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Section 1. Introduction

In this note everything is over the complex numbers C. Let us first introduce some
notation:

• g: a positive integer ≥ 4.
• Ag: the coarse moduli scheme of principally polarized abelian varieties of

dimension g over C.
• Mg: the coarse moduli scheme of nonsingular projective genus g curves.
• M c

g : the Zariski closure of (the image) Mg in Ag. (It turns out that Mg →
Ag is an immersion, see [OS79].)

• Adec
g ⊂ Ag: the locus of decomposable principal polarized abelian varieties;

an (A, λ : A → At) ∈ Ag(C) is said to be decomposable if A = A1×A2 with
λ(A1 × 0) ⊂ At

1.

Our main problem is to decide when a connected Shimura subvariety X of Ag is
included in M c

g so that the intersection of X with Mg is non-empty. Recall that X
is by definition a connected component of a Shimura variety defined by a reductive
subgroup G of GSpg over Q. Let Gad =

∏
i Gad

i be the decomposition of Gad into
product of simple group and let Gi be the pre-image of Gad

i in G. Then a finite
covering X ′ will have decomposition X ′ =

∏
X ′

i where X ′
i are Shimura varieties

associated to Gi. Thus replacing G by Gi we may assume that X is simple in the
sense that Gad is simple.

Our first main result is as follows:
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Theorem 1.1. Let X be a Shimura subvariety of Ag defined by a reductive subgroup
G of GSpg over Q. Assume that Gad is Q-simple and that X is included in M c

g

such that X ∩Mg is not empty. Then one of the following three conditions holds:
(1) the hermitian symmetric space covering X is a disc in some Cn, or
(2) X ∩Adec

g has codimension ≤ 2, or
(3) the Baily-Borel-Satake compactification of X has boundary with codimen-

sion ≤ 2.

It is complicated to list all Shimura varieties satisfying the conditions in the
theorem. In the following we would like to apply our theorem to the Hilbert modular
varieties. So we introduce the following notation:

• let F denote a totally real number field of degree g.
• let O denote an order in F .
• let AOg denote the subvariety of Ag corresponding to abelian varieties A

such that Hom(O,End(A)) 6= 0.
The above theorem gives the following:

Corollary 1.2. Assume that g ≥ 4. Let X be a component of AOg . Then X is not
included in M c

g except the following possible case:
(*) F is a quadratic extension of a real quadratic field.

Combining with an equidistribution theorem [Zha05] on CM-points on quater-
nion Shimura varieties, we obtain the following finiteness result on the CM-points
in Ag:

Theorem 1.3. Let K be an imaginary quadratic extension of F with a CM-type
SK such that the corresponding Mumford-Tate group MT (K, SK) is maximal. Then
the set of curves [C] ∈ M c

g such that Jac(C) has a multiplication by an order K
containing O with CM-type SK is finite, except the the possible case (*) as in the
above corollary.

Here are few words about the definition about the maximality of the Mumford-
Tate group. Let A be a complex abelian variety of dimension g. Then the complex
structure on Lie(A) ' H1(A, R) defines a homomorphism C× −→ GL(H1(A, R)).
The Mumford-Tate group MT (A) of A is the minimal algebraic subgroup H of
GL(H1(A, Q)) defined over Q such that MT (A)(R) contains the image of C×.
Assume that A has multiplication by an order in K, then Lie(A) ' Cg is a K-
module. The trace of an x ∈ K is given by g-embeddings φi : K −→ C:

tr(x|Lie(A)) =
∑

i

φi(x).

The set of φi is called the CM-type. In this case, the Mumford-Tate group MT (A)
is an algebraic subgroup of K× determined completely by the type SK ; so we may
write it as MT (SK). We say that MT (SK) is maximal if MT (SK) · F× generates
K× as an algebraic group over Q.

Example 1.4. Assume that ` := 2g + 1 is a prime number. For each integer a
between 1 and g, let us define curve Ca of genus g as follows:

Ca : y` = xa(1− x).

Then Jac(Ca) has CM by K := Q(ζ`). To describe the CM-type of Jac(Ca), we
notice that all complex embeddings of K are indexed by t ∈ Gal(K/Q) ' (Z/pZ)×
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which bring ζ to ζt. The CM-type Ta of Jac(Ca) is the subset of t ∈ (Z/pZ)× such
that

(1.1)
〈

at

`

〉
+

〈
t

`

〉
< 1

where < x > denote the decimal part of a number x ∈ R ≥ 0. See [Wei76] for
details. We will show that MT (Ta) is maximal if g is not a multiple of 3. So our
theorem 1.3 in some sense shows that there only finitely many curves isogenous
[Ca] with any fixed action by an order O of F .

To conclude this introduction, let us mention that the following recent work of
M. Möller, E. Viehweg, and K. Zuo:

Theorem 1.5 (Möller-Viehweg-Zuo [MVZ]). Let g > 1 be an integer and Mg be
the moduli stack of curves of genus g. Then

(1) Mg does not contain any compact Shimura curve;
(2) For g 6= 3, Mg does not contains any non-compact Shimura curve;
(3) For g = 3, there is essentially a unique Shimura curve C in M3 which is

defined by the embedding P1\{0, 1,∞} −→Mg by parameterizing the curve

y4 = x(x− 1)(x− t), t ∈ P1 \ {0, 1,∞}.

Replacing Mg by Mg,n, we may reformulate the Theorem about non-existence
of Shimura curves in any Mg,n which represents a family of curves. As we see in
the next section, any Shimura curve in Mg,n is representable if it is either disjoint
from the hyper-elliptic locus or included in the hyper-elliptic locus. Besides the
representability problem, another difference with our formulation is that their result
is about Mg,n rather than its closure in Ag,n.

Section 2. Mapping class groups and hyperelliptic locus

In this section, we want to prove Theorem 1.1 and its Corollary 1.2. We will
use ideas of Hain in [Ric99]. More precisely, we want to show that under all three
conditions of the theorem and after taking a covering Xn −→ X classifying level
structures, there is a closed subset Y of Xn with dimension ≤ 2 such that its
complement Xn \Y parameterizes curves C. Let x ∈ U then the monodromy action
induces homomorphisms

π1(Xn, x) = π1(U, x) −→ Aut(π1(Cx)) −→ Mod(Cx)

where Mod(Cx) is the mapping class group, i.e., the quotient of Aut(Cx) modulo
the inner automorphisms. Notice that π1(Xn, x) is a lattice in a reductive group of
rank ≥ 2 under the assumptions of the theorem. It follows from a theorem of Faber
and Masur [FM98] that the image of the composition of the above morphisms is
finite. Thus the family is isotrivial and we then have a contradiction. The main
obstruction for the existence of the family C is the possible presence of the hyper-
elliptic locus of codimension 1. We prove the non-existence of such locus using the
fact that the hyper-elliptic locus is always affine. This is probably the only new
(but trivial) idea not included in Hain’s paper.
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Subsection 2.1. Mapping class groups. We will use some ideas in Hain’s paper
[Ric99] which we explain here. First, there is a reference to the paper [FM98] of
Farb and Masur. Theorem 1.1 of [FM98] implies that if Γ is an irreducible lattice in
a semisimple Lie group G of real rank ≥ 2 then any homomorphism Γ → Mod(Sg)
has finite image. Here Mod(Sg) is the mapping class group of a compact Riemann
surface of genus g. In particular, if X is a nonsingular complex algebraic variety
with π1(X) = Γ then any family of smooth projective curves C → X has to be
topologically isotrivial.

Take an integer n and consider the moduli space Ag,n of principally polarized
abelian varieties with symplectic level n structure. There is a finite morphism
Ag,n → Ag. Similarly we have the moduli space Mg,n, and a finite morphism
Mg,n → Mg. Whence the diagram:

Mg,n //

��

Ag,n

��
Mg // Ag

It is no longer true that Mg,n → Ag,n is an immersion, namely it ramifies exactly
along the hyperelliptic locus Hg,n ⊂ Mg,n. See [OS79]. Finally, let M c

g,n denote
the total inverse image of M c

g .

Let M b
g ⊂ Mg denote the locus of “good” stable curves (sometimes called “compact

type”); these are the stable curves C so that Pic00(C) is an abelian variety of
dimension g. Similarly there is a moduli space M b

g,n of good curves of genus g with
a symplectic level n system; this is a smooth quasi-projective variety. There is a
surjective projective morphism

M b
g,n −→ M c

g,n.

This morphism has positive dimensional fibres over the points in the image corre-
sponding to decomposable principally polarized abelian varieties.

The remarks above imply that Mg,n → Ag,n is an immersion over the complement
of Hg,n.

Now, let’s go back to the situation of our theorem, and suppose that we have
X ⊂ M c

g with real rank ≥ 2. Consider an irreducible component Xn ⊂ Ag,n

of the full inverse image of X. The first idea of the paper of Hain is that if X
misses the locus of decomposable polarized abelian varieties and if it misses the
locus of hyperelliptic Jacobians then actually there is a universal family of curves
C → Xn. This means we can apply Theorem of Farb and Masur to conclude (see
first paragraph of this subsection). Namely, the assumption of X implies that Xn

is a Shimura variety. More precisely, Xn
∼= D/Γ where D denotes a hermitian

symmetric domain, and Γ is a congruence subgroup of G(Q).

The second idea of Hain is that it suffices in the argument above that the inter-
section X ∩ (Hg ∪ Adec

g ) has codimension ≥ 2 inside X. Namely, in this case we
apply the argument to the complement of this locus in Xn which won’t change the
fundamental group.

The third idea of [Ric99] is that X cannot be contained inside the hyperelliptic
locus Hg. The proof of this statement is hidden in the proof of Theorem 2 of that
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paper and consists of one sentence. We elaborate. By the above we may assume
that away from codimension 2, say over an open V , the points of X correspond to
Jacobians of smooth curves. To reach a contradiction, assume all of these curves
are hyperelliptic. For a hyperelliptic curve C we have

(1) Aut(C) = Aut(J(C), λ) and
(2) the multiplication Sym2(H0(C,Ω1

C)) → H0(C, (Ω1
C)⊗2) maps onto the in-

variant part (under the hyperelliptic involution).
These two facts, plus Torelli, imply that X → Ag,n is an immersion, see [OS79].
So now, over some the open Vg,n ⊂ Xn, with π1(Vg,n) = π1(Xn) = Γ, there is a
universal family of hyperelliptic curves, and we win as before.

Subsection 2.2. Hyperelliptic locus: proof of Theorem 1.1. With what we
have discussed in the previous section, we may assume that Hg ∩X is a divisor of
X. Let X̄ be the Baily-Borel-Satake compactification of X. Then X̄ is a projective
variety and the codimension of X̄ \X is ≥ 3. By cutting by hyper-plane sections,
we obtain a surface S in X̄ such that

(1) S is included in X \Adec
g ;

(2) S ∩H is nonempty and 1 dimensional.
In this case S∩H is a projective curve parameterizing smooth hyper-elliptic curves.
This is impossible.

Subsection 2.3. Proof of Corollary 1.2. For a Hilbert modular variety X de-
fined by a totally real number field F , the three conditions in Theorem 1.1 are easy
to check:

• the symmetric space of X are given by a product of g-unit discs in C;
• the generic point represents an non-decomposable abelian variety and sub-

varieties corresponding to decomposable abelian variety are defined by sub-
fields F ′ of F which codimension g − g′ ≥ 3 except case (*).

• The Baily-Borel-Sataki compactification is given by adding finitely many
cusps. Thus the boundary has codimension g.

Section 3. Finiteness of CM-points

In this section, we want to prove Theorem 1.3 and Example 1.4. The main
problem is to check the maximality of the Mumford-Tate group. We will show that
the maximality is equivalent to the non-vanishing of some generalized Bernoulli
numbers, which by the class number formula is equivalent to the standard (but
highly nontrivial) non-vanishing of some Dirichlet L-series at s = 1.

Subsection 3.1. Proof of Theorem 1.3. Let CM(K, SK) be the set of CM-
points on AOg . By Corollary 2.7 in [Zha05], any infinite subset of CM-points in
CM(K, SK) is Zariski dense. By Corollary 1.2, M c

g ∩AOg is a proper subvariety of
AOg . It follows that M c

g ∩ CM(K, SK) as a subset in CM(K, SK) must be a finite
set.

Subsection 3.2. Proof of Example 1.4. In the following we want to show that
the CM-type defined in the example has maximal CM-type. First we use Propo-
sition 6.1 in [Zha05] to describe the character group of MT (SK)F×/F×. Let us
identify the group of algebraic characters of K× := ResK/QGm as Z[Gal(K/Q)],
then the quotient group K×/F× has character group Z[Gal(K/Q)]− of elements

5



annihilated by 1+c where c ∈ Gal(K/Q) is the complex conjugation. By part 1 and
2 of Proposition 6.1 in [Zha05], the character group of MT (SK)F×/F× is the quo-
tient of Z[Gal(K/Q)]− modulo the sub-modulo Φ consisting of φ ∈ Z[Gal(K/Q)]−

such that

(3.1)
∑

s∈SK

φ(gs) = 0, ∀g ∈ Gal(K/Q).

Thus the maximality of MT (SK) is equivalent to Φ = 0. It is equivalent to show
Φ ⊗ C = 0. As Gal(K/Q) is commutative, Φ ⊗ C is generated by characters χ
of Gal(K/Q). Thus we need to show that there is no non-trivial characters χ of
(Z/`Z)× such that χ(c) = −1 and that

(3.2)
∑
t∈Ta

χ(t) = 0.

Let b = `− 1− a. Then for any t ∈ (Z/`)×, then

< t/` > + < at/` > + < bt/` >= 1 or 2.

Thus the equation (3.2) is equivalent to∑
t

(< t/` > + < at/` > + < bt/` > −2)χ(t) = 0.

Let Bχ be the generalized Bernoulli number defined by

B1,χ =
∑

t

(< t/` > −1/2)χ(t).

As
∑

t χ(t) = 0, then the above equation can be written as

B1,χ(1 + χ−1(a) + χ−1(b)) = 0.

By the class number formula,

L(1, χ) =
πi

p
τ(χ)B1,χ

where τ(χ) =
∑

t χ(t)e2πit/p is the Gauss sum. Thus the nonvanishing of L(1, χ)
implies that B1,χ 6= 0; see Theorem 4.9 in [Was82]. Thus the equation (3.2) is
equivalent to

(3.3) 1 + χ−1(a) + χ−1(b) = 0.

As all three terms here are roots of unity, the only possible solution is when they
are 3 cubic roots of unity. It follows that χ(a3) = 1. Since g = (` − 1)/2 is prime
to 3, the order of χ is prime to 3, thus χ(a) = 1. This is impossible.
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