̄

πi g for continuous
functions g.
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Proposition 3.1.1. The class map c of φ∗-modules has a unique section,
i.e., there is a unique φ∗-subspace H1,1(X) of Z1,1(X) such that c induces
an isomorphism

H1,1(X) � H1,1(X).

The space H1,1(X) is called the space of canonical forms. Moreover, if ξ is
an eigenclass of φ∗ with eigenvalue λ which is represented by a smooth form
ω0 then the canonical lifting is the limit

ω := lim
k→∞

(λ−1φ∗)kω0.

Proof. Let C(X) denote the space of continuous functions on X. Then
we have an exact sequence

0 −→ C −→ C(X) −→ Z1,1(X) −→ H1,1(X) −→ 0

where the map C(X) −→ Z1,1(X) is given by ∂∂̄
πi . Let P (T ) be the charac-

teristic polynomial of φ∗ acting on H1,1(X). We want to show that for P (φ∗)
is invertible over C(X). In this way, we may take H1,1(X) = ker P (φ∗). In
other words, every element κ in H1,1(X) has a lifting η such that P (φ∗)η = 0.
Indeed, if η0 is one lifting of κ in Z1,1(X) then P (φ∗)η0 is in the image of
C(X). Thus we have a g ∈ C(X) such that

(3.1.1) P (φ∗)η0 =
∂∂̄

πi
g.

It is easy to see that κ has a lifting in the kernel of P (φ∗) with the following
form:

(3.1.2) η = η0 +
∂∂̄

πi
P (φ∗)−1g.

It remains to show that P (φ∗) is invertible over C(X). We write P (T ) =∏
i(T − λi) where λi are eigenvalues of φ∗ on H1,1(X). By Theorem 1.1.2,

all |λi| > 1. It follows that λ−1
i φ∗ is a compact operator on C(X). Indeed,

‖λ−1
i φ∗α‖sup ≤ |λi|−1‖α‖sup, α ∈ C(X).

It follows that P (φ∗) has an inverse on C(X):

P (φ∗)−1α :=
∏

i

∑
k

−λi(λ−1
i φ∗)kα.

This proves the first part of the proposition.
For the second part, let g be a smooth function such that

(1 − λ−1φ∗)ω0 +
∂∂̄

πi
g = 0.

Then

(λ−1φ∗)jω0 − (λ−1φ∗)j+1)ω0 +
∂∂̄

πi
(λ−1φ∗)jg = 0.
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Add the above equality from j = 1 to j = k − 1 to obtain

(λ−1φ∗)kω0 = ω0 +
∂∂̄

πi

k∑
j=1

(λ−1φ∗)jg.

It is easy to see from this expression that (λ−1φ∗)kω0 has a limit as the
canonical lifting of ξ:

ω = ω0 +
∂∂̄

πi
(1 − λφ∗)−1g.

�

We have an analogue for algebraic polarizations. Let φ : X −→ X

be an endomorphism with a polarization. Let P̂ic (X) denote the group of
(continuously) metrized line bundles on X. Then we have a class map

γ : P̂ic (X) −→ Pic (X).

Again φ∗ acts on both groups and this map is a homomorphism of φ∗-
modules.

Proposition 3.1.2. The class map γ has a projective section, i.e., there
is a unique φ∗-submodule Pic (X) of P̂ic (X) such that the map γ induces
an exact sequence

0 −→ R −→ Pic (X) −→ Pic (X) −→ 0.

Here R maps r ∈ R to the metrized line bundle (OX , ‖1‖ = e−r). The
metrics in Pic (X) are called canonical metrics.

Proof. By Proposition 3.1.1, for any line bundle L there is a unique
metric up to a constant with curvature in H1,1(X). �

Remarks 3.1.3. The proof of the above proposition applies to Hp,p(X)
and Green’s currents for codimension p-cycles if we can show that λ−1φ∗
is compact on the space Cp−1,p−1(X) of continuous (p, p)-forms on X. For
example, if φ is polarized by a Kähler class ξ which has a lifting ω which
is continuous and positive pointwise, then we may equip Cp−1,p−1(X) with
norm by ω. In this way we have

‖φ∗α‖(x) = qp−1‖α‖(φ(x)), α ∈ Cp,p(X).

Then by Theorem 1.1.2, the eigenvalue λ on Hp,p(X, C) has absolute value
qp and again

‖λ−1φ∗α‖sup ≤ q−1‖α‖sup.

In the following we want to study the volume forms defined by polariza-
tions by ξ. Let ω denote its canonical form in H1,1(X). If ω is a continuous
form then we will have a volume form

dμY = ω|dimY
Y /vol (Y ).
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Here
vol (Y ) = ξdimY · [Y ] =

∫
Y

ωdimY
0 .

Only require ω is to be a current, and the above definition does not make
sense. In the following we will use the limit process to show that the above
definition still gives a measure. Let’s study a slightly more general situation.

Let d = dim Y and pick up d classes η1, . . . , ηd so that
(1) ηi are semi-positive;
(2) φ∗ηi = λiηi with λ > 1.

Let ωi0 be semipositive, smooth forms for ηi. Let ωik = λ−k
i (φ∗)kωi0.

Proposition 3.1.4. With notation as above the following hold:
(1) ωik converges to the canonical lifting ωk of ηk as a current,
(2) the volume form ω1k · · ·ωdkδY is weakly convergent with a limit

measure

ω1 · · ·ωdδY := lim
k→∞

ω1k · · ·ωdkδY

on Y which is independent of the choice of initial forms ωi0.

Integrable forms and metrics. We want to show that the proposition
follows a more general theory about integrable metrics [62]. More precisely,
a class ω = ω0 + ∂∂̄

πi g ∈ Z1,1 is called semi-positive if g = limn gn is the limit
in C(X) of a sequence of smooth functions gn such that ω0+ ∂∂̄

πi gn are smooth
positive forms. A class ω is called integrable if ω is the difference ω1 − ω2 of
two semi-positive classes. Let S1,1(X) denote the space of integrable forms.
A function g is called a Green’s function if there is a divisor D =

∑
i aiDi on

X with real coefficients such that g is continuous on X \D with logarithmic
singularity near D: if locally Di is defined by equations fi = 0 near a point
x, then g has an asymptotic formula near x:

(3.1.3) g =
∑

ai log |fi| + h

where h is a continuous function. Let G(X) denote the space of Green’s
functions.

Proposition 3.1.5. Let X be a compact Kähler variety and let Y be a
subvariety of dimension d. There is a unique integration pairing

G(Y ) × S1,1(X)d −→ C,

(g, ω1, . . . , ωd) �→
∫

Y
gω1 · · ·ωd

such that the following properties are verified:
(1) the pairing is linear in each variable;
(2) if each ωi is semi-positive and is a limit of smooth forms ωik on X,

then the above pairing is the limit of the usual integral pairings of
smooth forms.
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Proof. Write ωi = lim ωik with ωik smooth and positive. Thus we have
ωik = ωi0 + ∂∂̄

πi hik with hik smooth and convergent to hi. First we want to
show that the functional

g �→
∫

Y
gω1k · · ·ωdk

is convergent on the restriction of g ∈ G∞(X) on Y , the space of functions
whose local asymptotic formula (3.1.3) has smooth h. Let g be a smooth
function on X; the difference of the integrations is given by∫

Y
g(ω1k · · ·ωdk − ω1� · · ·ωd�)

=
∫

Y
g

d∑
i=1

ω1k · · ·ωi−1,k(ωi,k − ωi,�)ωi+1,� · · ·ωd,�.

From our expression of ωik,

ωik − ωij =
∂∂̄

πi
(hik − hi�).

It follows that∫
Y

g · (ω1k · · ·ωdk − ω1� · · ·ωd�)

=
∫

Y

d∑
i=1

ω1k · · ·ωi−1,k(hi,k − hi,�)ωi+1,� · · ·ωd,�
∂∂̄

πi
g.

Since g is smooth, we have a formula

∂∂̄

πi
g =

∑
aiδDi − α

where α is a smooth (1,1)-form. Let M be a positive number such that

ω′
i,0 := ωi0 − 1

M
α

is positive point wise. Then the above sum can be written as∫
Y

g · (ω1k · · ·ωdk − ω1� · · ·ωd�)

=
∑

j

aj

∫
Dj

d∑
i=1

ω1k · · ·ωi−1,k(hi,k − hi,�)

+ M

∫
Y

d∑
i=1

ω1k · · ·ωi−1,k(hi,k − hi,�)ωi+1,� · · ·ωd,�(ω′
i0 − ωi0).
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Replacing hi,k −hi,� by its L∞-norm and ω′
i0 −ωi0 by ω′

i0 + ωi0, we have the
following estimate:∣∣∣∣∫

Y
g · (ω1k · · ·ωdk − ω1� · · ·ωd�)

∣∣∣∣
≤

∑
i

⎛⎝∑
j

|aj |(η1 · · · η̂i · · · ηd[Di]) + 2M(η1 · · · ηd[Y ])

⎞⎠ ‖hik − hi�‖sup,

where ηi are the classes of ωi in H1,1(X, R). This shows that ω1k· · ·ωdkδY

converges as a distribution, say ω1 · · ·ωdδY . To show this limit can be ex-
tended into a continuous Green’s function, we need only consider the con-
tinuous function g ∈ C(X), or equivalently show that the limits is actually
a measure. It suffices to show the following:

(1) the functional on C∞(X), g −→ ∫
Y gω1 · · ·ωd is continuous with

respect to the supreme norm and
(2) the restriction of C∞(X) on Y is dense in C(Y ).

The first property is clear since ω1k · · ·ω1,d is semi-positive with volume
η1 · · · ηd|Y . For a smooth function f on X:∣∣∣∣∫

Y
g · ω1 · · ·ωd

∣∣∣∣ = lim
k

∣∣∣∣∫
Y

gω1k · · ·ωdk

∣∣∣∣ ≤ ‖g‖sup(η1 · · · ηd[Y ]).

For the second property, we use Stone-Weierstrass theorem: C∞(X) is dense
in C(X) which is surjective on C(Y ) by restriction map.

Finally, we want to show the independence on ωik. This can be done
by the same argument as above. Indeed, let ω′

ik be different smooth and
positive forms convergent to ωi, which induce a differential sequence of forms
ω′

1k · · ·ω′
dk. The same argument as above can be used to show that∣∣∣∣∫

Y
g · (ω′

1k · · ·ω′
dk − ω1k · · ·ωdk)

∣∣∣∣ ≤ C
∑

i

‖αik‖sup

where C is a constant depending only on f , and αik are smooth functions
such that

ω′
ik − ωik =

∂∂̄

πi
αik.

It is easy to show that αik −→ 0. Thus two limits are same. �

For any open connected subset (in complex topology) U of a subvariety
Y of X of dimension d and the current ω1 · · ·ωd defined by integrable forms
ω1, . . . , ωd, the support of ω1 · · ·ωd is defined as the smallest closed subset
Supp U (ω1 · · ·ωd) of Y in complex topology such that∫

Y
fω1 · · ·ωd = 0

whenever f ∈ C0(U) vanishes on Supp U (ω1 · · ·ωd). When X is projective,
the above proposition shows that Supp Y (ω1 · · ·ωd) is not included in any
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proper subvariety. Otherwise, Supp Y (ω1 · · ·ωd) will be included in the sup-
port of an effective divisor D. Then we can take g to be the Green’s function
for D. The integral will be infinite! This contradicts our proposition.

For general Kähler variety, Chambert-Loir pointed to the following result
of Bedford-Taylor and Demailly:

Theorem 3.1.6 (Bedford-Taylor-Demailly).
The set Supp U (ω1 · · ·ωd) is either empty or Zariski dense in U .

Proof. When Y is smooth, this is simply a result of Bedford-Taylor
and Demailly [20], Corollary 2.3. In the general case, let π : Ỹ −→ Y be a
resolution of singularity. Then we can define the pull-back of forms in Z1,1

by the usual way: if ω = ω0 + ∂∂̄
πi g then

π∗ω = π∗ω0 +
∂∂̄

πi
g ◦ π.

If ω is integrable, then it is easy to show that π∗ω is integrable. For any
continuous function f on Y , and any integrable currents ω1, . . . , ωd, it is
easy to check that∫

Y
π∗f · π∗ω1 · · · π∗ωd =

∫
Y

f · ω1 · · ·ωd.

It follows that

π−1Supp U (ω1 · · ·ωd) ⊂ Supp π−1U (π∗ω1 · · · π∗ωd).

Thus we are reduced to the smooth case. �

Remark 3.1.7. The same proof as in Proposition 3.1.5 can be used
to show the following weaker form of Theorem 3.1.6: Assume that X is
projective; then the measure ω1 · · ·ωd|Y on Y does not support on any proper
subvariety. Let D be a any divisor of Y , and g be a Green’s function for D,
i.e., a function on Y with logarithmic singularity such that

∂∂̄

πi
g = δD − h

where h is a smooth (1, 1) form on Y . We need to show that the integral∫
Y

ω1 · · ·ωd

makes sense and is finite, which then implies that the support of the measure
is not supported on D.

Metrics on Chow varieties. In the following we want to introduce the
canonical forms or metrics for the Chow varieties and show their compati-
bility with the induced endomorphism φ∗ and φd,δ,k. One basic question in
this theory is about the fiber pairing of integrable metrics on X.



410 S.-W. ZHANG

Question 3.1.8. Let X be a compact Kähler variety. How could one
construct an integration pairing

S1,1(X)d+1 −→ S1,1(Cd(X)),

(ω0, . . . , ωd) �→
∫
Zd(X)/Cd(X)

ω0 · · ·ωd?

When X is algebraic, this question has a positive answer, see [63]. Mim-
icking what has been done in the projective case, our first step to answer this
question is to restrict to smooth forms ω′

i in the same class of ωi and try to
show that the above integral defines some integral forms. If ωi = ω′

i + ∂∂̄
πi hi

then we compute the difference formally by:∫
Zd(X)/Cd(X)

ω0 · · ·ωd −
∫
Zd(X)/Cd(X)

ω0 · · ·ωd

=
∫
Zd(X)/Cd(X)

d∑
i=0

ω1 · · ·ωi−1(ωi − ω′
i)ω

′
i+1 · · ·ω′

d

=
∫
Zd(X)/Cd(X)

d∑
i=0

ω1 · · ·ωi−1
∂∂̄

πi
hiω

′
i+1 · · ·ω′

d

=
∂∂̄

πi

∫
Zd(X)/Cd(X)

hi

d∑
i=0

ω1 · · ·ωi−1ω
′
i+1 · · ·ω′

d.

Our Proposition 3.1.5 shows the last integral is well defined at each point.
But then one has to prove that this integral defines a continuous function
on Cd(X).

Let φ : X −→ X be an endomorphism of a compact Kähler variety with
a polarization by a positive class ξ which is represented by a canonical form
ω. If Question 3.1.8 has a positive answer, then we will have canonical forms
ωd on the varieties Cd(X) compatible with the action of φ∗. Of course for
the variety C(d, δ, k) which is of finite type, we will have the usual theory of
canonical metrics.

3.2. Equidistribution of backward orbits. Fix an endomorphism
φ : X −→ X of a compact Kähler variety with polarization. Let dμ0 be
a continuous probability measure. Define dμk by the following inductive
formula

dμk =
φ∗dμk−1

deg φ
.

More precisely, for any continuous function f on X,∫
X

fdμkdμk = (deg φ)−k

∫
X

φk
∗fdμ0.
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Here φk∗f is a function defined by

φk
∗f(x) =

∑
φk(y)=x

f(y)

where the sum is over pre-images of x with multiplicity. Notice that φk∗(f)
is a bounded on X and continuous on a Zariski open subset of X, and thus
is measurable with respect to any continuous measure. The following is a
simple consequence of a result of Yau:

Theorem 3.2.1. Let φ : X −→ X be an endomorphism of a compact
Kähler manifold with polarization ξ. Then dμk converges to the canonical
measure on X:

lim
k→∞

dμk = ωn/(ξn[X])

where ω is the canonical form for the class ξ and n = dimX.

Proof. Notice that for a continuous function f on X,∫
fdμk = (deg φ)−k

∫
φk
∗(f)dμ0

where φk∗(f) is defined such that

φk
∗(f)(x) =

∑
φk(y)=x

f(x)

where the sum is over the preimage of x under φk with multiplicity. It is
easy to check that φk∗(f) is bounded and continuous on a Zariski open subset
of X. So the above integral makes sense.

As every continuous measure is a strong limit of smooth volume forms,
we may assume that dμ0 is a smooth volume form. By a theorem of Yau
[59], dμ0 on X is induced from a unique class ω0 in ξ by formula

dμ0 = ωn
0 /(ξn[X]).

Now we can apply Proposition 3.1.4. �

We would like to conjecture that this theorem is true without assumption
on smoothness of X:

Conjecture 3.2.2. Let φ : X −→ X be an endomorphism of a (pos-
sibly singular) compact Kähler variety with a polarization ξ. Let dμ0 be a
continuous probability measure on X. Define dμk by inductive formula

dμk =
φ∗dμk−1

deg φ
.

Then dμk is convergent to the probability measure dμX of the form

ωn/(ξn[X]), (n = dimX.)
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Let φ : X −→ X be an endomorphism of a compact Kähler variety with
a polarization ξ. Let x be a point in X. For any positive integer k, let’s
define a probability measure the k-th preimage:

μx,k = (deg φ)−k
∑

φk(y)=x

δy

where the sum is over the k-th preimage with multiplicity.
By this conjecture, for almost all p the μp,n is convergent to the canonical

measure dμ. Indeed, for any continuous probability measure dμ0, the dμn

in Theorem 3.1.6 can be written as∫
X

fdμn =
∫

X

{∫
X

f(x)dμp,n(x)
}

dμ(p).

In a more precise way we would like to make the following conjecture:

Conjecture 3.2.3. Let x be a point of X and let Y be the Zariski
closure of the complete orbit, i.e., Y is the minimal subvariety of X con-
taining all φ−k(x) and φk(x) for all k. Then μp,n is weakly convergent to
the canonical measure ωdimY /vol (Y ) on Y , where ωdimY is the canonical
measure on Y defined by the canonical form ω on Y .

It seems that a more natural subvariety than Y for the conjecture is the
backward limit of x: i.e., the minimal subvariety Y ′ containing φ−k(x) for
k sufficiently large. We claim that Y = Y ′. Indeed, for each k ≥ 0 let Yk

be the Zariski closure of the union ∪i≥kφ
−k(x). Then Yk is a decreasing

sequence of closed subvarieties of X. Thus Y = Yk = ∩Yk for k sufficiently
large. It is easy to see that Y is periodic, so Y = Y ′.

When X = PN ,the conjecture is a theorem by recent work of Briend-
Duval [9] and Briend-Cantat-Shishikura [10]. Indeed by Briend-Cantat-
Shishikura, the full orbit of any x ∈ PN is always a finite union of linear
subspace, and thus isomorphic to Pk if φ is replaced by a power. Then by
Briend-Duval μm,x is equidistributed on Pk.

3.3. Hyperbolicity and holomorphic curves. Let φ : X −→ X
be an endomorphism of a compact Kähler variety with a polarization. As
discussed in §2.3, X should have a fibration over a variety Y of Kodaira
dimension 0 with rationally connected fibers. Thus X should be special in
the sense of Campana [13]. By Campana, Conjecture 9.2 in [13], this should
be equivalent to hyperbolically special:

Conjecture 3.3.1. Let φ : X −→ X be an endomorphism of a com-
pact Kähler variety with a polarization. Then the pseudo-metric dX on X
vanishes.

Here the pseudo-metric is defined in Kobayashi’s hyperbolic geometry
[34]. We can only prove the vanishing of the pseudo-distance under Conjec-
ture 3.2.3:
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Proposition 3.3.2. Let φ : X −→ X be an endomorphism of a com-
pact Kähler variety with a polarization. Assume Conjecture 3.2.1 for the
endomorphism φ × φ for X × X. Then the pseudo-distance vanishes on X.

Proof. For two positive number a > 0, let T (a) be the open subset
of X ×X of points (x, y) with the pseudo-distance satisfying the inequality
d(x, y) > a. Since the pseudo-distance is decreasing under φ:

d(φx, φy) ≤ d(x, y),

we see that φ−1T (a) ⊂ T (a).
If T (a) is not empty, then it has a non-empty interior, and thus sup-

ports continuous probability measure dμ0. By our assumption, the limit
deg φ−kφ∗kdμ0 converges to the canonical measure on X × X. Notice that
the canonical measure dμX ×dμX on X ×X is the product measure on X’s.
Thus the support of this measure contains the support of dμX by diagonal
map X → X ×X. It follows that T (a) contains the diagonal elements. This
is a contradiction as the distance of d(x, x) = 0 for any x ∈ X. So we have
shown that d(x, y) = 0 for all x, y ∈ X. �

Combined with Theorem 3.2.1, we can prove the conjecture for endo-
morphisms with polarizations:

Corollary 3.3.3. Let φ : X −→ X be an endomorphism of a compact
Kähler manifold with a polarization by a Kähler form. Then the pseudo-
distance vanishes on X everywhere.

One consequence of Conjecture 3.3.1 is the vanishing pseudo-volume
form of Kobayashi which is apparently easy to prove:

Proposition 3.3.4. The Kobayashi pseudo-measure vanishes.

Proof. Let ΦX denote the Kobayashi pseudo-volume form. Then φ∗ΦX

≤ ΦX . Taking integration of both sides we obtain

deg φ

∫
Φ ≤

∫
Φ.

It follows that
∫

Φ = 0 or Φ = 0 almost everywhere. �

Another consequence is the existence of many non-degenerate holomor-
phic maps C −→ X by work of Brody (see Lang [36], Theorem 2.2). Fix
a Kähler form ω0 on X which induces a metric on X. From the proof of
Theorem 2.2. in [36], one sees that for any point x ∈ X and any tangent
vector v ∈ TX,x of norm 1, there is a holomorphic map f : C −→ X such
that

df0(∂/∂z) = v, ‖dfz‖ ≤ 1, ∀z ∈ C.

Here dfz is the map TC,z −→ TX,f(x) between two tangent spaces with norms
induced by the Euclidean norm on C and the norm ω0 on X.
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Holomorphic curves. Fix a Kähler dynamical system (X,φ, ξ). Let ω be
the canonical form. The remainder of this section is devoted to proving the
following:

Theorem 3.3.5. Let C be an affine complex curve; i.e., the complement
of finitely many points in a Riemann surface C̄. There is no nonconstant
holomorphic map ψ : C −→ X such that ψ∗(ω) = 0.

Remark 3.3.6. Let F be the complement of the support of ω. As in Si-
bony [54] Theorem 1.6.5, one may show that F is the Fatou set of φ, i.e., the
set of points p which has neighborhood U such that f |U is equicontinuous.
Thus our theorem shows that F is Brody hyperbolic, which is equivalent to
Kobayashi hyberbolic as F is the complement of a compact set.

Our main idea for the proof is to use Nevanlinna theory of holomorphic
curves. We refer to Griffiths [28] for basic theory. Let’s fix a holomorphic
map p : C̄ −→ P1 such that p−1C ⊂ C. Replacing C by p−1C we may
simply assume that C has a finite and flat morphism to the affine line C.

Order function. For each positive number r, let Cr denote the set of
points p ∈ C such that |p(z)| ≤ r. Let ω0 be a closed (1, 1) form in the class.
Then we can define the order function (or characteristic function) for Cr as
follows:

Tω0(Cr) =
∫ r

0

dt

t

∫
Ct

ψ∗ω0.

If ω′
0 is in the same class as ω0, i.e., there is a real function g ∈ C∞(X)

such that ω′
0 = ω0 + ∂∂̄

πi g, then

Tω′
0
(Cr) − Tω0(Cr) =

∫ r

0

dt

t

∫
Ct

∂∂̄

πi
ψ∗g

=
1
πi

∫ r

0

dt

t

∫
∂Ct

∂̄(ψ∗g) =
1
πi

∫ r

0

dt

t

∫
∂Ct

∂̄(p∗ψ∗g).

Now we use polar coordinate z = teiθ, z̄ = te−iθ, and

∂̄ =
∂

∂z̄
⊗ dz̄ =

1
2

(
∂

∂t
+

i

t

∂

∂θ

)
⊗ (dt − itdθ).

It follows that

Tω′
0
(Ct) − Tω0(Ct) =

−1
2π

∫ r

0
dt

∫ 2π

0

(
∂

∂t
+

i

t

∂

∂θ

)
p∗ψ∗gdθ

=
−1
2π

∫ r

0
dt

∫ 2π

0

∂

∂t
p∗ψ∗gdθ

=
−1
2π

∫ 2π

0
(p∗ψ∗g(t, θ) − p∗ψ∗g(0, θ))dθ.

In summary we have the formula:

(3.3.1) Tω′
0
(Cr) − Tω0(Cr) =

−1
2π

∫
∂Cr

ψ∗gp∗dθ + ψ∗g(p∗0).
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In terms of supreme norm, we have

|Tω′
0
(Cr) − Tω0(Cr)| ≤ 2 deg p · ‖g‖sup.

First Nevanlinna Inequality. Notice that every ω0 is induced from a met-
ric ‖ · ‖0 on the line bundle L on X. Let s be a nonzero rational section
of L. Assume that D = div s intersects C properly and ψp−1(0) is disjoint
with D. Then

ω = δD +
∂∂̄

πi
log ‖s‖0

where δD is the Dirac distribution of D, and ∂∂̄
πi is computed in the sense of

distributions. The same formal computation gives

Tω0(Cr) =
1
π

∫ t

0

dt

t

∫
Cr

(
δD +

∂∂̄

πi
log ‖s‖0

)
=

1
π

∫ r

0
(Ct · D)

dt

t
−

∫
∂Cr

ψ∗ log ‖s‖0
dθ

2π
+ log ‖s‖0(p∗0).

Define the counting function and proximity function by

ND(Cr) =
1
π

∫ r

0
(Ct · ψ∗D)

dt

t

and

ms(∂Ct) = −
∫

∂Cr

ψ∗ log ‖s‖0
dθ

2π
+ log ‖s‖0(p∗0).

Then the identity we just proved is the First Main Theorem in Nevanlina
theory:

(3.3.2) Tω0(Cr) = ND(Cr) + ms(∂Cr).

If s is regular, then last two terms are bounded from below. Thus we obtain
the Nevanlina inequality:

(3.3.3) ND(Cr) ≤ Tω(Cr) + O(1).

One consequence of this inequality is that C is algebraic if

Tω(Cr) = O(log r).

Indeed, if this equality holds, then by (3.3.3), C · f∗D will be bounded by
some positive number e. It follows that C is an algebraic curve of degree
at most e. The converse is also true, see Griffiths [28]. In fact, assume
that L is ample on the Zariski closure Y of f(C), and let Y −→ Pm be the
embedding defined by L. Then with respect to a Fubini-Study metric on
Pm and its dual metric on Pm∗, there is a Crofton formula ([28], pp. 22-23):∫

Pm∗
ND(Cr)dD = Tω0(Cr).
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Proof of Theorem 3.3.5. Assume ω0 is semi-positive and apply this to
ω′ = d−kφ∗ω0. Then we can define the order function for the canonical form
ω. Write ω = ω0 + ∂∂̄

πi g. As ψ∗ω = 0, the above inequality implies the
following

|Tω0(Cr)| ≤ 2 deg p‖g‖sup.

Thus the order function of ψ is finite. It follows that ψ can be extended to a
holomorphic map φ̄ : C̄ −→ X. In this case ω will be supported on a finite
number of points. This is impossible as there is no continuous function g

such that ∂∂̄
πi g gives a Dirac measure on points, see Theorem 3.1.6.

4. Arithmetic dynamics

In this section we will study (polarized) endomorphisms defined over a
number field. We will first propose a conjecture about the equidistribution
of the Galois orbits of a dynamically generic sequence of preperiodic points.
This equidistribution conjecture implies the dynamic Manin-Mumford con-
jecture assuming the Zariski density conjecture of support of canonical mea-
sures. Then we will define the canonical heights and generalize these conjec-
tures to small points. Following Chambert-Loir, we also propose an equidis-
trubution conjecture on Berkovich’s p-adic analytic spaces. Finally, we will
prove an equidistribution theorem for Zariski generic sequences of small
points on any variety using the recent work of Yuan on arithmetic bigness.
One immediate consequence is the equivalence of the dynamic Bogomolov
conjecture and the dynamic equidistrubution conjecture.

4.1. Preperiodic points and small points. Let φ : X −→ X be
an endomorphism of a projective variety with a polarization defined over
a number field K. In other words, this means that X and φ are defined
over K, and that there is an ample line bundle L ∈ Pic (X) ⊗ R such that
φ∗L = Lq for some integer q > 1.

The set Prep (X) of preperiodic points is defined over K̄. Moreover, by a
theorem of Northcott [47], for each number D, the set of preperiodic points
x with degree deg(x) := [K(x) : K] ≤ D is finite. Let Γ denote the absolute
Galois group over K: Γ = Gal (K̄/K). Then Γ acts on the set Prep (X) of
preperiodic points on X.

Let us fix an embedding K̄ ⊂ C and write X(C) for complex points via
this embedding. Let dμ be the probability measure on X(C) defined by the
Chern class c1 of the bundle LC constructed in §3.1.1. Notice that dμ is the
invariant measure on X; i.e., the probability measure dμ defined on X such
that

φ∗dμ = deg φ · dμ.

Conjecture 4.1.1 (Equidistribution of dynamically generic preperiodic
points). Let xi be a sequence of preperiodic points on X such that no infi-
nite subsequence is supported in a proper preperiodic subvariety. Then the
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Galois orbits of xi are equidistributed with respect to the canonical measure
dμ on X(C).

More precisely, for x ∈ Prep (X), define probability measure

μΓx :=
1

deg x

∑
y∈Γx

δy.

Then the conjecture says the probability measures δΓxn converge weakly to
the invariant measure dμ in the following sense: for a continuous function f
on X(C),

1
deg(xn)

∑
y∈Γxn

f(y) −→
∫

X(C)
f(x)dμ(x)

as n −→ ∞.
Consequences. In the following let us give some consequences of the con-

jecture. The first consequence is the dynamic Manin-Mumford Conjecture
1.2.1.

Proposition 4.1.2. Conjecture 4.1.1 ⇒ Conjecture 1.2.1.

Proof. Let Y be a subvariety containing a Zariski dense subset of
preperiodic points Prep (X)∩Y of φ. There is nothing to prove if dimY = 0.
Otherwise Prep (X) ∩ Y is an infinite set. Let Z be the intersection of all
preperiodic subvarieties defined over K of X containing Y . Then Z it-
self is preperiodic. As the set of all algebraic subvarieties of X is count-
able, we may list the set of preperiodic proper subvarieties of Z in a se-
quence Z1, . . . , Zn, · · · . Using induction, we can define a sequence of points
xn ∈ Prep (X)∩Y such that xn /∈ ∪n

i=1Zi. In this way, the sequence xn will
have finite intersection with any proper preperiodic subvariety of Z. Now
we apply Conjecture 4.1.1 to conclude that the Galois orbits of xn converge
to the invariant measure on Z. As all Galois orbits lie in Y , the invariant
measure dμ must be supported on Y . Now by Theorem 3.1.6, Y = Z. In
other words, Y is preperiodic. �

Topological interpretation. To understand the nature of the equidistrib-
ution conjecture, let’s introduce the following topologies:

(1) Zariski topology: the topology defined by algebraic equations;
(2) dynamic topology: the topology defined by preperiodic subvarieties;
(3) archimedean topology: the topology defined by inequalities of usual

continuous functions on X(C);
(4) distributional topology: Let Meas(X(C)) denote the set of proba-

bility measures on X(C) with weak topology; let’s define a map

D : X −→ Meas(X(C)), y �→ dμȳ(C).

Here y ∈ X is a point of scheme X, and ȳ denotes the Zariski
closure. Then the distributional topology is the induced topology
on X from D. Theorem 3.1.6 implies that the map D is injective.
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We have the following order of fineness of the topologies:

Distributional > Archimedean > Zariski > Dynamic.

On Prep (X), Conjecture 4.1.1 says that the dynamic topology equals the
distributional topology while Conjecture 1.2.1 says that the Zariski topology
equals the dynamic topology.

What is proved?
(1) If X is an abelian variety, and φ = [m] is the multiplication by a

positive number m > 1, the conjecture was proved in [64] and [58].
(2) If X = Pn and φ is the morphism (x0, ..., xm) −→ (xm

0 , . . . , xm
n ),

the conjecture was proved by Bilu [8].
(3) If X is a compactification of an almost split semi-abelian variety,

then the conjecture was proved by Chambert-Loir [17].
Height machinery. In the following, we want to introduce the concept

of heights and state a conjecture about small points.
Let K be a number field. For each place v of K let |·|v be the normalized

places: for any haar measure dxv on Kv,

d(ax)v = |a|vdxv.

For a point x = (x0, . . . , xn) ∈ Pn(Q̄), the naive height hnaive(x) of x is
defined by

hnaive(x) =
1

[K : Q]

∑
v

log max(|x0|v, . . . , |xn|v).

It can be shown that the definition h(x) can be extended to Pn(Q̄). If x is a
rational point represented by an (n + 1)-tuple of integers (x0, . . . , xn) with
no common divisor, then

hnaive(x) = log max(|x0|∞, . . . , |xn|∞).

If we define the complexity c(x) of x as the maximum number of digits of
xi, which measures the time spent to write a number down, then

hnaive(x) − c(x) log 10

is bounded on the set of rational points of Pn. A basic property of hnaive is
the following Northcott Theorem: for any given numbers D and H, the set
of points in Pn with height ≤ H and degree ≤ D is finite.

Let X be a projective variety over a number field. Let L be a very ample
line bundle. Then there is an embedding i : X → PN

K such that i∗O(1) � L.
In this way we obtain a height function

hL : X(Q̄) −→ R, hL(x) = hnaive(i(x)).

Here are some standard properties of hL:
(1) hL up to a bounded function on X(Q̄) does not depend on the

choice of the embedding.
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(2) hL is additive in the sense that for two very ample line bundles L
and M,

hL⊗M = hL + hM + O(1).
(3) hL is bounded from below:

hL(x) ≥ C.

(4) (Northcott Theorem) for any positive numbers D, H, the set{
x ∈ X(Q̄), deg(x) < D, hL(x) < H

}
is finite.

(5) For two very ample line bundles L and M, the equality hL =
hM + O(1) implies that L ⊗M−1 is a torsion line bundle.

From these properties, we can extend the definition of height function to
every L ∈ Pic (X) ⊗ R by linearity. In other words, we have an embedding
from the R-vector space of R-bundles into the space of functions on X(Q̄)
modulo bounded functions:

Pic (X) ⊗ R −→ Funct(X(Q̄), R)/O(1).

This is a homomorphism of R-vector spaces and such that the Northcott
theorem is true if L is numerically positive in Pic (X) ⊗ R. Indeed, if M ∈
Pic (X) is a very ample line bundle in the usual sense, then there is a positive
number ε such that L − εM is positive. Thus the Northcott Theorem for
M implies that for L.

Now let us go back to our situation: let φ : X −→ X be an endomor-
phism of a projective variety over a number field K with a polarization by
an R-line bundle L ∈ Pic (X) ⊗ R. Fix a height function hL. Then we can
define the canonical height ĥL on X(Q̄) by the following formula:

(4.1.1) ĥL(x) := lim
k−→∞

hL(φk(x))
qk

.

The height ĥL defined in this way does not depend on the choice of height
function hL: one may characterize ĥL as the unique height function for L
such that

ĥL(φ(x)) = qĥL(x).

Then ĥL has the following properties:

Proposition 4.1.3. For any x ∈ X(Q̄), ĥL(x) ≥ 0. Moreover, ĥL(x) =
0 if and only if x is a torsion point.

Proof. Since each L is ample, we may choose an initial height function
hL with positive values. In this way, the above definition formula 4.1.1
implies that ĥL ≥ 0. If ĥL(x) = 0, then

ĥL(φk(x)) = 0 ∀k.

In other words, every point in the forward orbit of x has height 0. By
Northcott’s theorem, this orbit must be finite. Thus x must be preperiodic.
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Conversely, if x is preperiodic, say, φk(x) = φ�(x) with k �= �, then
ĥL(φk(x)) = ĥL(φ�(X)), or qkĥL(x) = q�hL(x). Thus ĥL(x) = 0. �

Now we apply the Northcott theorem to give:

Corollary 4.1.4. For any number D, the set of preperiodic points on
X with degree bounded by D is finite.

Remark 4.1.5. There are some conjectures concerning the lengths of
orbits of preperiodic points and heights of non-torsion points:

(1) If x is non-preperiodic then a Lehmer type conjecture states that

ĥL(x) ≥ c · deg(x)−1.

(2) If x is a preperiodic point, then the length ord (x) of the orbit of x
should have the bound

ord (x) ≤ cdeg(x).

(3) (Morton-Silverman [45]) For all positive integers D, N , d with d >
2, there exists an integer κ(D,N, d) such that for each number field
of degree D over Q, and each finite endomorphism ψ : PN

k −→ PN
k of

degree dN , the number of preperiodic points ψ in PN (k) is less than
or equal to κ(D,N, d). By Fakhruddin [23], this conjecture implies
the corresponding uniform on torsion points on abelian varieties.

See Fakhruddin [23] for some other interesting questions about rational
points on a dynamical system.

Rational points. From the classification in §2, one sees that for a polar-
ized endomorphism φ : X −→ X, X is either a quotient of an abelian variety
or a rationally connected variety. Thus it is conjectured that for some finite
extension F of K, the set of rational points X(F ) is Zariski dense in X.
Here we would like to conjecture that this is already true for some orbits:

Conjecture 4.1.6. Let φ : X −→ X be an endomorphism of a projec-
tive variety defined over a number field K with a polarization. Then there
is a point x ∈ X(K̄) such that the forward orbit

{x, φ(x), . . . , φk(x), . . .}
is Zariski dense in X.

Small points. In the following we want to extend the dynamic Manin-
Mumford Conjecture 1.2.1 and the equidistribution conjecture for small
points to

Conjecture 4.1.7 (Dynamic Bogomolov conjecture). A subvariety Y
of X is preperiodic if and only if for any Zariski open subvariety U of Y ,
and for any positive number ε > 0, there is a point x ∈ U(Q̄) such that
ĥL(x) < ε.
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Conjecture 4.1.8 ( Equidistribution of dynamically generic small
points). Fix a complex place of K. Let xi be a sequence of points on X such
that no infinite subsequence is included in a proper preperiodic subvariety,
and that limi→∞ ĥL(xi) = 0. Then the Galois orbits of xi are equidistributed
with respect to the canonical measure on X.

What is proved?
(1) If X is an abelian variety, then both conjectures were proved in

[64] and [58].
(2) If X is the multiplicative group then Conjecture 4.1.7 was proved

in [61], and the equidistribution Conjecture 4.1.8 was proved by
Bilu [8].

(3) If X is an almost split semiabelian group, then the Bogomolov
conjecture was proved by Chambert-Loir [17].

4.2. Metrized line bundles and heights of subvarieties. In this
subsection, we want to associate to every metrized line bundle a height
function. By an integral and hermitian model of (X,L) we mean a triple
L̄ := (X̃, L̃, ‖ · ‖v) where

(1) X̃ is an projective and flat scheme over SpecOK with generic fiber
X;

(2) L̃ is a line bundle on X̃ ;
(3) ‖·‖v is a collection of metrics of Lv := LK,v⊗C on Xv = X⊗v C for

each embedding v : K −→ C. We assume that for an embedding v
and its complex conjugate vc,

‖�‖v(x) = ‖�c‖vc(xc).

Here the bar map is the complex conjugation

Lv
c ��

��

Lvc

��
Xv

c �� Xvc

Let x be a point in X(Q̄). Then the Zariski closure x̄ of x has a normal-
ization f : SpecOF → X̃ where OF is the ring of integers of some number
field F over K. The invertible OF -module N := f∗L is equipped with a
hermitian metric on N ⊗σ C for each embedding σ : F → C. Then we define
the degree of L̄ on x̄ by

degL̄x̄ = log
#N/nOF∏

v|∞ ‖n‖v

where n is any nonzero element in N . One can show that

hL̄(x) =
1

[F : Q]
degL̄(x̄).
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One immediate advantage of using metrized line bundles is to extend
the definition of heights to arbitrary cycles of X̃ by using the intersection
theory of Gillet and Soulé [26]. Indeed, on a subvariety Y of X over K of
dimension d, the intersection number of the metrized line bundles L̄1, . . . , L̄d

can be computed by induction:

ĉ1(L̄1) · · · ĉ1(L̄d) · Y = ĉ1(L̄1) · · · ĉ1(L̄d−1) · [div s]

−
∑
v|∞

∫
Xv(C)

log ‖s‖vc1(L̄1,v) · · · c1(L̄d−1,v),

where s is a nonzero section of Ld on Y .
If Y is a closed subvariety of X, then the height hL̄(Y ) is defined by the

formula

hL̄(Y ) =
degL̄(Ỹ )

(dim Y + 1) degL(Y )

where Ỹ is the Zariski closure of Y in X̃.
Integrable metrized line bundles [62]. Consider a projective variety X

over SpecK. For a line bundle L on X and an integral model (X̃, L̃) of
(X,Le) over SpecOK , one can define an adelic metric ‖ ·‖L̃ =

{‖ ·‖v , v ∈ S}
on L, where e is a positive integer, S is the set of places of K, and ‖ · ‖v is a
metric on L⊗K Kv on X(Kv). The metrics constructed this way are called
smooth metrics. The metric so obtained will be invariant under the Galois
group Gal (K̄v/Kv).

Let L1, . . . ,Ld (d = dim X + 1) be line bundles on X. For each positive
integer n, let (X̃n, L̃1,n, . . . , L̃d,n) be an arithmetic model of (X,Le1,n

1 , . . . ,

Led,n

d ) on SpecOK . Assume for each i that (L, ‖ · ‖Li,n
) converges to an

adelic metrized line bundle Li. One might ask whether the number

cn =
c1(L̃1,n) · · · c1(L̃d,n)

e1,n · · · ed,n

in Gillet-Soulé’s intersection theory converges or not.
We showed in [62] that cn converges if all L̃i,n are relatively semipositive,

and that limn→∞ cn depends only on Li. We say that an adelic line bundle
L is integrable if L ∼→ L1 ⊗L−1

2 with Li semipositive. It follows that Gillet-
Soulé’s theory can be extended to integrable metrized line bundles. Some
theorems such as the Hilbert-Samuel formula, the Nakai-Moishezon theorem,
and the successive minima inequality remain valid on semi-smooth metrized
line bundles.

Admissible metrized line bundles [62]. Let φ : X → X be an endomor-
phism of a projective variety with a polarization over K. Thus we have an
ample line bundle and an isomorphism α : Lq � φ∗L with q > 1. Using
Tate’s argument, in [62] we constructed a unique integrable metric ‖ · ‖ on
L such that

‖ · ‖q = α∗φ∗‖ · ‖.
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Now for any effective cycle Y of X of pure dimension, we can define an
(absolute) height

hL(Y ) =
c1(L

∣∣
Y
)dim Y +1

(dim Y + 1) degL(Y )
.

The height hL can be characterized by the property that

hL(φ(Y )) = qhL(Y ).

As Tate did, hL can be defined without an admissible metric. Some situa-
tions are studied by Philippon [49], Kramer [35], Call and Silverman [11],
and Gubler [29]. In this case, if Y is preperiodic: the orbit

{Y, f(Y ), f2(Y ), . . .}
is finite, then hL(Y ) = 0.

We showed in [62] that the Bogomolov conjecture is equivalent to the
following converse:

Conjecture 4.2.1. Let φ : X −→ X be an endomorphism of a pro-
jective variety over a number field K with a polarization by an ample line
bundle L. Then hL(Y ) = 0 if and only if Y is preperiodic.

This is a theorem [61] for the case of multiplicative group. A consequence
is the generalized Lang’s conjecture which claims that if Y is not preperiodic
then the set of preperiodic points in Y is not Zariski dense. Lang’s conjecture
is proved by Laurent [37] and by Raynaud [52] for abelian varieties.

Measures on Berkovich spaces [30] [16]. Fix a place v of K. Then there
is a v-adic analytic space Xan

v – Berkovich space [7]. If v is complex this is
usual Xv(C); if v is real this is Xv(C)/{1, c} where c is the complex conju-
gation on Xv(C). For v a finite place, we have an embedding of topology
space |Xv | −→ Xan

v with dense image, where |Xv | denotes the set of closed
points on Xv with v-adic topology, or equivalently, the set of Galois orbits
of X(K̄v) under Gal (K̄v/Kv). Moreover the metrized line bundles on some
model of Xv over OKv will induce some continuously metrized line bundles
on Xan

v whose restriction on |Xv| is the usual metrized line bundles con-
structed as above. Thus we will have the notion of integrable metrized line
bundles.

A continuous function f on Xan
v is called smooth if its restriction on

|Xv| is the logarithm of a smooth metric ‖ · ‖v at v of OXan
v

defined by an
integral model:

f = log ‖1‖.
By the work of Gubler [30], the smooth functions are dense in the contin-
uous functions on Xan

v . In other words, let C∞(|Xv |) denote the space of
smooth functions on |Xv | which may not be closed under multiplication, and
let R(Xv) be the ring of functions on |Xv| generated by smooth functions
with supremum norm. Then C∞(|Xv |) is dense in R(Xv) and Xan

v as a
topological space is the spectrum of R(Xv):

Xan
v = Hom cont(R(Xv), R).
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Here the right hand side stands for continuous homomorphisms of R-alge-
bras. In other words, X is the unique compact space such that C(Xan

v ) =
R(|Xv|).

Now we consider the situation of a polarized dynamical system (X,φ,L).
For any subvariety Y of Xv of dimension d and integrable metrized line
bundles L̄1, . . . , L̄d, Chambert-Loir [16] defined the measure

c1(L̄1) · · · c1(L̄d)δY an
v

supported on the image Y an
v which has the usual properties as in the

archimedean case in §3.1
For example, for a subvariety Y of X over K of dimension d and adelic

metrized line bundles L̄1, . . . , L̄d, one can compute the intersection by in-
duction:

ĉ1(L̄1) · · · ĉ1(L̄d) · Y = ĉ1(L̄1) · · · ĉ1(L̄d−1) · [div s]

−
∑

v

∫
Xan

v

log ‖s‖vc1(L̄1,v) · · · c1(Ld−1,v)δY an
v

where s is a nonzero section of Ld on Y .
In this case, the construction of Chambert-Loir as above gives the canon-

ical measures on Xan
v for each integral subvariety δY for each embedding

v : K −→ Cp:
dμY,v := c1(L̄v)dim Y · δY an

v
/degL(X).

One can show an analogue of Proposition 3.1.5, such the support of the
measure is any Zan

v for any subvariety Z of Y .
We want to propose a generalization of the equidistribution conjecture:

Conjecture 4.2.2 (v-adic Equidistribution of dynamically generic small
points). Let φ : X −→ X be an endomorphism of a projective variety over
a number field K with a polarization by an ample line bundle L. Let v
be a place of K. Fix an embedding v : Kv −→ Cp and write Xan

v for the
induced analytic space. Let xi be a sequence of points on X such that no
infinite subsequence is included in a proper preperiodic subvariety, and that
limi→∞ ĥL(xi) = 0. Then the Galois orbits of xi are equidistributed with
respect to the canonical measure on Xan

v .

Remark 4.2.3. We would like to consider an adelic version of the above
equidistribution. Let φ : X −→ X be an endomorphism of a projective
variety over a number field K with a polarization by an ample line bundle
L. Let S be a finite set of places K. For each place v ∈ S, fix an embedding
v : Kv −→ Cp and write Xan

v for the induced analytic space. Let dμv denote
the probability measure on Xan

v . Let xi be a sequence of points on X such
that no infinite subsequences are included in a proper preperiodic subvariety,
and that limi→∞ ĥL(xi) = 0. Then we want to conjecture that the Galois
orbits of xi are equidistributed with respect to the canonical measure on∏

Xan
v , with respect to the product measures dμv.
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In one special case where S is the set of places over a prime p, we may
reduce the conjecture for the dynamical system on Res K/Q(X) at the place
p. Indeed, by definition Res K/Q(X)(L) = X(K ⊗ L). Thus its fiber over p
is given by X ⊗K (K ⊗ Qp) =

∏
v|p Xv.

Remark 4.2.4. We still have some topological interpretation of the
above conjecture by introducing the distributional topology on Xan

v . We
will still have a conjecture that the support of dμv is Zariski dense. Also
we have the analogue of Proposition 4.1.2: the v-adic equidistribution con-
jecture plus the density of the support of (dμv) will imply the “if” part of
Conjecture 1.2.1.

Remark 4.2.5. In [50], Szpiro and Tucker gave a formula for canonical
heights for the dynamical system on P1 by working on successive blow-ups.

4.3. A generic equidistribution theorem. In this section we want
to show that the Bogomolov conjecture is equivalent to the equidistribution
conjecture. This is actually a consequence of the following equidistribution
theorem for Galois orbits of generic sequences of small points:

Theorem 4.3.1 (Equidisdibution for Zariski generic small points [57],
[64], [16], [60]). Let X be a projective variety over a number field K of
dimension n. Let v be a place of K. Let L̄ = (L, ‖ · ‖v) be a metrized line
bundle on X such that the following hold:

(1) L is ample,
(2) ‖ · ‖v is semipositive,
(3) hL̄(X) = 0.

Let xn be a sequence of points on X such that lim hL̄(xn) = 0 and that
no infinite subsequence of xn is included in a proper subvariety. Then the
Galois orbits of xn are equidistributed in Xan

v with respect to the measure

dμ := c1(Lv, ‖ · ‖v)n/degL(X).

Corollary 4.3.2. The dynamic Bogomolov Conjecture 4.1.7 is equi-
valent to the equidistribution conjecture 4.1.8 and 4.2.2.

Proof. By a standard trick, we need only show that any infinite sub-
sequence xin contains another infinite subsequence whose Galois orbits are
equidistributed. With xin replaced by a subsequence we may assume the
following:

(1) the Zariski closure Y of {Γxin , n = 1, . . .} is an integral subvariety
of X;

(2) no infinite subsequence of xin is included into a proper subvariety
of Y .

By the Bogomolov conjecture, Y is a preperiodic subvariety of X. By the
assumption of the conjecture 4.2.2, X = Y . Now Theorem 4.3.1 gives the
equidistribution of Galois orbits. �



426 S.-W. ZHANG

Sketch of proof of Theorem 4.3.1. The theorem was first proved in Szpiro-
Ullmo-Zhang [57] when XK is smooth and the curvature of L̄ is smooth and
positive point-wise on X(C), and extended in [64] when XC is a subvariety
of a smooth variety Y and L̄C is the restriction of a metrized line bundle
M with smooth and positive curvature point-wise. Then Chambert-Loir
[16] further extended all of these results to v-adic Berkovich spaces. The
general case stated here is due to Yuan [60] as a consequence of his theorem
of arithmetic bigness of line bundles:

Theorem 4.3.3 (Yuan [60]). Let L̄1 and L̄2 be two arithmetically ample
line bundles on X such that

c1(L̄1)n+1 − (n + 1)c1(L̄1)n · c1(L̄2) > 0.

Then the bundle L̄1 ⊗ L̄−1
2 is big in the following sense:

log #
{
s ∈ Γ(X, (L1 ⊗ L−1

2 )k) : ‖s‖sup ≤ 1
}
≥ ckn+1 + o(kn+1)

where ‖ · ‖sup = supv ‖ · ‖v,sup is the superum norm over all places and c is
a positive number independent of k.

Let f be a semi-smooth function on Xan
v . For each t ∈ R, let L̄t denote

the metrized line bundle (L, ‖ · ‖t) with adelic metric ‖ · ‖t = ‖ · ‖e−ft (which
differs from ‖ ·‖ only at v) . Since f is smooth, we have a line bundle OX(f)
on a model of X induces the metric on OX such that the induced metric
has property ‖1‖v = ef and ‖1‖w = 1 for w �= v. It is easy to see that there
are two semi-ample line bundles M̄1 and M̄1 such that

O(f) = M̄1 ⊗ M̄−1
2 .

Now we have the expression

c1(L̄t) = c1(L̄ ⊗ M̄t
1) − c1(M̄t

2).

Now we apply Yuan’s bigness theorem to the two line bundles on the right
hand side. The quantity in Yuan’s theorem is

(c1(L̄) + tc1(M̄1))n+1 − (n + 1)(c1(L̄) + tc1(M̄))n(tc̄1(M2))

= tc1(L̄)n(c1(M̄1) − c1(M̄2)) + O(t2)

= (n + 1)tc1(L̄)n · c1(O(f)) + O(t2)

= (n + 1)t
∫

fc1(L̄)n + O(t2).

Thus
∫

fc1(L̄)n > 0 will imply that L̄t is big. In this case there is a
section s of L̄k

t with norm ≤ 1. Now let us use this section to compute the
heights of x ∈ X(K̄) when x not in the divisor of s,

hL̄t
(x) = −1

k

1
deg x

∑
v

∑
σ:K(x)−→K̄v

log ‖s‖v(σ(x)) ≥ 0.
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On the other hand, we can compute the height by the additivity

L̄t = L̄ + O(tf)

and Section 1 for O(tf) with norm e−tf :

hL̄t
(x) = hL̄(x) + hO(tf)(x)

= hL̄(x) +
t

deg x

∑
σ:K(x)−→K̄v

f(σ(x)).

Combining both expressions we obtain that
∫

fc1(L̄)n > 0 implies that
for x in a Zariski dense subset,

t

deg x

∑
σ:K(x)−→K̄v

f(σ(x)) ≥ −hL̄(x).

Now we apply this inequality to xn in Theorem 4.3.1 to obtain that

lim inf
n−→∞

t

deg xn

∑
σ:K(xn)−→K̄v

f(σ(xn)) ≥ 0.

For arbitrary f , we may replace f by f − ∫
fdμ + ε (which has positive

integral ε > 0 ) to obtain the following unconditional inequality

lim inf
n−→∞

1
deg x

∑
σ:K(xn)−→K̄v

f(v(xn)) ≥
∫

fdμ.

We may replace f by −f in the above expression to obtain

lim sup
n−→∞

1
deg x

∑
σ:K(xn)−→K̄v

f(σ(xn)) ≤
∫

fdμ.

Thus we have shown that

lim
n−→∞

1
deg x

∑
σ:K(xn)−→K̄v

f(σ(xn)) =
∫

fdμ.

Remark 4.3.4. When dimX = 1, Theorem 4.3.1 has been proved by
A. Chambert-Loir in [17] using a bigness type result of Autissier [1] for
arithmetic surfaces. In the spacial case where X = P1, and L is equipped
with the canonical metric induced from an endomorphism φ of degree > 1,
Theorem 4.3.1 has been proved by two different groups of people: M. Baker
and R. Rumely [3] and C. Favre and J. Rivera-Letelier in [24].
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